Package 'SQMtools'

March 31, 2025

Title Analyze Results Generated by the 'SqueezeMeta' Pipeline

Version 1.7.0

Description 'SqueezeMeta' is a versatile pipeline for the automated analysis of metagenomics/metatranscriptomics data (<https://www.commonscriptomics.com/second/secon

//github.com/jtamames/SqueezeMeta>). This package provides functions loading 'SqueezeMeta' results into R, filtering them based on different criteria, and visualizing the results using basic plots. The 'SqueezeMeta' project (and any subsets of it generated by the different filtering functions) is parsed into a single object, whose different components (e.g. tables with the taxonomic or functional composition across samples, contig/gene abundance profiles) can be easily analyzed using other R packages such as 'vegan' or 'DESeq2'. The methods in this package are further described in Puente-Sánchez et al., (2020) <doi:10.1186/s12859-020-03703-2>.

Author Fernando Puente-Sánchez [aut, cre], Natalia García-García [aut]

Maintainer Fernando Puente-Sánchez <fernando.puente.sanchez@slu.se>

Depends R (>= 3.5.0)

LazyDataCompression xz

Imports zip, reshape2, ggplot2, pathview, data.table

Suggests vegan, DESeq2

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

BugReports https://github.com/jtamames/SqueezeMeta/issues

URL https://github.com/jtamames/SqueezeMeta

NeedsCompilation no

Repository CRAN

Date/Publication 2025-03-31 21:10:02 UTC

Contents

Contents

CheckMProkaryote	3
combineSQM	3
combineSQMlite	5
create_bin	6
exportBins	6
exportContigs	7
exportKrona	7
exportORFs	8
exportPathway	8
exportTable	10
find_redundant_contigs	11
Hadza	12
loadSQM	12
loadSQMlite	16
MGKOs	18
MGOGs	19
mostAbundant	20
mostVariable	21
plotBars	22
plotBins	23
plotFunctions	24
plotHeatmap	26
plotTaxonomy	27
RecA	29
remove_contigs_from_bin	29
rowMaxs	30
rowMins	30
seqvec2fasta	31
subsetBins	31
subsetContigs	33
subsetFun	34
subsetORFs	36
subsetRand	37
subsetSamples	38
subsetTax	39
summary.SQM	40
summary.SQMbunch	41
summary.SQMlite	41
USiCGs	42

CheckMProkaryote CheckM reference markers for Prokaryotes

Description

List of Universal Single Copy Genes for Bacteria and Archaea.

Usage

data(CheckMProkaryote)

Format

List containing vectors of PFAMs, each vector corresponding to a different set of collocated markers.

References

Parks, Imelfort, Skennerton, Hugenholtz & Tyson (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes *Genome Res.* **25**:1043-1055. (PubMed).

See Also

USiCGs, MGOGs and MGKOs for an alternative set of single copy genes, and for examples on how to generate copy numbers.

combineSQM

Combine several SQM objects

Description

Combine an arbitrary number of SQM objects into a single SQM object (if the input objects contain the same samples, i.e. they come from the same SqueezeMeta run) or a single SQMbunch object. For combining results from sqm_reads.pl or sqm_longreads.pl please check combineSQMlite. The parameters below (other than ...) will take only effect if the input objects contain the same samples. Otherwise the input objects will be taken as they are, with no recalculation of taxonomy, function or rescaling,

Usage

```
combineSQM(
    ...,
    tax_source = "orfs",
    trusted_functions_only = FALSE,
    ignore_unclassified_functions = FALSE,
    rescale_tpm = TRUE,
    rescale_copy_number = TRUE,
    recalculate_bin_stats = TRUE
)
```

Arguments

	an arbitrary number of SQM objects. Alternatively, a single list containing an arbitrary number of SQM objects.
tax_source	character. Features used for calculating aggregated abundances at the different taxonomic ranks. Either "orfs" or "contigs" (default "orfs"). If the objects being combined contain a subset of taxa or bins, this parameter can be set to TRUE.
trusted_functio	ons_only
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).
ignore_unclassi	fied_functions
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).
rescale_tpm	logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, per- function TPMs will be calculated by aggregating the TPMs of the ORFs an- notated with that function, and will thus keep the scaling present in the parent object (default TRUE).
rescale_copy_nu	Imber
	logical. If TRUE, copy numbers with be recalculated using the RecA/RadA cov- erages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object with the highest RecA/RadA coverages. By default it is set to TRUE, which means that the returned copy numbers will represent the average copy number per function <i>in the genomes of the selected bins or contigs</i> . If any SQM objects that are being combined contain a functional subset rather than a contig/bins subset, this parameter should be set to FALSE.
recalculate_bir	n_stats
	logical. If TRUE, bin stats and taxonomy are recalculated based on the contigs present in the subsetted object (default TRUE).

Value

A SQM or SQMbunch object

combineSQMlite

See Also

subsetFun, subsetTax, combineSQMlite

Examples

```
data(Hadza)
# Select Carbohydrate metabolism ORFs in Bacteroidota,
# and Amino acid metabolism ORFs in Proteobacteria
bact = subsetTax(Hadza, "phylum", "Bacteroidota")
bact.carb = subsetFun(bact, "Carbohydrate metabolism")
baci = subsetTax(Hadza, "phylum", "Bacillota")
baci.amins = subsetFun(baci, "Amino acid metabolism")
bact.carb_proteo.amins = combineSQM(bact.carb, baci.amins, rescale_copy_number=FALSE)
```

combineSQMlite Combine several SQM or SQMlite objects

Description

Combine an arbitrary number of SQM or SQMlite objects into a single SQMlite object. This function accepts objects originating from different projects (i.e. different SqueezeMeta runs).

Usage

```
combineSQMlite(...)
```

Arguments

• • •

an arbitrary number of SQM or SQMlite objects. Alternatively, a single list containing an arbitrary number of SQMlite objects.

Value

A SQMlite object

See Also

combineSQM

Examples

```
## Not run:
data(Hadza)
# Load data coming from a different run
other = loadSQMlite("/path/to/other/project/tables") # e.g. if the project was run using sqm_reads
# (We could also use loadSQM to load the data as long as the data comes from a SqueezeMeta run)
combined = combineSQMlite(Hadza, other)
# Now we can plot together the samples from Hadza and the second project
plotTaxonomy(combined, 'family')
```

End(Not run)

create_bin Create a bin from a vector of contigs

Description

Create a bin from a vector of contigs

Usage

```
create_bin(SQM, bin, contigs, delete_overlapping_bins = FALSE)
```

Arguments

SQM	A SQM object.		
bin	character. Name of the bin to be created.		
contigs	character. Vector with the names of the contigs that will be included in the new bin.		
delete_overlapping_bins			
	logical. If TRUE, bins that originally contained any of the provided contigs will be removed from the object. Default FALSE.		

Value

SQM object with the new binning information, including recalculated bin statistics if possible.

See Also

find_redundant_contigs, remove_contigs_from_bin

exportBins

Export the bins of a SQM object

Description

Export the bins of a SQM object

Usage

exportBins(SQM, output_dir = "")

Arguments

SQM	A SQM object.
output_dir	Existing output directory to which to write the bins.

exportContigs

Description

Export the contigs of a SQM object

Usage

```
exportContigs(SQM, output_name = "")
```

Arguments

SQM	A SQM object.
output_name	A connection, or a character string naming the file to print to. If "" (the default),
	sequences will be printed to the standard output connection.

exportKrona

Export the taxonomy of a SQM object into a Krona Chart

Description

Generate a krona chart containing the full taxonomy from a SQM object.

Usage

```
exportKrona(SQM, output_name = NA)
```

Arguments

SQM	A SQM, SQMbunch or SQMlite object.
output_name	character. Name of the output file containing the Krona charts in html format (default " <project_name>.krona.html").</project_name>

Details

Original code was kindly provided by Giuseppe D'Auria (dauria_giu@gva.es).

Value

No return value, but a krona chart is produced in the current working directory.

See Also

plotTaxonomy for plotting the most abundant taxa of a SQM object.

Examples

```
data(Hadza)
# Check that kronatools is present.
ecode = system('ktImportText', ignore.stdout = TRUE, ignore.stderr = TRUE)
# If so, run.
if(ecode==0) { exportKrona(Hadza, output_name = file.path(tempdir(), "krona.html")) }
```

exportORFs

Export the ORFs of a SQM object

Description

Export the ORFs of a SQM object

Usage

```
exportORFs(SQM, output_name = "")
```

Arguments

SQM	A SQM object.
output_name	A connection, or a character string naming the file to print to. If "" (the default), sequences will be printed to the standard output connection.

exportPathway	Export the	functions a	of a SOM	object into	KEGG pathway maps
		,	1		

Description

This function is a wrapper for the pathview package (Luo *et al.*, 2017. *Nucleic acids research*, 45:W501-W508). It will generate annotated KEGG pathway maps showing which reactions are present in the different samples. It will also generate legends with the color scales for each sample in separate png files.

Usage

```
exportPathway(
    SQM,
    pathway_id,
    count = "copy_number",
    samples = NULL,
    split_samples = FALSE,
    sample_colors = NULL,
    log_scale = FALSE,
```

exportPathway

```
fold_change_groups = NULL,
fold_change_colors = NULL,
max_scale_value = NULL,
color_bins = 10,
output_dir = ".",
output_suffix = "pathview"
```

Arguments

)

SQM	A SQM, SQMbunch or SQMlite object.			
pathway_id	character. The five-number KEGG pathway identifier. A list of all pathway identifiers can be found in https://www.genome.jp/kegg/pathway.html.			
count	character. Either "abund" for raw abundances, "percent" for percentages, "bases" for raw base counts, "tpm" for TPM normalized values or "copy_number" for copy numbers (default "copy_number"). Note that a given count type might not available in this object (e.g. TPM or copy number in SQMlite objects origi- nating from a SQM reads project).			
samples	character. An optional vector with the names of the samples to export. If absent, all samples will be exported (default NULL).			
split_samples	logical. Generate a different output file for each sample (default FALSE).			
sample_colors	character. An optional vector with the plotting colors for each sample (default NULL).			
log_scale	logical. Use a base 10 logarithmic transformation for the color scale. Will have no effect if fold_change_groups is provided (default FALSE).			
fold_change_gro	pups			
	list. An optional list containing two vectors of samples. If provided, the function will generate a single plot displaying the log2 fold-change between the average abundances of both groups of samples (log(second group / first group)) (default NULL).			
fold_change_col	ors			
	character. An optional vector with the plotting colors of both groups in the fold- change plot. Will be ignored if fold_change_group is not provided.			
<pre>max_scale_value</pre>				
	numeric. Maximum value to include in the color scale. By default it is the max- imum value in the selected samples (if plotting abundances in samples) or the maximum absolute log2 fold-change (if plotting fold changes) (default NULL).			
color_bins	numeric. Number of bins used to generate the gradient in the color scale (default 10).			
output_dir	character. Directory in which to write the output files (default ".").			
output_suffix	character. Suffix to be added to the output files (default "pathview").			

Value

No return value, but Pathview figures are produced in the current working directory.

See Also

plotFunctions for plotting the most functions taxa of a SQM object.

Examples

data(Hadza)

exportTable

Export results in tabular format

Description

This function is a wrapper for R's write.table function.

Usage

```
exportTable(table, output_name)
```

Arguments

table	vector, matrix or data.frame. The table to be written.	
output_name	Either a character string naming a file or a connection open for writing. 'indicates output to the console.	,

Examples

```
data(Hadza)
Hadza.iron = subsetFun(Hadza, "iron")
# Write the taxonomic distribution at the genus level of all the genes related to iron.
exportTable(Hadza.iron$taxa$genus$percent, file.path(tempdir(), "Hadza.ironGenes.genus.tsv"))
# Now write the distribution of the different iron-related COGs
# (Clusters of Orthologous Groups) across samples.
exportTable(Hadza.iron$functions$COG$tpm, file.path(tempdir(), "Hadza.ironGenes.COG.tsv"))
# Now write all the information contained in the ORF table.
exportTable(Hadza.iron$orfs$table, file.path(tempdir(), "Hadza.ironGenes.orftable.tsv"))
```

find_redundant_contigs

Find redundant contigs within a bin

Description

Find contigs with overlapping marker genes in a given bin, and suggest contigs to be removed in order to reduce contamination without affecting completeness. Note that this can give a quick idea of the contigs that are sources of contamination within a bin, but is not a replacement for proper bin refininement with other tools such as anvi\'o.

Usage

```
find_redundant_contigs(SQM, bin, minimum_overlap_for_removal = 1)
```

Arguments

SQM	A SQM object.	
bin	character. Name of the bin to be created.	
minimum_overla	_for_removal	
	numeric Fraction of marker genes in the conting	nred

numeric. Fraction of marker genes in the contigs present in another contig needed to suggest it for removal. If set to 1 (default), contigs will only suggested for removal if their markers fully overlap with those in another contig (and thus completeness will not change after removing them). Smaller values will result in more contigs being suggested for removal, which will further reduce contamination at the expense of some completeness.

Value

A character vector with the contigs deemed to be redundant. A heatmap showing how marker genes overlap over different contigs will also be produced.

See Also

create_bin, remove_contigs_from_bin

Examples

```
data(Hadza)
bin_name = "Hadza2merged.concoct.28.fa.contigs"
# Get redundant contigs that could be removed from our bin
candidates_for_removal = find_redundant_contigs(Hadza, bin_name)
# We can now remove them from the bin
Hadza.new.1 = remove_contigs_from_bin(Hadza, bin_name, candidates_for_removal)
# Or we can create a new bin out of them
# which will also remove them from the original bin
Hadza.new.2 = create_bin(Hadza, "new_bin_name", candidates_for_removal)
```

Hadza

Description

Subset of two bins (and the associated contigs and genes) generated by running SqueezeMeta on two gut metagenomic samples obtained from two hunter-gatherers of the Hadza ethnic group.

Usage

data(Hadza)

Format

A SQM object; see loadSQM.

Source

SRR1927149, SRR1929485.

References

Rampelli *et al.*, 2015. Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. *Curr. biol.* **25**:1682-93 (PubMed).

Examples

```
data(Hadza)
plotTaxonomy(Hadza, "genus", rescale=TRUE)
plotFunctions(Hadza, "COG")
```

loadSQM

Load a SqueezeMeta project into R

Description

This function takes the path to a project directory generated by SqueezeMeta (whose name is specified in the -p parameter of the SqueezeMeta.pl script) and parses the results into a SQM object. Alternatively, it can load the project data from a zip file produced by sqm2zip.py.

loadSQM

Usage

```
loadSQM(
   project_path,
   tax_mode = "prokfilter",
   trusted_functions_only = FALSE,
   single_copy_genes = "MGOGs",
   load_sequences = TRUE,
   engine = "data.table"
)
```

Arguments

project_path	character, a vector of project directories generated by SqueezeMeta, and/or zip
	files generated by sqm2zip.py.

tax_mode character, which taxonomic classification should be loaded? SqueezeMeta applies the identity thresholds described in Luo *et al.*, 2014. Use allfilter for applying the minimum identity threshold to all taxa, prokfilter for applying the threshold to Bacteria and Archaea, but not to Eukaryotes, and nofilter for applying no thresholds at all (default prokfilter).

trusted_functions_only

logical. If TRUE, only highly trusted functional annotations (best hit + best average) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE). Will only have an effect if project_path is not a zip file, and project_path/results/tables is not already present.

single_copy_genes

character, source of single copy genes for copy number normalization, either RecA (COG0468, RecA/RadA), MGOGs (COGs for 10 single copy and house-keeping genes, Salazar, G *et al.* 2019), MGKOs (KOs for 10 single copy and housekeeping genes, Salazar, G *et al.*, 2019) or USiCGs (KOs for 15 single copy genes, Carr *et al.*, 2013. Table S1). For MGOGs, MGKOs and USiCGs, the median coverage of a set of single copy genes will be used for normalization. Default MGOGs.

- load_sequences logical. If TRUE, contig and orf sequences will be loaded in the SQM object. Setting it to FALSE will reduce memory usage. Default TRUE.
- engine character. Engine used to load the ORFs and contigs tables. Either data.frame or data.table (significantly faster if your project is large). Default data.table.

Value

SQM object containing the parsed project. If more than one path is provided in project_path this function will return a SQMbunch object instead. The structure of this object is similar to that of a SQMlite object (see loadSQMlite) but with an extra entry named projects that contains one SQM object for input project. SQM and SQMbunch objects will otherwise behave similarly when used with the subset and plot functions from this package.

Prerequisites

Run SqueezeMeta! An example call for running it would be:

/path/to/SqueezeMeta/scripts/SqueezeMeta.pl
-m coassembly -f fastq_dir -s samples_file -p project_dir

The SQM object structure

The SQM object is a nested list which contains the following information:

lvl1	lvl2	lvl3	type	rows/names	columns	data
\$orfs	\$table		dataframe	orfs	misc. data	misc. data
	\$abund		numeric matrix	orfs	samples	abundances
	\$bases		numeric matrix	orfs	samples	abundances
	\$cov		numeric matrix	orfs	samples	coverages
	\$cpm		numeric matrix	orfs	samples	covs. / 10^6
	\$tpm		numeric matrix	orfs	samples	tpm
	\$seqs		character vector	orfs	(n/a)	sequences
	\$tax		character matrix	orfs	tax. ranks	taxonomy
	\$tax16S		character vector	orfs	(n/a)	16S rRNA t
	\$markers		list	orfs	(n/a)	CheckM1 m
\$contigs	\$table		dataframe	contigs	misc. data	misc. data
_	\$abund		numeric matrix	contigs	samples	abundances
	\$bases		numeric matrix	contigs	samples	abundances
	\$cov		numeric matrix	contigs	samples	coverages
	\$cpm		numeric matrix	contigs	samples	covs. / 10^6
	\$tpm		numeric matrix	contigs	samples	tpm
	\$seqs		character vector	contigs	(n/a)	sequences
	\$tax		character matrix	contigs	tax. ranks	taxonomies
	\$bins		character matrix	contigs	bin. methods	bins
\$bins	\$table		dataframe	bins	misc. data	misc. data
	\$length		numeric vector	bins	(n/a)	length
	\$abund		numeric matrix	bins	samples	abundances
	\$percent		numeric matrix	bins	samples	abundances
	\$bases		numeric matrix	bins	samples	abundances
	\$cov		numeric matrix	bins	samples	coverages
	\$cpm		numeric matrix	bins	samples	covs. / 10^6
	\$tax		character matrix	bins	tax. ranks	taxonomy
\$taxa	\$superkingdom	\$abund	numeric matrix	superkingdoms	samples	abundances
		\$percent	numeric matrix	superkingdoms	samples	percentages
	\$phylum	\$abund	numeric matrix	phyla	samples	abundances
		\$percent	numeric matrix	phyla	samples	percentages
	\$class	\$abund	numeric matrix	classes	samples	abundances
		\$percent	numeric matrix	classes	samples	percentages
	\$order	\$abund	numeric matrix	orders	samples	abundances
		\$percent	numeric matrix	orders	samples	percentages
	\$family	\$abund	numeric matrix	families	samples	abundances
		\$percent	numeric matrix	families	samples	percentages
	\$genus	\$abund	numeric matrix	genera	samples	abundances

		\$percent	numeric matrix	genera	samples	percentages
	\$species	\$abund	numeric matrix	species	samples	abundances
		\$percent	numeric matrix	species	samples	percentages
\$functions	\$KEGG	\$abund	numeric matrix	KEGG ids	samples	abundances
		\$bases	numeric matrix	KEGG ids	samples	abundances
		\$cov	numeric matrix	KEGG ids	samples	coverages
		\$cpm	numeric matrix	KEGG ids	samples	covs. / 10^6
		\$tpm	numeric matrix	KEGG ids	samples	tpm
		\$copy_number	numeric matrix	KEGG ids	samples	avg. copies
	\$COG	\$abund	numeric matrix	COG ids	samples	abundances
		\$bases	numeric matrix	COG ids	samples	abundances
		\$cov	numeric matrix	COG ids	samples	coverages
		\$cpm	numeric matrix	COG ids	samples	covs. / 10^6
		\$tpm	numeric matrix	COG ids	samples	tpm
		\$copy_number	numeric matrix	COG ids	samples	avg. copies
	\$PFAM	\$abund	numeric matrix	PFAM ids	samples	abundances
		\$bases	numeric matrix	PFAM ids	samples	abundances
		\$cov	numeric matrix	PFAM ids	samples	coverages
		\$cpm	numeric matrix	PFAM ids	samples	covs. / 10^6
		\$tpm	numeric matrix	PFAM ids	samples	tpm
		\$copy_number	numeric matrix	PFAM ids	samples	avg. copies
<pre>\$total_reads</pre>			numeric vector	samples	(n/a)	total reads
\$misc	<pre>\$project_name</pre>		character vector	(empty)	(n/a)	project name
	\$samples		character vector	(empty)	(n/a)	samples
	<pre>\$tax_names_long</pre>	\$superkingdom	character vector	short names	(n/a)	full names
		\$phylum	character vector	short names	(n/a)	full names
		\$class	character vector	short names	(n/a)	full names
		\$order	character vector	short names	(n/a)	full names
		\$family	character vector	short names	(n/a)	full names
		\$genus	character vector	short names	(n/a)	full names
		\$species	character vector	short names	(n/a)	full names
	<pre>\$tax_names_short</pre>		character vector	full names	(n/a)	short names
	\$KEGG_names		character vector	KEGG ids	(n/a)	KEGG name
	\$KEGG_paths		character vector	KEGG ids	(n/a)	KEGG hiara
	\$COG_names		character vector	COG ids	(n/a)	COG names
	\$COG_paths		character vector	COG ids	(n/a)	COG hierard
	<pre>\$ext_annot_sources</pre>		character vector	COG ids	(n/a)	external data

If external databases for functional classification were provided to SqueezeMeta via the -extdb argument, the corresponding abundance (reads and bases), coverages, tpm and copy number profiles will be present in SQM\$functions (e.g. results for the CAZy database would be present in SQM\$functions\$CAZy). Additionally, the extended names of the features present in the external database will be present in SQM\$misc(e.g. SQM\$misc\$CAZy_names).

Examples

Not run:
(outside R)

```
## Run SqueezeMeta on the test data.
/path/to/SqueezeMeta/scripts/SqueezeMeta.pl -p Hadza -f raw -m coassembly -s test.samples
## Now go into R.
library(SQMtools)
Hadza = loadSQM("Hadza") # Where Hadza is the path to the SqueezeMeta output directory.
## End(Not run)
data(Hadza) # We will illustrate the structure of the SQM object on the test data
# Which are the ten most abundant KEGG IDs in our data?
topKEGG = names(sort(rowSums(Hadza$functions$KEGG$tpm), decreasing=TRUE))[1:11]
topKEGG = topKEGG[topKEGG!="Unclassified"]
# Which functions do those KEGG IDs represent?
Hadza$misc$KEGG_names[topKEGG]
# What is the relative abundance of the Negativicutes class across samples?
Hadza$taxa$class$percent["Negativicutes",]
# Which information is stored in the orf, contig and bin tables?
colnames(Hadza$orfs$table)
colnames(Hadza$contigs$table)
colnames(Hadza$bins$table)
# What is the GC content distribution of my metagenome?
boxplot(Hadza$contigs$table[,"GC perc"]) # Not weighted by contig length or abundance!
```

loadSQMlite

Load tables generated by sqm2tables.py, sqmreads2tables.py *or* combine-sqm-tables.py *into R*.

Description

This function takes the path to the output directory generated by sqm2tables.py, sqmreads2tables.py or combine-sqm-tables.py a SQMlite object. The SQMlite object will contain taxonomic and functional profiles, but no detailed information on ORFs, contigs or bins. However, it will also have a much smaller memory footprint. A SQMlite object can be used for plotting and exporting, but it can not be subsetted.

Usage

```
loadSQMlite(tables_path, tax_mode = "allfilter")
```

Arguments

tables_path	character, tables directory generated by sqm2table.py, sqmreads2tables.py or combine-sqm-tables.py.
tax_mode	character, which taxonomic classification should be loaded? SqueezeMeta applies the identity thresholds described in Luo <i>et al.</i> , 2014. Use allfilter for applying the minimum identity threshold to all taxa (default), prokfilter for applying the threshold to Bacteria and Archaea, but not to Eukaryotes, and nofilter for applying no thresholds at all.

loadSQMlite

Value

SQMlite object containing the parsed tables.

The SQMlite object structure

The SQMlite object is a nested list which contains the following information:

lvl1	lvl2	lvl3	type	rows/names	columns	data
\$taxa	\$superkingdom	\$abund	numeric matrix	superkingdoms	samples	abundances
		\$percent	numeric matrix	superkingdoms	samples	percentages
	\$phylum	\$abund	numeric matrix	phyla	samples	abundances
		\$percent	numeric matrix	phyla	samples	percentages
	\$class	\$abund	numeric matrix	classes	samples	abundances
		\$percent	numeric matrix	classes	samples	percentages
	\$order	\$abund	numeric matrix	orders	samples	abundances
		\$percent	numeric matrix	orders	samples	percentages
	\$family	\$abund	numeric matrix	families	samples	abundances
		\$percent	numeric matrix	families	samples	percentages
	\$genus	\$abund	numeric matrix	genera	samples	abundances
		\$percent	numeric matrix	genera	samples	percentages
	\$species	\$abund	numeric matrix	species	samples	abundances
		\$percent	numeric matrix	species	samples	percentages
\$functions	\$KEGG	\$abund	numeric matrix	KEGG ids	samples	abundances (read
		\$bases	numeric matrix	KEGG ids	samples	abundances (bas
		\$tpm	numeric matrix	KEGG ids	samples	tpm
		\$copy_number	numeric matrix	KEGG ids	samples	avg. copies
	\$COG	\$abund	numeric matrix	COG ids	samples	abundances (read
		\$bases	numeric matrix	COG ids	samples	abundances (bas
		\$tpm	numeric matrix	COG ids	samples	tpm
		\$copy_number	numeric matrix	COG ids	samples	avg. copies
	\$PFAM	\$abund	numeric matrix	PFAM ids	samples	abundances (read
		\$bases	numeric matrix	PFAM ids	samples	abundances (bas
		\$tpm	numeric matrix	PFAM ids	samples	tpm
		\$copy_number	numeric matrix	PFAM ids	samples	avg. copies
<pre>\$total_reads</pre>			numeric vector	samples	(n/a)	total reads
\$misc	<pre>\$project_name</pre>		character vector	(empty)	(n/a)	project name
	\$samples		character vector	(empty)	(n/a)	samples
	<pre>\$tax_names_long</pre>	\$superkingdom	character vector	short names	(n/a)	full names
		\$phylum	character vector	short names	(n/a)	full names
		\$class	character vector	short names	(n/a)	full names
		\$order	character vector	short names	(n/a)	full names
		\$family	character vector	short names	(n/a)	full names
		\$genus	character vector	short names	(n/a)	full names
		\$species	character vector	short names	(n/a)	full names
	<pre>\$tax_names_short</pre>		character vector	full names	(n/a)	short names
	\$KEGG_names		character vector	KEGG ids	(n/a)	KEGG names
	\$KEGG_paths		character vector	KEGG ids	(n/a)	KEGG hiararchy
	\$COG_names		character vector	COG ids	(n/a)	COG names

MGKOs

\$COG_paths	character vector	COG ids	(n/a)	COG hierarchy
<pre>\$ext_annot_sources</pre>	character vector	(empty)	(n/a)	external database

If external databases for functional classification were provided to SqueezeMeta or SqueezeMeta_reads via the -extdb argument, the corresponding abundance, tpm and copy number profiles will be present in SQM\$functions (e.g. results for the CAZy database would be present in SQM\$functions\$CAZy). Additionally, the extended names of the features present in the external database will be present in SQM\$misc (e.g. SQM\$misc\$CAZy_names). Note that results generated by SqueezeMeta_reads will contain only read abundances, but not bases, tpm or copy number estimations.

See Also

plotBars and plotFunctions will plot the most abundant taxa and functions in a SQMlite object. exportKrona will generate Krona charts reporting the taxonomy in a SQMlite object.

Examples

Not run: ## (outside R) ## Run SqueezeMeta on the test data. /path/to/SqueezeMeta/scripts/SqueezeMeta.pl -p Hadza -f raw -m coassembly -s test.samples ## Generate the tabular outputs! /path/to/SqueezeMeta/utils/sqm2tables.py Hadza Hadza/results/tables ## Now go into R. library(SQMtools) Hadza = loadSQMlite("Hadza/results/tables") # Where Hadza is the path to the SqueezeMeta output directory. # Note that this is not the whole SQM project, just the directory containing the tables. # It would also work with tables generated by sqmreads2tables.py, or combine-sqm-tables.py plotTaxonomy(Hadza) plotFunctions(Hadza, 'myKronaTest.html')

End(Not run)

MGK0s

Single Copy Phylogenetic Marker Genes from Sunagawa's group (KOs)

Description

Lists of Single Copy Phylogenetic Marker Genes. These are useful for transforming coverages or tpms into copy numbers. This is an alternative way of normalizing data in order to be able to compare functional profiles in samples with different sequencing depths.

Usage

data(MGKOs)

MGOGs

Format

Character vector with the KEGG identifiers for 10 Single Copy Phylogenetic Marker Genes.

References

Salazar, G *et al.* (2019). Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome *Cell* **179**:1068-1083. (PubMed).

See Also

MGOGs for an equivalent list using OGs instead of KOs; USiCGs for an alternative set of single copy genes, and for examples on how to generate copy numbers.

MGOGs

Single Copy Phylogenetic Marker Genes from Sunagawa's group (OGs)

Description

Lists of Single Copy Phylogenetic Marker Genes. These are useful for transforming coverages or tpms into copy numbers. This is an alternative way of normalizing data in order to be able to compare functional profiles in samples with different sequencing depths.

Usage

data(MGOGs)

Format

Character vector with the COG identifiers for 10 Single Copy Phylogenetic Marker Genes.

References

Salazar, G *et al.* (2019). Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome *Cell* **179**:1068-1083. (PubMed).

See Also

MGKOs for an equivalent list using KOs instead of OGs; USiCGs for an alternative set of single copy genes, and for examples on how to generate copy numbers.

```
mostAbundant
```

Description

Return a subset of an input matrix or data frame, containing only the N most abundant rows (or columns), sorted. Alternatively, a custom set of rows can be returned.

Usage

```
mostAbundant(
   data,
   N = 10,
   items = NULL,
   others = FALSE,
   rescale = FALSE,
   bycol = FALSE
)
```

Arguments

data	numeric matrix or data frame
Ν	integer Number of rows to return (default 10).
items	Character vector. Custom row names to return. If provided, it will override N (default NULL).
others	logical. If TRUE, an extra row will be returned containing the aggregated abundances of the elements not selected with N or items (default FALSE).
rescale	logical. Scale result to percentages column-wise (default FALSE).
bycol	logical. Operate on columns instead of rows (default FALSE).

Value

A matrix or data frame (same as input) with the selected rows (or columns).

Examples

```
plotHeatmap(topCarb, label_y="TPM")
plotBars(topCarb, label_y="TPM")
```

mostVariable

Get the N most variable rows (or columns) from a numeric table

Description

Return a subset of an input matrix or data frame, containing only the N most variable rows (or columns), sorted. Variability is calculated as the Coefficient of Variation (sd/mean).

Usage

mostVariable(data, N = 10, bycol = FALSE)

Arguments

data	numeric matrix or data frame
Ν	integer Number of rows to return (default 10).
bycol	logical. Operate on columns instead of rows (default $\ensuremath{FALSE}\xspace).$

Value

A matrix or data frame (same as input) with the selected rows or columns.

Examples

plotBars

Description

Plot a ggplot2 barplot from a matrix or data frame. The data should be in tabular format (e.g. features in rows and samples in columns).

Usage

```
plotBars(
  data,
  label_x = "Samples",
  label_y = "Abundances"
  label_fill = "Features",
  color = NULL,
  base_size = 11,
 max_scale_value = NULL,
 metadata_groups = NULL
)
```

Arguments

data	Numeric matrix or data frame.
label_x	character Label for the x axis (default "Samples").
label_y	character Label for the y axis (default "Abundances").
label_fill	character Label for color categories (default "Features").
color	Vector with custom colors for the different features. If empty, the default ggplot2 palette will be used (default NULL).
base_size	numeric. Base font size (default 11).
<pre>max_scale_value</pre>	
	numeric. Maximum value to include in the y axis. By default it is handled automatically by ggplot2 (default NULL).
metadata groups	

metadata_groups

list. Split the plot into groups defined by the user: list(G1' = c(sample1', cample1))sample2'), 'G2' = c('sample3', 'sample4')) default NULL).

Value

a ggplot2 plot object.

See Also

plotTaxonomy for plotting the most abundant taxa of a SQM object; plotHeatmap for plotting a heatmap with arbitrary data; mostAbundant for selecting the most abundant rows in a dataframe or matrix.

plotBins

Examples

```
data(Hadza)
sk = Hadza$taxa$superkingdom$abund
plotBars(sk, label_y = "Raw reads", label_fill = "Superkingdom")
```

plotBins

Barplot of the most abundant bins in a SQM obje	ect
---	-----

Description

This function selects the most abundant bins across all samples in a SQM object and represents their abundances in a barplot. Alternatively, a custom set of bins can be represented.

Usage

```
plotBins(
   SQM,
   count = "percent",
   N = 15,
   bins = NULL,
   others = TRUE,
   samples = NULL,
   ignore_unmapped = FALSE,
   ignore_nobin = FALSE,
   rescale = FALSE,
   color = NULL,
   base_size = 11,
   max_scale_value = NULL,
   metadata_groups = NULL
)
```

Arguments

SQM	A SQM object.
count	character. Either "abund" for raw abundances, "percent" for percentages, "cov" for coverages, or "cpm" for coverages per million reads (default "percent").
Ν	integer Plot the N most abundant bins (default 15).
bins	character. Custom bins to plot. If provided, it will override N (default NULL).
others	logical. Collapse the abundances of least abundant bins, and include the result in the plot (default TRUE).
samples	character. Character vector with the names of the samples to include in the plot. Can also be used to plot the samples in a custom order. If not provided, all samples will be plotted (default NULL).
ignore_unmapped	

logical. Don't include unmapped reads in the plot (default FALSE).

ignore_nobin	logical. Don't include reads which are not in a bin in the plot (default FALSE).
rescale	logical. Re-scale results to percentages (default FALSE).
color	Vector with custom colors for the different features. If empty, we will use our own hand-picked pallete if N<=15, and the default ggplot2 palette otherwise (default NULL).
base_size	numeric. Base font size (default 11).
<pre>max_scale_value</pre>	
	numeric. Maximum value to include in the y axis. By default it is handled automatically by ggplot2 (default NULL).
metadata_groups	
	list. Split the plot into groups defined by the user: list('G1' = c('sample1', sample2'), 'G2' = c('sample3', 'sample4')) default NULL).

Value

a ggplot2 plot object.

See Also

plotTaxonomy for plotting the most abundant taxa of a SQM object; plotBars and plotHeatmap for plotting barplots or heatmaps with arbitrary data.

Examples

```
data(Hadza)
# Bins distribution.
plotBins(Hadza)
```

plotFunctions Heatmap of the most abundant functions in a SQM object

Description

This function selects the most abundant functions across all samples in a SQM object and represents their abundances in a heatmap. Alternatively, a custom set of functions can be represented.

Usage

```
plotFunctions(
   SQM,
   fun_level = "KEGG",
   count = "copy_number",
   N = 25,
   fun = NULL,
   samples = NULL,
   display_function_names = TRUE,
   ignore_unmapped = TRUE,
```

plotFunctions

```
ignore_unclassified = TRUE,
gradient_col = c("ghostwhite", "dodgerblue4"),
base_size = 11,
metadata_groups = NULL
)
```

Arguments

SQM	A SQM, SQMbunch or SQMlite object.	
fun_level	character. Either "KEGG", "COG", "PFAM" or any other custom database used for annotation (default "KEGG").	
count	character. Either "abund" for raw abundances, "percent" for percentages, "bases" for raw base counts, "cpm" for coverages per million reads, "tpm" for TPM normalized values or "copy_number" for copy numbers (default "tpm"). Note that a given count type might not available in this object (e.g. TPM or copy number in SQMIite objects originating from a SQM reads project).	
N	integer Plot the N most abundant functions (default 25).	
fun	character. Custom functions to plot. If provided, it will override N (default NULL).	
samples	character. Character vector with the names of the samples to include in the plot. Can also be used to plot the samples in a custom order. If not provided, all samples will be plotted (default NULL).	
display_functio	n_names	
	logical. Plot function names alongside function IDs, if available (default TRUE).	
ignore_unmapped		
	logical. Don't include unmapped reads in the plot (default TRUE).	
ignore_unclassi	fied	
	logical. Don't include unclassified ORFs in the plot (default TRUE).	
gradient_col	A vector of two colors representing the low and high ends of the color gradient (default c("ghostwhite", "dodgerblue4")).	
base_size	numeric. Base font size (default 11).	
metadata_groups		
	list. Split the plot into groups defined by the user: list('G1' = c('sample1', sample2'), 'G2' = c('sample3', 'sample4')) default NULL).	

Value

a ggplot2 plot object.

See Also

plotTaxonomy for plotting the most abundant taxa of a SQM object; plotBars and plotHeatmap for plotting barplots or heatmaps with arbitrary data.

Examples

data(Hadza) plotFunctions(Hadza) plotHeatmap

Description

Plot a ggplot2 heatmap from a matrix or data frame. The data should be in tabular format (e.g. features in rows and samples in columns).

Usage

```
plotHeatmap(
   data,
   label_x = "Samples",
   label_y = "Features",
   label_fill = "Abundance",
   gradient_col = c("ghostwhite", "dodgerblue4"),
   base_size = 11,
   metadata_groups = NULL
)
```

Arguments

data	numeric matrix or data frame.	
label_x	character Label for the x axis (default "Samples").	
label_y	character Label for the y axis (default "Features").	
label_fill	character Label for color scale (default "Abundance").	
gradient_col	A vector of two colors representing the low and high ends of the color gradient (default c("ghostwhite", "dodgerblue4")).	
base_size	numeric. Base font size (default 11).	
metadata_groups		
	list. Split the plot into groups defined by the user: $list('G1' = c('sample1', sample2'), 'G2' = c('sample3', 'sample4')) default NULL).$	

Value

A ggplot2 plot object.

See Also

plotFunctions for plotting the top functional categories of a SQM object; plotBars for plotting a barplot with arbitrary data; mostAbundant for selecting the most abundant rows in a dataframe or matrix.

plotTaxonomy

Examples

```
data(Hadza)
topPFAM = mostAbundant(Hadza$functions$PFAM$tpm)
topPFAM = topPFAM[rownames(topPFAM) != "Unclassified",] # Take out the Unclassified ORFs.
plotHeatmap(topPFAM, label_x = "Samples", label_y = "PFAMs", label_fill = "TPM")
```

```
plotTaxonomy
```

Barplot of the most abundant taxa in a SQM object

Description

This function selects the most abundant taxa across all samples in a SQM object and represents their abundances in a barplot. Alternatively, a custom set of taxa can be represented.

Usage

```
plotTaxonomy(
  SQM,
  rank = "phylum",
  count = "percent",
 N = 15,
  tax = NULL,
  others = TRUE,
  samples = NULL,
  nocds = "treat_separately",
  ignore_unmapped = FALSE,
  ignore_unclassified = FALSE,
  no_partial_classifications = FALSE,
  rescale = FALSE,
  color = NULL,
  base_size = 11,
 max_scale_value = NULL,
 metadata_groups = NULL
)
```

Arguments

SQM	A SQM, SQMbunch or a SQMlite object.
rank	Taxonomic rank to plot (default phylum).
count	character. Either "percent" for percentages, or "abund" for raw abundances (default "percent").
Ν	integer Plot the N most abundant taxa (default 15).
tax	character. Custom taxa to plot. If provided, it will override N (default NULL).
others	logical. Collapse the abundances of least abundant taxa, and include the result in the plot (default TRUE).

samples	character. Character vector with the names of the samples to include in the plot. Can also be used to plot the samples in a custom order. If not provided, all samples will be plotted (default NULL).	
nocds	character. Either "treat_separately" to treat reads annotated as No CDS separately, "treat_as_unclassified" to treat them as Unclassified or "ignore" to ignore them in the plot (default "treat_separately").	
ignore_unmapped		
	logical. Don't include unmapped reads in the plot (default FALSE).	
ignore_unclassi	fied	
	logical. Don't include unclassified reads in the plot (default FALSE).	
no_partial_clas	no_partial_classifications	
	logical. Treat reads not fully classified at the requested level (e.g. "Unclassified bacteroidetes" at the class level or below) as fully unclassified. This takes effect before ignore_unclassified, so if both are TRUE the plot will only contain fully classified contigs (default FALSE).	
rescale	logical. Re-scale results to percentages (default FALSE).	
color	Vector with custom colors for the different features. If empty, we will use our own hand-picked pallete if N<=15, and the default ggplot2 palette otherwise (default NULL).	
base_size	numeric. Base font size (default 11).	
max_scale_value		
	numeric. Maximum value to include in the y axis. By default it is handled automatically by ggplot2 (default NULL).	
metadata_groups		
	list. Split the plot into groups defined by the user: $list('G1' = c('sample1', sample2'), 'G2' = c('sample3', 'sample4'))$ default NULL).	

Value

a ggplot2 plot object.

See Also

plotFunctions for plotting the most abundant functions of a SQM object; plotBars and plotHeatmap for plotting barplots or heatmaps with arbitrary data.

Examples

```
data(Hadza)
Hadza.amin = subsetFun(Hadza, "Amino acid metabolism")
# Taxonomic distribution of amino acid metabolism ORFs at the family level.
plotTaxonomy(Hadza.amin, "family")
```

RecA

Description

The recombination protein RecA/RadA is essential for the repair and maintenance of DNA, and has homologs in every bacteria and archaea. By dividing the coverage of functions by the coverage of RecA, abundances can be transformed into copy numbers, which can be used to compare functional profiles in samples with different sequencing depths. RecA-derived copy numbers are available in the SQM object (SQM\$functions\$<annotation_type>\$copy_number).

Usage

data(RecA)

Format

Character vector with the COG identifier for RecA/RadA.

Source

EggNOG Database.

Examples

```
data(Hadza)
data(RecA)
### Let's calculate the average copy number of each function in our samples.
# We do it for COG annotations here, but we could also do it for KEGG or PFAMs.
COG.coverage = Hadza$functions$COG$cov
COG.copynumber = t(t(COG.coverage) / COG.coverage[RecA,]) # Sample-wise division by RecA coverage.
```

Description

Remove contigs from a given bin

Usage

remove_contigs_from_bin(SQM, bin, contigs)

rowMins

Arguments

SQM	A SQM object.
bin	character. Name of the bin from which the contigs will be removed.
contigs	character. Vector with the names of the contigs that will be removed from the new bin.

Value

SQM object with the new binning information, including recalculated bin statistics if possible.

See Also

find_redundant_contigs, create_bin

rowMaxs Return a vector with the row-wise maxima of a matrix or dataframe.

Description

Return a vector with the row-wise maxima of a matrix or dataframe.

Usage

rowMaxs(table)

Arguments

table matrix or dataframe.

Value

a vector with the row-wise maxima.

rowMins	Return a vector with the row-wise minima of a matrix or dataframe.	
---------	--	--

Description

Return a vector with the row-wise minima of a matrix or dataframe.

Usage

rowMins(table)

seqvec2fasta

Arguments

table matrix or dataframe.

Value

a vector with the row-wise minima.

seqvec2fasta

Print a named vector of sequences as a fasta-formatted string

Description

Print a named vector of sequences as a fasta-formatted string

Usage

```
seqvec2fasta(seqvec, output_name = "")
```

Arguments

seqvec	vector. The vector to be written as a fasta string.
output_name	A connection, or a character string naming the file to print to. If "" (the default),
	sequences will be printed to the standard output connection.

Examples

```
data(Hadza)
seqvec2fasta(Hadza$orfs$seqs[1:10])
```

subsetBins	Create a SQM object containing only the requested bins, and the con-
	tigs and ORFs contained in them.

Description

Create a SQM object containing only the requested bins, and the contigs and ORFs contained in them.

Usage

```
subsetBins(
 SQM,
 bins,
 trusted_functions_only = FALSE,
 ignore_unclassified_functions = FALSE,
 rescale_tpm = TRUE,
 rescale_copy_number = TRUE,
 allow_empty = FALSE
)
```

Arguments

SQM	SQM object to be subsetted.
bins	character. Vector of bins to be selected.
trusted_functio	ns_only
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).
ignore_unclassi	fied_functions
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).
rescale_tpm	logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, per- function TPMs will be calculated by aggregating the TPMs of the ORFs an- notated with that function, and will thus keep the scaling present in the parent object. By default it is set to TRUE, which means that the returned TPMs will be scaled <i>by million of reads of the selected bins</i> .
rescale_copy_nu	mber
	logical. If TRUE, copy numbers with be recalculated using the RecA/RadA coverages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object. By default it is set to TRUE, which means that the returned copy numbers for each function will represent the average copy number of that function <i>per genome of the selected bins</i> .
allow_empty	(internal use only).

Value

SQM object containing only the requested bins.

See Also

subsetContigs, subsetORFs

subsetContigs

Examples

subsetContigs Select contigs

Description

Create a SQM object containing only the requested contigs, the ORFs contained in them and the bins that contain them.

Usage

```
subsetContigs(
   SQM,
   contigs,
   trusted_functions_only = FALSE,
   ignore_unclassified_functions = FALSE,
   rescale_tpm = FALSE,
   rescale_copy_number = FALSE,
   recalculate_bin_stats = TRUE,
   allow_empty = FALSE
)
```

Arguments

SQM	SQM object to be subsetted.	
contigs	character. Vector of contigs to be selected.	
trusted_functio	ons_only	
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).	
ignore_unclassified_functions		
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).	
rescale_tpm	logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, per- function TPMs will be calculated by aggregating the TPMs of the ORFs an- notated with that function, and will thus keep the scaling present in the parent object (default FALSE).	

rescale_copy_number

logical. If TRUE, copy numbers with be recalculated using the RecA/RadA coverages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object. By default it is set to FALSE, which means that the returned copy numbers for each function will represent the average copy number of that function per genome in the parent object.

recalculate_bin_stats

logical. If TRUE, bin stats and taxonomy are recalculated based on the contigs present in the subsetted object (default TRUE).

allow_empty (internal use only).

Value

SQM object containing only the selected contigs.

See Also

subsetORFs

Examples

```
data(Hadza)
# Which contigs have a GC content below 40?
lowGCcontigNames = rownames(Hadza$contigs$table[Hadza$contigs$table[,"GC perc"]<40,])
lowGCcontigs = subsetContigs(Hadza, lowGCcontigNames)
hist(lowGCcontigs$contigs$table[,"GC perc"])</pre>
```

subsetFun

Filter results by function

Description

Create a SQM or SQMbunch object containing only the ORFs with a given function, and the contigs and bins that contain them.

Usage

```
subsetFun(
 SQM,
 fun,
 columns = NULL,
 ignore_case = TRUE,
 fixed = FALSE,
 trusted_functions_only = FALSE,
 ignore_unclassified_functions = FALSE,
 rescale_tpm = FALSE,
 rescale_copy_number = FALSE,
 recalculate_bin_stats = FALSE,
```

subsetFun

```
allow_empty = FALSE
)
```

Arguments

SQM	SQM or SQMbunch object to be subsetted.
fun	character. Pattern to search for in the different functional classifications.
columns	character. Restrict the search to the provided column names from SQM\$orfs\$table. If not provided the search will be performed in all the columns containing func- tional information (default NULL).
ignore_case	logical Make pattern matching case-insensitive (default TRUE).
fixed	logical. If TRUE, pattern is a string to be matched as is. If FALSE the pattern is treated as a regular expression (default FALSE).
trusted_functio	ns_only
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).
ignore_unclassi	fied_functions
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).
rescale_tpm	logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, per- function TPMs will be calculated by aggregating the TPMs of the ORFs an- notated with that function, and will thus keep the scaling present in the parent object (default FALSE).
rescale_copy_nu	mber
	logical. If TRUE, copy numbers with be recalculated using the RecA/RadA cov- erages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object. By default it is set to FALSE, which means that the returned copy numbers for each function will represent the average copy number of that func- tion per genome in the parent object.
recalculate_bin_stats	
	logical. If TRUE, bin stats and taxonomy are recalculated based on the contigs present in the subsetted object (default FALSE).
allow_empty	(internal use only).

Value

SQM or SQMbunch object containing only the requested function.

See Also

subsetTax, subsetORFs, subsetSamples, combineSQM. The most abundant items of a particular table contained in a SQM object can be selected with mostAbundant.

Examples

```
data(Hadza)
Hadza.iron = subsetFun(Hadza, "iron")
Hadza.carb = subsetFun(Hadza, "Carbohydrate metabolism")
# Search for multiple patterns using regular expressions
Hadza.twoKOs = subsetFun(Hadza, "K00812|K00813", fixed=FALSE)
```

Select ORFs

subsetORFs

Description

Create a SQM object containing only the requested ORFs, and the contigs and bins that contain them. Internally, all the other subset functions in this package end up calling subsetORFs to do the work for them.

Usage

```
subsetORFs(
 SQM,
 orfs,
 tax_source = "orfs",
 trusted_functions_only = FALSE,
 ignore_unclassified_functions = FALSE,
 rescale_tpm = FALSE,
 rescale_copy_number = FALSE,
 recalculate_bin_stats = TRUE,
 contigs_override = NULL,
 allow_empty = FALSE
)
```

Arguments

SQM	SQM object to be subsetted.	
orfs	character. Vector of ORFs to be selected.	
tax_source	character. Features used for calculating aggregated abundances at the different taxonomic ranks. Either "orfs" or "contigs" (default "orfs").	
trusted_functions_only		
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).	
ignore_unclassified_functions		
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).	

subsetRand

rescale_tpm logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, perfunction TPMs will be calculated by aggregating the TPMs of the ORFs annotated with that function, and will thus keep the scaling present in the parent object (default FALSE).

rescale_copy_number

logical. If TRUE, copy numbers with be recalculated using the RecA/RadA coverages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object. By default it is set to FALSE, which means that the returned copy numbers for each function will represent the average copy number of that function per genome in the parent object.

recalculate_bin_stats

logical. If TRUE, bin stats and taxonomy are recalculated based on the contigs present in the subsetted object (default TRUE).

contigs_override

character. Optional vector of contigs to be included in the subsetted object.

allow_empty (internal use only).

Value

SQM object containing the requested ORFs.

A note on contig/bins subsetting

While this function selects the contigs and bins that contain the desired orfs, it DOES NOT recalculate contig abundance and statistics based on the selected ORFs only. This means that the abundances presented in tables such as SQM\$contig\$abund will still refer to the complete contigs, regardless of whether only a fraction of their ORFs are actually present in the returned SQM object. This is also true for the statistics presented in SQM\$contig\$table. Bin statistics may be recalculated if rescale_copy_number is set to TRUE, but recalculation will be based on contigs, not ORFs.

Examples

```
data(Hadza)
# Select the 100 most abundant ORFs in our dataset.
mostAbundantORFnames = names(sort(rowSums(Hadza$orfs$tpm), decreasing=TRUE))[1:100]
mostAbundantORFs = subsetORFs(Hadza, mostAbundantORFnames)
```

subsetRand

Select random ORFs

Description

Create a random subset of a SQM object.

Usage

subsetRand(SQM, N)

Arguments

SQM	SQM object to be subsetted.
N	numeric. number of random ORFs to select.

Value

SQM object containing a random subset of ORFs.

See Also

subsetORFs

subsetSamples Filter results by sample

Description

Create a SQM object containing only samples specified by the user, and the ORFs, contigs, bins, taxa and functions present in those samples.

Usage

```
subsetSamples(SQM, samples, remove_missing = TRUE)
```

Arguments

SQM	SQM object to be subsetted.
samples	character. Samples to be included in the subset.
remove_missing	bool. If TRUE, ORFs, contigs, bins, taxa and functions absent from the selected samples will be removed from the subsetted object (default TRUE)
	samples will be removed from the subscred object (default froe).

Value

SQM object containing only the requested samples.

See Also

subsetTax, subsetFun, subsetORFs, combineSQM. The most abundant items of a particular table contained in a SQM object can be selected with mostAbundant.

subsetTax

Description

Create a SQM or SQMbunch object containing only the contigs with a given consensus taxonomy, the ORFs contained in them and the bins that contain them.

Usage

```
subsetTax(
  SQM,
  rank,
  tax,
  trusted_functions_only = FALSE,
  ignore_unclassified_functions = FALSE,
  rescale_tpm = TRUE,
  rescale_copy_number = TRUE,
  recalculate_bin_stats = TRUE,
  allow_empty = FALSE
)
```

Arguments

SQM	SQM object to be subsetted.
rank	character. The taxonomic rank from which to select the desired taxa (superkingdom, phylum, class, order, family, genus, species)
tax trusted_functio	character. The taxon to select. ons_only
	logical. If TRUE, only highly trusted functional annotations (best hit + best aver- age) will be considered when generating aggregated function tables. If FALSE, best hit annotations will be used (default FALSE).
ignore_unclassi	fied_functions
	logical. If FALSE, ORFs with no functional classification will be aggregated together into an "Unclassified" category. If TRUE, they will be ignored (default FALSE).
rescale_tpm	logical. If TRUE, TPMs for KEGGs, COGs, and PFAMs will be recalculated (so that the TPMs in the subset actually add up to 1 million). Otherwise, per- function TPMs will be calculated by aggregating the TPMs of the ORFs an- notated with that function, and will thus keep the scaling present in the parent object. By default it is set to TRUE, which means that the returned TPMs will be scaled <i>by million of reads of the selected taxon</i> .
rescale_copy_nu	Imber
	logical. If TRUE, copy numbers with be recalculated using the RecA/RadA cov- erages in the subset. Otherwise, RecA/RadA coverages will be taken from the parent object. By default it is set to TRUE, which means that the returned copy

	numbers for each function will represent the average copy number of that func- tion <i>per genome of the selected taxon</i> .	
recalculate_bin_stats		
	logical. If TRUE, bin stats and taxonomy are recalculated based on the contigs present in the subsetted object (default TRUE).	
allow_empty	(internal use only).	

Value

SQM or SQMbunch object containing only the requested taxon.

See Also

```
subsetFun, subsetContigs, subsetSamples, combineSQM. The most abundant items of a particular table contained in a SQM object can be selected with mostAbundant.
```

Examples

```
data(Hadza)
Hadza.Prevotella = subsetTax(Hadza, "genus", "Prevotella")
Hadza.Bacteroidota = subsetTax(Hadza, "phylum", "Bacteroidota")
```

summary.SQM summary method for class SQM

Description

Computes different statistics of the data contained in the SQM object.

Usage

S3 method for class 'SQM'
summary(object, ...)

Arguments

object	SQM object to be summarized.
	Additional parameters (ignored).

Value

A list of summary statistics.

summary.SQMbunch summary method for class SQMbunch

Description

Computes different statistics of the data contained in the SQMbunch object.

Usage

```
## S3 method for class 'SQMbunch'
summary(object, ...)
```

Arguments

object	SQMbunch object to be summarized.
•••	Additional parameters (ignored).

Value

A list of summary statistics.

summary.SQMlite summary method for class SQMlite

Description

Computes different statistics of the data contained in the SQMlite object.

Usage

```
## S3 method for class 'SQMlite'
summary(object, ...)
```

Arguments

object	SQMlite object to be summarized.
	Additional parameters (ignored).

Value

A list of summary statistics.

USiCGs

Description

Lists of Universal Single Copy Genes for Bacteria and Archaea. These are useful for transforming coverages or tpms into copy numbers. This is an alternative way of normalizing data in order to be able to compare functional profiles in samples with different sequencing depths.

Usage

data(USiCGs)

Format

Character vector with the KEGG identifiers for 15 Universal Single Copy Genes.

Source

Carr et al., 2013. Table S1.

References

Carr, Shen-Orr & Borenstein (2013). Reconstructing the Genomic Content of Microbiome Taxa through Shotgun Metagenomic Deconvolution *PLoS Comput. Biol.* **9**:e1003292. (PubMed).

See Also

MGOGs and MGKOs for an alternative set of single copy genes, and for examples on how to generate copy numbers.

Examples

```
data(Hadza)
data(USiCGs)
### Let's look at the Universal Single Copy Gene distribution in our samples.
KEGG.tpm = Hadza$functions$KEGG$tpm
all(USiCGs %in% rownames(KEGG.tpm)) # Are all the USiCGs present in our dataset?
# Plot a boxplot of USiCGs tpms and calculate median USiCGs tpm.
# This looks weird in the test dataset because it contains only a small subset of the metagenomes.
# In a set of complete metagenomes USiCGs should have fairly similar TPM averages
# and low dispersion across samples.
boxplot(t(KEGG.tpm[USiCGs,]), names=USiCGs, ylab="TPM", col="slateblue2")
### Now let's calculate the average copy numbers of each function.
# We do it for KEGG annotations here, but we could also do it for COGs or PFAMs.
USiCGs.cov = apply(Hadza$functions$KEGG$cov[USiCGs,], 2, median)
# Sample-wise division by the median USiCG coverage.
```

Index

* datasets CheckMProkaryote, 3 Hadza, 12 MGKOs, 18 MGOGs, 19 RecA. 29 USiCGs, 42 CheckMProkaryote, 3 combineSQM, 3, 5, 35, 38, 40 combineSQMlite, 3, 5, 5 create_bin, 6, 11, 30 exportBins, 6 exportContigs, 7 exportKrona, 7, 18 exportORFs, 8 exportPathway, 8 exportTable, 10 find_redundant_contigs, 6, 11, 30 Hadza, 12 loadSQM, 12, 12 loadSQMlite, 13, 16 MGKOs, 3, 18, 19, 42 MGOGs, *3*, *19*, 19, 42 mostAbundant, 20, 22, 26, 35, 38, 40 mostVariable, 21 plotBars, 18, 22, 24-26, 28 plotBins, 23 plotFunctions, 10, 18, 24, 26, 28 plotHeatmap, 22, 24, 25, 26, 28 plotTaxonomy, 7, 22, 24, 25, 27 RecA, 29 remove_contigs_from_bin, 6, 11, 29 rowMaxs, 30

rowMins, 30

seqvec2fasta, 31 subsetBins, 31 subsetContigs, 32, 33, 40 subsetFun, 5, 34, 38, 40 subsetORFs, 32, 34, 35, 36, 38 subsetRand, 37 subsetSamples, 35, 38, 40 subsetTax, 5, 35, 38, 39 summary.SQM, 40 summary.SQMbunch, 41 summary.SQMlite, 41

USiCGs, 3, 19, 42