
ClibPDF Library Refrence Manual 1

ClibPDF Library Reference Manual
 V2.02 Addendum

[Manual version 2.02-Addendum; 1999-12-09]
Copyright ©1999 FastIOTM Systems, Inc. All Rights Reserved.

ClibPDFTM is a library of C functions for generating PDF files directly.
This is a supplement/addendum to the ClibPDFTM manual version 2.01-r2 dated
October 16, 1999, until the sections below are incorporated into the main
manual.

New for TextBox

TextBox functions cpdf_textBox(), cpdf_textBoxY() and their "raw" versions
now honor the form-feed (FF character or ’\f ’) in the text, provided that
NLmode member in the (CPDFtboxAttr *) struct is non-zero. It will stop filling
the text box when this character is encountered, and a pointer to any remaining
text, if any, is returned by the functions. Therefore, the TEXT2PDF example
will now perform a page break at each ’\f’.

Unicode Support in Version 2.02-r1

Starting with version 2.01-r1 of ClibPDF, the use of Unicode text is supported
for bookmarks (outlines), annotations, and to a limited extent in page content
text. While Asian (Chinese, Japanese, and Korean) lanugage text may be
specified for page content without using Unicode, you must use Unicode to add
annotations and bookmarks in these languages. Unicode strings require special
handling because they typically contain many zero-valued bytes. This means
that Unicode data cannot be passed as C strings in which a zero-valued byte

ClibPDF API Reference Manual

2 ClibPDF Library Reference Manual

indicates the end of a string. Because ClibPDF API has been designed to accept
text data as C strings, a workaround is needed to overcome this problem. We
use a hexadecimal representation of Unicode strings for this purpose. By
defining modes for the text API: standard ASCII or Hexadecimal modes, we
are able to handle both standard strings and hexadecimal Unicode strings using
a single set of text API functions.

Here is an example of adding two bookmarks, one in standard ASCII mode, and
two additional bookmarks in Unicode. The third outline entry would be a
typical usage where the Unicode data are passed to ClibPDF in binary form.
ClibPDF offers a conversion function for converting binary Unicode data to and
from a HEX representation.

Unicode Outline Examples
(Also See examples/unicode/unicode.c for another example.)

CPDFoutlineEntry *currOL; /* pointer to current outline entry */
char hexbuf[2048]; /* buffer for converted HEX string */

 currOL = cpdf_addOutlineEntry(pdf, NULL, OL_SAME, OL_OPEN, pagenum,
 "Chapter 1: Introduction", DEST_Y, 792.0, p2, p3, p4);

 cpdf_hexStringMode(pdf, YES); /* Set HEX string mode */
 currOL = cpdf_addOutlineEntry(pdf, currOL, OL_SAME, OL_OPEN, pagenum,
 "FEFF3057304A308AFF12FF1A30DA30FC30B8306E4E0B65B93078", DEST_Y, 200.0, p2, p3, p4);

 /* Assume "*unicode" points to binary Unicode data of lengh "bytecount" */
 currOL = cpdf_addOutlineEntry(pdf, currOL, OL_SAME, OL_OPEN, pagenum,
 cpdf_convertBinaryToHex(unicode, hexbuf, bytecount, 1), DEST_Y, 200.0, p2, p3, p4);

 cpdf_hexStringMode(pdf, NO); /* Reset HEX string mode before you forget */

Limitations of Unicode Use for Page Content Text

In the current version, you cannot yet use Unicode text with
cpdf_textAligned() or any TextBox functions. This is because the string width
function, cpdf_stringWidth() used internally to align text, does not work yet
with Unicode. This should not be such a hardship for CJK text, because there
are other non-Unicode encodings for which cpdf_textAligned() does work.
TextBox functions cannot accept CJK text currently regardless of encodings.
Please limit the use of Unicode for page content text to the following functions
or their "raw" versions:

cpdf_text(), cpdf_textShow(), and cpdf_textCRLFshow().

ClibPDF API Reference Manual

ClibPDF Library Reference Manual 3

Also note, that the byte-order detection bytes "FEFF" appears unnecessary for
Unicode strings for page content.

Line Feed in Annotations

Adobe Acrobat apparently uses the CR character (0x0D) to specify new lines in
annotation text with both Unicode and standard ASCII. This is the default end-
of-line (EOL) character for MacOS. It is likely that you will have to perform
conversion of EOL characters for annotation text on Unix and Windows because
they use different conventions for indicating EOL. Unix uses LF (0x0A) and
Windows uses two characters CRLF (0x0D 0x0A). It is even possible that this
conversion is necessary on MacOS as well because standard I/O functions such
as fread() performs the EOL conversion to LF as required by the C standard.

Unicode Support Functions

void cpdf_hexStringMode(CPDFdoc *pdf, int flag);

This function sets the current mode for text API to be either HEX or standard
ASCII. This call should be used with argument YES before HEX-coded
Unicode strings are used in annotation, outline and basic text functions such as
cpdf_text(). Before you can use ASCII strings again with the text API
functions, the HEX mode must be reset.

 cpdf_hexStringMode(pdf, YES);
places text API functions to accept HEX-coded strings.

 cpdf_hexStringMode(pdf, NO);
must be used to restore standard ASCII-mode for strings.

char *cpdf_convertBinaryToHex(const unsigned char *datain, char *hexout, long length, int addFEFF);

This function converts binary data into a hexadecimal representation. A
primary use of this function is to convert Unicode string to a hexadecimal string
for passing to ClibPDF text API functions.

datain -- pointer to binary data of size "length"
hexout -- Converted HEX string is placed into this output buffer.
 Buffer for "hexout" must be allocated by the caller with a storage for a string
of size at least 2*length+5 (considering possible addition of "FEFF" and string
terminator).
length -- byte length of input binary data pointed to by datain.
addFEFF -- If non-zero, the function will check if "datain" begins with "FEFF"
in binary and if not, prepend it to the output HEX representation. If it is zero,
nothing is prepended.

ClibPDF API Reference Manual

4 ClibPDF Library Reference Manual

unsigned char *cpdf_convertHexToBinary(const char *hexin, unsigned char *binout, long *length);

This function converts a hexadecimal string to a binary form. Non-HEX
characters are simply skipped, e.g., CR, LF, space, comma, etc. may be present
in input data and need not be removed before being passed to this function.

hexin -- HEX string input.
binout -- Converted binary data is placed into this output buffer.
 The buffer for binout must be allocated by the caller, and must have the size of
sizeof(hexin)/2 + 1 at a minimum.
length -- This variable will contain the byte length of converted binary data in
"binout."

Additions and Changes that affect Premium ClibPDF Only
(NOTE: Similar capability is available as cpdf_placeInLineImage() in the base ClibPDF)

int cpdf_placeImageData(CPDFdoc *pdf, const char *uniqueID, const void *imagedata,
long length, int nx, int ny, int ncomp_per_pixel, int bits_per_sample,
float x, float y, float angle, float width, float height, int flags,
CPDFimgAttr *imattr);

int cpdf_rawPlaceImageData(CPDFdoc *pdf, const char *uniqueID, const void *imagedata,
long length, int nx, int ny, int ncomp_per_pixel, int bits_per_sample,
float x, float y, float angle, float width, float height, int flags,
CPDFimgAttr *imattr);

These two functions place bitmap image data that reside in memory (computed
or preloaded from a file and decompressed) into a PDF via image XObject.
They work in a similar way to cpdf_placeInLineImage(), but the difference is
that the image data can be large and shared across multiple uses within a PDF
file. In-line images are not shared across multiple instances.

const char *uniqueID -- Give a unique string identifying image data uniquely
within a PDF file. This is used for keeping only one copy of image data for a
PDF file, i.e., if the ID strings match for two calls to this function, it is assumed
that the you are using the same image.

const void *imagedata -- This is your image data in uncompressed form. You
must pass the image data as expected by PDF. If PDF requires byte alignment
at the end of a scan line (I don't know), you must take care of it. Also, any byte
or bit-order issues must be taken care of by you, the programmer. The function
doesn't do anything in these areas. It simply compresses the data (by Flate if
compression is ON), and inserts it into PDF.

ClibPDF API Reference Manual

ClibPDF Library Reference Manual 5

long length ---------- Number of bytes in image data.

int nx, ny -----------Number of pixels in X and Y dimensions, respectively.

int ncomp_per_pixel -- Number of color components (e.g, RGB image should
have 3 for this. For CMYK, it should be 4).

int bits_per_sample -- Number of bits per component (sample). For 8-bit gray
image, this should be 8. For 24-bit RGB image (8 bit for each of RGB), this
should be 8.

float x, y ----------- Position of the lower-left corner of the image.

float width, height -- Size of the image in points (1/72 inches). NOTE: this is
true for BOTH functions above.

int flags --- Bit-0: IM_GSAVE - (LSB) is "gsave" flag.
Usually this is needed. If you don’t know, pass
IM_GSAVE as flags.

Bit-1: IM_IMAGEMASK - if 1 and B/W images (1-bit per pixel),
the image data is used as /ImageMask.
This should not be used with grayscale or color images.

Bit-2: IM_INVERT - if 1, gray or B/W sense is inverted
(negative image).

Bit-3 and up: Reserved
Use above defines by OR'ing them, as in IM_GSAVE | IM_INVERT.

CPDFimgAttr *imattr ------ Always pass NULL for now.

Changes to Existing API Functions

int cpdf_importImage(CPDFdoc *pdf, const char *imagefile, int type, float x, float y, float angle,
float *width, float *height, float *xscale, float *yscale, int flags);

int cpdf_rawImportImage (CPDFdoc *pdf, const char *imagefile, int type, float x, float y, float angle,
float *width, float *height, float *xscale, float *yscale, int flags);

NOTE: the last argument of cpdf_importImage() and its "raw" version has
been renamed to "flags" and its bit values are interpreted in the same way as
described for cpdf_placeImageData(). All bits should work as described above,
except that all flags other than IM_GSAVE will be ignored for PDFIMG
(CPDF_IMG type).

[end of doc/1999-12-09;]

