
A CORBA IDL compiler for SWI-Prolog

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

January 25, 2001

Abstract

This document contains a brief overview of a CORBA IDL compiler for (SWI-)Prolog.
The compiler automatically generates the interface code between Prolog and an external
ORB. It has been used with a wide variety of ORB implementations using either the plain
C or the C++ language binding of the ORB.

The current development uses Orbacus 4.0.4.

1

Contents

1 Introduction 3

2 Architecture 3

3 The Prolog mapping 3
3.1 Types . 3

3.1.1 Scalar Types . 3
3.1.2 Booleans . 3
3.1.3 Enum Types . 3
3.1.4 Strings . 5
3.1.5 Structures . 5
3.1.6 Sequences . 5
3.1.7 Arrays . 5
3.1.8 Switch types . 5

3.2 Constants . 5
3.3 Modules . 5
3.4 Interfaces . 6
3.5 Methods . 6
3.6 Exceptions . 6

4 Other server implementation aspects 6
4.1 Creating interface instances . 6

4.1.1 Using the Orbix Loader . 6
4.2 Overall control predicates . 7
4.3 Other utility predicates . 7

5 Client specific aspects 8
5.1 Using the Orbix binder . 8

6 Implementation 8

7 Status 8
7.1 The mapping . 10

2

1 Introduction

CORBA is the emerging standard for distributed computing. It makes components of a
distributed system independent on the platform and language as well as accesible over the
network.

A component in a distributed system is described using an IDL, (Interface Description
Language) module. IDL is an object oriented language. It describes the component in
terms of interfaces (classes in normal OO systems), which have attributes and methods.
Method arguments are typed. The type system of IDL contains the usual primitives: various
length integers, floating point numbers and strings, as well as constructs for aggregate types:
(un)bounded sequences, arrays, structures and unions (switch-type).

A language binding describes how constructs from the IDL are mapped onto constructs
of the target language. Well defined bindings exist for various languages, including C, C++,
Java and Lisp. No such binding is defined for Prolog.

This document describes an evolving binding and its implementation for Prolog.

2 Architecture

There is a wide range of implementations of the C and C++ bindings available. As this project
was carried out with limited resources, it appeared natural to base the implementation on
these bindings. Using an existing binding, we avoid involvement in the broker and protocol
layers of CORBA. The architecture is outlined in figure 1.

3 The Prolog mapping

A mapping describes what the IDL looks like from the target language. In this section we
will go through all mapped IDL construcs.

3.1 Types

3.1.1 Scalar Types

All scalar integer types ((un)signed long, (un)signed short, char, octed are mapped into Prolog
integers. If an argument is passed to the CORBA interface the Prolog integer should satisfy
the limitations of the IDL type. A floating point number representing an integer in the
required range of the type is accepted too. If an argument is passed to Prolog, it always
appears as a Prolog integer.

The types float and double are mapped into Prolog floating point numbers.

3.1.2 Booleans

The CORBA type CORBA Boolean is mapped onto the Prolog constants true and false.

3.1.3 Enum Types

Enum types are mapped onto atoms holding the name of the member of the enum type.

3

IDL
Interface
Module

IDL/C(++)
Compiler

Interface
Wrapper

Implementation
module

CORBA
runtime libraries

ServerLinker

pl-stubber

(skeleton)

Support Lib
(pl2iluc.c)

Prolog
Runtime libraries

Figure 1: Architecture of the Prolog/CORBA binding

4

3.1.4 Strings

Strings are mapped onto atoms. This normally requires a Prolog implementation offering
atom garbage collection.

3.1.5 Structures

A structure is mapped into a Prolog term. The principal functor is the name of the structure.
The arguments of the term denote the fields of the structure by position.1

3.1.6 Sequences

Both bound and unbound sequences are mapped into Prolog lists.

3.1.7 Arrays

The current IDL compiler does not support arrays. On Prolog systems with unbound term-
arity they could be mapped onto terms, providing arg/3 for accessing the elements in a natural
and efficient fashion. On other systems, trees may be appropriate. To ensure portability, the
support libraries should include predicates to build and analyse arrays.

3.1.8 Switch types

An IDL switch-type is the combination of a union and a type identifier (scalar or enum). It
is mapped onto a term named after the switch-type holding the type identifier and the actual
value.

If the type identifier is an enum, a good alternative mapping would be 〈Enum〉(〈Value〉).
This however does not allow for integer type identifiers.

3.2 Constants

Constants are not yet available to the implementation module. They are handled by the IDL
compiler for type specifications. The IDL compiler should generate a predicate to access the
constants. For example:

?- idl_constant(Name, Value).

3.3 Modules

IDL modules are mapped onto Prolog modules. The current compiler cannot deal with
interfaces appearing outside modules or nested modules. In the future, the code for interfaces
without a module should be in the Prolog user module and nested modules should be mapped
onto Prolog modules where the name is the concatenation of the module-path, separated by
underscores.

For a generic mapping, Modules cannot be used as modules are not yet part of the (ISO)
Prolog standard.

1Terms are a natural and efficient method for representing structures, but they loose the naming of the
fields as they appear in the IDL. The IDL compiler should generate one or more utility predicates for accessing
the arguments in the term by name.

5

3.4 Interfaces

Interfaces are not mapped explicitely.

3.5 Methods

A method is mapped onto a predicate in the implementation module. The name of the
predicate is constructed from the interface name and the method name, separated by an
underscore.

The first argument to the predicate is a reference to the interface object. Next are the
arguments describing the input/output arguments. At the server side, input arguments are
bound and output arguments are unbound. At the client input arguments must be bound. For
output arguments, the converted value is unified with the argument. Arguments of type inout
are not yet supported. They will probably be passed as a term inout(In, Out). Finally, if the
method has a return-type, this is appended as the last argument. The argument conventions
for the return-value are the same as for output arguments.

3.6 Exceptions

IDL exceptions are mapped onto ISO Prolog catch/throw exception handling. The exception-
term is a term whose name is the exception name. The arguments are mapped as structure
arguments. A server raising an exception calls throw/1 using the exception term. A client
calls catch/3 for handling these exceptions.

4 Other server implementation aspects

4.1 Creating interface instances

Instances are create using the predicate

〈interface〉 create true(+Marker, -Handle)

If Marker is unbound, the created object is anonymous. If it is bound to an atom this
name is used as a marker. The implication thereof depends on the ORB used.

• Orbacus 4
The Marker is used to register this object with the given name at the BootManager.
The object is now available under the URL

corbaloc:iiop:〈host〉:〈port〉/〈name〉

This URL can be passed to corba string to object/2 on the client-side. See
corba initialize server/2 on how to bind the server to a specified port.

4.1.1 Using the Orbix Loader

The Orbix loader is activated by the Orbix deamon to create instances of a specified interface
with a specified marker. The loader calls the predicate user:corba loader/3 to create objects:

6

user:corba loader(+ModuleAndInterface, +Marker, -Object)
Interface is of the form 〈Module〉 〈Interface〉. 〈Object〉 should be unified with a ref-
erence to an instance of the requested interface, normally by calling the appropriate
* create true predicate.

It would be better to define a corba loader/3 predicate in each module and pass the
plain interface name.

4.2 Overall control predicates

The Prolog mapping defines a number of predicates to deal with the overall control of the
session, as well as other environment control. As the possibilities differ widely between the
various CORBA implementations, this set of predicates is tentative.

corba initialize server(+Options, -Server)
Initialize the CORBA server library. Options is a list of options. Server is unified with
a handle to the ORB. ORB implementations vary widely in the options that may be
handed to initialising the server. The option list is described below:

Common options
server(ServerId) Denotes the identifier under which the server is registered.

ILU options
protocol(ProtocolId) The protocol used for communication. Default is the ILU

internal protocol, iiop 1 0 1 should be used to switch to the
CORBA IIOP protocol.

transport(Stack) Determines the transport layer(s) used. Default is Sun RPC,
[’tcp 0 0’] should be used with IIOP to communicate to
other brokers.

OmniBroker options
port(Port) Specify the TCP/IP port used for the server. Ob-

jects created with a Marker can be located using
corba string to object/2 knowing the host, port and
marker.

Orbix options
timeout(Seconds) After this idle-time, corba main loop/1 will return. Can be

used to exit from the server. The Orbix deamon will relaunch
the server if a new request is made.

corba main loop(+Server)
Start processing requests to the server. This predicate does not return before the server
is stopped.

4.3 Other utility predicates

corba object to string(+Object, -Atom)
Returns a ‘stringified object-reference’ to Object as an atom in Atom, Stringified object
references can be passed to another broker. The receiving broker can obtain a handle
to the remote object using corba string to object/2.

7

Stringified object references can be used to establish communication between any two
‘IIOP’ compliant broker implementations.

corba string to object(+String, -Object)
Obtain a handle to a remote interface object described by the given string. Fully
portable is the ‘IOR’ as generated by corba object to string/2.

For Orbacus String can also take the form of an URL. See section 4.1 for details.

corba duplicate(+Object, -Duplicate)
Create a duplicate of an object. See CORBA:: duplicate() in the CORBA documen-
tation for details.

corba release(+Object)
Decrements the reference count of the object, releasing it if the reference count drops
to zero.

5 Client specific aspects

This section discusses client-specific issues.

corba initialise orb(+Options, -ORB)
Initialize the client-side the ORB for the client-side. Options is the same as for
corba initialize server/2, though some options are only relevant for the server side.
ORB is unified with a term containing handles to the initialized ORB and BOA objects.

5.1 Using the Orbix binder

The Orbix Class:: bind() call is mapped onto the Prolog predicate 〈interface〉 bind/4:

interface bind(-Object, +Marker, +Service, +Host)
Calls Orbix 〈interface〉:: bind(Marker, Service, Host). An marker that is an empty
atom or a variable is taken as ‘Any object belonging to this interface’. After using the
interface, it should be released using corba release/1.

6 Implementation

The Prolog IDL compiler is a Prolog program. Figure 2 outlines the design of the compiler.
The shell-script pl-stubber provides a simple toplevel for the program. Use ‘pl-stubber

–help’ to see the commandline options.

7 Status

Initially, the IDL compiler was used in combination with the ILU CORBA/C mapping, for
which we realised both the client and server side. Later we moved to the Omnibroker/C++
mapping for which we realised only the server mapping. Finally, we moved to Orbix/C++.

While changing platforms due to external requirements, we generalised the code generator
to deal with subtle differences in the mappings. The tested ORB’s are in table 1.

8

Input filter
(calling C-preprocessor)

IDL Grammar
(DCG)

Scope resolution

Code generation Skeleton generation

IDL Input

Client wrapper Server wrapper Server Skeleton

Settings

* Intermediate language (C/C++)
* Mapping options (namespaces)

Figure 2: Modular design of the IDL compiler

ORB server client
ILU 2.0a10 (Linux and Solaris, gcc 2.7) ok ok
OmniBroker 1.0 ok ok
Orbacus 4.04 ok ok
Orbix 2.1 not tested not implemented
Orbix 2.2 (NT 4.0, MSVC4.2) ok ok

Table 1: Supported ORB’s

9

We intend to support a wide variety of ORB implementations, including both commercial
and free versions.

7.1 The mapping

The outlined mapping was inspired by the CORBA/C mapping. Some aspects of the mapping
need further investigation.

• switch-type
As Prolog is a dynamically typed language, switch-types can often be avoided. For
example a union of integer, float and string can appear either as a Prolog integer, float
or an atom.

The only problem occurs of two elements of the switch map onto the same Prolog
datatype, and this information conveys semantic information.

• structure
Predicates should be provided to extract and create structure terms using the field-
names.

• interface
A more natural appearance of the CORBA interface objects from Prolog can be
achieved. Instead of writing

〈Module〉:〈Interface〉(Self, Args ..., Return)

we could opt for

corba send(Self, Args ...)
corba get(Self, Args ..., Return)

10

	Introduction
	Architecture
	The Prolog mapping
	Types
	Scalar Types
	Booleans
	Enum Types
	Strings
	Structures
	Sequences
	Arrays
	Switch types

	Constants
	Modules
	Interfaces
	Methods
	Exceptions

	Other server implementation aspects
	Creating interface instances
	Using the Orbix Loader

	Overall control predicates
	Other utility predicates

	Client specific aspects
	Using the Orbix binder

	Implementation
	Status
	The mapping

