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Abstract

Repeat observations of size are a common tool for understanding growth across taxa,

and are used to estimate parameters for functions that describe growth rates. Recent

advances in estimating differential equation parameters with a hierarchical longitudinal

model have gone beyond available software. Custom implementation of such models is a

barrier to use particularly for people who are not familiar with statistical programming.

Here we introduce a new R package implementing a hierarchical Bayesian longitudinal

model for repeat observation data with three growth models from ecological case studies.

The package provides tools for model fitting and estimate extraction, example data, and

case studies to demonstrate the use-case for each of the example models.

1 Introduction

hmde (https://github.com/traitecoevo/hmde) is an R package that fits a hierarchical model to

estimate parameters of a differential equation (DE) in the presence of measurement error, where the

parameters may vary randomly across subjects, following O’Brien et al. (2024). hmde implements a set

of hierarchical Bayesian longitudinal models to fit DEs to repeat observation data and is an example

of both a Bayesian method (Idier, 2013) and a mixed effects model. The package name stands for

hierarchical methods for differential equations. The model estimates DE parameters from repeated

observations of the process over time. The motivating application for this package comes from ecology,

where a common form of data is repeated observations (with error) of organism size, with the aim of

estimating growth trajectories which may vary across individuals. The underlying statistical method

was first used in O’Brien et al. (2024) to model tree growth, and we continue to focus on ecological

applications in this paper with additional models and taxa. Existing methods such as non-linear mixed

effects models have been used for tree growth with pair-wise difference data (de Miguel et al., 2013), and

hierarchical models have been developed which fitted species-level trajectories (Herault et al., 2011),

but the addition of the individual longitudinal structure required a new approach. This software

allows for precise control over the hierarchical structure, differential equation solution, and estimation

method. Three ordinary differential equation (ODE) models are provided: constant, an affine (i.e.

linear with translation) first-order ODE known as the von Bertalanffy model (Von Bertalanffy, 1938),

and a non-linear first-order ODE we call the Canham growth function that is based on a log-normal

distribution function (Canham et al., 2004). While we focus on organisms growing, the underlying
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method is more generally applicable to repeated observation data governed by other dynamics such as

smooth motion, and the package is intended to serve as a demonstration for how such models can be

implemented in Stan (Stan Development Team, 2024).

From a structural perspective, hmde is an interface to Stan (via RStan (Stan Development Team,

2019)) that provides a set of pre-built Stan models and some additional functionality to make analysis

easier for the end user. Figure 1 demonstrates the workflow starting from longitudinal data where

individuals differ in their behaviour over time. By fitting a suitable ODE we can extract individual

parameters that allow us to fit functions to each organism, and hence estimate a sequence of sizes over

time that accounts for individual variation. O’Brien et al. (2024) showed that fitting individual ODEs

in this fashion was able to smooth out measurement error and provide better estimates of the true

sizes over time.

This paper details the theoretical structure of the underlying mathematics and statistics. We also

go through the required data structures and include example data to show how the repeat observation

structure is represented in the computer. Finally, we walk through demonstrations of each implemented

model using provided example data, and outline some known statistical issues that may be encountered

in user-developed models that rely on numerical integration.

2 The Mathematics

In this section we describe the underlying mathematical model that hmde implements, introduce the

provided functions, and give some guidance for how a user can determine if, or which, of the provided

functions are suitable for their data. We predominantly use size and growth terminology, as we am

coming from the perspective of ecology applications where we study growth of individuals over time.

The underlying statistical method is however more general. The approach and package could be applied

to any ODE problem, where we are trying to parameterise the available ODEs based on observations

of the output.
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2.1 Longitudinal model

We are interested in a size Y (t) which is governed by the differential equation for growth

dY

dt
= f(Y (t);θ)

and we have measurements at a sequence of times t1, . . . , tN , whose true (error-free) values satisfy

Y (tj+1) = Y (tj) +

∫ tj+1

tj

f(Y (t);θ) dt (1)

for some vector of parameters θ. We assume that f is known (or at least chosen), but the parameter

vector needs to be estimated and is the focus of the model.

2.2 Pre-built functions

We have implemented three models that are available for direct use with hmde: constant, von Berta-

lanffy, and Canham. These were chosen to demonstrate a range of implementations across biology

with varying data requirements and constraints. The models have one, two, and three parameters

respectively, and demonstrate linear and non-linear dynamics. All of the DEs are time independent,

in the sense that the time variable t does not appear on its own in the DE itself. The von Bertalanffy

and Canham models depend on Y (t) explicitly, which is referred to as size-dependent growth in the

ecology literature.

Constant

The constant model is given by

f(Y (t);β) = β, (2)

with β as the growth rate parameter. The constant model is mathematically equivalent to a linear

model for sizes over time. Despite their simplicity, constant models are used, typically in the form of

mixed effects models fitting average growth to individuals such as Bhandari et al. (2021) and Lussetti

et al. (2019).

von Bertalanffy

The von Bertalanffy model (Von Bertalanffy, 1938; Shine and Charnov, 1992) is given by

f(Y (t);Smax, β) = β(Smax − Y (t)), (3)

where Smax is the asymptotic maximum size and β controls the growth rate. The implemented version

in the pre-compiled model is translated by a sample mean ȳ in order to provide more robust and efficient

estimation. Translation does not affect the function behaviour as there is a back-transformation for

the output estimates.
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Canham

The Canham function, developed in Canham et al. (2004), specifies a unimodal hump-shaped function

for the derivative, given by

f(Y (t); fmax, Ymax, k) = fmax exp

(
−1

2

(
log(Y (t)/Ymax)

k

)2)
, (4)

with fmax being the maximum growth rate, Ymax the Y -value at which the peak occurs, and k a spread

parameter that controls how narrow or spread out the peak is.

2.3 Choosing a function

There are mathematical considerations for whether any of the existing models will work for a given

data set. The constant and Canham models are constrained to have non-negative growth and Canham

is not defined for Y (t) ≤ 0. From a biological perspective non-negative growth may not always be true,

for example an organism can reduce in size or mass particularly in the short term. In the constant

function case this can be taken as an averaging constraint, while for Canham, the long time between

observations of the trees in the demonstration data make non-negative growth a more reasonable

assumption as we are smoothing out the behaviour in the five year period. The von Bertalanffy model

can fit negative growth and negative Y (t) even if the latter is biologically impossible. The typical use

case for the von Bertalanffy model is for growth that declines as an organism approaches a maximum

size, but if the data shows a value that is shrinking asymptotically to a value of Y (t) (negative growth),

the model can still be fit.

The key data requirement is longitudinal data. The point of the model is to fit a function to the

dynamics for each sampling unit (individual animal or plant in the data for this chapter). The user

needs to have repeated observations yij from that unit to do so, and know the time of each observation

as well. Datasets of pairwise difference data are not suitable, the raw values should be used instead.

Consistent identification of individuals is also important, but that is a matter of data cleaning and

quality as we have not implemented a structure that allows for misclassified individual.

The choice of DE depends on both data quantity and desired behaviour. From the data quantity

perspective, fitting individual-level parameters requires a certain minimum number of observations for

each individual, which varies across DEs. The constant function is the most generally applicable, re-

quiring a minimum of two observations to estimate the single function parameter. The von Bertalanffy

model has two parameters and a minimum of three observations. Canham, with three parameters,

can theoretically be fit to four observations but we strongly recommend at least five. If the chosen

function is a good representation of the underlying dynamics, all the models will perform better with

more observations per individual.

In terms of desired behaviour, the user should choose a DE with a functional shape that captures

the behaviours of interest. The constant model fits an average rate of change to each individual,

smoothing out all dynamics. Such a model is unlikely to be realistic across a lifetime, but may be good

enough if what is required is a distribution of average growth rates, or if growth appears steady across a

time period. The von Bertalanffy model assumes high growth at the smallest sizes, and an asymptotic

maximum value which may not be observed in the data. The Canham model has accelerating growth

at small sizes, and declining growth after the peak at (Ymax, fmax). As with the von Bertalanffy model,

the decline to asymptotically 0 growth may not be observed in data, as seen in O’Brien et al. (2024).
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2.4 Numerical methods and analytic solutions

Equation (1) invokes a differential equation that governs the dynamics of Y (t) which needs to be solved

to find Y (t). We have implemented different methods to solve for Y (t), depending on the specific DE

involved. For the constant growth model hmde uses the analytic solution which is given by

Y (t) = Y (0) + βt.

For the von Bertalanffy model hmde uses the analytic solution

Y (t) = Smax + (Y (0)− Smax) exp(−tβ). (5)

The Canham function in Equation (4) is extremely non-linear and does not have an analytic

solution, so hmde must employ numerical methods. As Stan provides some ODE solvers, we use the

inbuilt Runge-Kutta 4-5 solver for Canham which has an adaptive step size.

In the process of building hmde we encountered a very bimodal posterior distribution arising from

error in numerical integration of the von Bertalanffy model. O’Brien et al. (2025) is an extensive

investigation of the problem. In hmde itself, we avoid these issues by using the analytic solution of the

constant and von Bertalanffy models. For Canham, hmde still uses the RK45 method which we found

to give negligably biased and unimodal results in simulation in O’Brien et al. (2025).

3 The Statistics

The underlying statistical approach in hmde is a hierarchical Bayesian method for inverse problems:

attempting to estimate parameters for a DE based on a chosen structure for known statistical rela-

tionships governing the distribution of those parameters, and observed data of the resulting process.

We assume that the dynamics are continuous, but observations are discrete and finite.1

We have implemented two sets of models, the first if a single individual is included in the data,

and the second if multiple individuals are, which adds a (hierarchical) cross-individual distribution for

parameters. The underlying structure is the same with one additional level for multi-individual data.

We have not implemented a multi-population model due to the computational constraints associated

with doing so, and because in application to cross-species variation analysis we want to avoid shrinkage

towards the mean that a multi-population model would encourage. Aside from an individual effect

there is currently no option for covariate data in hmde but this is planned for future releases.

From the ‘bottom’ up, the multi-individual model has the following levels:

Measurement

The data is repeated measurements on M individuals. For the ith individual, there are Ni measure-

ments at times t1, . . . , tNi
, and we denote the jth such measurement as yi,j . We assume the observation

is centred on the true value Yi(tj) but is measured with error:

yi,j ∼ N (Yi(tj), σe). (6)

1In the Bayesian inverse methods literature finite observations with measurement error is known as a situation of

practical identifiability (Latz, 2023) and presents additional difficulties due to limited information compared to infinite,

zero-error data which is used theoretically. More work needs to be done to look at the theoretical side of the model hmde

implements.
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For the Bayesian model, hmde has the measurement-level prior

yi,j ∼ N (Ŷi,j , σe), (7)

where Ŷi,j is the estimate of Yi,j obtained by integrating the growth function for j > 1, or the initial

condition for the first size. In O’Brien et al. (2024) we demonstrated that a normality assumption

works well in the case of a specific normal mixture distribution error process (which is still symmetric

and centred at 0), so we are comfortable with that structure. In theory more general error models can

be implemented in Stan but that is outside the scope of this thesis.

Individual

The vector of parameters for f is fitted at the individual level, giving θi as the parameter vector

estimate for individual i. The form of f is fixed for a given model so the individual variation is

encoded by different parameter values. For example in the constant model, βi is the parameter for

individual i.

Population

Each parameter in the vector θi comes from a distribution that operates at the population level. The

chosen growth functions are parameterised to use log-Normal priors on the population-level distribu-

tion. Consider the growth parameter β from the constant model for example, the prior is

βi ∼ logN (µlog(β), σlog(β)),

with population-level hyper-parameters that govern the mean and standard deviation of the log-normal

distribution. The relationships between individuals within the population are entirely encoded by the

parameter distributions.

Global

The hyper-parameters have their own priors, which are treated as independent across different param-

eters. hmde uses a normal distribution for the means, and a half-Cauchy distribution for the standard

deviation parameters:

µlog(β) ∼ N (0, 2), 0 < σlog(β) ∼ Cauchy(0, 2).

Most means have a chosen default centre value, except for µlog(Smax) in the von Bertalanffy model,

which instead is centred at the maximum of the log-transformed yi,j observations. The parameter

Smax is the asymptotic maximum size for an individual, so it is reasonable to expect the mean of that

distribution to be closer to the maximum observed size than another specified value.

The σe error term from Equation (6) also has a prior at the global level given by

0 < σe ∼ Cauchy(0, 2).

Depending on the use case (e.g. working with millimetres rather than centimetres) these priors

may be more or less informative. The user is able to change the parameter values but not the un-

derlying distributions by providing the necessary arguments to the hmde assign data function. We

demonstrate this functionality later in the paper.
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If the user is fitting a model to a single individual, they drop the global level hyper-parameters

and fit the individual parameters to a log-normal distribution with specified mean and standard de-

viation values, for example β ∼ logN (0.1, 1) for the constant model with a single individual. The σe

distribution is preserved in order to estimate the error behaviour.

3.1 Estimation

hmde uses a Markov Chain Monte Carlo estimation process, which takes samples from the posterior

distribution (Gelman et al., 2021), implemented with a Hamiltonian Monte Carlo algorithm (Stan

Development Team, 2024). For each estimator the mean of the posterior samples is the most common

estimate (Gelman et al., 2021) and is provided, but hmde also calculates the posterior median and

a central 95% credible interval of samples for individual, population, and error parameters via the

hmde extract estimates function. The user is able to extract their own estimates from the samples

as the hmde run function returns a Stan fit object that includes the sample chains themselves. For

some applications the posterior distribution represented by the samples is of interest as well.

4 The Data

This section will detail the requirements for using user data with the hmde package and introduce the

three demonstration datasets that come with the package.

4.1 Data structure

The heart of the statistical model hmde implements is a longitudinal structure for repeated observa-

tions over time. The package requires this structure in datasets, with at least two measurements per

observational unit at different times, a record of when the measurements were taken to calculate the

observation interval, and if there are multiple individuals then a way of identifying which individual

each measurement comes from. The basic form is a table – usually a data frame or tibble (Müller

and Wickham, 2024) – with columns for observations yi,j , the observation index j counted for each

individual, time ti,j , and individual index i. In the following example data, i is represented as ind id

and j as obs index which are the variable names hmde uses internally:

> head(Tree_Size_Data)

# A tibble: 6 × 4

ind_id time y_obs obs_index

<dbl> <dbl> <dbl> <dbl>

1 1 0 2.5 1

2 1 4.77 3.3 2

3 1 9.75 4.4 3

4 1 14.8 4.6 4

5 1 19.7 5 5

6 1 25.0 5.8 6

There is a way to pass in data with different names which will be addressed in the section on workflow.
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The implemented models have some additional requirements that are typically calculated from the

basic framework. For models fitted to single individuals the core structure within the code is

• y obs: a vector of real numbers of length n obs which is the observations,

• n obs: an integer giving the total number of observations which is automatically calculated

from the length of y obs,

• obs index: a vector of integers of length n obs giving the index j of observations.

• time: a vector of real numbers of length n obs giving the time since the first observation.

• y bar: a real number used for the von Bertalanffy model to centralise the data, typically the

mean of the observed values. Automatically calculated from y obs.

For the multi-individual model there are additional values:

• ind id: vector of integers of length n obs that gives the individual index i.

• n ind: integer giving the number of individuals in the sample which is automatically calcu-

lated from the number of unique values in ind id.

The hmde model() function run on the name of a model will return the ordered list of names for

what data needs to be passed to that particular model. Here’s the multi-individual Canham model

which shows the default priors for the top-level parameters:

> hmde_model("canham_multi_ind")

$n_obs

NULL

$n_ind

NULL

$y_obs

NULL

$obs_index

NULL

$time

NULL

$ind_id

NULL

$prior_pars_pop_log_max_growth_mean

[1] 0 2
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$prior_pars_pop_log_max_growth_sd

[1] 0 2

$prior_pars_pop_log_size_at_max_growth_mean

[1] 0 2

$prior_pars_pop_log_size_at_max_growth_sd

[1] 0 2

$prior_pars_pop_log_k_mean

[1] 0 2

$prior_pars_pop_log_k_sd

[1] 0 2

$prior_pars_global_error_sigma

[1] 0 2

$model

[1] "canham_multi_ind"

attr(,"class")

[1] "hmde_object"

$model

[1] "canham_multi_ind"

attr(,"class")

[1] "hmde_object"

Some of the variable names are very long, because they aim to represent the variable role. For example

prior pars pop log size at max growth mean is the vector of prior distribution parameters for the

population-level hyper-parameter that controls the mean of the log-transformed Smax (size at max

growth) distribution. These typically only come into play when specifically controlling priors, or

working with the hyper-parameter distributions.

4.2 Provided datasets

For demonstration purposes we have included four in-built datasets that are prepared for immediate use

with the existing models. These data represent a range of taxa, both experimental and observational

data, and are taken as prepared subsets of public datasets with permission from the original authors.
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Trout size data

The trout size dataset is taken from the SUSTAIN trout data (Moe et al., 2020), a set of mark-recapture

data for Salmo trutta in a land-locked population in Norway. We have taken a stratified sample of 50

individuals, where the strata are the number of observations from the individual fish:

• 25 individuals with 2 observations,

• 15 individuals with 3 observations,

• 10 individuals with 4 observations.

Within strata, the individuals were selected by a simple random sample without replacement from a

sampling frame of individual IDs. The size of the trout is measured in centimetres from end to end.

As the survey structure for the trout data requires re-capture, there is no control on the time between

observations, which is measured in years. Due to the limitation on observations we have chosen the

trout survey as demonstration data for the constant function, which is not size-dependent and has

only a single parameter (the average rate of change) to estimate.

Lizard size data

Our example lizard data comes from experimental data used in Kar et al. (2024) from the species

Lampropholis delicata. Size-structured growth based on a von Bertalanffy model has been used in the

literature for other lizard and reptile species (Ramı́rez-Bautista et al., 2016; Shine and Charnov, 1992),

so we consider this data a good match for that function. Measurements are in millimetres from the

lizard’s snout to the top of the cloacal opening (snout-vent-length or SVL). Time is measured in days.

We took a simple random sample without replacement of 50 individuals using the individual IDs as a

sampling frame.

Tree size data

The tree size data comes from Barro Colorado Island (Condit et al., 2019), in this case from the species

Garcinia recondita. A simple random sample of 50 individuals was taken from the 400 G. recondita

individuals used in O’Brien et al. (2024), which were already processed through data cleaning and

filtered to have 6 observations each (i.e. have survived the 25 years of observation) and checked for

preservation of stem and tree IDs over time. Further filtration chose individuals with more than 3 cm

observed difference between first and last size to avoid model fitting problems with the smaller dataset.

Size is given as diameter at breast height (DBH) in centimetres, and time is measured in years.

5 The Workflow

All of the models provided in hmde leverage the same workflow. In the next sections we walk through

implementation but first we detail the workflow in theory. As an example, let’s say we choose the

constant function as the model. The following code will take the provided trout size data, convert it

in to the structure required to fit a constant model, fit the model, and extract the posterior estimates

at measurement, individual, and population levels. We store the model fit object from step 4 in order

to save the fit for traceplots or other diagnostic analysis.
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# Constant function chosen

trout_constant_fit <-

hmde_model("constant_multi_ind") |>

hmde_assign_data(data = Trout_Size_Data) |>

hmde_run(chains = 4, cores = 4, iter = 2000)

trout_estimates <-

hmde_extract_estimates(trout_constant_fit,

input_measurement_data = Trout_Size_Data)

The hmde assign data can take different configurations of data. If passed a data frame with

column names y obs, obs index, time, and ind id in any order it will use those columns directly.

Data can be individually assigned to those names as arguments, for example

hmde_model("constant_multi_ind") |>

hmde_assign_data(y_obs = Trout_Size_Data$y_obs,

obs_index = Trout_Size_Data$obs_index,

time = Trout_Size_Data$time,

ind_id = Trout_Size_Data$ind_id)

will produce the same data list as

hmde_model("constant_multi_ind") |>

hmde_assign_data(data = Trout_Size_Data)

and can be used for data frames with different column names. There are some internal checks for data

size consistency to help with passing in individual vectors.

Returning to the fitted model, here are the first few rows of each element in the estimates list:

> trout_estimates

$measurement_data

# A tibble: 135 × 5

ind_id time y_obs obs_index y_hat

<dbl> <dbl> <dbl> <dbl> <dbl>

1 1 0 52 1 53.7

2 1 1.91 60 2 61.3

3 1 4.02 70 3 69.6

$individual_data

# A tibble: 50 × 5

ind_id ind_beta_mean ind_beta_median ind_beta_CI_lower

<int> <dbl> <dbl> <dbl>

1 1 3.96 3.95 2.32

2 2 2.42 2.40 1.16

3 3 4.34 4.38 2.44

$ind_beta_CI_upper
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<dbl>

5.67

3.80

6.30

$error_data

# A tibble: 1 × 5

par_name mean median CI_lower CI_upper

<chr> <dbl> <dbl> <dbl> <dbl>

1 global_error_sigma 3.93 3.90 3.21 4.81

$population_data

# A tibble: 2 × 5

par_name mean median CI_lower CI_upper

<chr> <dbl> <dbl> <dbl> <dbl>

1 pop_log_beta_mu 0.882 0.894 0.578 1.12

2 pop_log_beta_sigma 0.470 0.473 0.117 0.795

Each tibble can be extracted from the list and used as a regular tibble/data frame structure for

further analysis. Some examples include comparisons of observed and estimated sizes using the

measurement data, parameter scatter plots and histograms from the individual data estimates,

and distribution information encoded in the hyper-parameters in population data values. Examples

of analyses are given below for the case studies we use, and relevant code can be found in the vignettes.

In greater detail, the 5 steps to the fundamental workflow for hmde are:

1. Choose model: To see a list of model names run hmde model names().

2. Data structures: hmde requires specific data structures for the Stan models. A detailed

list of each can be seen by running the function hmde model and giving it the name of the

relevant model. The user can build each element in the list themselves, or construct a table

with observations from each individual, an ordering of observations for the individual, the

time at which they occurred, and information on which individual the observation came from.

The table structure of ind id, time, y obs, and obs index is the easiest to work with as

hmde assign data is built to use those column names and the list output by hmde model to

give the Stan data structure.

3. Convert data to Stan model structure: The Stan model requires a specific list structure

with agreement between the lengths of some vectors and corresponding integer values. hmde

provides the hmde assign data function that converts provided data into the required list

format and checks for the necessary size agreements. There are a handful of ways to pass

datasets depending on the level of control required. A data frame or tibble structure with

columns named y obs, obs index, time, and ind id can be passed as the data argument and

hmde assign data will format the list for the model. Specific list elements can be assigned

directly by passing an argument of that name to hmde assign data, with the value of the

argument being the data to be assigned.
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4. Run the model: The function hmde run loads the chosen model and runs the Stan MCMC

sampler on the provided data, returning a Stan fit object. If no control parameters are

provided the sampler will run 4 chains with 2000 iterations on a single CPU core as default

for Stan. Sampler controls can be passed to hmde run as they would to the sampler directly,

for example chains = 2 will run only two chains.

5. Extract posterior estimates: hmde has hmde extract estimates to make posterior pro-

cessing easier. The function takes the Stan fit object output by hmde run and the data it was

fit to in the tibble structure described in step 2. Which model was chosen is named in the

Stan fit object. The output is a list of tibbles with posterior parameter estimates for each

level in the hierarchical structure. The function gives the mean of posterior samples as the

estimate for Ŷi,j , but additionally the posterior sample median, and a central 95% credible

interval for the individual- and population-level parameter estimates.

Steps can be strung together using the pipe operator |> (native to R, the Magrittr pipe %>% Bache

and Wickham, 2022 also works) which uses the output of a previous function as the first argument of

the next.2 We recommend retaining the output Stan fit object from hmde run for diagnostic purposes.

hmde has two additional functions for posterior analysis. The first is hmde plot de pieces which

plots the fitted growth functions of all individuals, which can be useful for qualitative analysis. The

second is hmde plot obs est ind which plots the observed and estimated sizes over time for different

individuals, either a chosen number of them randomly selected from the data, or specified individuals

based on a vector of ID values.

The following demonstrations align with the vignettes for each model, and demonstrate each in-

cluded DE and associated provided dataset. We go through the constant model in detail, summarise

the most interesting results from the von Bertalanffy model, and give a brief overview of the Canham

results, which are more extensively explored in O’Brien et al. (2024). Due to the random nature of

MCMC sampling, re-running the code may get slightly different point estimates.

5.1 Constant growth fit to trout size data

In circumstances where the number of observations available per individual is very limited, average

growth rates over time may be the only plausible model to fit. In particular, if there are individuals

with only two size observations, than the best that can be done is a single estimate of growth rate

based on that interval. Such a model behaves as constant growth, which we can think of as the average

rate of change across the observation period and is given by Equation (2), β is the average growth rate

across the observation period. The constant growth model corresponds to linear sizes over time, and

is equivalent to a linear mixed model for size, where there is an individual effect when fit to multiple

individuals.

Example data for the constant model comes from Moe et al. (2020), a publicly available dataset

of mark-recapture data for Salmo trutta in Norway. The time between observations is not controlled,

nor is the number of observations per individual. As a result the data consists primarily of individuals

with two observations of size, constituting a single observation of growth which limits the functions

2Pipe is perhaps easiest thought of as a way to turn recursive function calls into an easier-to-read chain of them. From

a mathematical perspective it is function composition where f(x) |> g() is the same as g(f(x)) = g ◦ f(x). Thankfully,

the arrow points to the next function so the reading order is easier for English native speakers.
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that can be fit to individuals, as a single parameter model is the best that can be fitted to two sizes.

The constant growth function in Equation (2) is the most appropriate of the functions in hmde, where

the single growth interval is used to estimate the average growth rate β.

To implement the workflow we fit the model and extract the estimates. We have already chosen the

constant model for step 1, so to look at the required structure use hmde model("constant multi ind").

As the provided trout data is already in the form required by the hmde assign data function, there

is no required pre-processing for step 2, so pass the data frame directly to step 3 using the function

hmde assign data("constant multi ind", data = Trout Size Data). The following code includes

command to run with multiple cores and demonstrates the use of the pipe operator to pass the re-

quired data structure from hmde model to hmde assign data, then the correctly formatted list from

hmde assign data to hmde run for step 4 that fits the model. The overall output of this part of the

workflow is the model fit.

# Constant model chosen as Step 1

trout_constant_fit <-

hmde_model("constant_multi_ind") |> #Step 2

hmde_assign_data(data = Trout_Size_Data) |> #Step 3

hmde_run(chains = 4, cores = 4, iter = 2000) #Step 4

Fitting the model is the most computationally expensive part, so we recommend saving the model fit

at this point.

If the user wants to change the default prior values, add the values as suitably named arguments

to hmde assign data, which then get passed to the Stan model. The following shows how to change

the parameters for the population-level prior on µlog(β) to be a mean of 1, and a standard deviation

of 3:

#Look at the default prior values

hmde_model("constant_multi_ind")$prior_pars_pop_log_beta_mu

#Assign new value

data <- hmde_model("constant_multi_ind") |>

hmde_assign_data(data = Trout_Size_Data,

prior_pars_pop_log_beta_mu = c(1, 3))

Assignment can be checked by looking at the value in data:

> data$prior_pars_pop_log_beta_mu

[1] 1 3

There are generated values in the model fit object that return the used prior parameters, (the names

all start with check prior pars) so users can double check that the priors they want are actually

used.

In step 5 we extract estimates for each level in the hierarchy using hmde extract estimates, which

is set up to take in the model fit, and the model input data as arguments.

trout_estimates <-

hmde_extract_estimates( #Step 5
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Table 1: Posterior estimates for species-level hyper-parameters in the constant model for trout. This data comes from

the population data tibble in the extracted estimates.

Sp. Par. Post. Mean 95% CI

µlog(β) 0.881 (0.562, 1.121)

µβ (cm/yr) 2.414 (1.754, 3.069)

σlog(β) 0.467 (0.161, 0.816)

fit = trout_constant_fit,

input_measurement_data = Trout_Size_Data)

We directly compare the observed sizes over time to estimated values. For a quantitative fit metric

we use R2 calculated on (yij , Ŷij). For qualitative analysis we look at scatter plots of observed and

estimated sizes, and inspect plots of sizes over time, as in Figure 2(a) and (b). The R2 statistic is a

metric primarily used in linear regression that measures the proportion (ie. decimal value in the [0,1]

interval) of variance in one coordinate that can be explained by the regression model. In this context,

we interpret it as how strongly the fitted and observed values agree. As statisticians we never expect

perfect agreement between a model and data, so we expect R2 < 1. O’Brien et al. (2024) showed that

the change between observed and fitted values can actually correct for measurement errors in size, so

disagreement is not a bad thing overall. In this case, R2 = 0.953, which indicates strong agreement

between the estimated and observed sizes, even though we have chosen a very simplistic model in the

constant function.

Figure 2(b) demonstrates that at the individual level, the constant growth function produces linear

sizes over time that are averaging out the observed behaviour. This plot can be produced from the

hmde function hmde plot obs est inds using the measurement data tibble:

hmde_plot_obs_est_inds(n_ind_to_plot = 5,

measurement_data = trout_estimates$measurement_data)

Panel (c), a plot of growth functions fit to each individual in the sample, can also be easily produced

using the function hmde plot de pieces using the extracted estimates:

hmde_plot_de_pieces(trout_estimates)

In Panel (d) there is a large range of estimated average growth rates, and a possible downwards trend

for large sizes that would be better estimated with a size-dependent model.

Finally, analysis of the distribution of βi, which is done through tools such as a histogram or

quantiles of the individual parameters, and extraction of the species-level parameter estimates. Figure

2(d) shows a right-skewed, unimodal distribution of average growth rates with a tail of high values.

There is one extreme growth value (about 7 cm per year) which may not be biologically plausible,

and that individual could be further investigated. Table 1 gives the posterior estimates for the hyper-

parameters, with both the raw mean for the log-transformed distribution, and the exponent of that

value which can be more easily interpreted as an average growth rate for the species in cm/yr.
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Figure 2: Analysis plots for S. trutta. (a) gives a comparison of estimated and observed sizes showing strong agreement.

(b) gives observed and estimated sizes over time for five randomly selected individuals using the hmde plot obs est inds

function. (c) shows all fitted growth functions and was produced with the hmde plot de pieces function. (d) is a

histogram of the β̂is.
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5.2 von Bertalanffy fit to lizard size data

Our second example uses size-dependent growth based on the von Bertalanffy function given in Equa-

tion (3). The key behaviour of the von Bertalanffy model is a high growth rate at small sizes that

declines linearly as the size approaches Smax. This manifests as growth slowing as an individual ma-

tures, with an asymptotic final size. hmde restricts β and Smax to be positive, and uses the maximum

of observed sizes as the prior mean for Smax to avoid model pathologies.

The data for the von Bertalanffy demonstration is the Lizard Size Data object provided with the

package. As with the constant model, pass the Lizard Size Data directly through the workflow to fit

the model. The following code covers the steps in the workflow in two concise parts.

# von Bertalanffy model chosen for Step 1

lizard_fit <-

hmde_model("vb_multi_ind") |> #Step 2

hmde_assign_data(data = Lizard_Size_Data) |> #Step 3

hmde_run(chains = 4, cores = 1, iter = 2000) #Step 4

lizard_estimates <-

hmde_extract_estimates( #Step 5

fit = lizard_fit,

input_measurement_data = Lizard_Size_Data)

We use plots of sizes over time and estimated growth functions to get a feel for plausibility based

on how well the models fit the data. As the von Bertalanffy model has two individual parameters, the

distribution of all individual parameter estimates can be scrutinised in a scatter plot. If the user wishes

to test for relationships between parameters across individuals, these estimates allow that to be done.

Figure 3 gives plots for the analysis based on the extracted estimates. Panels (b) and (c) are produced

with the provided functions hmde plot obs est inds and hmde plot de pieces respectively.

One interesting result of fitting individual trajectories is that the von Bertalanffy model visibly

underestimates the largest sizes in Figure 3(a). The mathematical interpretation of this is that the

straight line decay to zero growth may not be appropriate (i.e. more growth happens at larger sizes

than the von Bertalanffy model predicts), and there may actually be an asymptotic decline in growth

instead, necessitating a different growth function for further analysis.

Finally, the population-level parameter estimates. As in the constant growth case, both the raw

and exponentiated values for the mean of the log-normal distribution are useful for interpretation,

which requires post-processing of the estimates to exponentiate values. The estimates and CIs are

provided in Table 2. The estimate of µYmax
= 24.5mm, the average value of maximum size across the

population, is quite reasonable given what is known about the species L. delicata.

5.3 Canham fit to tree size data

Our final demonstration implements Equation (4) to model size-dependent growth in trees. We use

the Barro Colorado Island data included with the package, which has six observations five years apart

for each of 50 individuals from G. recondita. The Canham function is used as O’Brien et al. (2024)

demonstrated that it performs well for the same data.
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Figure 3: Plots for L. delicata. (a) gives a plot of observed and estimated Y (t) values showing reasonable agreement,

with some under-estimation of large sizes. (b) shows sizes over time for 5 randomly selected individuals. (c) gives the

fitted von Bertalanffy functions for all individuals and shows that the slopes controlled by β are very similar, but there

is more variation in the max size. (d) is a scatter plot of individual parameters. (e) and (f) are histograms of individual

parameters showing roughly symmetric distributions within the sample.
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Table 2: Posterior estimates for species-level hyper-parameters in the von Bertalanffy model for lizards taken from the

lizard estimates$population data tibble. Exponentiated parameters are calculated from the tibble.

Sp. Par. Post. Mean 95% CI

µlog(Ymax) 3.199 (3.180, 3.219)

µYmax
(mm) 24.51 (24.04, 25.01)

σlog(Ymax) 0.0342 (0.0135, 0.0495)

µlog(β) -4.015 (-4.178, -3.808)

µβ 0.0180 (0.0153, 0.0222)

σlog(β) 0.0915 (0.0127, 0.285)

The following code runs the Canham model sampling and extracts samples. As sampling takes a

few hours for this example we recommend using the provided set of estimates in the Tree Size Ests

data object that comes with the package in place of the tree estimates object in this code.

# Canham function chosen for Step 1

tree_fit <-

hmde_model("canham_multi_ind") |> #Step 2

hmde_assign_data(data = Tree_Size_Data) |> #Step 3

hmde_run(chains = 4, cores = 4, iter = 2000) #Step 4

tree_estimates <-

hmde_extract_estimates( #Step 5

fit = tree_fit,

input_measurement_data = Tree_Size_Data)

Figure 4 demonstrates a strong alignment between the fitted growth functions and observed growth

behaviour, both in Panel (a) with the randomly selected size trajectories and the observed and es-

timated sizes in Panel (c). Among the individual-level parameter estimates, the Spearman’s rank

correlation coefficients were 0.195 for gmax and Smax, -0.511 for gmax and k, and -0.257 for Smax and

k, so there is some evidence of a moderate negative relationship between gmax and k, which in practice

means that a spike to a higher growth rate is not sustained for a long period, while the lower growth

rates with the higher k values are more sustained.

In Table 3 there are higher estimates for the gmax mean parameters compared to the estimates

from O’Brien et al. (2024). Bias is to be expected, because we specifically sampled individuals with

more than 3 cm difference between the largest and smallest observed sizes as the sampling frame

for Tree Size Data, which excludes a lot of very low-growth individuals that would pull down the

distribution of gmax. The other parameters show strong agreement to results from O’Brien et al.

(2024), with overlap in the 95% CIs.
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Figure 4: Analysis plots for G. recondita. (a) is a scatter plot of observed and estimated sizes showing very strong

agreement. (b) shows sizes over time for 5 randomly selected individuals. (c) gives the fitted Canham functions for all

individuals. (d), (e), and (f) are histograms of individual parameters, with the horizontal axis aligned to the pairwise

scatter plots in (g), (h), and (i).
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Table 3: Posterior estimates for species-level hyper-parameters in the Canham model for trees, and the large sample (L.

Samp.) estimates from O’Brien et al. (2024) for the same parameters on the larger sample.

Post. L. Samp. L. Samp.

Sp. Par. Mean 95% CI est. 95% CI

µlog(gmax) -1.178 (-1.39, -0.998) -1.85 (-1.96,-1.74)

µgmax
(cm/yr) 0.308 (0.248, 0.369) 0.16 (0.141, 0.176)

σlog(gmax) 0.434 (0.319, 0.574) 0.64 (0.56,0.71)

µlog(Ymax) 2.30 (2.12, 2.48) 2.08 (1.96,2.20)

µYmax
(cm) 10.0 (8.30, 12.0) 8.0 (7.099, 9.025)

σlog(Ymax) 0.391 (0.225, 0.575) 0.47 (0.36,0.58)

µlog(k) -0.552 (-0.861, -0.0662) -0.24 (-0.40,-0.061)

µk 0.576 (0.423, 0.936) 0.787 (0.670, 0.9408)

σlog(k) 0.565 (0.308, 0.842) 0.64 (0.51, 0.78)

6 Discussion

hmde provides a baseline implementation of three hierarchical Bayesian longitudinal models in order

to demonstrate the application of the method to different biological situations. The package offers an

interface to the methods used in O’Brien et al. (2024) which would not otherwise exist. We expand the

application to non-tree taxa in this package with two animal demonstrations on S. trutta data from

Moe et al. (2020) and L. delicata data from Kar et al. (2024).

While the method implement in hmde is new, comparisons to existing ones are possible. The

constant model is equivalent to a linear model for size as a function of time, with an individual effect.

The mathematical expression is

Y (t) = β0 + β1t (general model),

= Y0,i + β1,it (individual model),

which linear mixed effects and hierarchical linear models can fit such as Lussetti et al. (2019). The

explicit inclusion of time enables a longitudinal structure. We nevertheless included the constant model

in the package as the simplest use-case with minimal data requirements. Some longitudinal surveys,

such as the mark-recapture surveys including the SUSTAIN trout data (Moe et al., 2020), can be

dominated by individuals with only two observations which limits the capacity to fit more complex

models. If a distribution of average growth rates is what the user wants, the constant model will

provide it.

For the von Bertalanffy model, the analytic solution in Equation (5) is exponential and requires

a non-linear form of function fitting. Ramı́rez-Bautista et al. (2016) used a non-linear model fit to

pairwise difference data, and fit the von Bertalanffy model at the population level with a sex effect

rather than fitting individual effects. In contrast we fit an individual longitudinal model where the

population-level behaviour is encoded in the distribution of individual parameters.
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The Canham model is the stand-out of the three implemented in hmde, as the absence of an

analytic solution to Equation (4) means hmde needs to use numerical integration methods to encode

the longitudinal structure. Fitting the solution through the longitudinal model given in Equation (1)

contrasts to population-level average trajectory models fit as functions to pair-wise difference data such

as Herault et al. (2011). The population model operates at the level of the DE and does not attempt

to estimate a size over time trajectory for individuals. We get access to the individual trajectories

directly, enabling deeper analysis of behaviour within a population.

Mixed effects models such as Bhandari et al. (2021) uses covariate information to better fit models

for tree growth, while Ramı́rez-Bautista et al. (2016) used a sex effect for lizards. Environmental

covariates such as light and spatial dynamics are a key part of ecological models (Falster et al., 2018;

Rüger et al., 2022; Babcock et al., 2012). The best that can currently be done in hmde is to run

independent models across a single grouping variable. The option to include covariate data is a

planned feature for hmde, but was outside the scope of this thesis.

By providing demonstrations from three different taxa we show some of the applicability of a very

general underlying method for longitudinal data. We chose to implement three models: constant

(average) growth, von Bertalanffy (affine first order ODE – linear with translation), and the Canham

(Canham et al., 2004) function (non-linear first order ODE). Future work could expand applications

to other models, as even within tree growth modeling there are many other functions for dynamic

processes (Herault et al., 2011). Another extension would be investigate dynamics in more than one

dimension for Y such as 3D volume models of size, or two- or three-dimensional motion based on a

position-momentum model.

7 Conclusions

The hmde package provides a relatively user-friendly structure for implementing the chosen set of

models with a hierarchical Bayesian longitudinal method. We have given demonstrations of each

model matched to an included dataset of repeat survey or experimental measurements that suit the

chosen function.
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