MIT-SHM—The MIT Shared Memory Extension

How the shared memory extension works

Jonathan Corbet

Atmospheric Technology Division
National Center for Atmospheric Research
corbet@ncar.ucar.edu

Formatted and edited for release 5 by

Keith Packard
MIT X Consortium

ABSTRACT

This document briefly describeswto use the MIT-SHM shared memorytension. Ihave
tried to malk it accurate, but it would not surprise me if some errors remained. If you find anything
wrong, do let me kne and | will incorporate the corrections. Meanwhile, please thls docu-
ment “as is"—an impreement aer what was there before, but certainly not the defiaitiord.

Copyright © 1991 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgof this software and associated documenta-
tion files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

1. REQUIREMENTS

The shared memory extension is provided only by some e find out if your server supports the
extension, use xdpnfo(1). Inparticular to be dle to use this extension, your system must provide the
SYSV shared memory primitts. Therds not an mmap-based version of thiseasion. ® use shared
memory on Sun systems, you mustdnauilt your kernel with SYSV shared memory enabled -- which is
not the default configuration. Additionalhe shared memeory maximum size will need to be increased
on both Sun and Digital systems; the defaults are far too smallyfasaful work.

2. WHAT IS PROVIDED

The basic capability provided is that of shared memory XImages. This is essentially a version of the xim-
age interface where the actual image data is stored in a shared memory segment, and thus need not be
moved through the Xlib interprocess communication chanker. large images, use of this facility can

result in some real performance increases.

Additionally, some implementations provided shared memory pixmaps. These are 2 dimensional arrays of
pixels in a format specified by the X serwghere the image data is stored in the shared memory segment.
Through use of shared memory pixmaps, it is possible to change the contents of these pixmaps without
using ai Xlib routines at all. Shared memory pixmaps can only be supported when the X server can use
regular virtual memory for pixmap data; if the pixmaps are stored in some magic graphics hardware, your
application will not be able to share them with the serdelpyinfo(1) doesri’print this particular nugget

of information.

3. HOW TO USE THE SHARED MEMORY EXTENSION
Code which uses the shared memory extension must include a number of header files:

include <X11/Xli b. h>/* of course */
include <sys/ipc. h>

include <sys/shm h>

include <X11/extensi ons/ XShm h>

Of course, if the system you are building on does not support shared méraditg XShm.h may not be
present. ¥u may want to makliberal use of #ifdefs.

Any code which uses the shared memory extension should first check to see that the server provides the
extension. Yu could alvays be running eer the net, or in some other environment where the extension
will not work. To perform this check, call either

St at us XShmuer yExt ensi on (di spl ay)
Di spl ay *di spl ay
or

St at us XShmueryVersion (di splay, mjor, ninor, pixnmaps)

Di spl ay *di spl ay;

int *major, *mnor;

Bool *pi xmaps
Where “display’ i s, of course, the display on which you are running. If the shared memory extension may
be used, the return value from either function will be True; otherwise your program should operate using
conventional Xlib calls. When the extension igadable, XShimQuer yVer si on also returns “majot’and
“minor” which are the version numbers of the extension implementation, and “pixnwvdysh is True iff
shared memory pixmaps are supported.

4. USEOF SHARED MEMORY XIMAGES
The basic sequence of operations for shared memory Xlmages is as follows:

1 - Create the shared memory XImage structure

2 — Create a shared memory segment to store the image data
3 — Inform the server about the shared memory segment

4 - Use the shared memory XImage, mucle ikrormal one.

MIT Shared Memory Extension

To aeate a shared memory XImage, use:

Xl mage *XShntCreat el nage (di splay, visual, depth, format, data,
shm nfo, w dth, height)
Di spl ay *di spl ay;
Vi sual *visual;
unsi gned int depth, w dth, height;
int format;
char *dat a;
XShntsegment | nf o *shm nf o;

Most of the arguments are the same as for XCreatelmage; | will not go through them here. Netr, howe
that there are no “offset”, “bitmap_pad”, or “bytes_per_lihatguments. Thesguantities will be defined
by the server itself, and your code needs to abide by them. Unlesswodréady allocated the shared
memory segment (see below), you should pass in NULL for the *qhatizmter.
There is one additional argument: “shminfo”, which is a pointer to a structure of type XShmSegmentinfo.
You must allocate one of these structures such that it wik ladfetime at least as long as that of the
shared memory XImage. There is no need to initialize this structure before the call to XShmCreatelmage.
The return value, if all goes well, will be an XImage structure, which you can use for the subsequent steps.
The next step is to create the shared memamysat. Thids best done after the creation of the XImage,
since you need to maksse of the information in that XImage to kmbiow much memory to allocateTo
create the segment, you need a call like:

shm nfo.shm d = shnget (1 PC_PRI VATE,

i mage- >bytes_per _line * image->hei ght, | PC CREAT|0777);

(assuming that you ke alled your shared memory XImage “image’You should, of course, folothe
Rules and do error checking on all of these system calls. Also, be sure to use the bytes per_line field, not
the width you used to create the XImage ag thay well be different.
Note that the shared memory ID returned by the system is stored in the shminfo structure. The server will
need that ID to attach itself to the segment.
Also note that, on marsystems for security reasons, the X server will only accept to attach to the shared
memory segment if &' readable and writeable by “other”. On systems where the X server is able to deter-
mine the uid of the X clientwar a local transport, the shared memory segment can be readable and write-
able only by the uid of the client.

Next, attach this shared memory segment to your process:
shm nf o. shmaddr = i mage- >data = shmat (shm nfo.shnid, 0, 0);
The address returned by shmat should be stored in *both* the XImage structure and the shminfo structure.

To finish filling in the shminfo structure, you need to decid& Jiou want the server to attach to the shared
memory segment, and set the “readOrfiyéld as follavs. Normally you would code:

shm nfo.readOnly = Fal se;
If you set it to True, the server will not be able to write to this segment, and thus XShmGetimage calls will
fail.
Finally, tell the server to attach to your shared memory segment with:
Status XShmAttach (display, shm nfo);
If all goes well, you will get a non-zero status back, and your Xlmage is ready for use.
To write a shared memory Xlmage into an Xwahle, use XShmPutimage:

St at us XShnPut | mage (di splay, d, gc, inage, src_x, src.y,
dest _x, dest_y, wi dth, height, send_event)
Di spl ay *di spl ay;
Dr awabl e d;
GC gc;

MIT Shared Memory Extension

Xl mage *i nage;

int src_x, src_y, dest_x, dest_y;
unsi gned int w dth, height;

bool send_event;

The interface is identical to that of XPutlmage, so | will spare my fingers and not repeat that documentation
here. Therés one additional parametéioweve, called “send_gent”. If this parameter is passed as True,

the server will generate a “completibavent when the image write is complete; thus your program can

know when it is safe to begin manipulating the shared memory segment again.

The completionent has type XShmCompletionEvent, which is defined as the following:
typedef struct {

i nttype; /* of event */

unsi gned | ong serial; /* # of last request processed */

Bool send_event; /* true if cane froma SendEvent request */
Di spl ay *di spl ay; /* Display the event was read from*/

Dr awabl e drawabl e; /* drawabl e of request */

i nt maj or _code; /* ShnReqCode */

i nt mnor_code; /* X_ShrPut | mage */

ShnSeg shnseg; /* the ShntSeg used in the request */

unsi gned | ong of fset; /* the offset into ShnSeg used */

} XShmConpl eti onEvent ;
The event type value that will be used can be determined at run time with a line of the form:
i nt Conpl eti onType = XShnet Event Base (di splay) + ShnConpl eti on;

If you modify the shared memory segment before theahof the completioneent, the results you see on
the screen may be inconsistent.

To read image data into a shared memory XImage, use the following:

Status XShntet | mage (di splay, d, image, x, y, plane_mask)
Di spl ay *di spl ay;
Dr awabl e d;
Xl mage *i nage;
int x, vy;
unsi gned | ong pl ane_nask;

Where “display’ is the display of interest, “dis the source draable, “image’ is the destination XImage,
“x” and "y’ are the offsets within “d”, and “plane_masldefines which planes are to be read.

To destry a hared memory Xlmage, you should first instruct the server to detach from it, they tiestro
segment itself, as follows:

XShnDet ach (di spl ay, shm nfo);

XDest royl mage (i nage);

shnmdt (shm nf o. shnaddr) ;

shnct!l (shm nfo.shmd, 1PCRMD, 0);

5. USEOF SHARED MEMORY PIXMAPS

Unlike X images, for which animage format is usable, the shared memory extension supports only a sin-
gle format (i.e. XYPixmap or ZPixmap) for the data stored in a shared memory pixmap. This format is
independent of the depth of the image (for 1-bit pixmaps it doesaily matter what this format is) and
independent of the screen. Use XShmPixmapFormat to get the format for the server:

i nt XShnPi xmapFor mat (di spl ay)
Di spl ay *di spl ay;

If your application can deal with the server pixmap data format (including bits-per-pixel et al.), create a
shared memory segment and “shmih&tfucture in exactly the same way as is listedvalfor shared
memory Xlmages. While it is, not strictly necessary to create an Ximage first, doing so incurs little

MIT Shared Memory Extension

overhead and will gie you an appropriate bytes per_line value to use.
Once you hee your shminfo structure filled in, simply call:
Pi xmap XShnCreat ePi xmap (display, d, data, shm nfo, wdth,
hei ght, depth);

Di spl ay *di spl ay;

Dr awabl e d;

char *dat a;

XShntsegment | nf o *shmi nf o;

unsi gned int wdth, height, depth;
The arguments are all the same as for XCreatePixmap, vatedufitions: “data’ and “shminfo”. The
second of the twis the same old shminfo structure that has been used before. The first is the pointer to the
shared memory segment, and should be the same as the shminfo.shmaddarfietot sure wl this is a
separate parameter.

If everything works, you will get back a pixmap, which you can manipulate in all of the usual ways, with
the added bonus of being able to tweak its contents directly through the shared mgment.s&hared
memory pixmaps are destroyed in the usual manner with XFreePixmap, though you should detach and
destrg the shared memory segment itself as showneabo

