/* $NetBSD: subr_time.c,v 1.35.4.2 2024/10/11 17:12:28 martin Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ #include __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.35.4.2 2024/10/11 17:12:28 martin Exp $"); #include #include #include #include #include #include #include #include #include /* * Compute number of hz until specified time. Used to compute second * argument to callout_reset() from an absolute time. */ int tvhzto(const struct timeval *tvp) { struct timeval now, tv; tv = *tvp; /* Don't modify original tvp. */ getmicrotime(&now); timersub(&tv, &now, &tv); return tvtohz(&tv); } /* * Compute number of ticks in the specified amount of time. */ int tvtohz(const struct timeval *tv) { unsigned long ticks; long sec, usec; /* * If the number of usecs in the whole seconds part of the time * difference fits in a long, then the total number of usecs will * fit in an unsigned long. Compute the total and convert it to * ticks, rounding up and adding 1 to allow for the current tick * to expire. Rounding also depends on unsigned long arithmetic * to avoid overflow. * * Otherwise, if the number of ticks in the whole seconds part of * the time difference fits in a long, then convert the parts to * ticks separately and add, using similar rounding methods and * overflow avoidance. This method would work in the previous * case, but it is slightly slower and assumes that hz is integral. * * Otherwise, round the time difference down to the maximum * representable value. * * If ints are 32-bit, then the maximum value for any timeout in * 10ms ticks is 248 days. */ sec = tv->tv_sec; usec = tv->tv_usec; KASSERT(usec >= 0); KASSERT(usec < 1000000); /* catch overflows in conversion time_t->int */ if (tv->tv_sec > INT_MAX) return INT_MAX; if (tv->tv_sec < 0) return 0; if (sec < 0 || (sec == 0 && usec == 0)) { /* * Would expire now or in the past. Return 0 ticks. * This is different from the legacy tvhzto() interface, * and callers need to check for it. */ ticks = 0; } else if (sec <= (LONG_MAX / 1000000)) ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) / tick) + 1; else if (sec <= (LONG_MAX / hz)) ticks = (sec * hz) + (((unsigned long)usec + (tick - 1)) / tick) + 1; else ticks = LONG_MAX; if (ticks > INT_MAX) ticks = INT_MAX; return ((int)ticks); } int tshzto(const struct timespec *tsp) { struct timespec now, ts; ts = *tsp; /* Don't modify original tsp. */ getnanotime(&now); timespecsub(&ts, &now, &ts); return tstohz(&ts); } int tshztoup(const struct timespec *tsp) { struct timespec now, ts; ts = *tsp; /* Don't modify original tsp. */ getnanouptime(&now); timespecsub(&ts, &now, &ts); return tstohz(&ts); } /* * Compute number of ticks in the specified amount of time. */ int tstohz(const struct timespec *ts) { struct timeval tv; /* * usec has great enough resolution for hz, so convert to a * timeval and use tvtohz() above. */ TIMESPEC_TO_TIMEVAL(&tv, ts); return tvtohz(&tv); } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable, and * fix it to have at least minimal value (i.e. if it is less * than the resolution of the clock, round it up.). We don't * timeout the 0,0 value because this means to disable the * timer or the interval. */ int itimerfix(struct timeval *tv) { if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) return EINVAL; if (tv->tv_sec < 0) return ETIMEDOUT; if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) tv->tv_usec = tick; return 0; } int itimespecfix(struct timespec *ts) { if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) return EINVAL; if (ts->tv_sec < 0) return ETIMEDOUT; if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) ts->tv_nsec = tick * 1000; return 0; } int inittimeleft(struct timespec *ts, struct timespec *sleepts) { if (itimespecfix(ts)) { return -1; } KASSERT(ts->tv_sec >= 0); getnanouptime(sleepts); return 0; } int gettimeleft(struct timespec *ts, struct timespec *sleepts) { struct timespec now, sleptts; KASSERT(ts->tv_sec >= 0); /* * Reduce ts by elapsed time based on monotonic time scale. */ getnanouptime(&now); KASSERT(timespeccmp(sleepts, &now, <=)); timespecsub(&now, sleepts, &sleptts); *sleepts = now; if (timespeccmp(ts, &sleptts, <=)) { /* timed out */ timespecclear(ts); return 0; } timespecsub(ts, &sleptts, ts); return tstohz(ts); } void clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts) { struct timespec sleptts; clock_gettime1(clockid, &sleptts); timespecadd(ts, sleepts, ts); timespecsub(ts, &sleptts, ts); *sleepts = sleptts; } int clock_gettime1(clockid_t clock_id, struct timespec *ts) { int error; struct proc *p; #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID)) if (clock_id & CLOCK_PROCESS_CPUTIME_ID) { pid_t pid = clock_id & CPUCLOCK_ID_MASK; struct timeval cputime; mutex_enter(&proc_lock); p = pid == 0 ? curproc : proc_find(pid); if (p == NULL) { mutex_exit(&proc_lock); return ESRCH; } mutex_enter(p->p_lock); calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL, &cputime); mutex_exit(p->p_lock); mutex_exit(&proc_lock); // XXX: Perhaps create a special kauth type error = kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_PTRACE, p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); if (error) return error; TIMEVAL_TO_TIMESPEC(&cputime, ts); return 0; } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) { struct lwp *l; lwpid_t lid = clock_id & CPUCLOCK_ID_MASK; struct bintime tm = {0, 0}; p = curproc; mutex_enter(p->p_lock); l = lid == 0 ? curlwp : lwp_find(p, lid); if (l == NULL) { mutex_exit(p->p_lock); return ESRCH; } addrulwp(l, &tm); mutex_exit(p->p_lock); bintime2timespec(&tm, ts); return 0; } switch (clock_id) { case CLOCK_REALTIME: nanotime(ts); break; case CLOCK_MONOTONIC: nanouptime(ts); break; default: return EINVAL; } return 0; } /* * Calculate delta and convert from struct timespec to the ticks. */ int ts2timo(clockid_t clock_id, int flags, struct timespec *ts, int *timo, struct timespec *start) { int error; struct timespec tsd; if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L) return EINVAL; if ((flags & TIMER_ABSTIME) != 0 || start != NULL) { error = clock_gettime1(clock_id, &tsd); if (error != 0) return error; if (start != NULL) *start = tsd; } if ((flags & TIMER_ABSTIME) != 0) { if (!timespecsubok(ts, &tsd)) return EINVAL; timespecsub(ts, &tsd, &tsd); ts = &tsd; } error = itimespecfix(ts); if (error != 0) return error; if (ts->tv_sec == 0 && ts->tv_nsec == 0) return ETIMEDOUT; *timo = tstohz(ts); KASSERT(*timo > 0); return 0; } bool timespecaddok(const struct timespec *tsp, const struct timespec *usp) { enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) }; time_t a = tsp->tv_sec; time_t b = usp->tv_sec; bool carry; /* * Caller is responsible for guaranteeing valid timespec * inputs. Any user-controlled inputs must be validated or * adjusted. */ KASSERT(tsp->tv_nsec >= 0); KASSERT(usp->tv_nsec >= 0); KASSERT(tsp->tv_nsec < 1000000000L); KASSERT(usp->tv_nsec < 1000000000L); CTASSERT(1000000000L <= __type_max(long) - 1000000000L); /* * Fail if a + b + carry overflows TIME_MAX, or if a + b * overflows TIME_MIN because timespecadd adds the carry after * computing a + b. * * Break it into two mutually exclusive and exhaustive cases: * I. a >= 0 * II. a < 0 */ carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L); if (a >= 0) { /* * Case I: a >= 0. If b < 0, then b + 1 <= 0, so * * a + b + 1 <= a + 0 <= TIME_MAX, * * and * * a + b >= 0 + b = b >= TIME_MIN, * * so this can't overflow. * * If b >= 0, then a + b + carry >= a + b >= 0, so * negative results and thus results below TIME_MIN are * impossible; we need only avoid * * a + b + carry > TIME_MAX, * * which we will do by rejecting if * * b > TIME_MAX - a - carry, * * which in turn is incidentally always false if b < 0 * so we don't need extra logic to discriminate on the * b >= 0 and b < 0 cases. * * Since 0 <= a <= TIME_MAX, we know * * 0 <= TIME_MAX - a <= TIME_MAX, * * and hence * * -1 <= TIME_MAX - a - 1 < TIME_MAX. * * So we can compute TIME_MAX - a - carry (i.e., either * TIME_MAX - a or TIME_MAX - a - 1) safely without * overflow. */ if (b > TIME_MAX - a - carry) return false; } else { /* * Case II: a < 0. If b >= 0, then since a + 1 <= 0, * we have * * a + b + 1 <= b <= TIME_MAX, * * and * * a + b >= a >= TIME_MIN, * * so this can't overflow. * * If b < 0, then the intermediate a + b is negative * and the outcome a + b + 1 is nonpositive, so we need * only avoid * * a + b < TIME_MIN, * * which we will do by rejecting if * * a < TIME_MIN - b. * * (Reminder: The carry is added afterward in * timespecadd, so to avoid overflow it is not enough * to merely reject a + b + carry < TIME_MIN.) * * It is safe to compute the difference TIME_MIN - b * because b is negative, so the result lies in * (TIME_MIN, 0]. */ if (b < 0 && a < TIME_MIN - b) return false; } return true; } bool timespecsubok(const struct timespec *tsp, const struct timespec *usp) { enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) }; time_t a = tsp->tv_sec, b = usp->tv_sec; bool borrow; /* * Caller is responsible for guaranteeing valid timespec * inputs. Any user-controlled inputs must be validated or * adjusted. */ KASSERT(tsp->tv_nsec >= 0); KASSERT(usp->tv_nsec >= 0); KASSERT(tsp->tv_nsec < 1000000000L); KASSERT(usp->tv_nsec < 1000000000L); CTASSERT(1000000000L <= __type_max(long) - 1000000000L); /* * Fail if a - b - borrow overflows TIME_MIN, or if a - b * overflows TIME_MAX because timespecsub subtracts the borrow * after computing a - b. * * Break it into two mutually exclusive and exhaustive cases: * I. a < 0 * II. a >= 0 */ borrow = (tsp->tv_nsec - usp->tv_nsec < 0); if (a < 0) { /* * Case I: a < 0. If b < 0, then -b - 1 >= 0, so * * a - b - 1 >= a + 0 >= TIME_MIN, * * and, since a <= -1, provided that TIME_MIN <= * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in * fact, equality holds, under the assumption of * two's-complement arithmetic), * * a - b <= -1 - b = -b - 1 <= TIME_MAX, * * so this can't overflow. */ CTASSERT(TIME_MIN <= -TIME_MAX - 1); /* * If b >= 0, then a - b - borrow <= a - b < 0, so * positive results and thus results above TIME_MAX are * impossible; we need only avoid * * a - b - borrow < TIME_MIN, * * which we will do by rejecting if * * a < TIME_MIN + b + borrow. * * The right-hand side is safe to evaluate for any * values of b and borrow as long as TIME_MIN + * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1. * (Note: If time_t were unsigned, this would fail!) * * Note: Unlike Case I in timespecaddok, this criterion * does not work for b < 0, nor can the roles of a and * b in the inequality be reversed (e.g., -b < TIME_MIN * - a + borrow) without extra cases like checking for * b = TEST_MIN. */ CTASSERT(TIME_MIN < -1); if (b >= 0 && a < TIME_MIN + b + borrow) return false; } else { /* * Case II: a >= 0. If b >= 0, then * * a - b <= a <= TIME_MAX, * * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact, * equality holds, under the assumption of * two's-complement arithmetic) * * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN, * * so this can't overflow. */ CTASSERT(TIME_MIN <= -TIME_MAX - 1); /* * If b < 0, then a - b >= a >= 0, so negative results * and thus results below TIME_MIN are impossible; we * need only avoid * * a - b > TIME_MAX, * * which we will do by rejecting if * * a > TIME_MAX + b. * * (Reminder: The borrow is subtracted afterward in * timespecsub, so to avoid overflow it is not enough * to merely reject a - b - borrow > TIME_MAX.) * * It is safe to compute the sum TIME_MAX + b because b * is negative, so the result lies in [0, TIME_MAX). */ if (b < 0 && a > TIME_MAX + b) return false; } return true; }