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Preface

This introduction to R is derived from an original set of notes describing the S and S-
PLUS environments written in 1990-2 by Bill Venables and David M. Smith when at the
University of Adelaide. We have made a number of small changes to reflect differences
between the R and S programs, and expanded some of the material.

We would like to extend warm thanks to Bill Venables (and David Smith) for granting
permission to distribute this modified version of the notes in this way, and for being a
supporter of R from way back.

Comments and corrections are always welcome. Please address email correspondence to
R-help@R-project.org.

Suggestions to the reader

Most R novices will start with the introductory session in Appendix A. This should give
some familiarity with the style of R sessions and more importantly some instant feedback
on what actually happens.

Many users will come to R mainly for its graphical facilities. See Chapter 12 [Graphics],
page 68, which can be read at almost any time and need not wait until all the preceding
sections have been digested.


mailto:R-help@R-project.org

1 Introduction and preliminaries

1.1 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. Among other things it has

e an effective data handling and storage facility,
e a suite of operators for calculations on arrays, in particular matrices,
e a large, coherent, integrated collection of intermediate tools for data analysis,

e graphical facilities for data analysis and display either directly at the computer or on
hardcopy, and

e a well developed, simple and effective programming language (called ‘S’) which includes
conditionals, loops, user defined recursive functions and input and output facilities.
(Indeed most of the system supplied functions are themselves written in the S language.)

The term “environment” is intended to characterize it as a fully planned and coherent
system, rather than an incremental accretion of very specific and inflexible tools, as is
frequently the case with other data analysis software.

R is very much a vehicle for newly developing methods of interactive data analysis. It
has developed rapidly, and has been extended by a large collection of packages. However,
most programs written in R are essentially ephemeral, written for a single piece of data
analysis.

1.2 Related software and documentation

R can be regarded as an implementation of the S language which was developed at Bell
Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of
the S-PLUS systems.

The evolution of the S language is characterized by four books by John Chambers and
coauthors. For R, the basic reference is The New S Language: A Programming Environment
for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R.
Wilks. The new features of the 1991 release of S are covered in Statistical Models in S
edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of
the methods package are based on those described in Programming with Data by John M.
Chambers. See Appendix F [References|, page 107, for precise references.

There are now a number of books which describe how to use R for data analysis and
statistics, and documentation for S/S-PLUS can typically be used with R, keeping the
differences between the S implementations in mind. See Section “What documentation
exists for R?” in The R statistical system FAQ.

1.3 R and statistics

Our introduction to the R environment did not mention statistics, yet many people use
R as a statistics system. We prefer to think of it of an environment within which many
classical and modern statistical techniques have been implemented. A few of these are
built into the base R environment, but many are supplied as packages. There are about
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25 packages supplied with R (called “standard” and “recommended” packages) and many
more are available through the CRAN family of Internet sites (via https://CRAN.
R-project.org) and elsewhere. More details on packages are given later (see Chapter 13
[Packages|, page 83).

Most classical statistics and much of the latest methodology is available for use with R,
but users may need to be prepared to do a little work to find it.

There is an important difference in philosophy between S (and hence R) and the other
main statistical systems. In S a statistical analysis is normally done as a series of steps,
with intermediate results being stored in objects. Thus whereas SAS and SPSS will give
copious output from a regression or discriminant analysis, R will give minimal output and
store the results in a fit object for subsequent interrogation by further R functions.

1.4 R and the window system

The most convenient way to use R is at a graphics workstation running a windowing system.
This guide is aimed at users who have this facility. In particular we will occasionally refer to
the use of R on an X window system although the vast bulk of what is said applies generally
to any implementation of the R environment.

Most users will find it necessary to interact directly with the operating system on their
computer from time to time. In this guide, we mainly discuss interaction with the operating
system on UNIX machines. If you are running R under Windows or macOS you will need
to make some small adjustments.

Setting up a workstation to take full advantage of the customizable features of R is a
straightforward if somewhat tedious procedure, and will not be considered further here.
Users in difficulty should seek local expert help.

1.5 Using R interactively

When you use the R program it issues a prompt when it expects input commands. The
default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it
may appear that nothing is happening. However, as we shall see, it is easy to change to a
different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
In using R under UNIX the suggested procedure for the first occasion is as follows:
1. Create a separate sub-directory, say work, to hold data files on which you will use R for
this problem. This will be the working directory whenever you use R for this particular
problem.

$ mkdir work
$ cd work

2. Start the R program with the command
$ R
3. At this point R commands may be issued (see later).
4. To quit the R program the command is
> q0
At this point you will be asked whether you want to save the data from your R session.
On some systems this will bring up a dialog box, and on others you will receive a text


https://CRAN.R-project.org
https://CRAN.R-project.org
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prompt to which you can respond yes, no or cancel (a single letter abbreviation will
do) to save the data before quitting, quit without saving, or return to the R session.
Data which is saved will be available in future R sessions.
Further R sessions are simple.
1. Make work the working directory and start the program as before:

$ cd work
$ R

2. Use the R program, terminating with the q() command at the end of the session.
To use R under Windows the procedure to follow is basically the same. Create a folder

as the working directory, and set that in the Start In field in your R shortcut. Then launch
R by double clicking on the icon.

1.6 An introductory session

Readers wishing to get a feel for R at a computer before proceeding are strongly advised to
work through the introductory session given in Appendix A [A sample session], page 88.

1.7 Getting help with functions and features
R has an inbuilt help facility similar to the man facility of UNIX. To get more information
on any specific named function, for example solve, the command is
> help(solve)
An alternative is
> 7solve

For a feature specified by special characters, the argument must be enclosed in double
or single quotes, making it a “character string”: This is also necessary for a few words with
syntactic meaning including if, for and function.

> help(" [[n)

Either form of quote mark may be used to escape the other, as in the string "It’s
important". Our convention is to use double quote marks for preference.

On most R installations help is available in HTML format by running

> help.start()

which will launch a Web browser that allows the help pages to be browsed with hyperlinks.
On UNIX, subsequent help requests are sent to the HTML-based help system. The ‘Search
Engine and Keywords’ link in the page loaded by help.start() is particularly useful as
it is contains a high-level concept list which searches though available functions. It can be
a great way to get your bearings quickly and to understand the breadth of what R has to
offer.

The help.search command (alternatively 77) allows searching for help in various ways.
For example,

> ?7solve

Try 7help.search for details and more examples.
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The examples on a help topic can normally be run by
> example(topic)
Windows versions of R have other optional help systems: use
> 7help
for further details.

1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive as
are most UNIX based packages, so A and a are different symbols and would refer to different
variables. The set of symbols which can be used in R names depends on the operating system
and country within which R is being run (technically on the locale in use). Normally all
alphanumeric symbols are allowed' (and in some countries this includes accented letters)
plus ‘.” and ‘_’, with the restriction that a name must start with ‘.” or a letter, and if it
starts with ‘.’ the second character must not be a digit. Names are effectively unlimited in

length.

Elementary commands consist of either expressions or assignments. If an expression is
given as a command, it is evaluated, printed (unless specifically made invisible), and the
value is lost. An assignment also evaluates an expression and passes the value to a variable
but the result is not automatically printed.

¢

Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary
commands can be grouped together into one compound expression by braces (‘{’ and ‘}’).
Comments can be put almost? anywhere, starting with a hashmark (‘#’), everything to the
end of the line is a comment.

If a command is not complete at the end of a line, R will give a different prompt, by
default

+

on second and subsequent lines and continue to read input until the command is syntactically
complete. This prompt may be changed by the user. We will generally omit the continuation
prompt and indicate continuation by simple indenting.

Command lines entered at the console are limited® to about 4095 bytes (not characters).

1.9 Recall and correction of previous commands

Under many versions of UNIX and on Windows, R provides a mechanism for recalling and
re-executing previous commands. The vertical arrow keys on the keyboard can be used to
scroll forward and backward through a command history. Once a command is located in
this way, the cursor can be moved within the command using the horizontal arrow keys,
and characters can be removed with the DEL key or added with the other keys. More details
are provided later: see Appendix C [The command-line editor], page 100.

1 For portable R code (including that to be used in R packages) only A-Za—z0-9 should be used.

2 ot inside strings, nor within the argument list of a function definition

3 some of the consoles will not allow you to enter more, and amongst those which do some will silently
discard the excess and some will use it as the start of the next line.
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The recall and editing capabilities under UNIX are highly customizable. You can find
out how to do this by reading the manual entry for the readline library.

Alternatively, the Emacs text editor provides more general support mechanisms (via
ESS, Emacs Speaks Statistics) for working interactively with R. See Section “R and Emacs”
in The R statistical system FAQ.

1.10 Executing commands from or diverting output to a file
If commands? are stored in an external file, say commands.R in the working directory work,
they may be executed at any time in an R session with the command

> source("commands.R")

For Windows Source is also available on the File menu. The function sink,

> sink("record.lis")
will divert all subsequent output from the console to an external file, record.lis. The
command

> sink()

restores it to the console once again.

1.11 Data permanency and removing objects

The entities that R creates and manipulates are known as objects. These may be variables,
arrays of numbers, character strings, functions, or more general structures built from such
components.

During an R session, objects are created and stored by name (we discuss this process in
the next section). The R command

> objects()

(alternatively, 1s()) can be used to display the names of (most of) the objects which are
currently stored within R. The collection of objects currently stored is called the workspace.

To remove objects the function rm is available:
> rm(x, y, z, ink, junk, temp, foo, bar)
All objects created during an R session can be stored permanently in a file for use in
future R sessions. At the end of each R session you are given the opportunity to save all
the currently available objects. If you indicate that you want to do this, the objects are

written to a file called .RData® in the current directory, and the command lines used in the
session are saved to a file called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from
this file. At the same time the associated commands history is reloaded.

It is recommended that you should use separate working directories for analyses con-
ducted with R. It is quite common for objects with names x and y to be created during an
analysis. Names like this are often meaningful in the context of a single analysis, but it can

4 of unlimited length.

5 The leading “dot” in this file name makes it invisible in normal file listings in UNIX, and in default GUI
file listings on macOS and Windows.



be quite hard to decide what they might be when the several analyses have been conducted
in the same directory.



2 Simple manipulations; numbers and vectors

2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector,
which is a single entity consisting of an ordered collection of numbers. To set up a vector
named x, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R
command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c¢() which in this context can take
an arbitrary number of vector arguments and whose value is a vector got by concatenating
its arguments end to end.?

A number occurring by itself in an expression is taken as a vector of length one.

Notice that the assignment operator (‘<-’), which consists of the two characters ‘<’ (“less
than”) and ‘-’ (“minus”) occurring strictly side-by-side and it ‘points’ to the object receiving
the value of the expression. In most contexts the ‘=" operator can be used as an alternative.

Assignment can also be made using the function assign(). An equivalent way of making
the same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
The usual operator, <-, can be thought of as a syntactic short-cut to this.

Assignments can also be made in the other direction, using the obvious change in the
assignment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) > x

If an expression is used as a complete command, the value is printed and lost®. So now
if we were to use the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and the value of x, of
course, unchanged).

The further assignment
>y <= c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the
middle place.

1 With other than vector types of argument, such as 1ist mode arguments, the action of c() is rather
different. See Section 6.2.1 [Concatenating lists], page 30.

2 Actually, it is still available as .Last.value before any other statements are executed.
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2.2 Vector arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element by element. Vectors occurring in the same expression need not all be of the same
length. If they are not, the value of the expression is a vector with the same length as the
longest vector which occurs in the expression. Shorter vectors in the expression are recycled
as often as need be (perhaps fractionally) until they match the length of the longest vector.
In particular a constant is simply repeated. So with the above assignments the command

> v <-2xx +y + 1

generates a new vector v of length 11 constructed by adding together, element by element,
2xx repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usual +, -, *, / and ~ for raising to a power.
In addition all of the common arithmetic functions are available. log, exp, sin, cos, tan,
sqrt, and so on, all have their usual meaning. max and min select the largest and smallest
elements of a vector respectively. range is a function whose value is a vector of length two,
namely c(min(x), max(x)). length(x) is the number of elements in x, sum(x) gives the
total of the elements in x, and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample mean, which is the
same as sum(x)/length(x), and var(x) which gives
sum((x-mean(x))~2)/(length(x)-1)
or sample variance. If the argument to var () is an n-by-p matrix the value is a p-by-p sample
covariance matrix got by regarding the rows as independent p-variate sample vectors.

sort (x) returns a vector of the same size as x with the elements arranged in increasing
order; however there are other more flexible sorting facilities available (see order() or
sort.list () which produce a permutation to do the sorting).

Note that max and min select the largest and smallest values in their arguments, even
if they are given several vectors. The parallel maximum and minimum functions pmax
and pmin return a vector (of length equal to their longest argument) that contains in each
element the largest (smallest) element in that position in any of the input vectors.

For most purposes the user will not be concerned if the “numbers” in a numeric vector
are integers, reals or even complex. Internally calculations are done as double precision real
numbers, or double precision complex numbers if the input data are complex.

To work with complex numbers, supply an explicit complex part. Thus
sqrt (-17)
will give NaN and a warning, but
sqrt (-17+01)

will do the computations as complex numbers.

2.3 Generating regular sequences

R has a number of facilities for generating commonly used sequences of numbers. For
example 1:30 is the vector c(1, 2, ..., 29, 30). The colon operator has high priority
within an expression, so, for example 2*1:15 is the vector c(2, 4, ..., 28, 30). Putn
<- 10 and compare the sequences 1:n-1 and 1:(n-1).
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The construction 30:1 may be used to generate a sequence backwards.

The function seq() is a more general facility for generating sequences. It has five
arguments, only some of which may be specified in any one call. The first two arguments, if
given, specify the beginning and end of the sequence, and if these are the only two arguments
given the result is the same as the colon operator. That is seq(2,10) is the same vector as
2:10.

Arguments to seq(), and to many other R functions, can also be given in named form,
in which case the order in which they appear is irrelevant. The first two arguments may be
named from=value and to=value; thus seq(1,30), seq(from=1, to=30) and seq(to=30,
from=1) are all the same as 1:30. The next two arguments to seq() may be named
by=value and length=value, which specify a step size and a length for the sequence re-
spectively. If neither of these is given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generates in s3 the vector c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0). Similarly
> s4 <- seq(length=51, from=-5, by=.2)

generates the same vector in s4.

The fifth argument may be named along=vector, which is normally used as the only
argument to create the sequence 1, 2, ..., length(vector), or the empty sequence if the
vector is empty (as it can be).

A related function is rep() which can be used for replicating an object in various com-
plicated ways. The simplest form is

> sb <- rep(x, times=5)
which will put five copies of x end-to-end in s5. Another useful version is
> s6 <- rep(x, each=b)

which repeats each element of x five times before moving on to the next.

2.4 Logical vectors

As well as numerical vectors, R allows manipulation of logical quantities. The elements of
a logical vector can have the values TRUE, FALSE, and NA (for “not available”, see below).
The first two are often abbreviated as T and F, respectively. Note however that T and F are
just variables which are set to TRUE and FALSE by default, but are not reserved words and
hence can be overwritten by the user. Hence, you should always use TRUE and FALSE.

Logical vectors are generated by conditions. For example
> temp <- x > 13

sets temp as a vector of the same length as x with values FALSE corresponding to elements
of x where the condition is not met and TRUE where it is.

The logical operators are <, <=, >, >= == for exact equality and !'= for inequality. In
addition if c1 and c2 are logical expressions, then c1 & c2 is their intersection ( “and”),
cl | ¢2 is their union (“or”), and !c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into
numeric vectors, FALSE becoming 0 and TRUE becoming 1. However there are situations
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where logical vectors and their coerced numeric counterparts are not equivalent, for example
see the next subsection.

2.5 Missing values

In some cases the components of a vector may not be completely known. When an element
or value is “not available” or a “missing value” in the statistical sense, a place within a
vector may be reserved for it by assigning it the special value NA. In general any operation
on an NA becomes an NA. The motivation for this rule is simply that if the specification of
an operation is incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value TRUE if
and only if the corresponding element in x is NA.

>z <- ¢(1:3,NA); ind <- is.na(z)

Notice that the logical expression x == NA is quite different from is.na(x) since NA is not
really a value but a marker for a quantity that is not available. Thus x == NA is a vector of
the same length as x all of whose values are NA as the logical expression itself is incomplete
and hence undecidable.

Note that there is a second kind of “missing” values which are produced by numerical
computation, the so-called Not a Number, NaN, values. Examples are

> 0/0
or
> Inf - Inf
which both give NaN since the result cannot be defined sensibly.

In summary, is.na(xx) is TRUE both for NA and NaN values. To differentiate these,
is.nan(xx) is only TRUE for NaNs.

Missing values are sometimes printed as <NA> when character vectors are printed without
quotes.

2.6 Character vectors

Character quantities and character vectors are used frequently in R, for example as plot
labels. Where needed they are denoted by a sequence of characters delimited by the double
quote character, e.g., "x-values", "New iteration results".

Character strings are entered using either matching double (") or single (?) quotes, but
are printed using double quotes (or sometimes without quotes). They use C-style escape
sequences, using \ as the escape character, so \ is entered and printed as \\, and inside
double quotes " is entered as \". Other useful escape sequences are \n, newline, \t, tab
and \b, backspace—see 7Quotes for a full list.

Character vectors may be concatenated into a vector by the c() function; examples of
their use will emerge frequently.

The paste() function takes an arbitrary number of arguments and concatenates them
one by one into character strings. Any numbers given among the arguments are coerced
into character strings in the evident way, that is, in the same way they would be if they were
printed. The arguments are by default separated in the result by a single blank character,
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but this can be changed by the named argument, sep=string, which changes it to string,
possibly empty.
For example
> labs <- paste(c("X","Y"), 1:10, sep="")
makes labs into the character vector
C("X:I.“, II'Y2||’ IIX3"’ ||Y4ll’ IIXSII, "Y6||, llX?II, IIY8"’ lng", ||Y10’l)
Note particularly that recycling of short lists takes place here too; thus c("X", "Y") is
repeated 5 times to match the sequence 1:10.3

2.7 Index vectors; selecting and modifying subsets of a data
set

Subsets of the elements of a vector may be selected by appending to the name of the vector

an indez vector in square brackets. More generally any expression that evaluates to a vector

may have subsets of its elements similarly selected by appending an index vector in square
brackets immediately after the expression.

Such index vectors can be any of four distinct types.

1. A logical vector. In this case the index vector is recycled to the same length as the
vector from which elements are to be selected. Values corresponding to TRUE in the
index vector are selected and those corresponding to FALSE are omitted. For example

>y <= x[!is.na(x)]
creates (or re-creates) an object y which will contain the non-missing values of x, in
the same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[('is.na(x)) & x>0] -> z
creates an object z and places in it the values of the vector x+1 for which the corre-
sponding value in x was both non-missing and positive.

2. A vector of positive integral quantities. In this case the values in the index vector must
lie in the set {1, 2, ..., length(x)}. The corresponding elements of the vector are
selected and concatenated, in that order, in the result. The index vector can be of any
length and the result is of the same length as the index vector. For example x[6] is
the sixth component of x and

> x[1:10]
selects the first 10 elements of x (assuming length(x) is not less than 10). Also

> c("x","y") [rep(c(1,2,2,1), times=4)]
(an admittedly unlikely thing to do) produces a character vector of length 16 consisting
of "x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. Such an index vector specifies the values to
be excluded rather than included. Thus

>y <= x[-(1:5)]

gives y all but the first five elements of x.

3 paste(..., collapse=ss) joins the arguments into a single character string putting ss in between, e.g.,
ss <= "|". There are more tools for character manipulation, see the help for sub and substring.
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4. A vector of character strings. This possibility only applies where an object has a names
attribute to identify its components. In this case a sub-vector of the names vector may
be used in the same way as the positive integral labels in item 2 further above.

> fruit <- c(5, 10, 1, 20)
> names (fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]

The advantage is that alphanumeric names are often easier to remember than numeric
indices. This option is particularly useful in connection with data frames, as we shall
see later.

An indexed expression can also appear on the receiving end of an assignment, in which
case the assignment operation is performed only on those elements of the vector. The
expression must be of the form vector[index_vector] as having an arbitrary expression
in place of the vector name does not make much sense here.

For example
> x[is.na(x)] <- 0
replaces any missing values in x by zeros and
> yly < 0] <= -y[y < 0]
has the same effect as
> y <- abs(y)

2.8 Other types of objects

Vectors are the most important type of object in R, but there are several others which we
will meet more formally in later sections.

e matrices or more generally arrays are multi-dimensional generalizations of vectors. In
fact, they are vectors that can be indexed by two or more indices and will be printed
in special ways. See Chapter 5 [Arrays and matrices], page 20.

e factors provide compact ways to handle categorical data. See Chapter 4 [Factors],
page 17.

e lists are a general form of vector in which the various elements need not be of the same
type, and are often themselves vectors or lists. Lists provide a convenient way to return
the results of a statistical computation. See Section 6.1 [Lists|, page 29.

e data frames are matrix-like structures, in which the columns can be of different types.
Think of data frames as ‘data matrices’ with one row per observational unit but with
(possibly) both numerical and categorical variables. Many experiments are best de-
scribed by data frames: the treatments are categorical but the response is numeric.
See Section 6.3 [Data frames|, page 30.

e functions are themselves objects in R which can be stored in the project’s workspace.
This provides a simple and convenient way to extend R. See Chapter 10 [Writing your
own functions|, page 45.
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3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length

The entities R operates on are technically known as objects. Examples are vectors of numeric
(real) or complex values, vectors of logical values and vectors of character strings. These
are known as “atomic” structures since their components are all of the same type, or mode,
namely numerict, complez, logical, character and raw.

Vectors must have their values all of the same mode. Thus any given vector must be
unambiguously either logical, numeric, complex, character or raw. (The only apparent
exception to this rule is the special “value” listed as NA for quantities not available, but in
fact there are several types of NA). Note that a vector can be empty and still have a mode.
For example the empty character string vector is listed as character(0) and the empty
numeric vector as numeric(0).

R also operates on objects called lists, which are of mode list. These are ordered sequences
of objects which individually can be of any mode. lists are known as “recursive” rather
than atomic structures since their components can themselves be lists in their own right.

The other recursive structures are those of mode function and expression. Functions are
the objects that form part of the R system along with similar user written functions, which
we discuss in some detail later. Expressions as objects form an advanced part of R which
will not be discussed in this guide, except indirectly when we discuss formulae used with
modeling in R.

By the mode of an object we mean the basic type of its fundamental constituents. This
is a special case of a “property” of an object. Another property of every object is its length.
The functions mode (object) and length(object) can be used to find out the mode and
length of any defined structure?.

Further properties of an object are usually provided by attributes(object), see
Section 3.3 [Getting and setting attributes], page 15. Because of this, mode and length are
also called “intrinsic attributes” of an object.

For example, if z is a complex vector of length 100, then in an expression mode (z) is the
character string "complex" and length(z) is 100.

R caters for changes of mode almost anywhere it could be considered sensible to do so,
(and a few where it might not be). For example with

>z <-0:9
we could put
> digits <- as.character(z)

after which digits is the character vector c("0", "1", "2", ..., "9"). A further coer-
cton, or change of mode, reconstructs the numerical vector again:

> d <- as.integer(digits)

L' numeric mode is actually an amalgam of two distinct modes, namely integer and double precision, as
explained in the manual.

2 Note however that length(object) does not always contain intrinsic useful information, e.g., when
object is a function.
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Now d and z are the same.®> There is a large collection of functions of the form
as.something() for either coercion from one mode to another, or for investing an object
with some other attribute it may not already possess. The reader should consult the
different help files to become familiar with them.

3.2 Changing the length of an object

An “empty” object may still have a mode. For example
> e <- numeric()

makes e an empty vector structure of mode numeric. Similarly character() is a empty
character vector, and so on. Once an object of any size has been created, new components
may be added to it simply by giving it an index value outside its previous range. Thus

> e[3] <- 17

now makes e a vector of length 3, (the first two components of which are at this point both
NA). This applies to any structure at all, provided the mode of the additional component(s)
agrees with the mode of the object in the first place.

This automatic adjustment of lengths of an object is used often, for example in the
scan() function for input. (see Section 7.2 [The scan() function], page 34.)

Conversely to truncate the size of an object requires only an assignment to do so. Hence
if alpha is an object of length 10, then

> alpha <- alphal[2 * 1:5]

makes it an object of length 5 consisting of just the former components with even index.
(The old indices are not retained, of course.) We can then retain just the first three values
by

> length(alpha) <- 3

and vectors can be extended (by missing values) in the same way.

3.3 Getting and setting attributes

The function attributes(object) returns a list of all the non-intrinsic attributes currently
defined for that object. The function attr(object, name) can be used to select a specific
attribute. These functions are rarely used, except in rather special circumstances when
some new attribute is being created for some particular purpose, for example to associate
a creation date or an operator with an R object. The concept, however, is very important.

Some care should be exercised when assigning or deleting attributes since they are an
integral part of the object system used in R.

When it is used on the left hand side of an assignment it can be used either to associate
a new attribute with object or to change an existing one. For example

> attr(z, "dim") <- c(10,10)

allows R to treat z as if it were a 10-by-10 matrix.

3 In general, coercion from numeric to character and back again will not be exactly reversible, because of
roundoff errors in the character representation.
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3.4 The class of an object

All objects in R have a class, reported by the function class. For simple vectors this is
just the mode, for example "numeric", "logical", "character" or "list", but "matrix",
"array", "factor" and "data.frame" are other possible values.

A special attribute known as the class of the object is used to allow for an object-oriented
style! of programming in R. For example if an object has class "data.frame", it will be
printed in a certain way, the plot() function will display it graphically in a certain way,
and other so-called generic functions such as summary () will react to it as an argument in
a way sensitive to its class.

To remove temporarily the effects of class, use the function unclass(). For example if
winter has the class "data.frame" then

> winter
will print it in data frame form, which is rather like a matrix, whereas
> unclass(winter)

will print it as an ordinary list. Only in rather special situations do you need to use this
facility, but one is when you are learning to come to terms with the idea of class and generic
functions.

Generic functions and classes will be discussed further in Section 10.9 [Object orienta-
tion], page 52, but only briefly.

4 A different style using ‘formal’ or ‘S4’ classes is provided in package methods.
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4 Ordered and unordered factors

A factor is a vector object used to specify a discrete classification (grouping) of the compo-
nents of other vectors of the same length. R provides both ordered and unordered factors.
While the “real” application of factors is with model formulae (see Section 11.1.1 [Con-
trasts|, page 57), we here look at a specific example.

4.1 A specific example

Suppose, for example, we have a sample of 30 tax accountants from all the states and
territories of Australia’ and their individual state of origin is specified by a character vector
of state mnemonics as

> State <- C(Iltasll R "Sa" s |Iq1dll . IInst . IInsw" s I|ntll s "Wa" s "Wa" s
llqldll, "ViC", IIHSWII’ "ViC", IIqldll’ IIqldll, "S&", "taS",
“Sa." s ||nt n s “Wa" B IIViCII s IIqldll s "IISW" , "nSW" , Ilwall ,
“Sa", ||actll, “IISW", “ViC", “ViC", “a.Ct")

Notice that in the case of a character vector, “sorted” means sorted in alphabetical order.
A factor is similarly created using the factor () function:

> statef <- factor(state)
The print () function handles factors slightly differently from other objects:

> statef

[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic gld qld sa
[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act
Levels: act nsw nt gqld sa tas vic wa

To find out the levels of a factor the function levels() can be used.

> levels(statef)
[1] IIaCt n Ilnswll llntll llqldll “Sa" |Itasll "ViC" llwall

4.2 The function tapply() and ragged arrays
To continue the previous example, suppose we have the incomes of the same tax accountants
in another vector (in suitably large units of money)

> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
59, 46, 58, 43)
To calculate the sample mean income for each state we can now use the special function
tapply O:
> incmeans <- tapply(incomes, statef, mean)
giving a means vector with the components labelled by the levels

act nsw nt qld sa tas vic wa
44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250

! Readers should note that there are eight states and territories in Australia, namely the Australian Capital
Territory, New South Wales, the Northern Territory, Queensland, South Australia, Tasmania, Victoria
and Western Australia.
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The function tapply() is used to apply a function, here mean(), to each group of com-
ponents of the first argument, here incomes, defined by the levels of the second component,
here statef?, as if they were separate vector structures. The result is a structure of the
same length as the levels attribute of the factor containing the results. The reader should
consult the help document for more details.

Suppose further we needed to calculate the standard errors of the state income means.
To do this we need to write an R function to calculate the standard error for any given
vector. Since there is an builtin function var() to calculate the sample variance, such a
function is a very simple one liner, specified by the assignment:

> stdError <- function(x) sqrt(var(x)/length(x))

(Writing functions will be considered later in Chapter 10 [Writing your own functions],
page 45. Note that R’s a builtin function sd () is something different.) After this assignment,
the standard errors are calculated by

> incster <- tapply(incomes, statef, stdError)
and the values calculated are then

> incster
act nsw nt qld sa tas vic wa
1.5 4.3102 4.5 4.1061 2.7386 0.5 5.244 2.6575

As an exercise you may care to find the usual 95% confidence limits for the state mean
incomes. To do this you could use tapply() once more with the length() function to find
the sample sizes, and the qt () function to find the percentage points of the appropriate
t-distributions. (You could also investigate R’s facilities for ¢-tests.)

The function tapply () can also be used to handle more complicated indexing of a vector
by multiple categories. For example, we might wish to split the tax accountants by both
state and sex. However in this simple instance (just one factor) what happens can be
thought of as follows. The values in the vector are collected into groups corresponding
to the distinct entries in the factor. The function is then applied to each of these groups
individually. The value is a vector of function results, labelled by the levels attribute of
the factor.

The combination of a vector and a labelling factor is an example of what is sometimes
called a ragged array, since the subclass sizes are possibly irregular. When the subclass sizes
are all the same the indexing may be done implicitly and much more efficiently, as we see
in the next section.

4.3 Ordered factors

The levels of factors are stored in alphabetical order, or in the order they were specified to
factor if they were specified explicitly.

Sometimes the levels will have a natural ordering that we want to record and want our
statistical analysis to make use of. The ordered() function creates such ordered factors
but is otherwise identical to factor. For most purposes the only difference between ordered

2 Note that tapply() also works in this case when its second argument is not a factor, e.g.,
‘tapply(incomes, state)’, and this is true for quite a few other functions, since arguments are coerced
to factors when necessary (using as.factor()).
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and unordered factors is that the former are printed showing the ordering of the levels, but
the contrasts generated for them in fitting linear models are different.
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5 Arrays and matrices

5.1 Arrays

An array can be considered as a multiply subscripted collection of data entries, for example
numeric. R allows simple facilities for creating and handling arrays, and in particular the
special case of matrices.

A dimension vector is a vector of non-negative integers. If its length is k£ then the array
is k-dimensional, e.g. a matrix is a 2-dimensional array. The dimensions are indexed from
one up to the values given in the dimension vector.

A vector can be used by R as an array only if it has a dimension vector as its dim
attribute. Suppose, for example, z is a vector of 1500 elements. The assignment

> dim(z) <- ¢(3,5,100)
gives it the dim attribute that allows it to be treated as a 3 by 5 by 100 array.

Other functions such asmatrix () and array () are available for simpler and more natural
looking assignments, as we shall see in Section 5.4 [The array() function], page 22.

The values in the data vector give the values in the array in the same order as they
would occur in FORTRAN, that is “column major order,” with the first subscript moving
fastest and the last subscript slowest.

For example if the dimension vector for an array, say a, is c¢(3,4,2) then there are
3x4x2 = 24 entries in a and the data vector holds them in the order a[1,1,1], al[2,1,1],

., al2,4,2], al3,4,2].

Arrays can be one-dimensional: such arrays are usually treated in the same way as
vectors (including when printing), but the exceptions can cause confusion.

5.2 Array indexing. Subsections of an array

Individual elements of an array may be referenced by giving the name of the array followed
by the subscripts in square brackets, separated by commas.

More generally, subsections of an array may be specified by giving a sequence of index
vectors in place of subscripts; however if any index position is given an empty index vector,
then the full range of that subscript is taken.

Continuing the previous example, a[2,,] is a 4 x 2 array with dimension vector c(4,2)
and data vector containing the values
c(al2,1,1], al2,2,1], al2,3,1], al2,4,1],
al2,1,2], al2,2,2], al2,3,2], al2,4,2])
in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts
entirely and using a alone.

For any array, say Z, the dimension vector may be referenced explicitly as dim(Z) (on
either side of an assignment).

Also, if an array name is given with just one subscript or index vector, then the cor-
responding values of the data vector only are used; in this case the dimension vector is
ignored. This is not the case, however, if the single index is not a vector but itself an array,
as we next discuss.
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5.3 Index matrices

As well as an index vector in any subscript position, a matrix may be used with a single
index matriz in order either to assign a vector of quantities to an irregular collection of
elements in the array, or to extract an irregular collection as a vector.

A matrix example makes the process clear. In the case of a doubly indexed array, an
index matrix may be given consisting of two columns and as many rows as desired. The
entries in the index matrix are the row and column indices for the doubly indexed array.
Suppose for example we have a 4 by 5 array X and we wish to do the following:

e Extract elements X[1,3], X[2,2] and X[3,1] as a vector structure, and
e Replace these entries in the array X by zeroes.

In this case we need a 3 by 2 subscript array, as in the following example.
> x <- array(1:20, dim=c(4,5)) # Generate a 4 by 5 array.
> X
[,11 [,21 [,31 [,4]1 [,5]

[1,] 1 5 9 13 17

[2,] 2 6 10 14 18

(3,] 3 7 11 15 19

[4,] 4 8 12 16 20

> i <- array(c(1:3,3:1), dim=c(3,2))

> i # iis a 3 by 2 index array.
[,11 [,2]

[1,] 1 3

[2,] 2 2

[3,] 3 1

> x[i] # Extract those elements

[1] 9 6 3

> x[i] <- 0 # Replace those elements by zeros.
> X

(,11 [,21 [,3] [,4] [,8]
[1,] 1 5 0 13 17

[2,] 2 0 10 14 18
[3,] 0 7 11 15 19
[4,] 4 8 12 16 20
>

Negative indices are not allowed in index matrices. NA and zero values are allowed: rows in

the index matrix containing a zero are ignored, and rows containing an NA produce an NA
in the result.

As a less trivial example, suppose we wish to generate an (unreduced) design matrix
for a block design defined by factors blocks (b levels) and varieties (v levels). Further
suppose there are n plots in the experiment. We could proceed as follows:

> Xb <- matrix(0, n, b)

> Xv <- matrix(0, n, v)

> ib <- cbind(1:n, blocks)

> iv <- cbind(1:n, varieties)
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> Xb[ib] <- 1
> Xvliv] <- 1
> X <- cbind(Xb, Xv)
To construct the incidence matrix, N say, we could use
> N <- crossprod(Xb, Xv)
However a simpler direct way of producing this matrix is to use table():
> N <- table(blocks, varieties)

Index matrices must be numerical: any other form of matrix (e.g. a logical or character
matrix) supplied as a matrix is treated as an indexing vector.

5.4 The array() function
As well as giving a vector structure a dim attribute, arrays can be constructed from vectors
by the array function, which has the form

> Z <- array(data_vector, dim_vector)

For example, if the vector h contains 24 or fewer, numbers then the command

> Z <- array(h, dim=c(3,4,2))
would use h to set up 3 by 4 by 2 array in Z. If the size of h is exactly 24 the result is the
same as

> Z <- h ; dim(Z) <- c(3,4,2)

However if h is shorter than 24, its values are recycled from the beginning again to make
it up to size 24 (see Section 5.4.1 [The recycling rule], page 22) but dim(h) <- ¢(3,4,2)
would signal an error about mismatching length. As an extreme but common example

> Z <- array(0, c(3,4,2))
makes Z an array of all zeros.
At this point dim(Z) stands for the dimension vector c(3,4,2), and Z[1:24] stands

for the data vector as it was in h, and Z[] with an empty subscript or Z with no subscript
stands for the entire array as an array.

Arrays may be used in arithmetic expressions and the result is an array formed by
element-by-element operations on the data vector. The dim attributes of operands generally
need to be the same, and this becomes the dimension vector of the result. So if A, B and C
are all similar arrays, then

>D <- 2%¥AxB + C + 1

makes D a similar array with its data vector being the result of the given element-by-element
operations. However the precise rule concerning mixed array and vector calculations has to
be considered a little more carefully.

5.4.1 Mixed vector and array arithmetic. The recycling rule

The precise rule affecting element by element mixed calculations with vectors and arrays is
somewhat quirky and hard to find in the references. From experience we have found the
following to be a reliable guide.

e The expression is scanned from left to right.
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e Any short vector operands are extended by recycling their values until they match the
size of any other operands.

e As long as short vectors and arrays only are encountered, the arrays must all have the
same dim attribute or an error results.

e Any vector operand longer than a matrix or array operand generates an error.

e If array structures are present and no error or coercion to vector has been precipitated,
the result is an array structure with the common dim attribute of its array operands.

5.5 The outer product of two arrays

An important operation on arrays is the outer product. If a and b are two numeric arrays,
their outer product is an array whose dimension vector is obtained by concatenating their
two dimension vectors (order is important), and whose data vector is got by forming all
possible products of elements of the data vector of a with those of b. The outer product is
formed by the special operator %o%:

> ab <- a %o0% b
An alternative is
> ab <- outer(a, b, "x")

The multiplication function can be replaced by an arbitrary function of two variables.
For example if we wished to evaluate the function f(z;y) = cos(y)/(1 + 2?) over a regular
grid of values with - and y-coordinates defined by the R vectors x and y respectively, we
could proceed as follows:

> f <- function(x, y) cos(y)/(1 + x72)
> z <- outer(x, y, f)

In particular the outer product of two ordinary vectors is a doubly subscripted array

(that is a matrix, of rank at most 1). Notice that the outer product operator is of course

non-commutative. Defining your own R functions will be considered further in Chapter 10
[Writing your own functions|, page 45.

An example: Determinants of 2 by 2 single-digit matrices

As an artificial but cute example, consider the determinants of 2 by 2 matrices [a, b; ¢, d]
where each entry is a non-negative integer in the range 0,1,...,9, that is a digit.

The problem is to find the determinants, ad — bc, of all possible matrices of this form
and represent the frequency with which each value occurs as a high density plot. This
amounts to finding the probability distribution of the determinant if each digit is chosen
independently and uniformly at random.

A neat way of doing this uses the outer () function twice:
> d <- outer(0:9, 0:9)

> fr <- table(outer(d, 4, "-"))
> plot(fr, xlab="Determinant", ylab="Frequency")

Notice that plot () here uses a histogram like plot method, because it “sees” that fr is of
class "table". The “obvious” way of doing this problem with for loops, to be discussed in
Chapter 9 [Loops and conditional execution], page 43, is so inefficient as to be impractical.

It is also perhaps surprising that about 1 in 20 such matrices is singular.
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5.6 Generalized transpose of an array

The function aperm(a, perm) may be used to permute an array, a. The argument perm
must be a permutation of the integers {1, ..., k}, where k is the number of subscripts in a.
The result of the function is an array of the same size as a but with old dimension given by
perm[j] becoming the new j-th dimension. The easiest way to think of this operation is
as a generalization of transposition for matrices. Indeed if A is a matrix, (that is, a doubly
subscripted array) then B given by

> B <- aperm(4A, c(2,1))

is just the transpose of A. For this special case a simpler function t() is available, so we
could have used B <- t(4).

5.7 Matrix facilities

As noted above, a matrix is just an array with two subscripts. However it is such an
important special case it needs a separate discussion. R contains many operators and
functions that are available only for matrices. For example t(X) is the matrix transpose
function, as noted above. The functions nrow(A) and ncol(A) give the number of rows and
columns in the matrix A respectively.

5.7.1 Matrix multiplication

The operator %*% is used for matrix multiplication. An n by 1 or 1 by n matrix may of
course be used as an n-vector if in the context such is appropriate. Conversely, vectors
which occur in matrix multiplication expressions are automatically promoted either to row
or column vectors, whichever is multiplicatively coherent, if possible, (although this is not
always unambiguously possible, as we see later).

If, for example, A and B are square matrices of the same size, then

>A x B

is the matrix of element by element products and
> A Yx% B

is the matrix product. If x is a vector, then
> x % A Yxlh x

is a quadratic form.!

The function crossprod() forms “crossproducts”, meaning that crossprod(X, y) is
the same as t(X) %*% y but the operation is more efficient. If the second argument to
crossprod() is omitted it is taken to be the same as the first.

The meaning of diag() depends on its argument. diag(v), where v is a vector, gives
a diagonal matrix with elements of the vector as the diagonal entries. On the other hand
diag(M), where M is a matrix, gives the vector of main diagonal entries of M. This is the
same convention as that used for diag() in MATLAB. Also, somewhat confusingly, if k is a
single numeric value then diag(k) is the k by k identity matrix!

1 Note that x %*% x is ambiguous, as it could mean either x''x or xxT, where x is the column form. In such
cases the smaller matrix seems implicitly to be the interpretation adopted, so the scalar x''x is in this
case the result. The matrix xx* may be calculated either by cbind(x) %*% x or x %*% rbind(x) since
the result of rbind() or cbind() is always a matrix. However, the best way to compute x* x or xx* is
crossprod(x) or x %o% x respectively.
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5.7.2 Linear equations and inversion

Solving linear equations is the inverse of matrix multiplication. When after
>b <= A %% x

only A and b are given, the vector x is the solution of that linear equation system. In R,
> solve(A,b)

solves the system, returning x (up to some accuracy loss). Note that in linear algebra,
formally x = A~'b where A~! denotes the inverse of A, which can be computed by

solve(A)

but rarely is needed. Numerically, it is both inefficient and potentially unstable to compute
x <- solve(A) %% b instead of solve(A,b).

The quadratic form xTA~'x which is used in multivariate computations, should be com-
puted by something like? x %*J solve(A,x), rather than computing the inverse of A.

5.7.3 Eigenvalues and eigenvectors

The function eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric matrix
Sm. The result of this function is a list of two components named values and vectors.
The assignment

> ev <- eigen(Sm)

will assign this list to ev. Then ev$val is the vector of eigenvalues of Sm and ev$vec is the
matrix of corresponding eigenvectors. Had we only needed the eigenvalues we could have
used the assignment:

> evals <- eigen(Sm)$values

evals now holds the vector of eigenvalues and the second component is discarded. If the
expression

> eigen(Sm)
is used by itself as a command the two components are printed, with their names. For large

matrices it is better to avoid computing the eigenvectors if they are not needed by using
the expression

> evals <- eigen(Sm, only.values = TRUE)$values

5.7.4 Singular value decomposition and determinants

The function svd(M) takes an arbitrary matrix argument, M, and calculates the singular
value decomposition of M. This consists of a matrix of orthonormal columns U with the
same column space as M, a second matrix of orthonormal columns V whose column space
is the row space of M and a diagonal matrix of positive entries D such that M = U %x% D %%,
t (V). D is actually returned as a vector of the diagonal elements. The result of svd(M) is
actually a list of three components named d, u and v, with evident meanings.

If M is in fact square, then, it is not hard to see that
> absdetM <- prod(svd(M)$d)

2 Even better would be to form a matrix square root B with A = BBT and find the squared length of the
solution of By = = , perhaps using the Cholesky or eigen decomposition of A.



Chapter 5: Arrays and matrices 26

calculates the absolute value of the determinant of M. If this calculation were needed often
with a variety of matrices it could be defined as an R function

> absdet <- function(M) prod(svd(M)$d)

after which we could use absdet() as just another R function. As a further trivial but
potentially useful example, you might like to consider writing a function, say tr(), to
calculate the trace of a square matrix. [Hint: You will not need to use an explicit loop.
Look again at the diag() function.]

R has a builtin function det to calculate a determinant, including the sign, and another,
determinant, to give the sign and modulus (optionally on log scale),

5.7.5 Least squares fitting and the QR decomposition

The function 1sfit () returns a list giving results of a least squares fitting procedure. An
assignment such as

> ans <- lsfit(X, y)

gives the results of a least squares fit where y is the vector of observations and X is the
design matrix. See the help facility for more details, and also for the follow-up function
1s.diag() for, among other things, regression diagnostics. Note that a grand mean term is
automatically included and need not be included explicitly as a column of X. Further note
that you almost always will prefer using 1m(.) (see Section 11.2 [Linear models|, page 58)
to 1sfit () for regression modelling.
Another closely related function is qr () and its allies. Consider the following assignments
> Xplus <- qr(X)
> b <- gr.coef (Xplus, y)
> fit <- qr.fitted(Xplus, y)
> res <- qr.resid(Xplus, y)
These compute the orthogonal projection of y onto the range of X in fit, the projection
onto the orthogonal complement in res and the coefficient vector for the projection in b,
that is, b is essentially the result of the MATLAB ‘backslash’ operator.
It is not assumed that X has full column rank. Redundancies will be discovered and
removed as they are found.
This alternative is the older, low-level way to perform least squares calculations. Al-
though still useful in some contexts, it would now generally be replaced by the statistical
models features, as will be discussed in Chapter 11 [Statistical models in R], page 55.

5.8 Forming partitioned matrices, cbind() and rbind()

As we have already seen informally, matrices can be built up from other vectors and ma-
trices by the functions cbind () and rbind(). Roughly cbind () forms matrices by binding
together matrices horizontally, or column-wise, and rbind () vertically, or row-wise.

In the assignment
> X <- cbind(arg_1, arg_2, arg_3, ...)

the arguments to cbind () must be either vectors of any length, or matrices with the same
column size, that is the same number of rows. The result is a matrix with the concatenated
arguments arg_1, arg_2, ... forming the columns.
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If some of the arguments to cbind () are vectors they may be shorter than the column
size of any matrices present, in which case they are cyclically extended to match the matrix
column size (or the length of the longest vector if no matrices are given).

The function rbind () does the corresponding operation for rows. In this case any vector
argument, possibly cyclically extended, are of course taken as row vectors.

Suppose X1 and X2 have the same number of rows. To combine these by columns into a
matrix X, together with an initial column of 1s we can use

> X <- cbind(1, X1, X2)

The result of rbind() or cbind() always has matrix status. Hence cbind(x) and
rbind (x) are possibly the simplest ways explicitly to allow the vector x to be treated as a
column or row matrix respectively.

5.9 The concatenation function, c(), with arrays

It should be noted that whereas cbind() and rbind() are concatenation functions that
respect dim attributes, the basic c¢() function does not, but rather clears numeric objects
of all dim and dimnames attributes. This is occasionally useful in its own right.

The official way to coerce an array back to a simple vector object is to use as.vector ()
> vec <- as.vector(X)

However a similar result can be achieved by using c() with just one argument, simply
for this side-effect:

> vec <- c(X)

There are slight differences between the two, but ultimately the choice between them is
largely a matter of style (with the former being preferable).

5.10 Frequency tables from factors

Recall that a factor defines a partition into groups. Similarly a pair of factors defines a
two way cross classification, and so on. The function table () allows frequency tables to be
calculated from equal length factors. If there are k factor arguments, the result is a k-way
array of frequencies.

Suppose, for example, that statef is a factor giving the state code for each entry in a
data vector. The assignment

> statefr <- table(statef)

gives in statefr a table of frequencies of each state in the sample. The frequencies are
ordered and labelled by the levels attribute of the factor. This simple case is equivalent
to, but more convenient than,

> statefr <- tapply(statef, statef, length)

Further suppose that incomef is a factor giving a suitably defined “income class” for
each entry in the data vector, for example with the cut () function:

> factor(cut(incomes, breaks = 35+10%(0:7))) -> incomef
Then to calculate a two-way table of frequencies:

> table(incomef,statef)
statef



incomef
(35,45] 1
(45,55] 1
(55,65] 0
(65,75] 0

Extension to higher-way frequency tables is immediate.
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6 Lists and data frames

6.1 Lists

An R list is an object consisting of an ordered collection of objects known as its components.

There is no particular need for the components to be of the same mode or type, and,
for example, a list could consist of a numeric vector, a logical value, a matrix, a complex
vector, a character array, a function, and so on. Here is a simple example of how to make
a list:

> Lst <- list(name="Fred", wife="Mary", no.children=3,
child.ages=c(4,7,9))

Components are always numbered and may always be referred to as such. Thus if Lst is
the name of a list with four components, these may be individually referred to as Lst [[1]],
Lst[[2]], Lst[[3]] and Lst [[4]]. If, further, Lst [[4]] is a vector subscripted array then
Lst [[4]1][1] is its first entry.

If Lst is a list, then the function length(Lst) gives the number of (top level) components
it has.

Components of lists may also be named, and in this case the component may be referred
to either by giving the component name as a character string in place of the number in
double square brackets, or, more conveniently, by giving an expression of the form

> name$component_name
for the same thing.

This is a very useful convention as it makes it easier to get the right component if you
forget the number.

So in the simple example given above:

Lst$name is the same as Lst[[1]] and is the string "Fred",

Lst$wife is the same as Lst [[2]] and is the string "Mary",

Lst$child.ages[1] is the same as Lst[[4]] [1] and is the number 4.

Additionally, one can also use the names of the list components in double square brackets,

i.e., Lst [["name"]] is the same as Lst$name. This is especially useful, when the name of
the component to be extracted is stored in another variable as in
> x <- "name"; Lst[[x]]

It is very important to distinguish Lst[[1]] from Lst[1]. ‘[[...]]1’ is the operator
used to select a single element, whereas ‘[...]" is a general subscripting operator. Thus the
former is the first object in the list Lst, and if it is a named list the name is not included.
The latter is a sublist of the list Lst consisting of the first entry only. If it is a named list,
the names are transferred to the sublist.

The names of components may be abbreviated down to the minimum number of letters
needed to identify them uniquely. Thus Lst$coefficients may be minimally specified as
Lst$coe and Lst$covariance as Lst$cov.

The vector of names is in fact simply an attribute of the list like any other and may be
handled as such. Other structures besides lists may, of course, similarly be given a names
attribute also.
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6.2 Constructing and modifying lists
New lists may be formed from existing objects by the function 1ist(). An assignment of
the form

> Lst <- list(name_1=object_1, ..., name_m=object_m)

sets up a list Lst of m components using object_1, ..., object_m for the components and
giving them names as specified by the argument names, (which can be freely chosen). If
these names are omitted, the components are numbered only. The components used to form
the list are copied when forming the new list and the originals are not affected.

Lists, like any subscripted object, can be extended by specifying additional components.
For example

> Lst[5] <- list(matrix=Mat)

6.2.1 Concatenating lists
When the concatenation function c () is given list arguments, the result is an object of mode
list also, whose components are those of the argument lists joined together in sequence.

> 1ist.ABC <- c(list.A, 1list.B, 1list.C)

Recall that with vector objects as arguments the concatenation function similarly joined
together all arguments into a single vector structure. In this case all other attributes, such
as dim attributes, are discarded.

6.3 Data frames
A data frame is a list with class "data.frame". There are restrictions on lists that may be
made into data frames, namely

e The components must be vectors (numeric, character, or logical), factors, numeric
matrices, lists, or other data frames.

e Matrices, lists, and data frames provide as many variables to the new data frame as
they have columns, elements, or variables, respectively.

e Numeric vectors, logicals and factors are included as is, and by default® character
vectors are coerced to be factors, whose levels are the unique values appearing in the
vector.

e Vector structures appearing as variables of the data frame must all have the same
length, and matrix structures must all have the same row size.

A data frame may for many purposes be regarded as a matrix with columns possibly
of differing modes and attributes. It may be displayed in matrix form, and its rows and
columns extracted using matrix indexing conventions.

6.3.1 Making data frames

Objects satisfying the restrictions placed on the columns (components) of a data frame may
be used to form one using the function data.frame:

> accountants <- data.frame(home=statef, loot=incomes, shot=incomef)

1 Conversion of character columns to factors is overridden using the stringsAsFactors argument to the
data.frame() function.
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A list whose components conform to the restrictions of a data frame may be coerced into
a data frame using the function as.data.frame ()

The simplest way to construct a data frame from scratch is to use the read.table()
function to read an entire data frame from an external file. This is discussed further in
Chapter 7 [Reading data from files|, page 33.

6.3.2 attach() and detach()

The $ notation, such as accountants$home, for list components is not always very conve-
nient. A useful facility would be somehow to make the components of a list or data frame
temporarily visible as variables under their component name, without the need to quote
the list name explicitly each time.

The attach() function takes a ‘database’ such as a list or data frame as its argu-

ment. Thus suppose lentils is a data frame with three variables lentils$u, lentils$v,
lentils$w. The attach

> attach(lentils)
places the data frame in the search path at position 2, and provided there are no variables
u, v or w in position 1, u, v and w are available as variables from the data frame in their
own right. At this point an assignment such as
> u <- vtw
does not replace the component u of the data frame, but rather masks it with another
variable u in the working directory at position 1 on the search path. To make a permanent
change to the data frame itself, the simplest way is to resort once again to the $ notation:
> lentils$u <- v+w
However the new value of component u is not visible until the data frame is detached
and attached again.
To detach a data frame, use the function
> detach()
More precisely, this statement detaches from the search path the entity currently at
position 2. Thus in the present context the variables u, v and w would be no longer visible,
except under the list notation as lentils$u and so on. Entities at positions greater than 2

on the search path can be detached by giving their number to detach, but it is much safer
to always use a name, for example by detach(lentils) or detach("lentils")

Note: In R lists and data frames can only be attached at position 2 or above,
and what is attached is a copy of the original object. You can alter the attached
values via assign, but the original list or data frame is unchanged.

6.3.3 Working with data frames

A wuseful convention that allows you to work with many different problems comfortably
together in the same working directory is

e gather together all variables for any well defined and separate problem in a data frame
under a suitably informative name;

e when working with a problem attach the appropriate data frame at position 2, and use
the working directory at level 1 for operational quantities and temporary variables;
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e Dbefore leaving a problem, add any variables you wish to keep for future reference to
the data frame using the $ form of assignment, and then detach();

e finally remove all unwanted variables from the working directory and keep it as clean
of left-over temporary variables as possible.

In this way it is quite simple to work with many problems in the same directory, all of
which have variables named x, y and z, for example.

6.3.4 Attaching arbitrary lists

attach() is a generic function that allows not only directories and data frames to be
attached to the search path, but other classes of object as well. In particular any object of
mode "list" may be attached in the same way:

> attach(any.old.list)

Anything that has been attached can be detached by detach, by position number or,
preferably, by name.

6.3.5 Managing the search path

The function search shows the current search path and so is a very useful way to keep track
of which data frames and lists (and packages) have been attached and detached. Initially
it gives
> search()
[1] ".GlobalEnv"  "Autoloads" "package:base"
where .GlobalEnv is the workspace.?
After lentils is attached we have
> search()
[1] ".GlobalEnv" "lentils" "Autoloads" "package:base"
> 1s(2)
[1] ||ul| IIV" IIWII

and as we see 1s (or objects) can be used to examine the contents of any position on the
search path.
Finally, we detach the data frame and confirm it has been removed from the search path.

> detach("lentils")
> search()
[1] ".GlobalEnv"  "Autoloads" "package:base"

2 See the on-line help for autoload for the meaning of the second term.



33

7 Reading data from files

Large data objects will usually be read as values from external files rather than entered
during an R session at the keyboard. R input facilities are simple and their requirements
are fairly strict and even rather inflexible. There is a clear presumption by the designers of
R that you will be able to modify your input files using other tools, such as file editors or
Perl! to fit in with the requirements of R. Generally this is very simple.

If variables are to be held mainly in data frames, as we strongly suggest they should be,
an entire data frame can be read directly with the read.table() function. There is also a
more primitive input function, scan(), that can be called directly.

For more details on importing data into R and also exporting data, see the R Data
Import/Export manual.

7.1 The read.table() function

To read an entire data frame directly, the external file will normally have a special form.
e The first line of the file should have a name for each variable in the data frame.

e FEach additional line of the file has as its first item a row label and the values for each
variable.

If the file has one fewer item in its first line than in its second, this arrangement is
presumed to be in force. So the first few lines of a file to be read as a data frame might
look as follows.

( N

Input file form with names and row labels:
Price Floor Area  Rooms Age Cent.heat
01 52.00 111.0 830 5 6.2 no
02 54.75 128.0 710 5 7.5 no
03 57.50 101.0 1000 5 4.2 no
04 57.50 131.0 690 6 8.8 no
05 59.75 93.0 900 5 1.9 yes
L . )

By default numeric items (except row labels) are read as numeric variables and non-
numeric variables, such as Cent.heat in the example, as factors. This can be changed if
necessary.

The function read.table() can then be used to read the data frame directly
> HousePrice <- read.table("houses.data")

Often you will want to omit including the row labels directly and use the default labels.
In this case the file may omit the row label column as in the following.

1 Under UNIX, the utilities sed orawk can be used.
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( M

Input file form without row labels:

Price Floor Area  Rooms Age Cent.heat

52.00 111.0 830 5 6.2 no

54.75 128.0 710 5 7.5 no

57.50 101.0 1000 5 4.2 no

57.50 131.0 690 6 8.8 no

59.75 93.0 900 5 1.9 yes

The data frame may then be read as
> HousePrice <- read.table("houses.data", header=TRUE)

where the header=TRUE option specifies that the first line is a line of headings, and hence,
by implication from the form of the file, that no explicit row labels are given.

7.2 The scan() function

Suppose the data vectors are of equal length and are to be read in parallel. Further suppose
that there are three vectors, the first of mode character and the remaining two of mode
numeric, and the file is input.dat. The first step is to use scan() to read in the three
vectors as a list, as follows

> inp <- scan("input.dat", list("",0,0))

The second argument is a dummy list structure that establishes the mode of the three
vectors to be read. The result, held in inp, is a list whose components are the three vectors
read in. To separate the data items into three separate vectors, use assignments like

> label <- inp[[1]]; x <- inp[[2]]; y <- inp[[3]]

More conveniently, the dummy list can have named components, in which case the names
can be used to access the vectors read in. For example

> inp <- scan("input.dat", list(id="", x=0, y=0))

If you wish to access the variables separately they may either be re-assigned to variables
in the working frame:

> label <- inp$id; x <- inp$x; y <- inp$y
or the list may be attached at position 2 of the search path (see Section 6.3.4 [Attaching
arbitrary lists], page 32).

If the second argument is a single value and not a list, a single vector is read in, all
components of which must be of the same mode as the dummy value.

> X <- matrix(scan("light.dat", 0), ncol=5, byrow=TRUE)

There are more elaborate input facilities available and these are detailed in the manuals.

7.3 Accessing builtin datasets

Around 100 datasets are supplied with R (in package datasets), and others are available in
packages (including the recommended packages supplied with R). To see the list of datasets
currently available use

data()
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All the datasets supplied with R are available directly by name. However, many packages
still use the obsolete convention in which data was also used to load datasets into R, for
example

data(infert)

and this can still be used with the standard packages (as in this example). In most cases
this will load an R object of the same name. However, in a few cases it loads several objects,
so see the on-line help for the object to see what to expect.

7.3.1 Loading data from other R packages
To access data from a particular package, use the package argument, for example

data(package="rpart")
data(Puromycin, package="datasets")

If a package has been attached by library, its datasets are automatically included in
the search.

User-contributed packages can be a rich source of datasets.

7.4 Editing data

When invoked on a data frame or matrix, edit brings up a separate spreadsheet-like envi-
ronment for editing. This is useful for making small changes once a data set has been read.
The command

> xnew <- edit(xold)

will allow you to edit your data set xold, and on completion the changed object is assigned
to xnew. If you want to alter the original dataset xold, the simplest way is to use fix (xo0ld),
which is equivalent to xold <- edit(xo0ld).

Use
> xnew <- edit(data.frame())

to enter new data via the spreadsheet interface.
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8 Probability distributions

8.1 R as a set of statistical tables

One convenient use of R is to provide a comprehensive set of statistical tables. Functions
are provided to evaluate the cumulative distribution function P(X < z), the probability
density function and the quantile function (given g, the smallest = such that P(X < x) > q),
and to simulate from the distribution.

Distribution R name additional arguments
beta beta shapel, shape2, ncp
binomial binom size, prob

Cauchy cauchy location, scale
chi-squared chisq df, ncp

exponential exp rate

F f df1, df2, ncp
gamma gamma shape, scale
geometric geom prob

hypergeometric hyper m, n, k

log-normal lnorm meanlog, sdlog
logistic logis location, scale
negative binomial nbinom size, prob

normal norm mean, sd

Poisson pois lambda

signed rank signrank n

Student’s t t df, ncp

uniform unif min, max

Weibull weibull shape, scale
Wilcoxon wilcox m, n

Prefix the name given here by ‘d’ for the density, ‘p’ for the CDF, ‘q’ for the quantile
function and ‘r’ for simulation (random deviates). The first argument is x for dxxx, q for
pxxx, p for gxxx and n for rxxx (except for rhyper, rsignrank and rwilcox, for which it
is nn). In not quite all cases is the non-centrality parameter ncp currently available: see
the on-line help for details.

The pxxx and gxxx functions all have logical arguments lower.tail and log.p and
the dxxx ones have log. This allows, e.g., getting the cumulative (or “integrated”) hazard
function, H(t) = —log(1 — F(t)), by

- pxxx(t, ..., lower.tail = FALSE, log.p = TRUE)
or more accurate log-likelihoods (by dxxx(. .., log = TRUE)), directly.

In addition there are functions ptukey and qtukey for the distribution of the studentized
range of samples from a normal distribution, and dmultinom and rmultinom for the multi-
nomial distribution. Further distributions are available in contributed packages, notably
SuppDists (https://CRAN.R-project.org/package=SuppDists).

Here are some examples

> ## 2-tailed p-value for t distribution


https://CRAN.R-project.org/package=SuppDists
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> 2*pt(-2.43, df = 13)
> ## upper 1% point for an F(2, 7) distribution
> qf(0.01, 2, 7, lower.tail = FALSE)

See the on-line help on RNG for how random-number generation is done in R.

8.2 Examining the distribution of a set of data

Given a (univariate) set of data we can examine its distribution in a large number of ways.
The simplest is to examine the numbers. Two slightly different summaries are given by
summary and fivenum and a display of the numbers by stem (a “stem and leaf” plot).

> attach(faithful)
> summary (eruptions)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.600 2.163 4.000 3.488 4.454 5.100
> fivenum(eruptions)
[1] 1.6000 2.1585 4.0000 4.4585 5.1000
> stem(eruptions)

The decimal point is 1 digit(s) to the left of the |

16 | 070355555588

18 | 000022233333335577777777888822335777888
20 | 00002223378800035778

22 | 0002335578023578

24 | 00228

26 | 23

28 | 080

30 | 7

32 | 2337

34 | 250077

36 | 0000823577

38 | 2333335582225577

40 | 0000003357788888002233555577778

42 | 03335555778800233333555577778

44 | 02222335557780000000023333357778888
46 | 0000233357700000023578

48 | 00000022335800333

50 | 0370

A stem-and-leaf plot is like a histogram, and R has a function hist to plot histograms.

> hist(eruptions)

## make the bins smaller, make a plot of density

> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))

> rug(eruptions) # show the actual data points

More elegant density plots can be made by density, and we added a line produced by
density in this example. The bandwidth bw was chosen by trial-and-error as the default
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gives too much smoothing (it usually does for “interesting” densities). (Better automated
methods of bandwidth choice are available, and in this example bw = "SJ" gives a good
result.)

Histogram of eruptions
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We can plot the empirical cumulative distribution function by using the function ecdf.
> plot(ecdf (eruptions), do.points=FALSE, verticals=TRUE)
This distribution is obviously far from any standard distribution. How about the right-

hand mode, say eruptions of longer than 3 minutes? Let us fit a normal distribution and
overlay the fitted CDF.

> long <- eruptions[eruptions > 3]

> plot(ecdf(long), do.points=FALSE, verticals=TRUE)

> x <- seq(3, 5.4, 0.01)

> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)

ecdf(long)

1.0
!

0.6 0.8
1

Fn(x)

0.4

0.2
1
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Quantile-quantile (Q-Q) plots can help us examine this more carefully.
par (pty="s") # arrange for a square figure region
qqnorm(long); qqline(long)
which shows a reasonable fit but a shorter right tail than one would expect from a normal
distribution. Let us compare this with some simulated data from a t distribution

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

x <- rt(250, df = 5)

qgnorm(x); qqline(x)
which will usually (if it is a random sample) show longer tails than expected for a normal.
We can make a Q-Q plot against the generating distribution by

qqplot(qt (ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")

qqline(x)

Finally, we might want a more formal test of agreement with normality (or not). R

provides the Shapiro-Wilk test

> shapiro.test(long)

Shapiro-Wilk normality test

data: long
W = 0.9793, p-value = 0.01052

and the Kolmogorov-Smirnov test
> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))

One-sample Kolmogorov-Smirnov test

data: long

D = 0.0661, p-value = 0.4284

alternative hypothesis: two.sided
(Note that the distribution theory is not valid here as we have estimated the parameters of
the normal distribution from the same sample.)
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8.3 One- and two-sample tests

So far we have compared a single sample to a normal distribution. A much more common
operation is to compare aspects of two samples. Note that in R, all “classical” tests including
the ones used below are in package stats which is normally loaded.

Consider the following sets of data on the latent heat of the fusion of ice (cal/gm) from
Rice (1995, p.490)

Method A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02
Method B: 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

Boxplots provide a simple graphical comparison of the two samples.

A <- scan()
79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
80.05 80.03 80.02 80.00 80.02

B <- scan()
80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97

boxplot (A, B)
which indicates that the first group tends to give higher results than the second.

80.04

80.02

80.00

79.98
1
o

79.96
1

79.94

To test for the equality of the means of the two examples, we can use an unpaired t-test
by
> t.test(A, B)

Welch Two Sample t-test
data: A and B

t = 3.2499, df = 12.027, p-value = 0.00694
alternative hypothesis: true difference in means is not equal to O
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95 percent confidence interval:
0.01385526 0.07018320

sample estimates:

mean of x mean of y
80.02077 79.97875

which does indicate a significant difference, assuming normality. By default the R function
does not assume equality of variances in the two samples (in contrast to the similar S-PrLus
t.test function). We can use the F test to test for equality in the variances, provided that
the two samples are from normal populations.

> var.test(A, B)
F test to compare two variances

data: A and B
F = 0.5837, num df = 12, denom df = 7, p-value = 0.3938
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1251097 2.1052687
sample estimates:
ratio of variances
0.5837405

which shows no evidence of a significant difference, and so we can use the classical t-test
that assumes equality of the variances.

> t.test(A, B, var.equal=TRUE)
Two Sample t-test

data: A and B
t = 3.4722, df = 19, p-value = 0.002551
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
0.01669058 0.06734788
sample estimates:
mean of x mean of y
80.02077 79.97875

All these tests assume normality of the two samples. The two-sample Wilcoxon (or
Mann-Whitney) test only assumes a common continuous distribution under the null hy-
pothesis.

> wilcox.test (A, B)
Wilcoxon rank sum test with continuity correction
data: A and B

W = 89, p-value = 0.007497
alternative hypothesis: true location shift is not equal to O
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Warning message:
Cannot compute exact p-value with ties in: wilcox.test(A, B)

Note the warning: there are several ties in each sample, which suggests strongly that these
data are from a discrete distribution (probably due to rounding).

There are several ways to compare graphically the two samples. We have already seen
a pair of boxplots. The following
> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))
> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)

will show the two empirical CDF's, and qgplot will perform a Q-Q plot of the two samples.
The Kolmogorov-Smirnov test is of the maximal vertical distance between the two ecdf’s,
assuming a common continuous distribution:

> ks.test(A, B)

Two-sample Kolmogorov-Smirnov test
data: A and B
D = 0.5962, p-value = 0.05919

alternative hypothesis: two-sided

Warning message:
cannot compute correct p-values with ties in: ks.test(A, B)
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9 Grouping, loops and conditional execution

9.1 Grouped expressions

R is an expression language in the sense that its only command type is a function or
expression which returns a result. Even an assignment is an expression whose result is the
value assigned, and it may be used wherever any expression may be used; in particular
multiple assignments are possible.

Commands may be grouped together in braces, {expr_1; ...; expr_m}, in which case
the value of the group is the result of the last expression in the group evaluated. Since such
a group is also an expression it may, for example, be itself included in parentheses and used
as part of an even larger expression, and so on.

9.2 Control statements

9.2.1 Conditional execution: if statements

The language has available a conditional construction of the form
> if (expr_1) expr_2 else expr_3

where expr_1 must evaluate to a single logical value and the result of the entire expression
is then evident.

The “short-circuit” operators && and || are often used as part of the condition in an if
statement. Whereas & and | apply element-wise to vectors, && and || apply to vectors of
length one, and only evaluate their second argument if necessary.

There is a vectorized version of the if/else construct, the ifelse function. This has
the form ifelse(condition, a, b) and returns a vector of the same length as condition,
with elements a[i] if condition[i] is true, otherwise b[i] (where a and b are recycled as
necessary).

9.2.2 Repetitive execution: for loops, repeat and while

There is also a for loop construction which has the form
> for (name in expr_1) expr_2

where name is the loop variable. expr_1 is a vector expression, (often a sequence like 1:20),
and expr_2 is often a grouped expression with its sub-expressions written in terms of the
dummy name. expr_2 is repeatedly evaluated as name ranges through the values in the
vector result of expr_1.

As an example, suppose ind is a vector of class indicators and we wish to produce
separate plots of y versus x within classes. One possibility here is to use coplot(),' which
will produce an array of plots corresponding to each level of the factor. Another way to do
this, now putting all plots on the one display, is as follows:

> xc <- split(x, ind)
> yc <- split(y, ind)

! to be discussed later, or use xyplot from package lattice (https://CRAN.R-project.org/
package=lattice).


https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
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> for (i in 1:length(yc)) {
plot(xc[[il], yc[[ill)
abline(1sfit(xc[[il], ycl[[il1))
}

(Note the function split () which produces a list of vectors obtained by splitting a larger
vector according to the classes specified by a factor. This is a useful function, mostly used
in connection with boxplots. See the help facility for further details.)

Warning: for() loops are used in R code much less often than in compiled
languages. Code that takes a ‘whole object’ view is likely to be both clearer
and faster in R.

Other looping facilities include the
> repeat expr
statement and the
> while (condition) expr
statement.

The break statement can be used to terminate any loop, possibly abnormally. This is
the only way to terminate repeat loops.

The next statement can be used to discontinue one particular cycle and skip to the
“next”.

Control statements are most often used in connection with functions which are discussed
in Chapter 10 [Writing your own functions], page 45, and where more examples will emerge.
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10 Writing your own functions

As we have seen informally along the way, the R language allows the user to create objects
of mode function. These are true R functions that are stored in a special internal form and
may be used in further expressions and so on. In the process, the language gains enormously
in power, convenience and elegance, and learning to write useful functions is one of the main
ways to make your use of R comfortable and productive.

It should be emphasized that most of the functions supplied as part of the R system,
such as mean(), var(), postscript() and so on, are themselves written in R and thus do
not differ materially from user written functions.

A function is defined by an assignment of the form
> name <- function(arg_1, arg_ 2, ...) expression

The expression is an R expression, (usually a grouped expression), that uses the arguments,
arg_i, to calculate a value. The value of the expression is the value returned for the function.

A call to the function then usually takes the form name(expr_1, expr_2, ...) and may
occur anywhere a function call is legitimate.

10.1 Simple examples

As a first example, consider a function to calculate the two sample t-statistic, showing “all
the steps”. This is an artificial example, of course, since there are other, simpler ways of
achieving the same end.

The function is defined as follows:

> twosam <- function(yl, y2) {
nl <- length(yl); n2 <- length(y2)
ybl <- mean(yl); yb2 <- mean(y2)
sl <- var(yl); s2 <- var(y2)
s <- ((n1-1)*s1 + (n2-1)*s2)/(nl1+n2-2)
tst <- (ybl - yb2)/sqrt(sx(1/n1l + 1/n2))
tst

}

With this function defined, you could perform two sample t-tests using a call such as
> tstat <- twosam(data$male, data$female); tstat

As a second example, consider a function to emulate directly the MATLAB backslash
command, which returns the coeflicients of the orthogonal projection of the vector y onto
the column space of the matrix, X. (This is ordinarily called the least squares estimate of
the regression coefficients.) This would ordinarily be done with the qr () function; however
this is sometimes a bit tricky to use directly and it pays to have a simple function such as
the following to use it safely.

Thus given a n by 1 vector y and an n by p matrix X then X y is defined as (X7 X )~ X7y,
where (X7 X)~ is a generalized inverse of X’X.
> bslash <- function(X, y) {
X <= qrX)
gr.coef (X, y)
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}
After this object is created it may be used in statements such as
> regcoeff <- bslash(Xmat, yvar)
and so on.

The classical R function 1sfit () does this job quite well, and more!. It in turn uses the
functions qr () and qr.coef () in the slightly counterintuitive way above to do this part of
the calculation. Hence there is probably some value in having just this part isolated in a
simple to use function if it is going to be in frequent use. If so, we may wish to make it a
matrix binary operator for even more convenient use.

10.2 Defining new binary operators

Had we given the bslash() function a different name, namely one of the form
hanything’,
it could have been used as a binary operator in expressions rather than in function form.
Suppose, for example, we choose ! for the internal character. The function definition would
then start as
> "Y14A" <= function(X, y) { ... }
(Note the use of quote marks.) The function could then be used as X %!% y. (The backslash
symbol itself is not a convenient choice as it presents special problems in this context.)

The matrix multiplication operator, %*%, and the outer product matrix operator %o% are
other examples of binary operators defined in this way.

10.3 Named arguments and defaults

As first noted in Section 2.3 [Generating regular sequences|, page 9, if arguments to called
functions are given in the “name=object” form, they may be given in any order. Further-
more the argument sequence may begin in the unnamed, positional form, and specify named
arguments after the positional arguments.

Thus if there is a function funl defined by

> funl <- function(data, data.frame, graph, limit) {
[function body omitted]
}

then the function may be invoked in several ways, for example
> ans <- funi(d, df, TRUE, 20)
> ans <- funi(d, df, graph=TRUE, limit=20)
> ans <- funl(data=d, 1limit=20, graph=TRUE, data.frame=df)
are all equivalent.
In many cases arguments can be given commonly appropriate default values, in which

case they may be omitted altogether from the call when the defaults are appropriate. For
example, if funl were defined as

> funl <- function(data, data.frame, graph=TRUE, limit=20) { ... }

1 See also the methods described in Chapter 11 [Statistical models in R], page 55
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it could be called as
> ans <- funi(d, df)

which is now equivalent to the three cases above, or as
> ans <- funil(d, df, 1limit=10)

which changes one of the defaults.

It is important to note that defaults may be arbitrary expressions, even involving other
arguments to the same function; they are not restricted to be constants as in our simple
example here.

10.4 The ‘...’ argument

Another frequent requirement is to allow one function to pass on argument settings to
another. For example many graphics functions use the function par() and functions like
plot () allow the user to pass on graphical parameters to par() to control the graphical
output. (See Section 12.4.1 [The par() function], page 74, for more details on the par()

function.) This can be done by including an extra argument, literally ‘. ..’ of the function,
which may then be passed on. An outline example is given below.
funl <- function(data, data.frame, graph=TRUE, limit=20, ...) {
[omitted statements]
if (graph)

par(pch="x", ...)
[more omissions]
}
Less frequently, a function will need to refer to components of ‘...’. The expression
list(...) evaluates all such arguments and returns them in a named list, while ..1, . .2,
etc. evaluate them one at a time, with ‘. .n’ returning the n’th unmatched argument.

10.5 Assignments within functions

Note that any ordinary assignments done within the function are local and temporary and
are lost after exit from the function. Thus the assignment X <- qr(X) does not affect the
value of the argument in the calling program.

To understand completely the rules governing the scope of R assignments the reader
needs to be familiar with the notion of an evaluation frame. This is a somewhat advanced,
though hardly difficult, topic and is not covered further here.

If global and permanent assignments are intended within a function, then either the
“superassignment” operator, <<- or the function assign() can be used. See the help
document for details. S-PLUS users should be aware that <<- has different semantics in R.
These are discussed further in Section 10.7 [Scope], page 49.

10.6 More advanced examples

10.6.1 Efficiency factors in block designs

As a more complete, if a little pedestrian, example of a function, consider finding the
efficiency factors for a block design. (Some aspects of this problem have already been
discussed in Section 5.3 [Index matrices], page 21.)
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A block design is defined by two factors, say blocks (b levels) and varieties (v levels).
If R and K are the v by v and b by b replications and block size matrices, respectively, and
N is the b by v incidence matrix, then the efficiency factors are defined as the eigenvalues
of the matrix
E=1I,—R Y NTKINRY?=1,— AT A,

where A = K~Y2NR~'/2. One way to write the function is given below.
> bdeff <- function(blocks, varieties) {

blocks <- as.factor(blocks) # minor safety move
b <- length(levels(blocks))

varieties <- as.factor(varieties) # minor safety move
v <- length(levels(varieties))

K <- as.vector(table(blocks)) # remove dim attr
R <- as.vector(table(varieties)) # remove dim attr
N <- table(blocks, varieties)

A <- 1/sqrt(X) * N * rep(1/sqrt(R), rep(b, v))

sv <- svd(4)
list(eff=1 - sv$d~2, blockcv=sv$u, varietycv=sv$v)

}

It is numerically slightly better to work with the singular value decomposition on this
occasion rather than the eigenvalue routines.

The result of the function is a list giving not only the efficiency factors as the first
component, but also the block and variety canonical contrasts, since sometimes these give
additional useful qualitative information.

10.6.2 Dropping all names in a printed array

For printing purposes with large matrices or arrays, it is often useful to print them in close
block form without the array names or numbers. Removing the dimnames attribute will
not achieve this effect, but rather the array must be given a dimnames attribute consisting
of empty strings. For example to print a matrix, X

> temp <- X

> dimnames(temp) <- list(rep("", nrow(X)), rep("", ncol(X)))

> temp; rm(temp)

This can be much more conveniently done using a function, no.dimnames (), shown
below, as a “wrap around” to achieve the same result. It also illustrates how some effective
and useful user functions can be quite short.

no.dimnames <- function(a) {
## Remove all dimension names from an array for compact printing.
d <- 1ist(Q
1<-0
for(i in dim(a)) {
df[1 <- 1 + 1]1] <- rep("", i)
}
dimnames(a) <- d
a
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With this function defined, an array may be printed in close format using
> no.dimnames (X)

This is particularly useful for large integer arrays, where patterns are the real interest
rather than the values.

10.6.3 Recursive numerical integration

Functions may be recursive, and may themselves define functions within themselves. Note,
however, that such functions, or indeed variables, are not inherited by called functions in
higher evaluation frames as they would be if they were on the search path.

The example below shows a naive way of performing one-dimensional numerical inte-
gration. The integrand is evaluated at the end points of the range and in the middle. If
the one-panel trapezium rule answer is close enough to the two panel, then the latter is
returned as the value. Otherwise the same process is recursively applied to each panel. The
result is an adaptive integration process that concentrates function evaluations in regions
where the integrand is farthest from linear. There is, however, a heavy overhead, and the
function is only competitive with other algorithms when the integrand is both smooth and
very difficult to evaluate.

The example is also given partly as a little puzzle in R programming.

area <- function(f, a, b, eps = 1.0e-06, lim = 10) {
funl <- function(f, a, b, fa, fb, a0, eps, lim, fun) {
## function ‘funl’ is only visible inside ‘area’
d <- (a + b)/2
h <- (b - a)/4
fd <- £(d)
al <- h * (fa + fd)
a2 <- h * (fd + fb)
if(abs(a0 - al - a2) < eps || lim == 0)
return(al + a2)
else {
return(fun(f, a, d, fa, fd, al, eps, lim - 1, fun) +
fun(f, 4, b, fd, fb, a2, eps, lim - 1, fun))

}
}
fa <- f(a)
fb <- £(b)

a0 <- ((fa + fb) * (b - a))/2
funi(f, a, b, fa, fb, a0, eps, lim, funl)

10.7 Scope

The discussion in this section is somewhat more technical than in other parts of this docu-
ment. However, it details one of the major differences between S-PLUS and R.

The symbols which occur in the body of a function can be divided into three classes;
formal parameters, local variables and free variables. The formal parameters of a function
are those occurring in the argument list of the function. Their values are determined by



Chapter 10: Writing your own functions 50

the process of binding the actual function arguments to the formal parameters. Local
variables are those whose values are determined by the evaluation of expressions in the
body of the functions. Variables which are not formal parameters or local variables are
called free variables. Free variables become local variables if they are assigned to. Consider
the following function definition.

f <- function(x) {
y <- 2%x
print(x)
print(y)
print(z)

}

In this function, x is a formal parameter, y is a local variable and z is a free variable.

In R the free variable bindings are resolved by first looking in the environment in which
the function was created. This is called lexical scope. First we define a function called cube.

cube <- function(n) {
sq <- function() n*n
nxsq ()

}

The variable n in the function sq is not an argument to that function. Therefore it
is a free variable and the scoping rules must be used to ascertain the value that is to be
associated with it. Under static scope (S-PLUS) the value is that associated with a global
variable named n. Under lexical scope (R) it is the parameter to the function cube since
that is the active binding for the variable n at the time the function sq was defined. The
difference between evaluation in R and evaluation in S-PLUS is that S-PLuUS looks for a
global variable called n while R first looks for a variable called n in the environment created
when cube was invoked.

## first evaluation in S

S> cube(2)

Error in sq(): Object "n" not found
Dumped

S>n <- 3

S> cube(2)

[1] 18

## then the same function evaluated in R
R> cube(2)

[1] 8

Lexical scope can also be used to give functions mutable state. In the following example
we show how R can be used to mimic a bank account. A functioning bank account needs to
have a balance or total, a function for making withdrawals, a function for making deposits
and a function for stating the current balance. We achieve this by creating the three func-
tions within account and then returning a list containing them. When account is invoked
it takes a numerical argument total and returns a list containing the three functions. Be-
cause these functions are defined in an environment which contains total, they will have
access to its value.
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The special assignment operator, <<-, is used to change the value associated with total.
This operator looks back in enclosing environments for an environment that contains the
symbol total and when it finds such an environment it replaces the value, in that environ-
ment, with the value of right hand side. If the global or top-level environment is reached
without finding the symbol total then that variable is created and assigned to there. For
most users <<- creates a global variable and assigns the value of the right hand side to
it?. Only when <<- has been used in a function that was returned as the value of another
function will the special behavior described here occur.

open.account <- function(total) {
list(
deposit = function(amount) {
if (amount <= 0)
stop("Deposits must be positive!\n")
total <<- total + amount
cat (amount, "deposited. Your balance is", total, "\n\n")
},
withdraw = function(amount) {
if (amount > total)
stop("You don’t have that much money!\n")
total <<- total - amount
cat(amount, "withdrawn. Your balance is", total, "\n\n")
3,
balance = function() {
cat("Your balance is", total, "\n\n")

}

ross <- open.account(100)
robert <- open.account (200)

ross$withdraw(30)
ross$balance()
robert$balance()

ross$deposit (50)
ross$balance()
ross$withdraw(500)

10.8 Customizing the environment

Users can customize their environment in several different ways. There is a site initialization
file and every directory can have its own special initialization file. Finally, the special
functions .First and .Last can be used.

2 In some sense this mimics the behavior in S-PLUS since in S-PLUS this operator always creates or assigns
to a global variable.
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The location of the site initialization file is taken from the value of the R_PROFILE
environment variable. If that variable is unset, the file Rprofile.site in the R home sub-
directory etc is used. This file should contain the commands that you want to execute every
time R is started under your system. A second, personal, profile file named .Rprofile® can
be placed in any directory. If R is invoked in that directory then that file will be sourced.
This file gives individual users control over their workspace and allows for different startup
procedures in different working directories. If no .Rprofile file is found in the startup
directory, then R looks for a .Rprofile file in the user’s home directory and uses that (if
it exists). If the environment variable R_PROFILE_USER is set, the file it points to is used
instead of the .Rprofile files.

Any function named .First() in either of the two profile files or in the .RData image
has a special status. It is automatically performed at the beginning of an R session and
may be used to initialize the environment. For example, the definition in the example below
alters the prompt to $ and sets up various other useful things that can then be taken for
granted in the rest of the session.

Thus, the sequence in which files are executed is, Rprofile.site, the user profile, .RData
and then .First(). A definition in later files will mask definitions in earlier files.

> .First <- function() {
options(prompt="$ ", continue="+\t") # $ is the prompt

options(digits=5, length=999) # custom numbers and printout
x110 # for graphics
par(pch = "+") # plotting character

source(file.path(Sys.getenv("HOME"), "R", "mystuff.R"))
# my personal functions
library (MASS) # attach a package
}

Similarly a function .Last(), if defined, is (normally) executed at the very end of the
session. An example is given below.

> .Last <- function() {
graphics.off () # a small safety measure.
cat(paste(date(),"\nAdios\n")) # Is it time for lunch?

}

10.9 Classes, generic functions and object orientation

The class of an object determines how it will be treated by what are known as generic
functions. Put the other way round, a generic function performs a task or action on its
arguments specific to the class of the argument itself. If the argument lacks any class
attribute, or has a class not catered for specifically by the generic function in question,
there is always a default action provided.

An example makes things clearer. The class mechanism offers the user the facility
of designing and writing generic functions for special purposes. Among the other generic
functions are plot () for displaying objects graphically, summary () for summarizing analyses
of various types, and anova() for comparing statistical models.

3 S0 it is hidden under UNIX.
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The number of generic functions that can treat a class in a specific way can be quite
large. For example, the functions that can accommodate in some fashion objects of class
"data.frame" include

[ [[<- any as.matrix
[<- mean plot  summary

A currently complete list can be got by using the methods () function:
> methods(class="data.frame")

Conversely the number of classes a generic function can handle can also be quite large.
For example the plot() function has a default method and variants for objects of classes
"data.frame", "density", "factor", and more. A complete list can be got again by using
the methods () function:

> methods(plot)
For many generic functions the function body is quite short, for example

> coef
function (object, ...)
UseMethod ("coef")

The presence of UseMethod indicates this is a generic function. To see what methods are
available we can use methods ()

> methods (coef)
[1] coef.aov* coef.Arimax* coef.defaultx* coef.listof*
[5] coef.nls* coef . summary.nls*

Non-visible functions are asterisked

In this example there are six methods, none of which can be seen by typing its name. We
can read these by either of

> getAnywhere("coef.aov")

A single object matching ’coef.aov’ was found

It was found in the following places
registered S3 method for coef from namespace stats
namespace:stats

with value

function (object, ...)
{
z <- object$coef
z['is.na(z)]

> getS3method("coef", "aov"
function (object, ...)
{
z <- object$coef
z['is.na(z)]
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A function named gen. c1 will be invoked by the generic gen for class c1, so do not name
functions in this style unless they are intended to be methods.

The reader is referred to the R Language Definition for a more complete discussion of
this mechanism.
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11 Statistical models in R

This section presumes the reader has some familiarity with statistical methodology, in
particular with regression analysis and the analysis of variance. Later we make some rather
more ambitious presumptions, namely that something is known about generalized linear
models and nonlinear regression.

The requirements for fitting statistical models are sufficiently well defined to make it
possible to construct general tools that apply in a broad spectrum of problems.

R provides an interlocking suite of facilities that make fitting statistical models very
simple. As we mention in the introduction, the basic output is minimal, and one needs to
ask for the details by calling extractor functions.

11.1 Defining statistical models; formulae

The template for a statistical model is a linear regression model with independent, ho-
moscedastic errors

p
yi:ZBinj-f-ei, eiNNID(0702)7 i=1...,n
j=0
In matrix terms this would be written

y=Xp+e

where the y is the response vector, X is the model matrix or design matriz and has columns
Zo, L1, ..., Ty, the determining variables. Very often z, will be a column of ones defining an
intercept term.

Examples
Before giving a formal specification, a few examples may usefully set the picture.

Suppose y, x, x0, x1, x2, ... are numeric variables, X is a matrix and A, B, C, ... are
factors. The following formulae on the left side below specify statistical models as described
on the right.
y©x
y ~ 1 +x Both imply the same simple linear regression model of y on z. The first has an

implicit intercept term, and the second an explicit one.

y~ 0+x
y~-1+x
y “x -1 Simple linear regression of y on x through the origin (that is, without an inter-

cept term).

log(y) ™ x1 +x2
Multiple regression of the transformed variable, log(y), on z1 and 22 (with an
implicit intercept term).
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y ~ poly(x,2)

yT1l+x+I(x"2)
Polynomial regression of y on x of degree 2. The first form uses orthogonal
polynomials, and the second uses explicit powers, as basis.

y ~ X + poly(x,2)
Multiple regression y with model matrix consisting of the matrix X as well as
polynomial terms in x to degree 2.

y " A Single classification analysis of variance model of y, with classes determined by
A.

y A+ x Single classification analysis of covariance model of y, with classes determined
by A, and with covariate z.

y ~ AxB

y“A+B+A:B

y ~ B %in% A

y ~ A/B Two factor non-additive model of y on A and B. The first two specify the same
crossed classification and the second two specify the same nested classification.
In abstract terms all four specify the same model subspace.

y~ (A+B+C)"2

y 7 AxBxC - A:B:C
Three factor experiment but with a model containing main effects and two
factor interactions only. Both formulae specify the same model.

y T Axx

vy~ A/x

vy A/(1+x) -1
Separate simple linear regression models of y on x within the levels of A, with
different codings. The last form produces explicit estimates of as many different
intercepts and slopes as there are levels in A.

y ~ A*B + Error(C)
An experiment with two treatment factors, A and B, and error strata deter-
mined by factor C. For example a split plot experiment, with whole plots (and
hence also subplots), determined by factor C.

The operator ~ is used 