1/* $NetBSD: uvm_page.c,v 1.187 2015/04/11 19:24:13 joerg Exp $ */
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
37 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64/*
65 * uvm_page.c: page ops.
66 */
67
68#include <sys/cdefs.h>
69__KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.187 2015/04/11 19:24:13 joerg Exp $");
70
71#include "opt_ddb.h"
72#include "opt_uvm.h"
73#include "opt_uvmhist.h"
74#include "opt_readahead.h"
75
76#include <sys/param.h>
77#include <sys/systm.h>
78#include <sys/sched.h>
79#include <sys/kernel.h>
80#include <sys/vnode.h>
81#include <sys/proc.h>
82#include <sys/atomic.h>
83#include <sys/cpu.h>
84
85#include <uvm/uvm.h>
86#include <uvm/uvm_ddb.h>
87#include <uvm/uvm_pdpolicy.h>
88
89/*
90 * global vars... XXXCDC: move to uvm. structure.
91 */
92
93/*
94 * physical memory config is stored in vm_physmem.
95 */
96
97struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
98int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
99#define vm_nphysmem vm_nphysseg
100
101/*
102 * Some supported CPUs in a given architecture don't support all
103 * of the things necessary to do idle page zero'ing efficiently.
104 * We therefore provide a way to enable it from machdep code here.
105 */
106bool vm_page_zero_enable = false;
107
108/*
109 * number of pages per-CPU to reserve for the kernel.
110 */
111#ifndef UVM_RESERVED_PAGES_PER_CPU
112#define UVM_RESERVED_PAGES_PER_CPU 5
113#endif
114int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
115
116/*
117 * physical memory size;
118 */
119int physmem;
120
121/*
122 * local variables
123 */
124
125/*
126 * these variables record the values returned by vm_page_bootstrap,
127 * for debugging purposes. The implementation of uvm_pageboot_alloc
128 * and pmap_startup here also uses them internally.
129 */
130
131static vaddr_t virtual_space_start;
132static vaddr_t virtual_space_end;
133
134/*
135 * we allocate an initial number of page colors in uvm_page_init(),
136 * and remember them. We may re-color pages as cache sizes are
137 * discovered during the autoconfiguration phase. But we can never
138 * free the initial set of buckets, since they are allocated using
139 * uvm_pageboot_alloc().
140 */
141
142static size_t recolored_pages_memsize /* = 0 */;
143
144#ifdef DEBUG
145vaddr_t uvm_zerocheckkva;
146#endif /* DEBUG */
147
148/*
149 * local prototypes
150 */
151
152static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
153static void uvm_pageremove(struct uvm_object *, struct vm_page *);
154
155/*
156 * per-object tree of pages
157 */
158
159static signed int
160uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
161{
162 const struct vm_page *pg1 = n1;
163 const struct vm_page *pg2 = n2;
164 const voff_t a = pg1->offset;
165 const voff_t b = pg2->offset;
166
167 if (a < b)
168 return -1;
169 if (a > b)
170 return 1;
171 return 0;
172}
173
174static signed int
175uvm_page_compare_key(void *ctx, const void *n, const void *key)
176{
177 const struct vm_page *pg = n;
178 const voff_t a = pg->offset;
179 const voff_t b = *(const voff_t *)key;
180
181 if (a < b)
182 return -1;
183 if (a > b)
184 return 1;
185 return 0;
186}
187
188const rb_tree_ops_t uvm_page_tree_ops = {
189 .rbto_compare_nodes = uvm_page_compare_nodes,
190 .rbto_compare_key = uvm_page_compare_key,
191 .rbto_node_offset = offsetof(struct vm_page, rb_node),
192 .rbto_context = NULL
193};
194
195/*
196 * inline functions
197 */
198
199/*
200 * uvm_pageinsert: insert a page in the object.
201 *
202 * => caller must lock object
203 * => caller must lock page queues
204 * => call should have already set pg's object and offset pointers
205 * and bumped the version counter
206 */
207
208static inline void
209uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
210 struct vm_page *where)
211{
212
213 KASSERT(uobj == pg->uobject);
214 KASSERT(mutex_owned(uobj->vmobjlock));
215 KASSERT((pg->flags & PG_TABLED) == 0);
216 KASSERT(where == NULL || (where->flags & PG_TABLED));
217 KASSERT(where == NULL || (where->uobject == uobj));
218
219 if (UVM_OBJ_IS_VNODE(uobj)) {
220 if (uobj->uo_npages == 0) {
221 struct vnode *vp = (struct vnode *)uobj;
222
223 vholdl(vp);
224 }
225 if (UVM_OBJ_IS_VTEXT(uobj)) {
226 atomic_inc_uint(&uvmexp.execpages);
227 } else {
228 atomic_inc_uint(&uvmexp.filepages);
229 }
230 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
231 atomic_inc_uint(&uvmexp.anonpages);
232 }
233
234 if (where)
235 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
236 else
237 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
238 pg->flags |= PG_TABLED;
239 uobj->uo_npages++;
240}
241
242
243static inline void
244uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
245{
246 struct vm_page *ret __diagused;
247
248 KASSERT(uobj == pg->uobject);
249 ret = rb_tree_insert_node(&uobj->rb_tree, pg);
250 KASSERT(ret == pg);
251}
252
253static inline void
254uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
255{
256
257 KDASSERT(uobj != NULL);
258 uvm_pageinsert_tree(uobj, pg);
259 uvm_pageinsert_list(uobj, pg, NULL);
260}
261
262/*
263 * uvm_page_remove: remove page from object.
264 *
265 * => caller must lock object
266 * => caller must lock page queues
267 */
268
269static inline void
270uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
271{
272
273 KASSERT(uobj == pg->uobject);
274 KASSERT(mutex_owned(uobj->vmobjlock));
275 KASSERT(pg->flags & PG_TABLED);
276
277 if (UVM_OBJ_IS_VNODE(uobj)) {
278 if (uobj->uo_npages == 1) {
279 struct vnode *vp = (struct vnode *)uobj;
280
281 holdrelel(vp);
282 }
283 if (UVM_OBJ_IS_VTEXT(uobj)) {
284 atomic_dec_uint(&uvmexp.execpages);
285 } else {
286 atomic_dec_uint(&uvmexp.filepages);
287 }
288 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
289 atomic_dec_uint(&uvmexp.anonpages);
290 }
291
292 /* object should be locked */
293 uobj->uo_npages--;
294 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
295 pg->flags &= ~PG_TABLED;
296 pg->uobject = NULL;
297}
298
299static inline void
300uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
301{
302
303 KASSERT(uobj == pg->uobject);
304 rb_tree_remove_node(&uobj->rb_tree, pg);
305}
306
307static inline void
308uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
309{
310
311 KDASSERT(uobj != NULL);
312 uvm_pageremove_tree(uobj, pg);
313 uvm_pageremove_list(uobj, pg);
314}
315
316static void
317uvm_page_init_buckets(struct pgfreelist *pgfl)
318{
319 int color, i;
320
321 for (color = 0; color < uvmexp.ncolors; color++) {
322 for (i = 0; i < PGFL_NQUEUES; i++) {
323 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
324 }
325 }
326}
327
328/*
329 * uvm_page_init: init the page system. called from uvm_init().
330 *
331 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
332 */
333
334void
335uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
336{
337 static struct uvm_cpu boot_cpu;
338 psize_t freepages, pagecount, bucketcount, n;
339 struct pgflbucket *bucketarray, *cpuarray;
340 struct vm_physseg *seg;
341 struct vm_page *pagearray;
342 int lcv;
343 u_int i;
344 paddr_t paddr;
345
346 KASSERT(ncpu <= 1);
347 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
348
349 /*
350 * init the page queues and page queue locks, except the free
351 * list; we allocate that later (with the initial vm_page
352 * structures).
353 */
354
355 uvm.cpus[0] = &boot_cpu;
356 curcpu()->ci_data.cpu_uvm = &boot_cpu;
357 uvmpdpol_init();
358 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
359 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
360
361 /*
362 * allocate vm_page structures.
363 */
364
365 /*
366 * sanity check:
367 * before calling this function the MD code is expected to register
368 * some free RAM with the uvm_page_physload() function. our job
369 * now is to allocate vm_page structures for this memory.
370 */
371
372 if (vm_nphysmem == 0)
373 panic("uvm_page_bootstrap: no memory pre-allocated");
374
375 /*
376 * first calculate the number of free pages...
377 *
378 * note that we use start/end rather than avail_start/avail_end.
379 * this allows us to allocate extra vm_page structures in case we
380 * want to return some memory to the pool after booting.
381 */
382
383 freepages = 0;
384 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
385 seg = VM_PHYSMEM_PTR(lcv);
386 freepages += (seg->end - seg->start);
387 }
388
389 /*
390 * Let MD code initialize the number of colors, or default
391 * to 1 color if MD code doesn't care.
392 */
393 if (uvmexp.ncolors == 0)
394 uvmexp.ncolors = 1;
395 uvmexp.colormask = uvmexp.ncolors - 1;
396 KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
397
398 /*
399 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
400 * use. for each page of memory we use we need a vm_page structure.
401 * thus, the total number of pages we can use is the total size of
402 * the memory divided by the PAGE_SIZE plus the size of the vm_page
403 * structure. we add one to freepages as a fudge factor to avoid
404 * truncation errors (since we can only allocate in terms of whole
405 * pages).
406 */
407
408 bucketcount = uvmexp.ncolors * VM_NFREELIST;
409 pagecount = ((freepages + 1) << PAGE_SHIFT) /
410 (PAGE_SIZE + sizeof(struct vm_page));
411
412 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
413 sizeof(struct pgflbucket) * 2) + (pagecount *
414 sizeof(struct vm_page)));
415 cpuarray = bucketarray + bucketcount;
416 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
417
418 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
419 uvm.page_free[lcv].pgfl_buckets =
420 (bucketarray + (lcv * uvmexp.ncolors));
421 uvm_page_init_buckets(&uvm.page_free[lcv]);
422 uvm.cpus[0]->page_free[lcv].pgfl_buckets =
423 (cpuarray + (lcv * uvmexp.ncolors));
424 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
425 }
426 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
427
428 /*
429 * init the vm_page structures and put them in the correct place.
430 */
431
432 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
433 seg = VM_PHYSMEM_PTR(lcv);
434 n = seg->end - seg->start;
435
436 /* set up page array pointers */
437 seg->pgs = pagearray;
438 pagearray += n;
439 pagecount -= n;
440 seg->lastpg = seg->pgs + n;
441
442 /* init and free vm_pages (we've already zeroed them) */
443 paddr = ctob(seg->start);
444 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
445 seg->pgs[i].phys_addr = paddr;
446#ifdef __HAVE_VM_PAGE_MD
447 VM_MDPAGE_INIT(&seg->pgs[i]);
448#endif
449 if (atop(paddr) >= seg->avail_start &&
450 atop(paddr) < seg->avail_end) {
451 uvmexp.npages++;
452 /* add page to free pool */
453 uvm_pagefree(&seg->pgs[i]);
454 }
455 }
456 }
457
458 /*
459 * pass up the values of virtual_space_start and
460 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
461 * layers of the VM.
462 */
463
464 *kvm_startp = round_page(virtual_space_start);
465 *kvm_endp = trunc_page(virtual_space_end);
466#ifdef DEBUG
467 /*
468 * steal kva for uvm_pagezerocheck().
469 */
470 uvm_zerocheckkva = *kvm_startp;
471 *kvm_startp += PAGE_SIZE;
472#endif /* DEBUG */
473
474 /*
475 * init various thresholds.
476 */
477
478 uvmexp.reserve_pagedaemon = 1;
479 uvmexp.reserve_kernel = vm_page_reserve_kernel;
480
481 /*
482 * determine if we should zero pages in the idle loop.
483 */
484
485 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
486
487 /*
488 * done!
489 */
490
491 uvm.page_init_done = true;
492}
493
494/*
495 * uvm_setpagesize: set the page size
496 *
497 * => sets page_shift and page_mask from uvmexp.pagesize.
498 */
499
500void
501uvm_setpagesize(void)
502{
503
504 /*
505 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
506 * to be a constant (indicated by being a non-zero value).
507 */
508 if (uvmexp.pagesize == 0) {
509 if (PAGE_SIZE == 0)
510 panic("uvm_setpagesize: uvmexp.pagesize not set");
511 uvmexp.pagesize = PAGE_SIZE;
512 }
513 uvmexp.pagemask = uvmexp.pagesize - 1;
514 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
515 panic("uvm_setpagesize: page size %u (%#x) not a power of two",
516 uvmexp.pagesize, uvmexp.pagesize);
517 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
518 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
519 break;
520}
521
522/*
523 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
524 */
525
526vaddr_t
527uvm_pageboot_alloc(vsize_t size)
528{
529 static bool initialized = false;
530 vaddr_t addr;
531#if !defined(PMAP_STEAL_MEMORY)
532 vaddr_t vaddr;
533 paddr_t paddr;
534#endif
535
536 /*
537 * on first call to this function, initialize ourselves.
538 */
539 if (initialized == false) {
540 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
541
542 /* round it the way we like it */
543 virtual_space_start = round_page(virtual_space_start);
544 virtual_space_end = trunc_page(virtual_space_end);
545
546 initialized = true;
547 }
548
549 /* round to page size */
550 size = round_page(size);
551
552#if defined(PMAP_STEAL_MEMORY)
553
554 /*
555 * defer bootstrap allocation to MD code (it may want to allocate
556 * from a direct-mapped segment). pmap_steal_memory should adjust
557 * virtual_space_start/virtual_space_end if necessary.
558 */
559
560 addr = pmap_steal_memory(size, &virtual_space_start,
561 &virtual_space_end);
562
563 return(addr);
564
565#else /* !PMAP_STEAL_MEMORY */
566
567 /*
568 * allocate virtual memory for this request
569 */
570 if (virtual_space_start == virtual_space_end ||
571 (virtual_space_end - virtual_space_start) < size)
572 panic("uvm_pageboot_alloc: out of virtual space");
573
574 addr = virtual_space_start;
575
576#ifdef PMAP_GROWKERNEL
577 /*
578 * If the kernel pmap can't map the requested space,
579 * then allocate more resources for it.
580 */
581 if (uvm_maxkaddr < (addr + size)) {
582 uvm_maxkaddr = pmap_growkernel(addr + size);
583 if (uvm_maxkaddr < (addr + size))
584 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
585 }
586#endif
587
588 virtual_space_start += size;
589
590 /*
591 * allocate and mapin physical pages to back new virtual pages
592 */
593
594 for (vaddr = round_page(addr) ; vaddr < addr + size ;
595 vaddr += PAGE_SIZE) {
596
597 if (!uvm_page_physget(&paddr))
598 panic("uvm_pageboot_alloc: out of memory");
599
600 /*
601 * Note this memory is no longer managed, so using
602 * pmap_kenter is safe.
603 */
604 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
605 }
606 pmap_update(pmap_kernel());
607 return(addr);
608#endif /* PMAP_STEAL_MEMORY */
609}
610
611#if !defined(PMAP_STEAL_MEMORY)
612/*
613 * uvm_page_physget: "steal" one page from the vm_physmem structure.
614 *
615 * => attempt to allocate it off the end of a segment in which the "avail"
616 * values match the start/end values. if we can't do that, then we
617 * will advance both values (making them equal, and removing some
618 * vm_page structures from the non-avail area).
619 * => return false if out of memory.
620 */
621
622/* subroutine: try to allocate from memory chunks on the specified freelist */
623static bool uvm_page_physget_freelist(paddr_t *, int);
624
625static bool
626uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
627{
628 struct vm_physseg *seg;
629 int lcv, x;
630
631 /* pass 1: try allocating from a matching end */
632#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
633 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
634#else
635 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
636#endif
637 {
638 seg = VM_PHYSMEM_PTR(lcv);
639
640 if (uvm.page_init_done == true)
641 panic("uvm_page_physget: called _after_ bootstrap");
642
643 if (seg->free_list != freelist)
644 continue;
645
646 /* try from front */
647 if (seg->avail_start == seg->start &&
648 seg->avail_start < seg->avail_end) {
649 *paddrp = ctob(seg->avail_start);
650 seg->avail_start++;
651 seg->start++;
652 /* nothing left? nuke it */
653 if (seg->avail_start == seg->end) {
654 if (vm_nphysmem == 1)
655 panic("uvm_page_physget: out of memory!");
656 vm_nphysmem--;
657 for (x = lcv ; x < vm_nphysmem ; x++)
658 /* structure copy */
659 VM_PHYSMEM_PTR_SWAP(x, x + 1);
660 }
661 return (true);
662 }
663
664 /* try from rear */
665 if (seg->avail_end == seg->end &&
666 seg->avail_start < seg->avail_end) {
667 *paddrp = ctob(seg->avail_end - 1);
668 seg->avail_end--;
669 seg->end--;
670 /* nothing left? nuke it */
671 if (seg->avail_end == seg->start) {
672 if (vm_nphysmem == 1)
673 panic("uvm_page_physget: out of memory!");
674 vm_nphysmem--;
675 for (x = lcv ; x < vm_nphysmem ; x++)
676 /* structure copy */
677 VM_PHYSMEM_PTR_SWAP(x, x + 1);
678 }
679 return (true);
680 }
681 }
682
683 /* pass2: forget about matching ends, just allocate something */
684#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
685 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
686#else
687 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
688#endif
689 {
690 seg = VM_PHYSMEM_PTR(lcv);
691
692 /* any room in this bank? */
693 if (seg->avail_start >= seg->avail_end)
694 continue; /* nope */
695
696 *paddrp = ctob(seg->avail_start);
697 seg->avail_start++;
698 /* truncate! */
699 seg->start = seg->avail_start;
700
701 /* nothing left? nuke it */
702 if (seg->avail_start == seg->end) {
703 if (vm_nphysmem == 1)
704 panic("uvm_page_physget: out of memory!");
705 vm_nphysmem--;
706 for (x = lcv ; x < vm_nphysmem ; x++)
707 /* structure copy */
708 VM_PHYSMEM_PTR_SWAP(x, x + 1);
709 }
710 return (true);
711 }
712
713 return (false); /* whoops! */
714}
715
716bool
717uvm_page_physget(paddr_t *paddrp)
718{
719 int i;
720
721 /* try in the order of freelist preference */
722 for (i = 0; i < VM_NFREELIST; i++)
723 if (uvm_page_physget_freelist(paddrp, i) == true)
724 return (true);
725 return (false);
726}
727#endif /* PMAP_STEAL_MEMORY */
728
729/*
730 * uvm_page_physload: load physical memory into VM system
731 *
732 * => all args are PFs
733 * => all pages in start/end get vm_page structures
734 * => areas marked by avail_start/avail_end get added to the free page pool
735 * => we are limited to VM_PHYSSEG_MAX physical memory segments
736 */
737
738void
739uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
740 paddr_t avail_end, int free_list)
741{
742 int preload, lcv;
743 psize_t npages;
744 struct vm_page *pgs;
745 struct vm_physseg *ps;
746
747 if (uvmexp.pagesize == 0)
748 panic("uvm_page_physload: page size not set!");
749 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
750 panic("uvm_page_physload: bad free list %d", free_list);
751 if (start >= end)
752 panic("uvm_page_physload: start >= end");
753
754 /*
755 * do we have room?
756 */
757
758 if (vm_nphysmem == VM_PHYSSEG_MAX) {
759 printf("uvm_page_physload: unable to load physical memory "
760 "segment\n");
761 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
762 VM_PHYSSEG_MAX, (long long)start, (long long)end);
763 printf("\tincrease VM_PHYSSEG_MAX\n");
764 return;
765 }
766
767 /*
768 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been
769 * called yet, so kmem is not available).
770 */
771
772 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
773 if (VM_PHYSMEM_PTR(lcv)->pgs)
774 break;
775 }
776 preload = (lcv == vm_nphysmem);
777
778 /*
779 * if VM is already running, attempt to kmem_alloc vm_page structures
780 */
781
782 if (!preload) {
783 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
784 } else {
785 pgs = NULL;
786 npages = 0;
787 }
788
789 /*
790 * now insert us in the proper place in vm_physmem[]
791 */
792
793#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
794 /* random: put it at the end (easy!) */
795 ps = VM_PHYSMEM_PTR(vm_nphysmem);
796#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
797 {
798 int x;
799 /* sort by address for binary search */
800 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
801 if (start < VM_PHYSMEM_PTR(lcv)->start)
802 break;
803 ps = VM_PHYSMEM_PTR(lcv);
804 /* move back other entries, if necessary ... */
805 for (x = vm_nphysmem ; x > lcv ; x--)
806 /* structure copy */
807 VM_PHYSMEM_PTR_SWAP(x, x - 1);
808 }
809#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
810 {
811 int x;
812 /* sort by largest segment first */
813 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
814 if ((end - start) >
815 (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
816 break;
817 ps = VM_PHYSMEM_PTR(lcv);
818 /* move back other entries, if necessary ... */
819 for (x = vm_nphysmem ; x > lcv ; x--)
820 /* structure copy */
821 VM_PHYSMEM_PTR_SWAP(x, x - 1);
822 }
823#else
824 panic("uvm_page_physload: unknown physseg strategy selected!");
825#endif
826
827 ps->start = start;
828 ps->end = end;
829 ps->avail_start = avail_start;
830 ps->avail_end = avail_end;
831 if (preload) {
832 ps->pgs = NULL;
833 } else {
834 ps->pgs = pgs;
835 ps->lastpg = pgs + npages;
836 }
837 ps->free_list = free_list;
838 vm_nphysmem++;
839
840 if (!preload) {
841 uvmpdpol_reinit();
842 }
843}
844
845/*
846 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
847 */
848
849#if VM_PHYSSEG_MAX == 1
850static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
851#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
852static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
853#else
854static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
855#endif
856
857/*
858 * vm_physseg_find: find vm_physseg structure that belongs to a PA
859 */
860int
861vm_physseg_find(paddr_t pframe, int *offp)
862{
863
864#if VM_PHYSSEG_MAX == 1
865 return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
866#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
867 return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
868#else
869 return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
870#endif
871}
872
873#if VM_PHYSSEG_MAX == 1
874static inline int
875vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
876{
877
878 /* 'contig' case */
879 if (pframe >= segs[0].start && pframe < segs[0].end) {
880 if (offp)
881 *offp = pframe - segs[0].start;
882 return(0);
883 }
884 return(-1);
885}
886
887#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
888
889static inline int
890vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
891{
892 /* binary search for it */
893 u_int start, len, guess;
894
895 /*
896 * if try is too large (thus target is less than try) we reduce
897 * the length to trunc(len/2) [i.e. everything smaller than "try"]
898 *
899 * if the try is too small (thus target is greater than try) then
900 * we set the new start to be (try + 1). this means we need to
901 * reduce the length to (round(len/2) - 1).
902 *
903 * note "adjust" below which takes advantage of the fact that
904 * (round(len/2) - 1) == trunc((len - 1) / 2)
905 * for any value of len we may have
906 */
907
908 for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
909 guess = start + (len / 2); /* try in the middle */
910
911 /* start past our try? */
912 if (pframe >= segs[guess].start) {
913 /* was try correct? */
914 if (pframe < segs[guess].end) {
915 if (offp)
916 *offp = pframe - segs[guess].start;
917 return guess; /* got it */
918 }
919 start = guess + 1; /* next time, start here */
920 len--; /* "adjust" */
921 } else {
922 /*
923 * pframe before try, just reduce length of
924 * region, done in "for" loop
925 */
926 }
927 }
928 return(-1);
929}
930
931#else
932
933static inline int
934vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
935{
936 /* linear search for it */
937 int lcv;
938
939 for (lcv = 0; lcv < nsegs; lcv++) {
940 if (pframe >= segs[lcv].start &&
941 pframe < segs[lcv].end) {
942 if (offp)
943 *offp = pframe - segs[lcv].start;
944 return(lcv); /* got it */
945 }
946 }
947 return(-1);
948}
949#endif
950
951/*
952 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
953 * back from an I/O mapping (ugh!). used in some MD code as well.
954 */
955struct vm_page *
956uvm_phys_to_vm_page(paddr_t pa)
957{
958 paddr_t pf = atop(pa);
959 int off;
960 int psi;
961
962 psi = vm_physseg_find(pf, &off);
963 if (psi != -1)
964 return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
965 return(NULL);
966}
967
968paddr_t
969uvm_vm_page_to_phys(const struct vm_page *pg)
970{
971
972 return pg->phys_addr;
973}
974
975/*
976 * uvm_page_recolor: Recolor the pages if the new bucket count is
977 * larger than the old one.
978 */
979
980void
981uvm_page_recolor(int newncolors)
982{
983 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
984 struct pgfreelist gpgfl, pgfl;
985 struct vm_page *pg;
986 vsize_t bucketcount;
987 size_t bucketmemsize, oldbucketmemsize;
988 int lcv, color, i, ocolors;
989 struct uvm_cpu *ucpu;
990
991 KASSERT(((newncolors - 1) & newncolors) == 0);
992
993 if (newncolors <= uvmexp.ncolors)
994 return;
995
996 if (uvm.page_init_done == false) {
997 uvmexp.ncolors = newncolors;
998 return;
999 }
1000
1001 bucketcount = newncolors * VM_NFREELIST;
1002 bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
1003 bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
1004 cpuarray = bucketarray + bucketcount;
1005 if (bucketarray == NULL) {
1006 printf("WARNING: unable to allocate %ld page color buckets\n",
1007 (long) bucketcount);
1008 return;
1009 }
1010
1011 mutex_spin_enter(&uvm_fpageqlock);
1012
1013 /* Make sure we should still do this. */
1014 if (newncolors <= uvmexp.ncolors) {
1015 mutex_spin_exit(&uvm_fpageqlock);
1016 kmem_free(bucketarray, bucketmemsize);
1017 return;
1018 }
1019
1020 oldbucketarray = uvm.page_free[0].pgfl_buckets;
1021 ocolors = uvmexp.ncolors;
1022
1023 uvmexp.ncolors = newncolors;
1024 uvmexp.colormask = uvmexp.ncolors - 1;
1025
1026 ucpu = curcpu()->ci_data.cpu_uvm;
1027 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1028 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
1029 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
1030 uvm_page_init_buckets(&gpgfl);
1031 uvm_page_init_buckets(&pgfl);
1032 for (color = 0; color < ocolors; color++) {
1033 for (i = 0; i < PGFL_NQUEUES; i++) {
1034 while ((pg = LIST_FIRST(&uvm.page_free[
1035 lcv].pgfl_buckets[color].pgfl_queues[i]))
1036 != NULL) {
1037 LIST_REMOVE(pg, pageq.list); /* global */
1038 LIST_REMOVE(pg, listq.list); /* cpu */
1039 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
1040 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1041 i], pg, pageq.list);
1042 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
1043 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
1044 i], pg, listq.list);
1045 }
1046 }
1047 }
1048 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
1049 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1050 }
1051
1052 oldbucketmemsize = recolored_pages_memsize;
1053
1054 recolored_pages_memsize = bucketmemsize;
1055 mutex_spin_exit(&uvm_fpageqlock);
1056
1057 if (oldbucketmemsize) {
1058 kmem_free(oldbucketarray, recolored_pages_memsize);
1059 }
1060
1061 /*
1062 * this calls uvm_km_alloc() which may want to hold
1063 * uvm_fpageqlock.
1064 */
1065 uvm_pager_realloc_emerg();
1066}
1067
1068/*
1069 * uvm_cpu_attach: initialize per-CPU data structures.
1070 */
1071
1072void
1073uvm_cpu_attach(struct cpu_info *ci)
1074{
1075 struct pgflbucket *bucketarray;
1076 struct pgfreelist pgfl;
1077 struct uvm_cpu *ucpu;
1078 vsize_t bucketcount;
1079 int lcv;
1080
1081 if (CPU_IS_PRIMARY(ci)) {
1082 /* Already done in uvm_page_init(). */
1083 goto attachrnd;
1084 }
1085
1086 /* Add more reserve pages for this CPU. */
1087 uvmexp.reserve_kernel += vm_page_reserve_kernel;
1088
1089 /* Configure this CPU's free lists. */
1090 bucketcount = uvmexp.ncolors * VM_NFREELIST;
1091 bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
1092 KM_SLEEP);
1093 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
1094 uvm.cpus[cpu_index(ci)] = ucpu;
1095 ci->ci_data.cpu_uvm = ucpu;
1096 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1097 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
1098 uvm_page_init_buckets(&pgfl);
1099 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
1100 }
1101
1102attachrnd:
1103 /*
1104 * Attach RNG source for this CPU's VM events
1105 */
1106 rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
1107 ci->ci_data.cpu_name, RND_TYPE_VM,
1108 RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
1109 RND_FLAG_ESTIMATE_VALUE);
1110
1111}
1112
1113/*
1114 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
1115 */
1116
1117static struct vm_page *
1118uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
1119 int *trycolorp)
1120{
1121 struct pgflist *freeq;
1122 struct vm_page *pg;
1123 int color, trycolor = *trycolorp;
1124 struct pgfreelist *gpgfl, *pgfl;
1125
1126 KASSERT(mutex_owned(&uvm_fpageqlock));
1127
1128 color = trycolor;
1129 pgfl = &ucpu->page_free[flist];
1130 gpgfl = &uvm.page_free[flist];
1131 do {
1132 /* cpu, try1 */
1133 if ((pg = LIST_FIRST((freeq =
1134 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1135 KASSERT(pg->pqflags & PQ_FREE);
1136 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1137 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1138 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1139 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1140 uvmexp.cpuhit++;
1141 goto gotit;
1142 }
1143 /* global, try1 */
1144 if ((pg = LIST_FIRST((freeq =
1145 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1146 KASSERT(pg->pqflags & PQ_FREE);
1147 KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1148 KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1149 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1150 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1151 uvmexp.cpumiss++;
1152 goto gotit;
1153 }
1154 /* cpu, try2 */
1155 if ((pg = LIST_FIRST((freeq =
1156 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1157 KASSERT(pg->pqflags & PQ_FREE);
1158 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1159 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1160 KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
1161 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1162 uvmexp.cpuhit++;
1163 goto gotit;
1164 }
1165 /* global, try2 */
1166 if ((pg = LIST_FIRST((freeq =
1167 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1168 KASSERT(pg->pqflags & PQ_FREE);
1169 KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
1170 KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
1171 KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
1172 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1173 uvmexp.cpumiss++;
1174 goto gotit;
1175 }
1176 color = (color + 1) & uvmexp.colormask;
1177 } while (color != trycolor);
1178
1179 return (NULL);
1180
1181 gotit:
1182 LIST_REMOVE(pg, pageq.list); /* global list */
1183 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1184 uvmexp.free--;
1185
1186 /* update zero'd page count */
1187 if (pg->flags & PG_ZERO)
1188 uvmexp.zeropages--;
1189
1190 if (color == trycolor)
1191 uvmexp.colorhit++;
1192 else {
1193 uvmexp.colormiss++;
1194 *trycolorp = color;
1195 }
1196
1197 return (pg);
1198}
1199
1200/*
1201 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1202 *
1203 * => return null if no pages free
1204 * => wake up pagedaemon if number of free pages drops below low water mark
1205 * => if obj != NULL, obj must be locked (to put in obj's tree)
1206 * => if anon != NULL, anon must be locked (to put in anon)
1207 * => only one of obj or anon can be non-null
1208 * => caller must activate/deactivate page if it is not wired.
1209 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1210 * => policy decision: it is more important to pull a page off of the
1211 * appropriate priority free list than it is to get a zero'd or
1212 * unknown contents page. This is because we live with the
1213 * consequences of a bad free list decision for the entire
1214 * lifetime of the page, e.g. if the page comes from memory that
1215 * is slower to access.
1216 */
1217
1218struct vm_page *
1219uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1220 int flags, int strat, int free_list)
1221{
1222 int lcv, try1, try2, zeroit = 0, color;
1223 struct uvm_cpu *ucpu;
1224 struct vm_page *pg;
1225 lwp_t *l;
1226
1227 KASSERT(obj == NULL || anon == NULL);
1228 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1229 KASSERT(off == trunc_page(off));
1230 KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
1231 KASSERT(anon == NULL || anon->an_lock == NULL ||
1232 mutex_owned(anon->an_lock));
1233
1234 mutex_spin_enter(&uvm_fpageqlock);
1235
1236 /*
1237 * This implements a global round-robin page coloring
1238 * algorithm.
1239 */
1240
1241 ucpu = curcpu()->ci_data.cpu_uvm;
1242 if (flags & UVM_FLAG_COLORMATCH) {
1243 color = atop(off) & uvmexp.colormask;
1244 } else {
1245 color = ucpu->page_free_nextcolor;
1246 }
1247
1248 /*
1249 * check to see if we need to generate some free pages waking
1250 * the pagedaemon.
1251 */
1252
1253 uvm_kick_pdaemon();
1254
1255 /*
1256 * fail if any of these conditions is true:
1257 * [1] there really are no free pages, or
1258 * [2] only kernel "reserved" pages remain and
1259 * reserved pages have not been requested.
1260 * [3] only pagedaemon "reserved" pages remain and
1261 * the requestor isn't the pagedaemon.
1262 * we make kernel reserve pages available if called by a
1263 * kernel thread or a realtime thread.
1264 */
1265 l = curlwp;
1266 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1267 flags |= UVM_PGA_USERESERVE;
1268 }
1269 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1270 (flags & UVM_PGA_USERESERVE) == 0) ||
1271 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1272 curlwp != uvm.pagedaemon_lwp))
1273 goto fail;
1274
1275#if PGFL_NQUEUES != 2
1276#error uvm_pagealloc_strat needs to be updated
1277#endif
1278
1279 /*
1280 * If we want a zero'd page, try the ZEROS queue first, otherwise
1281 * we try the UNKNOWN queue first.
1282 */
1283 if (flags & UVM_PGA_ZERO) {
1284 try1 = PGFL_ZEROS;
1285 try2 = PGFL_UNKNOWN;
1286 } else {
1287 try1 = PGFL_UNKNOWN;
1288 try2 = PGFL_ZEROS;
1289 }
1290
1291 again:
1292 switch (strat) {
1293 case UVM_PGA_STRAT_NORMAL:
1294 /* Check freelists: descending priority (ascending id) order */
1295 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1296 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1297 try1, try2, &color);
1298 if (pg != NULL)
1299 goto gotit;
1300 }
1301
1302 /* No pages free! */
1303 goto fail;
1304
1305 case UVM_PGA_STRAT_ONLY:
1306 case UVM_PGA_STRAT_FALLBACK:
1307 /* Attempt to allocate from the specified free list. */
1308 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1309 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1310 try1, try2, &color);
1311 if (pg != NULL)
1312 goto gotit;
1313
1314 /* Fall back, if possible. */
1315 if (strat == UVM_PGA_STRAT_FALLBACK) {
1316 strat = UVM_PGA_STRAT_NORMAL;
1317 goto again;
1318 }
1319
1320 /* No pages free! */
1321 goto fail;
1322
1323 default:
1324 panic("uvm_pagealloc_strat: bad strat %d", strat);
1325 /* NOTREACHED */
1326 }
1327
1328 gotit:
1329 /*
1330 * We now know which color we actually allocated from; set
1331 * the next color accordingly.
1332 */
1333
1334 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1335
1336 /*
1337 * update allocation statistics and remember if we have to
1338 * zero the page
1339 */
1340
1341 if (flags & UVM_PGA_ZERO) {
1342 if (pg->flags & PG_ZERO) {
1343 uvmexp.pga_zerohit++;
1344 zeroit = 0;
1345 } else {
1346 uvmexp.pga_zeromiss++;
1347 zeroit = 1;
1348 }
1349 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1350 ucpu->page_idle_zero = vm_page_zero_enable;
1351 }
1352 }
1353 KASSERT(pg->pqflags == PQ_FREE);
1354
1355 pg->offset = off;
1356 pg->uobject = obj;
1357 pg->uanon = anon;
1358 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1359 if (anon) {
1360 anon->an_page = pg;
1361 pg->pqflags = PQ_ANON;
1362 atomic_inc_uint(&uvmexp.anonpages);
1363 } else {
1364 if (obj) {
1365 uvm_pageinsert(obj, pg);
1366 }
1367 pg->pqflags = 0;
1368 }
1369 mutex_spin_exit(&uvm_fpageqlock);
1370
1371#if defined(UVM_PAGE_TRKOWN)
1372 pg->owner_tag = NULL;
1373#endif
1374 UVM_PAGE_OWN(pg, "new alloc");
1375
1376 if (flags & UVM_PGA_ZERO) {
1377 /*
1378 * A zero'd page is not clean. If we got a page not already
1379 * zero'd, then we have to zero it ourselves.
1380 */
1381 pg->flags &= ~PG_CLEAN;
1382 if (zeroit)
1383 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1384 }
1385
1386 return(pg);
1387
1388 fail:
1389 mutex_spin_exit(&uvm_fpageqlock);
1390 return (NULL);
1391}
1392
1393/*
1394 * uvm_pagereplace: replace a page with another
1395 *
1396 * => object must be locked
1397 */
1398
1399void
1400uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1401{
1402 struct uvm_object *uobj = oldpg->uobject;
1403
1404 KASSERT((oldpg->flags & PG_TABLED) != 0);
1405 KASSERT(uobj != NULL);
1406 KASSERT((newpg->flags & PG_TABLED) == 0);
1407 KASSERT(newpg->uobject == NULL);
1408 KASSERT(mutex_owned(uobj->vmobjlock));
1409
1410 newpg->uobject = uobj;
1411 newpg->offset = oldpg->offset;
1412
1413 uvm_pageremove_tree(uobj, oldpg);
1414 uvm_pageinsert_tree(uobj, newpg);
1415 uvm_pageinsert_list(uobj, newpg, oldpg);
1416 uvm_pageremove_list(uobj, oldpg);
1417}
1418
1419/*
1420 * uvm_pagerealloc: reallocate a page from one object to another
1421 *
1422 * => both objects must be locked
1423 */
1424
1425void
1426uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1427{
1428 /*
1429 * remove it from the old object
1430 */
1431
1432 if (pg->uobject) {
1433 uvm_pageremove(pg->uobject, pg);
1434 }
1435
1436 /*
1437 * put it in the new object
1438 */
1439
1440 if (newobj) {
1441 pg->uobject = newobj;
1442 pg->offset = newoff;
1443 uvm_pageinsert(newobj, pg);
1444 }
1445}
1446
1447#ifdef DEBUG
1448/*
1449 * check if page is zero-filled
1450 *
1451 * - called with free page queue lock held.
1452 */
1453void
1454uvm_pagezerocheck(struct vm_page *pg)
1455{
1456 int *p, *ep;
1457
1458 KASSERT(uvm_zerocheckkva != 0);
1459 KASSERT(mutex_owned(&uvm_fpageqlock));
1460
1461 /*
1462 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1463 * uvm page allocator.
1464 *
1465 * it might be better to have "CPU-local temporary map" pmap interface.
1466 */
1467 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1468 p = (int *)uvm_zerocheckkva;
1469 ep = (int *)((char *)p + PAGE_SIZE);
1470 pmap_update(pmap_kernel());
1471 while (p < ep) {
1472 if (*p != 0)
1473 panic("PG_ZERO page isn't zero-filled");
1474 p++;
1475 }
1476 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1477 /*
1478 * pmap_update() is not necessary here because no one except us
1479 * uses this VA.
1480 */
1481}
1482#endif /* DEBUG */
1483
1484/*
1485 * uvm_pagefree: free page
1486 *
1487 * => erase page's identity (i.e. remove from object)
1488 * => put page on free list
1489 * => caller must lock owning object (either anon or uvm_object)
1490 * => caller must lock page queues
1491 * => assumes all valid mappings of pg are gone
1492 */
1493
1494void
1495uvm_pagefree(struct vm_page *pg)
1496{
1497 struct pgflist *pgfl;
1498 struct uvm_cpu *ucpu;
1499 int index, color, queue;
1500 bool iszero;
1501
1502#ifdef DEBUG
1503 if (pg->uobject == (void *)0xdeadbeef &&
1504 pg->uanon == (void *)0xdeadbeef) {
1505 panic("uvm_pagefree: freeing free page %p", pg);
1506 }
1507#endif /* DEBUG */
1508
1509 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1510 KASSERT(!(pg->pqflags & PQ_FREE));
1511 //KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1512 KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1513 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1514 mutex_owned(pg->uanon->an_lock));
1515
1516 /*
1517 * if the page is loaned, resolve the loan instead of freeing.
1518 */
1519
1520 if (pg->loan_count) {
1521 KASSERT(pg->wire_count == 0);
1522
1523 /*
1524 * if the page is owned by an anon then we just want to
1525 * drop anon ownership. the kernel will free the page when
1526 * it is done with it. if the page is owned by an object,
1527 * remove it from the object and mark it dirty for the benefit
1528 * of possible anon owners.
1529 *
1530 * regardless of previous ownership, wakeup any waiters,
1531 * unbusy the page, and we're done.
1532 */
1533
1534 if (pg->uobject != NULL) {
1535 uvm_pageremove(pg->uobject, pg);
1536 pg->flags &= ~PG_CLEAN;
1537 } else if (pg->uanon != NULL) {
1538 if ((pg->pqflags & PQ_ANON) == 0) {
1539 pg->loan_count--;
1540 } else {
1541 pg->pqflags &= ~PQ_ANON;
1542 atomic_dec_uint(&uvmexp.anonpages);
1543 }
1544 pg->uanon->an_page = NULL;
1545 pg->uanon = NULL;
1546 }
1547 if (pg->flags & PG_WANTED) {
1548 wakeup(pg);
1549 }
1550 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1551#ifdef UVM_PAGE_TRKOWN
1552 pg->owner_tag = NULL;
1553#endif
1554 if (pg->loan_count) {
1555 KASSERT(pg->uobject == NULL);
1556 if (pg->uanon == NULL) {
1557 KASSERT(mutex_owned(&uvm_pageqlock));
1558 uvm_pagedequeue(pg);
1559 }
1560 return;
1561 }
1562 }
1563
1564 /*
1565 * remove page from its object or anon.
1566 */
1567
1568 if (pg->uobject != NULL) {
1569 uvm_pageremove(pg->uobject, pg);
1570 } else if (pg->uanon != NULL) {
1571 pg->uanon->an_page = NULL;
1572 atomic_dec_uint(&uvmexp.anonpages);
1573 }
1574
1575 /*
1576 * now remove the page from the queues.
1577 */
1578 if (uvmpdpol_pageisqueued_p(pg)) {
1579 KASSERT(mutex_owned(&uvm_pageqlock));
1580 uvm_pagedequeue(pg);
1581 }
1582
1583 /*
1584 * if the page was wired, unwire it now.
1585 */
1586
1587 if (pg->wire_count) {
1588 pg->wire_count = 0;
1589 uvmexp.wired--;
1590 }
1591
1592 /*
1593 * and put on free queue
1594 */
1595
1596 iszero = (pg->flags & PG_ZERO);
1597 index = uvm_page_lookup_freelist(pg);
1598 color = VM_PGCOLOR_BUCKET(pg);
1599 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1600
1601#ifdef DEBUG
1602 pg->uobject = (void *)0xdeadbeef;
1603 pg->uanon = (void *)0xdeadbeef;
1604#endif
1605
1606 mutex_spin_enter(&uvm_fpageqlock);
1607 pg->pqflags = PQ_FREE;
1608
1609#ifdef DEBUG
1610 if (iszero)
1611 uvm_pagezerocheck(pg);
1612#endif /* DEBUG */
1613
1614
1615 /* global list */
1616 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1617 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1618 uvmexp.free++;
1619 if (iszero) {
1620 uvmexp.zeropages++;
1621 }
1622
1623 /* per-cpu list */
1624 ucpu = curcpu()->ci_data.cpu_uvm;
1625 pg->offset = (uintptr_t)ucpu;
1626 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1627 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1628 ucpu->pages[queue]++;
1629 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1630 ucpu->page_idle_zero = vm_page_zero_enable;
1631 }
1632
1633 mutex_spin_exit(&uvm_fpageqlock);
1634}
1635
1636/*
1637 * uvm_page_unbusy: unbusy an array of pages.
1638 *
1639 * => pages must either all belong to the same object, or all belong to anons.
1640 * => if pages are object-owned, object must be locked.
1641 * => if pages are anon-owned, anons must be locked.
1642 * => caller must lock page queues if pages may be released.
1643 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1644 */
1645
1646void
1647uvm_page_unbusy(struct vm_page **pgs, int npgs)
1648{
1649 struct vm_page *pg;
1650 int i;
1651 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1652
1653 for (i = 0; i < npgs; i++) {
1654 pg = pgs[i];
1655 if (pg == NULL || pg == PGO_DONTCARE) {
1656 continue;
1657 }
1658
1659 KASSERT(uvm_page_locked_p(pg));
1660 KASSERT(pg->flags & PG_BUSY);
1661 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1662 if (pg->flags & PG_WANTED) {
1663 wakeup(pg);
1664 }
1665 if (pg->flags & PG_RELEASED) {
1666 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1667 KASSERT(pg->uobject != NULL ||
1668 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1669 pg->flags &= ~PG_RELEASED;
1670 uvm_pagefree(pg);
1671 } else {
1672 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1673 KASSERT((pg->flags & PG_FAKE) == 0);
1674 pg->flags &= ~(PG_WANTED|PG_BUSY);
1675 UVM_PAGE_OWN(pg, NULL);
1676 }
1677 }
1678}
1679
1680#if defined(UVM_PAGE_TRKOWN)
1681/*
1682 * uvm_page_own: set or release page ownership
1683 *
1684 * => this is a debugging function that keeps track of who sets PG_BUSY
1685 * and where they do it. it can be used to track down problems
1686 * such a process setting "PG_BUSY" and never releasing it.
1687 * => page's object [if any] must be locked
1688 * => if "tag" is NULL then we are releasing page ownership
1689 */
1690void
1691uvm_page_own(struct vm_page *pg, const char *tag)
1692{
1693
1694 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1695 KASSERT((pg->flags & PG_WANTED) == 0);
1696 KASSERT(uvm_page_locked_p(pg));
1697
1698 /* gain ownership? */
1699 if (tag) {
1700 KASSERT((pg->flags & PG_BUSY) != 0);
1701 if (pg->owner_tag) {
1702 printf("uvm_page_own: page %p already owned "
1703 "by proc %d [%s]\n", pg,
1704 pg->owner, pg->owner_tag);
1705 panic("uvm_page_own");
1706 }
1707 pg->owner = curproc->p_pid;
1708 pg->lowner = curlwp->l_lid;
1709 pg->owner_tag = tag;
1710 return;
1711 }
1712
1713 /* drop ownership */
1714 KASSERT((pg->flags & PG_BUSY) == 0);
1715 if (pg->owner_tag == NULL) {
1716 printf("uvm_page_own: dropping ownership of an non-owned "
1717 "page (%p)\n", pg);
1718 panic("uvm_page_own");
1719 }
1720 if (!uvmpdpol_pageisqueued_p(pg)) {
1721 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1722 pg->wire_count > 0);
1723 } else {
1724 KASSERT(pg->wire_count == 0);
1725 }
1726 pg->owner_tag = NULL;
1727}
1728#endif
1729
1730/*
1731 * uvm_pageidlezero: zero free pages while the system is idle.
1732 *
1733 * => try to complete one color bucket at a time, to reduce our impact
1734 * on the CPU cache.
1735 * => we loop until we either reach the target or there is a lwp ready
1736 * to run, or MD code detects a reason to break early.
1737 */
1738void
1739uvm_pageidlezero(void)
1740{
1741 struct vm_page *pg;
1742 struct pgfreelist *pgfl, *gpgfl;
1743 struct uvm_cpu *ucpu;
1744 int free_list, firstbucket, nextbucket;
1745 bool lcont = false;
1746
1747 ucpu = curcpu()->ci_data.cpu_uvm;
1748 if (!ucpu->page_idle_zero ||
1749 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1750 ucpu->page_idle_zero = false;
1751 return;
1752 }
1753 if (!mutex_tryenter(&uvm_fpageqlock)) {
1754 /* Contention: let other CPUs to use the lock. */
1755 return;
1756 }
1757 firstbucket = ucpu->page_free_nextcolor;
1758 nextbucket = firstbucket;
1759 do {
1760 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1761 if (sched_curcpu_runnable_p()) {
1762 goto quit;
1763 }
1764 pgfl = &ucpu->page_free[free_list];
1765 gpgfl = &uvm.page_free[free_list];
1766 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1767 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1768 if (lcont || sched_curcpu_runnable_p()) {
1769 goto quit;
1770 }
1771 LIST_REMOVE(pg, pageq.list); /* global list */
1772 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1773 ucpu->pages[PGFL_UNKNOWN]--;
1774 uvmexp.free--;
1775 KASSERT(pg->pqflags == PQ_FREE);
1776 pg->pqflags = 0;
1777 mutex_spin_exit(&uvm_fpageqlock);
1778#ifdef PMAP_PAGEIDLEZERO
1779 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1780
1781 /*
1782 * The machine-dependent code detected
1783 * some reason for us to abort zeroing
1784 * pages, probably because there is a
1785 * process now ready to run.
1786 */
1787
1788 mutex_spin_enter(&uvm_fpageqlock);
1789 pg->pqflags = PQ_FREE;
1790 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1791 nextbucket].pgfl_queues[
1792 PGFL_UNKNOWN], pg, pageq.list);
1793 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1794 nextbucket].pgfl_queues[
1795 PGFL_UNKNOWN], pg, listq.list);
1796 ucpu->pages[PGFL_UNKNOWN]++;
1797 uvmexp.free++;
1798 uvmexp.zeroaborts++;
1799 goto quit;
1800 }
1801#else
1802 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1803#endif /* PMAP_PAGEIDLEZERO */
1804 pg->flags |= PG_ZERO;
1805
1806 if (!mutex_tryenter(&uvm_fpageqlock)) {
1807 lcont = true;
1808 mutex_spin_enter(&uvm_fpageqlock);
1809 } else {
1810 lcont = false;
1811 }
1812 pg->pqflags = PQ_FREE;
1813 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1814 nextbucket].pgfl_queues[PGFL_ZEROS],
1815 pg, pageq.list);
1816 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1817 nextbucket].pgfl_queues[PGFL_ZEROS],
1818 pg, listq.list);
1819 ucpu->pages[PGFL_ZEROS]++;
1820 uvmexp.free++;
1821 uvmexp.zeropages++;
1822 }
1823 }
1824 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1825 break;
1826 }
1827 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1828 } while (nextbucket != firstbucket);
1829 ucpu->page_idle_zero = false;
1830 quit:
1831 mutex_spin_exit(&uvm_fpageqlock);
1832}
1833
1834/*
1835 * uvm_pagelookup: look up a page
1836 *
1837 * => caller should lock object to keep someone from pulling the page
1838 * out from under it
1839 */
1840
1841struct vm_page *
1842uvm_pagelookup(struct uvm_object *obj, voff_t off)
1843{
1844 struct vm_page *pg;
1845
1846 KASSERT(mutex_owned(obj->vmobjlock));
1847
1848 pg = rb_tree_find_node(&obj->rb_tree, &off);
1849
1850 KASSERT(pg == NULL || obj->uo_npages != 0);
1851 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1852 (pg->flags & PG_BUSY) != 0);
1853 return pg;
1854}
1855
1856/*
1857 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1858 *
1859 * => caller must lock page queues
1860 */
1861
1862void
1863uvm_pagewire(struct vm_page *pg)
1864{
1865 KASSERT(mutex_owned(&uvm_pageqlock));
1866#if defined(READAHEAD_STATS)
1867 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1868 uvm_ra_hit.ev_count++;
1869 pg->pqflags &= ~PQ_READAHEAD;
1870 }
1871#endif /* defined(READAHEAD_STATS) */
1872 if (pg->wire_count == 0) {
1873 uvm_pagedequeue(pg);
1874 uvmexp.wired++;
1875 }
1876 pg->wire_count++;
1877}
1878
1879/*
1880 * uvm_pageunwire: unwire the page.
1881 *
1882 * => activate if wire count goes to zero.
1883 * => caller must lock page queues
1884 */
1885
1886void
1887uvm_pageunwire(struct vm_page *pg)
1888{
1889 KASSERT(mutex_owned(&uvm_pageqlock));
1890 pg->wire_count--;
1891 if (pg->wire_count == 0) {
1892 uvm_pageactivate(pg);
1893 uvmexp.wired--;
1894 }
1895}
1896
1897/*
1898 * uvm_pagedeactivate: deactivate page
1899 *
1900 * => caller must lock page queues
1901 * => caller must check to make sure page is not wired
1902 * => object that page belongs to must be locked (so we can adjust pg->flags)
1903 * => caller must clear the reference on the page before calling
1904 */
1905
1906void
1907uvm_pagedeactivate(struct vm_page *pg)
1908{
1909
1910 KASSERT(mutex_owned(&uvm_pageqlock));
1911 KASSERT(uvm_page_locked_p(pg));
1912 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1913 uvmpdpol_pagedeactivate(pg);
1914}
1915
1916/*
1917 * uvm_pageactivate: activate page
1918 *
1919 * => caller must lock page queues
1920 */
1921
1922void
1923uvm_pageactivate(struct vm_page *pg)
1924{
1925
1926 KASSERT(mutex_owned(&uvm_pageqlock));
1927 KASSERT(uvm_page_locked_p(pg));
1928#if defined(READAHEAD_STATS)
1929 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1930 uvm_ra_hit.ev_count++;
1931 pg->pqflags &= ~PQ_READAHEAD;
1932 }
1933#endif /* defined(READAHEAD_STATS) */
1934 if (pg->wire_count != 0) {
1935 return;
1936 }
1937 uvmpdpol_pageactivate(pg);
1938}
1939
1940/*
1941 * uvm_pagedequeue: remove a page from any paging queue
1942 */
1943
1944void
1945uvm_pagedequeue(struct vm_page *pg)
1946{
1947
1948 if (uvmpdpol_pageisqueued_p(pg)) {
1949 KASSERT(mutex_owned(&uvm_pageqlock));
1950 }
1951
1952 uvmpdpol_pagedequeue(pg);
1953}
1954
1955/*
1956 * uvm_pageenqueue: add a page to a paging queue without activating.
1957 * used where a page is not really demanded (yet). eg. read-ahead
1958 */
1959
1960void
1961uvm_pageenqueue(struct vm_page *pg)
1962{
1963
1964 KASSERT(mutex_owned(&uvm_pageqlock));
1965 if (pg->wire_count != 0) {
1966 return;
1967 }
1968 uvmpdpol_pageenqueue(pg);
1969}
1970
1971/*
1972 * uvm_pagezero: zero fill a page
1973 *
1974 * => if page is part of an object then the object should be locked
1975 * to protect pg->flags.
1976 */
1977
1978void
1979uvm_pagezero(struct vm_page *pg)
1980{
1981 pg->flags &= ~PG_CLEAN;
1982 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1983}
1984
1985/*
1986 * uvm_pagecopy: copy a page
1987 *
1988 * => if page is part of an object then the object should be locked
1989 * to protect pg->flags.
1990 */
1991
1992void
1993uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1994{
1995
1996 dst->flags &= ~PG_CLEAN;
1997 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1998}
1999
2000/*
2001 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2002 */
2003
2004bool
2005uvm_pageismanaged(paddr_t pa)
2006{
2007
2008 return (vm_physseg_find(atop(pa), NULL) != -1);
2009}
2010
2011/*
2012 * uvm_page_lookup_freelist: look up the free list for the specified page
2013 */
2014
2015int
2016uvm_page_lookup_freelist(struct vm_page *pg)
2017{
2018 int lcv;
2019
2020 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2021 KASSERT(lcv != -1);
2022 return (VM_PHYSMEM_PTR(lcv)->free_list);
2023}
2024
2025/*
2026 * uvm_page_locked_p: return true if object associated with page is
2027 * locked. this is a weak check for runtime assertions only.
2028 */
2029
2030bool
2031uvm_page_locked_p(struct vm_page *pg)
2032{
2033
2034 if (pg->uobject != NULL) {
2035 return mutex_owned(pg->uobject->vmobjlock);
2036 }
2037 if (pg->uanon != NULL) {
2038 return mutex_owned(pg->uanon->an_lock);
2039 }
2040 return true;
2041}
2042
2043#if defined(DDB) || defined(DEBUGPRINT)
2044
2045/*
2046 * uvm_page_printit: actually print the page
2047 */
2048
2049static const char page_flagbits[] = UVM_PGFLAGBITS;
2050static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2051
2052void
2053uvm_page_printit(struct vm_page *pg, bool full,
2054 void (*pr)(const char *, ...))
2055{
2056 struct vm_page *tpg;
2057 struct uvm_object *uobj;
2058 struct pgflist *pgl;
2059 char pgbuf[128];
2060 char pqbuf[128];
2061
2062 (*pr)("PAGE %p:\n", pg);
2063 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2064 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
2065 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
2066 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
2067 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
2068 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
2069#if defined(UVM_PAGE_TRKOWN)
2070 if (pg->flags & PG_BUSY)
2071 (*pr)(" owning process = %d, tag=%s\n",
2072 pg->owner, pg->owner_tag);
2073 else
2074 (*pr)(" page not busy, no owner\n");
2075#else
2076 (*pr)(" [page ownership tracking disabled]\n");
2077#endif
2078
2079 if (!full)
2080 return;
2081
2082 /* cross-verify object/anon */
2083 if ((pg->pqflags & PQ_FREE) == 0) {
2084 if (pg->pqflags & PQ_ANON) {
2085 if (pg->uanon == NULL || pg->uanon->an_page != pg)
2086 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2087 (pg->uanon) ? pg->uanon->an_page : NULL);
2088 else
2089 (*pr)(" anon backpointer is OK\n");
2090 } else {
2091 uobj = pg->uobject;
2092 if (uobj) {
2093 (*pr)(" checking object list\n");
2094 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
2095 if (tpg == pg) {
2096 break;
2097 }
2098 }
2099 if (tpg)
2100 (*pr)(" page found on object list\n");
2101 else
2102 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2103 }
2104 }
2105 }
2106
2107 /* cross-verify page queue */
2108 if (pg->pqflags & PQ_FREE) {
2109 int fl = uvm_page_lookup_freelist(pg);
2110 int color = VM_PGCOLOR_BUCKET(pg);
2111 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
2112 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
2113 } else {
2114 pgl = NULL;
2115 }
2116
2117 if (pgl) {
2118 (*pr)(" checking pageq list\n");
2119 LIST_FOREACH(tpg, pgl, pageq.list) {
2120 if (tpg == pg) {
2121 break;
2122 }
2123 }
2124 if (tpg)
2125 (*pr)(" page found on pageq list\n");
2126 else
2127 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2128 }
2129}
2130
2131/*
2132 * uvm_pages_printthem - print a summary of all managed pages
2133 */
2134
2135void
2136uvm_page_printall(void (*pr)(const char *, ...))
2137{
2138 unsigned i;
2139 struct vm_page *pg;
2140
2141 (*pr)("%18s %4s %4s %18s %18s"
2142#ifdef UVM_PAGE_TRKOWN
2143 " OWNER"
2144#endif
2145 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2146 for (i = 0; i < vm_nphysmem; i++) {
2147 for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
2148 (*pr)("%18p %04x %04x %18p %18p",
2149 pg, pg->flags, pg->pqflags, pg->uobject,
2150 pg->uanon);
2151#ifdef UVM_PAGE_TRKOWN
2152 if (pg->flags & PG_BUSY)
2153 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2154#endif
2155 (*pr)("\n");
2156 }
2157 }
2158}
2159
2160#endif /* DDB || DEBUGPRINT */
2161