
Package ‘Pv3Rs’
July 31, 2025

Title Estimate the Cause of Recurrent Vivax Malaria using Genetic Data

Version 0.0.2

Description Plot malaria parasite genetic data on two or more episodes.
Compute per-person posterior probabilities that each
Plasmodium vivax (Pv) recurrence is a recrudescence, relapse,
or reinfection (3Rs) using per-person P. vivax genetic data on two or
more episodes and a statistical model described in
Taylor, Foo and White (2022) <doi:10.1101/2022.11.23.22282669>.
Plot per-recurrence posterior probabilities.

License MIT + file LICENSE

URL https://aimeertaylor.github.io/Pv3Rs/,

https://github.com/aimeertaylor/Pv3Rs

BugReports https://github.com/aimeertaylor/Pv3Rs/issues

Depends R (>= 3.5)

Imports dplyr, fields, grDevices, igraph, matrixStats, methods,
multicool, partitions, purrr, RColorBrewer

Suggests codetools, gtools, knitr, Matrix, plyr, R.rsp, rmarkdown,
testthat (>= 3.0.0), tictoc, utils

VignetteBuilder knitr

Config/Needs/website rmarkdown

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Aimee Taylor [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2337-8992>),

Yong See Foo [aut] (ORCID: <https://orcid.org/0000-0003-3010-9106>),
Tymoteusz Kwiecinski [com],
Duncan Murdoch [ctb],

1

https://doi.org/10.1101/2022.11.23.22282669
https://aimeertaylor.github.io/Pv3Rs/
https://github.com/aimeertaylor/Pv3Rs
https://github.com/aimeertaylor/Pv3Rs/issues
https://orcid.org/0000-0002-2337-8992
https://orcid.org/0000-0003-3010-9106

2 compute_posterior

Mans Magnusson [ctb],
Institut Pasteur [cph],
European Union, Project 101110393 [fnd]

Maintainer Aimee Taylor <aimee.taylor@pasteur.fr>

Repository CRAN

Date/Publication 2025-07-31 10:10:02 UTC

Contents
compute_posterior . 2
determine_MOIs . 5
enumerate_RGs . 6
fs_VHX_BPD . 7
plot_data . 8
plot_RG . 10
plot_simplex . 11
project2D . 13
RG_to_igraph . 14
sample_RG . 15
ys_VHX_BPD . 15

Index 17

compute_posterior Compute posterior probabilities of P. vivax recurrence states

Description

Computes per-person posterior probabilities of P. vivax recurrence states — recrudescence, relapse,
reinfection — using per-person genetic data on two or more episodes. For usage, see Examples
below and Demonstrate Pv3Rs usage. For a more complete understanding of compute_posterior
output, see Understand posterior probabilities.

Note: The progress bar may increment non-uniformly (see Details); it may appear stuck when
computations are ongoing.

Usage

compute_posterior(
y,
fs,
prior = NULL,
MOIs = NULL,
return.RG = FALSE,
return.logp = FALSE,
progress.bar = TRUE

)

../doc/demonstrate-usage.html
https://aimeertaylor.github.io/Pv3Rs/articles/posterior-probabilities.html

compute_posterior 3

Arguments

y List of lists encoding allelic data. The outer list contains episodes in chrono-
logical order. The inner list contains named markers per episode. Marker
names must be consistent across episodes. NA indicates missing marker data;
otherwise, specify a per-marker vector of distinct alleles detected (presently,
compute_posterior() does not support data on the proportional abundance of
detected alleles). Repeat alleles and NA entries within allelic vectors are ignored.
Allele names are arbitrary, allowing for different data types, but must correspond
with frequency names.

fs List of per-marker allele frequency vectors, with names matching marker names
in y. Per-marker alleles frequencies mut contain one frequency per named allele,
with names matching alleles in y. Per-marker frequencies must sum to one.

prior Matrix of prior probabilities of recurrence states per episode, with rows as episodes
in chronological order, and columns named "C", "L", and "I" for recrudescence,
relapse and reinfection, respectively. Row names are ignored. If NULL (default),
per-episode recurrence states are assumed equally likely a priori.

MOIs Vector of per-episode multiplicities of infection (MOIs); because the Pv3Rs
model assumes no genotyping errors, MOIs must be greater than or equal to the
most parsimonious MOI estimates compatible with the data; see determine_MOIs(y).
These are the estimates used when MOIs = NULL (default).

return.RG Logical; returns the relationship graphs (default FALSE). Automatically set to
TRUE if return.logp = TRUE.

return.logp Logical; returns the log-likelihood for each relationship graph (default FALSE).
Setting TRUE disables permutation symmetry optimisation and thus increases
runtime, especially when MOIs are large. Does not affect the output of the
posterior probabilities; for an an example of permutation symmetry, see Explo-
ration of relationship graphs in Demonstrate Pv3Rs usage.

progress.bar Logical; show progress bars (default TRUE). Note that the progress bar may up-
date non-uniformly.

Details

compute_posterior() computes posterior probabilities proportional to the likelihood multiplied
by the prior. The likelihood sums over:

• ways to phase allelic data onto haploid genotypes

• graphs of relationships between haploid genotypes

• ways to partition alleles into clusters of identity-by-descent

We enumerate all possible relationship graphs between haploid genotypes, where pairs of geno-
types can either be clones, siblings, or strangers. The likelihood of a sequence of recurrence states
can be determined from the likelihood of all relationship graphs compatible with said sequence.
More details on the enumeration of relationship graphs can be found in enumerate_RGs. For each
relationship graph, the model sums over all possible identity-by-descent partitions. Because some
graphs are compatible with more partitions than others, the log p(Y|RG) progress bar may advance
non-uniformly. We do not recommend running ‘compute_posterior() when the total genotype count
(sum of MOIs) exceeds eight because there are too many relationship graphs.

../doc/demonstrate-usage.html#exploration-of-relationship-graphs

4 compute_posterior

Notable model assumptions and limitations:

• All siblings are regular siblings

• Recrudescent parasites derive only from the immediately preceding episode

• Recrudescence, relapse and reinfection are mutually exclusive

• Undetected alleles, genotyping errors, and de novo mutations are not modelled

• Population structure and various other complexities that confound molecular correction are
not modelled

Value

List containing:

marg Matrix of marginal posterior probabilities for each recurrence, with rows as recurrences and
columns as "C" (recrudescence), "L" (relapse), and "I" (reinfection). Each marginal probabil-
ity sums over a subset of joint probabilities. For example, the marginal probability of "C" at
the first of two recurrences sums over the joint probabilities of "CC", "CL", and "CI".

joint Vector of joint posterior probabilities for each recurrence state sequence; within a sequence
"C", "L", and "I" are used as above.

RGs List of lists encoding relationship graphs; returned only if return.RG = TRUE (default FALSE),
and with log-likelihoods if return.logp = TRUE (default FALSE). A relationship graph en-
coded as a list can be converted into a igraph object using RG_to_igraph and thus plotted
using plot_RG. For more details on relationship graphs, see enumerate_RGs.

Examples

Numerically named alleles
y <- list(enrol = list(m1 = c('3','2'), m2 = c('1','2')),

recur1 = list(m1 = c('1','4'), m2 = c('1')),
recur2 = list(m1 = c('1'), m2 = NA))

fs <- list(m1 = c('1' = 0.78, '2' = 0.14, '3' = 0.07, '4' = 0.01),
m2 = c('1' = 0.27, '2' = 0.73))

compute_posterior(y, fs, progress.bar = FALSE)

Arbitrarily named alleles, plotting per-recurrence posteriors
y <- list(enrolment = list(marker1 = c("Tinky Winky", "Dipsy"),

marker2 = c("Tinky Winky", "Laa-Laa", "Po")),
recurrence = list(marker1 = "Tinky Winky",

marker2 = "Laa-Laa"))
fs <- list(marker1 = c("Tinky Winky" = 0.4, "Dipsy" = 0.6),

marker2 = c("Tinky Winky" = 0.1, "Laa-Laa" = 0.1, "Po" = 0.8))
plot_simplex(p.coords = compute_posterior(y, fs, progress.bar = FALSE)$marg)

Episode names are cosmetic: "r1_prior" is returned for "r2"
y <- list(enrol = list(m1 = NA), r2 = list(m1 = NA), r1 = list(m1 = NA))
prior <- matrix(c(0.6,0.7,0.2,0.3,0.2,0), ncol = 3,

dimnames = list(c("r1_prior", "r2_prior"), c("C", "L", "I")))
suppressMessages(compute_posterior(y, fs = list(m1 = c(a = 1)), prior))$marg

determine_MOIs 5

prior

Prior is returned when all data are missing
y_missing <- list(enrol = list(m1 = NA), recur = list(m1 = NA))
suppressMessages(compute_posterior(y_missing, fs = list(m1 = c("A" = 1))))

Return of the prior re-weighted to the exclusion of recrudescence:
suppressMessages(compute_posterior(y_missing, fs = list(m1 = c("A" = 1)),

MOIs = c(1,2)))
(Recrudescing parasites are clones of previous blood-stage parasites. The
Pv3R model assumes no within-host de-novo mutations and perfect allele
detection. As such, recrudescence is incompatible with an MOI increase on
the preceding infection.)

Beware provision of unpaired data: the prior is not necessarily returned;
for more details, see link above to "Understand posterior estimates"
y <- list(list(m1 = c('1', '2')), list(m1 = NA))
fs <- list(m1 = c('1' = 0.5, '2' = 0.5))
suppressMessages(compute_posterior(y, fs))$marg

determine_MOIs Determine multiplicities of infection (MOIs)

Description

Returns a MOI estimate for each episode based on allelic diversity across markers.

Usage

determine_MOIs(y, return.names = FALSE)

Arguments

y List of lists encoding allelic data; see compute_posterior for more details.
The outer list contains episodes in chronological order. The inner list contains
named markers per episode. For each marker, one must specify an allelic vector:
a set of distinct alleles detected at that marker; or NA if marker data are missing.

return.names Logical; if TRUE and y has named episodes, episode names are returned.

Details

A true MOI is a number of genetically distinct groups of clonal parasites within an infection. Give
or take de novo mutations, all parasites within a clonal group share the same DNA sequence, which
we call a genotype. As such, MOIs are distinct parasite genotype counts. Under the Pv3Rs model
assumption that there are no genotyping errors, the true MOI of an episode is greater than or equal

6 enumerate_RGs

to the maximum distinct allele count for any marker in the data on that episode. In other words,
under the assumption of no genotyping errors, maximum distinct allelic counts are the most par-
simonious MOI estimates compatible with the data. By default, these MOI estimates are used by
compute_posterior.

Value

Numeric vector containing one MOI estimate per episode, each estimate representing the maximum
number of distinct alleles observed at any marker per episode.

Examples

y <- list(enrol = list(m1 = c("A", "B"), m2 = c("A"), m3 = c("C")),
recur = list(m1 = c("B"), m2 = c("B", "C"), m3 = c("A", "B", "C")))

determine_MOIs(y) # returns c(2, 3)

enumerate_RGs Enumerate relationship graphs (RGs)

Description

An RG is a graph over all per-person parasite genotypes (each as a vertex), with edges between
clone and sibling genotypes. Valid RGs satisfy:

• Subgraphs induced by clone edges are cluster graphs.
• Subgraphs induced by clone plus sibling edges are cluster graphs.
• Clone edges only link genotypes from different episodes.

Usage

enumerate_RGs(MOIs, igraph = TRUE, progress.bar = TRUE)

Arguments

MOIs Vector of per-episode multiplicities of infection (MOIs), i.e., numbers of per-
episode genotypes / vertices.

igraph Logical; returns RGs as igraph objects (default TRUE).
progress.bar Logical; show progress bar (default TRUE).

Details

RGs are generated by enumerating nested set partitions under specific constraints; see Understand
graph and partition enumeration. Each nested set parition is an RG. Clone edges induce a cluster
graph, equivalent to a partition of genotypes, with no intra-episode clones allowed. Sibling edges
refine the clone partition, with no constraints (intra-episode siblings allowed). Each nested set
partition is encoded as a list. Each partition is represented by a list of vectors (either clone or sib)
and by a membership vector (either clone.vec or sib.vec). By default, an RG encoded as a list is
converted to an igraph object.

https://aimeertaylor.github.io/Pv3Rs/articles/enumerate.pdf
https://aimeertaylor.github.io/Pv3Rs/articles/enumerate.pdf

fs_VHX_BPD 7

Value

A list of RGs. If igraph = FALSE, each RG is a list of length four with:

clone List of vectors encoding genotypes per clonal cell.

clone.vec Numeric vector with the clonal cell membership of each genotype.

sib List of vectors encoding clonal cells per sibling cell.

sib.vec Numeric vector with the sibling cell membership of each clonal cell.

If igraph = TRUE (default), each RG is encoded as an igraph object (see RG_to_igraph).

Examples

graphs <- enumerate_RGs(c(2, 1, 2), progress.bar = FALSE) # nine graphs

fs_VHX_BPD Allele frequencies computed using example Plasmodium vivax data

Description

The posterior mean of a multinomial-Dirichlet model with uniform prior fit to data on allele preva-
lence in initial episodes of ys_VHX_BPD. Because the model is fit to allele prevalence (observed)
not allele frequency (requires integrating-out unknown multiplicities of infection) it is liable to un-
derestimate the frequencies of common alleles and overestimate those of rare but detected alleles.

Usage

fs_VHX_BPD

Format

A list of nine markers; for each marker a named vector of allele frequencies that sum to one.

Source

• https://zenodo.org/records/3368828

• https://github.com/aimeertaylor/Pv3Rs/blob/main/data-raw/fs_VHX_BPD.R

https://zenodo.org/records/3368828
https://github.com/aimeertaylor/Pv3Rs/blob/main/data-raw/fs_VHX_BPD.R

8 plot_data

plot_data Plots the data

Description

Plots allelic data as a grid of coloured rectangles.

Usage

plot_data(
ys,
fs = NULL,
person.vert = FALSE,
mar = c(1.5, 3.5, 1.5, 1),
gridlines = TRUE,
palette = RColorBrewer::brewer.pal(12, "Paired"),
marker.annotate = TRUE,
legend.lab = "Allele frequencies",
legend.line = 0.2,
legend.ylim = c(0.05, 0.2),
cex.maj = 0.7,
cex.min = 0.5,
cex.text = 0.5,
x.line = 0.2,
y.line = 2.5

)

Arguments

ys Nested list of per-person, per-episode, per-marker allelic data; see Examples
and compute_posterior() for the expected per-person structure.

fs A per-marker list of numeric vectors of allele frequencies. If NULL (default),
only the alleles present in ys are shown in the the legend, with all per-marker
alleles represented equally. Because the colour scheme is adaptive, the same
allele may have different colours given different ys. If fs is specified, all alleles
in fs feature in the legend with areas proportional to allele frequencies, so that
common alleles occupy larger areas than rarer alleles. Specify fs to fix the allele
colour scheme across plots of different ys.

person.vert Logical. If TRUE (default), person IDs are printed vertically; otherwise, they are
printed horizontally.

mar Vector of numbers of lines of margin for the main plot; see mar entry of par.

gridlines Logical. If true (default), white grid lines separating people and markers are
drawn.

palette Colour palette for alleles, see the Value section of brewer.pal. Generally,
colours are interpolated: if a marker has d possible alleles, then the colours used

plot_data 9

are the 1/(d+1), ..., d/(d+1) quantiles of the palette to ensure that markers
with different allele counts use different colours.

marker.annotate

Logical. If true (default), the names of the alleles are printed on top of their
colours in the legend.

legend.lab Label for the axis of the legend. Defaults to "Allele frequencies". Set to NA to
omit the label; if so, consider adjusting legend.ylim to use more plotting space.

legend.line Distance (in character heights) from the colour bar to the legend label (defaults
to 1.5).

legend.ylim Vector specifying the y-coordinate limits of the legend in device coordinates
(between 0 and 1). Defaults to c(0.05, 0.2).

cex.maj Numeric; font scaling of major axis labels.

cex.min Numeric; font scaling of minor axis labels.

cex.text Numeric; font scaling of the allele labels.

x.line Distance between top x-axis and x-axis label, defaults to 0.2.

y.line Distance between left y-axis and y-axis label, defaults to 2.5.

Details

This function plots alleles (colours), which are observed in different episodes (columns), on dif-
ferent markers (rows), with episodes grouped by person. Per-person episodes are plotted from left
to right in chronological order. If multiple alleles are detected for a marker within an episode, the
corresponding grid element is subdivided vertically into different colours.

By default, markers are ordered lexicographically. If fs is provided, markers are ordered to match
the order within fs.

The legend depicts the alleles for each marker in the same vertical order as the main plot. The
default colour scheme is adaptive, designed to visually differentiate the alleles as clearly as possible
by maximizing hue contrast within a qualitative palette. Interpolation is used to make different
colour palettes for markers with different numbers of possible alleles. The names of the alleles are
printed on top of their colours if marker.annotate is set to TRUE.

Value

None

Examples

oldpar <- par(no.readonly = TRUE) # Store user's options before plotting

Plot example Plasmodium vivax data set:
mar <- c(2, 3.5, 1.5, 1) # extra vertical margin for vertical person labels
plot_data(ys = ys_VHX_BPD, person.vert = TRUE, mar = mar, legend.lab = NA)
plot_data(ys = ys_VHX_BPD, person.vert = TRUE, mar = mar, legend.lab = NA,

fs = fs_VHX_BPD)
plot_data(ys = ys_VHX_BPD, person.vert = TRUE, mar = mar, legend.lab = NA,

fs = fs_VHX_BPD, marker.annotate = FALSE)

10 plot_RG

Demonstrating the adaptive nature of the colour scheme:
ys <- ys_VHX_BPD["VHX_52"] # A single person
plot_data(ys, fs = fs_VHX_BPD, marker.annotate = FALSE) # Colours match above
plot_data(ys) # Colours and the legend adapt to alleles detected in VHX_52

par(oldpar) # Restore user's options

plot_RG Plot a relationship graph (RG)

Description

This function is a wrapper around plot.igraph, written to group parasite genotypes by episode
both spatially and using vertex colour (specifically, parasite genotypes within episodes are vertically
distributed with some horizontal jitter when layout.by.group = TRUE (default), and equicolored),
and to ensure clone and sibling edges are plotted using different line types.

Usage

plot_RG(
RG,
layout.by.group = TRUE,
vertex.palette = "Set2",
edge.lty = c(sibling = "dashed", clone = "solid"),
edge.col = c(sibling = "black", clone = "black"),
edge.width = 1.5,
...

)

Arguments

RG igraph object encoding an RG; see RG_to_igraph.
layout.by.group

Logical; if TRUE (default) overrides the default layout of plot.igraph so that
vertices that represent parasite genotypes from different episodes are distributed
horizontally and vertices that represent genotypes within episodes are distributed
vertically.

vertex.palette A character string specifying an RColorBrewer palette. Overrides the default
palette of plot.igraph.

edge.lty Named vector of edge line types corresponding to different relationships.

edge.col Named vector of edge colours corresponding to different relationships.

edge.width Overrides the default edge.width of plot.igraph.

... Additional arguments to pass to plot.igraph, e.g., edge.curved.

Value

None

plot_simplex 11

Provenance

This function was adapted from plot_Vivax_model at https://github.com/jwatowatson/RecurrentVivax/
blob/master/Genetic_Model/iGraph_functions.R.

Examples

RGs <- enumerate_RGs(c(2, 1, 1), progress.bar = FALSE)
oldpar <- par(no.readonly = TRUE) # record user's options
par(mfrow = c(3, 4), mar = c(0.1, 0.1, 0.1, 0.1))
for (i in 12:23) {

plot_RG(RGs[[i]],
edge.col = c(sibling = "gray", clone = "black"),
edge.lty = c(sibling = "dotted", clone = "solid"),
edge.curved = 0.1)
box()

}
par(oldpar) # restore user's options

plot_simplex Plots a 2D simplex

Description

Plots a 2D simplex (a triangle with unit sides centered at the origin) onto which per-recurrence pos-
terior probabilities of recrudescence, relapse, reinfection (or any other probability triplet summing
to one) can be projected; see project2D() and Examples below.

Usage

plot_simplex(
v.labels = c("Recrudescence", "Relapse", "Reinfection"),
v.cutoff = 0.5,
v.colours = c("yellow", "purple", "red"),
plot.tri = TRUE,
p.coords = NULL,
p.labels = rownames(p.coords),
p.labels.pos = 3,
p.labels.cex = 1,
...

)

Arguments

v.labels Vertex labels anticlockwise from top (default: "Recrudescence", "Relapse", "Re-
infection"). If NULL, vertices are not labelled.

v.cutoff Number between 0.5 and 1 that separates lower vs higher probability regions.
Use with caution for recrudescence and reinfection classification; see Under-
stand posterior probabilities.

https://github.com/jwatowatson/RecurrentVivax/blob/master/Genetic_Model/iGraph_functions.R
https://github.com/jwatowatson/RecurrentVivax/blob/master/Genetic_Model/iGraph_functions.R
https://aimeertaylor.github.io/Pv3Rs/articles/posterior-probabilities.html
https://aimeertaylor.github.io/Pv3Rs/articles/posterior-probabilities.html

12 plot_simplex

v.colours Vertex colours anticlockwise from top.

plot.tri Logical; draws the triangular boundary if TRUE (default).

p.coords Matrix of 3D simplex coordinates (e.g., per-recurrence probabilities of recrude-
scence, relapse and reinfection), one vector of 3D coordinates per row, each row
is projected onto 2D coordinates using project2D() and plotted as a single sim-
plex point using graphics::points(). If the user provides a vector encoding
a probability triplet summing to one, it is converted to a matrix with one row.

p.labels Labels of points in p.coords (default row names of p.coords) No labels if NA.

p.labels.pos Position of p.labels: 1 = below, 2 = left, 3 = above (default) and 4 = right. Can
be a single value or a vector.

p.labels.cex Size expansion of p.labels passed to text.

... Additional parameters passed to graphics::points().

Value

None

Examples

Plot 2D simplex
plot_simplex(p.coords = diag(3),

p.labels = c("(1,0,0)", "(0,1,0)", "(0,0,1)"),
p.labels.pos = c(1,3,3))

==
Given data on an enrollment episode and a recurrence,
compute the posterior probabilities of the 3Rs and plot the deviation of the
posterior from the prior
==

Some data:
y <- list(list(m1 = c('a', 'b'), m2 = c('c', 'd')), # Enrollment episode

list(m1 = c('a'), m2 = c('c'))) # Recurrent episode

Some allele frequencies:
fs <- list(m1 = setNames(c(0.4, 0.6), c('a', 'b')),

m2 = setNames(c(0.2, 0.8), c('c', 'd')))

A vector of prior probabilities:
prior <- array(c(0.2, 0.3, 0.5), dim = c(1,3),

dimnames = list(NULL, c("C", "L", "I")))

Compute posterior probabilities
post <- compute_posterior(y, fs, prior, progress.bar = FALSE)

Plot simplex with the prior and posterior
plot_simplex(p.coords = rbind(prior, post$marg),

p.labels = c("Prior", "Posterior"),
pch = 20)

project2D 13

Add the deviation between the prior and posterior: requires obtaining 2D
coordinates manually
xy_prior <- project2D(as.vector(prior))
xy_post <- project2D(as.vector(post$marg))
arrows(x0 = xy_prior["x"], x1 = xy_post["x"],

y0 = xy_prior["y"], y1 = xy_post["y"], length = 0.1)

project2D Project 3D probability coordinates onto 2D simplex coordinates

Description

Project three probabilities that sum to one (e.g., per-recurrence probabilities of recrudescence, re-
lapse and reinfection) onto the coordinates of a 2D simplex centred at the origin (i.e., a triangle
centred at (0,0) with unit-length sides).

Usage

project2D(v)

Arguments

v A numeric vector of three numbers in zero to one that sum to one.

Details

The top, left, and right vertices of the 2D simplex correspond with the first, second and third entries
of v, respectively. Each probability is proportional to the distance from the point on the simplex
to the side opposite the corresponding probability; see Examples below and plot_simplex() for
more details.

Value

A numeric vector of two coordinates that can be used to plot the probability vector v on the origin-
centred 2D simplex.

Examples

probabilities_of_v1_v2_v3 <- c(0.75,0.20,0.05)
coordinates <- project2D(v = probabilities_of_v1_v2_v3)

Plot probability vector on 2D simplex
plot_simplex(v.labels = c("v1", "v2", "v3"))
points(x = coordinates[1], y = coordinates[2], pch = 20)

Plot the distances that represent probabilities
get vertices, get points on edges by orthogonal projection, plot arrows
v <- apply(matrix(c(1,0,0,0,1,0,0,0,1), nrow = 3), 1, project2D)
p3 <- v[,1] + sum((coordinates - v[,1]) * (v[,2] - v[,1])) * (v[,2] - v[,1])

14 RG_to_igraph

p1 <- v[,2] + sum((coordinates - v[,2]) * (v[,3] - v[,2])) * (v[,3] - v[,2])
p2 <- v[,3] + sum((coordinates - v[,3]) * (v[,1] - v[,3])) * (v[,1] - v[,3])
arrows(x0 = coordinates[1], y0 = coordinates[2], x1 = p1[1], y1 = p1[2], length = 0.1)
arrows(x0 = coordinates[1], y0 = coordinates[2], x1 = p2[1], y1 = p2[2], length = 0.1)
arrows(x0 = coordinates[1], y0 = coordinates[2], x1 = p3[1], y1 = p3[2], length = 0.1)

RG_to_igraph Converts a relationship graph (RG) encoded as a list to an igraph
object

Description

Converts an RG encoded as a list to an igraph object, which requires more memory allocation but
can be plotted using plot_RG.

Usage

RG_to_igraph(RG, MOIs)

Arguments

RG List encoding an RG; see Value of enumerate_RGs when igraph = FALSE.

MOIs Vector of per-episode multiplicities of infection (MOIs), i.e., numbers of per-
episode genotypes / vertices; adds to the graph an attribute that is used by
plot_RG to group genotypes / vertices by episode.

Value

A weighted graph whose edge weights 1 and 0.5 encode clonal and sibling relationships, respec-
tively.

Examples

MOIs <- c(3,2)
set.seed(6)
RG_as_list <- sample_RG(MOIs, igraph = FALSE)
RG_as_igraph <- RG_to_igraph(RG_as_list, MOIs)

RG encoded as a list requires less memory allocation
utils::object.size(RG_as_list)
utils::object.size(RG_as_igraph)

RG encoded as an igraph object can be plotted using plot_RG() and
manipulated using igraph functions
plot_RG(RG_as_igraph, margin = rep(0,4), vertex.label = NA)

Edge weights 1 and 0.5 encode clonal and sibling relationships
igraph::E(RG_as_igraph)$weight

sample_RG 15

Vertex attribute group encodes episode membership
igraph::V(RG_as_igraph)$group

sample_RG Sample a relationship graph (RG)

Description

Uses the techniques in enumerate_RGs to sample a single RG uniformly. All clonal partitions
are generated, each weighted by its number of consistent sibling partitions. A clonal partition is
sampled proportional to its weight, then a consistent sibling partition is drawn uniformly. The
resulting nested partition represents the RG; see enumerate_RGs for details.

Usage

sample_RG(MOIs, igraph = TRUE)

Arguments

MOIs Vector of per-episode multiplicities of infection (MOIs), i.e., numbers of per-
episode genotypes / vertices.

igraph Logical; if TRUE (default), returns the RG as an igraph object.

Value

An RG encoded either as an igraph object (default), or as a list; see enumerate_RGs for details.

Examples

set.seed(1)
RG <- sample_RG(c(3, 2))
plot_RG(RG, vertex.label = NA)

ys_VHX_BPD Example Plasmodium vivax data

Description

Previously-published microsatellite data on P. vivax parasites extracted from study participants en-
rolled in the Best Primaquine Dose (BPD) and Vivax History (VHX) trials; see Taylor & Watson
et al. 2019 (doi:10.1038/s4146701913412x) for more details of the genetic data; for more details
of the VHX and BPD trials, see Chu et al. 2018a (doi:10.1093/cid/ciy319) and Chu et al. 2018b
(doi:10.1093/cid/ciy735).

https://doi.org/10.1038/s41467-019-13412-x
https://doi.org/10.1093/cid/ciy319
https://doi.org/10.1093/cid/ciy735

16 ys_VHX_BPD

Usage

ys_VHX_BPD

Format

A list of 217 study participants; for each study participant, a list of one or more episodes; for each
episode, a list of three or more microsatellite markers; for each marker, a vector of observed alleles
(repeat lengths). For example:

BPD_103 Study participant identifier: study participant 103 in the BPD trial

BPD_103_1 Episode identifier: episode one of study participant 103 in the BPD trial

PV.3.27 Marker identifier: P. vivax 3.27

18 Allele identifier: 18 repeat lengths

Source

• https://zenodo.org/records/3368828

• https://github.com/aimeertaylor/Pv3Rs/blob/main/data-raw/ys_VHX_BPD.R

https://zenodo.org/records/3368828
https://github.com/aimeertaylor/Pv3Rs/blob/main/data-raw/ys_VHX_BPD.R

Index

∗ datasets
fs_VHX_BPD, 7
ys_VHX_BPD, 15

brewer.pal, 8

compute_posterior, 2, 5, 6
compute_posterior(), 8

determine_MOIs, 5

enumerate_RGs, 3, 4, 6, 14, 15

fs_VHX_BPD, 7

graphics::points(), 12

par, 8
plot.igraph, 10
plot_data, 8
plot_RG, 4, 10, 14
plot_simplex, 11
plot_simplex(), 13
project2D, 13
project2D(), 11, 12

RG_to_igraph, 4, 7, 10, 14

sample_RG, 15

text, 12

ys_VHX_BPD, 7, 15

17

	compute_posterior
	determine_MOIs
	enumerate_RGs
	fs_VHX_BPD
	plot_data
	plot_RG
	plot_simplex
	project2D
	RG_to_igraph
	sample_RG
	ys_VHX_BPD
	Index

