/* $NetBSD: ehci.c,v 1.315.2.4 2024/02/17 11:27:30 martin Exp $ */ /* * Copyright (c) 2004-2012,2016,2020 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net), Charles M. Hannum, * Jeremy Morse (jeremy.morse@gmail.com), Jared D. McNeill * (jmcneill@invisible.ca). Matthew R. Green (mrg@eterna.com.au), and * Nick Hudson . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB Enhanced Host Controller Driver, a.k.a. USB 2.0 controller. * * The EHCI 1.0 spec can be found at * http://www.intel.com/technology/usb/spec.htm * and the USB 2.0 spec at * http://www.usb.org/developers/docs/ * */ /* * TODO: * 1) hold off explorations by companion controllers until ehci has started. * * 2) The hub driver needs to handle and schedule the transaction translator, * to assign place in frame where different devices get to go. See chapter * on hubs in USB 2.0 for details. * * 3) Command failures are not recovered correctly. */ #include __KERNEL_RCSID(0, "$NetBSD: ehci.c,v 1.315.2.4 2024/02/17 11:27:30 martin Exp $"); #include "ohci.h" #include "uhci.h" #ifdef _KERNEL_OPT #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #ifndef EHCI_DEBUG #define ehcidebug 0 #else static int ehcidebug = 0; SYSCTL_SETUP(sysctl_hw_ehci_setup, "sysctl hw.ehci setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ehci", SYSCTL_DESCR("ehci global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &ehcidebug, sizeof(ehcidebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } #endif /* EHCI_DEBUG */ #endif /* USB_DEBUG */ #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(ehcidebug,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(ehcidebug,N,FMT,A,B,C,D) #define EHCIHIST_FUNC() USBHIST_FUNC() #define EHCIHIST_CALLED() USBHIST_CALLED(ehcidebug) struct ehci_pipe { struct usbd_pipe pipe; int nexttoggle; ehci_soft_qh_t *sqh; union { /* Control pipe */ struct { usb_dma_t reqdma; } ctrl; /* Interrupt pipe */ struct { u_int length; } intr; /* Iso pipe */ struct { u_int next_frame; u_int cur_xfers; } isoc; }; }; typedef TAILQ_HEAD(ex_completeq, ehci_xfer) ex_completeq_t; Static usbd_status ehci_open(struct usbd_pipe *); Static void ehci_poll(struct usbd_bus *); Static void ehci_softintr(void *); Static int ehci_intr1(ehci_softc_t *); Static void ehci_check_qh_intr(ehci_softc_t *, struct ehci_xfer *, ex_completeq_t *); Static void ehci_check_itd_intr(ehci_softc_t *, struct ehci_xfer *, ex_completeq_t *); Static void ehci_check_sitd_intr(ehci_softc_t *, struct ehci_xfer *, ex_completeq_t *); Static void ehci_idone(struct ehci_xfer *, ex_completeq_t *); Static void ehci_intrlist_timeout(void *); Static void ehci_doorbell(void *); Static void ehci_pcd(void *); Static struct usbd_xfer * ehci_allocx(struct usbd_bus *, unsigned int); Static void ehci_freex(struct usbd_bus *, struct usbd_xfer *); Static void ehci_get_lock(struct usbd_bus *, kmutex_t **); Static bool ehci_dying(struct usbd_bus *); Static int ehci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *, void *, int); Static usbd_status ehci_root_intr_transfer(struct usbd_xfer *); Static usbd_status ehci_root_intr_start(struct usbd_xfer *); Static void ehci_root_intr_abort(struct usbd_xfer *); Static void ehci_root_intr_close(struct usbd_pipe *); Static void ehci_root_intr_done(struct usbd_xfer *); Static int ehci_device_ctrl_init(struct usbd_xfer *); Static void ehci_device_ctrl_fini(struct usbd_xfer *); Static usbd_status ehci_device_ctrl_transfer(struct usbd_xfer *); Static usbd_status ehci_device_ctrl_start(struct usbd_xfer *); Static void ehci_device_ctrl_abort(struct usbd_xfer *); Static void ehci_device_ctrl_close(struct usbd_pipe *); Static void ehci_device_ctrl_done(struct usbd_xfer *); Static int ehci_device_bulk_init(struct usbd_xfer *); Static void ehci_device_bulk_fini(struct usbd_xfer *); Static usbd_status ehci_device_bulk_transfer(struct usbd_xfer *); Static usbd_status ehci_device_bulk_start(struct usbd_xfer *); Static void ehci_device_bulk_abort(struct usbd_xfer *); Static void ehci_device_bulk_close(struct usbd_pipe *); Static void ehci_device_bulk_done(struct usbd_xfer *); Static int ehci_device_intr_init(struct usbd_xfer *); Static void ehci_device_intr_fini(struct usbd_xfer *); Static usbd_status ehci_device_intr_transfer(struct usbd_xfer *); Static usbd_status ehci_device_intr_start(struct usbd_xfer *); Static void ehci_device_intr_abort(struct usbd_xfer *); Static void ehci_device_intr_close(struct usbd_pipe *); Static void ehci_device_intr_done(struct usbd_xfer *); Static int ehci_device_isoc_init(struct usbd_xfer *); Static void ehci_device_isoc_fini(struct usbd_xfer *); Static usbd_status ehci_device_isoc_transfer(struct usbd_xfer *); Static void ehci_device_isoc_abort(struct usbd_xfer *); Static void ehci_device_isoc_close(struct usbd_pipe *); Static void ehci_device_isoc_done(struct usbd_xfer *); Static int ehci_device_fs_isoc_init(struct usbd_xfer *); Static void ehci_device_fs_isoc_fini(struct usbd_xfer *); Static usbd_status ehci_device_fs_isoc_transfer(struct usbd_xfer *); Static void ehci_device_fs_isoc_abort(struct usbd_xfer *); Static void ehci_device_fs_isoc_close(struct usbd_pipe *); Static void ehci_device_fs_isoc_done(struct usbd_xfer *); Static void ehci_device_clear_toggle(struct usbd_pipe *); Static void ehci_noop(struct usbd_pipe *); Static void ehci_disown(ehci_softc_t *, int, int); Static ehci_soft_qh_t * ehci_alloc_sqh(ehci_softc_t *); Static void ehci_free_sqh(ehci_softc_t *, ehci_soft_qh_t *); Static ehci_soft_qtd_t *ehci_alloc_sqtd(ehci_softc_t *); Static void ehci_free_sqtd(ehci_softc_t *, ehci_soft_qtd_t *); Static int ehci_alloc_sqtd_chain(ehci_softc_t *, struct usbd_xfer *, int, int, ehci_soft_qtd_t **); Static void ehci_free_sqtds(ehci_softc_t *, struct ehci_xfer *); Static void ehci_reset_sqtd_chain(ehci_softc_t *, struct usbd_xfer *, int, int, int *, ehci_soft_qtd_t **); Static void ehci_append_sqtd(ehci_soft_qtd_t *, ehci_soft_qtd_t *); Static ehci_soft_itd_t *ehci_alloc_itd(ehci_softc_t *); Static ehci_soft_sitd_t * ehci_alloc_sitd(ehci_softc_t *); Static void ehci_remove_itd_chain(ehci_softc_t *, ehci_soft_itd_t *); Static void ehci_remove_sitd_chain(ehci_softc_t *, ehci_soft_sitd_t *); Static void ehci_free_itd_chain(ehci_softc_t *, ehci_soft_itd_t *); Static void ehci_free_sitd_chain(ehci_softc_t *, ehci_soft_sitd_t *); static inline void ehci_free_itd_locked(ehci_softc_t *sc, ehci_soft_itd_t *itd) { LIST_INSERT_HEAD(&sc->sc_freeitds, itd, free_list); } static inline void ehci_free_sitd_locked(ehci_softc_t *sc, ehci_soft_sitd_t *sitd) { LIST_INSERT_HEAD(&sc->sc_freesitds, sitd, free_list); } Static void ehci_abort_isoc_xfer(struct usbd_xfer *, usbd_status); Static usbd_status ehci_device_setintr(ehci_softc_t *, ehci_soft_qh_t *, int); Static void ehci_add_qh(ehci_softc_t *, ehci_soft_qh_t *, ehci_soft_qh_t *); Static void ehci_rem_qh(ehci_softc_t *, ehci_soft_qh_t *, ehci_soft_qh_t *); Static void ehci_set_qh_qtd(ehci_soft_qh_t *, ehci_soft_qtd_t *); Static void ehci_sync_hc(ehci_softc_t *); Static void ehci_close_pipe(struct usbd_pipe *, ehci_soft_qh_t *); Static void ehci_abortx(struct usbd_xfer *); #ifdef EHCI_DEBUG Static ehci_softc_t *theehci; void ehci_dump(void); #endif #ifdef EHCI_DEBUG Static void ehci_dump_regs(ehci_softc_t *); Static void ehci_dump_sqtds(ehci_soft_qtd_t *); Static void ehci_dump_sqtd(ehci_soft_qtd_t *); Static void ehci_dump_qh_qtd(struct ehci_qh_qtd_t *); Static void ehci_dump_qtd(ehci_qtd_t *); Static void ehci_dump_sqh(ehci_soft_qh_t *); Static void ehci_dump_sitd(struct ehci_soft_itd *); Static void ehci_dump_itds(ehci_soft_itd_t *); Static void ehci_dump_itd(struct ehci_soft_itd *); Static void ehci_dump_exfer(struct ehci_xfer *); #endif #define EHCI_NULL htole32(EHCI_LINK_TERMINATE) static inline void ehci_add_intr_list(ehci_softc_t *sc, struct ehci_xfer *ex) { TAILQ_INSERT_TAIL(&sc->sc_intrhead, ex, ex_next); } static inline void ehci_del_intr_list(ehci_softc_t *sc, struct ehci_xfer *ex) { TAILQ_REMOVE(&sc->sc_intrhead, ex, ex_next); } Static const struct usbd_bus_methods ehci_bus_methods = { .ubm_open = ehci_open, .ubm_softint = ehci_softintr, .ubm_dopoll = ehci_poll, .ubm_allocx = ehci_allocx, .ubm_freex = ehci_freex, .ubm_abortx = ehci_abortx, .ubm_dying = ehci_dying, .ubm_getlock = ehci_get_lock, .ubm_rhctrl = ehci_roothub_ctrl, }; Static const struct usbd_pipe_methods ehci_root_intr_methods = { .upm_transfer = ehci_root_intr_transfer, .upm_start = ehci_root_intr_start, .upm_abort = ehci_root_intr_abort, .upm_close = ehci_root_intr_close, .upm_cleartoggle = ehci_noop, .upm_done = ehci_root_intr_done, }; Static const struct usbd_pipe_methods ehci_device_ctrl_methods = { .upm_init = ehci_device_ctrl_init, .upm_fini = ehci_device_ctrl_fini, .upm_transfer = ehci_device_ctrl_transfer, .upm_start = ehci_device_ctrl_start, .upm_abort = ehci_device_ctrl_abort, .upm_close = ehci_device_ctrl_close, .upm_cleartoggle = ehci_noop, .upm_done = ehci_device_ctrl_done, }; Static const struct usbd_pipe_methods ehci_device_intr_methods = { .upm_init = ehci_device_intr_init, .upm_fini = ehci_device_intr_fini, .upm_transfer = ehci_device_intr_transfer, .upm_start = ehci_device_intr_start, .upm_abort = ehci_device_intr_abort, .upm_close = ehci_device_intr_close, .upm_cleartoggle = ehci_device_clear_toggle, .upm_done = ehci_device_intr_done, }; Static const struct usbd_pipe_methods ehci_device_bulk_methods = { .upm_init = ehci_device_bulk_init, .upm_fini = ehci_device_bulk_fini, .upm_transfer = ehci_device_bulk_transfer, .upm_start = ehci_device_bulk_start, .upm_abort = ehci_device_bulk_abort, .upm_close = ehci_device_bulk_close, .upm_cleartoggle = ehci_device_clear_toggle, .upm_done = ehci_device_bulk_done, }; Static const struct usbd_pipe_methods ehci_device_isoc_methods = { .upm_init = ehci_device_isoc_init, .upm_fini = ehci_device_isoc_fini, .upm_transfer = ehci_device_isoc_transfer, .upm_abort = ehci_device_isoc_abort, .upm_close = ehci_device_isoc_close, .upm_cleartoggle = ehci_noop, .upm_done = ehci_device_isoc_done, }; Static const struct usbd_pipe_methods ehci_device_fs_isoc_methods = { .upm_init = ehci_device_fs_isoc_init, .upm_fini = ehci_device_fs_isoc_fini, .upm_transfer = ehci_device_fs_isoc_transfer, .upm_abort = ehci_device_fs_isoc_abort, .upm_close = ehci_device_fs_isoc_close, .upm_cleartoggle = ehci_noop, .upm_done = ehci_device_fs_isoc_done, }; static const uint8_t revbits[EHCI_MAX_POLLRATE] = { 0x00,0x40,0x20,0x60,0x10,0x50,0x30,0x70,0x08,0x48,0x28,0x68,0x18,0x58,0x38,0x78, 0x04,0x44,0x24,0x64,0x14,0x54,0x34,0x74,0x0c,0x4c,0x2c,0x6c,0x1c,0x5c,0x3c,0x7c, 0x02,0x42,0x22,0x62,0x12,0x52,0x32,0x72,0x0a,0x4a,0x2a,0x6a,0x1a,0x5a,0x3a,0x7a, 0x06,0x46,0x26,0x66,0x16,0x56,0x36,0x76,0x0e,0x4e,0x2e,0x6e,0x1e,0x5e,0x3e,0x7e, 0x01,0x41,0x21,0x61,0x11,0x51,0x31,0x71,0x09,0x49,0x29,0x69,0x19,0x59,0x39,0x79, 0x05,0x45,0x25,0x65,0x15,0x55,0x35,0x75,0x0d,0x4d,0x2d,0x6d,0x1d,0x5d,0x3d,0x7d, 0x03,0x43,0x23,0x63,0x13,0x53,0x33,0x73,0x0b,0x4b,0x2b,0x6b,0x1b,0x5b,0x3b,0x7b, 0x07,0x47,0x27,0x67,0x17,0x57,0x37,0x77,0x0f,0x4f,0x2f,0x6f,0x1f,0x5f,0x3f,0x7f, }; int ehci_init(ehci_softc_t *sc) { uint32_t vers, hcr; u_int i; int err; ehci_soft_qh_t *sqh; u_int ncomp; EHCIHIST_FUNC(); EHCIHIST_CALLED(); #ifdef EHCI_DEBUG theehci = sc; #endif mutex_init(&sc->sc_rhlock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB); cv_init(&sc->sc_doorbell, "ehcidb"); sc->sc_xferpool = pool_cache_init(sizeof(struct ehci_xfer), 0, 0, 0, "ehcixfer", NULL, IPL_USB, NULL, NULL, NULL); sc->sc_doorbell_si = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE, ehci_doorbell, sc); KASSERT(sc->sc_doorbell_si != NULL); sc->sc_pcd_si = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE, ehci_pcd, sc); KASSERT(sc->sc_pcd_si != NULL); sc->sc_offs = EREAD1(sc, EHCI_CAPLENGTH); vers = EREAD2(sc, EHCI_HCIVERSION); aprint_verbose("%s: EHCI version %x.%x\n", device_xname(sc->sc_dev), vers >> 8, vers & 0xff); const uint32_t hcsparams = EREAD4(sc, EHCI_HCSPARAMS); DPRINTF("hcsparams=%#jx", hcsparams, 0, 0, 0); sc->sc_npcomp = EHCI_HCS_N_PCC(hcsparams); ncomp = EHCI_HCS_N_CC(hcsparams); if (ncomp != sc->sc_ncomp) { aprint_verbose("%s: wrong number of companions (%d != %d)\n", device_xname(sc->sc_dev), ncomp, sc->sc_ncomp); #if NOHCI == 0 || NUHCI == 0 aprint_error("%s: ohci or uhci probably not configured\n", device_xname(sc->sc_dev)); #endif if (ncomp < sc->sc_ncomp) sc->sc_ncomp = ncomp; } if (sc->sc_ncomp > 0) { KASSERT(!(sc->sc_flags & EHCIF_ETTF)); aprint_normal_dev(sc->sc_dev, "%d companion controller%s, %d port%s%s", sc->sc_ncomp, sc->sc_ncomp!=1 ? "s" : "", EHCI_HCS_N_PCC(hcsparams), EHCI_HCS_N_PCC(hcsparams)!=1 ? "s" : "", sc->sc_ncomp!=1 ? " each" : ""); if (sc->sc_comps[0]) { aprint_normal(":"); for (i = 0; i < sc->sc_ncomp; i++) aprint_normal(" %s", device_xname(sc->sc_comps[i])); } aprint_normal("\n"); mutex_init(&sc->sc_complock, MUTEX_DEFAULT, IPL_USB); callout_init(&sc->sc_compcallout, CALLOUT_MPSAFE); cv_init(&sc->sc_compcv, "ehciccv"); sc->sc_comp_state = CO_EARLY; } sc->sc_noport = EHCI_HCS_N_PORTS(hcsparams); sc->sc_hasppc = EHCI_HCS_PPC(hcsparams); const uint32_t hccparams = EREAD4(sc, EHCI_HCCPARAMS); DPRINTF("hccparams=%#jx", hccparams, 0, 0, 0); if (EHCI_HCC_64BIT(hccparams)) { /* MUST clear segment register if 64 bit capable. */ EOWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); } if (hccparams & EHCI_HCC_IST_FULLFRAME) { sc->sc_istthreshold = 0; } else { sc->sc_istthreshold = EHCI_HCC_GET_IST_THRESHOLD(hccparams); } sc->sc_bus.ub_revision = USBREV_2_0; sc->sc_bus.ub_usedma = true; sc->sc_bus.ub_dmaflags = USBMALLOC_MULTISEG; /* * The bus attachment code will possibly provide a 64bit DMA * tag which we now limit to the bottom 4G range as * * - that's as much as ehci can address in its QH, TD, iTD, and siTD * structures; and * - the driver doesn't currently set EHCI_CTRLDSSEGMENT to anything * other than 0. */ bus_dma_tag_t ntag = sc->sc_bus.ub_dmatag; sc->sc_dmatag = sc->sc_bus.ub_dmatag; err = bus_dmatag_subregion(sc->sc_bus.ub_dmatag, 0, UINT32_MAX, &ntag, 0); if (err == 0) { sc->sc_dmatag = ntag; aprint_normal_dev(sc->sc_dev, "Using DMA subregion for control" " data structures\n"); } /* Reset the controller */ DPRINTF("resetting", 0, 0, 0, 0); EOWRITE4(sc, EHCI_USBCMD, 0); /* Halt controller */ usb_delay_ms(&sc->sc_bus, 1); EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_HCRESET); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_HCRESET; if (!hcr) break; } if (hcr) { aprint_error_dev(sc->sc_dev, "reset timeout\n"); err = EIO; goto fail1; } if (sc->sc_vendor_init) sc->sc_vendor_init(sc); /* XXX need proper intr scheduling */ sc->sc_rand = 96; /* frame list size at default, read back what we got and use that */ switch (EHCI_CMD_FLS(EOREAD4(sc, EHCI_USBCMD))) { case 0: sc->sc_flsize = 1024; break; case 1: sc->sc_flsize = 512; break; case 2: sc->sc_flsize = 256; break; case 3: err = EIO; goto fail1; } err = usb_allocmem(sc->sc_dmatag, sc->sc_flsize * sizeof(ehci_link_t), EHCI_FLALIGN_ALIGN, USBMALLOC_COHERENT, &sc->sc_fldma); if (err) { aprint_error_dev(sc->sc_dev, "failed to allocate frame list\n"); goto fail1; } DPRINTF("flsize=%jd", sc->sc_flsize, 0, 0, 0); sc->sc_flist = KERNADDR(&sc->sc_fldma, 0); for (i = 0; i < sc->sc_flsize; i++) { sc->sc_flist[i] = EHCI_NULL; } const bus_addr_t flba = DMAADDR(&sc->sc_fldma, 0); const uint32_t hi32 = BUS_ADDR_HI32(flba); if (hi32 != 0) { aprint_error_dev(sc->sc_dev, "DMA memory segment error (%08x)\n", hi32); goto fail2; } const uint32_t lo32 = BUS_ADDR_LO32(flba); EOWRITE4(sc, EHCI_PERIODICLISTBASE, lo32); sc->sc_softitds = kmem_zalloc(sc->sc_flsize * sizeof(ehci_soft_itd_t *), KM_SLEEP); LIST_INIT(&sc->sc_freeitds); LIST_INIT(&sc->sc_freesitds); TAILQ_INIT(&sc->sc_intrhead); /* Set up the bus struct. */ sc->sc_bus.ub_methods = &ehci_bus_methods; sc->sc_bus.ub_pipesize = sizeof(struct ehci_pipe); sc->sc_eintrs = EHCI_NORMAL_INTRS; /* * Allocate the interrupt dummy QHs. These are arranged to give poll * intervals that are powers of 2 times 1ms. */ memset(sc->sc_islots, 0, sizeof(sc->sc_islots)); for (i = 0; i < EHCI_INTRQHS; i++) { sqh = ehci_alloc_sqh(sc); if (sqh == NULL) { err = ENOMEM; goto fail3; } sc->sc_islots[i].sqh = sqh; } for (i = 0; i < EHCI_INTRQHS; i++) { sqh = sc->sc_islots[i].sqh; if (i == 0) { /* The last (1ms) QH terminates. */ sqh->qh.qh_link = EHCI_NULL; sqh->next = NULL; } else { /* Otherwise the next QH has half the poll interval */ sqh->next = sc->sc_islots[(i + 1) / 2 - 1].sqh; sqh->qh.qh_link = htole32(sqh->next->physaddr | EHCI_LINK_QH); } sqh->qh.qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH)); sqh->qh.qh_endphub = htole32(EHCI_QH_SET_MULT(1)); sqh->qh.qh_curqtd = EHCI_NULL; sqh->qh.qh_qtd.qtd_next = EHCI_NULL; sqh->qh.qh_qtd.qtd_altnext = EHCI_NULL; sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); sqh->sqtd = NULL; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } /* Point the frame list at the last level (128ms). */ for (i = 0; i < sc->sc_flsize; i++) { int j; j = (i & ~(EHCI_MAX_POLLRATE-1)) | revbits[i & (EHCI_MAX_POLLRATE-1)]; sc->sc_flist[j] = htole32(EHCI_LINK_QH | sc->sc_islots[EHCI_IQHIDX(EHCI_IPOLLRATES - 1, i)].sqh->physaddr); } usb_syncmem(&sc->sc_fldma, 0, sc->sc_flsize * sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE); /* Allocate dummy QH that starts the async list. */ sqh = ehci_alloc_sqh(sc); if (sqh == NULL) { err = ENOMEM; goto fail3; } /* Fill the QH */ sqh->qh.qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH) | EHCI_QH_HRECL); sqh->qh.qh_link = htole32(sqh->physaddr | EHCI_LINK_QH); sqh->qh.qh_curqtd = EHCI_NULL; sqh->next = NULL; /* Fill the overlay qTD */ sqh->qh.qh_qtd.qtd_next = EHCI_NULL; sqh->qh.qh_qtd.qtd_altnext = EHCI_NULL; sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); sqh->sqtd = NULL; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(sqh); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif /* Point to async list */ sc->sc_async_head = sqh; EOWRITE4(sc, EHCI_ASYNCLISTADDR, sqh->physaddr | EHCI_LINK_QH); callout_init(&sc->sc_tmo_intrlist, CALLOUT_MPSAFE); /* Turn on controller */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_ITC_2 | /* 2 microframes interrupt delay */ (EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_FLS_M) | EHCI_CMD_ASE | EHCI_CMD_PSE | EHCI_CMD_RS); /* Take over port ownership */ EOWRITE4(sc, EHCI_CONFIGFLAG, EHCI_CONF_CF); for (i = 0; i < 100; i++) { usb_delay_ms(&sc->sc_bus, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (!hcr) break; } if (hcr) { aprint_error("%s: run timeout\n", device_xname(sc->sc_dev)); err = EIO; goto fail4; } /* Enable interrupts */ DPRINTF("enabling interrupts", 0, 0, 0, 0); EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); return 0; fail4: ehci_free_sqh(sc, sc->sc_async_head); fail3: for (i = 0; i < EHCI_INTRQHS; i++) { sqh = sc->sc_islots[i].sqh; if (sqh) ehci_free_sqh(sc, sqh); } kmem_free(sc->sc_softitds, sc->sc_flsize * sizeof(ehci_soft_itd_t *)); fail2: usb_freemem(&sc->sc_fldma); fail1: softint_disestablish(sc->sc_doorbell_si); softint_disestablish(sc->sc_pcd_si); mutex_destroy(&sc->sc_rhlock); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return err; } int ehci_intr(void *v) { ehci_softc_t *sc = v; int ret = 0; EHCIHIST_FUNC(); EHCIHIST_CALLED(); if (sc == NULL) return 0; mutex_spin_enter(&sc->sc_intr_lock); if (sc->sc_dying || !device_has_power(sc->sc_dev)) goto done; /* If we get an interrupt while polling, then just ignore it. */ if (sc->sc_bus.ub_usepolling) { uint32_t intrs = EHCI_STS_INTRS(EOREAD4(sc, EHCI_USBSTS)); if (intrs) EOWRITE4(sc, EHCI_USBSTS, intrs); /* Acknowledge */ DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0); goto done; } ret = ehci_intr1(sc); done: mutex_spin_exit(&sc->sc_intr_lock); return ret; } Static int ehci_intr1(ehci_softc_t *sc) { uint32_t intrs, eintrs; EHCIHIST_FUNC(); EHCIHIST_CALLED(); /* In case the interrupt occurs before initialization has completed. */ if (sc == NULL) { #ifdef DIAGNOSTIC printf("ehci_intr1: sc == NULL\n"); #endif return 0; } KASSERT(mutex_owned(&sc->sc_intr_lock)); intrs = EHCI_STS_INTRS(EOREAD4(sc, EHCI_USBSTS)); if (!intrs) return 0; eintrs = intrs & sc->sc_eintrs; DPRINTF("sc=%#jx intrs=%#jx(%#jx) eintrs=%#jx", (uintptr_t)sc, intrs, EOREAD4(sc, EHCI_USBSTS), eintrs); if (!eintrs) return 0; EOWRITE4(sc, EHCI_USBSTS, intrs); /* Acknowledge */ if (eintrs & EHCI_STS_IAA) { DPRINTF("door bell", 0, 0, 0, 0); kpreempt_disable(); KASSERT(sc->sc_doorbell_si != NULL); softint_schedule(sc->sc_doorbell_si); kpreempt_enable(); eintrs &= ~EHCI_STS_IAA; } if (eintrs & (EHCI_STS_INT | EHCI_STS_ERRINT)) { DPRINTF("INT=%jd ERRINT=%jd", eintrs & EHCI_STS_INT ? 1 : 0, eintrs & EHCI_STS_ERRINT ? 1 : 0, 0, 0); usb_schedsoftintr(&sc->sc_bus); eintrs &= ~(EHCI_STS_INT | EHCI_STS_ERRINT); } if (eintrs & EHCI_STS_HSE) { printf("%s: unrecoverable error, controller halted\n", device_xname(sc->sc_dev)); /* XXX what else */ } if (eintrs & EHCI_STS_PCD) { kpreempt_disable(); KASSERT(sc->sc_pcd_si != NULL); softint_schedule(sc->sc_pcd_si); kpreempt_enable(); eintrs &= ~EHCI_STS_PCD; } if (eintrs != 0) { /* Block unprocessed interrupts. */ sc->sc_eintrs &= ~eintrs; EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); printf("%s: blocking intrs %#x\n", device_xname(sc->sc_dev), eintrs); } return 1; } Static void ehci_doorbell(void *addr) { ehci_softc_t *sc = addr; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); if (sc->sc_doorbelllwp == NULL) DPRINTF("spurious doorbell interrupt", 0, 0, 0, 0); sc->sc_doorbelllwp = NULL; cv_broadcast(&sc->sc_doorbell); mutex_exit(&sc->sc_lock); } Static void ehci_pcd(void *addr) { ehci_softc_t *sc = addr; struct usbd_xfer *xfer; u_char *p; int i, m; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); xfer = sc->sc_intrxfer; if (xfer == NULL) { /* Just ignore the change. */ goto done; } KASSERT(xfer->ux_status == USBD_IN_PROGRESS); p = xfer->ux_buf; m = uimin(sc->sc_noport, xfer->ux_length * 8 - 1); memset(p, 0, xfer->ux_length); for (i = 1; i <= m; i++) { /* Pick out CHANGE bits from the status reg. */ if (EOREAD4(sc, EHCI_PORTSC(i)) & EHCI_PS_CLEAR) p[i/8] |= 1 << (i%8); if (i % 8 == 7) DPRINTF("change(%jd)=0x%02jx", i / 8, p[i/8], 0, 0); } xfer->ux_actlen = xfer->ux_length; xfer->ux_status = USBD_NORMAL_COMPLETION; usb_transfer_complete(xfer); done: mutex_exit(&sc->sc_lock); } Static void ehci_softintr(void *v) { struct usbd_bus *bus = v; ehci_softc_t *sc = EHCI_BUS2SC(bus); struct ehci_xfer *ex, *nextex; KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); EHCIHIST_FUNC(); EHCIHIST_CALLED(); ex_completeq_t cq; TAILQ_INIT(&cq); /* * The only explanation I can think of for why EHCI is as brain dead * as UHCI interrupt-wise is that Intel was involved in both. * An interrupt just tells us that something is done, we have no * clue what, so we need to scan through all active transfers. :-( */ /* * ehci_idone will remove transfer from sc->sc_intrhead if it's * complete and add to our cq list * */ TAILQ_FOREACH_SAFE(ex, &sc->sc_intrhead, ex_next, nextex) { switch (ex->ex_type) { case EX_CTRL: case EX_BULK: case EX_INTR: ehci_check_qh_intr(sc, ex, &cq); break; case EX_ISOC: ehci_check_itd_intr(sc, ex, &cq); break; case EX_FS_ISOC: ehci_check_sitd_intr(sc, ex, &cq); break; default: KASSERT(false); } } /* * We abuse ex_next for the interrupt and complete lists and * interrupt transfers will get re-added here so use * the _SAFE version of TAILQ_FOREACH. */ TAILQ_FOREACH_SAFE(ex, &cq, ex_next, nextex) { usb_transfer_complete(&ex->ex_xfer); } /* Schedule a callout to catch any dropped transactions. */ if ((sc->sc_flags & EHCIF_DROPPED_INTR_WORKAROUND) && !TAILQ_EMPTY(&sc->sc_intrhead)) callout_reset(&sc->sc_tmo_intrlist, hz, ehci_intrlist_timeout, sc); } Static void ehci_check_qh_intr(ehci_softc_t *sc, struct ehci_xfer *ex, ex_completeq_t *cq) { ehci_soft_qtd_t *sqtd, *fsqtd, *lsqtd; uint32_t status; EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (ex->ex_type == EX_CTRL) { fsqtd = ex->ex_setup; lsqtd = ex->ex_status; } else { fsqtd = ex->ex_sqtdstart; lsqtd = ex->ex_sqtdend; } KASSERTMSG(fsqtd != NULL && lsqtd != NULL, "xfer %p xt %d fsqtd %p lsqtd %p", ex, ex->ex_type, fsqtd, lsqtd); /* * If the last TD is still active we need to check whether there * is an error somewhere in the middle, or whether there was a * short packet (SPD and not ACTIVE). */ usb_syncmem(&lsqtd->dma, lsqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(lsqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = le32toh(lsqtd->qtd.qtd_status); usb_syncmem(&lsqtd->dma, lsqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(lsqtd->qtd.qtd_status), BUS_DMASYNC_PREREAD); if (status & EHCI_QTD_ACTIVE) { DPRINTFN(10, "active ex=%#jx", (uintptr_t)ex, 0, 0, 0); /* last qTD has already been checked */ for (sqtd = fsqtd; sqtd != lsqtd; sqtd = sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = le32toh(sqtd->qtd.qtd_status); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_PREREAD); /* If there's an active QTD the xfer isn't done. */ if (status & EHCI_QTD_ACTIVE) break; /* Any kind of error makes the xfer done. */ if (status & EHCI_QTD_HALTED) goto done; /* Handle short packets */ if (EHCI_QTD_GET_BYTES(status) != 0) { /* * If we get here for a control transfer then * we need to let the hardware complete the * status phase. That is, we're not done * quite yet. * * Otherwise, we're done. */ if (ex->ex_type == EX_CTRL) { break; } goto done; } } DPRINTFN(10, "ex=%#jx std=%#jx still active", (uintptr_t)ex, (uintptr_t)ex->ex_sqtdstart, 0, 0); #ifdef EHCI_DEBUG DPRINTFN(5, "--- still active start ---", 0, 0, 0, 0); ehci_dump_sqtds(ex->ex_sqtdstart); DPRINTFN(5, "--- still active end ---", 0, 0, 0, 0); #endif return; } done: DPRINTFN(10, "ex=%#jx done", (uintptr_t)ex, 0, 0, 0); ehci_idone(ex, cq); } Static void ehci_check_itd_intr(ehci_softc_t *sc, struct ehci_xfer *ex, ex_completeq_t *cq) { ehci_soft_itd_t *itd; int i; EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_lock)); if (&ex->ex_xfer != SIMPLEQ_FIRST(&ex->ex_xfer.ux_pipe->up_queue)) return; KASSERTMSG(ex->ex_itdstart != NULL && ex->ex_itdend != NULL, "xfer %p fitd %p litd %p", ex, ex->ex_itdstart, ex->ex_itdend); itd = ex->ex_itdend; /* * check no active transfers in last itd, meaning we're finished */ usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < EHCI_ITD_NUFRAMES; i++) { if (le32toh(itd->itd.itd_ctl[i]) & EHCI_ITD_ACTIVE) break; } if (i == EHCI_ITD_NUFRAMES) { goto done; /* All 8 descriptors inactive, it's done */ } usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_PREREAD); DPRINTFN(10, "ex %#jx itd %#jx still active", (uintptr_t)ex, (uintptr_t)ex->ex_itdstart, 0, 0); return; done: DPRINTF("ex %#jx done", (uintptr_t)ex, 0, 0, 0); ehci_idone(ex, cq); } void ehci_check_sitd_intr(ehci_softc_t *sc, struct ehci_xfer *ex, ex_completeq_t *cq) { ehci_soft_sitd_t *sitd; EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_lock)); if (&ex->ex_xfer != SIMPLEQ_FIRST(&ex->ex_xfer.ux_pipe->up_queue)) return; KASSERTMSG(ex->ex_sitdstart != NULL && ex->ex_sitdend != NULL, "xfer %p fsitd %p lsitd %p", ex, ex->ex_sitdstart, ex->ex_sitdend); sitd = ex->ex_sitdend; /* * check no active transfers in last sitd, meaning we're finished */ usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_trans), sizeof(sitd->sitd.sitd_trans), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); bool active = ((le32toh(sitd->sitd.sitd_trans) & EHCI_SITD_ACTIVE) != 0); usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_trans), sizeof(sitd->sitd.sitd_trans), BUS_DMASYNC_PREREAD); if (active) return; DPRINTFN(10, "ex=%#jx done", (uintptr_t)ex, 0, 0, 0); ehci_idone(ex, cq); } Static void ehci_idone(struct ehci_xfer *ex, ex_completeq_t *cq) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); struct usbd_xfer *xfer = &ex->ex_xfer; struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_softc *sc = EHCI_XFER2SC(xfer); ehci_soft_qtd_t *sqtd, *fsqtd, *lsqtd; uint32_t status = 0, nstatus = 0; int actlen = 0; KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); DPRINTF("ex=%#jx", (uintptr_t)ex, 0, 0, 0); /* * Try to claim this xfer for completion. If it has already * completed or aborted, drop it on the floor. */ if (!usbd_xfer_trycomplete(xfer)) return; #ifdef DIAGNOSTIC #ifdef EHCI_DEBUG if (ex->ex_isdone) { DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_exfer(ex); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); } #endif KASSERTMSG(!ex->ex_isdone, "xfer %p type %d status %d", xfer, ex->ex_type, xfer->ux_status); ex->ex_isdone = true; #endif DPRINTF("xfer=%#jx, pipe=%#jx ready", (uintptr_t)xfer, (uintptr_t)epipe, 0, 0); /* The transfer is done, compute actual length and status. */ if (ex->ex_type == EX_ISOC) { /* HS isoc transfer */ struct ehci_soft_itd *itd; int i, nframes, len, uframes; nframes = 0; #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_itds(ex->ex_itdstart); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif i = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval; uframes = uimin(1 << (i - 1), USB_UFRAMES_PER_FRAME); for (itd = ex->ex_itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t,itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < EHCI_ITD_NUFRAMES; i += uframes) { /* * XXX - driver didn't fill in the frame full * of uframes. This leads to scheduling * inefficiencies, but working around * this doubles complexity of tracking * an xfer. */ if (nframes >= xfer->ux_nframes) break; status = le32toh(itd->itd.itd_ctl[i]); len = EHCI_ITD_GET_LEN(status); if (EHCI_ITD_GET_STATUS(status) != 0) len = 0; /*No valid data on error*/ xfer->ux_frlengths[nframes++] = len; actlen += len; } usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t,itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_PREREAD); if (nframes >= xfer->ux_nframes) break; } xfer->ux_actlen = actlen; xfer->ux_status = USBD_NORMAL_COMPLETION; goto end; } else if (ex->ex_type == EX_FS_ISOC) { /* FS isoc transfer */ struct ehci_soft_sitd *sitd; int nframes, len; nframes = 0; for (sitd = ex->ex_sitdstart; sitd != NULL; sitd = sitd->xfer_next) { usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_trans), sizeof(sitd->sitd.sitd_trans), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); /* * XXX - driver didn't fill in the frame full * of uframes. This leads to scheduling * inefficiencies, but working around * this doubles complexity of tracking * an xfer. */ if (nframes >= xfer->ux_nframes) break; status = le32toh(sitd->sitd.sitd_trans); usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_trans), sizeof(sitd->sitd.sitd_trans), BUS_DMASYNC_PREREAD); len = EHCI_SITD_GET_LEN(status); if (status & (EHCI_SITD_ERR|EHCI_SITD_BUFERR| EHCI_SITD_BABBLE|EHCI_SITD_XACTERR|EHCI_SITD_MISS)) { /* No valid data on error */ len = xfer->ux_frlengths[nframes]; } /* * frlengths[i]: # of bytes to send * len: # of bytes host didn't send */ xfer->ux_frlengths[nframes] -= len; /* frlengths[i]: # of bytes host sent */ actlen += xfer->ux_frlengths[nframes++]; if (nframes >= xfer->ux_nframes) break; } xfer->ux_actlen = actlen; xfer->ux_status = USBD_NORMAL_COMPLETION; goto end; } KASSERT(ex->ex_type == EX_CTRL || ex->ex_type == EX_INTR || ex->ex_type == EX_BULK); /* Continue processing xfers using queue heads */ if (ex->ex_type == EX_CTRL) { fsqtd = ex->ex_setup; lsqtd = ex->ex_status; } else { fsqtd = ex->ex_sqtdstart; lsqtd = ex->ex_sqtdend; } #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqtds(fsqtd); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif for (sqtd = fsqtd; sqtd != lsqtd->nextqtd; sqtd = sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); nstatus = le32toh(sqtd->qtd.qtd_status); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_PREREAD); if (nstatus & EHCI_QTD_ACTIVE) break; status = nstatus; if (EHCI_QTD_GET_PID(status) != EHCI_QTD_PID_SETUP) actlen += sqtd->len - EHCI_QTD_GET_BYTES(status); } /* * If there are left over TDs we need to update the toggle. * The default pipe doesn't need it since control transfers * start the toggle at 0 every time. * For a short transfer we need to update the toggle for the missing * packets within the qTD. */ if ((sqtd != lsqtd->nextqtd || EHCI_QTD_GET_BYTES(status)) && xfer->ux_pipe->up_dev->ud_pipe0 != xfer->ux_pipe) { DPRINTF("toggle update status=0x%08jx nstatus=0x%08jx", status, nstatus, 0, 0); #if 0 ehci_dump_sqh(epipe->sqh); ehci_dump_sqtds(ex->ex_sqtdstart); #endif epipe->nexttoggle = EHCI_QTD_GET_TOGGLE(nstatus); } DPRINTF("len=%jd actlen=%jd status=0x%08jx", xfer->ux_length, actlen, status, 0); xfer->ux_actlen = actlen; if (status & EHCI_QTD_HALTED) { #ifdef EHCI_DEBUG DPRINTF("halted addr=%jd endpt=0x%02jx", xfer->ux_pipe->up_dev->ud_addr, xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress, 0, 0); DPRINTF("cerr=%jd pid=%jd", EHCI_QTD_GET_CERR(status), EHCI_QTD_GET_PID(status), 0, 0); DPRINTF("active =%jd halted=%jd buferr=%jd babble=%jd", status & EHCI_QTD_ACTIVE ? 1 : 0, status & EHCI_QTD_HALTED ? 1 : 0, status & EHCI_QTD_BUFERR ? 1 : 0, status & EHCI_QTD_BABBLE ? 1 : 0); DPRINTF("xacterr=%jd missed=%jd split =%jd ping =%jd", status & EHCI_QTD_XACTERR ? 1 : 0, status & EHCI_QTD_MISSEDMICRO ? 1 : 0, status & EHCI_QTD_SPLITXSTATE ? 1 : 0, status & EHCI_QTD_PINGSTATE ? 1 : 0); DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(epipe->sqh); ehci_dump_sqtds(ex->ex_sqtdstart); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif /* low&full speed has an extra error flag */ if (EHCI_QH_GET_EPS(epipe->sqh->qh.qh_endp) != EHCI_QH_SPEED_HIGH) status &= EHCI_QTD_STATERRS | EHCI_QTD_PINGSTATE; else status &= EHCI_QTD_STATERRS; if (status == 0) /* no other errors means a stall */ { xfer->ux_status = USBD_STALLED; } else { xfer->ux_status = USBD_IOERROR; /* more info XXX */ } /* XXX need to reset TT on missed microframe */ if (status & EHCI_QTD_MISSEDMICRO) { printf("%s: missed microframe, TT reset not " "implemented, hub might be inoperational\n", device_xname(sc->sc_dev)); } } else { xfer->ux_status = USBD_NORMAL_COMPLETION; } end: ehci_del_intr_list(sc, ex); TAILQ_INSERT_TAIL(cq, ex, ex_next); DPRINTF("ex=%#jx done", (uintptr_t)ex, 0, 0, 0); } Static void ehci_poll(struct usbd_bus *bus) { ehci_softc_t *sc = EHCI_BUS2SC(bus); EHCIHIST_FUNC(); EHCIHIST_CALLED(); #ifdef EHCI_DEBUG static int last; int new; new = EHCI_STS_INTRS(EOREAD4(sc, EHCI_USBSTS)); if (new != last) { DPRINTF("intrs=0x%04jx", new, 0, 0, 0); last = new; } #endif if (EOREAD4(sc, EHCI_USBSTS) & sc->sc_eintrs) { mutex_spin_enter(&sc->sc_intr_lock); ehci_intr1(sc); mutex_spin_exit(&sc->sc_intr_lock); } } void ehci_childdet(device_t self, device_t child) { struct ehci_softc *sc = device_private(self); KASSERT(sc->sc_child == child); sc->sc_child = NULL; } int ehci_detach(struct ehci_softc *sc, int flags) { int rv = 0; EHCIHIST_FUNC(); EHCIHIST_CALLED(); if (sc->sc_child != NULL) { rv = config_detach(sc->sc_child, flags); if (rv != 0) return rv; } if (sc->sc_ncomp > 0) { mutex_enter(&sc->sc_complock); /* XXX try to halt callout instead of waiting */ while (sc->sc_comp_state == CO_SCHED) cv_wait(&sc->sc_compcv, &sc->sc_complock); mutex_exit(&sc->sc_complock); callout_halt(&sc->sc_compcallout, NULL); callout_destroy(&sc->sc_compcallout); cv_destroy(&sc->sc_compcv); mutex_destroy(&sc->sc_complock); } callout_halt(&sc->sc_tmo_intrlist, NULL); callout_destroy(&sc->sc_tmo_intrlist); /* XXX free other data structures */ if (sc->sc_softitds) { kmem_free(sc->sc_softitds, sc->sc_flsize * sizeof(ehci_soft_itd_t *)); } cv_destroy(&sc->sc_doorbell); #if 0 /* XXX destroyed in ehci_pci.c as it controls ehci_intr access */ softint_disestablish(sc->sc_doorbell_si); softint_disestablish(sc->sc_pcd_si); mutex_destroy(&sc->sc_rhlock); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); #endif pool_cache_destroy(sc->sc_xferpool); EOWRITE4(sc, EHCI_CONFIGFLAG, 0); return rv; } int ehci_activate(device_t self, enum devact act) { struct ehci_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->sc_dying = 1; return 0; default: return EOPNOTSUPP; } } /* * Handle suspend/resume. * * Note that this power handler isn't to be registered directly; the * bus glue needs to call out to it. */ bool ehci_suspend(device_t dv, const pmf_qual_t *qual) { ehci_softc_t *sc = device_private(dv); int i; uint32_t cmd, hcr; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_rhlock); for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)) & ~EHCI_PS_CLEAR; if ((cmd & EHCI_PS_PO) == 0 && (cmd & EHCI_PS_PE) == EHCI_PS_PE) EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_SUSP); } sc->sc_cmd = EOREAD4(sc, EHCI_USBCMD); cmd = sc->sc_cmd & ~(EHCI_CMD_ASE | EHCI_CMD_PSE); EOWRITE4(sc, EHCI_USBCMD, cmd); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & (EHCI_STS_ASS | EHCI_STS_PSS); if (hcr == 0) break; usb_delay_ms(&sc->sc_bus, 1); } if (hcr != 0) printf("%s: reset timeout\n", device_xname(dv)); cmd &= ~EHCI_CMD_RS; EOWRITE4(sc, EHCI_USBCMD, cmd); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (hcr == EHCI_STS_HCH) break; usb_delay_ms(&sc->sc_bus, 1); } if (hcr != EHCI_STS_HCH) printf("%s: config timeout\n", device_xname(dv)); mutex_exit(&sc->sc_rhlock); return true; } bool ehci_resume(device_t dv, const pmf_qual_t *qual) { ehci_softc_t *sc = device_private(dv); int i; uint32_t cmd, hcr; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_rhlock); /* restore things in case the bios sucks */ EOWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); EOWRITE4(sc, EHCI_PERIODICLISTBASE, DMAADDR(&sc->sc_fldma, 0)); EOWRITE4(sc, EHCI_ASYNCLISTADDR, sc->sc_async_head->physaddr | EHCI_LINK_QH); EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs & ~EHCI_INTR_PCIE); EOWRITE4(sc, EHCI_USBCMD, sc->sc_cmd); hcr = 0; for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)) & ~EHCI_PS_CLEAR; if ((cmd & EHCI_PS_PO) == 0 && (cmd & EHCI_PS_SUSP) == EHCI_PS_SUSP) { EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_FPR); hcr = 1; } } if (hcr) { usb_delay_ms(&sc->sc_bus, USB_RESUME_WAIT); for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)) & ~EHCI_PS_CLEAR; if ((cmd & EHCI_PS_PO) == 0 && (cmd & EHCI_PS_SUSP) == EHCI_PS_SUSP) EOWRITE4(sc, EHCI_PORTSC(i), cmd & ~EHCI_PS_FPR); } } EOWRITE4(sc, EHCI_USBCMD, sc->sc_cmd); EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (hcr != EHCI_STS_HCH) break; usb_delay_ms(&sc->sc_bus, 1); } if (hcr == EHCI_STS_HCH) printf("%s: config timeout\n", device_xname(dv)); mutex_exit(&sc->sc_rhlock); return true; } /* * Shut down the controller when the system is going down. */ bool ehci_shutdown(device_t self, int flags) { ehci_softc_t *sc = device_private(self); EHCIHIST_FUNC(); EHCIHIST_CALLED(); EOWRITE4(sc, EHCI_USBCMD, 0); /* Halt controller */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_HCRESET); return true; } Static struct usbd_xfer * ehci_allocx(struct usbd_bus *bus, unsigned int nframes) { struct ehci_softc *sc = EHCI_BUS2SC(bus); struct usbd_xfer *xfer; xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK); if (xfer != NULL) { memset(xfer, 0, sizeof(struct ehci_xfer)); #ifdef DIAGNOSTIC struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); ex->ex_isdone = true; xfer->ux_state = XFER_BUSY; #endif } return xfer; } Static void ehci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer) { struct ehci_softc *sc = EHCI_BUS2SC(bus); struct ehci_xfer *ex __diagused = EHCI_XFER2EXFER(xfer); KASSERTMSG(xfer->ux_state == XFER_BUSY || xfer->ux_status == USBD_NOT_STARTED, "xfer %p state %d\n", xfer, xfer->ux_state); KASSERT(ex->ex_isdone || xfer->ux_status == USBD_NOT_STARTED); #ifdef DIAGNOSTIC xfer->ux_state = XFER_FREE; #endif pool_cache_put(sc->sc_xferpool, xfer); } Static bool ehci_dying(struct usbd_bus *bus) { struct ehci_softc *sc = EHCI_BUS2SC(bus); return sc->sc_dying; } Static void ehci_get_lock(struct usbd_bus *bus, kmutex_t **lock) { struct ehci_softc *sc = EHCI_BUS2SC(bus); *lock = &sc->sc_lock; } Static void ehci_device_clear_toggle(struct usbd_pipe *pipe) { struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(pipe); EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("epipe=%#jx status=0x%08jx", (uintptr_t)epipe, epipe->sqh->qh.qh_qtd.qtd_status, 0, 0); #ifdef EHCI_DEBUG if (ehcidebug) usbd_dump_pipe(pipe); #endif epipe->nexttoggle = 0; } Static void ehci_noop(struct usbd_pipe *pipe) { } #ifdef EHCI_DEBUG /* * Unused function - this is meant to be called from a kernel * debugger. */ void ehci_dump(void) { ehci_softc_t *sc = theehci; int i; printf("cmd=0x%08x, sts=0x%08x, ien=0x%08x\n", EOREAD4(sc, EHCI_USBCMD), EOREAD4(sc, EHCI_USBSTS), EOREAD4(sc, EHCI_USBINTR)); printf("frindex=0x%08x ctrdsegm=0x%08x periodic=0x%08x async=0x%08x\n", EOREAD4(sc, EHCI_FRINDEX), EOREAD4(sc, EHCI_CTRLDSSEGMENT), EOREAD4(sc, EHCI_PERIODICLISTBASE), EOREAD4(sc, EHCI_ASYNCLISTADDR)); for (i = 1; i <= sc->sc_noport; i++) printf("port %d status=0x%08x\n", i, EOREAD4(sc, EHCI_PORTSC(i))); } Static void ehci_dump_regs(ehci_softc_t *sc) { int i; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("cmd = 0x%08jx sts = 0x%08jx ien = 0x%08jx", EOREAD4(sc, EHCI_USBCMD), EOREAD4(sc, EHCI_USBSTS), EOREAD4(sc, EHCI_USBINTR), 0); DPRINTF("frindex = 0x%08jx ctrdsegm = 0x%08jx periodic = 0x%08jx " "async = 0x%08jx", EOREAD4(sc, EHCI_FRINDEX), EOREAD4(sc, EHCI_CTRLDSSEGMENT), EOREAD4(sc, EHCI_PERIODICLISTBASE), EOREAD4(sc, EHCI_ASYNCLISTADDR)); for (i = 1; i <= sc->sc_noport; i += 2) { if (i == sc->sc_noport) { DPRINTF("port %jd status = 0x%08jx", i, EOREAD4(sc, EHCI_PORTSC(i)), 0, 0); } else { DPRINTF("port %jd status = 0x%08jx port %jd " "status = 0x%08jx", i, EOREAD4(sc, EHCI_PORTSC(i)), i+1, EOREAD4(sc, EHCI_PORTSC(i+1))); } } } #define ehci_dump_link(link, type) do { \ DPRINTF(" link 0x%08jx (T = %jd):", \ link, \ link & EHCI_LINK_TERMINATE ? 1 : 0, 0, 0); \ if (type) { \ DPRINTF( \ " ITD = %jd QH = %jd SITD = %jd FSTN = %jd",\ EHCI_LINK_TYPE(link) == EHCI_LINK_ITD ? 1 : 0, \ EHCI_LINK_TYPE(link) == EHCI_LINK_QH ? 1 : 0, \ EHCI_LINK_TYPE(link) == EHCI_LINK_SITD ? 1 : 0, \ EHCI_LINK_TYPE(link) == EHCI_LINK_FSTN ? 1 : 0); \ } \ } while(0) Static void ehci_dump_sqtds(ehci_soft_qtd_t *sqtd) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); int i; uint32_t stop = 0; for (i = 0; sqtd && i < 20 && !stop; sqtd = sqtd->nextqtd, i++) { ehci_dump_sqtd(sqtd); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_next), sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); stop = sqtd->qtd.qtd_next & htole32(EHCI_LINK_TERMINATE); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_next), sizeof(sqtd->qtd), BUS_DMASYNC_PREREAD); } if (!stop) DPRINTF("dump aborted, too many TDs", 0, 0, 0, 0); } Static void ehci_dump_sqtd(ehci_soft_qtd_t *sqtd) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); DPRINTFN(10, "QTD(%#jx) at 0x%08jx:", (uintptr_t)sqtd, sqtd->physaddr, 0, 0); ehci_dump_qtd(&sqtd->qtd); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_PREREAD); } Static void ehci_dump_qh_qtd(struct ehci_qh_qtd_t *qh_qtd) { ehci_qtd_t qtd = { .qtd_next = qh_qtd->qtd_next, .qtd_altnext = qh_qtd->qtd_altnext, .qtd_status = qh_qtd->qtd_status, }; /* Manually memcpy(), because of volatile. */ for (unsigned i = 0; i < EHCI_QTD_NBUFFERS; i++) { qtd.qtd_buffer[i] = qh_qtd->qtd_buffer[i]; qtd.qtd_buffer_hi[i] = qh_qtd->qtd_buffer_hi[i]; } ehci_dump_qtd(&qtd); } Static void ehci_dump_qtd(ehci_qtd_t *qtd) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); uint32_t s = le32toh(qtd->qtd_status); DPRINTFN(10, " next = 0x%08jx altnext = 0x%08jx status = 0x%08jx", qtd->qtd_next, qtd->qtd_altnext, s, 0); DPRINTFN(10, " toggle = %jd ioc = %jd bytes = %#jx c_page = %#jx", EHCI_QTD_GET_TOGGLE(s), EHCI_QTD_GET_IOC(s), EHCI_QTD_GET_BYTES(s), EHCI_QTD_GET_C_PAGE(s)); DPRINTFN(10, " cerr = %jd pid = %jd stat = %jx", EHCI_QTD_GET_CERR(s), EHCI_QTD_GET_PID(s), EHCI_QTD_GET_STATUS(s), 0); DPRINTFN(10, "active =%jd halted=%jd buferr=%jd babble=%jd", s & EHCI_QTD_ACTIVE ? 1 : 0, s & EHCI_QTD_HALTED ? 1 : 0, s & EHCI_QTD_BUFERR ? 1 : 0, s & EHCI_QTD_BABBLE ? 1 : 0); DPRINTFN(10, "xacterr=%jd missed=%jd split =%jd ping =%jd", s & EHCI_QTD_XACTERR ? 1 : 0, s & EHCI_QTD_MISSEDMICRO ? 1 : 0, s & EHCI_QTD_SPLITXSTATE ? 1 : 0, s & EHCI_QTD_PINGSTATE ? 1 : 0); DPRINTFN(10, "buffer[0] = %#jx buffer[1] = %#jx " "buffer[2] = %#jx buffer[3] = %#jx", le32toh(qtd->qtd_buffer[0]), le32toh(qtd->qtd_buffer[1]), le32toh(qtd->qtd_buffer[2]), le32toh(qtd->qtd_buffer[3])); DPRINTFN(10, "buffer[4] = %#jx", le32toh(qtd->qtd_buffer[4]), 0, 0, 0); } Static void ehci_dump_sqh(ehci_soft_qh_t *sqh) { ehci_qh_t *qh = &sqh->qh; ehci_link_t link; uint32_t endp, endphub; EHCIHIST_FUNC(); EHCIHIST_CALLED(); usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); DPRINTFN(10, "QH(%#jx) at %#jx:", (uintptr_t)sqh, sqh->physaddr, 0, 0); link = le32toh(qh->qh_link); ehci_dump_link(link, true); endp = le32toh(qh->qh_endp); DPRINTFN(10, " endp = %#jx", endp, 0, 0, 0); DPRINTFN(10, " addr = 0x%02jx inact = %jd endpt = %jd " "eps = %jd", EHCI_QH_GET_ADDR(endp), EHCI_QH_GET_INACT(endp), EHCI_QH_GET_ENDPT(endp), EHCI_QH_GET_EPS(endp)); DPRINTFN(10, " dtc = %jd hrecl = %jd", EHCI_QH_GET_DTC(endp), EHCI_QH_GET_HRECL(endp), 0, 0); DPRINTFN(10, " ctl = %jd nrl = %jd mpl = %#jx(%jd)", EHCI_QH_GET_CTL(endp),EHCI_QH_GET_NRL(endp), EHCI_QH_GET_MPL(endp), EHCI_QH_GET_MPL(endp)); endphub = le32toh(qh->qh_endphub); DPRINTFN(10, " endphub = %#jx", endphub, 0, 0, 0); DPRINTFN(10, " smask = 0x%02jx cmask = 0x%02jx one %jx", EHCI_QH_GET_SMASK(endphub), EHCI_QH_GET_CMASK(endphub), 1, 0); DPRINTFN(10, " huba = 0x%02jx port = %jd mult = %jd", EHCI_QH_GET_HUBA(endphub), EHCI_QH_GET_PORT(endphub), EHCI_QH_GET_MULT(endphub), 0); link = le32toh(qh->qh_curqtd); ehci_dump_link(link, false); DPRINTFN(10, "Overlay qTD:", 0, 0, 0, 0); ehci_dump_qh_qtd(&qh->qh_qtd); usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD); } Static void ehci_dump_itds(ehci_soft_itd_t *itd) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); int i; uint32_t stop = 0; for (i = 0; itd && i < 20 && !stop; itd = itd->xfer_next, i++) { ehci_dump_itd(itd); usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_next), sizeof(itd->itd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); stop = itd->itd.itd_next & htole32(EHCI_LINK_TERMINATE); usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_next), sizeof(itd->itd), BUS_DMASYNC_PREREAD); } if (!stop) DPRINTF("dump aborted, too many TDs", 0, 0, 0, 0); } Static void ehci_dump_itd(struct ehci_soft_itd *itd) { ehci_isoc_trans_t t; ehci_isoc_bufr_ptr_t b, b2, b3; int i; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("ITD: next phys = %#jx", itd->itd.itd_next, 0, 0, 0); for (i = 0; i < EHCI_ITD_NUFRAMES; i++) { t = le32toh(itd->itd.itd_ctl[i]); DPRINTF("ITDctl %jd: stat = %jx len = %jx", i, EHCI_ITD_GET_STATUS(t), EHCI_ITD_GET_LEN(t), 0); DPRINTF(" ioc = %jx pg = %jx offs = %jx", EHCI_ITD_GET_IOC(t), EHCI_ITD_GET_PG(t), EHCI_ITD_GET_OFFS(t), 0); } DPRINTF("ITDbufr: ", 0, 0, 0, 0); for (i = 0; i < EHCI_ITD_NBUFFERS; i++) DPRINTF(" %jx", EHCI_ITD_GET_BPTR(le32toh(itd->itd.itd_bufr[i])), 0, 0, 0); b = le32toh(itd->itd.itd_bufr[0]); b2 = le32toh(itd->itd.itd_bufr[1]); b3 = le32toh(itd->itd.itd_bufr[2]); DPRINTF(" ep = %jx daddr = %jx dir = %jd", EHCI_ITD_GET_EP(b), EHCI_ITD_GET_DADDR(b), EHCI_ITD_GET_DIR(b2), 0); DPRINTF(" maxpkt = %jx multi = %jx", EHCI_ITD_GET_MAXPKT(b2), EHCI_ITD_GET_MULTI(b3), 0, 0); } Static void ehci_dump_sitd(struct ehci_soft_itd *itd) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("SITD %#jx next = %p prev = %#jx", (uintptr_t)itd, (uintptr_t)itd->frame_list.next, (uintptr_t)itd->frame_list.prev, 0); DPRINTF(" xfernext=%#jx physaddr=%jX slot=%jd", (uintptr_t)itd->xfer_next, itd->physaddr, itd->slot, 0); } Static void ehci_dump_exfer(struct ehci_xfer *ex) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("ex = %#jx type %jd isdone %jd", (uintptr_t)ex, ex->ex_type, ex->ex_isdone, 0); switch (ex->ex_type) { case EX_CTRL: DPRINTF(" setup = %#jx data = %#jx status = %#jx", (uintptr_t)ex->ex_setup, (uintptr_t)ex->ex_data, (uintptr_t)ex->ex_status, 0); break; case EX_BULK: case EX_INTR: DPRINTF(" qtdstart = %#jx qtdend = %#jx", (uintptr_t)ex->ex_sqtdstart, (uintptr_t)ex->ex_sqtdend, 0, 0); break; case EX_ISOC: DPRINTF(" itdstart = %#jx itdend = %#jx", (uintptr_t)ex->ex_itdstart, (uintptr_t)ex->ex_itdend, 0, 0); break; case EX_FS_ISOC: DPRINTF(" sitdstart = %#jx sitdend = %#jx", (uintptr_t)ex->ex_sitdstart, (uintptr_t)ex->ex_sitdend, 0, 0); break; default: DPRINTF(" unknown type", 0, 0, 0, 0); } } #endif Static usbd_status ehci_open(struct usbd_pipe *pipe) { struct usbd_device *dev = pipe->up_dev; ehci_softc_t *sc = EHCI_PIPE2SC(pipe); usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc; uint8_t rhaddr = dev->ud_bus->ub_rhaddr; uint8_t addr = dev->ud_addr; uint8_t xfertype = UE_GET_XFERTYPE(ed->bmAttributes); struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(pipe); ehci_soft_qh_t *sqh; usbd_status err; int ival, speed, naks; int hshubaddr, hshubport; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("pipe=%#jx, addr=%jd, endpt=%jd (%jd)", (uintptr_t)pipe, addr, ed->bEndpointAddress, rhaddr); if (dev->ud_myhsport) { /* * When directly attached FS/LS device while doing embedded * transaction translations and we are the hub, set the hub * address to 0 (us). */ if (!(sc->sc_flags & EHCIF_ETTF) || (dev->ud_myhsport->up_parent->ud_addr != rhaddr)) { hshubaddr = dev->ud_myhsport->up_parent->ud_addr; } else { hshubaddr = 0; } hshubport = dev->ud_myhsport->up_portno; } else { hshubaddr = 0; hshubport = 0; } if (sc->sc_dying) return USBD_IOERROR; /* toggle state needed for bulk endpoints */ epipe->nexttoggle = pipe->up_endpoint->ue_toggle; if (addr == rhaddr) { switch (ed->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->up_methods = &roothub_ctrl_methods; break; case UE_DIR_IN | USBROOTHUB_INTR_ENDPT: pipe->up_methods = &ehci_root_intr_methods; break; default: DPRINTF("bad bEndpointAddress 0x%02jx", ed->bEndpointAddress, 0, 0, 0); return USBD_INVAL; } return USBD_NORMAL_COMPLETION; } /* XXX All this stuff is only valid for async. */ switch (dev->ud_speed) { case USB_SPEED_LOW: speed = EHCI_QH_SPEED_LOW; break; case USB_SPEED_FULL: speed = EHCI_QH_SPEED_FULL; break; case USB_SPEED_HIGH: speed = EHCI_QH_SPEED_HIGH; break; default: panic("ehci_open: bad device speed %d", dev->ud_speed); } if (speed == EHCI_QH_SPEED_LOW && xfertype == UE_ISOCHRONOUS) { DPRINTF("hshubaddr=%jd hshubport=%jd", hshubaddr, hshubport, 0, 0); return USBD_INVAL; } /* * For interrupt transfer, nak throttling must be disabled, but for * the other transfer type, nak throttling should be enabled from the * viewpoint that avoids the memory thrashing. */ naks = (xfertype == UE_INTERRUPT) ? 0 : ((speed == EHCI_QH_SPEED_HIGH) ? 4 : 0); /* Allocate sqh for everything, save isoc xfers */ if (xfertype != UE_ISOCHRONOUS) { sqh = ehci_alloc_sqh(sc); if (sqh == NULL) return USBD_NOMEM; /* qh_link filled when the QH is added */ sqh->qh.qh_endp = htole32( EHCI_QH_SET_ADDR(addr) | EHCI_QH_SET_ENDPT(UE_GET_ADDR(ed->bEndpointAddress)) | EHCI_QH_SET_EPS(speed) | EHCI_QH_DTC | EHCI_QH_SET_MPL(UGETW(ed->wMaxPacketSize)) | (speed != EHCI_QH_SPEED_HIGH && xfertype == UE_CONTROL ? EHCI_QH_CTL : 0) | EHCI_QH_SET_NRL(naks) ); sqh->qh.qh_endphub = htole32( EHCI_QH_SET_MULT(1) | (xfertype == UE_INTERRUPT ? EHCI_QH_SET_SMASK(__BIT(1)) /* Start Split Y1 */ : 0) ); if (speed != EHCI_QH_SPEED_HIGH) sqh->qh.qh_endphub |= htole32( EHCI_QH_SET_PORT(hshubport) | EHCI_QH_SET_HUBA(hshubaddr) | (xfertype == UE_INTERRUPT ? EHCI_QH_SET_CMASK(__BITS(3,5)) /* CS Y[345] */ : 0) ); sqh->qh.qh_curqtd = EHCI_NULL; /* Fill the overlay qTD */ sqh->qh.qh_qtd.qtd_next = EHCI_NULL; sqh->qh.qh_qtd.qtd_altnext = EHCI_NULL; sqh->qh.qh_qtd.qtd_status = htole32(0); usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); epipe->sqh = sqh; } else { sqh = NULL; } /*xfertype == UE_ISOC*/ switch (xfertype) { case UE_CONTROL: /* we can use 64bit DMA for the reqdma buffer */ err = usb_allocmem(sc->sc_bus.ub_dmatag, sizeof(usb_device_request_t), 0, USBMALLOC_COHERENT, &epipe->ctrl.reqdma); #ifdef EHCI_DEBUG if (err) printf("ehci_open: usb_allocmem()=%d\n", err); #endif if (err) goto bad; pipe->up_methods = &ehci_device_ctrl_methods; mutex_enter(&sc->sc_lock); ehci_add_qh(sc, sqh, sc->sc_async_head); mutex_exit(&sc->sc_lock); break; case UE_BULK: pipe->up_methods = &ehci_device_bulk_methods; mutex_enter(&sc->sc_lock); ehci_add_qh(sc, sqh, sc->sc_async_head); mutex_exit(&sc->sc_lock); break; case UE_INTERRUPT: pipe->up_methods = &ehci_device_intr_methods; ival = pipe->up_interval; if (ival == USBD_DEFAULT_INTERVAL) { if (speed == EHCI_QH_SPEED_HIGH) { if (ed->bInterval > 16) { /* * illegal with high-speed, but there * were documentation bugs in the spec, * so be generous */ ival = 256; } else ival = (1 << (ed->bInterval - 1)) / 8; } else ival = ed->bInterval; } err = ehci_device_setintr(sc, sqh, ival); if (err) goto bad; break; case UE_ISOCHRONOUS: pipe->up_serialise = false; if (speed == EHCI_QH_SPEED_HIGH) pipe->up_methods = &ehci_device_isoc_methods; else pipe->up_methods = &ehci_device_fs_isoc_methods; if (ed->bInterval == 0 || ed->bInterval > 16) { printf("ehci: opening pipe with invalid bInterval\n"); err = USBD_INVAL; goto bad; } if (UGETW(ed->wMaxPacketSize) == 0) { printf("ehci: zero length endpoint open request\n"); err = USBD_INVAL; goto bad; } epipe->isoc.next_frame = 0; epipe->isoc.cur_xfers = 0; break; default: DPRINTF("bad xfer type %jd", xfertype, 0, 0, 0); err = USBD_INVAL; goto bad; } return USBD_NORMAL_COMPLETION; bad: if (sqh != NULL) { mutex_enter(&sc->sc_lock); ehci_free_sqh(sc, sqh); mutex_exit(&sc->sc_lock); } return err; } /* * Add an ED to the schedule. Called with USB lock held. */ Static void ehci_add_qh(ehci_softc_t *sc, ehci_soft_qh_t *sqh, ehci_soft_qh_t *head) { KASSERT(mutex_owned(&sc->sc_lock)); EHCIHIST_FUNC(); EHCIHIST_CALLED(); usb_syncmem(&head->dma, head->offs + offsetof(ehci_qh_t, qh_link), sizeof(head->qh.qh_link), BUS_DMASYNC_POSTWRITE); sqh->next = head->next; sqh->qh.qh_link = head->qh.qh_link; usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_link), sizeof(sqh->qh.qh_link), BUS_DMASYNC_PREWRITE); head->next = sqh; head->qh.qh_link = htole32(sqh->physaddr | EHCI_LINK_QH); usb_syncmem(&head->dma, head->offs + offsetof(ehci_qh_t, qh_link), sizeof(head->qh.qh_link), BUS_DMASYNC_PREWRITE); #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(sqh); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif } /* * Remove an ED from the schedule. Called with USB lock held. */ Static void ehci_rem_qh(ehci_softc_t *sc, ehci_soft_qh_t *sqh, ehci_soft_qh_t *head) { ehci_soft_qh_t *p; KASSERT(mutex_owned(&sc->sc_lock)); /* XXX */ for (p = head; p != NULL && p->next != sqh; p = p->next) ; if (p == NULL) panic("ehci_rem_qh: ED not found"); usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_link), sizeof(sqh->qh.qh_link), BUS_DMASYNC_POSTWRITE); p->next = sqh->next; p->qh.qh_link = sqh->qh.qh_link; usb_syncmem(&p->dma, p->offs + offsetof(ehci_qh_t, qh_link), sizeof(p->qh.qh_link), BUS_DMASYNC_PREWRITE); ehci_sync_hc(sc); } Static void ehci_set_qh_qtd(ehci_soft_qh_t *sqh, ehci_soft_qtd_t *sqtd) { int i; uint32_t status; /* Save toggle bit and ping status. */ usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); status = sqh->qh.qh_qtd.qtd_status & htole32(EHCI_QTD_TOGGLE_MASK | EHCI_QTD_SET_STATUS(EHCI_QTD_PINGSTATE)); /* Set HALTED to make hw leave it alone. */ sqh->qh.qh_qtd.qtd_status = htole32(EHCI_QTD_SET_STATUS(EHCI_QTD_HALTED)); usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sqh->qh.qh_curqtd = 0; sqh->qh.qh_qtd.qtd_next = htole32(sqtd->physaddr); sqh->qh.qh_qtd.qtd_altnext = EHCI_NULL; for (i = 0; i < EHCI_QTD_NBUFFERS; i++) sqh->qh.qh_qtd.qtd_buffer[i] = 0; sqh->sqtd = sqtd; usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); /* Set !HALTED && !ACTIVE to start execution, preserve some fields */ sqh->qh.qh_qtd.qtd_status = status; usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } /* * Ensure that the HC has released all references to the QH. We do this * by asking for a Async Advance Doorbell interrupt and then we wait for * the interrupt. * To make this easier we first obtain exclusive use of the doorbell. * * Releases the bus lock to sleep while waiting for interrupt. */ Static void ehci_sync_hc(ehci_softc_t *sc) { unsigned delta = hz; unsigned starttime = getticks(); unsigned endtime = starttime + delta; unsigned now; KASSERT(mutex_owned(&sc->sc_lock)); EHCIHIST_FUNC(); EHCIHIST_CALLED(); if (sc->sc_dying) { DPRINTF("dying", 0, 0, 0, 0); return; } /* * Wait until any concurrent ehci_sync_hc has completed so we * have exclusive access to the doorbell. */ while (sc->sc_doorbelllwp) cv_wait(&sc->sc_doorbell, &sc->sc_lock); sc->sc_doorbelllwp = curlwp; /* ask for doorbell */ EOWRITE4(sc, EHCI_USBCMD, EOREAD4(sc, EHCI_USBCMD) | EHCI_CMD_IAAD); DPRINTF("cmd = 0x%08jx sts = 0x%08jx", EOREAD4(sc, EHCI_USBCMD), EOREAD4(sc, EHCI_USBSTS), 0, 0); /* * Wait for the ehci to ring our doorbell. */ while (sc->sc_doorbelllwp == curlwp) { now = getticks(); if (now - starttime >= delta) { sc->sc_doorbelllwp = NULL; cv_broadcast(&sc->sc_doorbell); DPRINTF("doorbell timeout", 0, 0, 0, 0); #ifdef DIAGNOSTIC /* XXX DIAGNOSTIC abuse, do this differently */ printf("ehci_sync_hc: timed out\n"); #endif break; } (void)cv_timedwait(&sc->sc_doorbell, &sc->sc_lock, endtime - now); } DPRINTF("cmd = 0x%08jx sts = 0x%08jx ... done", EOREAD4(sc, EHCI_USBCMD), EOREAD4(sc, EHCI_USBSTS), 0, 0); } Static void ehci_remove_itd_chain(ehci_softc_t *sc, struct ehci_soft_itd *itd) { KASSERT(mutex_owned(&sc->sc_lock)); for (; itd != NULL; itd = itd->xfer_next) { struct ehci_soft_itd *prev = itd->frame_list.prev; /* Unlink itd from hardware chain, or frame array */ if (prev == NULL) { /* We're at the table head */ sc->sc_softitds[itd->slot] = itd->frame_list.next; sc->sc_flist[itd->slot] = itd->itd.itd_next; usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * itd->slot, sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (itd->frame_list.next != NULL) itd->frame_list.next->frame_list.prev = NULL; } else { /* XXX this part is untested... */ prev->itd.itd_next = itd->itd.itd_next; usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_next), sizeof(itd->itd.itd_next), BUS_DMASYNC_PREWRITE); prev->frame_list.next = itd->frame_list.next; if (itd->frame_list.next != NULL) itd->frame_list.next->frame_list.prev = prev; } } } Static void ehci_free_itd_chain(ehci_softc_t *sc, struct ehci_soft_itd *itd) { struct ehci_soft_itd *next; mutex_enter(&sc->sc_lock); next = NULL; for (; itd != NULL; itd = next) { next = itd->xfer_next; ehci_free_itd_locked(sc, itd); } mutex_exit(&sc->sc_lock); } Static void ehci_remove_sitd_chain(ehci_softc_t *sc, struct ehci_soft_sitd *sitd) { KASSERT(mutex_owned(&sc->sc_lock)); for (; sitd != NULL; sitd = sitd->xfer_next) { struct ehci_soft_sitd *prev = sitd->frame_list.prev; /* Unlink sitd from hardware chain, or frame array */ if (prev == NULL) { /* We're at the table head */ sc->sc_softsitds[sitd->slot] = sitd->frame_list.next; sc->sc_flist[sitd->slot] = sitd->sitd.sitd_next; usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * sitd->slot, sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (sitd->frame_list.next != NULL) sitd->frame_list.next->frame_list.prev = NULL; } else { /* XXX this part is untested... */ prev->sitd.sitd_next = sitd->sitd.sitd_next; usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_next), sizeof(sitd->sitd.sitd_next), BUS_DMASYNC_PREWRITE); prev->frame_list.next = sitd->frame_list.next; if (sitd->frame_list.next != NULL) sitd->frame_list.next->frame_list.prev = prev; } } } Static void ehci_free_sitd_chain(ehci_softc_t *sc, struct ehci_soft_sitd *sitd) { mutex_enter(&sc->sc_lock); struct ehci_soft_sitd *next = NULL; for (; sitd != NULL; sitd = next) { next = sitd->xfer_next; ehci_free_sitd_locked(sc, sitd); } mutex_exit(&sc->sc_lock); } /***********/ static int ehci_roothub_ctrl_locked(struct usbd_bus *bus, usb_device_request_t *req, void *buf, int buflen) { ehci_softc_t *sc = EHCI_BUS2SC(bus); usb_hub_descriptor_t hubd; usb_port_status_t ps; uint16_t len, value, index; int l, totlen = 0; int port, i; uint32_t v; EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_rhlock)); if (sc->sc_dying) return -1; DPRINTF("type=0x%02jx request=%02jx", req->bmRequestType, req->bRequest, 0, 0); len = UGETW(req->wLength); value = UGETW(req->wValue); index = UGETW(req->wIndex); #define C(x,y) ((x) | ((y) << 8)) switch (C(req->bRequest, req->bmRequestType)) { case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): if (len == 0) break; switch (value) { #define sd ((usb_string_descriptor_t *)buf) case C(2, UDESC_STRING): /* Product */ totlen = usb_makestrdesc(sd, len, "EHCI root hub"); break; #undef sd default: /* default from usbroothub */ return buflen; } break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTF("UR_CLEAR_PORT_FEATURE port=%jd feature=%jd", index, value, 0, 0); if (index < 1 || index > sc->sc_noport) { return -1; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port); DPRINTF("portsc=0x%08jx", v, 0, 0, 0); v &= ~EHCI_PS_CLEAR; switch (value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v &~ EHCI_PS_PE); break; case UHF_PORT_SUSPEND: if (!(v & EHCI_PS_SUSP)) /* not suspended */ break; v &= ~EHCI_PS_SUSP; EOWRITE4(sc, port, v | EHCI_PS_FPR); /* see USB2 spec ch. 7.1.7.7 */ usb_delay_ms(&sc->sc_bus, 20); EOWRITE4(sc, port, v); usb_delay_ms(&sc->sc_bus, 2); #ifdef DEBUG v = EOREAD4(sc, port); if (v & (EHCI_PS_FPR | EHCI_PS_SUSP)) printf("ehci: resume failed: %x\n", v); #endif break; case UHF_PORT_POWER: if (sc->sc_hasppc) EOWRITE4(sc, port, v &~ EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTF("clear port test %jd", index, 0, 0, 0); break; case UHF_PORT_INDICATOR: DPRINTF("clear port ind %jd", index, 0, 0, 0); EOWRITE4(sc, port, v &~ EHCI_PS_PIC); break; case UHF_C_PORT_CONNECTION: EOWRITE4(sc, port, v | EHCI_PS_CSC); break; case UHF_C_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PEC); break; case UHF_C_PORT_SUSPEND: /* how? */ break; case UHF_C_PORT_OVER_CURRENT: EOWRITE4(sc, port, v | EHCI_PS_OCC); break; case UHF_C_PORT_RESET: sc->sc_isreset[index] = 0; break; default: return -1; } #if 0 switch(value) { case UHF_C_PORT_CONNECTION: case UHF_C_PORT_ENABLE: case UHF_C_PORT_SUSPEND: case UHF_C_PORT_OVER_CURRENT: case UHF_C_PORT_RESET: default: break; } #endif break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if (len == 0) break; if ((value & 0xff) != 0) { return -1; } totlen = uimin(buflen, sizeof(hubd)); memcpy(&hubd, buf, totlen); hubd.bNbrPorts = sc->sc_noport; v = EREAD4(sc, EHCI_HCSPARAMS); USETW(hubd.wHubCharacteristics, (EHCI_HCS_PPC(v) ? UHD_PWR_INDIVIDUAL : UHD_PWR_NO_SWITCH) | (EHCI_HCS_P_INDICATOR(v) ? UHD_PORT_IND : 0)); hubd.bPwrOn2PwrGood = 200; /* XXX can't find out? */ for (i = 0, l = sc->sc_noport; l > 0; i++, l -= 8, v >>= 8) hubd.DeviceRemovable[i++] = 0; /* XXX can't find out? */ hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE + i; totlen = uimin(totlen, hubd.bDescLength); memcpy(buf, &hubd, totlen); break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): if (len != 4) { return -1; } memset(buf, 0, len); /* ? XXX */ totlen = len; break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTF("get port status i=%jd", index, 0, 0, 0); if (index < 1 || index > sc->sc_noport) { return -1; } if (len != 4) { return -1; } v = EOREAD4(sc, EHCI_PORTSC(index)); DPRINTF("port status=0x%04jx", v, 0, 0, 0); i = UPS_HIGH_SPEED; if (sc->sc_flags & EHCIF_ETTF) { /* * If we are doing embedded transaction translation, * then directly attached LS/FS devices are reset by * the EHCI controller itself. PSPD is encoded * the same way as in USBSTATUS. */ i = __SHIFTOUT(v, EHCI_PS_PSPD) * UPS_LOW_SPEED; } if (v & EHCI_PS_CS) i |= UPS_CURRENT_CONNECT_STATUS; if (v & EHCI_PS_PE) i |= UPS_PORT_ENABLED; if (v & EHCI_PS_SUSP) i |= UPS_SUSPEND; if (v & EHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; if (v & EHCI_PS_PR) i |= UPS_RESET; if (v & EHCI_PS_PP) i |= UPS_PORT_POWER; if (sc->sc_vendor_port_status) i = sc->sc_vendor_port_status(sc, v, i); USETW(ps.wPortStatus, i); i = 0; if (v & EHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; if (v & EHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; if (v & EHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; if (sc->sc_isreset[index]) i |= UPS_C_PORT_RESET; USETW(ps.wPortChange, i); totlen = uimin(len, sizeof(ps)); memcpy(buf, &ps, totlen); break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): return -1; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if (index < 1 || index > sc->sc_noport) { return -1; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port); DPRINTF("portsc=0x%08jx", v, 0, 0, 0); v &= ~EHCI_PS_CLEAR; switch(value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PE); break; case UHF_PORT_SUSPEND: EOWRITE4(sc, port, v | EHCI_PS_SUSP); break; case UHF_PORT_RESET: DPRINTF("reset port %jd", index, 0, 0, 0); if (EHCI_PS_IS_LOWSPEED(v) && sc->sc_ncomp > 0 && !(sc->sc_flags & EHCIF_ETTF)) { /* * Low speed device on non-ETTF controller or * unaccompanied controller, give up ownership. */ ehci_disown(sc, index, 1); break; } /* Start reset sequence. */ v &= ~ (EHCI_PS_PE | EHCI_PS_PR); EOWRITE4(sc, port, v | EHCI_PS_PR); /* Wait for reset to complete. */ usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY); if (sc->sc_dying) { return -1; } /* * An embedded transaction translator will automatically * terminate the reset sequence so there's no need to * it. */ v = EOREAD4(sc, port); if (v & EHCI_PS_PR) { /* Terminate reset sequence. */ EOWRITE4(sc, port, v & ~EHCI_PS_PR); /* Wait for HC to complete reset. */ usb_delay_ms(&sc->sc_bus, EHCI_PORT_RESET_COMPLETE); if (sc->sc_dying) { return -1; } } v = EOREAD4(sc, port); DPRINTF("ehci after reset, status=0x%08jx", v, 0, 0, 0); if (v & EHCI_PS_PR) { printf("%s: port reset timeout\n", device_xname(sc->sc_dev)); return USBD_TIMEOUT; } if (!(v & EHCI_PS_PE)) { /* Not a high speed device, give up ownership.*/ ehci_disown(sc, index, 0); break; } sc->sc_isreset[index] = 1; DPRINTF("ehci port %jd reset, status = 0x%08jx", index, v, 0, 0); break; case UHF_PORT_POWER: DPRINTF("set port power %jd (has PPC = %jd)", index, sc->sc_hasppc, 0, 0); if (sc->sc_hasppc) EOWRITE4(sc, port, v | EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTF("set port test %jd", index, 0, 0, 0); break; case UHF_PORT_INDICATOR: DPRINTF("set port ind %jd", index, 0, 0, 0); EOWRITE4(sc, port, v | EHCI_PS_PIC); break; default: return -1; } break; case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): break; default: /* default from usbroothub */ DPRINTF("returning %jd (usbroothub default)", buflen, 0, 0, 0); return buflen; } DPRINTF("returning %jd", totlen, 0, 0, 0); return totlen; } Static int ehci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req, void *buf, int buflen) { struct ehci_softc *sc = EHCI_BUS2SC(bus); int actlen; mutex_enter(&sc->sc_rhlock); actlen = ehci_roothub_ctrl_locked(bus, req, buf, buflen); mutex_exit(&sc->sc_rhlock); return actlen; } /* * Handle ehci hand-off in early boot vs RB_ASKNAME/RB_SINGLE. * * This pile of garbage below works around the following problem without * holding boots with no hand-over devices present, while penalising * boots where the first ehci probe hands off devices with a 5 second * delay, if RB_ASKNAME/RB_SINGLE is set. This is typically not a problem * for RB_SINGLE, but the same basic issue exists. * * The way ehci hand-off works, the companion controller does not get the * device until after its initial bus explore, so the reference dropped * after the first explore is not enough. 5 seconds should be enough, * and EHCI_DISOWN_DELAY_SECONDS can be set to another value. * * There are 3 states. CO_EARLY is set during attach. CO_SCHED is set * if the callback is scheduled. CO_DONE is set when the callout has * called config_pending_decr(). * * There's a mutex, a cv and a callout here, and we delay detach if the * callout has been set. */ #ifndef EHCI_DISOWN_DELAY_SECONDS #define EHCI_DISOWN_DELAY_SECONDS 5 #endif static int ehci_disown_delay_seconds = EHCI_DISOWN_DELAY_SECONDS; static void ehci_disown_callback(void *arg) { ehci_softc_t *sc = arg; config_pending_decr(sc->sc_dev); mutex_enter(&sc->sc_complock); KASSERT(sc->sc_comp_state == CO_SCHED); sc->sc_comp_state = CO_DONE; cv_signal(&sc->sc_compcv); mutex_exit(&sc->sc_complock); } static void ehci_disown_sched_callback(ehci_softc_t *sc) { extern bool root_is_mounted; mutex_enter(&sc->sc_complock); if (root_is_mounted || (boothowto & (RB_ASKNAME|RB_SINGLE)) == 0 || sc->sc_comp_state != CO_EARLY) { mutex_exit(&sc->sc_complock); return; } callout_reset(&sc->sc_compcallout, ehci_disown_delay_seconds * hz, ehci_disown_callback, &sc->sc_dev); sc->sc_comp_state = CO_SCHED; mutex_exit(&sc->sc_complock); config_pending_incr(sc->sc_dev); aprint_normal_dev(sc->sc_dev, "delaying %s by %u seconds due to USB owner change.\n", (boothowto & RB_ASKNAME) != 0 ? "ask root" : "single user", ehci_disown_delay_seconds); } Static void ehci_disown(ehci_softc_t *sc, int index, int lowspeed) { int port; uint32_t v; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("index=%jd lowspeed=%jd", index, lowspeed, 0, 0); if (sc->sc_npcomp != 0) { int i = (index-1) / sc->sc_npcomp; if (i < sc->sc_ncomp) { ehci_disown_sched_callback(sc); #ifdef DIAGNOSTIC printf("%s: handing over %s speed device on " "port %d to %s\n", device_xname(sc->sc_dev), lowspeed ? "low" : "full", index, sc->sc_comps[i] ? device_xname(sc->sc_comps[i]) : "companion controller"); } else { printf("%s: strange port\n", device_xname(sc->sc_dev)); #endif } } else { #ifdef DIAGNOSTIC printf("%s: npcomp == 0\n", device_xname(sc->sc_dev)); #endif } port = EHCI_PORTSC(index); v = EOREAD4(sc, port) &~ EHCI_PS_CLEAR; EOWRITE4(sc, port, v | EHCI_PS_PO); } Static usbd_status ehci_root_intr_transfer(struct usbd_xfer *xfer) { /* Pipe isn't running, start first */ return ehci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); } Static usbd_status ehci_root_intr_start(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (sc->sc_dying) return USBD_IOERROR; KASSERT(sc->sc_intrxfer == NULL); sc->sc_intrxfer = xfer; xfer->ux_status = USBD_IN_PROGRESS; return USBD_IN_PROGRESS; } /* Abort a root interrupt request. */ Static void ehci_root_intr_abort(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); KASSERT(mutex_owned(&sc->sc_lock)); KASSERT(xfer->ux_pipe->up_intrxfer == xfer); /* If xfer has already completed, nothing to do here. */ if (sc->sc_intrxfer == NULL) return; /* * Otherwise, sc->sc_intrxfer had better be this transfer. * Cancel it. */ KASSERT(sc->sc_intrxfer == xfer); KASSERT(xfer->ux_status == USBD_IN_PROGRESS); xfer->ux_status = USBD_CANCELLED; usb_transfer_complete(xfer); } /* Close the root pipe. */ Static void ehci_root_intr_close(struct usbd_pipe *pipe) { ehci_softc_t *sc __diagused = EHCI_PIPE2SC(pipe); EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_lock)); /* * Caller must guarantee the xfer has completed first, by * closing the pipe only after normal completion or an abort. */ KASSERT(sc->sc_intrxfer == NULL); } Static void ehci_root_intr_done(struct usbd_xfer *xfer) { struct ehci_softc *sc = EHCI_XFER2SC(xfer); KASSERT(mutex_owned(&sc->sc_lock)); /* Claim the xfer so it doesn't get completed again. */ KASSERT(sc->sc_intrxfer == xfer); KASSERT(xfer->ux_status != USBD_IN_PROGRESS); sc->sc_intrxfer = NULL; } /************************/ Static ehci_soft_qh_t * ehci_alloc_sqh(ehci_softc_t *sc) { ehci_soft_qh_t *sqh; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); if (sc->sc_freeqhs == NULL) { DPRINTF("allocating chunk", 0, 0, 0, 0); mutex_exit(&sc->sc_lock); usb_dma_t dma; int err = usb_allocmem(sc->sc_dmatag, EHCI_SQH_SIZE * EHCI_SQH_CHUNK, EHCI_PAGE_SIZE, USBMALLOC_COHERENT, &dma); if (err) { DPRINTF("alloc returned %jd", err, 0, 0, 0); return NULL; } mutex_enter(&sc->sc_lock); for (size_t i = 0; i < EHCI_SQH_CHUNK; i++) { const int offs = i * EHCI_SQH_SIZE; const bus_addr_t baddr = DMAADDR(&dma, offs); KASSERT(BUS_ADDR_HI32(baddr) == 0); sqh = KERNADDR(&dma, offs); sqh->physaddr = BUS_ADDR_LO32(baddr); sqh->dma = dma; sqh->offs = offs; sqh->next = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } } sqh = sc->sc_freeqhs; sc->sc_freeqhs = sqh->next; mutex_exit(&sc->sc_lock); memset(&sqh->qh, 0, sizeof(ehci_qh_t)); sqh->next = NULL; return sqh; } Static void ehci_free_sqh(ehci_softc_t *sc, ehci_soft_qh_t *sqh) { KASSERT(mutex_owned(&sc->sc_lock)); sqh->next = sc->sc_freeqhs; sc->sc_freeqhs = sqh; } Static ehci_soft_qtd_t * ehci_alloc_sqtd(ehci_softc_t *sc) { ehci_soft_qtd_t *sqtd = NULL; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); if (sc->sc_freeqtds == NULL) { DPRINTF("allocating chunk", 0, 0, 0, 0); mutex_exit(&sc->sc_lock); usb_dma_t dma; int err = usb_allocmem(sc->sc_dmatag, EHCI_SQTD_SIZE * EHCI_SQTD_CHUNK, EHCI_PAGE_SIZE, USBMALLOC_COHERENT, &dma); if (err) { DPRINTF("alloc returned %jd", err, 0, 0, 0); return NULL; } mutex_enter(&sc->sc_lock); for (size_t i = 0; i < EHCI_SQTD_CHUNK; i++) { const int offs = i * EHCI_SQTD_SIZE; const bus_addr_t baddr = DMAADDR(&dma, offs); KASSERT(BUS_ADDR_HI32(baddr) == 0); sqtd = KERNADDR(&dma, offs); sqtd->physaddr = BUS_ADDR_LO32(baddr); sqtd->dma = dma; sqtd->offs = offs; sqtd->nextqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd; } } sqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd->nextqtd; mutex_exit(&sc->sc_lock); memset(&sqtd->qtd, 0, sizeof(ehci_qtd_t)); sqtd->nextqtd = NULL; sqtd->xfer = NULL; return sqtd; } Static void ehci_free_sqtd(ehci_softc_t *sc, ehci_soft_qtd_t *sqtd) { mutex_enter(&sc->sc_lock); sqtd->nextqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd; mutex_exit(&sc->sc_lock); } Static int ehci_alloc_sqtd_chain(ehci_softc_t *sc, struct usbd_xfer *xfer, int alen, int rd, ehci_soft_qtd_t **sp) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); uint16_t flags = xfer->ux_flags; EHCIHIST_FUNC(); EHCIHIST_CALLED(); ASSERT_SLEEPABLE(); KASSERT(sp); KASSERT(alen != 0 || (!rd && (flags & USBD_FORCE_SHORT_XFER))); size_t nsqtd = (!rd && (flags & USBD_FORCE_SHORT_XFER)) ? 1 : 0; nsqtd += howmany(alen, EHCI_PAGE_SIZE); exfer->ex_sqtds = kmem_zalloc(sizeof(ehci_soft_qtd_t *) * nsqtd, KM_SLEEP); exfer->ex_nsqtd = nsqtd; DPRINTF("xfer %#jx len %jd nsqtd %jd flags %jx", (uintptr_t)xfer, alen, nsqtd, flags); for (size_t j = 0; j < exfer->ex_nsqtd;) { ehci_soft_qtd_t *cur = ehci_alloc_sqtd(sc); if (cur == NULL) goto nomem; exfer->ex_sqtds[j++] = cur; cur->xfer = xfer; cur->len = 0; } *sp = exfer->ex_sqtds[0]; DPRINTF("return sqtd=%#jx", (uintptr_t)*sp, 0, 0, 0); return 0; nomem: ehci_free_sqtds(sc, exfer); kmem_free(exfer->ex_sqtds, sizeof(ehci_soft_qtd_t *) * nsqtd); DPRINTF("no memory", 0, 0, 0, 0); return ENOMEM; } Static void ehci_free_sqtds(ehci_softc_t *sc, struct ehci_xfer *exfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("exfer=%#jx", (uintptr_t)exfer, 0, 0, 0); mutex_enter(&sc->sc_lock); for (size_t i = 0; i < exfer->ex_nsqtd; i++) { ehci_soft_qtd_t *sqtd = exfer->ex_sqtds[i]; if (sqtd == NULL) break; sqtd->nextqtd = sc->sc_freeqtds; sc->sc_freeqtds = sqtd; } mutex_exit(&sc->sc_lock); } Static void ehci_append_sqtd(ehci_soft_qtd_t *sqtd, ehci_soft_qtd_t *prev) { if (prev) { prev->nextqtd = sqtd; prev->qtd.qtd_next = htole32(sqtd->physaddr); prev->qtd.qtd_altnext = prev->qtd.qtd_next; usb_syncmem(&prev->dma, prev->offs, sizeof(prev->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } } Static void ehci_reset_sqtd_chain(ehci_softc_t *sc, struct usbd_xfer *xfer, int length, int isread, int *toggle, ehci_soft_qtd_t **lsqtd) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); usb_dma_t *dma = &xfer->ux_dmabuf; uint16_t flags = xfer->ux_flags; ehci_soft_qtd_t *sqtd, *prev; int tog = *toggle; int mps = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize); int len = length; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx len %jd isread %jd toggle %jd", (uintptr_t)xfer, len, isread, tog); DPRINTF(" VA %#jx", (uintptr_t)KERNADDR(&xfer->ux_dmabuf, 0), 0, 0, 0); KASSERT(length != 0 || (!isread && (flags & USBD_FORCE_SHORT_XFER))); const uint32_t qtdstatus = EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(isread ? EHCI_QTD_PID_IN : EHCI_QTD_PID_OUT) | EHCI_QTD_SET_CERR(3) ; sqtd = prev = NULL; size_t curoffs = 0; size_t j = 0; for (; len != 0 && j < exfer->ex_nsqtd; prev = sqtd) { sqtd = exfer->ex_sqtds[j++]; DPRINTF("sqtd[%jd]=%#jx prev %#jx", j, (uintptr_t)sqtd, (uintptr_t)prev, 0); /* * The EHCI hardware can handle at most 5 pages and they do * not have to be contiguous */ vaddr_t va = (vaddr_t)KERNADDR(dma, curoffs); vaddr_t va_offs = EHCI_PAGE_OFFSET(va); size_t curlen = len; if (curlen >= EHCI_QTD_MAXTRANSFER - va_offs) { /* must use multiple TDs, fill as much as possible. */ curlen = EHCI_QTD_MAXTRANSFER - va_offs; /* the length must be a multiple of the max size */ curlen -= curlen % mps; } KASSERT(curlen != 0); DPRINTF(" len=%jd curlen=%jd curoffs=%ju", len, curlen, curoffs, 0); /* Fill the qTD */ sqtd->qtd.qtd_next = sqtd->qtd.qtd_altnext = EHCI_NULL; sqtd->qtd.qtd_status = htole32( qtdstatus | EHCI_QTD_SET_BYTES(curlen) | EHCI_QTD_SET_TOGGLE(tog)); /* Find number of pages we'll be using, insert dma addresses */ size_t pages = EHCI_NPAGES(curlen); KASSERT(pages <= EHCI_QTD_NBUFFERS); size_t pageoffs = EHCI_PAGE(curoffs); for (size_t i = 0; i < pages; i++) { paddr_t a = EHCI_PAGE(DMAADDR(dma, pageoffs + i * EHCI_PAGE_SIZE)); sqtd->qtd.qtd_buffer[i] = htole32(BUS_ADDR_LO32(a)); sqtd->qtd.qtd_buffer_hi[i] = htole32(BUS_ADDR_HI32(a)); DPRINTF(" buffer[%jd/%jd] 0x%08jx 0x%08jx", i, pages, le32toh(sqtd->qtd.qtd_buffer_hi[i]), le32toh(sqtd->qtd.qtd_buffer[i])); } /* First buffer pointer requires a page offset to start at */ sqtd->qtd.qtd_buffer[0] |= htole32(va_offs); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sqtd->len = curlen; DPRINTF(" va %#jx pa %#jx len %jd", (uintptr_t)va, (uintptr_t)DMAADDR(&xfer->ux_dmabuf, curoffs), curlen, 0); ehci_append_sqtd(sqtd, prev); if (howmany(curlen, mps) & 1) { tog ^= 1; } curoffs += curlen; len -= curlen; } KASSERTMSG(len == 0, "xfer %p olen %d len %d mps %d ex_nsqtd %zu j %zu", xfer, length, len, mps, exfer->ex_nsqtd, j); if (!isread && (flags & USBD_FORCE_SHORT_XFER) && length % mps == 0) { /* Force a 0 length transfer at the end. */ KASSERTMSG(j < exfer->ex_nsqtd, "j=%zu nsqtd=%zu", j, exfer->ex_nsqtd); prev = sqtd; sqtd = exfer->ex_sqtds[j++]; memset(&sqtd->qtd, 0, sizeof(sqtd->qtd)); sqtd->qtd.qtd_next = sqtd->qtd.qtd_altnext = EHCI_NULL; sqtd->qtd.qtd_status = htole32( qtdstatus | EHCI_QTD_SET_BYTES(0) | EHCI_QTD_SET_TOGGLE(tog)); usb_syncmem(&sqtd->dma, sqtd->offs, sizeof(sqtd->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); ehci_append_sqtd(sqtd, prev); tog ^= 1; } *lsqtd = sqtd; *toggle = tog; } Static ehci_soft_itd_t * ehci_alloc_itd(ehci_softc_t *sc) { struct ehci_soft_itd *itd, *freeitd; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); freeitd = LIST_FIRST(&sc->sc_freeitds); if (freeitd == NULL) { DPRINTF("allocating chunk", 0, 0, 0, 0); mutex_exit(&sc->sc_lock); usb_dma_t dma; int err = usb_allocmem(sc->sc_dmatag, EHCI_ITD_SIZE * EHCI_ITD_CHUNK, EHCI_PAGE_SIZE, USBMALLOC_COHERENT, &dma); if (err) { DPRINTF("alloc returned %jd", err, 0, 0, 0); return NULL; } mutex_enter(&sc->sc_lock); for (size_t i = 0; i < EHCI_ITD_CHUNK; i++) { const int offs = i * EHCI_ITD_SIZE; const bus_addr_t baddr = DMAADDR(&dma, offs); KASSERT(BUS_ADDR_HI32(baddr) == 0); itd = KERNADDR(&dma, offs); itd->physaddr = BUS_ADDR_LO32(baddr); itd->dma = dma; itd->offs = offs; LIST_INSERT_HEAD(&sc->sc_freeitds, itd, free_list); } freeitd = LIST_FIRST(&sc->sc_freeitds); } itd = freeitd; LIST_REMOVE(itd, free_list); mutex_exit(&sc->sc_lock); memset(&itd->itd, 0, sizeof(ehci_itd_t)); itd->frame_list.next = NULL; itd->frame_list.prev = NULL; itd->xfer_next = NULL; itd->slot = 0; return itd; } Static ehci_soft_sitd_t * ehci_alloc_sitd(ehci_softc_t *sc) { struct ehci_soft_sitd *sitd, *freesitd; EHCIHIST_FUNC(); EHCIHIST_CALLED(); mutex_enter(&sc->sc_lock); freesitd = LIST_FIRST(&sc->sc_freesitds); if (freesitd == NULL) { DPRINTF("allocating chunk", 0, 0, 0, 0); mutex_exit(&sc->sc_lock); usb_dma_t dma; int err = usb_allocmem(sc->sc_dmatag, EHCI_SITD_SIZE * EHCI_SITD_CHUNK, EHCI_PAGE_SIZE, USBMALLOC_COHERENT, &dma); if (err) { DPRINTF("alloc returned %jd", err, 0, 0, 0); return NULL; } mutex_enter(&sc->sc_lock); for (size_t i = 0; i < EHCI_SITD_CHUNK; i++) { const int offs = i * EHCI_SITD_SIZE; const bus_addr_t baddr = DMAADDR(&dma, offs); KASSERT(BUS_ADDR_HI32(baddr) == 0); sitd = KERNADDR(&dma, offs); sitd->physaddr = BUS_ADDR_LO32(baddr); sitd->dma = dma; sitd->offs = offs; LIST_INSERT_HEAD(&sc->sc_freesitds, sitd, free_list); } freesitd = LIST_FIRST(&sc->sc_freesitds); } sitd = freesitd; LIST_REMOVE(sitd, free_list); mutex_exit(&sc->sc_lock); memset(&sitd->sitd, 0, sizeof(ehci_sitd_t)); sitd->frame_list.next = NULL; sitd->frame_list.prev = NULL; sitd->xfer_next = NULL; sitd->slot = 0; return sitd; } /****************/ /* * Close a reqular pipe. * Assumes that there are no pending transactions. */ Static void ehci_close_pipe(struct usbd_pipe *pipe, ehci_soft_qh_t *head) { struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(pipe); ehci_softc_t *sc = EHCI_PIPE2SC(pipe); ehci_soft_qh_t *sqh = epipe->sqh; KASSERT(mutex_owned(&sc->sc_lock)); ehci_rem_qh(sc, sqh, head); ehci_free_sqh(sc, epipe->sqh); } /* * Arrange for the hardware to tells us that it is not still * processing the TDs by setting the QH halted bit and wait for the ehci * door bell */ Static void ehci_abortx(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); ehci_soft_qh_t *sqh = epipe->sqh; ehci_soft_qtd_t *sqtd, *fsqtd, *lsqtd; ehci_physaddr_t cur; uint32_t qhstatus; int hit; DPRINTF("xfer=%#jx pipe=%#jx", (uintptr_t)xfer, (uintptr_t)epipe, 0, 0); KASSERT(mutex_owned(&sc->sc_lock)); ASSERT_SLEEPABLE(); KASSERTMSG((xfer->ux_status == USBD_CANCELLED || xfer->ux_status == USBD_TIMEOUT), "bad abort status: %d", xfer->ux_status); /* * If we're dying, skip the hardware action and just notify the * software that we're done. */ if (sc->sc_dying) { goto dying; } /* * HC Step 1: Make interrupt routine and hardware ignore xfer. */ ehci_del_intr_list(sc, exfer); usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); qhstatus = sqh->qh.qh_qtd.qtd_status; sqh->qh.qh_qtd.qtd_status = qhstatus | htole32(EHCI_QTD_HALTED); usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (exfer->ex_type == EX_CTRL) { fsqtd = exfer->ex_setup; lsqtd = exfer->ex_status; } else { fsqtd = exfer->ex_sqtdstart; lsqtd = exfer->ex_sqtdend; } for (sqtd = fsqtd; ; sqtd = sqtd->nextqtd) { usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); sqtd->qtd.qtd_status |= htole32(EHCI_QTD_HALTED); usb_syncmem(&sqtd->dma, sqtd->offs + offsetof(ehci_qtd_t, qtd_status), sizeof(sqtd->qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (sqtd == lsqtd) break; } /* * HC Step 2: Wait until we know hardware has finished any possible * use of the xfer. */ ehci_sync_hc(sc); /* * HC Step 3: Remove any vestiges of the xfer from the hardware. * The complication here is that the hardware may have executed * beyond the xfer we're trying to abort. So as we're scanning * the TDs of this xfer we check if the hardware points to * any of them. */ usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_curqtd), sizeof(sqh->qh.qh_curqtd), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); cur = EHCI_LINK_ADDR(le32toh(sqh->qh.qh_curqtd)); hit = 0; for (sqtd = fsqtd; ; sqtd = sqtd->nextqtd) { hit |= cur == sqtd->physaddr; if (sqtd == lsqtd) break; } sqtd = sqtd->nextqtd; /* Zap curqtd register if hardware pointed inside the xfer. */ if (hit && sqtd != NULL) { DPRINTF("cur=0x%08jx", sqtd->physaddr, 0, 0, 0); sqh->qh.qh_curqtd = htole32(sqtd->physaddr); /* unlink qTDs */ usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_curqtd), sizeof(sqh->qh.qh_curqtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sqh->qh.qh_qtd.qtd_status = qhstatus; usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_qtd.qtd_status), sizeof(sqh->qh.qh_qtd.qtd_status), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } else { DPRINTF("no hit", 0, 0, 0, 0); usb_syncmem(&sqh->dma, sqh->offs + offsetof(ehci_qh_t, qh_curqtd), sizeof(sqh->qh.qh_curqtd), BUS_DMASYNC_PREREAD); } dying: #ifdef DIAGNOSTIC exfer->ex_isdone = true; #endif DPRINTFN(14, "end", 0, 0, 0, 0); KASSERT(mutex_owned(&sc->sc_lock)); } Static void ehci_abort_isoc_xfer(struct usbd_xfer *xfer, usbd_status status) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); ehci_isoc_trans_t trans_status; struct ehci_xfer *exfer; ehci_softc_t *sc; struct ehci_soft_itd *itd; struct ehci_soft_sitd *sitd; int i; KASSERTMSG(status == USBD_CANCELLED, "invalid status for abort: %d", (int)status); exfer = EHCI_XFER2EXFER(xfer); sc = EHCI_XFER2SC(xfer); DPRINTF("xfer %#jx pipe %#jx", (uintptr_t)xfer, (uintptr_t)xfer->ux_pipe, 0, 0); KASSERT(mutex_owned(&sc->sc_lock)); ASSERT_SLEEPABLE(); /* No timeout or task here. */ /* * The xfer cannot have been cancelled already. It is the * responsibility of the caller of usbd_abort_pipe not to try * to abort a pipe multiple times, whether concurrently or * sequentially. */ KASSERT(xfer->ux_status != USBD_CANCELLED); /* If anyone else beat us, we're done. */ if (xfer->ux_status != USBD_IN_PROGRESS) return; /* We beat everyone else. Claim the status. */ xfer->ux_status = status; /* * If we're dying, skip the hardware action and just notify the * software that we're done. */ if (sc->sc_dying) { goto dying; } /* * HC Step 1: Make interrupt routine and hardware ignore xfer. */ ehci_del_intr_list(sc, exfer); if (xfer->ux_pipe->up_dev->ud_speed == USB_SPEED_HIGH) { for (itd = exfer->ex_itdstart; itd != NULL; itd = itd->xfer_next) { usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); for (i = 0; i < 8; i++) { trans_status = le32toh(itd->itd.itd_ctl[i]); trans_status &= ~EHCI_ITD_ACTIVE; itd->itd.itd_ctl[i] = htole32(trans_status); } usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_ctl), sizeof(itd->itd.itd_ctl), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } } else { for (sitd = exfer->ex_sitdstart; sitd != NULL; sitd = sitd->xfer_next) { usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_buffer), sizeof(sitd->sitd.sitd_buffer), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); trans_status = le32toh(sitd->sitd.sitd_trans); trans_status &= ~EHCI_SITD_ACTIVE; sitd->sitd.sitd_trans = htole32(trans_status); usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_buffer), sizeof(sitd->sitd.sitd_buffer), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } } dying: #ifdef DIAGNOSTIC exfer->ex_isdone = true; #endif usb_transfer_complete(xfer); DPRINTFN(14, "end", 0, 0, 0, 0); KASSERT(mutex_owned(&sc->sc_lock)); } /************************/ Static int ehci_device_ctrl_init(struct usbd_xfer *xfer) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); usb_device_request_t *req = &xfer->ux_request; ehci_soft_qtd_t *setup, *status, *next; int isread = req->bmRequestType & UT_READ; int len = xfer->ux_bufsize; int err; exfer->ex_type = EX_CTRL; exfer->ex_status = NULL; exfer->ex_data = NULL; exfer->ex_setup = ehci_alloc_sqtd(sc); if (exfer->ex_setup == NULL) { err = ENOMEM; goto bad1; } exfer->ex_status = ehci_alloc_sqtd(sc); if (exfer->ex_status == NULL) { err = ENOMEM; goto bad2; } setup = exfer->ex_setup; status = exfer->ex_status; exfer->ex_nsqtd = 0; next = status; /* Set up data transaction */ if (len != 0) { err = ehci_alloc_sqtd_chain(sc, xfer, len, isread, &exfer->ex_data); if (err) goto bad3; next = exfer->ex_data; } /* Clear toggle */ setup->qtd.qtd_status = htole32( EHCI_QTD_SET_PID(EHCI_QTD_PID_SETUP) | EHCI_QTD_SET_TOGGLE(0) | EHCI_QTD_SET_BYTES(sizeof(*req)) ); const bus_addr_t ba = DMAADDR(&epipe->ctrl.reqdma, 0); setup->qtd.qtd_buffer[0] = htole32(BUS_ADDR_LO32(ba)); setup->qtd.qtd_buffer_hi[0] = htole32(BUS_ADDR_HI32(ba)); setup->qtd.qtd_next = setup->qtd.qtd_altnext = htole32(next->physaddr); setup->nextqtd = next; setup->xfer = xfer; setup->len = sizeof(*req); status->qtd.qtd_status = htole32( EHCI_QTD_SET_PID(isread ? EHCI_QTD_PID_OUT : EHCI_QTD_PID_IN) | EHCI_QTD_SET_TOGGLE(1) | EHCI_QTD_IOC ); status->qtd.qtd_buffer[0] = 0; status->qtd.qtd_buffer_hi[0] = 0; status->qtd.qtd_next = status->qtd.qtd_altnext = EHCI_NULL; status->nextqtd = NULL; status->xfer = xfer; status->len = 0; return 0; bad3: ehci_free_sqtd(sc, exfer->ex_status); bad2: ehci_free_sqtd(sc, exfer->ex_setup); bad1: return err; } Static void ehci_device_ctrl_fini(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); KASSERT(ex->ex_type == EX_CTRL); ehci_free_sqtd(sc, ex->ex_setup); ehci_free_sqtd(sc, ex->ex_status); ehci_free_sqtds(sc, ex); if (ex->ex_nsqtd) kmem_free(ex->ex_sqtds, sizeof(ehci_soft_qtd_t *) * ex->ex_nsqtd); } Static usbd_status ehci_device_ctrl_transfer(struct usbd_xfer *xfer) { /* Pipe isn't running, start first */ return ehci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); } Static usbd_status ehci_device_ctrl_start(struct usbd_xfer *xfer) { struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); usb_device_request_t *req = &xfer->ux_request; ehci_softc_t *sc = EHCI_XFER2SC(xfer); ehci_soft_qtd_t *setup, *status, *next; ehci_soft_qh_t *sqh; EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); KASSERT(xfer->ux_rqflags & URQ_REQUEST); if (sc->sc_dying) return USBD_IOERROR; const int isread = req->bmRequestType & UT_READ; const int len = UGETW(req->wLength); DPRINTF("type=0x%02jx, request=0x%02jx, wValue=0x%04jx, wIndex=0x%04jx", req->bmRequestType, req->bRequest, UGETW(req->wValue), UGETW(req->wIndex)); DPRINTF("len=%jd, addr=%jd, endpt=%jd", len, epipe->pipe.up_dev->ud_addr, epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress, 0); sqh = epipe->sqh; KASSERTMSG(EHCI_QH_GET_ADDR(le32toh(sqh->qh.qh_endp)) == epipe->pipe.up_dev->ud_addr, "address QH %" __PRIuBIT " pipe %d\n", EHCI_QH_GET_ADDR(le32toh(sqh->qh.qh_endp)), epipe->pipe.up_dev->ud_addr); KASSERTMSG(EHCI_QH_GET_MPL(le32toh(sqh->qh.qh_endp)) == UGETW(epipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize), "MPS QH %" __PRIuBIT " pipe %d\n", EHCI_QH_GET_MPL(le32toh(sqh->qh.qh_endp)), UGETW(epipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize)); setup = exfer->ex_setup; status = exfer->ex_status; DPRINTF("setup %#jx status %#jx data %#jx", (uintptr_t)setup, (uintptr_t)status, (uintptr_t)exfer->ex_data, 0); KASSERTMSG(setup != NULL && status != NULL, "Failed memory allocation, setup %p status %p", setup, status); memcpy(KERNADDR(&epipe->ctrl.reqdma, 0), req, sizeof(*req)); usb_syncmem(&epipe->ctrl.reqdma, 0, sizeof(*req), BUS_DMASYNC_PREWRITE); /* Clear toggle */ setup->qtd.qtd_status &= ~htole32( EHCI_QTD_STATUS_MASK | EHCI_QTD_BYTES_MASK | EHCI_QTD_TOGGLE_MASK | EHCI_QTD_CERR_MASK ); setup->qtd.qtd_status |= htole32( EHCI_QTD_ACTIVE | EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(0) | EHCI_QTD_SET_BYTES(sizeof(*req)) ); const bus_addr_t ba = DMAADDR(&epipe->ctrl.reqdma, 0); setup->qtd.qtd_buffer[0] = htole32(BUS_ADDR_LO32(ba)); setup->qtd.qtd_buffer_hi[0] = htole32(BUS_ADDR_HI32(ba)); next = status; status->qtd.qtd_status &= ~htole32( EHCI_QTD_STATUS_MASK | EHCI_QTD_PID_MASK | EHCI_QTD_BYTES_MASK | EHCI_QTD_TOGGLE_MASK | EHCI_QTD_CERR_MASK ); status->qtd.qtd_status |= htole32( EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(isread ? EHCI_QTD_PID_OUT : EHCI_QTD_PID_IN) | EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(1) | EHCI_QTD_SET_BYTES(0) | EHCI_QTD_IOC ); KASSERT(status->qtd.qtd_status & htole32(EHCI_QTD_TOGGLE_MASK)); KASSERT(exfer->ex_isdone); #ifdef DIAGNOSTIC exfer->ex_isdone = false; #endif /* Set up data transaction */ if (len != 0) { ehci_soft_qtd_t *end; /* Start toggle at 1. */ int toggle = 1; next = exfer->ex_data; KASSERTMSG(next != NULL, "Failed memory allocation"); ehci_reset_sqtd_chain(sc, xfer, len, isread, &toggle, &end); end->nextqtd = status; end->qtd.qtd_next = end->qtd.qtd_altnext = htole32(status->physaddr); usb_syncmem(&end->dma, end->offs, sizeof(end->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); usb_syncmem(&xfer->ux_dmabuf, 0, len, isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); } setup->nextqtd = next; setup->qtd.qtd_next = setup->qtd.qtd_altnext = htole32(next->physaddr); usb_syncmem(&setup->dma, setup->offs, sizeof(setup->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); usb_syncmem(&status->dma, status->offs, sizeof(status->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); KASSERT(status->qtd.qtd_status & htole32(EHCI_QTD_TOGGLE_MASK)); #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(sqh); ehci_dump_sqtds(setup); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif /* Insert qTD in QH list - also does usb_syncmem(sqh) */ ehci_set_qh_qtd(sqh, setup); usbd_xfer_schedule_timeout(xfer); ehci_add_intr_list(sc, exfer); xfer->ux_status = USBD_IN_PROGRESS; #if 0 #ifdef EHCI_DEBUG DPRINTFN(10, "status=%jx, dump:", EOREAD4(sc, EHCI_USBSTS), 0, 0, 0); // delay(10000); ehci_dump_regs(sc); ehci_dump_sqh(sc->sc_async_head); ehci_dump_sqh(sqh); ehci_dump_sqtds(setup); #endif #endif return USBD_IN_PROGRESS; } Static void ehci_device_ctrl_done(struct usbd_xfer *xfer) { ehci_softc_t *sc __diagused = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); usb_device_request_t *req = &xfer->ux_request; int len = UGETW(req->wLength); int rd = req->bmRequestType & UT_READ; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx", (uintptr_t)xfer, 0, 0, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); KASSERT(xfer->ux_rqflags & URQ_REQUEST); usb_syncmem(&epipe->ctrl.reqdma, 0, sizeof(*req), BUS_DMASYNC_POSTWRITE); if (len) usb_syncmem(&xfer->ux_dmabuf, 0, len, rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); DPRINTF("length=%jd", xfer->ux_actlen, 0, 0, 0); } /* Abort a device control request. */ Static void ehci_device_ctrl_abort(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx", (uintptr_t)xfer, 0, 0, 0); usbd_xfer_abort(xfer); } /* Close a device control pipe. */ Static void ehci_device_ctrl_close(struct usbd_pipe *pipe) { ehci_softc_t *sc = EHCI_PIPE2SC(pipe); struct ehci_pipe * const epipe = EHCI_PIPE2EPIPE(pipe); EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_lock)); DPRINTF("pipe=%#jx", (uintptr_t)pipe, 0, 0, 0); ehci_close_pipe(pipe, sc->sc_async_head); usb_freemem(&epipe->ctrl.reqdma); } /* * Some EHCI chips from VIA seem to trigger interrupts before writing back the * qTD status, or miss signalling occasionally under heavy load. If the host * machine is too fast, we can miss transaction completion - when we scan * the active list the transaction still seems to be active. This generally * exhibits itself as a umass stall that never recovers. * * We work around this behaviour by setting up this callback after any softintr * that completes with transactions still pending, giving us another chance to * check for completion after the writeback has taken place. */ Static void ehci_intrlist_timeout(void *arg) { ehci_softc_t *sc = arg; EHCIHIST_FUNC(); EHCIHIST_CALLED(); usb_schedsoftintr(&sc->sc_bus); } /************************/ Static int ehci_device_bulk_init(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc; int endpt = ed->bEndpointAddress; int isread = UE_GET_DIR(endpt) == UE_DIR_IN; int len = xfer->ux_bufsize; int err = 0; exfer->ex_type = EX_BULK; exfer->ex_nsqtd = 0; err = ehci_alloc_sqtd_chain(sc, xfer, len, isread, &exfer->ex_sqtdstart); return err; } Static void ehci_device_bulk_fini(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); KASSERT(ex->ex_type == EX_BULK); ehci_free_sqtds(sc, ex); if (ex->ex_nsqtd) kmem_free(ex->ex_sqtds, sizeof(ehci_soft_qtd_t *) * ex->ex_nsqtd); } Static usbd_status ehci_device_bulk_transfer(struct usbd_xfer *xfer) { /* Pipe isn't running, start first */ return ehci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); } Static usbd_status ehci_device_bulk_start(struct usbd_xfer *xfer) { struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); ehci_soft_qh_t *sqh; ehci_soft_qtd_t *end; int len, isread, endpt; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, xfer->ux_length, xfer->ux_flags, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (sc->sc_dying) return USBD_IOERROR; KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(xfer->ux_length <= xfer->ux_bufsize); len = xfer->ux_length; endpt = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; isread = UE_GET_DIR(endpt) == UE_DIR_IN; sqh = epipe->sqh; KASSERT(exfer->ex_isdone); #ifdef DIAGNOSTIC exfer->ex_isdone = false; #endif ehci_reset_sqtd_chain(sc, xfer, len, isread, &epipe->nexttoggle, &end); exfer->ex_sqtdend = end; end->qtd.qtd_status |= htole32(EHCI_QTD_IOC); usb_syncmem(&end->dma, end->offs, sizeof(end->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(sqh); ehci_dump_sqtds(exfer->ex_sqtdstart); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif if (xfer->ux_length) usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); /* also does usb_syncmem(sqh) */ ehci_set_qh_qtd(sqh, exfer->ex_sqtdstart); usbd_xfer_schedule_timeout(xfer); ehci_add_intr_list(sc, exfer); xfer->ux_status = USBD_IN_PROGRESS; #if 0 #ifdef EHCI_DEBUG DPRINTFN(5, "data(2)", 0, 0, 0, 0); // delay(10000); DPRINTFN(5, "data(3)", 0, 0, 0, 0); ehci_dump_regs(sc); #if 0 printf("async_head:\n"); ehci_dump_sqh(sc->sc_async_head); #endif DPRINTF("sqh:", 0, 0, 0, 0); ehci_dump_sqh(sqh); ehci_dump_sqtds(exfer->ex_sqtdstart); #endif #endif return USBD_IN_PROGRESS; } Static void ehci_device_bulk_abort(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer %#jx", (uintptr_t)xfer, 0, 0, 0); usbd_xfer_abort(xfer); } /* * Close a device bulk pipe. */ Static void ehci_device_bulk_close(struct usbd_pipe *pipe) { ehci_softc_t *sc = EHCI_PIPE2SC(pipe); struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(pipe); EHCIHIST_FUNC(); EHCIHIST_CALLED(); KASSERT(mutex_owned(&sc->sc_lock)); DPRINTF("pipe=%#jx", (uintptr_t)pipe, 0, 0, 0); pipe->up_endpoint->ue_toggle = epipe->nexttoggle; ehci_close_pipe(pipe, sc->sc_async_head); } Static void ehci_device_bulk_done(struct usbd_xfer *xfer) { ehci_softc_t *sc __diagused = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); int endpt = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; int rd = UE_GET_DIR(endpt) == UE_DIR_IN; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx, actlen=%jd", (uintptr_t)xfer, xfer->ux_actlen, 0, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (xfer->ux_length) usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); DPRINTF("length=%jd", xfer->ux_actlen, 0, 0, 0); } /************************/ Static usbd_status ehci_device_setintr(ehci_softc_t *sc, ehci_soft_qh_t *sqh, int ival) { struct ehci_soft_islot *isp; int islot, lev; /* Find a poll rate that is large enough. */ for (lev = EHCI_IPOLLRATES - 1; lev > 0; lev--) if (EHCI_ILEV_IVAL(lev) <= ival) break; /* Pick an interrupt slot at the right level. */ /* XXX could do better than picking at random */ sc->sc_rand = (sc->sc_rand + 191) % sc->sc_flsize; islot = EHCI_IQHIDX(lev, sc->sc_rand); sqh->islot = islot; isp = &sc->sc_islots[islot]; mutex_enter(&sc->sc_lock); ehci_add_qh(sc, sqh, isp->sqh); mutex_exit(&sc->sc_lock); return USBD_NORMAL_COMPLETION; } Static int ehci_device_intr_init(struct usbd_xfer *xfer) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc; int endpt = ed->bEndpointAddress; int isread = UE_GET_DIR(endpt) == UE_DIR_IN; int len = xfer->ux_bufsize; int err; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, xfer->ux_length, xfer->ux_flags, 0); KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(len != 0); exfer->ex_type = EX_INTR; exfer->ex_nsqtd = 0; err = ehci_alloc_sqtd_chain(sc, xfer, len, isread, &exfer->ex_sqtdstart); return err; } Static void ehci_device_intr_fini(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); KASSERT(ex->ex_type == EX_INTR); ehci_free_sqtds(sc, ex); if (ex->ex_nsqtd) kmem_free(ex->ex_sqtds, sizeof(ehci_soft_qtd_t *) * ex->ex_nsqtd); } Static usbd_status ehci_device_intr_transfer(struct usbd_xfer *xfer) { /* Pipe isn't running, so start it first. */ return ehci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue)); } Static usbd_status ehci_device_intr_start(struct usbd_xfer *xfer) { struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); ehci_soft_qtd_t *end; ehci_soft_qh_t *sqh; int len, isread, endpt; EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, xfer->ux_length, xfer->ux_flags, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (sc->sc_dying) return USBD_IOERROR; KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(xfer->ux_length <= xfer->ux_bufsize); len = xfer->ux_length; endpt = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; isread = UE_GET_DIR(endpt) == UE_DIR_IN; sqh = epipe->sqh; KASSERT(exfer->ex_isdone); #ifdef DIAGNOSTIC exfer->ex_isdone = false; #endif ehci_reset_sqtd_chain(sc, xfer, len, isread, &epipe->nexttoggle, &end); end->qtd.qtd_status |= htole32(EHCI_QTD_IOC); usb_syncmem(&end->dma, end->offs, sizeof(end->qtd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); exfer->ex_sqtdend = end; #ifdef EHCI_DEBUG DPRINTFN(5, "--- dump start ---", 0, 0, 0, 0); ehci_dump_sqh(sqh); ehci_dump_sqtds(exfer->ex_sqtdstart); DPRINTFN(5, "--- dump end ---", 0, 0, 0, 0); #endif if (xfer->ux_length) usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); /* also does usb_syncmem(sqh) */ ehci_set_qh_qtd(sqh, exfer->ex_sqtdstart); usbd_xfer_schedule_timeout(xfer); ehci_add_intr_list(sc, exfer); xfer->ux_status = USBD_IN_PROGRESS; #if 0 #ifdef EHCI_DEBUG DPRINTFN(5, "data(2)", 0, 0, 0, 0); // delay(10000); DPRINTFN(5, "data(3)", 0, 0, 0, 0); ehci_dump_regs(sc); DPRINTFN(5, "sqh:", 0, 0, 0, 0); ehci_dump_sqh(sqh); ehci_dump_sqtds(exfer->ex_sqtdstart); #endif #endif return USBD_IN_PROGRESS; } Static void ehci_device_intr_abort(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx", (uintptr_t)xfer, 0, 0, 0); /* * XXX - abort_xfer uses ehci_sync_hc, which syncs via the advance * async doorbell. That's dependent on the async list, wheras * intr xfers are periodic, should not use this? */ usbd_xfer_abort(xfer); } Static void ehci_device_intr_close(struct usbd_pipe *pipe) { ehci_softc_t *sc = EHCI_PIPE2SC(pipe); struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(pipe); struct ehci_soft_islot *isp; KASSERT(mutex_owned(&sc->sc_lock)); isp = &sc->sc_islots[epipe->sqh->islot]; ehci_close_pipe(pipe, isp->sqh); } Static void ehci_device_intr_done(struct usbd_xfer *xfer) { ehci_softc_t *sc __diagused = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer=%#jx, actlen=%jd", (uintptr_t)xfer, xfer->ux_actlen, 0, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (xfer->ux_length) { int isread, endpt; endpt = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; isread = UE_GET_DIR(endpt) == UE_DIR_IN; usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); } } /************************/ Static int ehci_device_fs_isoc_init(struct usbd_xfer *xfer) { struct ehci_pipe *epipe = EHCI_PIPE2EPIPE(xfer->ux_pipe); struct usbd_device *dev = xfer->ux_pipe->up_dev; ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_soft_sitd_t *sitd, *prev, *start, *stop; int i, k, frames; u_int huba, dir; int err; EHCIHIST_FUNC(); EHCIHIST_CALLED(); start = NULL; sitd = NULL; DPRINTF("xfer %#jx len %jd flags %jd", (uintptr_t)xfer, xfer->ux_length, xfer->ux_flags, 0); KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(xfer->ux_nframes != 0); KASSERT(exfer->ex_isdone); exfer->ex_type = EX_FS_ISOC; /* * Step 1: Allocate and initialize sitds. */ i = epipe->pipe.up_endpoint->ue_edesc->bInterval; if (i > 16 || i == 0) { /* Spec page 271 says intervals > 16 are invalid */ DPRINTF("bInterval %jd invalid", i, 0, 0, 0); return EINVAL; } frames = xfer->ux_nframes; for (i = 0, prev = NULL; i < frames; i++, prev = sitd) { sitd = ehci_alloc_sitd(sc); if (sitd == NULL) { err = ENOMEM; goto fail; } if (prev) prev->xfer_next = sitd; else start = sitd; huba = dev->ud_myhsport->up_parent->ud_addr; #if 0 if (sc->sc_flags & EHCIF_FREESCALE) { // Set hub address to 0 if embedded TT is used. if (huba == sc->sc_addr) huba = 0; } #endif k = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; dir = UE_GET_DIR(k) ? 1 : 0; sitd->sitd.sitd_endp = htole32(EHCI_SITD_SET_ENDPT(UE_GET_ADDR(k)) | EHCI_SITD_SET_DADDR(dev->ud_addr) | EHCI_SITD_SET_PORT(dev->ud_myhsport->up_portno) | EHCI_SITD_SET_HUBA(huba) | EHCI_SITD_SET_DIR(dir)); sitd->sitd.sitd_back = htole32(EHCI_LINK_TERMINATE); } /* End of frame */ sitd->sitd.sitd_trans |= htole32(EHCI_SITD_IOC); stop = sitd; stop->xfer_next = NULL; exfer->ex_sitdstart = start; exfer->ex_sitdend = stop; return 0; fail: mutex_enter(&sc->sc_lock); ehci_soft_sitd_t *next; for (sitd = start; sitd; sitd = next) { next = sitd->xfer_next; ehci_free_sitd_locked(sc, sitd); } mutex_exit(&sc->sc_lock); return err; } Static void ehci_device_fs_isoc_fini(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); KASSERT(ex->ex_type == EX_FS_ISOC); ehci_free_sitd_chain(sc, ex->ex_sitdstart); } Static usbd_status ehci_device_fs_isoc_transfer(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct usbd_device *dev = xfer->ux_pipe->up_dev; struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_soft_sitd_t *sitd; usb_dma_t *dma_buf; int i, j, k, frames; int offs; int frindex; u_int dir; EHCIHIST_FUNC(); EHCIHIST_CALLED(); sitd = NULL; DPRINTF("xfer %#jx len %jd flags %jd", (uintptr_t)xfer, xfer->ux_length, xfer->ux_flags, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (sc->sc_dying) return USBD_IOERROR; /* * To avoid complication, don't allow a request right now that'll span * the entire frame table. To within 4 frames, to allow some leeway * on either side of where the hc currently is. */ if (epipe->pipe.up_endpoint->ue_edesc->bInterval * xfer->ux_nframes >= sc->sc_flsize - 4) { printf("ehci: isoc descriptor requested that spans the entire" " frametable, too many frames\n"); return USBD_INVAL; } KASSERT(xfer->ux_nframes != 0 && xfer->ux_frlengths); KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(exfer->ex_isdone); #ifdef DIAGNOSTIC exfer->ex_isdone = false; #endif /* * Step 1: Initialize sitds. */ frames = xfer->ux_nframes; dma_buf = &xfer->ux_dmabuf; offs = 0; for (sitd = exfer->ex_sitdstart, i = 0; i < frames; i++, sitd = sitd->xfer_next) { KASSERT(sitd != NULL); KASSERT(xfer->ux_frlengths[i] <= 0x3ff); sitd->sitd.sitd_trans = htole32(EHCI_SITD_ACTIVE | EHCI_SITD_SET_LEN(xfer->ux_frlengths[i])); /* Set page0 index and offset - TP and T-offset are set below */ const bus_addr_t sba = DMAADDR(dma_buf, offs); sitd->sitd.sitd_buffer[0] = htole32(BUS_ADDR_LO32(sba)); sitd->sitd.sitd_buffer_hi[0] = htole32(BUS_ADDR_HI32(sba)); offs += xfer->ux_frlengths[i]; const bus_addr_t eba = DMAADDR(dma_buf, offs - 1); sitd->sitd.sitd_buffer[1] = htole32(EHCI_SITD_SET_BPTR(BUS_ADDR_LO32(eba))); sitd->sitd.sitd_buffer_hi[1] = htole32(BUS_ADDR_HI32(eba)); u_int huba __diagused = dev->ud_myhsport->up_parent->ud_addr; #if 0 if (sc->sc_flags & EHCIF_FREESCALE) { // Set hub address to 0 if embedded TT is used. if (huba == sc->sc_addr) huba = 0; } #endif k = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; dir = UE_GET_DIR(k) ? 1 : 0; KASSERT(sitd->sitd.sitd_endp == htole32( EHCI_SITD_SET_ENDPT(UE_GET_ADDR(k)) | EHCI_SITD_SET_DADDR(dev->ud_addr) | EHCI_SITD_SET_PORT(dev->ud_myhsport->up_portno) | EHCI_SITD_SET_HUBA(huba) | EHCI_SITD_SET_DIR(dir))); KASSERT(sitd->sitd.sitd_back == htole32(EHCI_LINK_TERMINATE)); uint8_t sa = 0; uint8_t sb = 0; u_int temp, tlen; if (dir == 0) { /* OUT */ temp = 0; tlen = xfer->ux_frlengths[i]; if (tlen <= 188) { temp |= 1; /* T-count = 1, TP = ALL */ tlen = 1; } else { tlen += 187; tlen /= 188; temp |= tlen; /* T-count = [1..6] */ temp |= 8; /* TP = Begin */ } sitd->sitd.sitd_buffer[1] |= htole32(temp); tlen += sa; if (tlen >= 8) { sb = 0; } else { sb = (1 << tlen); } sa = (1 << sa); sa = (sb - sa) & 0x3F; sb = 0; } else { sb = (-(4 << sa)) & 0xFE; sa = (1 << sa) & 0x3F; sa = 0x01; sb = 0xfc; } sitd->sitd.sitd_sched = htole32( EHCI_SITD_SET_SMASK(sa) | EHCI_SITD_SET_CMASK(sb) ); usb_syncmem(&sitd->dma, sitd->offs, sizeof(ehci_sitd_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } /* End of frame */ sitd = exfer->ex_sitdend; sitd->sitd.sitd_trans |= htole32(EHCI_SITD_IOC); usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_trans), sizeof(sitd->sitd.sitd_trans), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (xfer->ux_length) usb_syncmem(&exfer->ex_xfer.ux_dmabuf, 0, xfer->ux_length, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Part 2: Transfer descriptors have now been set up, now they must * be scheduled into the periodic frame list. Erk. Not wanting to * complicate matters, transfer is denied if the transfer spans * more than the periodic frame list. */ /* Start inserting frames */ if (epipe->isoc.cur_xfers > 0) { frindex = epipe->isoc.next_frame; } else { frindex = EOREAD4(sc, EHCI_FRINDEX); frindex = frindex >> 3; /* Erase microframe index */ frindex += 2; } if (frindex >= sc->sc_flsize) frindex &= (sc->sc_flsize - 1); /* What's the frame interval? */ i = epipe->pipe.up_endpoint->ue_edesc->bInterval; for (sitd = exfer->ex_sitdstart, j = 0; j < frames; j++, sitd = sitd->xfer_next) { KASSERT(sitd); usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * frindex, sizeof(ehci_link_t), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); sitd->sitd.sitd_next = sc->sc_flist[frindex]; if (sitd->sitd.sitd_next == 0) /* * FIXME: frindex table gets initialized to NULL * or EHCI_NULL? */ sitd->sitd.sitd_next = EHCI_NULL; usb_syncmem(&sitd->dma, sitd->offs + offsetof(ehci_sitd_t, sitd_next), sizeof(ehci_sitd_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sc->sc_flist[frindex] = htole32(EHCI_LINK_SITD | sitd->physaddr); usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * frindex, sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sitd->frame_list.next = sc->sc_softsitds[frindex]; sc->sc_softsitds[frindex] = sitd; if (sitd->frame_list.next != NULL) sitd->frame_list.next->frame_list.prev = sitd; sitd->slot = frindex; sitd->frame_list.prev = NULL; frindex += i; if (frindex >= sc->sc_flsize) frindex -= sc->sc_flsize; } epipe->isoc.cur_xfers++; epipe->isoc.next_frame = frindex; ehci_add_intr_list(sc, exfer); xfer->ux_status = USBD_IN_PROGRESS; return USBD_IN_PROGRESS; } Static void ehci_device_fs_isoc_abort(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer = %#jx", (uintptr_t)xfer, 0, 0, 0); ehci_abort_isoc_xfer(xfer, USBD_CANCELLED); } Static void ehci_device_fs_isoc_close(struct usbd_pipe *pipe) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("nothing in the pipe to free?", 0, 0, 0, 0); } Static void ehci_device_fs_isoc_done(struct usbd_xfer *xfer) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); KASSERT(mutex_owned(&sc->sc_lock)); epipe->isoc.cur_xfers--; ehci_remove_sitd_chain(sc, exfer->ex_itdstart); if (xfer->ux_length) usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); } /* -------------------------------------------------------------------------- */ Static int ehci_device_isoc_init(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_soft_itd_t *itd, *prev, *start, *stop; int i, j, k; int frames, ufrperframe; int err; EHCIHIST_FUNC(); EHCIHIST_CALLED(); start = NULL; prev = NULL; itd = NULL; KASSERT(xfer->ux_nframes != 0); KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(exfer->ex_isdone); exfer->ex_type = EX_ISOC; /* * Step 1: Allocate and initialize itds, how many do we need? * One per transfer if interval >= 8 microframes, less if we use * multiple microframes per frame. */ i = epipe->pipe.up_endpoint->ue_edesc->bInterval; if (i > 16 || i == 0) { /* Spec page 271 says intervals > 16 are invalid */ DPRINTF("bInterval %jd invalid", i, 0, 0, 0); return EINVAL; } ufrperframe = uimax(1, USB_UFRAMES_PER_FRAME / (1 << (i - 1))); frames = howmany(xfer->ux_nframes, ufrperframe); for (i = 0, prev = NULL; i < frames; i++, prev = itd) { itd = ehci_alloc_itd(sc); if (itd == NULL) { err = ENOMEM; goto fail; } if (prev != NULL) { /* Maybe not as it's updated by the scheduling? */ prev->itd.itd_next = htole32(itd->physaddr | EHCI_LINK_ITD); prev->xfer_next = itd; } else { start = itd; } /* * Other special values */ k = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; itd->itd.itd_bufr[0] = htole32( EHCI_ITD_SET_EP(UE_GET_ADDR(k)) | EHCI_ITD_SET_DADDR(epipe->pipe.up_dev->ud_addr)); k = (UE_GET_DIR(epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress)) ? 1 : 0; j = UGETW(epipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); itd->itd.itd_bufr[1] |= htole32( EHCI_ITD_SET_DIR(k) | EHCI_ITD_SET_MAXPKT(UE_GET_SIZE(j))); /* FIXME: handle invalid trans - should be done in openpipe */ itd->itd.itd_bufr[2] |= htole32(EHCI_ITD_SET_MULTI(UE_GET_TRANS(j)+1)); } /* End of frame */ stop = itd; stop->xfer_next = NULL; exfer->ex_itdstart = start; exfer->ex_itdend = stop; return 0; fail: mutex_enter(&sc->sc_lock); ehci_soft_itd_t *next; for (itd = start; itd; itd = next) { next = itd->xfer_next; ehci_free_itd_locked(sc, itd); } mutex_exit(&sc->sc_lock); return err; } Static void ehci_device_isoc_fini(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_xfer *ex = EHCI_XFER2EXFER(xfer); KASSERT(ex->ex_type == EX_ISOC); ehci_free_itd_chain(sc, ex->ex_itdstart); } Static usbd_status ehci_device_isoc_transfer(struct usbd_xfer *xfer) { ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_soft_itd_t *itd, *prev; usb_dma_t *dma_buf; int i, j; int frames, uframes, ufrperframe; int trans_count, offs; int frindex; EHCIHIST_FUNC(); EHCIHIST_CALLED(); prev = NULL; itd = NULL; trans_count = 0; DPRINTF("xfer %#jx flags %jd", (uintptr_t)xfer, xfer->ux_flags, 0, 0); KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock)); if (sc->sc_dying) return USBD_IOERROR; /* * To avoid complication, don't allow a request right now that'll span * the entire frame table. To within 4 frames, to allow some leeway * on either side of where the hc currently is. */ if ((1 << (epipe->pipe.up_endpoint->ue_edesc->bInterval)) * xfer->ux_nframes >= (sc->sc_flsize - 4) * 8) { DPRINTF( "isoc descriptor spans entire frametable", 0, 0, 0, 0); printf("ehci: isoc descriptor requested that spans the entire frametable, too many frames\n"); return USBD_INVAL; } KASSERT(xfer->ux_nframes != 0 && xfer->ux_frlengths); KASSERT(!(xfer->ux_rqflags & URQ_REQUEST)); KASSERT(exfer->ex_isdone); #ifdef DIAGNOSTIC exfer->ex_isdone = false; #endif /* * Step 1: Re-Initialize itds */ i = epipe->pipe.up_endpoint->ue_edesc->bInterval; if (i > 16 || i == 0) { /* Spec page 271 says intervals > 16 are invalid */ DPRINTF("bInterval %jd invalid", i, 0, 0, 0); return USBD_INVAL; } ufrperframe = uimax(1, USB_UFRAMES_PER_FRAME / (1 << (i - 1))); frames = howmany(xfer->ux_nframes, ufrperframe); uframes = USB_UFRAMES_PER_FRAME / ufrperframe; if (frames == 0) { DPRINTF("frames == 0", 0, 0, 0, 0); return USBD_INVAL; } dma_buf = &xfer->ux_dmabuf; offs = 0; itd = exfer->ex_itdstart; for (i = 0; i < frames; i++, itd = itd->xfer_next) { int froffs = offs; if (prev != NULL) { prev->itd.itd_next = htole32(itd->physaddr | EHCI_LINK_ITD); usb_syncmem(&prev->dma, prev->offs + offsetof(ehci_itd_t, itd_next), sizeof(prev->itd.itd_next), BUS_DMASYNC_POSTWRITE); prev->xfer_next = itd; } /* * Step 1.5, initialize uframes */ for (j = 0; j < EHCI_ITD_NUFRAMES; j += uframes) { /* Calculate which page in the list this starts in */ int addr = DMAADDR(dma_buf, froffs); addr = EHCI_PAGE_OFFSET(addr); addr += (offs - froffs); addr = EHCI_PAGE(addr); addr /= EHCI_PAGE_SIZE; /* * This gets the initial offset into the first page, * looks how far further along the current uframe * offset is. Works out how many pages that is. */ itd->itd.itd_ctl[j] = htole32 ( EHCI_ITD_ACTIVE | EHCI_ITD_SET_LEN(xfer->ux_frlengths[trans_count]) | EHCI_ITD_SET_PG(addr) | EHCI_ITD_SET_OFFS(EHCI_PAGE_OFFSET(DMAADDR(dma_buf,offs)))); offs += xfer->ux_frlengths[trans_count]; trans_count++; if (trans_count >= xfer->ux_nframes) { /*Set IOC*/ itd->itd.itd_ctl[j] |= htole32(EHCI_ITD_IOC); break; } } /* * Step 1.75, set buffer pointers. To simplify matters, all * pointers are filled out for the next 7 hardware pages in * the dma block, so no need to worry what pages to cover * and what to not. */ for (j = 0; j < EHCI_ITD_NBUFFERS; j++) { /* * Don't try to lookup a page that's past the end * of buffer */ int page_offs = EHCI_PAGE(froffs + (EHCI_PAGE_SIZE * j)); if (page_offs >= dma_buf->udma_block->size) break; uint64_t page = DMAADDR(dma_buf, page_offs); page = EHCI_PAGE(page); itd->itd.itd_bufr[j] = htole32(EHCI_ITD_SET_BPTR(page)); itd->itd.itd_bufr_hi[j] = htole32(page >> 32); } /* * Other special values */ int k = epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress; itd->itd.itd_bufr[0] |= htole32(EHCI_ITD_SET_EP(UE_GET_ADDR(k)) | EHCI_ITD_SET_DADDR(epipe->pipe.up_dev->ud_addr)); k = (UE_GET_DIR(epipe->pipe.up_endpoint->ue_edesc->bEndpointAddress)) ? 1 : 0; j = UGETW(epipe->pipe.up_endpoint->ue_edesc->wMaxPacketSize); itd->itd.itd_bufr[1] |= htole32(EHCI_ITD_SET_DIR(k) | EHCI_ITD_SET_MAXPKT(UE_GET_SIZE(j))); /* FIXME: handle invalid trans */ itd->itd.itd_bufr[2] |= htole32(EHCI_ITD_SET_MULTI(UE_GET_TRANS(j)+1)); usb_syncmem(&itd->dma, itd->offs, sizeof(ehci_itd_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); prev = itd; } /* End of frame */ if (xfer->ux_length) usb_syncmem(&exfer->ex_xfer.ux_dmabuf, 0, xfer->ux_length, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Part 2: Transfer descriptors have now been set up, now they must * be scheduled into the periodic frame list. Erk. Not wanting to * complicate matters, transfer is denied if the transfer spans * more than the periodic frame list. */ /* Start inserting frames */ if (epipe->isoc.cur_xfers > 0) { frindex = epipe->isoc.next_frame; } else { frindex = EOREAD4(sc, EHCI_FRINDEX); frindex = frindex >> 3; /* Erase microframe index */ frindex += 2; } if (frindex >= sc->sc_flsize) frindex &= (sc->sc_flsize - 1); /* What's the frame interval? */ i = (1 << (epipe->pipe.up_endpoint->ue_edesc->bInterval - 1)); if (i / USB_UFRAMES_PER_FRAME == 0) i = 1; else i /= USB_UFRAMES_PER_FRAME; itd = exfer->ex_itdstart; for (j = 0; j < frames; j++) { KASSERTMSG(itd != NULL, "frame %d\n", j); usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * frindex, sizeof(ehci_link_t), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); itd->itd.itd_next = sc->sc_flist[frindex]; if (itd->itd.itd_next == 0) /* * FIXME: frindex table gets initialized to NULL * or EHCI_NULL? */ itd->itd.itd_next = EHCI_NULL; usb_syncmem(&itd->dma, itd->offs + offsetof(ehci_itd_t, itd_next), sizeof(itd->itd.itd_next), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sc->sc_flist[frindex] = htole32(EHCI_LINK_ITD | itd->physaddr); usb_syncmem(&sc->sc_fldma, sizeof(ehci_link_t) * frindex, sizeof(ehci_link_t), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); itd->frame_list.next = sc->sc_softitds[frindex]; sc->sc_softitds[frindex] = itd; if (itd->frame_list.next != NULL) itd->frame_list.next->frame_list.prev = itd; itd->slot = frindex; itd->frame_list.prev = NULL; frindex += i; if (frindex >= sc->sc_flsize) frindex -= sc->sc_flsize; itd = itd->xfer_next; } epipe->isoc.cur_xfers++; epipe->isoc.next_frame = frindex; ehci_add_intr_list(sc, exfer); xfer->ux_status = USBD_IN_PROGRESS; return USBD_IN_PROGRESS; } Static void ehci_device_isoc_abort(struct usbd_xfer *xfer) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("xfer = %#jx", (uintptr_t)xfer, 0, 0, 0); ehci_abort_isoc_xfer(xfer, USBD_CANCELLED); } Static void ehci_device_isoc_close(struct usbd_pipe *pipe) { EHCIHIST_FUNC(); EHCIHIST_CALLED(); DPRINTF("nothing in the pipe to free?", 0, 0, 0, 0); } Static void ehci_device_isoc_done(struct usbd_xfer *xfer) { struct ehci_xfer *exfer = EHCI_XFER2EXFER(xfer); ehci_softc_t *sc = EHCI_XFER2SC(xfer); struct ehci_pipe *epipe = EHCI_XFER2EPIPE(xfer); KASSERT(mutex_owned(&sc->sc_lock)); epipe->isoc.cur_xfers--; ehci_remove_itd_chain(sc, exfer->ex_sitdstart); if (xfer->ux_length) usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); }