LinuxFocus article number 338
http://linuxfocus.org

Run
| Time
amsin Access

About the author:

Abstract:

Bob isaLinux programmer
and an electronics hobbyist. Run Time Accessis alibrary that lets you view the data structuresin

Y ou can find his latest your program as tables in a PosgreSQL database or asfilesin avirtual
project at file system (similar to /proc). Using RTA makesit easy to give your
WWW.runtimeaccess.com daemon or service several types of management interfaces such as web,
and his homepage at shell, SNMP, or framebuffer.

www.linuxtoys.org.

10 Second Overview

Say you have a program with datain an array of structures. The structure and array are defined as:

struct nydata {
char not e[20] ;
i nt count;

}

struct mydata nytable[] = {
{ "Sticky note", 100 },
{ "Music note", 200 },
{ "No note", 300 },

b

If you build your program with the Run Time Access library you will be able to examine and set the
program’sinternal data from the command line or from another program. Y our data appears asif it were
in a PostgreSQL database. The following illustrates how you might use Bash and psgl, the PostgreSQL
command line tool, to set and read data in your program.

nyprogram &

psql -c "UPDATE mytable SET note = 'A note’ LIMT 1"

UPDATE 1

psgl -c "SELECT * FROM nyt abl e"
not e | count

____________ I,

A note | 100

Musi ¢ note | 200

No note | 300

#

This article explains why something like RTA is needed, how to use the RTA library, and what
advantages you can expect from using RTA.

Many Uls-- One Service

Traditional UNIX communicated with a service by putting its configuration datainto
/etc/application.conf and its accumulated output in /var/log/application.log. This accepted approach is
probably wrong for today’ s services that run on appliances and are configured by relatively untrained
sys-admins. The traditional approach fails because we now want several types of simultaneous user
interfaces, and we want each of those interfaces to exchange configuration, status, and statistics with the
service whileit isrunning. What is needed is run time access.

Newer services need many types of user interfaces and we developers may not be able to predict what
interface will be needed most. What we need to do isto separate the user interface from the service
using acommon protocol and to build the user interfaces using the common protocol. This makesit
easier to add interfaces when needed and the separation may make testing easier since each piece can be
tested independently. We want an architecture something like this:

One Protocol for Command and Control

Web Server
with CGI

[= ==l

SHMP
Agent

[==]

ﬂ Daemon

Command
Line
Interface

===l

The types of user interface to consider include web, command line, framebuffer, SNMP, keypad and
LCD, LDAP, native Windows, and other custom interfaces. Clearly acommon APl and protocol to all
the user interfaces would be agood idea. But what kind of API and protocol ?

A Database | nterface

RTA chooses to use a PostgreSQL database as the common API and protocol. Configuration, state, and
statistics are put into arrays of structures that appear on the API as tables in a PostgreSQL database. The

user interface programs are written as clients connecting to a PostgreSQL database. This approach has
two big benefits:

® The user interface clients use awell known, well documented, and well debugged API. Using
PostgreSQL dramatically reduces development time. Also, PostgreSQL has binding for C, Java,
PHP, Perl, and almost all other popular languages so you can program the Ul in the language right
for thejob.

® The paradigm of table in a database matches fairly well how most of us write programs that
provide a service. We use data structures for what would be rows and arrays or linked-list for what
would be tables.

The RTA library isthe glue that ties our arrays or linked lists of data structures to the PostgreSQL
clients. The architecture of an application using RTA should ook something like ...

Management o
Interface Your Application

dbcormmand)

C/PHF/ Javaf /
Perl / Bash ‘ RTA

“pratocol /’ I h
\ /

Real Application

Here we call it amanagement interface since it isintended for status, statistics, and configuration.
Although only one interface is shown, you should remember that you can have many interfaces for your
application, and they can all access the application simultaneously.

PosgreSQL uses TCP as the transport protocol so your application needs to be able to bind to a TCP port
and accept connections from the various user interfaces. All bytes received from an accepted connection
are passed into RTA using the dbcommand() subroutine. Any datato be returned to the clientisin a
buffer returned from dbcommand().

How does RTA know what tables are available? Y ou have to tell it.

Defining Tables

Youtell RTA about your tables with data structures and by calling the rta_add _table() subroutine. The
TBLDEF data structure describes a table and the COLDEF structure describes a column. Hereis an
example that illustrates how to add atable to the RTA interface.

Say you have a data structure with a string of length 20 and an integer, and that you want to export a
table with 5 of these structures. Y ou can define the structure and table as follows:

struct myrow {
char not e[20] ;
i nt count;

b
struct nyrow nytabl e[5];

Each field in the myr ow data structure is a column in a database table. We need to tell RTA the name of
the column, what table it isin, its datatype, its offset from the start of the row, and whether or not it is
read-only. We can a so define callback routines which are called before the column is read and/or after it
iswritten. For our example we will assume that count is read-only and that we want do_not e() called
whenever thereisawrite to the not e field. We build an array of COLDEF which is added to the
TBLDEF and which has one COLDEF for each structure member.

COLDEF nycol s[] = {

0, bitwi se OR of bool ean fl ags
(void (*)()) O, call ed before read

do_note(), called after wite

"The last field of a colum definitionis a string "
"to describe the colum. You might want to explain "
"what the data in the colum neans and howit is "

"at abl e", /1 table nane for SQ
"not e", /1 colum nanme for SQ
RTA _STR, /1 data type of colum/field
20, /1 width of columm in bytes
0, /1 offset fromstart of row
/1
/1
/1

"used. "},

{
"at abl e", /1 table nane for SQ
“count ", /1 colum nanme for SQL

RTA | NT, /1 data type of colum/field

si zeof (int), /1 width of columm in bytes
of fsetof (nyrow, count), // offset fromstart of row

RTA_READONLY, /1 bitwi se OR of bool ean fl ags
(void (*)()) O, /1 called before read
(void (*)()) O, /1 called after wite

"I'f your tables are the interface between the user "
"interfaces and the service, then the coments in "
"columm and table definitions formthe functiona
"specification for your project and nay be the best "
"docunentation available to the devel opers.”

b

Write callbacks can be the real engine driving your application. Y ou may want to have changesto a
table trigger other changes or areconfiguration of your application.

Youtell RTA about tables by giving it the name of the table, the length of each row, an array of
COLDEFS to describe the columns, a count of the columns, the name of the save file if you want some
of the columns to be non-volatile, and a string to describe the table. If the table is a static array of structs
you give the starting address and the number of rows in the table. If the table is implemented as alinked
list you give RTA aroutine to call to iterate from one row to the next.

TBLDEF nyt abl eDef = {
"at abl e",
nyt abl e,

si zeof (myr ow) ,
5

t abl e name

address of table

| ength of each row

, nunmber of rows

(void *) NULL, iterator function
(void *) NULL, iterator call back data
nycol s, /1 Columm definitions

si zeof (mycol s / sizeof (COLDEF), // # columms

" /1 save file name

"A compl ete description of the table."

~ Y~ Y~ Y~~~
~ Y~ Y~ Y~~~

}s

Normally you would want the table name as seen by SQL to be the same as its name inside the program.
The example switched from nyt abl e to at abl e just to show that the names do not need to be the same.

Given al of the above code, you can now tell RTA about your table.
rta_add_t abl e(&yt abl eDef);

That's all thereistoit. To use RTA you need to learn how to use two data structures (COLDEF and
TBLDEF) and two subroutines (dbcommand() and rta_add _table()).

The above code is meant to give you ataste of how RTA works. It is not meant as afull tutorial or
complete working example. A complete working example and afull full description of the RTA API and
data structuresis on the RTA web site (www.runtimeaccess.com).

Just as you define tables for use in your application, so RTA definesits own set of internal tables. The
two most interesting of these table are rta_tables and rta_columns which are, of course, tablesto list and
describe all of the tables and columns you’ ve defined. These are the so-called system tables. The system
tables do for a database what | s does for afile system and get next () doesfor SNMP.

The Table Editor

One of the utilities that shipswith RTA isasmall PHP program that uses the system tables to list your
RTA tablesin aweb browser window. The table names are links and clicking on atable name displays
the first 20 rows of the table. If the table has any editable fields you can click on arow to open up an
edit window for that row. All thisis done using the table and column descriptions found in the system
tables. The data flow is depicted in the following diagram.

Weh

Wb Page

Diata
Representation

Table

Daemon

Data

ayaedy
dHd
Ibsd dHd
aseqe)ed v1d

The top level view of the table editor display for the RTA sample application is shown below.

RTA Table Editor

Table Name Description

Thetable of al tablesin the system. Thisis a pseudo table and not an

rta_tables array of structures like other tables.

rta_columns || Thelist of al columnsin all tables along with their attributes.

The table of Postgres users. We spoof this table so that any user namein
pg_user a WHERE clause appears in the table as a legitimate user with no super,
createDB, trace or catupd capability.

Configure of debug logging. A callback on the'target’ field closes and
reopens syslog(). None of the valuesin this table are saved to disk. If you

rta_dog want non-default values you need to change the rta source or do an
SQL_string() to set the values when you initialize your program.
rta stat Usage and error counts for the rta package.

mytable A sample application table

UlConns Data about TCP connections from Ul frontend programs

By the way, if all has gone well in the publishing of this LinuxFocus article, the table names given
above should have live links to the sample application running on the RTA web server in Santa Clara,

Cdlifornia. A good link to follow isthe nyt abl e link.

Two Commands

Run Time Accessis alibrary that links management or user interface programs written with the
PostgreSQL client library (libpg) to your application or daemon. RTA is an interface, not a database. As
such, it needs only two SQL commands, SELECT and UPDATE.

The syntax for the SELECT statement is:
SELECT colum_list FROM table [where_clause] [limt_clause]

The column_list isa comma separated list of column names. The where_clause isan AND separated list
of comparisons. The comparison operators are =, |=, >=, <=, >, and <. A limit_clause has the form
[LIMT i] [OFFSET j],wherei isthe maximum number of rows to return and we skip overj rows
before starting output. Some examples might help clarify the syntax.

SELECT * FROM rta_t abl es
SELECT notes, count FROM atabl e WHERE count > 0
SELECT count FROM at abl e WHERE count > O AND notes = "H Moml"

SELECT count FROM atable LIMT 1 OFFSET 3

Setting the LIMIT to 1 and specifying an OFFSET isaway to get a specific row. The last example
aboveis equivalent to the C code (nmyt abl e[3] . count) .

The syntax of the UPDATE statement is:

UPDATE tabl e SET update_|list [where_clause] [linit_clause]

The where_clause and limit clause are as described above. The update list isacomma separated list of
column assignments. Again, some examples will help.

UPDATE at able SET notes = "Not in use" WHERE count = 0
UPDATE rta_dbg SET trace = 1
UPDATE et hers SET nmask "255. 255, 255. 0",

addr "192.168. 1. 10"
VWHERE nanme = "et hO"

RTA recognizes both upper and lower case reserved words although the examples here use upper case
for al of the SQL reserved words.

Download and Build

Y ou can download RTA from its web site at www.runtimeaccess.com (copyright of RTA isLGPL). Be
careful in selecting which version of RTA to download. The latest RTA version uses the newer
PostgreSQL protocol introduced with the 7.4 version of PostgreSQL. Most current Linux distributions
use the 7.3 version. While you can use an older version of RTA for initial trials you should use the latest
version to get the latest bug fixes and enhancements.

Untarring the package should give you the following directories:

./ doc a copy of the RTA web site
. enpd a prototype deanon built with RTA
.Isrc source files for the RTA library

PHP source for the table editor
source for a sanple application
utilities used in witing RTA

./table_editor
./ test
util

HHHFHHH

Thanks to Graham Phillips, the 1.0 version of RTA has autoconf support. Graham ported RTA from
Linux to Mac OS X, Windows, and FreeBSD. Using the 1.0 release you can build RTA with the usual

./ configure
nake
make install # (as root)

The installation puts librtadb.so and the associated library filesin the /usr/local/lib directory. To use
RTA you can add this directory to /etc/ld.so.conf and running the Idconfig command, or you can add the
directory to your loader path with:

export LD LIBRARY_PATH=/usr/local/lib

Theinstallation puts the RTA header file, rta.h, in /usr/local/include.

The make builds atest program inthet est directory and you can test your installation by changing
directory to the test directory and running . / app & A netstat -nat should show aprogram listening
on port 8888. Now you can run psgl and issue SQL commands against your test application.

cd test
.lapp &

psql -h local host -p 8888
Wel cone to psql 7.4.1, the PostgreSQ. interactive term nal

copyright for distribution terns
h for help with SQL commands

? for help on internal slash conmands

g or termnate with sem colon to execute query
g to quit

Type:

select nane fromrta_ tables;
nane

rta_tables
rta_col ums
rta_dbg
rta_stat
nyt abl e
Ul Conns

(6 rows)

While it looks like you are connected to a database, you are not. Don’t forget: the only two commands
you can use are SELECT and UPDATE.

Advantagesof RTA

The advantages of separating the user interface programs from the daemon proper fall into the broad
categories of design, coding, debug, and capabilities.

From adesign point of view, the division forces you to decide early in the design what exactly is offered
as part of the Ul without worrying how it is displayed. The thought process required to design the tables
forces you to think through the real design of your application. The tables might form the internal
functional specification of your application.

While coding, the table definitions are what the daemon engineers build to and what the Ul engineers
build from. The division of Ul and daemon means you can hire Ul experts and daemon experts
independently and they can code independently which might help bring the product to market sooner.
Since there are Postgres bindings for PHP, Tcl/Tk, Perl, and "C", your developers can use the right tool
for the job.

Debug isfaster and easier because both the Ul and the daemon engineers can simul ate the other half
easily. For example, the Ul engineers could run their Ul programs against areal Postgres DB which has
the same tables the daemon will have. Testing the daemon can be easier and more complete sinceit is
easy to build test scriptsto simulate the Ul, and it is easy to examine internal status and statistics while a
test runs. The ability to force an internal state or condition helps test corner-cases which are sometimes
difficult to do in alab setup.

The capability of your product can be expanded with RTA. Y our customers will really appreciate being
able to see detailed status information and statistics while the program is running. Separating the Uls
from the daemon means you can have more Ul programs. SNMP, command line, web, LDAP, and the
list goes on. Thisflexibility will beimportant to you if (when!) your customers ask for custom Uls.

RTA offers several other features you might want in a package of this type:

® Application data model reflected by the API data model
® Remote access to the application

® Use of standards and existing software by the application
® Few new protocolsand APIsto learn

® Discovery mechanisms for the application
® Few constraints on the application

® Resource locking

® CPU and memory efficiency

Summary

This article has presented a very brief introduction to the RTA library and its capabilities. The R
site has a FAQ, a complete description of the API, and several sample client programs.

Just as RTA can make your data structures visible as tables in a database, so it can make then
files in a virtual file system. (Using the File System in Userspace (FUSE) package by Miklos Sz
The web site has more information on how to use the file system interface.

Webpages maintained by the LinuxFocus Ed|tor

team Translation information:

© Bob Smith _ . _
N . 1 . en --> -- : Bob Smithkbob/at/linuxtoys.org>
some rights reserved" séeuxfocus.org/licens

http://www.LinuxFocus.org

2005-01-14, generated by Ifparser_pdf version 2.51

