'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.
Version: | 0.1.9 |
Imports: | Rcpp (≥ 1.0.13) |
LinkingTo: | Rcpp, RcppArmadillo, RcppGSL |
Suggests: | testthat (≥ 3.0.0), snpStats |
Published: | 2025-03-15 |
DOI: | 10.32614/CRAN.package.RcppDPR |
Author: | Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb] |
Maintainer: | Mohammad Abu Gazala <abugazalamohammad at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | yes |
Materials: | NEWS |
CRAN checks: | RcppDPR results [issues need fixing before 2025-03-30] |
Reference manual: | RcppDPR.pdf |
Package source: | RcppDPR_0.1.9.tar.gz |
Windows binaries: | r-devel: RcppDPR_0.1.9.zip, r-release: RcppDPR_0.1.9.zip, r-oldrel: RcppDPR_0.1.9.zip |
macOS binaries: | r-devel (arm64): RcppDPR_0.1.9.tgz, r-release (arm64): RcppDPR_0.1.9.tgz, r-oldrel (arm64): RcppDPR_0.1.9.tgz, r-devel (x86_64): RcppDPR_0.1.9.tgz, r-release (x86_64): RcppDPR_0.1.9.tgz, r-oldrel (x86_64): RcppDPR_0.1.9.tgz |
Please use the canonical form https://CRAN.R-project.org/package=RcppDPR to link to this page.