
CRAM Format Specification

Author: Josh Green <josh@resonance.org>
Revision: 1.2
Date: May 19, 2007
URL: http://cram.resonance.org

Table of Contents
1 Revision history..2
2 About...3
3 Features...3
4 File extensions...3
5 File identification..3
6 EBML format..4

6.1 Variable length integers...4
6.2 EBML chunks..4
6.3 Data types..5
6.4 CRC32 checksums..5
6.5 Errata...5

7 CRAM format reference...6
7.1 CRAM file format...6
7.2 FileChunk..6
7.3 Relocation table...7
7.4 Chunks listed by EBML ID...8

8 Cram format description...9
8.1 CRAM format version history...9
8.2 EBML chunk...10
8.3 CramInfo chunk...10
8.4 Flags..10
8.5 FileChunk..11
8.6 Grouping audio segments..11
8.7 Relocation table...12

8.7.1 BinaryChunk..12
8.7.2 FlacChunk and WavPackChunk..12
8.7.3 FlacSplitChunk and WavPackSplitChunk...12

8.8 CRAM hybrid lossless...13
8.8.1 CRAM correction file..13

9 Implementation notes..14
9.1 EBML chunk handling..14
9.2 Binary compression...14
9.3 Audio compression..14
9.4 FLAC compression..14
9.5 CRAM lossy files..14

mailto:josh@resonance.org
http://cram.resonance.org/
http://cram.resonance.org/
http://cram.resonance.org/
mailto:josh@resonance.org
mailto:josh@resonance.org

1 Revision history
Revision 1.2 – May 19, 2007

● Switched to using non variable length encoded integers for fields, breaking backwards
compatibility.

● Format version reset to v1 (since it wasn't stored properly in older versions anyways)

● Previous versions (1-3) renamed to (0x81 – 0x83), to indicate the falsely stored version values

● DocType field should now come directly after the EBML chunk, to aid in file identification

● Added CRAMInfo chunk to contain Flags, Software and Comment fields. This was done so
that the DocType signature is always a fixed offset (EBML chunk size always 1 byte), to aid in
file identification.

● Added section on file identification including Unix file utility magic.

● Removed AudioMD5 chunk and added FileMD5 chunk. This means that FileMD5 now requires
a separate pass (needed anyways for out of order binary chunk storage). Section added in
FileChunk description on MD5 sums.

● WavPackSplitChunk and FlacSplitChunk no longer used at the FileData level, since
WavPackChunk and FlacChunk can be used for both split or non-split audio.

● CramInfo and Software field are now required, set max size of Software field to 64 bytes and
Comment to 4096 bytes.

● EBMLVersion and EBMLReadVersion chunks no longer used (DocTypeVersion covers it).

● Added FileInfo chunk to contain information related fields.

● Added optional CRC-32 for CramInfo and FileInfo chunks.

● Chunk order should now be considered fixed to make it easier on the decoder implementation

Revision 1.1 – May 11, 2007

● Updated EBML ID tables to not use indentation (didn't work in HTML export)

● Added SetAudioEntry and NextAudioEntry chunks for chaining audio segments and section on
grouping audio segments

● Clarification of RawSize for SampleSplit audio entries

● Added VerbatimChunk type

● Added signed int data type

● Other minor clarifications

Revision 1.0 – May 5, 2007

● Initial release of document describing CRAM format version 4 (actually v1).

2 About
CRAM is an acronym for “Compress hybRid Audio Media”. It is an open file format that was created
to handle the compression of files containing audio and binary. Better compression of audio can often
be achieved by codecs specifically designed for audio (such as FLAC or WavPack) than a binary
compressor. CRAM utilizes audio codecs for audio (FLAC and WavPack currently) and binary
compressors for binary (bzlib and zlib currently) which often yields a much higher compression ratio
than if a purely binary compressor was used. Format specific encoders are created to handle the
compression of a specific data format, but the decoder is generic, which means future support for the
compression of other formats is backwards compatible. CRAM is currently specifically used for
instrument file compression (such as SoundFont©1, DLS and GigaSampler©2), but is not limited to
this purpose.

3 Features
● Open standard with LGPL licensed reference software implementation (libInstPatch)

● Based on EBML (a binary XML like format) which provides flexibility in extending the format

● Compression of multiple files with paths in a single archive with time preservation

● Extensive audio format support including: 8/16/24/32 bit integer sample widths, floating point
audio (WavPack only), stereo or mono (support for up to 8 audio channels is planned), signed
or unsigned, big endian or little endian

● Support for split stereo (mono audio segment pairs stored separately) and split sample data
(such as 24 bit support in SoundFont© files where 16 bit and 8 bit sample width portions are
stored separately).

● Lossy/lossless hybrid mode (WavPack only) where a much smaller lossy CRAM file can be
stored with a separate correction file which when combined results in the original lossless data.
The combined sizes of the files are only slightly larger than the equivalent lossless CRAM file.
This allows for the creation of a smaller preview of a potentially large file.

4 File extensions
There are 3 file extensions used with CRAM.

1. .cram – Used for lossless CRAM files

2. .craml – Lossy CRAM file

3. .cramc – CRAM correction file

5 File identification
A CRAM file can be identified by the four EBML bytes 0x1A 0x45 0xDF 0xA3 at the beginning of the
file. At offset 5 will be found the DocType ID consisting of 2 bytes 0x42 0x82. At offset 8 will be
found the characters “CRAM”, “CRAML” or “CRAMC” for a lossless, lossy or correction CRAM file
respectively. Below is the corresponding magic for the Unix file utility.

1 “SoundFont” is a registered trademark of E-mu Systems, Inc.
2 GigaSampler is a registered trademark of Nemesys Music. Technology, Inc.

http://ebml.sourceforge.net/
http://ebml.sourceforge.net/
http://ebml.sourceforge.net/
http://libinstpatch.resonance.org/
http://libinstpatch.resonance.org/
http://libinstpatch.resonance.org/
http://www.wavpack.com/
http://www.wavpack.com/
http://www.wavpack.com/
http://flac.sourceforge.net/
http://flac.sourceforge.net/
http://flac.sourceforge.net/

EBML id:
0 belong 0x1a45dfa3
DocType id:
>5 beshort 0x4282
DocType contents:
>>8 string CRAM CRAM archive data
>>8 string CRAML CRAM lossy archive data
>>8 string CRAMC CRAM correction data

6 EBML format
The following is an overview of the EBML format, which is likely enough information to utilize the
CRAM format. More information can be found though, on the EBML website.

6.1 Variable length integers

One feature of EBML is variable length encoded integers. This is used for EBML chunk IDs and sizes.
Of note is that uint and int field values are not variable length encoded (the length of the integer can be
inferred from the chunk size, this was also broken in previous CRAM format versions). EBML stores
integer values in big endian byte order. The count of 0 bits in the first byte (starting from the most
significant bit) + 1 determines the number of bytes that the integer is composed of. The following table
illustrates this:

Size Range start (hex) Range end (hex) Effective range (decimal)

1 0x80 0xFE 0 to 2^7 - 2

2 0x4000 0x7FFE 0 to 2^14 - 2

3 0x200000 0x3FFFFE 0 to 2^21 - 2

4 0x10000000 0x1FFFFFFE 0 to 2^28 - 2

5 0x0800000000 0x0FFFFFFFFE 0 to 2^35 - 2

6 0x040000000000 0x07FFFFFFFFFE 0 to 2^42 - 2

7 0x02000000000000 0x03FFFFFFFFFFFE 0 to 2^49 - 2

8 0x0100000000000000 0x01FFFFFFFFFFFFFE 0 to 2^56 - 2

For example: A value of 64 decimal (0x40 hex) could be stored as a single byte 0xC0, as a 2 byte
integer 0x4040, as a 3 byte integer 0x200040, etc. A larger value such as 8192 decimal (0x2000 hex)
would require at least 2 bytes to encode (0x6000). In this way values up to 256 - 2 can be stored in a
space efficient manner (thats 72057594037927934 decimal).

6.2 EBML chunks

An EBML chunk can be illustrated by the following table:

Field Name Data Type Example

ID Variable length integer (1A)(45)(DF)(A3)

Size Variable length integer (C0)

http://ebml.sourceforge.net/
http://ebml.sourceforge.net/
http://ebml.sourceforge.net/

Data Arbitrary binary data of Size bytes 64 bytes follow

To summarize: An EBML chunk consists of an ID, Size and the actual data of the chunk. The ID and
Size are variable length integers and the data in the chunk is arbitrary, although a format using EBML
(such as CRAM) defines specific IDs for particular types of data.

Example description

In the above example the EBML ID is defined by 4 bytes (1A)(45)(DF)(A3), which is the EBML top
level document ID. Following the ID is the size field which is stored as a single byte (C0) byte which
has an effective value of 64 decimal. The payload of the chunk then follows at 64 bytes in size (in this
case the payload would consist of additional EBML chunks, since the ID corresponds with the toplevel
EBML document chunk).

6.3 Data types

There are a number of predefined data types for use in EBML files and there are some additional ones
that CRAM uses. The data types used by CRAM include:

Data Type Name Description

uint Integer from 1 to 8 bytes (not variable length encoded, since size can already be
inferred from chunk size).

int Like uint but the value is interpreted as a signed integer.

string Printable ASCII (0x20 to 0x7E)

UTF8 Unicode string

elements Embedded EBML elements

binary Block of binary data

MD5 16 byte (128 bit) MD5 sum

CRC32 4 byte integer CRC-32 signature

6.4 CRC32 checksums

CRC32 checksums can be optionally used for the CramInfo and FileInfo chunks. It is recommended
that they are present in order to catch corruption of information, although decoders should attempt to
continue even if the CRC fails. The compressed audio/binary data itself is protected by MD5
checksums. The file relocation tables use an Adler-32 checksum in the case of zlib (bzlib has its own
CRC32 built in).

6.5 Errata

Versions 0x81 through 0x83 of the CRAM format were broken. All integer field values were stored as
variable length encoded integers (what is used for the CRAM chunk IDs and sizes). This was not only
unnecessary (integer length can be inferred from chunk size) but also contrary to EBML spec. Since
CRAM was not yet widely (if at all) used, it was decided to break backwards compatibility and set
things right. Integer fields are now just stored as regular big endian values.

Older CRAM files can be detected by the falsely written EBMLVersion chunk (should be the first
chunk within the top EBML chunk). The value 0x81 (129 decimal) will be found, which corresponds
to a variable length encoded value of 1. The correct value is just a single byte containing 0x01.

7 CRAM format reference
● First column defines if field is required ('*' indicates requirement).
● (XX) defines a hex byte value
● (vN) indicates a specific CRAM format version requirement.
● Refer to Data Types for details on the data types in the following tables.
● “[]” is used to indicate one or more values (an array)
● '|' is used to illustrate the embedded tree structure of the EBML chunks
● This color indicates chunks which contain embedded chunks
● This color indicates the chunk is further defined in another table

7.1 CRAM file format

Field Name EBML ID Data Type Description

* EBML chunk (1A)(45)(DF)(A3) elements EBML document chunk.

* | DocType (42)(82) string “CRAM”, “CRAML”, or “CRAMC

* | DocTypeVersion (42)(87) uint CRAM format version = 1.

* | DocTypeReadVersion (42)(85) uint CRAM read version required = 1.

* CramInfo chunk (41)(80) elements Information for entire CRAM file

* | Software (61)(3C) string Software name and version

 | Flags (61)(31) uint See Flags

 | Comment (61)(45) UTF8 Comment with '\n' newline chars.

 | CRC-32 (BF) CRC32 Checksum of CramInfo data

* FileChunks[] (41)(81) elements One or more file chunks

* FileEnd (41)(8C) empty End of file chunk.

7.2 FileChunk

Field Name EBML ID Data Type Description

* FileChunk (41)(81) elements Defines a file in a CRAM archive.

* | FileInfo (41)(84) elements File information chunk

* | | FileSize (61)(53) uint Original file size.

* | | FileName (61)(57) UTF8 Relative path delimited by '/'s.

 | | FileDate (61)(5C) uint Unix 32 bit timestamp.

 | | Flags (61)(31) uint See Flags

 | | CRC-32 (BF) CRC32 Checksum of FileInfo data

* | F ileData (41)(95) elements Stores compressed audio and binary

Field Name EBML ID Data Type Description

 | | BinaryChunk (C2) binary Compressed binary chunk

 | | FlacChunk (D3) binary Compressed FLAC audio chunk

 | | WavPackChunk (D9) binary Compressed WavPack audio chunk

 | | VerbatimChunk (C7) binary Verbatim uncompressed data

 | | SetAudioEntry (C4) int See Grouping audio segments

* | RelocTable (41)(A5) elements Relocation table (compressed)

 | RelocTableChkSum (41)(A9) uint Adler32 RelocTable checksum (zlib
only)

 | FileMD5 (41)(AA) MD5 MD5 of original file

 | BinaryMD5 (41)(AC) MD5 MD5 sum of original binary data

7.3 Relocation table

Field Name EBML ID Data Type Description

* RelocTable (41)(A5) elements Relocation table (compressed)

 | BinaryChunk (C2) elements Binary data relocation entry

* | | RawSize (61)(63) uint Uncompressed size in bytes

 | FlacChunk (D3) elements FLAC audio relocation entry

* | | RawSize (61)(63) uint Uncompressed size in bytes

 | | Flags (61)(31) uint See Flags

 | | NextAudioEntry (C5) uint See Grouping audio segments

 | FlacSplitChunk (D7) elements FLAC split audio relocation entry

* | | RawSize (61)(63) uint Size of 1st split segment in bytes

 | | Flags (61)(31) uint See Flags

 | | NextAudioEntry (C5) uint See Grouping audio segments

 | | ChanCount (61)(65) uint Channel count (default = 2)

 | | SampleSplit (61)(69) uint Sample width split

 | | Offsets (61)(66) uint[] Offset of each audio chunk.

 | WavPackChunk (D9) elements WavPack audio relocation entry

* | | RawSize (61)(63) uint Uncompressed size in bytes

 | | Flags (61)(31) uint See Flags

 | | NextAudioEntry (C5) uint See Grouping audio segments

 | | SmoothLoop (61)(73) uint[2] LoopStart, LoopSize

 | WavPackSplitChunk (DD) elements WavPack split audio relocation entry

* | | RawSize (61)(63) uint Size of 1st split segment in bytes

Field Name EBML ID Data Type Description

 | | Flags (61)(31) uint See Flags

 | | NextAudioEntry (C5) uint See Grouping audio segments

 | | ChanCount (61)(65) uint Channel count (default = 2, stereo)

 | | SampleSplit (61)(69) uint Sample width split

 | | Offsets (61)(66) uint[] Offset of each audio chunk

 | | SmoothLoop (61)(73) uint[2] LoopStart, LoopSize

7.4 Chunks listed by EBML ID

Re-listing of all chunks, sorted by EBML ID.

Field Name EBML ID Data Type Description

* EBML chunk (1A)(45)(DF)(A3) elements EBML document chunk.

* CramInfo chunk (41)(80) elements Information for entire CRAM file

* FileChunk (41)(81) elements Defines a file in a CRAM archive.

* FileInfo (41)(84) elements File information chunk

* FileEnd (41)(8C) empty End of file chunk.

* F ileData (41)(95) elements Stores compressed audio and binary

* RelocTable (41)(A5) elements Relocation table (compressed)

RelocTableChkSum (41)(A9) uint RelocTable checksum (zlib only)

FileMD5 (41)(AA) MD5 MD5 of original file

BinaryMD5 (41)(AC) MD5 MD5 sum of original binary data

* DocType (42)(82) string “CRAM”, “CRAML”, or “CRAMC”

* DocTypeReadVersion (42)(85) uint CRAM read version required

* DocTypeVersion (42)(87) uint CRAM format version

Flags (61)(31) uint See Flags

* Software (61)(3C) string Software name and version

Comment (61)(45) UTF8 Comment with '\n' newline chars.

* FileSize (61)(53) uint Original file size.

* FileName (61)(57) UTF8 Relative path delimited by '/'s.

FileDate (61)(5C) uint Unix 32 bit timestamp.

* RawSize (61)(63) uint Uncompressed size in bytes

ChanCount (61)(65) uint Channel count (default = 2, stereo)

Offsets (61)(66) uint[] Offset of each split segment

SampleSplit (61)(69) uint Sample width split

Field Name EBML ID Data Type Description

SmoothLoop (61)(73) uint[2] LoopStart, LoopSize

CRC-32 (BF) CRC32 A CRC-32 checksum of chunk data

BinaryChunk (C2) bin/elements Binary data or relocation entry

SetAudioEntry (C4) uint Offset current audio relocation entry

NextAudioEntry (C5) int Offset to next relocation entry

VerbatimChunk (C7) bin/elements Verbatim data or relocation entry

FlacChunk (D3) bin/elements FLAC data or relocation entry

FlacSplitChunk (D7) bin/elements FLAC split relocation entry

WavPackChunk (D9) bin/elements WavPack data or relocation entry

WavPackSplitChunk (DD) bin/elements WavPack split relocation entry

8 Cram format description
A CRAM file consists of an EBML chunk, optional EBMLInfo chunk, one or more FileChunks and a
FileEnd terminator chunk.

8.1 CRAM format version history

The CRAM format version is updated whenever any changes occur to the defined format. If any new
features are used in a CRAM file that would cause the parser to break or make it impossible for
previous decoder versions to reconstruct the compressed files the appropriate format version required
should be written. Note that the lowest compatible read version should be used in all cases, so only the
use of new features should warrant an increment in the stored read version.

NOTE: Versions v0x81 through v0x83 are considered pre-formats. They were broken in regards to
storing integer fields (including the DocTypeVersion itself, which is indicated by the 0x81, 0x82 and
0x83). For this reason, and the fact that backwards compatibility was broken, the version was restarted
at version 1. This shouldn't be much of an issue though, since CRAM was not yet in wide use.

● v1 – 2007-04-29

○ Backwards compatibility completely broken

○ Integer fields are now stored non UTF encoded (wasn't necessary to begin with)

○ Added AudioEntryOfs and NextEntryOfs to allow multiple audio segments to be encoded
together

○ Added WavPack support, including hybrid lossy/lossless mode

○ Added bzip2 support

○ Added Verbatim data chunk

○ Split chunk types no longer used in FileData chunk

○ Removed AudioMD5 and added FileMD5 (MD5 on entire original file). MD5 now requires
a separate pass (needed anyways due to sample grouping).

● v0x83 – 2006-07-31

○ sampleSplit chunk type added to support 24 bit SoundFont files

● v0x82 - 2005-03-20 - completely backwards compatible with v1

○ Added Software and Comment fields to CRAM header

○ Future defined chunks should also be expected at the fileChunk level (backwards
compatibility with format v1 will be broken if a new chunk is added at this level)

● v0x81 - First version

8.2 EBML chunk

The EBML chunk defines the file as an EBML file with one of 3 document types: “CRAM”,
“CRAML” or “CRAMC” for a lossless, lossy and correction CRAM file types respectively. In
addition this chunk defines the CRAM format version of the encoder used to write the file and the
required format version to read the file. All fields in the EBML chunk should be in the same order
indicated and the EBML chunk size value should always be 1 byte in length. This is to aid in
identifying CRAM files. The EBMLVersion and EBMLReadVersion chunks which are part of the
EBML standard both default to a value of 1. This is unlikely to change for the CRAM format, so they
have been omitted from the standard. If for some reason a newer version of EBML is used (highly
unlikely), it would be part of a new CRAM version (covered by DocTypeReadVersion).

8.3 CramInfo chunk

Required chunk containing data which applies to the entire CRAM archive. Currently includes 3
fields: Software, Flags, and Comment. The Software field is required and is a UTF-8 string which
describes the software used to write the CRAM file (example: “libInstPatch 1.0.0”),. it should not
exceed 64 bytes. The comment field is an optional UTF-8 encoded string with '\n' line terminators.
Size of Comment string should be limited to a max of 4096 bytes. When displaying this field, a
newline should be added if necessary to the end.

Example comment

Downloaded from Resonance Instrument Database\n

http://sounds.resonance.org

The Flags field is optional and defines the global flags value for the CRAM archive. An optional CRC-
32 field may be present and defines the CRC-32 checksum value for all other data (besides the CRC
chunk and value itself) in the CramInfo chunk. CRAM parsers should issue a warning if this CRC
fails, but should attempt to continue.

8.4 Flags

The flags field is used throughout the CRAM format. Not all flags are valid at every level of the
format though. Note that the binary compressor type is actually a 2 bit field defining up to 4 different
binary compressor types (only 2 used currently). The given flag may be used at all levels where
“Flags” is defined unless otherwise noted. A Flags chunk at a more embedded level overrides that of a
higher level.

http://sounds.resonance.org/

Flag Name Value Description

Binary compressor 0x03 mask (2 bit enum) Binary compressor used
0 = zlib, 1 = bzlib (v4), 2/3 = reserved
Only valid in EBML and fileChunk levels, this
field is ignored at other levels.

Big endian audio 0x04 If set to 1, indicates that audio is big endian.

Unsigned audio 0x08 If set to 1, indicates that audio is unsigned.

8.5 FileChunk

The FileChunk defines a single file in a CRAM archive. It contains, in order, the FileInfo, FileData,
RelocTable, RelocTableChkSum, FileMD5 and BinaryMD5 chunks.

The FileInfo chunk contains, in order, the required FileSize and FileName chunks and optional
FileDate, Flags and CRC-32 checksum. The FileSize field stores the original file size. FileName
contains a UTF-8 encoded file name which can include a relative '/' delimited path for storing paths in
the archive. Parsers should issue a warning if the CRC-32 of the FileInfo fails, but continue anyways.

The FileData chunk contains zero or more compressed binary, uncompressed binary and audio chunks.
Types of binary chunks include: BinaryChunk and VerbatimChunk. The former is for compressing
blocks of binary data (with bzlib or zlib) and the latter is for just storing raw data as is (used for
example, if it is already compressed).

The types of audio chunks include: FlacChunk and WavPackChunk.

The FileMD5 chunk stores the 16 byte MD5 sum of the original file (binary and audio). The
BinaryMD5 is the MD5 sum of the original uncompressed binary data concatenated together. This
allows for data integrity checks of only the binary data in the event that the audio data will be streamed
(removes the need to reconstruct the whole file) or in the case of a CRAML file where the audio data is
lossy.

8.6 Grouping audio segments

Two new chunk types, SetAudioEntry and NextAudioEntry, were added to allow for multiple audio
segments of the same format to be compressed as if they were a single segment (in one compressed
audio chunk). This was done in the interest of minimizing protocol overhead.

The SetAudioEntry chunk can be used before a compressed audio chunk in FileData to indicate that
the corresponding relocation entry is at a given offset from the next audio entry. Normally the next
audio related relocation entry would be used to locate the position where the data belongs in the file,
but if for a example a SetAudioEntry is found and has a value of 2, then 2 audio relocation entries
would be skipped when selecting the matching relocation entry. This value is signed, so that negative
offsets can be specified.

The NextAudioEntry chunk can be used within audio relocation entries in the relocation table. It
indicates an offset to the next audio relocation entry in the chain of grouped audio segments. The
offset value is unsigned and in reference to the next audio entry.

Note that both offset values are for audio entries only and binary entries are not counted (BinaryChunk
and VerbatimChunk).

8.7 Relocation table

The relocation table defines all the segments of audio and binary information so that they can be
reconstructed into the original file. The entire RelocTable chunk is compressed using the selected
binary compressor (zlib or bzlib). In other words, the RelocTable chunk itself is a block of binary data,
the contents of which are the compressed EBML chunks of the relocation table.

The relocation table consists of one or more sub chunks from the list: BinaryChunk, FlacChunk,
FlacSplitChunk, WavPackChunk, WavPackSplitChunk and NextAudioEntry which are described
below.

8.7.1 BinaryChunk

Indicates a binary segment in the original file and contains only a RawSize field which stores the size
of the uncompressed binary data.

8.7.2 FlacChunk and WavPackChunk

Indicates an audio segment in the original file. It contains a RawSize field which stores the original
size in bytes of the audio and an optional Flags field which can be used to indicate a different little/big
endian or signed/unsigned options. The Flags field is only specified here if the endian and/or sign of
the audio format changes within the same file, which is unlikely. These flags can also be set at the
FileChunk level, defining the defaults for the entire file or CRAMInfo chunk level for the entire
CRAM archive.

8.7.3 FlacSplitChunk and WavPackSplitChunk

Indicates an audio segment in the original file which is split by channel and/or bit width. Channel split
audio is when the individual channels are stored separately in the original file, such as 2 mono audio
segments being combined to make stereo. Bit width split audio is when the samples themselves are
stored as separate blocks. For example: SoundFont 24 bit support stores the 16 most significant bits
and the least 8 significant bit portions of each individual sample value in separate areas of the file (thus
keeping backwards compatibility with 16 bit SoundFont readers).

These chunks contain the RawSize and Flags field and 3 other fields (all optional): ChanCount,
SampleSplit and Offsets.

The RawSize field specifies the size in bytes of the first split chunk. For example, if its split stereo
then its the size of one channel in bytes. If its sample width split audio (and possibly also channel split)
then its the number of bytes of the first split segment.

The ChanCount field indicates the channel count for the audio and defaults to the value 2 (Stereo)
which is convenient for channel split stereo audio. The value 1 may be specified for bit width split
mono audio.

The SampleSplit chunk indicates that the individual sample values themselves are split into separate
blocks. This chunk contains an integer divided into 3 bit fields (total of 5 bits used) as indicated by the
following diagram:

4 3 2 1 0

After Most Significant Least Significant

The Most Significant (MS) and Least Significant (LS) fields define the byte width of the individual
sample components. In the SoundFont 24 bit example above, this would be the value 2 for MS (16 bit)
and 1 for LS (8 bit). The After bit defines if the MS audio chunk comes before (After=0) or after
(After=1) the LS audio chunk. Currently only a value of 1 or 2 is valid in the MS and LS fields where
the sum is 2 or 3 (for 16 bit or 24 bit split audio respectively).

The Offsets chunk provides the offsets for the chunks of split audio data. In the case of channel only
split audio (no SampleSplit chunk) the offsets are relative to the end of the previous chunk and
Offsets[] contains ChanCount - 1 values (the first chunk is located at offset 0). In the case of audio
which is split by bit width (and possibly also by channel) the offsets are stored relative to the end of the
first chunk (to provide the needed flexibility in chunk positioning) and Offsets[] contains ChanCount *
2 - 1 values (Chan0:Split1, Chan1:Split0, Chan1:Split1, etc).

Note: If only 1 offset value is expected it can be omitted if its value is 0.

The SmoothLoop chunk is used only for lossy WavPack audio chunks and is optional. It defines
a loop which can be used during decode to attempt to correct loop artifacts created by the lossy
compression (by cross fading or other methods). Currently the reference libInstPatch decoder does not
yet use this, although it stores it.

8.8 CRAM hybrid lossless

This feature uses the hybrid encoding mode of WavPack to encode a much smaller lossy CRAM file
with a separate correction file which when combined results in the original lossless data. The combined
sizes of the files are only slightly larger than the equivalent lossless CRAM file. This provides a nice
way for users to preview a potentially large instrument file and then download the rest without
incurring much extra overhead.

The only difference between a .cram lossless and .craml lossy file (besides the obvious audio
differences) is the DocType field in the EBML chunk, which is either “CRAM” or “CRAML”
respectively and the optional presence of SmoothLoop chunks in the relocation table for the .craml
case.

8.8.1 CRAM correction file

The .cramc correction file on the other hand is lacking many chunks of a regular CRAM file and the
DocType is set to “CRAMC”. The other fields of the EBML chunk behave the same as a regular
CRAM file except for the Flags field, which currently shouldn't be written (although decoders should
ignore it if it exists).

There should be the same number of FileChunks present as in the matching .craml file. Each
FileChunk should contain a FileData sub chunk with the same count and type of WavPackChunks
and/or WavPackSplitChunks containing the WavPack correction data (note that there might not be any
sub chunks if the file contains no audio). The last FileChunk should be followed by a FileEnd chunk,
as usual.

The FileInfo chunk should be present and contain the FileName and FileSize chunks and are used as an
extra check when matching a .craml to a .cramc file (although the decoder may optionally ignore the
situation and attempt to proceed anyways if the FileName and/or FileSize fields don't match between
them). These fields can also be used to display what files a correction file is intended for.

All other fields should not be present in the correction file, including: RelocTable, RelocTableChksum,

FileMD5 and BinaryMD5 as these are taken from the associated .craml file.

9 Implementation notes

9.1 EBML chunk handling

If an unrecognized chunk ID is found while decoding a CRAM file, it should be ignored. This allows
for backwards compatible additions which don't affect the decoded output. Chunks should be written
in the order defined.

9.2 Binary compression

bzlib or zlib are used for compressing binary for CRAM compressed files. The same compressor
instance is used for all binary data within a single file (FileData chunk) in a CRAM archive. Separate
compressor instances are used for the relocation table and other files in the archive (the compressor
context is flushed between uses). This allows for the binary data in separate files and relocation
table(s) to be accessed independently and yet maximize compression for all the binary data for a single
file. The relocation table entries are in order of position of the original uncompressed file, but the
compressed data chunks (in FileData chunk) are not necessarily in the same order. All binary chunks
and all audio chunks will be separately in order of position, but binary chunks are only written out
when needed (compression buffer is full).

9.3 Audio compression

CRAM utilizes WavPack (default) or FLAC for audio compression. Multiple audio segments can be
encoded in the same FLAC or WavPack block (as if they were several audio segments concatenated
together). This allows the minimization of encoder overhead and could in some cases be more efficient
than encoding many small individual segments separately. In addition, the NextEntryOfs relocation
chunk can now be used to indicate that the next audio segment in a chain is not the next audio
relocation entry, allowing for all sample data of a particular format in a file to be encoded in the same
compressed audio chunk.

9.4 FLAC compression

The compressed FLAC data chunks are written without a FLAC header or STREAMINFO chunk.
Only the raw FLAC encoded frames are written. Currently each individual audio segment must use a
fixed FLAC block size. This block size may be changed between segments though. Variable block
size encoding may be supported in future CRAM revisions, but probably not. Note also that
parameters in the FLAC frame header which reference a STREAMINFO chunk may not be used.

9.5 CRAM lossy files

The file MD5 of the original data is also stored in lossy .craml files, but the decoder will ignore it if
just decoding the lossy file stand alone (although the binary MD5 can, and should, be used in that case
to verify the binary portions of the file). It will be used if the .cramc is present to verify the resulting
original lossless data.

	1Revision history
	2About
	3Features
	4File extensions
	5File identification
	6EBML format
	6.1Variable length integers
	6.2EBML chunks
	6.3Data types
	6.4CRC32 checksums
	6.5Errata

	7CRAM format reference
	7.1CRAM file format
	7.2FileChunk
	7.3Relocation table
	7.4Chunks listed by EBML ID

	8Cram format description
	8.1CRAM format version history
	8.2EBML chunk
	8.3CramInfo chunk
	8.4Flags
	8.5FileChunk
	8.6Grouping audio segments
	8.7Relocation table
	8.7.1BinaryChunk
	8.7.2FlacChunk and WavPackChunk
	8.7.3FlacSplitChunk and WavPackSplitChunk

	8.8CRAM hybrid lossless
	8.8.1CRAM correction file

	9Implementation notes
	9.1EBML chunk handling
	9.2Binary compression
	9.3Audio compression
	9.4FLAC compression
	9.5CRAM lossy files

