R Internals

Version 4.1.2 (2021-11-01)

R Core Team

This manual is for R, version 4.1.2 (2021-11-01).
Copyright (© 19992021 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 R Internal Structures........................... 1
1L SEXPS ot 1
1.1.1 SEXPTYPESs ... 1
1.1.2 Restofheader........ ... o i 2
1.1.3 The ‘data’o 4
1.1.4 Allocation clasSesot 6
1.2 Environments and variable lookup 6
1.2.1 Search paths....... ... i 7
1.2.2 Namespacesovv i 7
1.2.3 Hashtable..........o 8
1.3 Attributes..... ... i 8
1.4 ComteXtS o oo 10
1.5 Argument evaluation 11
1.5.1 MiSSINGNeSS. .. vvvttt ittt 12
1.5.2 Dot-dot-dot arguments i i 13
1.6 Autoprinting ... 13
1.7 The write barrier and the garbage collector 14
1.8 Serialization Formats............ ... i i 14
1.9 Encodings for CHARSXPs. ... 16
1.10 The CHARSXP cache..........coiiiiiiiiiiiiiiiia... 17
1.11 Warnings and eIrors.ouiutitiiie i 17
112 5S4 0bJeCtS . oot e 18
1.12.1 Representation of S4 objects............ L. 18
1.12.2 0S4 Classes .ot 18
1.12.3 S4methods. ... 19
1.12.4 Mechanics of S4 dispatch 19
1.13 Memory allocators ..o 20
1.13.1 Internals of R_alloc........ ... oo i i 22
1.14 Internal use of global and base environments.................. 22
1.14.1 Baseenvironmentcooiiiiiiiiiiiiiiiiiia... 22
1.14.2 Global environment...............coiiiiiiii, 23
115 Modules. ... e 23
116 Visibility . .o 23
1.16.1 Hiding C entry points ..., 23
1.16.2 Variables in Windows DLLs 24
1.17 Lazy loadingooiiiimi i 24
2 .Internal vs .Primitive........................ 26
2.1 Special primitives ... 29
2.2 Special internals......... ... 29
2.3 Prototypes for primitives 29

2.4 Adding a primitive 30

3 Internationalization in the R sources......... 31
3.1 Rocode ... oo 31
3.2 Main C code ..ot 31
3.3 Windows-GUI-specific code ..., 32
3.4 macOS GUIL . ..o 32
3.5 Updating. e 32

4 Structure of an Installed Package............. 33
4.1 Metadata.o 33
4.2 Help oo 34

5 Files. ... 35

6 Graphics........ ... 36
6.1 Graphics Devices 37

6.1.1 Device structurest 37
6.1.2 Device capabilities............ ..o 39
6.1.3 Handling text ... 40
6.1.4 Conventionsuiiriii e 42
6.1.0 Mode ... 42
6.1.6 Graphics events. ... 43
6.1.7 Specific devicesot 43
6.1.7. 1 XI1() e e 43
6.1.7.2 windows() ...t 44

6.2 COlOUTS . .o vt 45
6.3 Base graphicso 46
6.3.1 Arguments and parametersc.. i, 47
6.4 Grid graphics. ... 48

7 GUlconsoles............ 49
Tl R e e 49

8 Tools 51

9 Rcodingstandards 64

10 Testing Rcode................................ 66

11 Useof TeX dialects........................... 67

12 Current and future directions................ 68
12,1 Long vectorS . ..ottt 68
12.2 64-Dib byPeS . oo 69

12.3 Large matricesoouui i e 69

ii

Function and variable index

Concept index...............

iii

1 R Internal Structures

This chapter is the beginnings of documentation about R internal structures. It is written
for the core team and others studying the code in the src/main directory.

It is a work-in-progress and should be checked against the current version of the source
code. Versions for R 2.x.y contain historical comments about when features were introduced:
this version is for the 3.x.y series.

1.1 SEXPs

What R users think of as wvariables or objects are symbols which are bound to a value.
The value can be thought of as either a SEXP (a pointer), or the structure it points to,
a SEXPREC (and there are alternative forms used for vectors, namely VECSXP pointing to
VECTOR_SEXPREC structures). So the basic building blocks of R objects are often called
nodes, meaning SEXPRECs or VECTOR_SEXPRECs.

Note that the internal structure of the SEXPREC is not made available to R Extensions:
rather SEXP is an opaque pointer, and the internals can only be accessed by the functions
provided.

Both types of node structure have as their first three fields a 64-bit sxpinfo header and
then three pointers (to the attributes and the previous and next node in a doubly-linked
list), and then some further fields. On a 32-bit platform a node' occupies 32 bytes: on a
64-bit platform typically 56 bytes (depending on alignment constraints).

The first five bits of the sxpinfo header specify one of up to 32 SEXPTYPEs.

1.1.1 SEXPTYPEs

Currently SEXPTYPEs 0:10 and 13:25 are in use. Values 11 and 12 were used for internal fac-
tors and ordered factors and have since been withdrawn. Note that the SEXPTYPE numbers
are stored in saved objects and that the ordering of the types is used, so the gap cannot
easily be reused.

no SEXPTYPE Description

0 NILSXP NULL

1 SYMSXP symbols

2 LISTSXP pairlists

3 CLOSXP closures

4 ENVSXP environments

5 PROMSXP promises

6 LANGSXP language objects
7 SPECIALSXP special functions
8 BUILTINSXP builtin functions
9 CHARSXP internal character strings
10 LGLSXP logical vectors
13 INTSXP integer vectors
14 REALSXP numeric vectors

1 strictly, a SEXPREC node; VECTOR_SEXPREC nodes are slightly smaller but followed by data in the node.

Chapter 1: R Internal Structures 2

15 CPLXSXP complex vectors

16 STRSXP character vectors

17 DOTSXP dot-dot-dot object

18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector

21 BCODESXP byte code

22 EXTPTRSXP external pointer

23 WEAKREFSXP weak reference

24 RAWSXP raw vector

25 S4SXP S4 classes not of simple type

Many of these will be familiar from R level: the atomic vector types are LGLSXP, INTSXP,
REALSXP, CPLXSP, STRSXP and RAWSXP. Lists are VECSXP and names (also known as symbols)
are SYMSXP. Pairlists (LISTSXP, the name going back to the origins of R as a Scheme-like
language) are rarely seen at R level, but are for example used for argument lists. Character
vectors are effectively lists all of whose elements are CHARSXP, a type that is rarely visible
at R level.

Language objects (LANGSXP) are calls (including formulae and so on). Internally they are
pairlists with first element a reference? to the function to be called with remaining elements
the actual arguments for the call (and with the tags if present giving the specified argument
names). Although this is not enforced, many places in the code assume that the pairlist is
of length one or more, often without checking.

Expressions are of type EXPRSXP: they are a vector of (usually language) objects most
often seen as the result of parse().

The functions are of types CLOSXP, SPECIALSXP and BUILTINSXP: where SEXPTYPEs are
stored in an integer these are sometimes lumped into a pseudo-type FUNSXP with code 99.
Functions defined via function are of type CLOSXP and have formals, body and environment.

The SEXPTYPE S4SXP is for S4 objects which do not consist solely of a simple type such
as an atomic vector or function.

1.1.2 Rest of header

Note that the size and structure of the header changed in R 3.5.0: see earlier editions of
this manual for the previous layout.

The sxpinfo header is defined as a 64-bit C structure by

#define NAMED_BITS 16

struct sxpinfo_struct {
SEXPTYPE type 5; /* discussed above */
unsigned int scalar: 1; /* is this a numeric vector of length 17
unsigned int obj 1; /* is this an object with a class attribute? */
unsigned int alt 1; /= is this an ALTREP object? */
unsigned int gp : 16; /* general purpose, see below */
unsigned int mark : 1; /* mark object as ‘in use’ in GC */
unsigned int debug : 1;

2 a pointer to a function or a symbol to look up the function by name, or a language object to be evaluated
to give a function.

Chapter 1: R Internal Structures 3

unsigned int trace :
unsigned int spare : ; /* debug once and with reference counting */
unsigned int gcgen : ; /* generation for GC */
unsigned int gccls : 3; /* class of node for GC */
unsigned int named : NAMED_BITS; /* used to control copying */
unsigned int extra : 32 - NAMED_BITS;
}; /% Tot: 64 */
The debug bit is used for closures and environments. For closures it is set by debug()

and unset by undebug (), and indicates that evaluations of the function should be run under
the browser. For environments it indicates whether the browsing is in single-step mode.

b

N

The trace bit is used for functions for trace() and for other objects when tracing
duplications (see tracemem).

The spare bit is used for closures to mark them for one-time debugging.

The named field is set and accessed by the SET_NAMED and NAMED macros, and take values
0, 1 and 2, or possibly higher if NAMEDMAX is set to a higher value. R has a ‘call by value’
illusion, so an assignment like

b <- a
[The NAMED mechanism has been replaced by reference counting.|

appears to make a copy of a and refer to it as b. However, if neither a nor b are subsequently
altered there is no need to copy. What really happens is that a new symbol b is bound to
the same value as a and the named field on the value object is set (in this case to 2). When
an object is about to be altered, the named field is consulted. A value of 2 or more means
that the object must be duplicated before being changed. (Note that this does not say that
it is necessary to duplicate, only that it should be duplicated whether necessary or not.) A
value of 0 means that it is known that no other SEXP shares data with this object, and so
it may safely be altered. A value of 1 is used for situations like

dim(a) <- c(7, 2)
where in principle two copies of a exist for the duration of the computation as (in principle)
a <- ‘dim<-‘(a, c(7, 2))
but for no longer, and so some primitive functions can be optimized to avoid a copy in this
case. [This mechanism is scheduled to be replaced in R 4.0.0.]

The gp bits are by definition ‘general purpose’. We label these from 0 to 15. Bits 0-5 and
bits 14-15 have been used as described below (mainly from detective work on the sources).

The bits can be accessed and set by the LEVELS and SETLEVELS macros, which names
appear to date back to the internal factor and ordered types and are now used in only a
few places in the code. The gp field is serialized /unserialized for the SEXPTYPEs other than
NILSXP, SYMSXP and ENVSXP.

Bits 14 and 15 of gp are used for ‘fancy bindings’. Bit 14 is used to lock a binding or
an environment, and bit 15 is used to indicate an active binding. (For the definition of an
‘active binding’ see the header comments in file src/main/envir.c.) Bit 15 is used for an
environment to indicate if it participates in the global cache.

The macros ARGUSED and SET_ARGUSED are used when matching actual and formal func-
tion arguments, and take the values 0, 1 and 2.

Chapter 1: R Internal Structures 4

The macros MISSING and SET_MISSING are used for pairlists of arguments. Four bits are
reserved, but only two are used (and exactly what for is not explained). It seems that bit
0 is used by matchArgs_NR to mark missingness on the returned argument list, and bit 1 is
used to mark the use of a default value for an argument copied to the evaluation frame of
a closure.

Bit 0 is used by macros DDVAL and SET_DDVAL. This indicates that a SYMSXP is one of
the symbols ..n which are implicitly created when ... is processed, and so indicates that
it may need to be looked up in a DOTSXP.

Bit 0 is used for PRSEEN, a flag to indicate if a promise has already been seen during the
evaluation of the promise (and so to avoid recursive loops).

Bit 0 is used for HASHASH, on the PRINTNAME of the TAG of the frame of an environment.
(This bit is not serialized for CHARSXP objects.)

Bits 0 and 1 are used for weak references (to indicate ‘ready to finalize’, ‘finalize on
exit’).

Bit 0 is used by the condition handling system (on a VECSXP) to indicate a calling handler.

Bit 4 is turned on to mark S4 objects.

Bits 1, 2, 3, 5 and 6 are used for a CHARSXP to denote its encoding. Bit 1 indicates that
the CHARSXP should be treated as a set of bytes, not necessarily representing a character in
any known encoding. Bits 2, 3 and 6 are used to indicate that it is known to be in Latin-1,
UTF-8 or ASCII respectively.

Bit 5 for a CHARSXP indicates that it is hashed by its address, that is NA_STRING or is in
the CHARSXP cache (this is not serialized). Only exceptionally is a CHARSXP not hashed, and
this should never happen in end-user code.

1.1.3 The ‘data’

A SEXPREC is a C structure containing the 64-bit header as described above, three pointers
(to the attributes, previous and next node) and the node data, a union

union {
struct primsxp_struct primsxp;
struct symsxp_struct symsxp;
struct listsxp_struct listsxp;
struct envsxp_struct envsxp,
struct closxp_struct closxp;
struct promsxp_struct promsxp;
}ou;
All of these alternatives apart from the first (an int) are three pointers, so the union
occupies three words.

The vector types are RAWSXP, CHARSXP, LGLSXP, INTSXP, REALSXP, CPLXSXP, STRSXP,
VECSXP, EXPRSXP and WEAKREFSXP. Remember that such types are a VECTOR_SEXPREC,
which again consists of the header and the same three pointers, but followed by two integers
giving the length and ‘true length’® of the vector, and then followed by the data (aligned as
required: on most 32-bit systems with a 24-byte VECTOR_SEXPREC node the data can follow

3 The only current use is for hash tables of environments (VECSXPs), where length is the size of the
table and truelength is the number of primary slots in use, for the reference hash tables in serializa-

Chapter 1: R Internal Structures 5

immediately after the node). The data are a block of memory of the appropriate length to
store ‘true length’ elements (rounded up to a multiple of 8 bytes, with the 8-byte blocks
being the ‘Vcells’ referred in the documentation for gc()).

The ‘data’ for the various types are given in the table below. A lot of this is interpreta-
tion, i.e. the types are not checked.

NILSXP There is only one object of type NILSXP, R_NilValue, with no data.

SYMSXP Pointers to three nodes, the name, value and internal, accessed by PRINTNAME
(a CHARSXP), SYMVALUE and INTERNAL. (If the symbol’s value is a .Internal
function, the last is a pointer to the appropriate SEXPREC.) Many symbols have
SYMVALUE R_UnboundValue.

LISTSXP Pointers to the CAR, CDR (usually a LISTSXP or NULL) and TAG (a SYMSXP
or NULL).

CLOSXP Pointers to the formals (a pairlist), the body and the environment.

ENVSXP Pointers to the frame, enclosing environment and hash table (NULL or a VECSXP).
A frame is a tagged pairlist with tag the symbol and CAR the bound value.

PROMSXP Pointers to the value, expression and environment (in which to evaluate the
expression). Once an promise has been evaluated, the environment is set to
NULL.

LANGSXP A special type of LISTSXP used for function calls. (The CAR references the
function (perhaps via a symbol or language object), and the CDR the argu-
ment list with tags for named arguments.) R-level documentation references
to ‘expressions’ / ‘language objects’ are mainly LANGSXPs, but can be symbols
(SYMSXPs) or expression vectors (EXPRSXPs).

SPECTALSXP
BUILTINSXP
An integer giving the offset into the table of primitives/.Internals.

CHARSXP length, truelength followed by a block of bytes (allowing for the nul termi-

nator).

LGLSXP

INTSXP length, truelength followed by a block of C ints (which are 32 bits on all R
platforms).

REALSXP length, truelength followed by a block of C doubles.
CPLXSXP length, truelength followed by a block of C99 double complexs.

STRSXP length, truelength followed by a block of pointers (SEXPs pointing to
CHARSXPS).

DOTSXP A special type of LISTSXP for the value bound to a ... symbol: a pairlist of
promises.

tion (VECSXPs), and for ‘growable’ vectors (atomic vectors, VECSXPs and EXPRSXPs) which are created by
slightly over-committing when enlarging a vector during subassignment, so that some number of the fol-
lowing enlargements during subassignment can be performed in place), where truelength is the number
of slots in use.

Chapter 1: R Internal Structures 6

ANYSXP This is used as a place holder for any type: there are no actual objects of this
type.

VECSXP

EXPRSXP length, truelength followed by a block of pointers. These are internally iden-
tical (and identical to STRSXP) but differ in the interpretations placed on the
elements.

BCODESXP For the ‘byte-code’ objects generated by the compiler.

EXTPTRSXP
Has three pointers, to the pointer, the protection value (an R object which if
alive protects this object) and a tag (a SYMSXP?).

WEAKREFSXP
A WEAKREFSXP is a special VECSXP of length 4, with elements ‘key’, ‘value’,
‘finalizer’ and ‘next’. The ‘key’ is NULL, an environment or an external
pointer, and the ‘finalizer’ is a function or NULL.

RAWSXP length, truelength followed by a block of bytes.

S4SXP two unused pointers and a tag.

1.1.4 Allocation classes

As we have seen, the field gccls in the header is three bits to label up to 8 classes of nodes.
Non-vector nodes are of class 0, and ‘small’ vector nodes are of classes 1 to 5, with a class
for custom allocator vector nodes 6 and ‘large’ vector nodes being of class 7. The ‘small’
vector nodes are able to store vector data of up to 8, 16, 32, 64 and 128 bytes: larger vectors
are malloc-ed individually whereas the ‘small’ nodes are allocated from pages of about 2000
bytes. Vector nodes allocated using custom allocators (via allocVector3) are not counted
in the gc memory usage statistics since their memory semantics is not under R’s control
and may be non-standard (e.g., memory could be partially shared across nodes).

1.2 Environments and variable lookup

What users think of as ‘variables’ are symbols which are bound to objects in ‘environments’.
The word ‘environment’ is used ambiguously in R to mean either the frame of an ENVSXP
(a pairlist of symbol-value pairs) or an ENVSXP, a frame plus an enclosure.

There are additional places that ‘variables’ can be looked up, called ‘user databases’ in
comments in the code. These seem undocumented in the R sources, but apparently refer
to the RObjectTable package at http://www.omegahat.net/RObjectTables/.

The base environment is special. There is an ENVSXP environment with enclosure the
empty environment R_EmptyEnv, but the frame of that environment is not used. Rather
its bindings are part of the global symbol table, being those symbols in the global symbol
table whose values are not R_UnboundValue. When R is started the internal functions
are installed (by C code) in the symbol table, with primitive functions having values and
.Internal functions having what would be their values in the field accessed by the INTERNAL
macro. Then .Platform and .Machine are computed and the base package is loaded into
the base environment followed by the system profile.

http://www.omegahat.net/RObjectTables/

Chapter 1: R Internal Structures 7

The frames of environments (and the symbol table) are normally hashed for faster access
(including insertion and deletion).

By default R maintains a (hashed) global cache of ‘variables’ (that is symbols and their
bindings) which have been found, and this refers only to environments which have been
marked to participate, which consists of the global environment (aka the user workspace),
the base environment plus environments* which have been attached. When an environment
is either attached or detached, the names of its symbols are flushed from the cache. The
cache is used whenever searching for variables from the global environment (possibly as part
of a recursive search).

1.2.1 Search paths

S has the notion of a ‘search path’: the lookup for a ‘variable’ leads (possibly through a
series of frames) to the ‘session frame’ the ‘working directory’ and then along the search
path. The search path is a series of databases (as returned by search()) which contain the
system functions (but not necessarily at the end of the path, as by default the equivalent
of packages are added at the end).

R has a variant on the S model. There is a search path (also returned by search())
which consists of the global environment (aka user workspace) followed by environments
which have been attached and finally the base environment. Note that unlike S it is not
possible to attach environments before the workspace nor after the base environment.

However, the notion of variable lookup is more general in R, hence the plural in the title
of this subsection. Since environments have enclosures, from any environment there is a
search path found by looking in the frame, then the frame of its enclosure and so on. Since
loops are not allowed, this process will eventually terminate: it can terminate at either the
base environment or the empty environment. (It can be conceptually simpler to think of
the search always terminating at the empty environment, but with an optimization to stop
at the base environment.) So the ‘search path’ describes the chain of environments which
is traversed once the search reaches the global environment.

1.2.2 Namespaces

Namespaces are environments associated with packages (and once again the base package
is special and will be considered separately). A package pkg defines two environments
namespace: pkg and package: pkg: it is package: pkg that can be attached and form part
of the search path.

The objects defined by the R code in the package are symbols with bindings in the
namespace: pkg environment. The package: pkg environment is populated by selected sym-
bols from the namespace: pkg environment (the exports). The enclosure of this environment
is an environment populated with the explicit imports from other namespaces, and the en-
closure of that environment is the base namespace. (So the illusion of the imports being in
the namespace environment is created via the environment tree.) The enclosure of the base
namespace is the global environment, so the search from a package namespace goes via the
(explicit and implicit) imports to the standard ‘search path’.

4 Remember that attaching a list or a saved image actually creates and populates an environment and
attaches that.

Chapter 1: R Internal Structures 8

The base namespace environment R_BaseNamespace is another ENVSXP that is special-
cased. It is effectively the same thing as the base environment R_BaseEnv except that its
enclosure is the global environment rather than the empty environment: the internal code
diverts lookups in its frame to the global symbol table.

1.2.3 Hash table

Environments in R usually have a hash table, and nowadays that is the default in new.env ().
It is stored as a VECSXP where length is used for the allocated size of the table and
truelength is the number of primary slots in use—the pointer to the VECSXP is part of
the header of a SEXP of type ENVSXP, and this points to R_NilValue if the environment is
not hashed.

For the pros and cons of hashing, see a basic text on Computer Science.

The code to implement hashed environments is in src/main/envir.c. Unless set oth-
erwise (e.g. by the size argument of new.env()) the initial table size is 29. The table will
be resized by a factor of 1.2 once the load factor (the proportion of primary slots in use)
reaches 85%.

The hash chains are stored as pairlist elements of the VECSXP: items are inserted at
the front of the pairlist. Hashing is principally designed for fast searching of environments,
which are from time to time added to but rarely deleted from, so items are not actually
deleted but have their value set to R_UnboundValue.

1.3 Attributes

As we have seen, every SEXPREC has a pointer to the attributes of the node (default R_
NilValue). The attributes can be accessed/set by the macros/functions ATTRIB and SET_
ATTRIB, but such direct access is normally only used to check if the attributes are NULL or to
reset them. Otherwise access goes through the functions getAttrib and setAttrib which
impose restrictions on the attributes. One thing to watch is that if you copy attributes
from one object to another you may (un)set the "class" attribute and so need to copy the
object and S4 bits as well. There is a macro/function DUPLICATE_ATTRIB to automate this.

Note that the ‘attributes’ of a CHARSXP are used as part of the management of the
CHARSXP cache: of course CHARSXP’s are not user-visible but C-level code might look at
their attributes.

The code assumes that the attributes of a node are either R_NilValue or a pairlist
of non-zero length (and this is checked by SET_ATTRIB). The attributes are named (via
tags on the pairlist). The replacement function attributes<- ensures that "dim" precedes
"dimnames" in the pairlist. Attribute "dim" is one of several that is treated specially: the
values are checked, and any "names" and "dimnames" attributes are removed. Similarly,
you cannot set "dimnames" without having set "dim", and the value assigned must be a list
of the correct length and with elements of the correct lengths (and all zero-length elements
are replaced by NULL).

The other attributes which are given special treatment are "names", "class", "tsp",
"comment" and "row.names". For pairlist-like objects the names are not stored as an
attribute but (as symbols) as the tags: however the R interface makes them look like
conventional attributes, and for one-dimensional arrays they are stored as the first element
of the "dimnames" attribute. The C code ensures that the "tsp" attribute is an REALSXP,

Chapter 1: R Internal Structures 9

the frequency is positive and the implied length agrees with the number of rows of the
object being assigned to. Classes and comments are restricted to character vectors, and
assigning a zero-length comment or class removes the attribute. Setting or removing a
"class" attribute sets the object bit appropriately. Integer row names are converted to
and from the internal compact representation.

Care needs to be taken when adding attributes to objects of the types with non-standard
copying semantics. There is only one object of type NILSXP, R_NilValue, and that should
never have attributes (and this is enforced in installAttrib). For environments, external
pointers and weak references, the attributes should be relevant to all uses of the object: it
is for example reasonable to have a name for an environment, and also a "path" attribute
for those environments populated from R code in a package.

When should attributes be preserved under operations on an object? Becker, Chambers
& Wilks (1988, pp. 144-6) give some guidance. Scalar functions (those which operate
element-by-element on a vector and whose output is similar to the input) should preserve
attributes (except perhaps class, and if they do preserve class they need to preserve the
OBJECT and S4 bits). Binary operations normally call copyMostAttrib to copy most at-
tributes from the longer argument (and if they are of the same length from both, preferring
the values on the first). Here ‘most’ means all except the names, dim and dimnames which
are set appropriately by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names,
dim and dimnames which are reset as appropriate. On the other hand, subassignment gen-
erally preserves such attributes even if the length is changed. Coercion drops all attributes.
For example:

> x <- structure(1:8, names=letters[1:8], comm="a comment")
> x[]

abcdefgh

123456738

attr(,"comm")

[1] "a comment"

> x[1:3]
abc
123

> x[3] <- 3
> x

abcdefgh
123456738
attr(,"comm")

[1] "a comment"
> x[9] <- 9

> x
abcdefgh
1234567829
attr(,"comm")

[1] "a comment"

Chapter 1: R Internal Structures

1.4 Contexts

10

Contexts are the internal mechanism used to keep track of where a computation has got
to (and from where), so that control-flow constructs can work and reasonable information
can be produced on error conditions (such as via traceback), and otherwise (the sys.xxx

functions).

Execution contexts are a stack of C structs:

typedef struct RCNTXT {
struct RCNTXT *nextcontext; /* The next context up the chain */

int callflag;

JMP_BUF cjmpbuf;

int cstacktop;
int evaldepth;
SEXP promargs;
SEXP callfun;

SEXP sysparent;

SEXP call;
SEXP cloenv;
SEXP conexit;

void (*cend) (void *);
void *cenddata;

char *vmax;
int intsusp;

SEXP handlerstack;
SEXP restartstack;
struct RPRSTACK *prstack; /* Stack of pending promises */
} RCNTXT, *context;

plus additional fields for the byte-code compiler. The ‘types’ are from

enum {
CTXT_TOPLEVEL
CTXT_NEXT
CTXT_BREAK
CTXT_LOOP
CTXT_FUNCTION
CTXT_CCODE
CTXT_RETURN
CTXT_BROWSER
CTXT_GENERIC
CTXT_RESTART
CTXT_BUILTIN

};

0, /*
1, /%
2, /*
3, /*
4, /*
8, [/
=12, /*
= 16, /*
= 20, /*
= 32, /*
64 /x*

/* The context ‘type’ */

/* C stack and register information */
/* Top of the pointer protection stack */
/* Evaluation depth at inception */

/* Promises supplied to closure */

/* The closure called */

/* Environment the closure was called from */
/* The call that effected this context */
/* The environment */

/* Interpreted on.exit code */

/* C on.exit thunk */

/* Data for C on.exit thunk */

/* Top of the R_alloc stack */

/* Interrupts are suspended */

/* Condition handler stack */

/* Stack of available restarts */

toplevel context */

target for next */

target for break */

break or next target */

function closure */

other functions that need error cleanup */
return() from a closure */

return target on exit from browser */
rather, running an S3 method */

a call to restart was made from a closure */
builtin internal function */

where the CTXT_FUNCTION bit is on wherever function closures are involved.

Contexts are created by a call to begincontext and ended by a call to endcontext:
code can search up the stack for a particular type of context via findcontext (and jump
there) or jump to a specific context via R_JumpToContext. R_ToplevelContext is the ‘idle’
state (normally the command prompt), and R_GlobalContext is the top of the stack.

Chapter 1: R Internal Structures 11

Note that whilst calls to closures set a context, internal functions never do and primitive
builtins only set it when profiling or when they are interfaces to foreign functions.

The byte-code compiler generates a map of instructions to source references and ex-
pressions at compile time, which allows to produce information on error conditions. As an
optimization, the byte-code interpreter then does not set a context in some cases, such as
in simple loops or when inlining simple builtins or wrappers for internal functions.

Dispatching from a S3 generic (via UseMethod or its internal equivalent) or calling
NextMethod sets the context type to CTXT_GENERIC. This is used to set the sysparent
of the method call to that of the generic, so the method appears to have been called in
place of the generic rather than from the generic.

The R sys.frame and sys.call functions work by counting calls to closures (type
CTXT_FUNCTION) from either end of the context stack.

Note that the sysparent element of the structure is not the same thing as sys.parent ().
Element sysparent is primarily used in managing changes of the function being evaluated,
i.e. by Recall and method dispatch.

CTXT_CCODE contexts are currently used in cat(), load(), scan() and write.table()
(to close the connection on error), by PROTECT, serialization (to recover from errors, e.g.
free buffers) and within the error handling code (to raise the C stack limit and reset some
variables).

1.5 Argument evaluation

As we have seen, functions in R come in three types, closures (SEXPTYPE CLOSXP), specials
(SPECIALSXP) and builtins (BUILTINSXP). In this section we consider when (and if) the
actual arguments of function calls are evaluated. The rules are different for the internal
(special /builtin) and R-level functions (closures).

For a call to a closure, the actual and formal arguments are matched and a matched
call (another LANGSXP) is constructed. This process first replaces the actual argument list
by a list of promises to the values supplied. It then constructs a new environment which
contains the names of the formal parameters matched to actual or default values: all the
matched values are promises, the defaults as promises to be evaluated in the environment
just created. That environment is then used for the evaluation of the body of the function,
and promises will be forced (and hence actual or default arguments evaluated) when they are
encountered. (Evaluating a promise sets NAMED = NAMEDMAX on its value, so if the argument
was a symbol its binding is regarded as having multiple references during the evaluation of
the closure call.) [The NAMED mechanism has been replaced by reference counting,]

If the closure is an S3 generic (that is, contains a call to UseMethod) the evaluation
process is the same until the UseMethod call is encountered. At that point the argument
on which to do dispatch (normally the first) will be evaluated if it has not been already.
If a method has been found which is a closure, a new evaluation environment is created
for it containing the matched arguments of the method plus any new variables defined so
far during the evaluation of the body of the generic. (Note that this means changes to the
values of the formal arguments in the body of the generic are discarded when calling the
method, but actual argument promises which have been forced retain the values found when
they were forced. On the other hand, missing arguments have values which are promises to
use the default supplied by the method and not by the generic.) If the method found is a

Chapter 1: R Internal Structures 12

primitive it is called with the matched argument list of promises (possibly already forced)
used for the generic.

The essential difference® between special and builtin functions is that the arguments of
specials are not evaluated before the C code is called, and those of builtins are. Note that
being a special/builtin is separate from being primitive or .Internal: quote is a special
primitive, + is a builtin primitive, cbind is a special .Internal and grep is a builtin
.Internal.

Many of the internal functions are internal generics, which for specials means that they do
not evaluate their arguments on call, but the C code starts with a call to DispatchOrEval.
The latter evaluates the first argument, and looks for a method based on its class. (If S4
dispatch is on, S4 methods are looked for first, even for S3 classes.) If it finds a method,
it dispatches to that method with a call based on promises to evaluate the remaining
arguments. If no method is found, the remaining arguments are evaluated before return to
the internal generic.

The other way that internal functions can be generic is to be group generic. Most
such functions are builtins (so immediately evaluate all their arguments), and all contain a
call to the C function DispatchGeneric. There are some peculiarities over the number of
arguments for the "Math" group generic, with some members allowing only one argument,
some having two (with a default for the second) and trunc allows one or more but the
default method only accepts one.

1.5.1 Missingness

Actual arguments to (non-internal) R functions can be fewer than are required to match
the formal arguments of the function. Having unmatched formal arguments will not matter
if the argument is never used (by lazy evaluation), but when the argument is evaluated,
either its default value is evaluated (within the evaluation environment of the function) or
an error is thrown with a message along the lines of

argument "foobar" is missing, with no default

Internally missingness is handled by two mechanisms. The object R_MissingArg is used
to indicate that a formal argument has no (default) value. When matching the actual
arguments to the formal arguments, a new argument list is constructed from the formals
all of whose values are R_MissingArg with the first MISSING bit set. Then whenever a
formal argument is matched to an actual argument, the corresponding member of the new
argument list has its value set to that of the matched actual argument, and if that is not
R_MissingArg the missing bit is unset.

This new argument list is used to form the evaluation frame for the function, and if named
arguments are subsequently given a new value (before they are evaluated) the missing bit
is cleared.

Missingness of arguments can be interrogated via the missing() function. An argument
is clearly missing if its missing bit is set or if the value is R_MissingArg. However, missing-
ness can be passed on from function to function, for using a formal argument as an actual
argument in a function call does not count as evaluation. So missing() has to examine

5 There is currently one other difference: when profiling builtin functions are counted as function calls but
specials are not.

Chapter 1: R Internal Structures 13

the value (a promise) of a non-yet-evaluated formal argument to see if it might be missing,
which might involve investigating a promise and so on

Special primitives also need to handle missing arguments, and in some case (e.g. log)
that is why they are special and not builtin. This is usually done by testing if an argument’s
value is R_MissingArg.

1.5.2 Dot-dot-dot arguments

Dot-dot-dot arguments are convenient when writing functions, but complicate the internal
code for argument evaluation.

The formals of a function with a ... argument represent that as a single argument like
any other argument, with tag the symbol R_DotsSymbol. When the actual arguments are
matched to the formals, the value of the ... argument is of SEXPTYPE DOTSXP, a pairlist of
promises (as used for matched arguments) but distinguished by the SEXPTYPE.

Recall that the evaluation frame for a function initially contains the name=value pairs

from the matched call, and hence this will be true for ... as well. The value of ... is a
(special) pairlist whose elements are referred to by the special symbols . .1, ..2, ... which
have the DDVAL bit set: when one of these is encountered it is looked up (via ddfindVar)
in the value of the ... symbol in the evaluation frame.

Values of arguments matched to a ... argument can be missing.

Special primitives may need to handle ... arguments: see for example the internal code

of switch in file src/main/builtin.c.

1.6 Autoprinting

Whether the returned value of a top-level R expression is printed is controlled by the global
boolean variable R_Visible. This is set (to true or false) on entry to all primitive and
internal functions based on the eval column of the table in file src/main/names.c: the
appropriate setting can be extracted by the macro PRIMPRINT.

The R primitive function invisible makes use of this mechanism: it just sets R_Visible
= FALSE before entry and returns its argument.

For most functions the intention will be that the setting of R_Visible when they are en-
tered is the setting used when they return, but there need to be exceptions. The R functions
identify, options, system and writeBin determine whether the result should be visible
from the arguments or user action. Other functions themselves dispatch functions which
may change the visibility flag: examples® are .Internal, do.call, eval, withVisible, if,
NextMethod, Recall, recordGraphics, standardGeneric, switch and UseMethod.

‘Special’ primitive and internal functions evaluate their arguments internally after R_
Visible has been set, and evaluation of the arguments (e.g. an assignment as in PR#9263)
can change the value of the flag.

The R_Visible flag can also get altered during the evaluation of a function, with
comments in the code about warning, writeChar and graphics functions calling GText
(PR#7397). (Since the C-level function eval sets R_Visible, this could apply to any func-
tion calling it. Since it is called when evaluating promises, even object lookup can change

6 the other current example is left brace, which is implemented as a primitive.

Chapter 1: R Internal Structures 14

R_Visible.) Internal and primitive functions force the documented setting of R_Visible
on return, unless the C code is allowed to change it (the exceptions above are indicated by
PRIMPRINT having value 2).

The actual autoprinting is done by PrintValueEnv in file print.c. If the object to be
printed has the S4 bit set and S4 methods dispatch is on, show is called to print the object.
Otherwise, if the object bit is set (so the object has a "class" attribute), print is called to
dispatch methods: for objects without a class the internal code of print.default is called.

1.7 The write barrier and the garbage collector

R has long had a generational garbage collector, and bit gcgen in the sxpinfo header is
used in the implementation of this. This is used in conjunction with the mark bit to identify
two previous generations.

There are three levels of collections. Level 0 collects only the youngest generation, level
1 collects the two youngest generations and level 2 collects all generations. After 20 level-0
collections the next collection is at level 1, and after 5 level-1 collections at level 2. Further,
if a level-n collection fails to provide 20% free space (for each of nodes and the vector heap),
the next collection will be at level n+1. (The R-level function gc() performs a level-2
collection.)

A generational collector needs to efficiently ‘age’ the objects, especially list-like objects
(including STRSXPs). This is done by ensuring that the elements of a list are regarded
as at least as old as the list when they are assigned. This is handled by the functions
SET_VECTOR_ELT and SET_STRING_ELT, which is why they are functions and not macros.
Ensuring the integrity of such operations is termed the write barrier and is done by making
the SEXP opaque and only providing access via functions (which cannot be used as lvalues
in assignments in C).

All code in R extensions is by default behind the write barrier. The only way to obtain
direct access to the internals of the SEXPRECs is to define ‘USE_RINTERNALS’ before including
header file Rinternals.h, which is normally defined in Defn.h. To enable a check on the
way that the access is used, R can be compiled with flag -——enable-strict-barrier which
ensures that header Defn.h does not define ‘USE_RINTERNALS’ and hence that SEXP is opaque
in most of R itself. (There are some necessary exceptions: foremost in file memory.c where
the accessor functions are defined and also in file size.c which needs access to the sizes of
the internal structures.)

For background papers see https://homepage.stat.uiowa.edu/ luke/R/barrier.
html and https://homepage.stat.uiowa.edu/ luke/R/gengcnotes.html.

1.8 Serialization Formats

Serialized versions of R objects are used by load/save and also at a slightly lower
level by saveRDS/readRDS (and their earlier ‘internal’ dot-name versions) and
serialize/unserialize. These differ in what they serialize to (a file, a connection, a
raw vector) and whether they are intended to serialize a single object or a collection of
objects (typically the workspace). save writes a header at the beginning of the file (a
single LF-terminated line) which the lower-level versions do not.

save and saveRDS allow various forms of compression, and gzip compression is the
default (except for ASCII saves). Compression is applied to the whole file stream, including

https://homepage.stat.uiowa.edu/~luke/R/barrier.html
https://homepage.stat.uiowa.edu/~luke/R/barrier.html
https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html

Chapter 1: R Internal Structures 15

the headers, so serialized files can be uncompressed or re-compressed by external programs.
Both load and readRDS can read gzip, bzip2 and xz forms of compression when reading
from a file, and gzip compression when reading from a connection.

R has used the same serialization format called ‘version 2’ from R 1.4.0 in December
2001 until R 3.5.3 in March 2019. It has been expanded in back-compatible ways since its
inception, for example to support additional SEXPTYPEs. Earlier formats are still supported
via load and save but such formats are not described here. The current default serialization
format is called ‘version 3’, and has been introduced in R 3.5.0.

save works by writing a single-line header (typically RDX2\n for a binary save: the
only other current value is RDA2\n for save (files=TRUE)), then creating a tagged pairlist
of the objects to be saved and serializing that single object. load reads the header line,
unserializes a single object (a pairlist or a vector list) and assigns the elements of the object
in the specified environment. The header line serves two purposes in R: it identifies the
serialization format so load can switch to the appropriate reader code, and the newline
\n allows the detection of files which have been subjected to a non-binary transfer which
re-mapped line endings. It can also be thought of as a ‘magic number’ in the sense used by
the file program (although R save files are not yet by default known to that program).

Serialization in R needs to take into account that objects may contain references to
environments, which then have enclosing environments and so on. (Environments recognized
as package or name space environments are saved by name.) There are ‘reference objects’
which are not duplicated on copy and should remain shared on unserialization. These
are weak references, external pointers and environments other than those associated with
packages, namespaces and the global environment. These are handled via a hash table, and
references after the first are written out as a reference marker indexed by the table entry.

Version-2 serialization first writes a header indicating the format (normally ‘X\n’ for an
XDR format binary save, but ‘A\n’, ASCII, and ‘B\n’, native word-order binary, can also
occur) and then three integers giving the version of the format and two R versions (packed
by the R_Version macro from Rversion.h). (Unserialization interprets the two versions as
the version of R which wrote the file followed by the minimal version of R needed to read
the format.) Serialization then writes out the object recursively using function WriteItem
in file src/main/serialize.c.

Some objects are written as if they were SEXPTYPEs: such pseudo-SEXPTYPEs cover R_
NilValue, R_EmptyEnv, R_BaseEnv, R_GlobalEnv, R_UnboundValue, R_MissingArg and
R_BaseNamespace.

For all SEXPTYPEs except NILSXP, SYMSXP and ENVSXP serialization starts with an integer
with the SEXPTYPE in bits 0:77 followed by the object bit, two bits indicating if there are
any attributes and if there is a tag (for the pairlist types), an unused bit and then the gp
field® in bits 12:27. Pairlist-like objects write their attributes (if any), tag (if any), CAR
and then CDR (using tail recursion): other objects write their attributes after themselves.
Atomic vector objects write their length followed by the data: generic vector-list objects
write their length followed by a call to WriteItem for each element. The code for CHARSXPs
special-cases NA_STRING and writes it as length -1 with no data. Lengths no more than

7 only bits 0:4 are currently used for SEXPTYPEs but values 241:255 are used for pseudo-SEXPTYPEs.
8 Currently the only relevant bits are 0:1, 4, 14:15.

Chapter 1: R Internal Structures 16

2731 - 1 are written in that way and larger lengths (which only occur on 64-bit systems)
as -1 followed by the upper and lower 32-bits as integers (regarded as unsigned).

Environments are treated in several ways: as we have seen, some are written as spe-
cific pseudo-SEXPTYPEs. Package and namespace environments are written with pseudo-
SEXPTYPEs followed by the name. ‘Normal’ environments are written out as ENVSXPs with
an integer indicating if the environment is locked followed by the enclosure, frame, ‘tag’
(the hash table) and attributes.

In the ‘XDR’ format integers and doubles are written in bigendian order: however the
format is not fully XDR (as defined in RFC 1832) as byte quantities (such as the contents
of CHARSXP and RAWSXP types) are written as-is and not padded to a multiple of four bytes.

The ‘ASCII’ format writes 7-bit characters. Integers are formatted with %d (except that
NA_integer_ is written as NA), doubles formatted with %.16g (plus NA, Inf and -Inf)
and bytes with %02x. Strings are written using standard escapes (e.g. \t and \013) for
non-printing and non-ASCII bytes.

Version-3 serialization extends version-2 by support for custom serialization of ALTREP
framework objects. It also stores the current native encoding at serialization time, so
that unflagged strings can be converted if unserialized in R running under different native
encoding.

1.9 Encodings for CHARSXPs
Character data in R are stored in the sexptype CHARSXP.

There is support for encodings other than that of the current locale, in particular UTF-
8 and the multi-byte encodings used on Windows for CJK languages. A limited means
to indicate the encoding of a CHARSXP is via two of the ‘general purpose’ bits which are
used to declare the encoding to be either Latin-1 or UTF-8. (Note that it is possible for
a character vector to contain elements in different encodings.) Both printing and plotting
notice the declaration and convert the string to the current locale (possibly using <xx> to
display in hexadecimal bytes that are not valid in the current locale). Many (but not all) of
the character manipulation functions will either preserve the declaration or re-encode the
character string.

Strings that refer to the OS such as file names need to be passed through a wide-character
interface on some OSes (e.g. Windows).

When are character strings declared to be of known encoding? One way is to do so
directly via Encoding. The parser declares the encoding if this is known, either via the
encoding argument to parse or from the locale within which parsing is being done at the
R command line. (Other ways are recorded on the help page for Encoding.)

It is not necessary to declare the encoding of ASCII strings as they will work in any
locale. ASCII strings should never have a marked encoding, as any encoding will be ignored
when entering such strings into the CHARSXP cache.

The rationale behind considering only UTF-8 and Latin-1 was that most systems are
capable of producing UTF-8 strings and this is the nearest we have to a universal format.
For those that do not (for example those lacking a powerful enough iconv), it is likely that
they work in Latin-1, the old R assumption. Then the parser can return a UTF-8-encoded
string if it encounters a ‘\uxxxx’ escape for a Unicode point that cannot be represented in

Chapter 1: R Internal Structures 17

the current charset. (This needs MBCS support, and was only enabled® on Windows.) This
is enabled for all platforms, and a ‘\uxxxx’ or ‘\Uxxxxxxxx’ escape ensures that the parsed
string will be marked as UTF-8.

Most of the character manipulation functions now preserve UTF-8 encodings:
there are some notes as to which at the top of file src/main/character.c and in file
src/library/base/man/Encoding.Rd.

Graphics devices are offered the possibility of handing UTF-8-encoded strings without
re-encoding to the native character set, by setting hasTextUTF8 to be ‘TRUE’ and supplying
functions textUTF8 and strWidthUTF8 that expect UTF-8-encoded inputs. Normally the
symbol font is encoded in Adobe Symbol encoding, but that can be re-encoded to UTF-8
by setting wantSymbolUTF8 to ‘TRUE’. The Windows’ port of cairographics has a rather
peculiar assumption: it wants the symbol font to be encoded in UTF-8 as if it were encoded
in Latin-1 rather than Adobe Symbol: this is selected by wantSymbolUTF8 = NA_LOGICAL.

Windows has no UTF-8 locales, but rather expects to work with UCS-2!° strings. R
(being written in standard C) would not work internally with UCS-2 without extensive
changes. The Rgui console!! uses UCS-2 internally, but communicates with the R engine
in the native encoding. To allow UTF-8 strings to be printed in UTF-8 in Rgui.exe, an
escape convention is used (see header file rgui_UTF8.h) by cat, print and autoprinting.

‘Unicode’ (UCS-2LE) files are common in the Windows world, and readLines and scan
will read them into UTF-8 strings on Windows if the encoding is declared explicitly on an
unopened connection passed to those functions.

1.10 The CHARSXP cache

There is a global cache for CHARSXPs created by mkChar — the cache ensures that most
CHARSXPs with the same contents share storage (‘contents’ including any declared encoding).
Not all CHARSXPs are part of the cache — notably ‘NA_STRING’ is not. CHARSXPs reloaded
from the save formats of R prior to 0.99.0 are not cached (since the code used is frozen and
very few examples still exist).

The cache records the encoding of the string as well as the bytes: all requests to create
a CHARSXP should be via a call to mkCharLenCE. Any encoding given in mkCharLenCE call
will be ignored if the string’s bytes are all ASCII characters.

1.11 Warnings and errors

Each of warning and stop have two C-level equivalents, warning, warningcall, error and
errorcall. The relationship between the pairs is similar: warning tries to fathom out a
suitable call, and then calls warningcall with that call as the first argument if it succeeds,
and with call = R_NilValue if it does not. When warningcall is called, it includes the
deparsed call in its printout unless call = R_NilValue.

warning and error look at the context stack. If the topmost context is not of type
CTXT_BUILTIN, it is used to provide the call, otherwise the next context provides the call.

9 See define USE_UTF8_IF_POSSIBLE in file src/main/gram.c.

10 or UTF-16 if support for surrogates is enabled in the OS, which it used not to be when encoding support
was added to R.

' but not the GraphApp toolkit.

Chapter 1: R Internal Structures 18

This means that when these functions are called from a primitive or . Internal, the imputed
call will not be to primitive/. Internal but to the function calling the primitive/.Internal
. This is exactly what one wants for a .Internal, as this will give the call to the closure
wrapper. (Further, for a . Internal, the call is the argument to . Internal, and so may not
correspond to any R function.) However, it is unlikely to be what is needed for a primitive.

The upshot is that that warningcall and errorcall should normally be used for code
called from a primitive, and warning and error should be used for code called from a
.Internal (and necessarily from .Call, .C and so on, where the call is not passed down).
However, there are two complications. One is that code might be called from either a
primitive or a .Internal, in which case probably warningcall is more appropriate. The
other involves replacement functions, where the call was once of the form

> length(x) <-y 7 x
Error in "length<-"(‘*tmp*‘, value = y ~ x) : invalid value

which is unpalatable to the end user. For replacement functions there will be a suitable
context at the top of the stack, so warning should be used. (The results for .Internal
replacement functions such as substr<- are not ideal.)

1.12 S4 objects

[This section is currently a preliminary draft and should not be taken as definitive. The
description assumes that R_NO_METHODS_TABLES has not been set.]

1.12.1 Representation of S4 objects

S4 objects can be of any SEXPTYPE. They are either an object of a simple type (such as an
atomic vector or function) with S4 class information or of type S4SXP. In all cases, the ‘S4
bit” (bit 4 of the ‘general purpose’ field) is set, and can be tested by the macro/function
IS_S4_0BJECT.

S4 objects are created via new()'? and thence via the C function R_do_new_object.
This duplicates the prototype of the class, adds a class attribute and sets the S4 bit. All
S4 class attributes should be character vectors of length one with an attribute giving (as a
character string) the name of the package (or .GlobalEnv) containing the class definition.
Since S4 objects have a class attribute, the OBJECT bit is set.

It is currently unclear what should happen if the class attribute is removed from an S4
object, or if this should be allowed.

1.12.2 S4 classes

S4 classes are stored as R objects in the environment in which they are created, with names
C__classname: as such they are not listed by default by 1s.

The objects are S4 objects of class "classRepresentation" which is defined in the
methods package.

Since these are just objects, they are subject to the normal scoping rules and
can be imported and exported from namespaces like other objects. The directives
importClassesFrom and exportClasses are merely convenient ways to refer to class

12 This can also create non-S4 objects, as in new("integer").

Chapter 1: R Internal Structures 19

objects without needing to know their internal ‘metaname’ (although exportClasses does
a little sanity checking via isClass).

1.12.3 S4 methods

Details of the methods are stored in environments (typically hidden in the respective name-
space) with a non-syntactic name of the form .__T__generic:package containing objects
of class MethodDefinition for all methods defined in the current environment for the named
generic derived from a specific package (which might be .GlobalEnv). This is sometimes

referred to as a ‘methods table’.
For example,

length(nM <- asNamespace("Matrix")) # 941 for Matrix 1.2-6
length(meth <- grep(""[.J__T__", names(nM), value=TRUE))# 107 generics with methods
length(meth.Ops <- nM$‘.__T__Ops:base) # 71 methods for the ’Ops’ (group)generic
head (sort (names (meth.Ops))) ## "abIndex#abIndex" ... "ANY#ddiMatrix" "ANY#ldiMatrix"

During an R session there is an environment associated with each non-primitive generic
containing objects .Al11MTable, .Generic, .Methods, .MTable, .SigArgs and .SigLength.
.MTable and AllMTable are merged methods tables containing all the methods defined
directly and via inheritance respectively. .Methods is a merged methods list.

Exporting methods from a namespace is more complicated than exporting a class. Note
first that you do not export a method, but rather the directive exportMethods will export all
the methods defined in the namespace for a specified generic: the code also adds to the list
of generics any that are exported directly. For generics which are listed via exportMethods
or exported themselves, the corresponding environment is exported and so will appear (as
hidden object) in the package environment.

Methods for primitives which are internally S4 generic (see below) are always exported,
whether mentioned in the NAMESPACE file or not.

Methods can be imported either via the directive importMethodsFrom or via import-
ing a namespace by import. Also, if a generic is imported via importFrom, its methods
are also imported. In all cases the generic will be imported if it is in the namespace, so
importMethodsFrom is most appropriate for methods defined on generics in other packages.
Since methods for a generic could be imported from several different packages, the methods
tables are merged.

When a package is attached methods: : : cacheMetaData is called to update the internal
tables: only the visible methods will be cached.

1.12.4 Mechanics of S4 dispatch

This subsection does not discuss how S4 methods are chosen: see https://developer.
r-project.org/howMethodsWork. pdf.

For all but primitive functions, setting a method on an existing function that is
not itself S4 generic creates a new object in the current environment which is a call to
standardGeneric with the old definition as the default method. Such S4 generics can
also be created via a call to setGeneric'® and are standard closures in the R language,
with environment the environment within which they are created. With the advent of

13 although this is not recommended as it is less future-proof.

https://developer.r-project.org/howMethodsWork.pdf
https://developer.r-project.org/howMethodsWork.pdf

Chapter 1: R Internal Structures 20

namespaces this is somewhat problematic: if myfn was previously in a package with a
name space there will be two functions called myfn on the search paths, and which will be
called depends on which search path is in use. This is starkest for functions in the base
namespace, where the original will be found ahead of the newly created function from any
other package.

Primitive functions are treated quite differently, for efficiency reasons: this results in
different semantics. setGeneric is disallowed for primitive functions. The methods name-
space contains a list .BasicFunsList named by primitive functions: the entries are either
FALSE or a standard S4 generic showing the effective definition. When setMethod (or
setReplaceMethod) is called, it either fails (if the list entry is FALSE) or a method is set on
the effective generic given in the list.

Actual dispatch of S4 methods for almost all primitives piggy-backs on the S3 dispatch
mechanism, so S4 methods can only be dispatched for primitives which are internally S3
generic. When a primitive that is internally S3 generic is called with a first argument
which is an S4 object and S4 dispatch is on (that is, the methods namespace is loaded),
DispatchOrEval calls R_possible_dispatch (defined in file src/main/objects.c).
(Members of the S3 group generics, which includes all the generic operators, are treated
slightly differently: the first two arguments are checked and DispatchGroup is called.)
R_possible_dispatch first checks an internal table to see if any S4 methods are set for
that generic (and S4 dispatch is currently enabled for that generic), and if so proceeds to
S4 dispatch using methods stored in another internal table. All primitives are in the base
namespace, and this mechanism means that S4 methods can be set for (some) primitives
and will always be used, in contrast to setting methods on non-primitives.

The exception is %*%, which is S4 generic but not S3 generic as its C code contains a
direct call to R_possible_dispatch.

The primitive as.double is special, as as.numeric and as.real are copies of it. The
methods package code partly refers to generics by name and partly by function, and maps
as.double and as.real to as.numeric (since that is the name used by packages exporting
methods for it).

Some elements of the language are implemented as primitives, for example }. This in-
cludes the subset and subassignment ‘functions’ and they are S4 generic, again piggybacking
on S3 dispatch.

.BasicFunsList is generated when methods is installed, by computing all primitives, ini-
tially disallowing methods on all and then setting generics for members of .GenericArgsEnv,
the S4 group generics and a short exceptions list in file BasicFunsList.R: this currently
contains the subsetting and subassignment operators and an override for c.

1.13 Memory allocators

R’s memory allocation is almost all done via routines in file src/main/memory.c. It is
important to keep track of where memory is allocated, as the Windows port (by default)
makes use of a memory allocator that differs from malloc etc as provided by MinGW.
Specifically, there are entry points Rm_malloc, Rm_free, Rm_calloc and Rm_free provided
by file src/gnuwin32/malloc.c. This was done for two reasons. The primary motivation
was performance: the allocator provided by MSVCRT wvia MinGW was far too slow at
handling the many small allocations that the allocation system for SEXPRECs uses. As

Chapter 1: R Internal Structures 21

a side benefit, we can set a limit on the amount of allocated memory: this is useful as
whereas Windows does provide virtual memory it is relatively far slower than many other R
platforms and so limiting R’s use of swapping is highly advantageous. The high-performance
allocator is only called from src/main/memory.c, src/main/regex.c, src/extra/pcre and
src/extra/xdr: note that this means that it is not used in packages.

The rest of R should where possible make use of the allocators made available by file
src/main/memory.c, which are also the methods recommended in Section “Memory allo-
cation” in Writing R Extensions for use in R packages, namely the use of R_alloc, Calloc,
Realloc and Free. Memory allocated by R_alloc is freed by the garbage collector once the
‘watermark’ has been reset by calling vmaxset. This is done automatically by the wrapper
code calling primitives and .Internal functions (and also by the wrapper code to .Call
and .External), but vmaxget and vmaxset can be used to reset the watermark from within
internal code if the memory is only required for a short time.

All of the methods of memory allocation mentioned so far are relatively expensive. All
R platforms support alloca, and in almost all cases'® this is managed by the compiler,
allocates memory on the C stack and is very efficient.

There are two disadvantages in using alloca. First, it is fragile and care is needed to
avoid writing (or even reading) outside the bounds of the allocation block returned. Second,
it increases the danger of overflowing the C stack. It is suggested that it is only used for
smallish allocations (up to tens of thousands of bytes), and that

R_CheckStack();

is called immediately after the allocation (as R’s stack checking mechanism will warn far
enough from the stack limit to allow for modest use of alloca). (do_makeunique in file
src/main/unique.c provides an example of both points.)

There is an alternative check,
R_CheckStack2(size_t extra);
to be called immediately before trying an allocation of extra bytes.

An alternative strategy has been used for various functions which require intermediate
blocks of storage of varying but usually small size, and this has been consolidated into the
routines in the header file src/main/RBufferUtils.h. This uses a structure which contains
a buffer, the current size and the default size. A call to

R_AllocStringBuffer(size_t blen, R_StringBuffer *buf);

sets buf->data to a memory area of at least blen+1 bytes. At least the default size is
used, which means that for small allocations the same buffer can be reused. A call to R_
FreeStringBufferL releases memory if more than the default has been allocated whereas
a call to R_FreeStringBuffer frees any memory allocated.

The R_StringBuffer structure needs to be initialized, for example by
static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

which uses a default size of MAXELTSIZE = 8192 bytes. Most current uses have a static
R_StringBuffer structure, which allows the (default-sized) buffer to be shared between

4 put apparently not on Windows.

Chapter 1: R Internal Structures 22

calls to e.g. grep and even between functions: this will need to be changed if R ever allows
concurrent evaluation threads. So the idiom is

static R_StringBuffer ex_buff = {NULL, O, MAXELTSIZE};

char x*xbuf;
for(i = 0; i < n; i++) {
compute len
buf = R_AllocStringBuffer(len, &ex_buff);
use buf
}
/* free allocation if larger than the default, but leave
default allocated for future use */
R_FreeStringBufferL (&ex_buff) ;

1.13.1 Internals of R_alloc

The memory used by R_alloc is allocated as R vectors, of type RAWSXP. Thus the allocation
is in units of 8 bytes, and is rounded up. A request for zero bytes currently returns NULL
(but this should not be relied on). For historical reasons, in all other cases 1 byte is added
before rounding up so the allocation is always 1-8 bytes more than was asked for: again
this should not be relied on.

The vectors allocated are protected via the setting of R_VStack, as the garbage collector
marks everything that can be reached from that location. When a vector is R_allocated, its
ATTRIB pointer is set to the current R_VStack, and R_VStack is set to the latest allocation.
Thus R_VStack is a single-linked chain of the vectors currently allocated via R_alloc.
Function vmaxset resets the location R_VStack, and should be to a value that has previously
be obtained via vmaxget: allocations after the value was obtained will no longer be protected
and hence available for garbage collection.

1.14 Internal use of global and base environments

This section notes known use by the system of these environments: the intention is to
minimize or eliminate such uses.

1.14.1 Base environment

The graphics devices system maintains two variables .Device and .Devices in the base
environment: both are always set. The variable .Devices gives a list of character vectors
of the names of open devices, and .Device is the element corresponding to the currently
active device. The null device will always be open.

There appears to be a variable .Options, a pairlist giving the current options settings.
But in fact this is just a symbol with a value assigned, and so shows up as a base variable.

Similarly, the evaluator creates a symbol .Last.value which appears as a variable in
the base environment.

Errors can give rise to objects . Traceback and last.warning in the base environment.

Chapter 1: R Internal Structures 23

1.14.2 Global environment

The seed for the random number generator is stored in object .Random.seed in the global
environment.

Some error handlers may give rise to objects in the global environment: for example
dump . frames by default produces last.dump.

The windows () device makes use of a variable .SavedPlots to store display lists of saved
plots for later display. This is regarded as a variable created by the user.

1.15 Modules

R makes use of a number of shared objects/DLLs stored in the modules directory. These
are parts of the code which have been chosen to be loaded ‘on demand’ rather than linked
as dynamic libraries or incorporated into the main executable/dynamic library.

For the remaining modules the motivation has been the amount of (often optional) code
they will bring in via libraries to which they are linked.

internet The internal HTTP and FTP clients and socket support, which link to system-
specific support libraries. This may load libcurl and on Windows will load
wininet.dll and ws2_32.d11.

lapack The code which makes use of the LAPACK library, and is linked to 1ibRlapack
or an external LAPACK library.

X11 (Unix-alikes only.) The X110, jpeg(), png() and tiff() devices. These are
optional, and links to some or all of the X11, pango, cairo, jpeg, libpng and
1ibtiff libraries.

1.16 Visibility

1.16.1 Hiding C entry points

We make use of the visibility mechanisms discussed in Section “Controlling visibility” in
Writing R Extensions, C entry points not needed outside the main R executable/dynamic
library (and in particular in no package nor module) should be prefixed by attribute_
hidden. Minimizing the visibility of symbols in the R dynamic library will speed up linking
to it (which packages will do) and reduce the possibility of linking to the wrong entry
points of the same name. In addition, on some platforms reducing the number of entry
points allows more efficient versions of PIC to be used: somewhat over half the entry points
are hidden. A convenient way to hide variables (as distinct from functions) is to declare
them externO in header file Defn.h.

The visibility mechanism used is only available with some compilers and platforms, and
in particular not on Windows, where an alternative mechanism is used. Entry points will
not be made available in R.d11 if they are listed in the file src/gnuwin32/Rd11.hide.
Entries in that file start with a space and must be strictly in alphabetic order in the C
locale (use sort on the file to ensure this if you change it). It is possible to hide Fortran
as well as C entry points via this file: the former are lower-cased and have an underline as
suffix, and the suffixed name should be included in the file. Some entry points exist only

Chapter 1: R Internal Structures 24

on Windows or need to be visible only on Windows, and some notes on these are provided
in file src/gnuwin32/Maintainters.notes.

Because of the advantages of reducing the number of visible entry points, they should be
declared attribute_hidden where possible. Note that this only has an effect on a shared-
R-library build, and so care is needed not to hide entry points that are legitimately used
by packages. So it is best if the decision on visibility is made when a new entry point is
created, including the decision if it should be included in header file Rinternals.h. A list
of the visible entry points on shared-R-library build on a reasonably standard Unix-alike
can be made by something like

nm -g libR.so | grep ° [BCDT] ’ | cut -b20-

1.16.2 Variables in Windows DLLs

Windows is unique in that it conventionally treats importing variables differently from
functions: variables that are imported from a DLL need to be specified by a prefix (often
‘_imp_’) when being linked to (‘imported’) but not when being linked from (‘exported’).
The details depend on the compiler system, and have changed for MinGW during the
lifetime of that port. They are in the main hidden behind some macros defined in header
file R_ext/libextern.h.

A (non-function) variable in the main R sources that needs to be referred to outside
R.d11 (in a package, module or another DLL such as Rgraphapp.dll) should be declared
with prefix LibExtern. The main use is in Rinternals.h, but it needs to be considered for
any public header and also Defn.h.

It would nowadays be possible to make use of the ‘auto-import’ feature of the MinGW
port of 1d to fix up imports from DLLs (and if R is built for the Cygwin platform this is what
happens). However, this was not possible when the MinGW build of R was first constructed
in ca 1998, allows less control of visibility and would not work for other Windows compiler
suites.

It is only possible to check if this has been handled correctly by compiling the R sources
on Windows.

1.17 Lazy loading

Lazy loading is always used for code in packages but is optional (selected by the package
maintainer) for datasets in packages. When a package/namespace which uses it is loaded,
the package/namespace environment is populated with promises for all the named objects:
when these promises are evaluated they load the actual code from a database.

There are separate databases for code and data, stored in the R and data subdirectories.
The database consists of two files, name.rdb and name.rdx. The .rdb file is a concatenation
of serialized objects, and the .rdx file contains an index. The objects are stored in (usually)
a gzip-compressed format with a 4-byte header giving the uncompressed serialized length (in
XDR, that is big-endian, byte order) and read by a call to the primitive lazyLoadDBfetch.
(Note that this makes lazy-loading unsuitable for really large objects: the unserialized length
of an R object can exceed 4GB.)

The index or ‘map’ file name.rdx is a compressed serialized R object to be read by
readRDS. It is a list with three elements variables, references and compressed. The

25

first two are named lists of integer vectors of length 2 giving the offset and length of the
serialized object in the name.rdb file. Element variables has an entry for each named
object: references serializes a temporary environment used when named environments
are added to the database. compressed is a logical indicating if the serialized objects were
compressed: compression is always used nowadays. We later added the values compressed
= 2 and 3 for bzip2 and xz compression (with the possibility of future expansion to other
methods): these formats add a fifth byte to the header for the type of compression, and
store serialized objects uncompressed if compression expands them.

Source references are treated specially for performance reasons: bindings lines and
parseData from srcfile environments are loaded lazily. This uses a mechanism that
allows loading selected bindings from an environment lazily. The key for such environment
is a list with two elements: eagerKey gives the length-two integer key for the bindings
loaded eagerly and lazyKeys gives a vector of length-two integer keys, one for each lazily
loaded binding.

The loader for a lazy-load database of code or data is function lazyLoad in the base pack-
age, but note that there is a separate copy to load base itself in file R_HOME/base/R/base.

Lazy-load databases are created by the code in src/library/tools/R/makeLazyLoad.R:
the main tool is the unexported function makeLazyLoadDB and the insertion of database
entries is done by calls to .Call("R_lazyLoadDBinsertValue", ...).

Lazy-load databases of less than 10MB are cached in memory at first use: this was
found necessary when using file systems with high latency (removable devices and network-
mounted file systems on Windows).

Lazy-load databases are loaded into the exports for a package, but not into the namespace
environment itself. Thus they are visible when the package is attached, and also via the ::
operator. This was a deliberate design decision, as packages mostly make datasets available
for use by the end user (or other packages), and they should not be found preferentially
from functions in the package, surprising users who expected the normal search path to
be used. (There is an alternative mechanism, sysdata.rda, for ‘system datasets’ that are
intended primarily to be used within the package.)

The same database mechanism is used to store parsed Rd files. One or all of the parsed
objects is fetched by a call to tools: ::fetchRdDB.

26

2 .Internal vs .Primitive

C code compiled into R at build time can be called directly in what are termed primitives
or via the .Internal interface, which is very similar to the .External interface except
in syntax. More precisely, R maintains a table of R function names and corresponding C
functions to call, which by convention all start with ‘do_’ and return a SEXP. This table
(R_FunTab in file src/main/names.c) also specifies how many arguments to a function are
required or allowed, whether or not the arguments are to be evaluated before calling, and
whether the function is ‘internal’ in the sense that it must be accessed via the .Internal
interface, or directly accessible in which case it is printed in R as .Primitive.
Functions using . Internal () wrapped in a closure are in general preferred as this ensures

standard handling of named and default arguments. For example, grep is defined as

grep <-

function (pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,

fixed = FALSE, useBytes = FALSE, invert = FALSE)

{
if ('is.character(x)) x <- structure(as.character(x), names = names(x))
.Internal (grep(as.character(pattern), x, ignore.case, value,
perl, fixed, useBytes, invert))
}

and the use of as.character allows methods to be dispatched (for example, for factors).
However, for reasons of convenience and also efficiency (as there is some overhead in
using the .Internal interface wrapped in a function closure), the primitive functions are
exceptions that can be accessed directly. And of course, primitive functions are needed for
basic operations—for example . Internal is itself a primitive. Note that primitive functions
make no use of R code, and hence are very different from the usual interpreted functions.
In particular, formals and body return NULL for such objects, and argument matching
can be handled differently. For some primitives (including call, switch, .C and .subset)
positional matching is important to avoid partial matching of the first argument.
The list of primitive functions is subject to change; currently, it includes the following.
1. “Special functions” which really are language elements, but implemented as primitive
functions:
{ (if for while repeat break next
return function quote switch
2. Language elements and basic operators (i.e., functions usually not called as foo(a, b,
...)) for subsetting, assignment, arithmetic, comparison and logic:

L L $ Q

<- <K= = [<- [[<- $<- o0x<-

+ - * / B W Hxh Wk
< <= == = >= >

I [& && !

When the arithmetic, comparison and logical operators are called as functions, any
argument names are discarded so positional matching is used.

Chapter 2: .Internal vs .Primitive

27

3. “Low level” 0— and l-argument functions which belong to one of the following groups

of functions:

a. Basic mathematical functions with a single argument, i.e.,

abs sign

sqrt

floor ceiling

exp expml
log2 logl0
cos sin

acos asin
cosh sinh

acosh asinh
cospi sinpi

gamma lgamma

loglp
tan
atan
tanh
atanh
tanpi

digamma trigamma

cumsum cumprod cummax cummin

Im Re Arg Conj

Mod

log is a primitive function of one or two arguments with named argument match-

ing.

trunc is a difficult case: it is a primitive that can have one or more arguments:
the default method handled in the primitive has only one.

b. Functions rarely used outside of “programming” (i.e., mostly used inside other

functions), such as

nargs
as.call
as.environment
is.array
is.complex
is.finite
is.language
is.na
is.numeric
is.real
baseenv
unclass

missing on.exit
as.character as.complex
as.integer as.logical
is.atomic is.call
is.double is.environment
is.function is.infinite
is.list is.logical
is.name is.nan
is.object is.pairlist
is.recursive 1is.single
emptyenv globalenv
invisible seq_along

c. The programming and session management utilities

browser proc.time

interactive

as.
as.
.character
.expression
.integer
.matrix
.null

.raw
.symbol

is

double
raw

pos.to.env
seq_len

gc.time tracemem retracemem untracemem

4. The following basic replacement and extractor functions

Chapter 2: .Internal vs .Primitive 28

length length<-
class class<-
oldClass oldClass<-
attr attr<-
attributes attributes<-
names names<-
dim dim<-
dimnames dimnames<-
environment<-
levels<-

storage.mode<-

Note that optimizing NAMED = 1 is only effective within a primitive (as the closure
wrapper of a . Internal will set NAMED = NAMEDMAX when the promise to the argument
is evaluated) and hence replacement functions should where possible be primitive to
avoid copying (at least in their default methods). [The NAMED mechanism has been
replaced by reference counting.]

5. The following functions are primitive for efficiency reasons:

: - c list

call expression substitute

UseMethod standardGeneric

.C .Fortran .Call .External
round signif rep seq.int

as well as the following internal-use-only functions

.Primitive .Internal
.Call.graphics .External.graphics
.subset .subset2
.primTrace .primUntrace
lazyLoadDBfetch

The multi-argument primitives

call switch
.C .Fortran .Call .External

intentionally use positional matching, and need to do so to avoid partial matching to their
first argument. They do check that the first argument is unnamed or for the first two,
partially matches the formal argument name. On the other hand,

attr attr<- browser rememtrace substitute UseMethod
log round signif rep seq.int
manage their own argument matching and do work in the standard way.
All the one-argument primitives check that if they are called with a named argument

that this (partially) matches the name given in the documentation: this is also done for
replacement functions with one argument plus value.

The net effect is that argument matching for primitives intended for end-user use as
functions is done in the same way as for interpreted functions except for the six exceptions
where positional matching is required.

Chapter 2: .Internal vs .Primitive 29

2.1 Special primitives

A small number of primitives are specials rather than builtins, that is they are entered
with unevaluated arguments. This is clearly necessary for the language constructs and the
assignment operators, as well as for && and || which conditionally evaluate their second
argument, and ~, .Internal, call, expression, missing, on.exit, quote and substitute
which do not evaluate some of their arguments.

rep and seq.int are special as they evaluate some of their arguments conditional on
which are non-missing.

log, round and signif are special to allow default values to be given to missing argu-
ments.

The subsetting, subassignment and @ operators are all special. (For both extraction and
replacement forms, $ and @ take a symbol argument, and [and [[allow missing arguments.)

UseMethod is special to avoid the additional contexts added to calls to builtins.

2.2 Special internals

There are also special .Internal functions: NextMethod, Recall, withVisible, cbind,
rbind (to allow for the deparse.level argument), eapply, lapply and vapply.

2.3 Prototypes for primitives

Prototypes are available for the primitive functions and operators, and these are used for
printing, args and package checking (e.g. by tools::checkS3methods and by package
codetools (https://CRAN.R-project.org/package=codetools)). There are two environ-
ments in the base package (and namespace), ‘.GenericArgsEnv’ for those primitives which
are internal S3 generics, and ‘. ArgsEnv’ for the rest. Those environments contain closures
with the same names as the primitives, formal arguments derived (manually) from the help
pages, a body which is a suitable call to UseMethod or NULL and environment the base
namespace.

The C code for print.default and args uses the closures in these environments in
preference to the definitions in base (as primitives).

The QC function undoc checks that all the functions prototyped in these environments
are currently primitive, and that the primitives not included are better thought of as lan-
guage elements (at the time of writing

$ $<- & (: @ o<- [[[[Ik- [k AL Il 7 <= <= =
break for function 1if next repeat return while
). One could argue about ~, but it is known to the parser and has semantics quite unlike a
normal function. And : is documented with different argument names in its two meanings.

The QC functions codoc and checkS3methods also make use of these environments
(effectively placing them in front of base in the search path), and hence the formals of the
functions they contain are checked against the help pages by codoc. However, there are two
problems with the generic primitives. The first is that many of the operators are part of the
S3 group generic Ops and that defines their arguments to be el and e2: although it would be
very unusual, an operator could be called as e.g. "+" (el=a, e2=b) and if method dispatch
occurred to a closure, there would be an argument name mismatch. So the definitions in

https://CRAN.R-project.org/package=codetools

Chapter 2: .Internal vs .Primitive 30

environment .GenericArgsEnv have to use argument names el and e2 even though the
traditional documentation is in terms of x and y: codoc makes the appropriate adjustment
via tools:::.make_S3_primitive_generic_env. The second discrepancy is with the Math
group generics, where the group generic is defined with argument list (x, ...), but most
of the members only allow one argument when used as the default method (and round and
signif allow two as default methods): again fix-ups are used.

Those primitives which are in .GenericArgsEnv are checked (via tests/primitives.R)
to be generic via defining methods for them, and a check is made that the remaining
primitives are probably not generic, by setting a method and checking it is not dispatched
to (but this can fail for other reasons). However, there is no certain way to know that
if other .Internal or primitive functions are not internally generic except by reading the
source code.

2.4 Adding a primitive

[For R-core use: reverse this procedure to remove a primitive. Most commonly this is done
by changing a .Internal to a primitive or vice versa.]

Primitives are listed in the table R_FunTab in src/main/names.c: primitives have ‘Y =
0’ in the ‘eval’ field.

There needs to be an ‘\alias’ entry in a help file in the base package, and the primitive
needs to be added to one of the lists at the start of this section.

Some primitives are regarded as language elements (the current ones are listed
above). These need to be added to two lists of exceptions, langElts in undoc() (in file
src/library/tools/R/QC.R) and lang_elements in tests/primitives.R.

All other primitives are regarded as functions and should be listed in one of the en-
vironments defined in src/library/base/R/zzz.R, either .ArgsEnv or .GenericArgsEnv:
internal generics also need to be listed in the character vector .S3PrimitiveGenerics. Note
too the discussion about argument matching above: if you add a primitive function with
more than one argument by converting a .Internal you need to add argume