
Network Working Group A. Rousskov
Request for Comments: 4236 The Measurement Factory
Category: Standards Track M. Stecher
 CyberGuard Corporation
 November 2005

 HTTP Adaptation with Open Pluggable Edge Services (OPES)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 Open Pluggable Edge Services (OPES) framework documents several
 application-agnostic mechanisms such as OPES tracing, OPES bypass,
 and OPES callout protocol. This document extends those generic
 mechanisms for Hypertext Transfer Protocol (HTTP) adaptation.
 Together, application-agnostic OPES documents and this HTTP profile
 constitute a complete specification for HTTP adaptation with OPES.

Rousskov & Stecher Standards Track [Page 1]

RFC 4236 HTTP Adaptation with OPES November 2005

Table of Contents

 1. Scope ...3
 2. OPES Document Map ...3
 3. Callout Protocol ..4
 3.1. Application Message Parts5
 3.2. Application Profile Features6
 3.2.1. Profile Parts6
 3.2.2. Profile Structure8
 3.2.3. Aux-Parts ...8
 3.2.4. Pause-At-Body9
 3.2.5. Stop-Receiving-Body10
 3.2.6. Preservation-Interest-Body10
 3.2.7. Content-Encodings11
 3.2.8. Profile Negotiation Example12
 3.3. Application Message Start Message13
 3.4. DUM Message ...13
 3.5. Selective Adaptation14
 3.6. Hop-by-hop Headers ..15
 3.7. Transfer Encodings ..15
 3.8. HTTP Header Correctness16
 3.8.1. Message Size Recalculation16
 3.8.2. Content-MD5 Header17
 3.9. Examples ..18
 4. Tracing ..22
 5. Bypass ...24
 6. IAB Considerations ...24
 7. Security Considerations ..24
 8. IANA Considerations ..24
 9. Compliance ...25
 10. References ..25
 10.1. Normative References25
 10.2. Informative References25

Rousskov & Stecher Standards Track [Page 2]

RFC 4236 HTTP Adaptation with OPES November 2005

1. Scope

 The Open Pluggable Edge Services (OPES) framework documents several
 application-agnostic mechanisms such as OPES processor and endpoints
 communications [RFC3897] or OPES callout protocol [RFC4037]. This
 document extends those generic mechanisms for adaptation of a
 specific application protocol, HTTP [RFC2616]. Together,
 application-agnostic OPES documents and this HTTP profile constitute
 a complete specification for HTTP adaptation with OPES.

 The primary sections of this document specify HTTP-specific
 extensions for the corresponding application-agnostic mechanisms
 documented elsewhere.

2. OPES Document Map

 This document belongs to a large set of OPES specifications produced
 by the IETF OPES Working Group. Familiarity with the overall OPES
 approach and typical scenarios is often essential when trying to
 comprehend isolated OPES documents. This section provides an index
 of OPES documents to assist the reader with finding "missing"
 information.

 o The document on "OPES Use Cases and Deployment Scenarios"
 [RFC3752] describes a set of services and applications that are
 considered in scope for OPES and have been used as a motivation
 and guidance in designing the OPES architecture.

 o The OPES architecture and common terminology are described in "An
 Architecture for Open Pluggable Edge Services (OPES)" [RFC3835].

 o "Policy, Authorization and Enforcement Requirements of OPES"
 [RFC3838] outlines requirements and assumptions on the policy
 framework, without specifying concrete authorization and
 enforcement methods.

 o "Security Threats and Risks for OPES" [RFC3837] provides OPES risk
 analysis, without recommending specific solutions.

 o "OPES Treatment of IAB Considerations" [RFC3914] addresses all
 architecture-level considerations expressed by the IETF Internet
 Architecture Board (IAB) when the OPES WG was chartered.

 o At the core of the OPES architecture are the OPES processor and
 the callout server, two network elements that communicate with
 each other via an OPES Callout Protocol (OCP). The requirements
 for such protocol are discussed in "Requirements for OPES Callout
 Protocols" [RFC3836].

Rousskov & Stecher Standards Track [Page 3]

RFC 4236 HTTP Adaptation with OPES November 2005

 o "OPES Callout Protocol Core" [RFC4037] specifies an application
 agnostic protocol core to be used for the communication between
 OPES processor and callout server.

 o "OPES entities and end points communications" [RFC3897] specifies
 generic tracing and bypass mechanisms for OPES.

 o The OCP Core and Communications documents are independent from the
 application protocol being adapted by OPES entities. Their

 generic mechanisms have to be complemented by application-specific
 profiles. This document, HTTP adaptation with OPES, is such an
 application profile for HTTP. It specifies how application-
 agnostic OPES mechanisms are to be used and augmented in order to
 support adaptation of HTTP messages.

 o Finally, "P: Message Processing Language" [rules-p] defines a
 language for specifying what OPES adaptations (e.g., translation)
 must be applied to what application messages (e.g., e-mail from
 bob@example.com). P language is meant for configuring application
 proxies (OPES processors).

3. Callout Protocol

 This section documents the HTTP profile for the OPES Callout Protocol
 (OCP) Core [RFC4037]. Familiarity with OCP Core is required to
 understand the HTTP profile. This section uses OCP Core conventions,
 terminology, and mechanisms.

 OPES processor communicates its desire to adapt HTTP messages via a
 Negotiation Offer (NO) message with HTTP-specific feature identifiers
 documented in Section 3.2. HTTP-specific OCP optimization mechanisms
 can be negotiated at the same time. A callout server that supports
 adaptation of HTTP messages has a chance to negotiate what HTTP
 message parts will participate in adaptation, including negotiation
 of HTTP request parts as metadata for HTTP response adaptation.
 Negotiable HTTP message parts are documented in Section 3.1.

 HTTP profile introduces a new parameter for the Application Message
 Start (AMS) message to communicate known HTTP message length (HTTP
 headers often do not convey length information reliably or at all).
 This parameter is documented in Section 3.3. Section 3.4 documents a
 mechanism to report HTTP message parts with Data Use Mine (DUM)
 messages.

 The remaining OCP sections document various OCP marshaling corner
 cases such as handling of HTTP transfer encodings and 100 Continue
 responses.

Rousskov & Stecher Standards Track [Page 4]

RFC 4236 HTTP Adaptation with OPES November 2005

3.1. Application Message Parts

 An HTTP message may have several well-known parts: headers, body, and
 trailers. HTTP OPES processors are likely to have information about
 HTTP message parts because they have to isolate and interpret HTTP
 headers and find HTTP message boundaries. Callout servers may either
 not care about certain parts or may benefit from reusing HTTP OPES
 processor work on isolating and categorizing interesting parts.

 The following is the declaration of am-part (application message
 part) type using OCP Core Protocol Element Type Declaration Mnemonic
 (PETDM):

 am-part: extends atom;
 am-parts: extends list of am-part;

 Figure 1

 The following six "am-part" atoms are valid values:

 request-header: The start-line of an HTTP request message, all
 request message headers, and the CRLF separator at the end of HTTP
 headers (compare with section 4.1 of [RFC2616]).

 request-body: The message body of an HTTP request message as defined
 in section 4.3 of [RFC2616] but not including the trailer.

 request-trailer: The entity headers of the trailer of an HTTP request
 message in chunked transfer encoding. This part follows the same
 syntax as the trailer defined in section 3.6.1 of [RFC2616].

 response-header: The start-line of an HTTP response message, all
 response message headers, and the CRLF separator at the end of
 HTTP headers (compare with section 4.1 of [RFC2616]).

 response-body: The message body of an HTTP response message as
 defined in section 4.3 of [RFC2616] but not including the trailer.

 response-trailer: The entity headers of the trailer of an HTTP
 response message in chunked transfer encoding. This part follows
 the same syntax as the trailer defined in section 3.6.1 of
 [RFC2616].

Rousskov & Stecher Standards Track [Page 5]

RFC 4236 HTTP Adaptation with OPES November 2005

3.2. Application Profile Features

 This document defines two HTTP profiles for OCP: request and response
 profiles. These two profiles are described below. Each profile has
 a unique feature identifier, a list of original application message
 parts, and a list of adapted application message parts:

 profile ID: http://www.iana.org/assignments/opes/ocp/http/request

 original request parts: request-header, request-body, request-
 trailer

 adapted request parts: request-header, request-body, request-
 trailer

 adapted response parts: response-header, response-body, response-
 trailer

 profile ID: http://www.iana.org/assignments/opes/ocp/http/response

 original transaction parts: request-header (aux), request-body
 (aux), request-trailer (aux), response-header, response-body,
 response-trailer

 adapted response parts: response-header, response-body, response-
 trailer

 The request profile contains two variants of adapted part lists: HTTP
 request parts and HTTP response parts. Parts marked with an "(aux)"
 suffix are auxiliary parts that can only be used if explicitly
 negotiated for a profile. See Section 3.2.1 for specific rules
 governing negotiation and use of am-parts.

 The scope of a negotiated profile is the OCP connection (default) or
 the service group specified via the SG parameter.

3.2.1. Profile Parts

 An OCP agent MUST send application message parts in the order implied
 by the profile parts lists above. An OCP agent receiving an out-of-
 order part MAY terminate the transaction with an error.

 An OPES processor MUST NOT send parts that are not listed as
 "original" in the negotiated profile. A callout server MUST NOT send
 parts that are not listed as "adapted" in the negotiated profile. An
 OCP agent receiving an not-listed part MUST terminate the transaction
 with an error. The informal rationale for the last requirement is to
 reduce the number of subtle interoperability problems where an agent

Rousskov & Stecher Standards Track [Page 6]

RFC 4236 HTTP Adaptation with OPES November 2005

 thinks that the parts it is sending are understood/used by the other
 agent when, in fact, they are being ignored or skipped because they
 are not expected.

 Some HTTP messages lack certain parts. For example, many HTTP
 requests do not have bodies, and most HTTP messages do not have
 trailers. An OCP agent MUST NOT send (i.e., must skip) absent
 application message parts.

 An OCP agent MUST send present non-auxiliary parts and it MUST send
 those present auxiliary parts that were negotiated via the Aux-Parts
 (Section 3.2.3) parameter. OCP agents MUST NOT send auxiliary parts
 that were not negotiated via the Aux-Parts (Section 3.2.3) parameter.

 An OCP agent receiving a message part in violation of the above
 requirements MAY terminate the corresponding transaction with an
 error.

 By design, original parts not included in the adapted parts list
 cannot be adapted. In other words, a callout service can only adapt
 parts in the adapted parts list even though it may have access to
 other parts.

 In the request profile, the callout server MUST send either adapted

 request parts or adapted response parts. An OPES processor receiving
 adapted flow with application message parts from both lists (in
 violation of the previous rule) MUST terminate the OCP transaction
 with an error. Informally, the callout server sends adapted response
 parts to "short-circuit" the HTTP transaction, forcing the OPES
 processor to return an HTTP response without forwarding an adapted
 HTTP request. This short-circuiting is useful for responding, for
 example, to an HTTP request that the callout service defines as
 forbidden.

 Unless explicitly configured to do otherwise, an OPES processor MUST
 offer all non-auxiliary original parts in Negotiation Offer (NO)
 messages. See Section 3.5 for this rule rationale and examples of
 harmful side-effects from selective adaptation.

Rousskov & Stecher Standards Track [Page 7]

RFC 4236 HTTP Adaptation with OPES November 2005

3.2.2. Profile Structure

 An HTTP application profile feature extends semantics of the feature
 type of OCP Core while adding the following named parameters to that
 type:

 o Aux-Parts (Section 3.2.3)

 o Pause-At-Body (Section 3.2.4)

 o Stop-Receiving-Body (Section 3.2.5)

 o Preservation-Interest-Body (Section 3.2.6)

 o Content-Encodings (Section 3.2.7)

 The definition of the HTTP profile feature structure using PETDM
 follows:

 HTTP-Profile: extends Feature with {
 [Aux-Parts: am-parts];
 [Pause-At-Body: size];
 [Stop-Receiving-Body: size];
 [Preservation-Interest-Body: size];
 [Content-Encodings: codings];
 };

 Figure 2

 An HTTP profile structure can be used in feature lists of Negotiation
 Offer (NO) messages and as an anonymous parameter of a Negotiation
 Response (NR) message. All profile parameters apply to any OCP
 transaction within profile scope.

3.2.3. Aux-Parts

 The Aux-Parts parameter of an HTTP response profile can be used to
 negotiate the inclusion of auxiliary application message parts into
 the original data flow. The parameter is a possibly empty list of
 am-part tokens. An OPES processor MAY send an Aux-Parts parameter to
 advertise availability of auxiliary application message parts. A
 callout server MAY respond with a possibly empty subset of the parts
 it needs. The callout server response defines the subset of
 successfully negotiated auxiliary message parts.

 When receiving a Negotiation Offer (NO) message, the callout server
 MUST ignore any non-auxiliary part listed in the Aux-Parts parameter.
 When sending a Negotiation Response (NR) message, the callout server

Rousskov & Stecher Standards Track [Page 8]

RFC 4236 HTTP Adaptation with OPES November 2005

 MUST NOT select any application message part that was not explicitly
 listed in the negotiation offer. In case of a violation of the last
 rule, the OPES processor MUST terminate the transaction.

 An OPES processor MUST send each negotiated auxiliary part to the
 callout server, unless the part is absent.

 Example:
 Aux-Parts: (request-header,request-body)

 Figure 3

3.2.4. Pause-At-Body

 A callout server MAY use the Pause-At-Body parameter to request a
 pause in original application message body transmission before
 original dataflow starts. The parameter’s value is of type "offset".
 The parameter specifies the start of the non-auxiliary application
 message body suffix that the sender is temporarily not interested in
 seeing.

 [headers][body prefix | body suffix][trailer]
 <-- ? --><-- offset --><-- ? ---------------->
 <-- equiv. DWP offset ->

 Figure 4

 When an OPES processor receives a Pause-At-Body parameter, it MUST
 behave as if it has received a Want Data Paused (DWP) message with
 the corresponding org-offset. Note that the latter offset is
 different from the Pause-At-Body offset and is unknown until the size
 of the HTTP message headers is known.

 For example, if the Pause-At-Body value is zero, the OPES processor
 should send a Paused My Data (DPM) message just before it sends the
 first Data Use Mine (DUM) message with the response-body part in the
 HTTP response profile. If the Pause-At-Body value is 300, the OPES
 processor should send a DPM message after transmitting 300 OCTETs for
 that application message part.

 Example:
 Pause-At-Body: 0

 Figure 5

Rousskov & Stecher Standards Track [Page 9]

RFC 4236 HTTP Adaptation with OPES November 2005

3.2.5. Stop-Receiving-Body

 A callout server MAY use the Stop-Receiving-Body parameter to imply a
 Want Stop Receiving Data (DWSR) message behavior before the original
 dataflow starts. The parameter’s value is of type "offset". The
 parameter specifies an offset into the original, non-auxiliary
 message body part (request-body in request profile and response-body
 in response profile).

 A callout service MAY send a Stop-Receiving-Body parameter with its
 negotiation response if there is a fixed offset into the message body
 for all transactions of a profile for which a Want Stop Receiving
 Data (DWSR) message would be sent. An OPES processor MUST behave as
 if it has received a DWSR message with the corresponding offset.
 Note that the latter offset is different from the Stop-Receiving-Body
 offset and is unknown until the size of the HTTP message headers is
 known.

 For example, if the Stop-Receiving-Body value is zero in an HTTP
 response profile, the OPES processor should send an Application
 Message End (AME) message with result code 206 immediately after
 sending the response-header message part and before starting with the
 response-body message part.

 Example:
 Stop-Receiving-Body: 0

 Figure 6

3.2.6. Preservation-Interest-Body

 The Preservation-Interest-Body parameter can be used to optimize data
 preservation at the OPES processor. The parameter’s value is of type
 "size" and denominates a prefix size of the original, non-auxiliary
 message body part (request-body in HTTP request profile and
 response-body in response profile).

 A callout service MAY send a Preservation-Interest-Body parameter
 with its negotiation response if there is a fixed-size prefix of the
 application message body for which a Data Preservation Interest (DPI)
 message would be sent. An OPES processor MUST behave as if it
 receives a DPI message with org-offset zero and org-size equal to the
 value of the Preservation-Interest-Body parameter.

Rousskov & Stecher Standards Track [Page 10]

RFC 4236 HTTP Adaptation with OPES November 2005

 For example, if the Preservation-Interest-Body value is zero in an
 HTTP response profile, the callout server must not send any Data Use
 Yours (DUY) message for the response-body part; the OPES processor
 may use this information to optimize its data preservation behavior
 even before it makes the decision to preserve data.

 Example:
 Preservation-Interest-Body: 0

 Figure 7

3.2.7. Content-Encodings

 A callout server MAY send a Content-Encodings list to indicate its
 preferences in content encodings. Encodings listed first are
 preferred to other encodings. An OPES processor MAY use any content
 encoding when sending application messages to a callout server.

 The list of preferred content encodings does not imply lack of
 support for other encodings. The OPES processor MUST NOT bypass a
 service just because the actual content encoding does not match the
 service’s preferences.

 If an OCP agent receives an application message that it cannot handle
 due to specific content encoding, the usual transaction termination
 rules apply.

 content-coding: extends atom;
 content-codings: extends list of content-coding;

 Example:
 Content-Encodings: (gzip)

 Figure 8

 The semantics of content-coding is defined in section 3.5 of
 [RFC2616].

Rousskov & Stecher Standards Track [Page 11]

RFC 4236 HTTP Adaptation with OPES November 2005

3.2.8. Profile Negotiation Example

 Example:
 P: NO ({"54:http://www.iana.org/assignments/opes/ocp/http/response"
 Aux-Parts: (request-header,request-body)
 })
 SG: 5
 ;
 S: NR {"54:http://www.iana.org/assignments/opes/ocp/http/response"
 Aux-Parts: (request-header)
 Pause-At-Body: 30
 Preservation-Interest-Body: 0
 Content-Encodings: (gzip)
 }
 SG: 5
 ;

 Figure 9

 This example shows a negotiation offer made by an OPES processor for
 a service group (id 5) that has already been created; the callout
 server sends an adequate negotiation response.

 The OPES processor offers one profile feature for HTTP response
 messages. Besides the standard message parts, the OPES processor is
 able to add the header and body of the original HTTP request as
 auxiliary message parts.

 The callout server requests the auxiliary request-header part, but is
 not interested in receiving the request-body part.

 The OPES processor sends at most the following message parts, in the
 specified order, for all transactions in service group 5: request-
 header, response-header, response-body, response-trailer. Note that
 the request-body part is not included (because it is an auxiliary
 part that was not explicitly requested). Some of the response parts
 may not be sent if the original message lacks them.

 The callout server indicates through the Preservation-Interest-Body
 parameter with size zero that it will not send any DUY messages. The
 OPES processor may therefore preserve no preservation for any
 transaction of this profile.

 By sending a Pause-At-Body value of 30, the callout server requests a
 data pause. The OPES processor sends a Paused My Data (DPM) message
 immediately after sending at least 30 OCTETs of the response-body
 part. Thereafter, the OPES processor waits for a Want More Data
 (DWM) message from the callout service.

Rousskov & Stecher Standards Track [Page 12]

RFC 4236 HTTP Adaptation with OPES November 2005

3.3. Application Message Start Message

 A new named parameter for Application Message Start (AMS) messages is
 introduced.

 AM-EL: size

 Figure 10

 AM-EL value is the size of the request-body part in the HTTP request
 profile, and is the size of the response-body part in the HTTP
 response profile, before any transfer codings have been applied (or
 after all transfer codings have been removed). This definition is
 consistent with the HTTP entity length definition.

 An OCP agent that knows the exact length of the HTTP message entity
 (see Section 7.2.2 "Entity Length" in [RFC2616]) at the time it sends
 the AMS message, SHOULD announce this length using the AM-EL named
 parameter of an AMS message. If the exact entity length is not
 known, an OCP agent MUST NOT send an AM-EL parameter. Relaying
 correct entity length can have significant performance advantages for
 the recipient, and implementations are strongly encouraged to relay
 known entity lengths. Similarly, relaying incorrect entity length
 can have drastic correctness consequences for the recipient, and
 implementations are urged to exercise great care when relaying entity
 length.

 An OPES processor receiving an AM-EL parameter SHOULD use the
 parameter’s value in a Content-Length HTTP entity header when
 constructing an HTTP message, provided a Content-Length HTTP entity
 header is allowed for the given application message by HTTP (see
 Section 3.8.1).

3.4. DUM Message

 A new named parameter for Data Use Mine (DUM) messages is introduced.

 AM-Part: am-part

 Figure 11

 An OCP agent MUST send an AM-Part parameter with every DUM message
 that is a part of an OCP transaction with an HTTP profile. The AM-
 Part parameter value is a single am-part token. As implied by the
 syntax, a DUM message can only contain data of a single application
 message part. One message part can be fragmented into any number of
 DUM messages with the same AM-Part parameter.

Rousskov & Stecher Standards Track [Page 13]

RFC 4236 HTTP Adaptation with OPES November 2005

 The following example shows three DUM messages containing an abridged
 HTTP response message. The response-body part is fragmented and sent
 within two DUM messages.

 Example:
 P: DUM 88 1 0
 Kept: 0
 AM-Part: response-header

 64:HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Length: 51

 ;
 P: DUM 88 1 64
 Kept: 64
 AM-Part: response-body

 19:<html><body>This is
 ;
 P: DUM 88 1 83
 Kept: 83
 AM-Part: response-body

 32: a simple message.</body></html>
 ;

 Figure 12

3.5. Selective Adaptation

 The HTTP profile for OCP applies to all HTTP messages. That scope
 includes HTTP messages such as 1xx (Informational) responses, POST,
 CONNECT, and OPTIONS requests, as well as responses with extension
 status codes and requests with extension methods. Unless
 specifically configured to do otherwise, an OPES processor MUST
 forward all HTTP messages for adaptation at callout servers. OPES
 bypass instructions, configured HTTP message handling rules, and
 OCP-negotiation with a callout server are all examples of an
 acceptable "specific configuration" that provides an exception to
 this rule.

 While it may seem useless to attempt to adapt "control" messages such
 as a 100 (Continue) response, skipping such messages by default may
 lead to serious security flaws and interoperability problems. For
 example, sensitive company information might be relayed via a

Rousskov & Stecher Standards Track [Page 14]

RFC 4236 HTTP Adaptation with OPES November 2005

 carefully crafted 100 Continue response; or a malicious CONNECT
 request may not get logged if OPES processor does not forward these
 messages to a callout service that is supposed to handle them.

 By design, OPES processor implementation cannot unilaterally decide
 that an HTTP message is not worth adapting. It needs a callout
 server opinion, a configuration setting, or another external
 information to make the decision.

3.6. Hop-by-hop Headers

 HTTP defines several hop-by-hop headers (e.g., Connection) and allows
 for extension headers to be specified as hop-by-hop ones (via the
 Connection header mechanism). Depending on the environment and
 configuration, an OPES processor MAY forward hop-by-hop headers to
 callout servers and MAY use hop-by-hop headers returned by callout
 servers to build an HTTP message for the next application hop.
 However, see Section 3.7 for requirements specific to the Transfer-
 Encoding header.

 For example, a logging or statistics collection service may want to
 see hop-by-hop headers sent by the previous application hop to the
 OPES processor and/or hop-by-hop headers sent by the OPES processor
 to the next application hop. Another service may actually handle
 HTTP logic of removing and adding hop-by-hop headers. Many services
 will ignore hop-by-hop headers. This specification does not define a
 mechanism for distinguishing these use cases.

3.7. Transfer Encodings

 HTTP messages may use transfer encodings, a hop-by-hop encoding
 feature of HTTP. Adaptations that use HTTP transfer encodings have
 to be explicitly negotiated. This specification does not document
 such negotiations. In the absence of explicit transfer-encoding
 negotiations, an OCP agent MUST NOT send transfer-encoded application
 message bodies.

 Informally, the above rule means that the agent or its environment
 have to make sure that all transfer encodings are stripped from an
 HTTP message body before it enters OCP scope. An agent MUST
 terminate the OCP transaction if it has to send an application
 message body but cannot remove all transfer encodings. Violations of
 these rules lead to interoperability problems.

 If an OCP agent receives transfer-encoded application data in
 violation of the above requirement, the agent MAY terminate the
 corresponding OCP transaction.

Rousskov & Stecher Standards Track [Page 15]

RFC 4236 HTTP Adaptation with OPES November 2005

 An OPES processor removing transfer encodings MUST remove the
 Transfer-Encoding header before sending the header part to the
 callout service. A callout server receiving a Transfer-Encoding
 header MAY assume that original application data is still transfer-
 encoded (and terminate the transaction). The OPES processor MUST
 send a correct Transfer-Encoding header to the next HTTP recipient,
 independent of what header (if any) the callout server returned.

 Logging and wiretapping are the examples where negotiating acceptable
 transfer encodings may be worthwhile. While a callout server may not
 be able to strip an encoding, it may still want to log the entire
 message "as is". In most cases, however, the callout server would
 not be able to meaningfully handle unknown transfer encodings.

3.8. HTTP Header Correctness

 When communicating with HTTP applications, OPES processors MUST
 ensure correctness of all computable HTTP headers documented in
 specifications that the processors intend to be compliant with. A
 computable header is defined as a header whose value can be computed
 based on the message body alone. For example, the correctness of
 Content-Length and Content-MD5 headers has to be ensured by
 processors claiming compliance with HTTP/1.1 ([RFC2616]).

 Informally and by default, the OPES processor has to validate and
 eventually recalculate, add, or remove computable HTTP headers in
 order to build a compliant HTTP message from an adapted application
 message returned by the callout server. If a particular OPES
 processor trusts certain HTTP headers that a callout service sends,
 it can use those headers "as is".

 An OPES processor MAY forward a partially adapted HTTP message from a
 callout server to the next callout server, without verifying HTTP
 header correctness. Consequently, a callout service cannot assume
 that the HTTP headers it receives are correct or final from an HTTP
 point of view.

 The following subsections present guidelines for the recalculation of
 some HTTP headers.

3.8.1. Message Size Recalculation

 By default, an OCP agent MUST NOT trust the Content-Length header
 that is sent within an HTTP header message part. The message length
 could be modified by a callout service without adaptation of the HTTP
 message headers.

Rousskov & Stecher Standards Track [Page 16]

RFC 4236 HTTP Adaptation with OPES November 2005

 Before sending the HTTP message to the HTTP peer, the OPES processor
 has to ensure correctness of the message length indication according
 to section 4.4 of [RFC2616].

 Besides ensuring HTTP message correctness, good OPES processors set
 up the message to optimize performance, including minimizing delivery
 latency. Specifically, indicating the end of a message by closing
 the HTTP connection ought to be the last resort:

 o If the callout server sends an AM-EL parameter with its AMS
 message, the OPES processor SHOULD use this value to create a
 Content-Length header to be able to keep a persistent HTTP
 connection. Note that HTTP rules prohibit a Content-Length header
 to be used in transfer-encoded messages.

 o If AM-EL parameter or equivalent entity length information is not
 available, and HTTP rules allow for chunked transfer encoding, the
 OPES processor SHOULD use chunked transfer encoding. Note that
 any Content-Length header has to be removed in this case.

 o If the message size is not known a priori and chunked transfer
 coding cannot be used, but the OPES processor can wait for the OCP
 transaction to finish before forwarding the adapted HTTP message
 on a persistent HTTP connection, then the processor SHOULD compute
 and add a Content-Length header.

 o Finally, if all optimizations are not applicable, the OPES
 processor SHOULD delete any Content-Length header and forward
 adapted data immediately, while indicating the message end by
 closing the HTTP connection.

3.8.2. Content-MD5 Header

 By default, the OPES processor MUST assume that the callout service
 modifies the content in a way that the MD5 checksum of the message
 body becomes invalid.

 According to section 14.15 of [RFC2616], HTTP intermediaries must not
 generate Content-MD5 headers. A recalculation is therefore possible
 only if the OPES processor is considered authoritative for the entity
 being adapted. An un-authoritative OPES processor MUST remove the
 Content-MD5 header unless it detects that the HTTP message was not
 modified; in this case, it MAY leave the Content-MD5 header in the
 message. When such detection significantly increases message
 latency, deleting the Content-MD5 header may be a better option.

Rousskov & Stecher Standards Track [Page 17]

RFC 4236 HTTP Adaptation with OPES November 2005

3.9. Examples

 This is a possible OCP message flow using an HTTP request profile.
 An end-user wants to access the home page of
 www.restricted.example.com, through the proxy, but access is denied
 by a URL blocking service running on the callout server used by the
 proxy.

 OCP messages from the OPES processor are marked with "P:" and OCP
 messages from the callout server are marked with "S:". The OCP
 connection is not closed at the end but kept open for the next OCP
 transaction.

 Example:
 P: CS;
 S: CS;
 P: SGC 11 ({"31:ocp-test.example.com/url-filter"});
 P: NO ({"53:http://www.iana.org/assignments/opes/ocp/http/request"})
 SG: 11
 ;
 S: NR {"53:http://www.iana.org/assignments/opes/ocp/http/request"}
 SG: 11
 ;
 P: TS 55 11;
 P: AMS 55
 AM-EL: 0
 ;
 P: DUM 55 0
 Kept: 0
 AM-Part: request-header
 235:GET http://www.restricted.example.com/ HTTP/1.1
 Accept: */*
 Accept-Language: de
 Accept-Encoding: gzip, deflate
 User-Agent: Mozilla/4.0 (compatible; Windows NT 5.0)
 Host: www.restricted.example.com
 Proxy-Connection: Keep-Alive

 ;
 P: AME 55;
 S: AMS 55;
 S: DUM 55 0
 AM-Part: response-header

Rousskov & Stecher Standards Track [Page 18]

RFC 4236 HTTP Adaptation with OPES November 2005

 76:HTTP/1.1 403 Forbidden
 Content-Type: text/html
 Proxy-Connection: close

 ;
 S: DUM 55 0
 AM-Part: response-body

 67:<html><body>You are not allowed to
 access this page.</body></html>
 ;
 S: AME 55;
 P: TE 55;
 S: TE 55;

 Figure 13

 The next example is a language translation of a small plain text file
 that gets transferred in an HTTP response. In this example, OCP
 agents negotiate a profile for the whole OCP connection. The OCP
 connection remains open in the end of the OCP transaction. (Note
 that NO and NR messages were rendered with an extra new line to
 satisfy RFC formatting requirements.)

 Example:
 P: CS;
 S: CS;
 P: NO
 ({"54:http://www.iana.org/assignments/opes/ocp/http/response"});
 S: NR
 {"54:http://www.iana.org/assignments/opes/ocp/http/response"};
 P: SGC 12 ({"44:ocp-test.example.com/translate?from=EN&to=DE"});
 P: TS 89 12;
 P: AMS 89
 AM-EL: 86
 ;
 P: DUM 89 0
 AM-Part: response-header

 65:HTTP/1.1 200 OK
 Content-Type: text/plain
 Content-Length: 86

 ;
 P: DUM 89 65
 AM-Part: response-body

Rousskov & Stecher Standards Track [Page 19]

RFC 4236 HTTP Adaptation with OPES November 2005

 86:Whether ’tis nobler in the mind to suffer
 The slings and arrows of outrageous fortune
 ;
 P: AME 89;
 S: AMS 89
 AM-EL: 78
 ;
 P: TE 89;
 S: DUM 89 0
 AM-Part: response-header

 65:HTTP/1.1 200 OK
 Content-Type: text/plain
 Content-Length: 78

 ;
 S: DUM 89 63
 AM-Part: response-body

 80:Ob’s edler im Gemuet, die Pfeil und Schleudern
 des wuetenden Geschicks erdulden
 ;
 S: AME 89;
 S: TE 89;

 Figure 14

 The following example shows modification of an HTML resource and
 demonstrates data preservation optimization. The callout server uses
 a DUY message to send back an unchanged response header part, but
 because it does not know the size of the altered HTML resource at the
 time it sends the AMS message, the callout server omits the AM-EL
 parameter; the OPES processor is responsible for adjusting the
 Content-Length header.

 Example:
 P: CS;
 S: CS;
 P: SGC 10 ({"30:ocp-test.example.com/ad-filter"});
 P: NO ({"54:http://www.iana.org/assignments/opes/ocp/http/response"
 Aux-Parts: (request-header,request-body)
 },{"45:http://www.iana.org/assignments/opes/ocp/MIME"})
 SG: 10
 ;
 S: NR {"54:http://www.iana.org/assignments/opes/ocp/http/response"
 Aux-Parts: (request-header)
 Content-Encodings: (gzip)
 }

Rousskov & Stecher Standards Track [Page 20]

RFC 4236 HTTP Adaptation with OPES November 2005

 SG: 10
 ;
 P: TS 88 10;
 P: AMS 88
 AM-EL: 95
 ;
 P: DUM 88 0
 AM-Part: request-header

 65:GET /opes/adsample.html HTTP/1.1
 Host: www.martin-stecher.de

 ;
 P: DUM 88 65

 Kept: 65 64
 AM-Part: response-header

 64:HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Length: 95

 ;
 P: DUM 88 129
 Kept: 65 90
 AM-Part: response-body

 26:<html>
 <body>
 This is my
 ;
 S: AMS 88;
 P: DUM 88 155
 Kept: 65 158
 AM-Part: response-body

 68: new ad: <img src="my_ad.gif"
 width=88 height=31>
 </body>
 </html>
 ;
 S: DUY 88 65 64
 S: DPI 88 129 2147483647;
 P: AME 88;
 S: DUM 88 0
 AM-Part: response-body

Rousskov & Stecher Standards Track [Page 21]

RFC 4236 HTTP Adaptation with OPES November 2005

 52:<html>
 <body>
 This is my new ad:
 </body>
 </html>
 ;
 S: DPI 88 129 0;
 P: TE 88;
 S: AME 88;
 S: TE 88;

 Figure 15

4. Tracing

 [RFC3897] defines application-agnostic tracing facilities in OPES.
 Compliance with this specification requires compliance with
 [RFC3897]. When adapting HTTP, trace entries are supplied using HTTP
 message headers. The following HTTP extension headers are defined to
 carry trace entries. Their definitions are given using BNF notation
 and elements defined in [RFC2616].

 OPES-System = "OPES-System" ":" #trace-entry
 OPES-Via = "OPES-Via" ":" #trace-entry

 trace-entry = opes-agent-id *(";" parameter)
 opes-agent-id = absoluteURI

 Figure 16

 An OPES System MUST add its trace entry to the OPES-System header.
 Other OPES agents MUST use the OPES-Via header if they add their
 tracing entries. All OPES agents MUST append their entries.
 Informally, OPES-System is the only required OPES tracing header
 while OPES-Via provides optional tracing details; both headers
 reflect the order of trace entry additions.

 If an OPES-Via header is used in the original application message, an
 OPES System MUST append its entry to the OPES-Via header. Otherwise,
 an OPES System MAY append its entry to the OPES-Via header. If an
 OPES System is using both headers, it MUST add identical trace
 entries except it MAY omit some or all trace-entry parameters from
 the OPES-Via header. Informally, the OPES System entries in the
 OPES-Via header are used to delimit and group OPES-Via entries from
 different OPES Systems without having a priory knowledge about OPES
 System identifiers.

Rousskov & Stecher Standards Track [Page 22]

RFC 4236 HTTP Adaptation with OPES November 2005

 Note that all of these headers are defined using #list constructs
 and, hence, a valid HTTP message may contain multiple trace entries
 per header. OPES agents SHOULD use a single header-field rather than
 using multiple equally-named fields to record a long trace. Using
 multiple equally-named extension header-fields is illegal from HTTP’s
 point of view and may not work with some of the OPES-unaware HTTP
 proxies.

 For example, here is an HTTP response message header after OPES
 adaptations have been applied by a single OPES processor executing 10
 OPES services:

 Example:
 HTTP/1.1 200 OK
 Date: Thu, 18 Sep 2003 06:25:24 GMT
 Last-Modified: Wed, 17 Sep 2003 18:24:25 GMT
 Content-type: application/octet-stream
 OPES-System: http://www.cdn.example.com/opes?session=ac79a749f56
 OPES-Via: http://www.cdn.example.com/opes?session=ac79a749f56,
 http://www.srvcs-4u.example.com/cat/?sid=123,
 http://www.srvcs-4u.example.com/cat/?sid=124,
 http://www.srvcs-4u.example.com/cat/?sid=125 ; mode=A

 Figure 17

 In the above example, the OPES processor has not included its trace
 entry or its trace entry was replaced by an OPES system trace entry.
 Only 3 out of 10 services are traced. The remaining services did not
 include their entries or their entries were removed by OPES system or
 processor. The last traced service included a "mode" parameter.
 Various identifiers in trace entries will probably have no meaning to
 the recipient of the message, but may be decoded by OPES System
 software.

 OPES entities MAY place optional tracing entries in a message trailer
 (i.e., entity-headers at the end of a Chunked-Body of a chunked-
 encoded message), provided trailer presence does not violate HTTP
 protocol. See [RFC3897] for a definition of what tracing entries are
 optional. OPES entities MUST NOT place required tracing entries in a
 message trailer.

Rousskov & Stecher Standards Track [Page 23]

RFC 4236 HTTP Adaptation with OPES November 2005

5. Bypass

 An HTTP extension header is introduced to allow for OPES system
 bypass as defined in [RFC3897].

 OPES-Bypass = "OPES-Bypass" ":" ("*" | 1#bypass-entry)
 bypass-entry = opes-agent-id

 Figure 18

 This header can be added to HTTP requests to request OPES system
 bypass for the listed OPES agents. The asterisk "*" character is
 used to represent all possible OPES agents.

 See [RFC3897] for what can be bypassed and for bypass requirements.

6. IAB Considerations

 OPES treatment of IETF Internet Architecture Board (IAB)
 considerations [RFC3238] are documented in "OPES Treatment of IAB
 Considerations" [RFC3914].

7. Security Considerations

 Application-independent security considerations are documented in
 application-agnostic OPES specifications. HTTP profiles do not
 introduce any HTTP-specific security considerations. However, that
 does not imply that HTTP adaptations are immune from security
 threats.

 Specific threat examples include such adaptations as rewriting the
 Request-URI of an HTTP CONNECT request or removing an HTTP hop-by-hop
 Upgrade header before the HTTP proxy can act on it. As with any
 adaptation, the OPES agents MUST NOT perform such actions without
 HTTP client or server consent.

8. IANA Considerations

 The IANA registers request and response profile features (Section
 3.2) using the registration procedure outlined in the "IANA
 Considerations" Section of OCP Core [RFC4037]. The corresponding
 "uri" parameters for the two features are:

 o http://www.iana.org/assignments/opes/ocp/http/request

 o http://www.iana.org/assignments/opes/ocp/http/response

Rousskov & Stecher Standards Track [Page 24]

RFC 4236 HTTP Adaptation with OPES November 2005

9. Compliance

 Compliance with OPES mechanisms is defined in corresponding
 application-agnostic specifications. HTTP profiles for these
 mechanisms use corresponding compliance definitions from these
 specifications, as if each profile were incorporated into the
 application-agnostic specification it profiles.

10. References

10.1. Normative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3897] Barbir, A., "Open Pluggable Edge Services (OPES) Entities
 and End Points Communication", RFC 3897, September 2004.

 [RFC4037] Rousskov, A., "Open Pluggable Edge Services (OPES) Callout
 Protocol (OCP) Core", RFC 4037, March 2005.

10.2. Informative References

 [RFC3835] Barbir, A., Penno, R., Chen, R., Hofmann, M., and H.
 Orman, "An Architecture for Open Pluggable Edge Services
 (OPES)", RFC 3835, August 2004.

 [RFC3836] Beck, A., Hofmann, M., Orman, H., Penno, R., and A.
 Terzis, "Requirements for Open Pluggable Edge Services
 (OPES) Callout Protocols", RFC 3836, August 2004.

 [RFC3837] Barbir, A., Batuner, O., Srinivas, B., Hofmann, M., and H.
 Orman, "Security Threats and Risks for Open Pluggable Edge
 Services (OPES)", RFC 3837, August 2004.

 [RFC3752] Barbir, A., Burger, E., Chen, R., McHenry, S., Orman, H.,
 and R. Penno, "Open Pluggable Edge Services (OPES) Use
 Cases and Deployment Scenarios", RFC 3752, April 2004.

 [RFC3838] Barbir, A., Batuner, O., Beck, A., Chan, T., and H. Orman,
 "Policy, Authorization, and Enforcement Requirements of
 the Open Pluggable Edge Services (OPES)", RFC 3838, August
 2004.

 [rules-p] Beck, A. and A. Rousskov, "P: Message Processing
 Language", work in progress, October 2003.

Rousskov & Stecher Standards Track [Page 25]

RFC 4236 HTTP Adaptation with OPES November 2005

 [RFC3914] Barbir, A. and A. Rousskov, "Open Pluggable Edge Services
 (OPES) Treatment of IAB Considerations", RFC 3914, October
 2004.

 [RFC3238] Floyd, S. and L. Daigle, "IAB Architectural and Policy
 Considerations for Open Pluggable Edge Services", RFC
 3238, January 2002.

Acknowledgements

 The authors gratefully acknowledge the contributions of Robert
 Collins (Syncretize) and Larry Masinter (Adobe). Larry Masinter
 provided an early review of this document.

Authors’ Addresses

 Alex Rousskov
 The Measurement Factory

 EMail: rousskov@measurement-factory.com
 URI: http://www.measurement-factory.com/

 Martin Stecher
 CyberGuard Corporation
 Vattmannstr. 3
 Paderborn 33100
 DE

 EMail: martin.stecher@webwasher.com
 URI: http://www.webwasher.com/

Rousskov & Stecher Standards Track [Page 26]

RFC 4236 HTTP Adaptation with OPES November 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rousskov & Stecher Standards Track [Page 27]

