Linux IPCHAINS-HOWTO

Linux IPCHAINS-HOWTO

Table of Contents

LINUX IPCHAINSTHOWTOtiiieiiiiiiee etttk ettt e et e e ekttt e e et e e e e e e e e e et e e e sbe e e e e anbneeeenan 1

R EST YA T 1S T = | P PPPPPPPPP
I a0 o U o3 (T TP

3.2 GratuitousPromotion:WatChGUAIARUIES.oeeeeeeeee ettt e e e e 8

3.3CoMMONFIreWall=liKE SELUDScoeiviiieiieee e, 8
PrivateNetwork: TraditiONalPIOXIES.eeen ettt e et e e e et e et e e e e e e e e e eetareeanaeees 8
PrivateNetwork: TranSpar€nPIOXIESccvvviiiiiieeiieeeeee e, 9

PrivateNetwork: Masqueradingcooeeeeiioeeiee i ees s eee e e s e ee e annnane 10
0] o8 =] Ao o TP 11

LM INEEINAISEIVICES. ..ottt e ettt et ettt et e et e e et et e e e e e e et e et e et e e e e e eeneeeraaeennans 12

3.4 More Informationon MasqUErading.........ccooeeiieiiieiiee s ee e 12

A.IP FireWalling CRAINS.ttt e et ab e bttt s et s s s s s st s st s e s s e e eeeneeneeeees 13

4.1 How PacKetsSTraVerSETNE FIIEIS.uuu it e e e e e s e e e e a e e e e eaa s 13
[0 LTI To T oYl =V A PP 14
WhatYou'll SeeWhenYour ComputerStartSUD.........ccovvviviiiiiiiiicieeeeeeeeeeeeeeeeeeeeeeeee 15
OperationdNASINAIERUIE........ccooiiieeee 16
Filtering SPeCIfiCationsS..........coooi i ——————— 17
SpecifyingSourceandDestinatioNIP AQArESSES.......uvviveiiieeiieeiieeieeeeeeeeeeeeee e e e e e eeaaees 17

S CHVINOINVEISION. ettt e ettt et ettt e e et et e et e et e e e e e et e e e e e e e e e e e s e eeeneeeenaneeanns 17
SPECIHVINAPTIOIOCAL. ... ettt ettt e e et e e e e e et e e e e e e et e e e e eeenaneees 18

SpecCifyiNQUDP aNATCP POISuuuuuuiuiiiiiiiiiiiiisireesresssssessssssssssssesseeeseeereeeree—. 18
SpecifyiNngICMP TYPEANACOUE.......uuuuuuuuuuiiuiiieiiitiiiataatesaarearesaseaerarsseeresrseersesesesseesrersraerreee. 18

Specifyingan INterfaCe...........ooo i 19
SpPECIFVINOTCP SYN PACKEEEDMIY. .. eeeveeeetteeee e ettt et e e e et e e e e et e e et e e e e e e eeeeeeareees 20

Linux IPCHAINS-HOWTO

Table of Contents

[F= Lo [T o = 10 [A1) 1 (S TSP PP UUTURRR 20
Filtering SIdEEFIECES. ... 21
SPECIYINGATAIGEL ... ——— 21
LOQQINGPACKELScceiiiiiiiiiieeeee e, 23
Manipulatingthe TYPE OFf SEIVICE.......ccoii i i 24
MarKing @ PACKEL........cciii it eiiiei ittt bbbt — bt et bttt bttt b b st rantrnnnnnnnnes 26
Operation®Nan ENtir@ CHaIN........cccoiiieiiiie i ebaeesasssesssssesseseees 26
CreatingaNEeW Chail..........cooeiiiii e 26
Deletinga Chain........coooiiiiieeee . 26
FIUShINGA CNAIN. ... e 27
LiStING @ CRNAIN. ..o ——————————— 27
ResettingZer0iNQ)COUNLELS.........cvviiiiiiiiiei ettt e e 28
ST a1 Te o] [To3 Y PP 29
OperationDN MaSQUEIAAINGcoiieeeieeeieeeeee e e ee e e e e e e abaaabaaaabaassassssnesnssssssssennnee 29
ChecKiNQAPACKEL. ... —————— 29
Multiple Rulesat OnceandWatchingWhatHappens............ccvveveeeviieiiiiiiieiieeieeeeieeseeeeeeeeee 30
4. 2USEfUIEXAMPIES.coeiiiiiiieieeeeeeee e, 31
USINQIPCNAINS=SAVE.......ceiiiiiiiiieeee e 33
USINGIPCHAINS=IESIOIEciiiiiiiiii e, 34
DMISCEIIANEOUS. ... ittt e e ettt e e ettt e e et e e e s e et e e s e et e e e ea bt e e e saeba e eesesbaeessebaneeeseabnsaeenes 3t
5.1 How to OrganizeY our FireWall RUIES.uuuuuiiiiiiiiiiiiiiiiiiiitiiiieabesseeeseeeeesseesssssssesssesssssssesseeseees 35
5.2WHAtNOE TO FIEE OUL....uvuieeieiie et e e et e e e ettt e e e e et e e e e et e e seeaaeesseabeeeseabaaeeees 35
ICIMP PACKELS.eieiiiei e, 35
TCPConnectiong0 DNS (NAMESEIVELS)....cccciviiiiiiieiiieeeee ettt 36
ETPNIGNIMAIES. ..coieeiiiiiiiee e, 36
5.3Filtering out PingOf DEAtN........cooeiiieeee 37
5.4 Filtering out TeardrOPANABONK.uuuuiiiiiieiieeiiuieattaaateaaeeaeeraeeaaeeaesseesssessessssssssssssssssssssssssssseesseees 37
5.5Filtering out FragmenNBOMIDS.........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieee e eeeeeeeeeessereeeeseeeeeereeeeaeeaeeeaaeees 37
5.6 ChangingEireWall RUIES. ... 37
5.7How Do | SetUp IP SPOOfPIOtECION2......coviiviiiiiiiiiieeeeeeeeeee e, 38
5.8 AAVANCEAPIOJECES..... .o ———————————— 39
]l S P = 0] [e o =Y L =Y 1T PP 39
MichaelHasenstein'ip—datahack.........ccccccovvviiiiiiii 40
O L VLU= = a] =T A Tor=) A T=T 0 (T 40
(SN @a]a T aT0] a1 md) 0] (=] 00TV 40
6.21PChAINS=L FIEEZES! ..o 40
(ST LYY 5110 [0S ToY A 1170 T 41
6.3 Masquerading/ForwardinBoesn'tWOork!............coooiiiiii i 41
6.4 -] REDIRAOESNTWOIKL.....coiiiiiiiiiieeeeee e 41
6.5 WildcardINterfaCeIDON EWOIKL it e e e e et e e e s et e e e e et e e e s eabeeeeeanas 41
(S M @ ST B0 STy A AT L0 42
6.7 ipautofwandipportfw DON'TWOIKL..........coooiii s 42
6.8 XOSVIEWIS BIOKEN! ...ttt e et e e et e e e et e e e e et e e e eeba e e e sebba s eeesaaaeeeseaaaaeae 42
6.9 SegmentatiofraultWith =] REDIRECT L.........uuuiiiiiiiiiiiiiiiiiiieeiiseisssrsseesssreeseeesseeseere——————————. 42
6.101 Can'tSetMasqueradin@iMEOULS!...........iiiiiie e e e e e e e e e e e e e e eaaa s 43
oI RN T (o TN z= L T 43
A SEIOUSEXAIMPIE.. . euuviiiiiiiiiiiiei ettt ettt ettt et e et e et e et e e e e e e e e e e e e e et e et e e e e e e e e e e e e e e e e aaeaaaaaaaaaaaaaaaaaeas 43

Linux IPCHAINS-HOWTO

Table of Contents

A N L=y N = a0 (=T 0T=) PP 43
A2 C T Y- £ 4
7.3BeforePacketFilteringccooie i ——————————— 45
7.4PackefFiltering for ThroUghPACKETS........covvvviiiiiiiiiiiee e 46
SetUp JumpsFrom forward Chain...............uueuuuuuueiiiiiiiiiieeieeiesreeseeaeresrresrrsrerereeeeee—ee—————————— 46
Definetheicmp=acCChain..........coooeiiii i 47
Good(INterNal)to DMZ (SEIVELS).....uuueeieeiiieiiiieieee ettt ettt ettt e e e e e e e e e e e e e e e e aa e 47
Bad (external)to DMZ (SEIVEIS)....cccuuiiiiiiieiiieeeeee ettt 48
Good(internal)to Bad (EXIEINAL)...........uuuuuuuuuuiuriiiriiintietttaaerareereearrer e 48
DY A (o X Yo Yo [(101 (=T 7= | T 49
DMZ to bad(eXtErNal)-......ccooi i —————————— 49
Bad (external)to Good(interNal)...........ccvvvviiiiiiiiiiii e 50
PacketFiltering for the Linux BOX ItSEIf...........ccooieiiieii i 50

Bad (EXIEINANINIEITACE........viiiiiiiieeiieeeeee ettt 50
B A a1 =] = Lo < TP 51

Linux IPCHAINS-HOWTO

Rusty Russell

v1.0.8, Tue Jul 4 14:20:53 EST 2000

This document aims to describe how to obtain, install and configure the enhanced IP firewalling chains
software for Linux, and some ideas on how you might use them.

1.Introduction

* 1.1 What?

e 1.2 Why?
* 1.3 How?

¢ 1.4 Where?

2.Packet Filtering Basics

¢ 2.1 What?

e 2.2 Why?
e 2.3 How?

3.I'm confused! Routing, masquerading, portforwarding,
ipautofw...

» 3.1 Rusty's Three—Line Guide To Masquerading
« 3.2 Gratuitous Promotion: WatchGuard Rules

« 3.3 Common Firewall-like Setups

.4 More Information on Masquerading

4.1P_Firewalling Chains

* 4.1 How Packets Traverse The Filters
« 4.2 Useful Examples

Linux IPCHAINS-HOWTO 1

Linux IPCHAINS-HOWTO

5.Miscellaneous.

« 5.1 How to Organize Your Firewall Rules
* 5.2 What Not To Filter Out

« 5.3 Filtering out Ping of Death

5.4 Filtering out Teardrop and Bonk

« 5.5 Filtering out Fragment Bombs

» 5.6 Changing Firewall Rules

» 5.7 How Do | Set Up IP Spoof Protection?

» 5.8 Advanced Projects
* 5.9 Future Enhancements

6.Common Problems

* 6.1 ipchains —-L Freezes!
* 6.2 Inverse doesn't work!
» 6.3 Masquerading/Forwarding Doesn't Work!

* 6.4 -] REDIR doesn't work!
* 6.5 Wildcard Interfaces Don't Work!

* 6.6 TOS Doesn't Work!

* 6.7 ipautofw and ipportfw Don't Work!
* 6.8 xosview is Broken!

* 6.9 Segmentation Fault With "—] REDIRECT'!

» 6.10 | Can't Set Masquerading Timeouts!
* 6.11 | Want to Firewall IPX!

7.A Serious Example.

e 7.1 The Arrangement
» 7.2 Goals

» 7.3 Before Packet Filtering

» 7.4 Packet Filtering for Through Packets
» 7.5 Finally

8.Appendix: Differences between ipchains and ipfwadm.

» 8.1 Quick—Reference table.
» 8.2 Examples of translated ipfwadm commands

5.Miscellaneous.

Linux IPCHAINS-HOWTO

9.Appendix: Using the ipfwadm-wrapper script.

10.Appendix: Thanks.

¢ 10.1 Translations

1.Introduction

This is the Linux IPCHAINS-HOWTO; see Where? for the master site, which contains the latest copy. You
should read the Linux NET-3-HOWTO as well. The IP-Masquerading HOWTO, the PPP-HOWTO, the
Ethernet-HOWTO and the Firewall HOWTO might make interesting reading. (Then again, so might the
alt.fan.bigfoot FAQ).

If packet filtering is passe to you, read Section WI8é&ttion How;?and scan through the titles in Section IP
Eirewalling Chains.

If you are converting from ipfwadm read Section Introductioi®ection How?, and Appendices in section
Differences between ipchains and ipfwadnd sectiotsing the “ipfwadm-wrapper' script.

1.1 What?

Linux ipchains is a rewrite of the Linux IPv4 firewalling code (which was mainly stolen from BSD) and a
rewrite of ipfwadm, which was a rewrite of BSD's ipfw, | believe. It is required to administer the IP packet
filters in Linux kernel versions 2.1.102 and above.

1.2 Why?

The older Linux firewalling code doesn't deal with fragments, has 32-bit counters (on Intel at least), doesn't
allow specification of protocols other than TCP, UDP or ICMP, can't make large changes atomically, can't
specify inverse rules, has some quirks, and can be tough to manage (making it prone to user error).

1.3 How?

Currently the code is in the mainstream kernel from 2.1.102. For the 2.0 kernel series, you will need to
download a kernel patch from the web page. If your 2.0 kernel is more recent than the supplied patch, the
older patch should be OK; this part of the 2.0 kernels is fairly stable (eg. the 2.0.34 kernel patch works just
fine on the 2.0.35 kernel). Since the 2.0 patch is incompatible with the ipportfw and ipautofw patches, | don't
recommend applying it unless you really need some functionality that ipchains offers.

9.Appendix: Using the ipfwadm-wrapper script. 3

Linux IPCHAINS-HOWTO

1.4 Where?

The official page is in three placé&hanks to Penguin ComputingThanks to the SAMBA TeamThanks to Jim
Pick

There is a mailing list for bug reports, discussion, development and usage. Join the mailing list by sending a
message containing the word ““subscribe ipchains-list" to subscribe at east.balius.com. To mail to everyone
on the list use ipchains-list at east.balius.com.

2.Packet Filtering Basics

2.1 What?

All traffic through a network is sent in the form of packets. For example, downloading this package (say it's
50k long) might cause you to receive 36 or so packets of 1460 bytes each, (to pull numbers at random).

The start of each packet says where it's going, where it came from, the type of the packet, and other
administrative details. This start of the packet is called the header. The rest of the packet, containing the
actual data being transmitted, is usually called the body.

Some protocols, such TCP, which is used for web traffic, mail, and remote logins, use the concept of a
“connection' —— before any packets with actual data are sent, various setup packets (with special headers) ¢
exchanged saying ‘| want to connect', "OK' and "Thanks'. Then normal packets are exchanged.

A packet filter is a piece of software which looks at the header of packets as they pass through, and decides
the fate of the entire packet. It might decide to deny the packet (ie. discard the packet as if it had never
received it), accept the packet (ie. let the packet go through), or reject the packet (like deny, but tell the
source of the packet that it has done so).

Under Linux, packet filtering is built into the kernel, and there are a few trickier things we can do with
packets, but the general principle of looking at the headers and deciding the fate of the packet is still there.

2.2 Why?

Control. Security. Watchfulness.

1.4 Where? 4

http://netfilter.filewatcher.org/ipchains
http://netfilter.filewatcher.org/ipchains
http://netfilter.filewatcher.org/ipchains
http://netfilter.filewatcher.org/ipchains
http://www.samba.org/netfilter/ipchains
http://www.samba.org/netfilter/ipchains
http://www.samba.org/netfilter/ipchains
http://www.samba.org/netfilter/ipchains
http://www.samba.org/netfilter/ipchains
http://netfilter.kernelnotes.org/ipchains
http://netfilter.kernelnotes.org/ipchains
http://netfilter.kernelnotes.org/ipchains
http://netfilter.kernelnotes.org/ipchains

Linux IPCHAINS-HOWTO

Control:

when you are using a Linux box to connect your internal network to another network (say,
the Internet) you have an opportunity to allow certain types of traffic, and disallow others.

For example, the header of a packet contains the destination address of the packet, so you c
prevent packets going to a certain part of the outside network. As another example, | use
Netscape to access the Dilbert archives. There are advertisements from doubleclick.net on
the page, and Netscape wastes my time by cheerfully downloading them. Telling the packet
filter not to allow any packets to or from the addresses owned by doubleclick.net solves that
problem (there are better ways of doing this though).

Security:

when your Linux box is the only thing between the chaos of the Internet and your nice,
orderly network, it's nice to know you can restrict what comes tromping in your door. For
example, you might allow anything to go out from your network, but you might be worried
about the well-known "Ping of Death' coming in from malicious outsiders. As another
example, you might not want outsiders telnetting to your Linux box, even though all your
accounts have passwords; maybe you want (like most people) to be an observer on the
Internet, and not a server (willing or otherwise) —— simply don't let anyone connect in, by
having the packet filter reject incoming packets used to set up connections.

Watchfulness:
sometimes a badly configured machine on the local network will decide to spew packets to

the outside world. It's nice to tell the packet filter to let you know if anything abnormal
occurs; maybe you can do something about it, or maybe you're just curious by nature.

2.3 How?

A Kernel With Packet Filtering

You need a kernel which has the new IP firewall chains in it. You can tell if the kernel you are running right
now has this installed by looking for the file “/proc/net/ip_fwchains'. If it exists, you're in.

If not, you need to make a kernel that has IP firewall chains. First, download the source to the kernel you
want. If you have a kernel numbered 2.1.102 or higher, you won't need to patch it (it's in the mainstream
kernel now). Otherwise, apply the patch from the web page listed above, and set the configuration as detaile
below. If you don't know how to do this, don't panic —— read the Kernel-HOWTO.

The configuration options you will need to set for the 2.0-series kernel are:

CONFIG_EXPERIMENTAL=y

2.3 How? 5

Linux IPCHAINS-HOWTO

CONFIG_FIREWALL=y
CONFIG_IP_FIREWALL=y
CONFIG_IP_FIREWALL_CHAINS=y

For the 2.1 or 2.2 series kernels:

CONFIG_FIREWALL=y
CONFIG_IP_FIREWALL=y

The tool ipchains talks to the kernel and tells it what packets to filter. Unless you are a programmer, or
overly curious, this is how you will control the packet filtering.

ipchains
The ipchains tool inserts and deletes rules from the kernel's packet filtering section. This means that

whatever you set up, it will be lost upon reboot; ed&ing Rules Permanent for how to make sure they are
restored the next time Linux is booted.

ipchains replaces ipfwadm, which was used for the old IP Firewall code. There is a set of useful scripts
available from the ipchains ftp site:

http://netfilter.filewatcher.org/ipchains/ipchains—scripts—1.1.2.tar.gz

This contains a shell script called ipfwadm-wrapper which allows you to do packet filtering as it was

done before. You probably shouldn't use this script unless you want a quick way of upgrading a system whic
uses ipfwadm (it's slower, and doesn't check arguments, etc). In that case, you don't need this HOWTO
much either.

See AppendiDifferences between ipchains and ipfwadnd AppendixUsing the “ipfwadm-wrapper’
script for more details on ipfwadm issues.

Making Rules Permanent

Your current firewall setup is stored in the kernel, and thus will be lost on reboot. | recommend using the
“ipchains—save' and “ipchains-restore' scripts to make your rules permanent. To do this, set up your rules,
then run (as root):

ipchains—save > /etc/ipchains.rules
#

Create a script like the following:

ipchains 6

http://netfilter.filewatcher.org/ipchains/ipchains-scripts-1.1.2.tar.gz

Linux IPCHAINS-HOWTO

#! /bin/sh
Script to control packet filtering.

If no rules, do nothing.
[—f letclipchains.rules] || exit O

case "$1"in

start)
echo —n "Turning on packet filtering:"
/sbin/ipchains-restore < /etc/ipchains.rules || exit 1
echo 1 > /proc/sys/net/ipv4/ip_forward
echo "."

stop)
echo —n "Turning off packet filtering:"
echo 0 > /proc/sys/net/ipv4/ip_forward
Isbinf/ipchains —F
/sbin/ipchains —X
Isbinf/ipchains —P input ACCEPT
Isbin/ipchains —P output ACCEPT
/sbin/ipchains —P forward ACCEPT
echo "."

*)
echo "Usage: /etc/init.d/packetfilter {start|stop}"
exit 1
esac

exit 0

Make sure this is run early in the bootup procedure. In my case (Debian 2.1), | make a symbolic link called
"S39packetfilter' in the “/etc/rcS.d' directory (this will be run before S40network).

3.I'm confused! Routing, masquerading, portforwarding,
ipautofw...

This HOWTO is about packet filtering. This means deciding whether a packet should be allowed to pass or
not. However, Linux being the hacker's playground that it is, you probably want to do more than that.

One problem is that the same tool (" ipchains") is used to control both masquerading and transparent
proxying, although these are notionally separate from packet filtering (the current Linux implementation
blurs these together unnaturally, leaving the impression that they are closely related).

Masquerading and proxying are covered by separate HOWTOs, and the auto forwarding and port forwardin
features are controlled by separate tools, but since so many people keep asking me about it, I'll include a se
of common scenarios and indicate when each one should be applied. The security merits of each setup will
not be discussed here.

3.I'm confused! Routing, masquerading, portforwarding, ipautofw... 7

Linux IPCHAINS-HOWTO

3.1 Rusty's Three-Line Guide To Masquerading

This assumes that your external interface is called “ppp0'. Use ifconfig to find out, and adjust to taste.

ipchains —P forward DENY
ipchains —A forward —i ppp0 —j MASQ
echo 1 > /proc/sys/net/ipv4/ip_forward

3.2 Gratuitous Promotion: WatchGuard Rules

You can buy off-the—shelf firewalls. An excellent one is WatchGuard's FireBox. It's excellent because | like
it, it's secure, it's Linux—based, and because they funded the maintenance of ipchains as well as the new
firewalling code (for 2.4). In short, WatchGuard were paying for me to eat while | work for you. So please
consider their stuff.

http://www.watchguard.com

3.3 Common Firewall-like Setups

You run littlecorp.com. You have an internal network, and a single dialup (PPP) connection to the Internet
(firewall.littlecorp.com which is 1.2.3.4). You run Ethernet on your local network, and your personal machine
is called "myhost".

This section will illustrate the different arrangement which are common. Read carefully, because they are
each subtly different.

Private Network: Traditional Proxies

In this scenario, packets from the private network never traverse the Internet, and vice versa. The IP
addresses of the private network should be assigned from the RFC1918 Address Allocation for Private
Internets (ie. 10.*.*.*, 172.16.*.*~172.31.*.* or 192.168.*.*).

The only way things ever connect to the Internet is by connecting to the firewall, which is the only machine
on both networks which connects onwards. You run a program (on the firewall) called a proxy to do this
(there are proxies for FTP, web access, telnet, RealAudio, Usenet News and other services). See the Firew;
HOWTO.

Any services you wish the Internet to access must be on the firewall. (Buitrstsl Internal
Services below).

3.1 Rusty's Three-Line Guide To Masquerading 8

http://www.watchguard.com

Linux IPCHAINS-HOWTO

Example: Allowing web access from private network to the Internet.

1. The private network is assigned 192.168.1.* addresses, with myhost being 192.168.1.100, and the
firewall's Ethernet interface being assigned 192.168.1.1.

2. A web proxy (eg. "squid") is installed and configured on the firewall, say running on port 8080.

3. Netscape on the private network is configured to use the firewall port 8080 as a proxy.

4. DNS does not need to be configured on the private network.

5. DNS does need to be configured on the firewall.

6. No default route (aka gateway) needs to be configured on the private network.

Netscape on myhost reads http://slashdot.org.

1. Netscape connects to the firewall port 8080, using port 1050 on myhost. It asks for the web page of
"http://slashdot.org".

2. The proxy looks up the name "slashdot.org", and gets 207.218.152.131. It then opens a connection
that IP address (using port 1025 on the firewall's external interface), and asks the web server (port 8
for the web page.

3. As it receives the web page from its connection to the web server, it copies the data to the connectic
from Netscape.

4. Netscape renders the page.

ie. From slashdot.org's point of view, the connection is made from 1.2.3.4 (firewall's PPP interface) port 102
to 207.218.152.131 (slashdot.org) port 80. From myhost's point of view, the connection is made from
192.168.1.100 (myhost) port 1050, to 192.168.1.1 (firewall's Ethernet interface) port 8080.

Private Network: Transparent Proxies

In this scenario, packets from the private network never traverse the Internet, and vice versa. The IP
addresses of the private network should be assigned from the RFC1918 Address Allocation for Private
Internets (ie. 10.*.*.*, 172.16.*.*~172.31.*.* or 192.168.*.%).

The only way things ever connect to the Internet is by connecting to the firewall, which is the only machine
on both networks, which connects onwards. You run a program (on the firewall) called a transparent proxy t
do this; the kernel sends outgoing packets to the transparent proxy instead of sending them onwards (ie. it
bastardizes routing).

Transparent proxying means that the clients don't need to know there is a proxy involved.

Any services you wish the Internet to access must be on the firewall. (Buitrstsl Internal
Services below).

Example: Allowing web access from private network to the Internet.

Private Network: Transparent Proxies 9

Linux IPCHAINS-HOWTO

1. The private network is assigned 192.168.1.* addresses, with myhost being 192.168.1.100, and the
firewall's Ethernet interface being assigned 192.168.1.1.

2. A transparent web proxy (I believe there are patches for squid to allow it to operate in this manner, ¢
try "transproxy") is installed and configured on the firewall, say running on port 8080.

3. The kernel is told to redirect connections to port 80 to the proxy, using ipchains.

4. Netscape on the private network is configured to connect directly.

5. DNS needs to be configured on the private network (ie. you need to run a DNS server as a proxy on
the firewall).

6. The default route (aka gateway) needs to be configured on the private network, to send packets to tt
firewall.

Netscape on myhost reads http://slashdot.org.

1. Netscape looks up the name "slashdot.org", and gets 207.218.152.131. It then opens a connection t
that IP address, using local port 1050, and asks the web server (port 80) for the web page.

2. As the packets from myhost (port 1050) to slashdot.org (port 80) pass through the firewall, they are
redirected to the waiting transparent proxy on port 8080. The transparent proxy opens a connection
(using local port 1025) to 207.218.152.131 port 80 (which is where the original packets were going).

3. As the proxy receives the web page from its connection to the web server, it copies the data to the
connection from Netscape.

4. Netscape renders the page.

ie. From slashdot.org's point of view, the connection is made from 1.2.3.4 (firewall's PPP interface) port 102
to 207.218.152.131 (slashdot.org) port 80. From myhost's point of view, the connection is made from
192.168.1.100 (myhost) port 1050, to 207.218.152.131 (slashdot.org) port 80, but it's actually talking to the
transparent proxy.

Private Network: Masquerading

In this scenario, packets from the private network never traverse the Internet without special treatment, and
vice versa. The IP addresses of the private network should be assigned from the RFC1918 Address Allocati
for Private Internets (ie. 10.*.*.*, 172.16.*.*-172.31.*.* or 192.168.*.*).

Instead of using a proxy, we use a special kernel facility called "masquerading”. Masquerading rewrites
packets as they pass through the firewall, so that they always seem to come from the firewall itself. It then
rewrites the responses so that they look like they are going to the original recipient.

Masquerading has separate modules to handle "tricky" protocols, such as FTP, RealAudio, Quake, etc. For
really hard-to—handle protocols, the "auto forwarding" facility can handle some of them by automatically
setting up port forwarding for related sets of ports: look for “ipportfw" (2.0 kernels) or “ipmasgadm" (2.1
kernels).

Any services you wish the Internet to access must be on the firewall. (Buitrstl Internal
Services below).

Private Network: Masquerading 10

Linux IPCHAINS-HOWTO

Example: Allowing web access from private network to the Internet.

1. The private network is assigned 192.168.1.* addresses, with myhost being 192.168.1.100, and the
firewall's Ethernet interface being assigned 192.168.1.1.

2. The firewall is set up to masquerade any packets coming from the private network and going to port
80 on an Internet host.

3. Netscape is configured to connect directly.

4. DNS must be configured correctly on the private network.

5. The firewall should be the default route (aka gateway) for the private network.

Netscape on myhost reads http://slashdot.org.

1. Netscape looks up the name "slashdot.org", and gets 207.218.152.131. It then opens a connection t
that IP address, using local port 1050, and asks the web server (port 80) for the web page.

2. As the packets from myhost (port 1050) to slashdot.org (port 80) pass through the firewall, they are
rewritten to come from the PPP interface of the firewall, port 65000. The firewall has a valid Internet
address (1.2.3.4) so reply packets from slashdot.org get routed back OK.

3. As packets from slashdot.org (port 80) to firewall.littlecorp.com (port 65000) come in, they are
rewritten to go to myhost, port 1050. This is the real magic of masquerading: it remembers when it
rewrites outgoing packets to it can write them back as replies come in.

4. Netscape renders the page.

ie. From the slashdot.org's point of view, the connection is made from 1.2.3.4 (firewall's PPP interface) port
65000 to 207.218.152.131 (slashdot.org) port 80. From the myhost's point of view, the connection is made
from 192.168.1.100 (myhost) port 1050, to 207.218.152.131 (slashdot.org) port 80.

Public Network

In this scenario, your personal network is a part of the Internet: packets can flow without change across bott
networks. The IP addresses of the internal network must be assigned by applying for a block of IP addresse
so the rest of the network will know how to get packets to you. This implies a permanent connection.

In this role, packet filtering is used to restrict which packets can be forwarded between your network and the
rest of the Internet, eg. to restrict the rest of the Internet to only accessing your internal web servers.

Example: Allowing web access from private network to the Internet.

1. Your internal network is assigned according to the IP address block you have registered, (say
1.2.3.%).

2. The firewall is set up to allow all traffic.

3. Netscape is configured to connect directly.

4. DNS must be configured correctly on your network.

5. The firewall should be the default route (aka gateway) for the private network.

Netscape on myhost reads http://slashdot.org.

Public Network 11

Linux IPCHAINS-HOWTO

1. Netscape looks up the name "slashdot.org", and gets 207.218.152.131. It then opens a connection t
that IP address, using local port 1050, and asks the web server (port 80) for the web page.

2. Packets pass through your firewall, just as they pass through several other routers between you anc
slashdot.org.

3. Netscape renders the page.

ie. There is only one connection: from 1.2.3.100 (myhost) port 1050, to 207.218.152.131 (slashdot.org) port
80.

Limited Internal Services

There are a few tricks you can pull to allow the Internet to access your internal services, rather than running
the services on the firewall. These will work with either a proxy or masquerading based approach for extern:
connections.

The simplest approach is to run a "redirector", which is a poor-man's proxy which waits for a connection on
a given port, and then open a connection a fixed internal host and port, and copies data between the two
connections. An example of this is the "redir" program. From the Internet point of view, the connection is
made to your firewall. From your internal server's point of view, the connection is made from the internal
interface of the firewall to the server.

Another approach (which requires a 2.0 kernel patched for ipportfw, or a 2.1 or later kernel) is to use port
forwarding in the kernel. This does the same job as "redir" in a different way: the kernel rewrites packets as
they pass through, changing their destination address and ports to point them at an internal host and port.
From the Internet's point of view, the connection is made to your firewall. From your internal server's point o
view, a direct connection is made from the Internet host to the server.

3.4 More Information on Masquerading

David Ranch has written an excellent new HOWTO on Masquerading, which has a large amount of overlap
with this HOWTO. You can currently find that HOWTO at

http://www.linuxdoc.org/HOWTO/IP-Masquerade—HOWTO.html|

The official Masquerading home page is at

http://ipmasqg.cjb.net

Limited Internal Services 12

http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO.html
http://ipmasq.cjb.net

Linux IPCHAINS-HOWTO

4.1P_Firewalling Chains

This section describes all you really need to know to build a packet filter that meets your needs.

4.1 How Packets Traverse The Filters

The kernel starts with three lists of rules; these lists are called firewall chains or just chains. The three chain
are called input, output and forward. When a packet comes in (say, through the Ethernet card) the kernel
uses the input chain to decide its fate. If it survives that step, then the kernel decides where to send the
packet next (this is called routing). If it is destined for another machine, it consults the forward chain.

Finally, just before a packet is to go out, the kernel consults the output chain.

A chain is a checklist of rules. Each rule says "if the packet header looks like this, then here's what to do wit
the packet'. If the rule doesn't match the packet, then the next rule in the chain is consulted. Finally, if there
are no more rules to consult, then the kernel looks at the chain policy to decide what to do. In a
security—conscious system, this policy usually tells the kernel to reject or deny the packet.

For ASCll-art fans, this shown the complete path of a packet coming into a machine.

[ACCEPT/ lo interface |
\Y REDIRECT |
-—>C-->S-—> ——>D —=> ~~~ —— >|forward|-———> -——>
h a |Jinput| e {Routing} |Chain | |output |]ACCEPT
e n |Chain| m {Decision} | | =——=>|Chain |
c i | | a ~~~~m I 1> I
kot | s | T
sy | a | vl
u | v e v DENY/ || v
m | DENY/ r Local Process REJECT || DENY/
| v REJECT a | || REJECT
| DENY d |
v e
DENY

Here is a blow-by—blow description of each stage:

Checksum:
This is a test that the packet hasn't been corrupted in some way. If it has, it is denied.

Sanity:
There is actually one of these sanity checks before each firewall chain, but the input chain's i
the most important. Some malformed packets might confuse the rule—checking code, and
these are denied here (a message is printed to the syslog if this happens).

input chain:

4.1P Firewalling Chains 13

Linux IPCHAINS-HOWTO

This is the first firewall chain against which the packet will be tested. If the verdict of the
chain is not DENY or REJECT, the packet continues on.

Demasquerade:
If the packet is a reply to a previously masqueraded packet, it is demasqueraded, and skips
straight to the output chain. If you don't use IP Masquerading, you can mentally erase this
from the diagram.

Routing decision:
The destination field is examined by the routing code, to decide if this packet should go to a
local process (see Local process below) or forwarded to a remote machine (see forward chai
below).

Local process:
A process running on the machine can receive packets after the Routing Decision step, and
can send packets (which go through the Routing Decision step, then traverse the output
chain).

lo interface:
If packets from a local process are destined for a local process, they will go through the
output chain with interface set to “lo', then return through the input chain with interface also
“lo'. The lo interface is usually called the loopback interface.

local:

If the packet was not created by a local process, then the forward chain is checked, otherwise
the packet goes to the output chain.

forward chain:

This chain is traversed for any packets which are attempting to pass through this machine to
another.

output chain:

This chain is traversed for all packets just before they are sent out.

Using ipchains

First, check that you have the version of ipchains that this document refers to:

$ ipchains ——version
ipchains 1.3.9, 17-Mar-1999

Using ipchains 14

Linux IPCHAINS-HOWTO

Note that | recommend 1.3.4 (which has no long options, like "——sport'), or 1.3.8 or above; these are very
stable.

ipchains has a fairly detailed manual page (man ipchains), and if you need more detail on particulars,
you can check out the programming interface (man 4 ipfw), or the file net/ipv4/ip_fw.c in the
2.1.x kernel source, which is (obviously) authoritative.

There is also an excellent quick reference card by Scott Bronson in the source package, in both A4 and US
Letter PostScript(TM).

There are several different things you can do with ipchains. First the operations to manage whole chains.
You start with three built—in chains input, output and forward which you can't delete.

1. Create a new chain (=N).

2. Delete an empty chain (—X).

3. Change the policy for a built=in chain. (-P).

4. List the rules in a chain (-L).

5. Flush the rules out of a chain (=F).

6. Zero the packet and byte counters on all rules in a chain (-2).

There are several ways to manipulate rules inside a chain:
1. Append a new rule to a chain (-A).
2. Insert a new rule at some position in a chain (-I).
3. Replace a rule at some position in a chain (-R).
4. Delete a rule at some position in a chain (=D).
5. Delete the first rule that matches in a chain (-D).
There are a few operations for masquerading, which are in ipchains for want of a good place to put them:
1. List the currently masqueraded connections (—-M -L).

2. Set masquerading timeout values (-M -S). (Butlsm't set masquerading timeouts!).

The final (and perhaps the most useful) function allows you to check what would happen to a given packet i
it were to traverse a given chain.

What You'll See When Your Computer Starts Up

Before any ipchains commands have been run (be careful: some distributions run ipchains in their
initialization scripts), there will be no rules in any of the built-in chains (input', “forward' and “output'), and
each of the chains will have a policy of ACCEPT. This is as wide—open as you can get.

What You'll See When Your Computer Starts Up 15

Linux IPCHAINS-HOWTO

Operations on a Single Rule

This is the bread—and-butter of ipchains; manipulating rules. Most commonly, you will probably use the
append (-A) and delete (-D) commands. The others (-l for insert and —R for replace) are simple extensions
of these concepts.

Each rule specifies a set of conditions the packet must meet, and what to do if it meets them (a “target'). Fol
example, you might want to deny all ICMP packets coming from the IP address 127.0.0.1. So in this case ol
conditions are that the protocol must be ICMP and that the source address must be 127.0.0.1. Our target is
‘DENY".

127.0.0.1 is the “loopback’ interface, which you will have even if you have no real network connection. You
can use the “ping' program to generate such packets (it simply sends an ICMP type 8 (echo request) which
cooperative hosts should obligingly respond to with an ICMP type 0 (echo reply) packet). This makes it
useful for testing.

ping —c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttI=64 time=0.2 ms

—--127.0.0.1 ping statistics ———

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.2 ms

ipchains —A input —s 127.0.0.1 —p icmp —j DENY

ping —c 1 127.0.0.1

PING 127.0.0.1 (127.0.0.1): 56 data bytes

—--127.0.0.1 ping statistics ———
1 packets transmitted, O packets received, 100% packet loss
#

You can see here that the first ping succeeds (the "—c 1' tells ping to only send a single packet).

Then we append (—A) to the “input' chain, a rule specifying that for packets from 127.0.0.1 ((-s 127.0.0.1"
with protocol ICMP ("—p ICMP") we should jump to DENY ("—j DENY").

Then we test our rule, using the second ping. There will be a pause before the program gives up waiting for
response that will never come.

We can delete the rule in one of two ways. Firstly, since we know that it is the only rule in the input chain, wi
can use a numbered delete, as in:

ipchains —D input 1
#

Operations on a Single Rule 16

Linux IPCHAINS-HOWTO

To delete rule number 1 in the input chain.

The second way is to mirror the —A command, but replacing the —A with —D. This is useful when you have a
complex chain of rules and you don't want to have to count them to figure out that it's rule 37 that you want t
get rid of. In this case, we would use:

ipchains —D input —s 127.0.0.1 —p icmp —j DENY
#

The syntax of =D must have exactly the same options as the —A (or -1 or —R) command. If there are multiple
identical rules in the same chain, only the first will be deleted.

Filtering Specifications

We have seen the use of "—p' to specify protocol, and "-s' to specify source address, but there are other
options we can use to specify packet characteristics. What follows is an exhaustive compendium.

Specifying Source and Destination IP Addresses
Source (-s) and destination (—d) IP addresses can be specified in four ways. The most common way is to u:

the full name, such as “localhost' or ‘www.linuxhg.com'. The second way is to specify the IP address such a
"127.0.0.1'.

The third and fourth ways allow specification of a group of IP addresses, such as "199.95.207.0/24' or
7199.95.207.0/255.255.255.0'. These both specify any IP address from 199.95.207.0 to 199.95.207.255
inclusive; the digits after the /' tell which parts of the IP address are significant. /32" or */255.255.255.255'" i
the default (match all of the IP address). To specify any IP address at all */0' can be used, like so:

ipchains —A input —s 0/0 —-j DENY
#

This is rarely used, as the effect above is the same as not specifying the “—s' option at all.

Specifying Inversion

Many flags, including the "-s' and "—d' flags can have their arguments preceded by "!' (pronounced "not') to
match addresses NOT equal to the ones given. For example. "—s ! localhost' matches any packet not comin
from localhost.

Don't forget the spaces around the "!': they really are needed.

Filtering Specifications 17

Linux IPCHAINS-HOWTO

Specifying Protocol
The protocol can be specified with the “—p' flag. Protocol can be a number (if you know the numeric protocol

values for IP) or a name for the special cases of "TCP', "UDP' or ICMP'. Case doesn't matter, so “tcp' works
as well as "TCP'.

The protocol name can be prefixed by a °!', to invert it, such as —p ! TCP".

Specifying UDP and TCP Ports

For the special case where a protocol of TCP or UDP is specified, there can be an extra argument indicating
the TCP or UDP port, or an (inclusive) range of ports (butegelling Fragments below). A range is
represented using a ":' character, such as '6000:6010', which covers 11 port numbers, from 6000 to 6010
inclusive. If the lower bound is omitted, it defaults to 0. If the upper bound is omitted, it defaults to 65535. Sc
to specify TCP connections coming from ports under 1024, the syntax would be as "—p TCP -s 0.0.0.0/0
:1023'. Port numbers can be specified by name, eg. “www'.

Note that the port specification can be preceded by a *!', which inverts it. So to specify every TCP packet
BUT a WWW packet, you would specify

-p TCP —d 0.0.0.0/0 ! www

It is important to realize that the specification

-p TCP -d ! 192.168.1.1 www

is very different from

-p TCP —-d 192.168.1.1 ! www
The first specifies any TCP packet to the WWW port on any machine but 192.168.1.1. The second specifies
any TCP connection to any port on 192.168.1.1 but the WWW port.

Finally, this case means not the WWW port and not 192.168.1.1:

-p TCP -d!192.168.1.1 | www

Specifying ICMP Type and Code

ICMP also allows an optional argument, but as ICMP doesn't have ports, (ICMP has a type and a code) the
have a different meaning.

You can specify them as ICMP names (use ipchains —h icmp to list the names) after the “—s' option, or

as a numeric ICMP type and code, where the type follows the "—s' option and the code follows the "—d'

Specifying Protocol 18

Linux IPCHAINS-HOWTO

option.

The ICMP names are fairly long: you only need use enough letters to make the name distinct from any othel

Here is a small table of some of the most common ICMP packets:

Number Name Required by

0 echo-reply ping

3 destination—unreachable Any TCP/UDP traffic.

5 redirect routing if not running routing daemon
8 echo-request ping

11 time—exceeded traceroute

Note that the ICMP names cannot be preceeded by "!' at the moment.

DO NOT DO NOT DO NOT block all ICMP type 3 messages! (&P Packets below).

Specifying an Interface

The "—i' option specifies the name of an interface to match. An interface is the physical device the packet
came in on, or is going out on. You can use the ifconfig command to list the interfaces which are “up' (ie.
working at the moment).

The interface for incoming packets (ie. packets traversing the input chain) is considered to be the interface
they came in on. Logically, the interface for outgoing packets (packets traversing the output chain) is the
interface they will go out on. The interface for packets traversing the forward chain is also the interface
they will go out on; a fairly arbitrary decision it seems to me.

It is perfectly legal to specify an interface that currently does not exist; the rule will not match anything until
the interface comes up. This is extremely useful for dial-up PPP links (usually interface ppp0) and the like.

As a special case, an interface name ending with a “+' will match all interfaces (whether they currently exist
or not) which begin with that string. For example, to specify a rule which matches all PPP interfaces, the i
ppp+ option would be used.

The interface name can be preceded by a '!' to match a packet which does NOT match the specified
interface(s).

Specifying an Interface 19

Linux IPCHAINS-HOWTO

Specifying TCP SYN Packets Only

It is sometimes useful to allow TCP connections in one direction, but not the other. For example, you might
want to allow connections to an external WWW server, but not connections from that server.

The naive approach would be to block TCP packets coming from the server. Unfortunately, TCP connection
require packets going in both directions to work at all.

The solution is to block only the packets used to request a connection. These packets are called SYN packe
(ok, technically they're packets with the SYN flag set, and the FIN and ACK flags cleared, but we call them
SYN packets). By disallowing only these packets, we can stop attempted connections in their tracks.

The "-y' flag is used for this: it is only valid for rules which specify TCP as their protocol. For example, to
specify TCP connection attempts from 192.168.1.1:

-p TCP -5 192.168.1.1 -y

Once again, this flag can be inverted by preceding it with a !, which means every packet other than the
connection initiation.

Handling Fragments

Sometimes a packet is too large to fit down a wire all at once. When this happens, the packet is divided into
fragments, and sent as multiple packets. The other end reassembles the fragments to reconstruct the whole
packet.

The problem with fragments is that some of the specifications listed above (in particular, source port,
destinations port, ICMP type, ICMP code, or TCP SYN flag) require the kernel to peek at the start of the
packet, which is only contained in the first fragment.

If your machine is the only connection to an external network, then you can tell the Linux kernel to
reassemble all fragments which pass through it, by compiling the kernel with IP: always
defragment set to "Y'. This sidesteps the issue neatly.

Otherwise, it is important to understand how fragments get treated by the filtering rules. Any filtering rule
that asks for information we don't have will not match. This means that the first fragment is treated like any
other packet. Second and further fragments won't be. Thus a rule —p TCP —s 192.168.1.1

www (specifying a source port of "www") will never match a fragment (other than the first fragment). Neither
will the opposite rule —-p TCP —s 192.168.1.1 ! www.

However, you can specify a rule specifically for second and further fragments, using the "—f' flag. Obviously,

Specifying TCP SYN Packets Only 20

Linux IPCHAINS-HOWTO

it is illegal to specify a TCP or UDP port, ICMP type, ICMP code or TCP SYN flag in such a fragment rule.

It is also legal to specify that a rule does not apply to second and further fragments, by preceding the "—f' wil

ML

Usually it is regarded as safe to let second and further fragments through, since filtering will effect the first
fragment, and thus prevent reassembly on the target host, however, bugs have been known to allow crashir
of machines simply by sending fragments. Your call.

Note for network—heads: malformed packets (TCP, UDP and ICMP packets too short for the firewalling code
to read the ports or ICMP code and type) are treated as fragments as well. Only TCP fragments starting at
position 8 are explicitly dropped by the firewall code (a message should appear in the syslog if this occurs).

As an example, the following rule will drop any fragments going to 192.168.1.1:

ipchains —A output —f —d 192.168.1.1 —j DENY
#

Filtering Side Effects

OK, so now we know all the ways we can match a packet using a rule. If a packet matches a rule, the
following things happen:

1. The byte counter for that rule is increased by the size of the packet (header and all).
2. The packet counter for that rule is incremented.

3. If the rule requests it, the packet is logged.

4. If the rule requests it, the packet's Type Of Service field is changed.

5. If the rule requests it, the packet is marked (not in 2.0 kernel series).

6. The rule target is examined to decide what to do to the packet next.

For variety, I'll address these in order of importance.

Specifying a Target
A target tells the kernel what to do with a packet that matches a rule. ipchains uses "—j' (think “jump-to") for

the target specification. The target name must be less than 8 letters, and case matters: "RETURN" and
"return” are completely different.

Filtering Side Effects 21

Linux IPCHAINS-HOWTO

The simplest case is when there is no target specified. This type of rule (often called an “accounting' rule) is
useful for simply counting a certain type of packet. Whether this rule matches or not, the kernel simply
examines the next rule in the chain. For example, to count the number of packets from 192.168.1.1, we coul
do this:

ipchains —A input —s 192.168.1.1
#

(Using “ipchains —-L —v' we can see the byte and packet counters associated with each rule).

There are six special targets. The first three, ACCEPT, REJECT and DENY are fairly simple. ACCEPT allow
the packet through. DENY drops the packet as if it had never been received. REJECT drops the packet, but
it's not an ICMP packet) generates an ICMP reply to the source to tell it that the destination was unreachabl

The next one, MASQ tells the kernel to masquerade the packet. For this to work, your kernel needs to be
compiled with IP Masquerading enabled. For details on this, see the Masquerading-HOWTO and the
AppendixDifferences between ipchains and ipfwadm. This target is only valid for packets traversing the
forward chain.

The other major special target is REDIRECT which tells the kernel to send a packet to a local port instead o
wherever it was heading. This can only be specified for rules specifying TCP or UDP as their protocol.
Optionally, a port (name or number) can be specified following "—j REDIRECT' which will cause the packet
to be redirected to that particular port, even if it was addressed to another port. This target is only valid for
packets traversing the input chain.

The final special target is RETURN which is identical to falling off the end of the chain immediately. (See
Setting Policy below).

Any other target indicates a user—defined chain (as descrili2geirations on an Entire Chain below). The
packet will begin traversing the rules in that chain. If that chain doesn't decide the fate of the packet, then
once traversal on that chain has finished, traversal resumes on the next rule in the current chain.

Time for more ASCII art. Consider two (silly) chains: input (the built—in chain) and Test (a user—defined
chain).

“input’ “Test'

| Rulel: -p ICMP —j REJECT | | Rulel: -s192.168.1.1 |

I ||
| Rule2: -p TCP —jTest | |Rule2:-d 192.168.1.1 |

I I
| Rule3: —p UDP —j DENY |

Filtering Side Effects 22

Linux IPCHAINS-HOWTO

Consider a TCP packet coming from 192.168.1.1, going to 1.2.3.4. It enters the input chain, and gets tested
against Rulel — no match. Rule2 matches, and its target is Test, so the next rule examined is the start of
Test. Rulel in Test matches, but doesn't specify a target, so the next rule is examined, Rule2. This doesn't
match, so we have reached the end of the chain. We return to the input chain, where we had just examined
Rule2, so we now examine Rule3, which doesn't match either.

So the packet path is:

“input’ | / “Test %
(i I
| Rulel [/| |Rulel | |
I /=11 |===I
| Rule2 /| |Rule2 | |
I I v
| Rule3 [——+ /

See the sectioHow to Organise Your Firewall Rules for ways to use user—defined chains effectively.

Logging Packets

This is a side effect that matching a rule can have; you can have the matching packet logged using the "-I'
flag. You will usually not want this for routine packets, but it is a useful feature if you want to look for
exceptional events.

The kernel logs this information looking like:

Packet log: input DENY eth0 PROTO=17 192.168.2.1:53 192.168.1.1:1025
L=34 S=0x00 [=18 F=0x0000 T=254

This log message is designed to be terse, and contain technical information useful only to networking gurus
but it can be useful to the rest of us. I