
Package ‘vecmatch’
March 28, 2025

Title Generalized Propensity Score Estimation and Matching for
Multiple Groups

Version 1.0.3

Description Implements the Vector Matching algorithm to match multiple
treatment groups based on previously estimated generalized propensity
scores. The package includes tools for visualizing initial confounder
imbalances, estimating treatment assignment probabilities using various
methods, defining the common support region, performing matching across
multiple groups, and evaluating matching quality. For more details, see
Lopez and Gutman (2017) <doi:10.1214/17-STS612>.

License GPL (>= 3)

URL https://github.com/Polymerase3/vecmatch

BugReports https://github.com/Polymerase3/vecmatch/issues

Depends R (>= 3.5)

Imports brglm2, chk, cli, ggplot2, ggpp, ggpubr, grDevices, MASS,
Matching, mclogit, nnet, optmatch, productplots, rlang,
rstatix, stats, utils, VGAM, withr

Suggests rmarkdown, spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Language en-US

NeedsCompilation no

Author Mateusz Kolek [aut, cre, cph] (<https://orcid.org/0000-0001-6470-4830>)

Maintainer Mateusz Kolek <mati.kolek13@gmail.com>

Repository CRAN

Date/Publication 2025-03-28 11:40:03 UTC

1

https://doi.org/10.1214/17-STS612
https://github.com/Polymerase3/vecmatch
https://github.com/Polymerase3/vecmatch/issues
https://orcid.org/0000-0001-6470-4830

2 balqual

Contents
balqual . 2
cancer . 4
csregion . 5
estimate_gps . 6
match_gps . 9
mosaic . 12
raincloud . 15
vecmatch . 18

Index 19

balqual Evaluate Matching Quality

Description

The balqual() function evaluates the balance quality of a dataset after matching, comparing it
to the original unbalanced dataset. It computes various summary statistics and provides an easy
interpretation using user-specified cutoff values.

Usage

balqual(
matched_data = NULL,
formula = NULL,
type = c("smd", "r", "var_ratio"),
statistic = c("mean", "max"),
cutoffs = NULL,
round = 3

)

Arguments

matched_data An object of class matched, generated by the match_gps() function. This ob-
ject is essential for the balqual() function as it contains the final data.frame
and attributes required to compute the quality coefficients.

formula A valid R formula used to compute generalized propensity scores during the first
step of the vector matching algorithm in estimate_gps(). This formula must
match the one used in estimate_gps().

type A character vector specifying the quality metrics to calculate. Can maximally
contain 3 values in a vector created by the c(). Possible values include:

• smd - Calculates standardized mean differences (SMD) between groups,
defined as the difference in means divided by the standard deviation of the
treatment group (Rubin, 2001).

balqual 3

• r - Computes Pearson’s r coefficient using the Z statistic from the U-Mann-
Whitney test.

• var_ratio - Measures the dispersion differences between groups, calcu-
lated as the ratio of the larger variance to the smaller one.

statistic A character vector specifying the type of statistics used to summarize the qual-
ity metrics. Since quality metrics are calculated for all pairwise comparisons
between treatment levels, they need to be aggregated for the entire dataset.

• max: Returns the maximum values of the statistics defined in the type ar-
gument (as suggested by Lopez and Gutman, 2017).

• mean: Returns the corresponding averages.

To compute both, provide both names using the c() function.

cutoffs A numeric vector with the same length as the number of coefficients specified
in the type argument. Defines the cutoffs for each corresponding metric, below
which the dataset is considered balanced. If NULL, the default cutoffs are used:
0.1 for smd and r, and 2 for var_ratio.

round An integer specifying the number of decimal places to round the output to.

Value

If assigned to a name, returns a list of summary statistics of class quality containing:

• quality_mean - A data frame with the mean values of the statistics specified in the type
argument for all balancing variables used in formula.

• quality_max - A data frame with the maximal values of the statistics specified in the type
argument for all balancing variables used in formula.

• perc_matched - A single numeric value indicating the percentage of observations in the orig-
inal dataset that were matched.

• statistic - A single string defining which statistic will be displayed in the console.

• summary_head - A summary of the matching process. If max is included in the statistic,
it contains the maximal observed values for each variable; otherwise, it includes the mean
values.

• n_before - The number of observations in the dataset before matching.

• n_after - The number of observations in the dataset after matching.

• count_table - A contingency table showing the distribution of the treatment variable before
and after matching.

The balqual() function also prints a well-formatted table with the defined summary statistics for
each variable in the formula to the console.

References

Rubin, D.B. Using Propensity Scores to Help Design Observational Studies: Application to the
Tobacco Litigation. Health Services & Outcomes Research Methodology 2, 169–188 (2001).
https://doi.org/10.1023/A:1020363010465

Michael J. Lopez, Roee Gutman "Estimation of Causal Effects with Multiple Treatments: A Review
and New Ideas," Statistical Science, Statist. Sci. 32(3), 432-454, (August 2017)

4 cancer

See Also

match_gps() for matching the generalized propensity scores; estimate_gps() for the documen-
tation of the formula argument.

Examples

We try to balance the treatment variable in the cancer dataset based on age
and sex covariates
data(cancer)

Firstly, we define the formula
formula_cancer <- formula(status ~ age * sex)

Then we can estimate the generalized propensity scores
gps_cancer <- estimate_gps(formula_cancer,

cancer,
method = "multinom",
reference = "control",
verbose_output = TRUE

)

... and drop observations based on the common support region...
csr_cancer <- csregion(gps_cancer)

... to match the samples using `match_gps()`
matched_cancer <- match_gps(csr_cancer,

reference = "control",
caliper = 1,
kmeans_cluster = 5,
kmeans_args = list(n.iter = 100),
verbose_output = TRUE

)

At the end we can assess the quality of matching using `balqual()`
balqual(

matched_data = matched_cancer,
formula = formula_cancer,
type = "smd",
statistic = "max",
round = 3,
cutoffs = 0.2

)

cancer Patients with Colorectal Cancer and Adenoma metadata

csregion 5

Description

This is a synthetically generated dataset containing metadata for healthy individuals and patients
diagnosed with colorectal cancer or adenomas. The primary purpose of this dataset in the context
of matching is to balance the status groups across various covariates and achieve optimal matching
quality.

Usage

data(cancer)

Format

A data frame (cancer) with 1,224 rows and 5 columns:

status Patient’s health status, which can be one of the following: healthy, adenoma, crc_benign
(benign colorectal carcinoma), or crc_malignant (malignant colorectal carcinoma).

sex Patient’s biological sex, recorded as either M (male) or F (female).
age Patient’s age, represented as a continuous numeric variable.
bmi Patient’s Body Mass Index (BMI), represented as a continuous numeric variable.
smoker Smoking status of the patient, recorded as yes or no.

Source

Data generated artificially

csregion Filter the data based on common support region

Description

The csregion() function estimates the boundaries of the rectangular common support region, as
defined by Lopez and Gutman (2017), and filters the matrix of generalized propensity scores based
on these boundaries. The function returns a matrix of observations whose generalized propensity
scores lie within the treatment group-specific boundaries.

Usage

csregion(gps_matrix)

Arguments

gps_matrix An object of classes gps and data.frame (e.g., created by the estimate_gps()
function). The first column corresponds to the treatment or grouping variable,
while the other columns represent the treatment assignment probabilities calcu-
lated separately for each hypotetical treatment group. The number of columns
should therefore be equal to the number of unique levels of the treatment vari-
able plus one (for the treatment variable itself). The number of rows should
correspond to the number of subjects for which generalized propensity scores
were estimated.

6 estimate_gps

Value

A numeric matrix similar to the one returned by estimate_gps(), but with the number of rows
reduced to exclude those observations that do not fit within the common support region (CSR)
boundaries. The returned object also possesses additional attributes that summarize the calculation
process of the CSR boundaries:

• filter_matrix - A logical matrix with the same dimensions as the gps-part of gps_matrix,
indicating which treatment assignment probabilities fall within the CSR boundaries,

• filter_vector - A vector indicating whether each observation was kept (TRUE) or removed
(FALSE), essentially a row-wise sum of filter_matrix,

• csr_summary - A summary of the CSR calculation process, including details of the boundaries
and the number of observations filtered.

• csr_data - The original dataset used for the estimation of generalized propensity scores
(original_data attribute of the gps object) filtered by the filter_vector

Examples

We could estimate simples generalized propensity scores for the `iris`
dataset
gps <- estimate_gps(Species ~ Sepal.Length, data = iris)

And then define the common support region boundaries using `csregion()`
gps_csr <- csregion(gps)

The additional information of the CSR-calculation process are
accessible through the attributes described in the `*Value*` section
attr(gps_csr, "filter_matrix")
attr(gps_csr, "csr_summary")
attr(gps_csr, "csr_data")

estimate_gps Calculate treatment allocation probabilities

Description

estimate_gps() computes generalized propensity scores for treatment groups by applying a user-
defined formula and method. It returns a matrix of GPS probabilities for each subject and treatment
group

Usage

estimate_gps(
formula,
data = NULL,
method = "multinom",
link = NULL,

estimate_gps 7

reference = NULL,
by = NULL,
subset = NULL,
ordinal_treat = NULL,
fit_object = FALSE,
verbose_output = FALSE,
...

)

Arguments

formula a valid R formula, which describes the model used to calculating the probabil-
ities of receiving a treatment. The variable to be balanced is on the left side,
while the covariates used to predict the treatment variable are on the right side.
To define the interactions between covariates, use *. For more details, refer to
stats::formula().

data a data frame with columns specified in the formula argument.
method a single string describing the model used for the calculation of generalized

propensity scores. The default value is set to multinom. For available meth-
ods refer to the Details section below.

link a single string; determines an alternative model for a method used for estimation.
For available links, see Details.

reference a single string describing one class from the treatment variable, referred to as
the baseline category in the calculation of generalized propensity scores.

by a single string with the name of a column, contained in the data argument. The
dataset will be divided by the groups created by the grouping by variable and
the calculation of the propensity scores will be carried out separately for each
group. The results will then be merged and presented to the user as a single GPS
matrix.

subset a logical atomic vector of length equal to the number of rows in the data argu-
ments. Allows to filter out observations from the further analysis, for which the
value of the vector is equal to FALSE.

ordinal_treat an atomic vector of the length equal to the length of unique levels of the treat-
ment variable. Confirms, that the treatment variable is an ordinal variable and
adjusts its levels, to the order of levels specified in the argument. Is a call to the
function factor(treat, levels = ordinal_treat, ordered = TRUE.

fit_object a logical flag. If TRUE, the the fitted object is returned instead of the GPS matrix.
verbose_output a logical flag. If TRUE a more verbose version of the function is run and the

output is printed out to the console.
... additional arguments, that can be passed to the fitting function and are not con-

trolled by the above arguments. For more details and examples refer to the
Details section and documentations of corresponding functions.

Details

The main goal of the estimate_gps() function is to calculate the generalized propensity scores
aka. treatment allocation probabilities. It is the first step in the workflow of the vector matching

8 estimate_gps

algorithm and is essential for the further analysis. The returned matrix of class gps can then be
passed to the csregion() function to calculate the rectangular common support region boundaries
and drop samples not eligible for the further analysis. The list of available methods operated by the
estimate_gps() is provided below with a short description and function used for the calculations:

• multinom - multinomial logistic regression model nnet::multinom()

• vglm - vector generalized linear model for multinomial data VGAM::vglm(),

• brglm2 - bias reduction model for multinomial responses using the Poisson trick brglm2::brmultinom(),

• mblogit - baseline-category logit models mclogit::mblogit().

• polr - ordered logistic or probit regression only for ordered factor variables from MASS::polr().
The method argument of the underlying MASS::polr() package function can be controlled
with the link argument. Available options: link = c("logistic", "probit", "loglog",
"cloglog", "cauchit")

Value

A numeric matrix of class gps with the number of columns equal to the number of unique treat-
ment variable levels plus one (for the treatment variable itself) and the number of row equal to the
number of subjects in the initial dataset. The original dataset used for estimation can be accessed as
original_data attribute.

See Also

csregion() for the calculation of common support region, match_gps() for the matching of gen-
eralized propensity scores

Examples

library("brglm2")

Conducting covariate balancing on the `airquality` dataset. Our goal was to
compare ozone levels by month, but we discovered that ozone levels are
strongly correlated with wind intensity (measured in mph), and the average
wind intensity varies across months. Therefore, we need to balance the
months by wind values to ensure a valid comparison of ozone levels.

Initial imbalance of means
tapply(airquality$Wind, airquality$Month, mean)

Formula definition
formula_air <- formula(Month ~ Wind)

Estimating the generalized propensity scores using brglm2 method using
maximum penalized likelihood estimators with powers of the Jeffreys
gp_scores <- estimate_gps(formula_air,

data = airquality, method = "brglm2",
reference = "5", verbose_output = TRUE,
control = brglmControl(type = "MPL_Jeffreys")

)

match_gps 9

Filtering the observations outside the csr region
gps_csr <- csregion(gp_scores)

Calculating imbalance after csr
filter_which <- attr(gps_csr, "filter_vector")
filtered_air <- airquality[filter_which,]

tapply(filtered_air$Wind, filtered_air$Month, mean)

We can also investigate the imbalance using the raincloud function
raincloud(filtered_air,

y = Wind,
group = Month,
significance = "t_test"

)

match_gps Match the data based on generalized propensity score

Description

The match_gps() function performs sample matching based on generalized propensity scores
(GPS). It utilizes the k-means clustering algorithm to partition the data into clusters and subse-
quently matches all treatment groups within these clusters. This approach ensures efficient and
structured comparisons across treatment levels while accounting for the propensity score distribu-
tion.

Usage

match_gps(
csmatrix = NULL,
method = "nnm",
caliper = 0.2,
reference = NULL,
ratio = NULL,
replace = NULL,
order = NULL,
ties = NULL,
min_controls = NULL,
max_controls = NULL,
kmeans_args = NULL,
kmeans_cluster = 5,
verbose_output = FALSE,
...

)

10 match_gps

Arguments

csmatrix An object of class gps and/or csr representing a data frame of generalized
propensity scores. The first column must be the treatment variable, with ad-
ditional attributes describing the calculation of the common support region and
the estimation of generalized propensity scores. It is crucial that the common
support region was calculated using the csregion() function to ensure compat-
ibility.

method A single string specifying the matching method to use. The default is "nnm",
which applies the k-nearest neighbors matching algorithm. See the Details sec-
tion for a full list of available methods.

caliper A numeric value specifying the caliper width, which defines the allowable range
within which observations can be matched. It is expressed as a percentage of
the standard deviation of the logit-transformed generalized propensity scores.
To perform matching without a caliper, set this parameter to a very large value.
For exact matching, set caliper = 0 and enable the exact option by setting it
to TRUE.

reference A single string specifying the exact level of the treatment variable to be used as
the reference in the matching process. All other treatment levels will be matched
to this reference level. Ideally, this should be the control level. If no natural
control is present, avoid selecting a level with extremely low or high covariate
or propensity score values. Instead, choose a level with covariate or propensity
score distributions that are centrally positioned among all treatment groups to
maximize the number of matches.

ratio A scalar for the number of matches which should be found for each control
observation. The default is one-to-one matching. Only available for the methods
"nnm" and "pairopt".

replace Logical value indicating whether matching should be done with replacement. If
FALSE, the order of matches generally matters. Matches are found in the same
order as the data is sorted. Specifically, the matches for the first observation will
be found first, followed by those for the second observation, and so on. Match-
ing without replacement is generally not recommended as it tends to increase
bias. However, in cases where the dataset is large and there are many potential
matches, setting replace = FALSE often results in a substantial speedup with
negligible or no bias. Only available for the method "nnm"

order A string specifying the order in which logit-transformed GPS values are sorted
before matching. The available options are:

• "desc" – sorts GPS values from highest to lowest (default).
• "asc" – sorts GPS values from lowest to highest.
• "original" – preserves the original order of GPS values.
• "random" – randomly shuffles GPS values. To generate different random

orders, set a seed using set.seed().

ties A logical flag indicating how tied matches should be handled. Available only for
the "nnm" method, with a default value of FALSE (all tied matches are included
in the final dataset, but only unique observations are retained). For more details,
see the ties argument in Matching::Matchby().

match_gps 11

min_controls The minimum number of treatment observations that should be matched to each
control observation. Available only for the "fullopt" method. For more de-
tails, see the min.controls argument in optmatch::fullmatch().

max_controls The maximum number of treatment observations that can be matched to each
control observation. Available only for the "fullopt" method. For more de-
tails, see the max.controls argument in optmatch::fullmatch().

kmeans_args A list of arguments to pass to stats::kmeans. These arguments must be provided
inside a list() in the paired name = value format.

kmeans_cluster An integer specifying the number of clusters to pass to stats::kmeans.

verbose_output a logical flag. If TRUE a more verbose version of the function is run and the
output is printed out to the console.

... Additional arguments to be passed to the matching function.

Details

Propensity score matching can be performed using various matching algorithms. Lopez and Gut-
man (2017) do not explicitly specify the matching algorithm used, but it is assumed they applied the
commonly used k-nearest neighbors matching algorithm, implemented as method = "nnm". How-
ever, this algorithm can sometimes be challenging to use, especially when treatment and control
groups have unequal sizes. When replace = FALSE, the number of matches is strictly limited by
the smaller group, and even with replace = TRUE, the results may not always be satisfactory. To
address these limitations, we have implemented an additional matching algorithm to maximize the
number of matched observations within a dataset.

The available matching methods are:

• "nnm" – classic k-nearest neighbors matching, implemented using Matching::Matchby().
The tunable parameters in match_gps() are caliper, ratio, replace, order, and ties.
Additional arguments can be passed to Matching::Matchby() via the ... argument.

• "fullopt" – optimal full matching algorithm, implemented with optmatch::fullmatch().
This method calculates a discrepancy matrix to identify all possible matches, often optimiz-
ing the percentage of matched observations. The available tuning parameters are caliper,
min_controls, and max_controls.

• "pairmatch" – optimal 1:1 and 1:k matching algorithm, implemented using optmatch::pairmatch(),
which is actually a wrapper around optmatch::fullmatch(). Like "fullopt", this method
calculates a discrepancy matrix and finds matches that minimize its sum. The available tuning
parameters are caliper and ratio.

Value

A data.frame similar to the one provided as the data argument in the estimate_gps() function,
containing the same columns but only the observations for which a match was found. The returned
object includes two attributes, accessible with the attr() function:

• original_data: A data.frame with the original data returned by the csregion() or estimate_gps()
function, after the estimation of the csr and filtering out observations not within the csr.

• matching_filter: A logical vector indicating which rows from original_data were in-
cluded in the final matched dataset.

12 mosaic

References

Michael J. Lopez, Roee Gutman "Estimation of Causal Effects with Multiple Treatments: A Review
and New Ideas," Statistical Science, Statist. Sci. 32(3), 432-454, (August 2017)

See Also

estimate_gps() for the calculation of generalized propensity scores; MatchIt::matchit(), optmatch::fullmatch()
and optmatch::pairmatch() for the documentation of the matching functions; stats::kmeans()
for the documentation of the k-Means algorithm.

Examples

Defining the formula used for gps estimation
formula_cancer <- formula(status ~ age + sex)

Step 1.) Estimation of the generalized propensity scores
gp_scores <- estimate_gps(formula_cancer,

data = cancer,
method = "multinom",
reference = "control",
verbose_output = TRUE

)

Step 2.) Defining the common support region
gps_csr <- csregion(gp_scores)

Step 3.) Matching the gps
matched_cancer <- match_gps(gps_csr,

caliper = 0.25,
reference = "control",
method = "fullopt",
kmeans_cluster = 2,
kmeans_args = list(
iter.max = 200,
algorithm = "Forgy"

),
verbose_output = TRUE

)

mosaic Plot the distribution of categorical covariates

Description

The mosaic() function generates imbalance plots for contingency tables with up to three vari-
ables. Frequencies in the contingency table are represented as tiles (rectangles), with each tile’s
size proportional to the frequency of the corresponding group within the entire dataset. The x-axis
scale remains fixed across mosaic plots, enabling straightforward comparisons of imbalance across
treatment groups.

mosaic 13

Usage

mosaic(
data = NULL,
y = NULL,
group = NULL,
facet = NULL,
ncol = 1,
group_counts = FALSE,
group_counts_size = 4,
significance = FALSE,
plot_name = NULL,
overwrite = FALSE,
...

)

Arguments

data A non-empty data.frame containing at least one numeric column, as specified
by the y argument. This argument must be provided and does not have a default
value.

y A single string or unquoted symbol representing the name of a numeric column
in the data. In the vector matching workflow, it is typically a numeric covariate
that requires balancing.

group A single string or unquoted symbol representing the name of a factor or character
column in data. In raincloud() plots, the groups specified by group argument
will be distinguished by separate fill and color aesthetics. For clarity, it is
recommended to plot fewer than 10 groups, though there is no formal limit.

facet A single string or unquoted symbol representing the name of a variable in data
to facet by. This argument is used in a call to ggplot2::facet_wrap(), creating
separate distribution plots for each unique group in the facet variable.

ncol A single integer. The value should be less than or equal to the number of unique
categories in the facet variable. This argument is used only when facet is not
NULL, specifying the number of columns in the ggplot2::facet_wrap() call.
The distribution plots will be arranged into the number of columns defined by
ncol.

group_counts A logical flag. If TRUE, the sizes of the groups will be displayed inside the
rectangles in the plot created by the mosaic() function. If FALSE (default), the
group sizes will not be shown.

group_counts_size

A single numeric value that specifies the size of the group count labels in mil-
limeters (’mm’). This value is passed to the size argument of ggplot2::geom_text().

significance A logical flag; defaults to FALSE. When TRUE, a Chi-squared test of indepen-
dence is performed on the contingency table of y and group. Note that group
must be specified for the test to be calculated. If facet is provided, the signifi-
cance is assessed separately for each facet subgroup. Additionally, the function

14 mosaic

calculates standardized Pearson residuals (differences between observed and ex-
pected counts) and fills mosaic plot cells based on the level of partial significance
for each cell.

plot_name A string specifying a valid file name or path for the plot. If set to NULL, the
plot is displayed to the current graphical device but not saved locally. If a valid
name with .png or .pdf extension is provided, the plot is saved locally. Users
can also include a subdirectory in plot_name. Ensure the file path follows the
correct syntax for your operating system.

overwrite A logical flag (default FALSE) that is evaluated only if the save.name argument
is provided. If TRUE, the function checks whether a plot with the same name
already exists. If it does, the existing plot will be overwritten. If FALSE and a
plot with the same name exists, an error is thrown. If no such plot exists, the
plot is saved normally.

... Additional arguments to pass to rstatix::chisq_test when significance =
TRUE.

Value

A ggplot object representing the contingency table of y and group as a mosaic plot, optionally
grouped by facet if specified.

Examples

Example: Creating a Mosaic Plot of the Titanic Dataset
This plot visualizes survival rates by gender across different passenger
classes. By setting `significance = TRUE`, you can highlight statistically
significant differences within each rectangle of the mosaic plot.
library(ggplot2)

Load Titanic dataset and convert to data frame
titanic_df <- as.data.frame(Titanic)

Expand the dataset by repeating rows according to 'Freq'
titanic_long <- titanic_df[rep(

seq_len(nrow(titanic_df)),
titanic_df$Freq

),]

Remove the 'Freq' column as it is no longer needed
titanic_long$Freq <- NULL

Plot the data using mosaic() and modify the result using additional ggplot2
functions
p <- vecmatch::mosaic(
data = titanic_long,
y = Survived,
group = Sex,
facet = Class,
ncol = 2,
significance = TRUE

raincloud 15

)

p <- p +
theme_minimal()

p

raincloud Examine the imbalance of continuous covariates

Description

The raincloud() function allows to generate distribution plots for continuous data in an easy
and uncomplicated way. The function is based on the ggplot2 package, which must already be
preinstalled Raincloud plots consist of three main elements:

• Distribution plots, specifically violin plots with the mean values and standard deviations of
respective groups,

• Jittered point plots depicting the underlying distribution of the data in the rawest form,

• Boxplots, summarizing the most important statistics of the underlying distribution.

Usage

raincloud(
data = NULL,
y = NULL,
group = NULL,
facet = NULL,
ncol = 1,
significance = NULL,
sig_label_size = 2L,
sig_label_color = FALSE,
smd_type = "mean",
limits = NULL,
jitter = 0.1,
alpha = 0.4,
plot_name = NULL,
overwrite = FALSE,
...

)

Arguments

data A non-empty data.frame containing at least one numeric column, as specified
by the y argument. This argument must be provided and does not have a default
value.

16 raincloud

y A single string or unquoted symbol representing the name of a numeric column
in the data. In the vector matching workflow, it is typically a numeric covariate
that requires balancing.

group A single string or unquoted symbol representing the name of a factor or character
column in data. In raincloud() plots, the groups specified by group argument
will be distinguished by separate fill and color aesthetics. For clarity, it is
recommended to plot fewer than 10 groups, though there is no formal limit.

facet A single string or unquoted symbol representing the name of a variable in data
to facet by. This argument is used in a call to ggplot2::facet_wrap(), creating
separate distribution plots for each unique group in the facet variable.

ncol A single integer. The value should be less than or equal to the number of unique
categories in the facet variable. This argument is used only when facet is not
NULL, specifying the number of columns in the ggplot2::facet_wrap() call.
The distribution plots will be arranged into the number of columns defined by
ncol.

significance A single string specifying the method for calculating p-values in multiple com-
parisons between groups defined by the group argument. Significant compar-
isons are represented by bars connecting the compared groups on the left side
of the boxplots. Note that if there are many significant tests, the plot size may
adjust accordingly. For available methods refer to the Details section. If the
significance argument is not NULL, standardized mean differences (SMDs)
are also calculated and displayed on the right side of the jittered point plots.

sig_label_size An integer specifying the size of the significance and SMD (standardized mean
difference) labels displayed on the bars on the right side of the plot.

sig_label_color

Logical flag. If FALSE (default), significance and SMD bars and text are dis-
played in the default color (black). If TRUE, colors are applied dynamically
based on value: nonsignificant tests and SMD values below 0.10 are displayed
in green, while significant tests and SMD values of 0.10 or higher are displayed
in red.

smd_type A single string indicating the type of effect size to calculate and display on the
left side of the jittered point plots:

• mean - Cohen’s d is calculated,
• median - the Wilcoxon effect size (r) is calculated based on the Z statistic

extracted from the Wilcoxon test.

limits A numeric atomic vector of length two, specifying the y axis limits in the distri-
bution plots. The first element sets the minimum value, and the second sets the
maximum. This vector is passed to the ggplot2::xlim() function to adjust the
axis scale.

jitter A single numeric value between 0 and 1 that controls the amount of jitter applied
to points in the ggplot2::geom_jitter() plots. Higher values of the jitter
argument produce more jittered plot. It’s recommended to keep this value low,
as higher jitter can make the plot difficult to interpret.

alpha A single numeric value between 0 and 1 that controls the transparency of the
density plots, boxplots, and jittered point plots. Lower values result in higher

raincloud 17

transparency. It is recommended to keep this value relatively high to maintain
the interpretability of the plots when using the group argument, as excessive
transparency may cause overlap between groups, making it difficult to distin-
guish them visually.

plot_name A string specifying a valid file name or path for the plot. If set to NULL, the
plot is displayed to the current graphical device but not saved locally. If a valid
name with .png or .pdf extension is provided, the plot is saved locally. Users
can also include a subdirectory in plot_name. Ensure the file path follows the
correct syntax for your operating system.

overwrite A logical flag (default FALSE) that is evaluated only if the save.name argument
is provided. If TRUE, the function checks whether a plot with the same name
already exists. If it does, the existing plot will be overwritten. If FALSE and a
plot with the same name exists, an error is thrown. If no such plot exists, the
plot is saved normally.

... Additional arguments passed to the function for calculating p-values when the
significance argument is specified. For available functions associated with
different significance methods, please refer to the Details section and consult
the documentation for the relevant functions in the rstatix package.

Details

Available methods for the argument significance are:

• "t_test" - Performs a pairwise comparison using the two-sample t-test, with the default
Holm adjustment for multiple comparisons. This test assumes normally distributed data and
equal variances. The adjustment can be modified via the p.adjust.method argument. The
test is implemented via rstatix::pairwise_t_test()

• "dunn_test" - Executes Dunn’s test for pairwise comparisons following a Kruskal-Wallis
test. It is a non-parametric alternative to the t-test when assumptions of normality or homo-
geneity of variances are violated. Implemented via rstatix::dunn_test().

• "tukeyHSD_test" - Uses Tukey’s Honest Significant Difference (HSD) test for pairwise com-
parisons between group means. Suitable for comparing all pairs when the overall ANOVA
is significant. The method assumes equal variance between groups and is implemented via
rstatix::tukey_hsd().

• "games_howell_test" - A post-hoc test used after ANOVA, which does not assume equal
variances or equal sample sizes. It’s particularly robust for data that violate homogeneity of
variance assumptions. Implemented via rstatix::games_howell_test().

• "wilcoxon_test" - Performs the Wilcoxon rank-sum test (also known as the Mann-Whitney
U test) for non-parametric pairwise comparisons. Useful when data are not normally dis-
tributed. Implemented via rstatix::pairwise_wilcox_test().

Value

A ggplot object representing the distribution of the y variable across the levels of the group and
facet variables in data.

18 vecmatch

See Also

mosaic() which summarizes the distribution of discrete data

Examples

Example: Creating a raincloud plot for the ToothGrowth dataset.
This plot visualizes the distribution of the `len` variable by
`dose` (using different colors) and facets by `supp`. Group
differences by `dose` are calculated using a `t_test`, and standardized
mean differences (SMDs) are displayed through jittered points.
library(ggplot2)
library(ggpubr)

p <- raincloud(ToothGrowth, len, dose, supp,
significance = "t_test",
jitter = 0.15, alpha = 0.4

)

As `p` is a valid `ggplot` object, we can manipulate its
characteristics usingthe `ggplot2` or `ggpubr` packages
to create publication grade plot:
p <- p +

theme_classic2() +
theme(
axis.line.y = element_blank(),
axis.ticks.y = element_blank()

) +
guides(fill = guide_legend("Dose [mg]")) +
ylab("Length [cm]")

p

vecmatch vecmatch

Description

vecmatch

Index

∗ datasets
cancer, 4

balqual, 2
brglm2::brmultinom(), 8

cancer, 4
csregion, 5
csregion(), 8, 11

estimate_gps, 6
estimate_gps(), 2, 4, 11, 12

ggplot2::facet_wrap(), 13, 16
ggplot2::geom_jitter(), 16
ggplot2::geom_text(), 13
ggplot2::xlim(), 16

MASS::polr(), 8
match_gps, 9
match_gps(), 2, 4, 8
Matching::Matchby(), 10, 11
MatchIt::matchit(), 12
mclogit::mblogit(), 8
mosaic, 12
mosaic(), 18

nnet::multinom(), 8

optmatch::fullmatch(), 11, 12
optmatch::pairmatch(), 11, 12

raincloud, 15
rstatix::dunn_test(), 17
rstatix::games_howell_test(), 17
rstatix::pairwise_t_test(), 17
rstatix::pairwise_wilcox_test(), 17
rstatix::tukey_hsd(), 17

set.seed(), 10
stats::formula(), 7

stats::kmeans, 11
stats::kmeans(), 12

vecmatch, 18
VGAM::vglm(), 8

19

	balqual
	cancer
	csregion
	estimate_gps
	match_gps
	mosaic
	raincloud
	vecmatch
	Index

