
LinuxFocus article number 292
http://linuxfocus.org

by Klaus Müller
<Socma(at)gmx.net>

About the author:
Klaus Müller a.k.a. ’Socma’
is still a student and engages
in Linux programming and
security issues.

Translated to English by:
Hubert Kaißer
<hubert(Q)faveve.uni-stuttgart.de>

IDS - Intrusion Detection System, Part I

Abstract:

This is the first article of a sequence about Intrusion Detection Systems.
The first part will not only present typical IDS architectures but also
typical attacks against Intrusion Detection Systems.

_________________ _________________ _________________

Introduction

Before I start just a few explanations so that no misconceptions arise: IDS stands for Intrusion Detection
System. In the course of the text I also relate to IDS as a system that recognizes intrusions and starts
counteractive measures (whereas to initiate counteractive measures is an optional feature). In the
beginning, I will at first give an overview about the different kinds of IDS to be able to address different
tactics afterwards. In the last part I will discuss several programs like Snort, bofh, ... and my project
COLOID.
In advance, I give some annotations for terms which I will not explain directly in the text:

false positive = an alarm that an attack has taken place whereas this was not the case
false negative = the IDS does not detect and filter the attack

IDS overview

The idea of this chapter is to present different kinds of Intrusion Detection Systems and at the same time
their advantages and disadvantages. But first, some words about the meaning and intention of Intrusion
Detection Systems. An IDS sort of observes activities on the particular host or network. With several

methods which I will present here, it tries to find out if the security of the host is threatened (if there is
an "attack") to initiate counteractive measures afterwards. Because, in the majority of cases, log files are
created and it is one of the main issues to analyze them and react on the indication of an intrusion or an
illegal attempt of a user to augment his rights.
Basically, there are the following three areas:

Information Sources
Response
Analysis

Response and Analysis is covered again more precisely later , the different kinds of "Information
Sources" right now. Because of the extensive possibilities to attack a PC or a network there are different
kinds of IDS (of course, they can be combined with each other) which basically differ in the points
where they control and what they control (Information Sources).

Host - Based Intrusion Detection

Host-Based Intrusion Detection Systems analyze information on a single host. As they normally do not
look at the whole network traffic but "only" at the activities on the same host they are able to make more
precise statements about the kind of attack. In addition, you can see directly the impact on the particular
PC. E.g that a specific user started an attack successfully. Host-based IDSs use mostly two different
sources to provide information about activities: system logs and operating system audit trails. Both have
advantages and disadvantages as operating system audit trails are more exact, detailed and can give
better information about activities while system logs mostly deliver only the most important information
and are therefore considerably smaller. System logs can be controlled and analyzed better because of
their size.

Advantages:

you "see" the impact of an attack and can react better on it
you can recognize Trojan horses etc. better as the available information/possibilities are very
extended
you can detect attacks which cannot be detected by Network based IDS because traffic is often
encrypted
you can observe activities on your host exactly

Disadvantages:

they are not good in recognizing scans
they are more vulnerable to DoS attacks
the analysis of operating system audit trails is very time-consuming because of its size.
they stress the host’s CPU performance (partly) immensely

Examples:

Tripwire [http://www.tripwire.com/products/index.cfml]
SWATCH [http://freshmeat.net/redir/swatch/10125/url_homepage/swatch]
DragonSquire [http://www.enterasys.com/ids/squire/]

Tiger [http://freshmeat.net/redir/tiger-audit/30581/url_homepage/tiger]
Security Manager [http://www.netiq.com/products/sm/default.asp]

Network Intrusion Detection (NIDS)

The main task of a Network IDS is the analysis and interpretation of packets transferred over the
network. Signatures are used to examine packets for "conspicuous" content like e.g. /etc/passwd. We
will discuss this in the course of the article. Mostly, so called sensors (often single hosts) are used which
do nothing except analyze traffic and if necessary start an alarm. As this is their only task it is possible
to secure those sensors better. In this context there exists often the so called "Stealth Mode", i.e., the
sensors act "invisible" so that it is more difficult for the attacker to localize or attack them.

"Stealth mode can be used for network sensors to make the promiscuous mode network interface card
(NIC) invisible because it simply doesn’t have an IP address in this mode. This is achieved by using a
separate NIC in each network sensor machine to communicate with the console over, usually, a
physically isolated secure network. Stealth mode makes it more difficult for a hacker to attack the
network sensor itself."

This paragraph (taken from the description for RealSecure) clarifies again what a sensor in Stealth Mode
is. The sensor switches into promiscuous mode (simply put: the mode in which the network device reads
the whole network traffic) and has no own IP. With this it should be made as difficult as possible for the
attacker to localize the sensor. By the way, this is the mode used by packet sniffers like tcpdump...

Basically, you can use sensors in following areas:

Within the firewall (simplified):

Internet
 |
 |

 | Firewall |

 |

 | Sensor |

 |

 | LAN |

This diagram shows only one possible solution and shall only clarify that the sensors are not between
DMZ and firewall. If the expression DMZ is unknown to you: it stands for DeMilitarized Zone and is an
area which is secured from all sides.

If sensors are within the firewall it is easier for them to decide if a firewall was eventually configured

improperly and in addition you get to know if a potential attack came through the firewall or not.
According to experience, sensors create less false positives as they act "less inconspicuously" and
therefore traffic is less (whereby the probability of a false alarm drops).

Sensors placed within a firewall serve as intrusion detection. Should your sensor fulfill this task you
should then put it within the firewall ...

Outside the firewall (simplified):

Internet
 |

Sensor
 |

Firewall
 |

 | LAN |

Sensors are often placed outside the external firewall as shown in the diagram. The reason for this is that
the sensor can receive and analyze the whole traffic from the internet. If you place the sensor here it is
not ensured that really all attacks are filtered and detected, e.g., TCP attacks. In this case, you would try
to detect the attack by using so called signatures (more about this in the part about signatures).
Nevertheless, this placement is preferred by many experts because there is the advantage to log and
analyze the attacks (to the firewall...), thereby, the admin can see where he should change the firewall
configuration.

Sensors placed outside the firewall serve as attack detection (different to placing in within the firewall!).
If your sensors should detect these attacks you should put them outside the firewall...

- Outside and within the firewall

Actually, this variant connects both previously mentioned variants. But, the danger is that you configure
the sensors and/or the firewall wrongly, i.e., you cannot simply add the advantages of both variants to
this variant. These are not the only possibilities to placing sensors, you can, of course, place them
somewhere else but the above mentioned places are the most commonly used.

Advantages:

the sensors can be secured well as they "only" observe traffic
you can detect scans better - on the basis of signatures... you can "filter" traffic (actually, we will
show later that this is not always the case)

Disadvantages:

the probability of so called false negatives (attacks are not detected as attacks) is high as it is
difficult to control the whole network
mostly, they have to operate on encrypted packets where analysis of packets is complicated
as a difference to host-based IDS they do not see the impacts of an attack

Examples:

NetRanger [http://www.cisco.com]
Dragon [http://www.securitywizards.com]
NFR [http://www.nfr.net]
Snort [http://www.snort.org]
DTK [http://all.net/dtk/dtk.html]
ISS RealSecure [http://www.uh.edu/infotech/software/unix/realsecure/index.html]

Though I distinguish between HIDS and NIDS the difference becomes smaller and smaller as in the
meanwhile HIDS, too, have the basic functionality of NIDS. Known ID Systems like ISS RealSecure
call themselves not only NIDS but "host-based and network-based IDS". In the future, the difference
between both systems will become even less clear (so that both systems "grow together" more and
more).

Network Node Intrusion Detection (NNIDS)

Basically, this new type (NNIDS) works like typical NIDS, i.e., you take packets from network traffic
and analyze them. But it only concerns packets which are addressed to the network node (this is where
the name comes from). Another difference between NNIDS and NIDS is that NIDS run in promiscuous
mode while NNIDS does not run in promiscuous mode. As not every packet is analyzed the
performance of the system will not suffer to much, such systems run very fast as a rule.

Application Based Intrusion Detection

Application Based IDS’s are a subgroup of host-based IDS but I mention them here separately. It
monitors the interaction between user and program whereby mainly additional log files are created to
provide information about the activities. As you operate directly between user and program you can very
easily "filter" conspicuous behaviour. You can visualize an ABIDS as in the following diagram:

Application
 |

IDS
 |

| User |

Advantages:

you work at unencrypted level, in opposition to, e.g., Network Based IDS, whereby analysis is
more feasible
you can detect and prevent conspicuous commands which the user wants to use on/with the
program

Disadvantages:

no security and few possibilities to detect, e.g., Trojan horses (as you do not act in kernel space)
the log files created by this kind of IDS are easy attack targets for "attackers" and not so secure
like, e.g., operating system audit trails

Stack Based Intrusion Detection

Also a new kind of IDS is the so called Stack Based Intrusion Detection System (SBIDS). But
momentarily, I do not have enough information which would allow me to brief you about this type of
IDS. In a future version of this paper the description will certainly follow...

Honeypot

The word Honeypot is used in a lot of differnt contexts. To avoid confusion I will stick to the definition
from the SANS Institute’s Intrusion Deception FAQ: "Honeypots are programs that simulate one or
more network services that you designate on your computer’s ports. An attacker assumes you’re running
vulnerable services that can be used to break into the machine. A honeypot can be used to log access
attempts to those ports including the attacker’s keystrokes. This could give you advanced warning of a
more concerted attack". In some cases, a honeypot is simply a "box". From the outside it appears
vulnerable, while it logs traffic and also analyzes it. Thus, because honeypots appear vulnerable and no
connections should be created every connection to the honeypot is seen as suspicious.

Internet
 |

ext. Firewall
 |

 | Honeypot | <---- in DMZ

 |

int. Firewall

So, the internal network does not have to be exposed because a honeypot is normally placed in the DMZ
(DeMilitarized Zone). The major task of a honeypot consists mostly in analyzing traffic, e.g., when
certain processes were started, which files were changed..., so that you can create a quite good profile of
potential attackers.

But not all honeypots are alike so you can distinguish between three "variants" which enhance security
of the system in different ways:

Prevention: prevent an attack detection: notify that there was an attack (possibly a localization of the
attacker, what kind of attack, which services are concerned...?) Reaction: the (counter)action, detection
alone does not serve anything if you do not take steps against it. Padded Cell Systems offers special
possibilities which concern counteractive measures. So, reaction implies what you do / the IDS does
when you react to an attack.

Later, we will clarify the different response options of IDS again... In addition, honeypots can be
classified in two bigger categories, research and production honeypots. Production honeypots are to help
lessen potential risks in a network while research honeypots serve to collect and inquire information
about the attackers.

Prevention:
Honeypots are surely not the most appropriate systems to avert attacks. As you will see later at Padded
Cell Systems, a wrong programmed and wrong configured honeypot can even facilitate attacks whereby
this covers the whole subject of IDS.

Detection:
Seemingly, that is the biggest advantage of honeypots as they can be excellent in detecting attacks. In
this context, they can above all analyze and interpret system logs. The placement of the honeypot plays a
decisive role, an admin can only benefit by honeypots if the are configured and placed properly. Often,
they are placed between important servers to detect eventual scans of the whole network or in the
proximity of one important server to detect illegal access with the help of port redirection (e.g., if
someone tries to access the server at certain ports he will be redirected to the honeypot, as this access
should not be allowed there should be a warning).

Reaction:
In the part about Responses (read beneath), you can see which possibilities a honeypot has to react on
events. When using/creating a honeypot you should keep in mind that the host should look most
attractive to an attacker, i.e., it should not be too difficult to attack the host. Basically, there should be
few changes from the default configuration as too many changes only seem conspicuous. Nevertheless,
you should not forget the actual idea, i.e., control traffic, log activities, ... One approach of which I have
heard several times is to place the honeypot in its own subnet behind a firewall. This has normally alarm
capabilities and so can display warnings. As logs are sought-after targets of attackers you should not log
them on the host itself but send it to another server. Sometimes, sniffers are used to search traffic for
certain signs and "log" traffic. If you collected enough information you should analyze the logs and look
for weaknesses of the network, respectively rectify them. Because of the amount of information it
should be easier to close security holes and take action against attackers. But you should consider that
honeypots are not completely legal, respectively you should be attentive when using honeypots. The
problem ist that a honeypot can be interpreted as an "invitation to attack" and if you realize that the host

was attacked (and you do not initiate counteractive measures) that could be interpreted additionally as an
act of gross negligence. Some judiciary argumentation against honeypots sound banal but you should
check the law at your place. If someone attacks another network from your network and creates damage
you will (probably) pay for it for already mentioned reasons.
Further inquiries found that the application of honeypots is, e.g., in Europe is no problem (if you find a
law which contradicts this, write to me, please. My search did not find such a law...).

Padded Cell Systems

These systems normally work together with one of the other systems. If the used IDS notifies about an
attack the respective attacker is forwarded to a "padded cell host". As soon as they are in this padded cell
host they cannot make any damage as the whole environment is simulated, a "bogus" environment. It is
important that this environment is as realistically presented as possible, respectively the attacker has to
think that the attack was successful (sort of). There is a possibility to log, analyze and follow every
activity of the attacker. The problem with using padded cell systems is that it is possible that it is illegal
to employ them in a particular country (as eventually such counter activities of the IDS can be seen as
"attack", though they are only meant to collect information about the real attacker).

Advantages:

once in a padded cell host, attackers cannot do any more damage as it is only a "bogus"
environment
the admin can follow/log the activities of the attacker directly to get more information about the
attack and the target of the attack and so is able to initiate counteractive measures more easily

Disadvantages:

eventually, usage of padded cell systems is not legal (the same as honeypots, in Europe this should
be no problem)
the implementation of such a system is very difficult and requires some knowledge as the whole
environment has to be simulated correctly. If the admin makes a little mistake somewhere this
system could by all means open additional security holes

Types of attack

Before you develop or use an IDS you should specify the potential dangers, also which attacks you
expect. Despite the different possibilities attacks and their target can be defined in four categories:

1)Confidentiality
The consequences of the attack are that the mutual trust to a certain user changed (mostly to his favor ;),
e.g., that you do not have to authenticate anymore for a certain program... Such circumstances are still
abused these days, e.g., if there is a mutual trust between two hosts, i.e., the user of one host can log in
another without password (or else). If an attacker accomplishes a comparable effect with his attack it is

sometimes very difficult to discover such "abused" mutual trust.

2)Integrity
If the user changes important configuration and system files, replaces existing binaries by his own...
Often, existing binaries (like, e.g., /bin/login) are replaced by own binaries. There, the respective user
only has to give a fixed password (in the source) and gets (mostly) root privileges. Such attacks serve to
expand ones own privileges, e.g., by means of installing a login backdoor. In fact, there are tools like
Tripwire but not everyone uses it. In addition, there are often devastating errors in configuration and use
which make Tripwire an extra risk in such cases.

3)Availability
By this, the reachability of the system is affected. This could cause the ban of certain users to log in at
all or that you can only log in at certain times... The aim is mostly to work "undisturbed" and cannot be
discovered by any user.

4)Control
E.g, if the attack is for the purpose of "overtaking" the system that has control over files, programs...
When this happens, you should consider that the attacker gets also all other previously listed options. If
he has total control over the system he can change, restrict... what he wants.

Before I get to the different types of attack (DoS, DDoS, Scans, ...) I will make just a little excursion to
the world of Integrity Checkers. Tools like Tripwire are part of host based IDS, the issue of an Integrity
Checker is to check the integrity of diverse files and start an alarm if you detect changes on a file.

1) Creation of a database
The first step after the installation of an Integrity Checker like Tripwire is the creation of a database.
This step should (must) be made in a situation at which the condition of the system is not compromised.
If you create the database at a later time (and maybe the attacker has replaced the existing binaries) the
use of an Integrity Checker would not work as it should. In such a case, the replaced binaries would be
considered as "originals" and if the admin replaces these binaries by the actual "originals", an alarm
would be started. Most of the tools offer extensive possibilities to specify files/directories of which you
want to create checksums. We simply generate a fingerprint of the system. (Tripwire calls this Database
Initialization Mode)

2) Check of Integrity
After the admin has a database (the fingerprint) of the system he can check his system when he wants to.
This is done simply by comparing the checksums in the database with the currently available files on the
disk. Tripwire offers more possibilities. Simply read the manpage for Tripwire or associated
documentation.

Those two steps are actually found in most Integrity Checkers. Tripwire offers the possibility to update
the database (when having installed new tools...) or to update the policy file, test the email notification
system...

Which errors can be made when using Integrity Checkers ?

The first and grossest error an admin can commit is to create an MD5 hashsum database when existing
binaries have been replaced by an attacker already. If an admin assumes that an attack was successful

and afterwards creates the hashsum database of this "compromised" system, the binary, replaced by the
attacker (e.g., login backdoor), would be considered as the "real" binary. You should create the database
as soon as possible after installation. One other big error when using Integrity Checkers (like, e.g.,
Tripwire) is to leave the hashsum database on hard disk. On first sight, it seems absolutely normal to
leave the database on hard disk but if you have to leave it there you should at least make sure that the
partition/the medium is read-only. You should make sure that no one can write-access our database. If
the attacker could write the database he could change it as he wants. If you worked with Tripwire before
you surely know that you can adjust in the configuration file of which files the integrity should be
checked. But what if the attacker can read/write this configuration file? He could change search paths so
that the directory with the changed binaries would not be scanned at all. It is best not to leave the
configuration on hard disk and put it onto a read-only medium. Some will think that it is too much
trouble to put the files on a read-only medium, actually, you should consider some more time exposure
for more security (an interesting aspect with user-friendliness is that many security holes are/were
opened because programs are made user-friendly. In our case it means that you do get less
user-friendliness but a higher level of security). Tripwire (and other integrity checkers) are surely
capable programs which can enhance security and prevent potential attackers from successfully
attacking. But the best tool is of no use if the other security settings of the system are not okay. So, do
not demand of integrity checkers that they do all your work.

A newer type of integrity checkers are the so called Realtime Integrity Checkers. In contrast to "normal"
integrity checkers they check file integrity in realtime. Here is a short scheme:

1) Here too, the first step is the creation of a hashsum database
2) Before someone can run a program the hashsum of the file is procuced. If the value does not accord to
the one in the database the binary was replaced. If this is the case, execution is prohibited.
This concept is only one possible for realtime integrity checkers (at least I arranged this concept for me).
As a difference to integrity checkers you do not rely on the admin checking files regularly, you try to
check the correctness of the binary before execution and not let it execute if necessary...

Besides the above mentioned categories (integrity, control, ...) attacks can be differentiated otherwise, of
course, e.g., how to attack, respectively with what means. Also, here are naturally many possibilities, but
the most common attacks against IDSs are:

- Scans
These days, scans are the common "attacks", the problem here is that the IDS should not produce too
many false positives. Mostly, scans serve to get (further) information about a host/network (e.g., to start
subsequent attacks). What information an attacker can get about your own network you can see with the
following scan result (nmap - only a small example which does not at all show all possibilities of nmap):

 Host (192.168.0.0) seems to be a subnet broadcast address (returned 1
 extra pings).
 Skipping host. Interesting ports on playground.yuma.net 192.168.0.1):
 Port State Protocol Service
 22 open tcp ssh
 111 open tcp sunrpc
 635 open tcp unknown
 1024 open tcp unknown
 2049 open tcp nfs

 TCP Sequence Prediction: Class = random positive increments

 Difficulty=3916950 (Good luck!)
 Remote operating system guess:
 Linux 2.1.122 - 2.1.132; 2.2.0-pre1 - 2.2.2

 Interesting ports on vectra.yuma.net (192.168.0.5):
 Port State Protocol Service
 13 open tcp daytime
 21 open tcp ftp
 22 open tcp ssh
 23 open tcp telnet
 37 open tcp time
 79 open tcp finger
 111 open tcp sunrpc
 113 open tcp auth
 513 open tcp login
 514 open tcp shell

 TCP Sequence Prediction: Class = random positive increments
 Difficulty = 17719 (Worthy challenge)
 Remote operating system guess: OpenBSD 2.2. - 2.3

 Nmap run completed -- 256 IP addresses (2 hosts up) scanned in 6 seconds

Mainly, you can find out the following:

which operating system?
which versions of certain programs run
which services run that you can "attack" eventually
which ports are open
...

Using many of the most different scan techniques together result in a mass of information which allows
the attacker to initiate his attack. Though, I will not describe/mention all scan techniques, I will mention
some of the often used ones (if there are questions referring to protocols... look at the respective RFCs):

Ping scanning:
Ping scans are used to find out which hosts are online. For this, you send the host (or the hosts) an ICMP
datagram of type 8 (i.e., echo request) and wait for an ICMP answer datagram of type 0 (i.e., echo
reply). Sometimes, you do not send only an echo request but additionally an ACK as sometimes ICMP
is blocked. If there is an RST answer the host is online.

Nmap parameter: -sP

TCP Scanning (Vanilla) :
With TCP scanning you (mostly) try to connect() on all ports after you did the three-way-handshake,
i.e., you made a connection to the ports (the connections to the ports were successful) the reply value of
connect() is checked. For the attacker the reply value informs if the used port (or the ports) is open or
closed. The aim of a TCP scan is to find out if ports are open/closed.

Nmap parameter: -sT

The following nmap output is of one of my hosts, directly after a default installation. I deliberately made
no changes (in the configuration):

 [Socma]$ nmap -sT localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

A part of a tcpdump trace (of this scan):

 02:10:15.804704 Diablo > Diablo: icmp: echo request
 4500 001c 2db8 0000 3501 5a27 7f00 0001
 7f00 0001 0800 fc95 fb69 0000
 02:10:15.814704 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 0496 fb69 0000
 02:10:15.814704 Diablo.58725 > Diablo.http: . ack 110306597 win 3072
 4500 0028 d223 0000 2a06 c0aa 7f00 0001
 7f00 0001 e565 0050 ad48 0003 0693 2525
 5010 0c00 e718 0000
 02:10:15.814704 Diablo.http > Diablo.58725: R 110306597:110306597(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 e565 0693 2525 0000 0000
 5004 0000 a070 0000
 02:10:16.114704 Diablo.1727 > Diablo.821: S 196002918:196002918(0)
 win 32767 <mss 16396,sackOK,timestamp 213509[|tcp]> (DF)
 4500 003c 8663 4000 4006 b656 7f00 0001
 7f00 0001 06bf 0335 0bae c466 0000 0000
 a002 7fff 739c 0000 0204 400c 0402 080a
 0003 4205
 02:10:16.114704 Diablo.821 > Diablo.1727: R 0:0(0) ack 196002919
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0335 06bf 0000 0000 0bae c467
 5014 0000 d7c4 0000
 02:10:16.114704 Diablo.1728 > Diablo.440: S 195504823:195504823(0)
 win 32767 <mss 16396,sackOK,timestamp 213509[|tcp]> (DF)
 4500 003c 68b2 4000 4006 d407 7f00 0001
 7f00 0001 06c0 01b8 0ba7 2ab7 0000 0000
 a002 7fff 0ecf 0000 0204 400c 0402 080a
 0003 4205

UDP scanning:
The intention of UDP scans are analog to TCP scans as you want to find out open UDP ports. A scan
runs differently as UDP is a connectionless protocol (TCP is connection-oriented). UDP scanning "uses"
ICMP, if you send to the actual ports a 0 byte UDP packet to wait for an ICMP "answer". If there is a
notify that the port is unreachable ("Port unreachable"/code value 3) this means that the port is closed. If
the respective admin, e.g., in his /etc/inetd.conf, deactivated certain services and you try to send a packet

to the respective port this would result in the error message "Port Unreachable"...

Nmap parameter: -sU

 [Socma]$ nmap -sU localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1459 ports scanned but not shown below are in state: closed)
Port State Service
111/udp open sunrpc

Nmap run completed -- 1 IP address (1 host up) scanned in 4 seconds

The associated tcpdump trace:

10:41:55.954397 Diablo > Diablo: icmp: echo request
 4500 001c cc8f 0000 2801 c84f 7f00 0001
 7f00 0001 0800 8471 738e 0000
10:41:55.954397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 8c71 738e 0000
10:41:55.964397 Diablo.63793 > Diablo.http: . ack 994287972 win 2048
 4500 0028 79e3 0000 2506 1deb 7f00 0001
 7f00 0001 f931 0050 06d8 0003 3b43 a164
 5010 0800 cccd 0000
10:41:55.964397 Diablo.http > Diablo.63793: R 994287972:994287972(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 f931 3b43 a164 0000 0000
 5004 0000 dbb4 0000
10:41:56.274397 Diablo.63773 > Diablo.15: udp 0
 4500 001c 8a0b 0000 3011 02c4 7f00 0001
 7f00 0001 f91d 000f 0008 08af
10:41:56.274397 Diablo > Diablo: icmp: Diablo udp port 15
 unreachable (DF) [tos 0xc0]
 45c0 0038 0000 4000 ff01 7d02 7f00 0001
 7f00 0001 0303 fb18 0000 0000 4500 001c
 8a0b 0000 3011 02c4 7f00 0001 7f00 0001
 f91d 000f
10:41:56.274397 Diablo.63773 > Diablo.1459: udp 0
 4500 001c 6c2f 0000 3011 20a0 7f00 0001
 7f00 0001 f91d 05b3 0008 030b
10:41:56.274397 Diablo > Diablo: icmp: Diablo udp port 1459
 unreachable (DF) [tos 0xc0]
 45c0 0038 0100 4000 ff01 7c02 7f00 0001
 7f00 0001 0303 fb18 0000 0000 4500 001c
 6c2f 0000 3011 20a0 7f00 0001 7f00 0001
 f91d 05b3

Another variant of a UDP scan (UDPrecvfrom() and write() scan) consists in scanning every port twice.
The just now mentioned method uses ICMP with "Port Unreachable", but only root receives this
message. If you scan a closed port twice you get, after the second scan: "Error 13 : Try Again"...

ACK scanning:
With sending an ACK packet to a port of a firewall you find out which ports are filtered and which are

not. If you receive an RST answer it means that the referring port is "unguarded", respectively is not
filtered, else you get an ICMP error message. So, you do not find out which ports are open but you get
more precise information about the firewall (and its configuration).

Nmap parameter : -sA

 [Socma]$ nmap -sA localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
All 1558 scanned ports on Diablo (127.0.0.1) are: UNfiltered

Nmap run completed -- 1 IP address (1 host up) scanned in 6 seconds

 The tcpdump trace:

10:45:51.864397 Diablo > Diablo: icmp: echo request
 4500 001c 1617 0000 3901 6dc8 7f00 0001
 7f00 0001 0800 113d e6c2 0000
10:45:51.864397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 193d e6c2 0000
10:45:51.864397 Diablo.53119 > Diablo.http: . ack 2682022466 win 3072
 4500 0028 0dda 0000 3206 7cf4 7f00 0001
 7f00 0001 cf7f 0050 0650 0003 9fdc 6a42
 5010 0c00 c590 0000
10:45:51.864397 Diablo.http > Diablo.53119: R 2682022466:2682022466(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 cf7f 9fdc 6a42 0000 0000
 5004 0000 d7ef 0000
10:45:52.164397 Diablo.53099 > Diablo.14: . ack 2457451592 win 3072
 4500 0028 218d 0000 3206 6941 7f00 0001
 7f00 0001 cf6b 000e 5938 4710 9279 bc48
 5010 0c00 e74d 0000
10:45:52.164397 Diablo.14 > Diablo.53099: R 2457451592:2457451592(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 000e cf6b 9279 bc48 0000 0000
 5004 0000 93a2 0000
10:45:52.164397 Diablo.53099 > Diablo.imap3: . ack 2457451592 win 3072
 4500 0028 a075 0000 3206 ea58 7f00 0001
 7f00 0001 cf6b 00dc 5938 4710 9279 bc48
 5010 0c00 e67f 0000

Stealth scanning (NULL, XMAS, FIN, SYN, ...): With stealth scanning you "abuse" the
three-way-handshake. I present the three-way-handshake shortly:

------------------ SYN -------------
| Host A | ---------------------------- > | Host B |
------------------ -------------

------------------ ACK/SYN -------------
| Host A | <----------------------------| Host B |
------------------ -------------

------------------ ACK -------------
| Host A | ---------------------------- > | Host B |
------------------ -------------

The problem of TCP scans is that they are very conspicuous (as every time it does a
three-way-handshake). With stealth scanning the following happens instead:

------------------ SYN -------------
| Host A | ---------------------------- > | Host B |
------------------ -------------

------------------ ACK/SYN -------------
| Host A | <----------------------------| Host B |
------------------ -------------

This diagram seems to look like the three-way-handshake but with a basic difference: The shown
diagram would have no connection between A and B, respectively Host B would think the connection
exists, though the connection doesn’t exist until A sends a further ACK to B (it is also called a
"half-open" port...). The above shown SYN scan implies that the port of the target host is open (because
of the ACK/SYN), if it were closed you would receive a RST/ACK back.

Nmap parameter : -sS

 [Socma]$ nmap -sS localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 3 seconds

Tcpdump trace:

10:47:41.674397 Diablo > Diablo: icmp: echo request
 4500 001c 8f08 0000 3501 f8d6 7f00 0001
 7f00 0001 0800 99a9 5e56 0000
10:47:41.674397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 a1a9 5e56 0000
10:47:41.674397 Diablo.58038 > Diablo.http: . ack 1561498752 win 3072
 4500 0028 afe5 0000 3206 dae8 7f00 0001
 7f00 0001 e2b6 0050 82b0 0003 5d12 9480
 5010 0c00 4e85 0000
10:47:41.674397 Diablo.http > Diablo.58038: R 1561498752:1561498752(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 e2b6 5d12 9480 0000 0000
 5004 0000 dd44 0000
10:47:41.984397 Diablo.58018 > Diablo.1488: S 2803535203:2803535203(0)
 win 3072
 4500 0028 a4f5 0000 3206 e5d8 7f00 0001
 7f00 0001 e2a2 05d0 a71a 8d63 0000 0000
 5002 0c00 88ef 0000

10:47:41.984397 Diablo.1488 > Diablo.58018: R 0:0(0) ack 2803535204
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 05d0 e2a2 0000 0000 a71a 8d64
 5014 0000 94dc 0000

Now, other scans join the game: FIN scanning, NULL scanning and XMAS scanning. FIN scanning
only sends a FIN message to the "target host", though no connection exists between them. At a closed
port RST is sent back, else nothing happens.

Nmap parameter : -sF

 [Socma]$ nmap -sF localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 6 seconds

Tcpdump trace:

10:48:28.704397 Diablo > Diablo: icmp: echo request
 4500 001c b29d 0000 3401 d641 7f00 0001
 7f00 0001 0800 a1a7 5658 0000
10:48:28.704397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 a9a7 5658 0000
10:48:28.704397 Diablo.52201 > Diablo.http: . ack 2873378189 win 4096
 4500 0028 cbeb 0000 2b06 c5e2 7f00 0001
 7f00 0001 cbe9 0050 9020 0003 ab44 458d
 5010 1000 54a3 0000
10:48:28.704397 Diablo.http > Diablo.52201: R 2873378189:2873378189(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 cbe9 ab44 458d 0000 0000
 5004 0000 f4d2 0000
10:48:29.004397 Diablo.52181 > Diablo.233: F 0:0(0) win 4096
 4500 0028 10c6 0000 2b06 8108 7f00 0001
 7f00 0001 cbd5 00e9 0000 0000 0000 0000
 5001 1000 d522 0000
10:48:29.004397 Diablo.233 > Diablo.52181: R 0:0(0) ack 1 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 00e9 cbd5 0000 0000 0000 0001
 5014 0000 e50e 0000

NULL and XMAS scans are of special interest (above all with practical implementation of protocol
anomaly detection). It is called XMAS scan because all flags are set: SYN, ACK, FIN, URG, PUSH. As
with FIN scanning you send back RST if the port is closed.

Nmap parameter : -sX

 [Socma]$ nmap -sX localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Tcpdump trace:

10:44:24.004397 Diablo > Diablo: icmp: echo request
 4500 001c ffcc 0000 2a01 9312 7f00 0001
 7f00 0001 0800 103d e7c2 0000
10:44:24.004397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 183d e7c2 0000
10:44:24.004397 Diablo.36398 > Diablo.http: . ack 718216305 win 2048
 4500 0028 2e28 0000 2906 65a6 7f00 0001
 7f00 0001 8e2e 0050 9220 0003 2acf 1c71
 5010 0800 41f0 0000
10:44:24.004397 Diablo.http > Diablo.36398: R 718216305:718216305(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 8e2e 2acf 1c71 0000 0000
 5004 0000 dc1f 0000
10:44:24.304397 Diablo.36378 > Diablo.1996: FP 0:0(0) win 2048 urg 0
 4500 0028 7651 0000 2906 1d7d 7f00 0001
 7f00 0001 8e1a 07cc 0000 0000 0000 0000
 5029 0800 13d3 0000
10:44:24.304397 Diablo.1996 > Diablo.36378: R 0:0(0) ack 1 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 07cc 8e1a 0000 0000 0000 0001
 5014 0000 1be7 0000

The other possibility, called NULL scan, means that no flag is set, if the port is closed an RST is sent
back.

Nmap parameter : -sN

 [Socma]$ nmap -sN localhost

Starting nmap V. 2.54BETA36 (www.insecure.org/nmap/)
Interesting ports on Diablo (127.0.0.1):
(The 1552 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Tcpdump trace:

10:43:37.594397 Diablo > Diablo: icmp: echo request
 4500 001c 2ecf 0000 2c01 6210 7f00 0001
 7f00 0001 0800 8f87 6878 0000
10:43:37.594397 Diablo > Diablo: icmp: echo reply (DF)
 4500 001c 0000 4000 ff01 7dde 7f00 0001
 7f00 0001 0000 9787 6878 0000
10:43:37.604397 Diablo.34607 > Diablo.http: . ack 1932747046 win 4096
 4500 0028 ee0f 0000 3706 97be 7f00 0001
 7f00 0001 872f 0050 5b20 0003 7333 6126
 5010 1000 ead5 0000
10:43:37.604397 Diablo.http > Diablo.34607: R 1932747046:1932747046(0)
 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0050 872f 7333 6126 0000 0000
 5004 0000 5605 0000
10:43:37.904397 Diablo.34587 > Diablo.408: . win 4096
 4500 0028 e3bb 0000 3706 a212 7f00 0001
 7f00 0001 871b 0198 0000 0000 0000 0000
 5000 1000 192f 0000
10:43:37.904397 Diablo.408 > Diablo.34587: R 0:0(0) ack 0 win 0 (DF)
 4500 0028 0000 4000 ff06 7dcd 7f00 0001
 7f00 0001 0198 871b 0000 0000 0000 0000
 5014 0000 291b 0000

You do not need the complete three-way-handshake, thus, stealth scanning (like that mentioned) is less
conspicuous than TCP scanning. IDS should detect those abnormalities in all cases (XMAS and
NULL)...

FTP bounce:
With some ftpds the PORT command can be abused to establish an arbitrary connection from the ftp
server to another machine. But first, a little overview how this "normally" happens. First, the client
makes a connection to the ftp server (port 21), the ftp server "creates" a second connection back to the
client (to be able to send back data). For this second connection you use the PORT command. The
interesting thing here is that the command contains the IP and the port (which is to be opened) of the
client. Subsequently, the server creates a connection, where source port 20 and the destination port are
the ports specified by the PORT command. The point of attack is the PORT command with which you
can manipulate the port of the (supposed) client to connect to the victim instead of our host. After the IP
and port were manipulated you can initialize the actual traffic by "list" or "get". Now, you check the
answer of ftp, because if we get a "425: Can’t build data connection: Connection refused" this specified
port is closed. If we receive "150 : File status okay about to open data connection" or "226: Closing data
connection. Requested file action successful (for example, file transfer or file abort)" instead as an
answer we know that the specified port is open.

Nmap parameter: -b

Fragmented packets: This method uses the fragmentation of an IP packet by TCP. Normally,
fragmentation occurs when the datagrams are bigger than the possible size, this size limitation is called
MTU (Maximum Transmission Unit). Fragmented datagrams are put together at the end of a node. This
behaviour can be abused. Not every IDS/firewall works with fragmentation, i.e., there are sometimes
errors with fragmented packets. Instead of sending our packet, normally, we subdivide it (in fragments).

These contain "common" data like source IP, destination IP, source port... Now, it is possible that the
running firewall/IDS has problems with putting together fragments. These problems can manifest
themselves in different ways, either it comes to a crash of the whole system or the packet goes through.
Our packet could possibly get through because the putting together was erroneous and the packet was
falsely specified "harmless". Sometimes, not all fragments are checked properly, i.e., only a certain
fragment is checked so that our packet gets through again. With this technique you can scan less
conspicuous as the traffic could be marked "harmless" and would not start an alarm. On the other hand
this theory depends on the IDS (firewall) having problems with processing and putting together
fragments.

Reverse Ident Scanning:
First, a section from RFC 1413, the RFC for Identification Protocol: "The Identification Protocol (a.k.a.,
"ident", a.k.a., "the Ident Protocol") provides a means to determine the identity of a user of a particular
TCP connection. Given a TCP port number pair, it returns a character string which identifies the owner
of that connection on the server’s system." Reverse Ident Scanning uses identd to ask for the owner of
the running process. This technique serves above all to find daemons which run as root in order to attack
precisely these daemons.

 ---------- -------------- ----------
 | YOU | <------------> | Dumb Host | <---------->| TARGET |
 ---------- -------------- ----------

Here Dumb Host should have as little traffic as possible. The reason for this will be more clear in the
end. Why is Dumb Host used, why do we need one at all? Ok, this question leads to the actual attack and
with this also to the explanation why a dumb host is necessary. In order that you can find out if a port of
"TARGET" is open or closed you should examine the IP ID field of Dumb Host. For this, Dumb Host is
sent a packet (echo request) and with its reply you can read the ID field, respectively the value of the ID
field. Subsequently, you can send TARGET a packet where the source address is that of Dumb Host.
The answer of TARGET is then received by our dumb host. If he receives a SYN/ACK of TARGET it
means that the port is open. As an answer our dumb host will then send a packet were RST is flagged. If
the dumb host receives a RST/ACK of the target machine it sends no answer to TARGET. To find out
which answer Dumb Host got from TARGET we send Dumb Host another ping. If the port of the target
was open and sent back RST the IP ID field of Dumb Host will be incremented, with port closed and
nothing happens. By reading the new IP ID value of Dumb Host you can detect if the ports were open or
closed. Now, it is hopefully clearer why we use a dumb host, i.e., a host with little traffic. If there is too
much traffic on the host it would be more difficult to specify which ports are open (at TARGET), the
probability of getting it wrong would be higher at higher traffic.

Fingerprint OS detection:
Fingerprint OS detection aims to detect the operating on the server. Most new scanners deliver not only,
e.g., "Linux" or "Solaris" for an answer but a specification of versions (of the particular operating
system). For this, you make a "fingerprint" (profile) of the operating system. These days, you cannot
trust banners of telnet, ftp (see above) as they can be changed and manipulated. If the attacker finds out
the exact version of the target host he can build scripts, exploits, ... for it and continue with his attack.
This technique exploits the fact that operating systems differ in small details (what an insight ;). As there
are a lot of documents on this technique I will only give a short overview over the most important test
possibilities:

- FIN test: If a host receives a FIN packet at an open port it should rather not answer (RFC 793) but

there are also exceptions, e.g., with MS Windows, BSDI, CISCO, MPS, ... which send a RESET for an
answer.

-ACK sequential numbers: When sending FIN|PSH|URG to a closed port the sequential number of the
ACK packet is set to the own sequential number mostly. But here also Windows makes an exception ;).
Windows sends back the own sequential number +1 ...

-BOGUS flag test: If an undefined TCP Flag is used in the TCP header (in a SYN packet), Linux hosts <
2.0.35 adopt these flag settings. Other OSs reset when receiving a SYN+BOGUS packet...

-TCP initial window: Most operating systems use (almost) constant window sizes (of the reply packets).
E.g., AIX delivers 0x3F25, MS NT5, OpenBSD and FreeBSD use 0x402E....

-Don’t fragment bit test: Some operating systems differ in setting this bit in some packets or not. Thus,
you can additionally differentiate which OS is available...

-TCP options test: The basis of this test is simply told: You send an inquiry to the particular host, set
diverse options and look at the answer if there are also these options set. Those options contained in the
answer are supported... As the case may be with the operating system (and version) certain options are in
principal not supported, others are. Thus, the used operating system can be specified more exactly.

Nmap parameter : -O

There are many teste not discussed here but there are enough documents on the net about fingerprint OS
detection. Fyodor (NMAP) has written a small paper about this. This part should only give a small
overview about widespread scan techniques. For someone who works with protocol anomaly detection
there were surely several starting points (certain flag combinations which you have to consider as
anormal...).

Other ICMP related stuff
Aside from the mentioned echo reply/request ICMP supports further message types with which you can
collect further information about the network (so-called NON - ECHO - REQUESTS):

ICMP Time Stamp Request / Reply (RFC 792):
The actual meaning of Time Stamp Requests (type 13) is to get the time settings of a remote system. If
the remote host receives a Time Stamp Request it sends back a Time Stamp Reply (type 14). First, the
structure of a time stamp (relative to RFC):

 | Type | Code | Checksum |

 | Representer | Sequence |

Originate Timestamp
Receive Stamp

Transmit Timestamp

Before I get to the use of a Time Stamp Request for an attacker I tell you some basics about the time

stamp. For us, only the last three "fields" are of importance. Here, the respective section in the RFC:

 The Originate Timestamp is the time the sender last touched the
 message before sending it, the Receive Timestamp is the time the
 echoer first touched it on receipt, and the Transmit Timestamp is
 the time the echoer last touched the message on sending it."

As said in the RFC the sent back timestamp is the count of milliseconds since midnight UT (GMT).

Of what use is a time stamp request/reply for us?

If you are sent back a time stamp reply you would know that the host is reachable and on the other hand,
with the Originate Stamp and the Receive Stamp you can estimate the load of the network (the
difference is, of course, dependant on cables used, cards, ...).

At last, a tcpdump trace:

 11:38:37.898253 Diablo > Diablo: icmp: time stamp query id 53763 seq 64548
 (ttl 254, id 13170, len 40)
 4500 0028 3372 0000 fe01 8b60 7f00 0001
 7f00 0001 0d00 61fb d203 fc24 0211 c0ca
 0000 0000 0000 0000

 11:38:37.898253 Diablo > Diablo: icmp: time stamp reply id 53763 seq 64548 :
 org 0x211c0ca recv 0x211c0ca xmit 0x211c0ca (DF) (ttl 255, id 0, len 40)
 4500 0028 0000 4000 ff01 7dd2 7f00 0001
 7f00 0001 0e00 db43 d203 fc24 0211 c0ca
 0211 c0ca 0211 c0ca

ICMP Information Request / Reply (RFC 792): "This message may be sent with the source network in
the IP header source and destination address fields zero (which means "this" network). The replying IP
module should send the reply with the addresses fully specified. This message is a way for a host to find
out the number of the network it is on. "

So, an Information Request (type 15) has the meaning to get the network number of the host which sent
the request.

 The address of the source in an information request message will be
 the destination of the information reply message. To form an
 information reply message, the source and destination addresses
 are simply reversed,..."

With an Information Reply (type 16) you take the source IP of the Information Request as destination IP
of the reply (simply put: you send the reply to the host which requested the information). As source Ip of
the reply you take the destination IP of the request...

Normally, the situation is that the sender of an Information Request sets 0 as destination address (which
means "this network"). But there is also the possibility to set destination and source IP to 0 (when
sending the request). In this case, the Information Reply would receive the network number of the host

in the source and the destination address field, i.e., if the source address field in the request does not
equal 0 the network number of the host would only be sent back in the source IP field of the reply.

 --
 | Type | Code | Checksum |
 --
 | Pointer | Sequence |
 --

It seems that you could only send an information request within the network (see above) but that does
not have to be. Some operating systems also answer an information request where the destination IP is
not in the same network. In such an information reply we would receive the IP of the host (and not the
network number).

At the end, again a short tcpdump trace:

11:42:35.608253 Diablo > Diablo: icmp: information request (ttl 255,
 id 13170, len 28)
 4500 001c 3372 0000 ff01 8a6c 7f00 0001
 7f00 0001 0f00 1afc d603 0000
11:42:36.608253 Diablo > Diablo: icmp: information request (ttl 255,
 id 13170, len 28)
 4500 001c 3372 0000 ff01 8a6c 7f00 0001
 7f00 0001 0f00 19fc d603 0100

ICMP Address Mask Request / Reply (RFC 950): The Address Mask Request (type 17) has been
described in another RFC, for more information look at RFC950 and not in RFC792. The meaning and
use of an Address Mask Request is to get the subnetmask of a connected network. If a gateway receives
such a request it should send back relevant information to the respective node (Address Mask Reply -
type 18)

 --
 | Type | Code | Checksum |
 --
 | Flag | Sequence |
 --
Address Mask

With this, you can not only discover hosts in the network (which are online) but also get to know about
the network configuration with further tests...

Tcpdump trace:

 11:45:26.678253 Diablo > Diablo: icmp: address mask request (ttl 254, id
 13170, len 32)
 4500 0020 3372 0000 fe01 8b68 7f00 0001
 7f00 0001 1100 edd7 dc03 2524 0000 0000

I hope, this section showed you that you have more possibilities to get information about a network and
that it does not always have to be the "normal" ping... In the respective RFCs are mostly such hints
which describe what you should consider if you want to "support" the different types of request...
Developers of ("real") IDSs should also consider such issues. If they should be supported you should
consider that it works (read RFCs). But even this is not the end as you can read in the next section...

Even more information about the target: The use of packet filters (or more common: firewalls) is surely
not very special, these days. Also the use of so called firewall modules in IDSs can be found more and
more often. Often, an attacker does not have the possibilities to use some of the discussed scans as they
are blocked, filtered... The aim of this small section is to show possibilities with which you can work out
some of the filter/firewall rules of the target.

The principle of this idea is quite simple as you try to provoke ICMP error messages, respectively send
"illegal" packets from which you can draw conclusions about the set of rules.

If the gateway or host processing a datagram finds a problem with
the header parameters such that it cannot complete processing the
datagram it must discard the datagram. One potential source of
such a problem is with incorrect arguments in an option. The
gateway or host may also notify the source host via the parameter
problem message. This message is only sent if the error caused
the datagram to be discarded."

This section is from RFC 792 and is part of the description of the so called parameter problem (type 12).
As you can see in this section a reason for the message "Parameter Problem" can be a false IP header,
i.e., if we would send a packet with a false IP header to a host we should actually get back this error
message. This error message has one additional advantage as support of this error message is
"recommended" in RFC 1122:

A host SHOULD generate Parameter Problem messages. An
incoming Parameter Problem message MUST be passed to the
transport layer, and it MAY be reported to the user.

DISCUSSION:
 The ICMP Parameter Problem message is sent to the
 source host for any problem not specifically covered by
 another ICMP message. Receipt of a Parameter Problem
 message generally indicates some local or remote
 implementation error. "

On the whole, this gives a very good possibility to detect hosts in a network (for the mentioned reasons).

Additionally, I refer to RFC 1812:

 4.3.3.5 Parameter Problem

A router MUST generate a Parameter Problem message for any error not
specifically covered by another ICMP message. The IP header field or
IP option including the byte indicated by the pointer field MUST be
included unchanged in the IP header returned with this ICMP message.
Section [4.3.2] defines an exception to this requirement. "

Nevertheless, different routers interpret this section (and also others) differently, for which reason it is
not clear that a Parameter Problem is generated.

An IDS (respectively firewalls) should check fields in the IP header anyway as it can happen at times
that you receive a packet with a false header, but this should happen rarely. An attacker who scans a
whole network with this method (or any specified IP range) knows that the firewall/packet filter... does

not block, filter this error message. but if you do not get a Parameter Problem you know at least that this
message is blocked.

This method to find out the set of rules is only the first step (the method is above all an alternative to a
"normal" ping). To get an as exact as possible access control list (ACL) of possible filtering/firewall
software we should get further information of the topology. To do this, you could, e.g., send the
different ICMP message types to single hosts (with false IP header) and wait for a notification of a
Parameter Problem. If there is a notification of a Parameter Problem on host "X" this means for us that
the host does not filter this ICMP message type (and the respective host is reachable). Additionally, this
means for us that the erroneous information in the IP header is not checked. If we get no Parameter
Problem we can also make several conclusions. On the one hand, it would be possible that a filter
filters/blocks the ICMP message type and on the other hand it is possible that the router checks the
header and does not let forward this anormality, etc... As you can see, with both results you can make
conclusions on possible filter rules, last and not least you get a wide representation of what is allowed
and what not. Further possibilities could be to vary used protocols (TCP, UDP, ...) so that you could find
out further rules. There would be, e.g., the possibility that a certain protocol is blocked/filtered.

I think the abstract on the Parameter Problem is now clear so that we can go on looking at further error
messages.

The following section is again taken from RFC 1812 and describes what Destination Unreachable error
is and what can be the reason for this error:

 The ICMP Destination Unreachable message is sent by a router in
 response to a packet which it cannot forward because the destination
 (or next hop) is unreachable or a service is unavailable. Examples
 of such cases include a message addressed to a host which is not
 there and therefore does not respond to ARP requests, and messages
 addressed to network prefixes for which the router has no valid
 route.

 A router MUST be able to generate ICMP Destination Unreachable
 messages and SHOULD choose a response code that most closely matches
 the reason the message is being generated.

 0 = Network Unreachable - generated by a router if a forwarding path
 (route) to the destination network is not available;

 1 = Host Unreachable - generated by a router if a forwarding path
 (route) to the destination host on a directly connected network
 is not available (does not respond to ARP);

 2 = Protocol Unreachable - generated if the transport protocol
 designated in a datagram is not supported in the transport layer
 of the final destination;

 3 = Port Unreachable - generated if the designated transport protocol
 (e.g., UDP) is unable to demultiplex the datagram in the
 transport layer of the final destination but has no protocol
 mechanism to inform the sender;

 4 = Fragmentation Needed and DF Set - generated if a router needs to
 fragment a datagram but cannot since the DF flag is set;

 5 = Source Route Failed - generated if a router cannot forward a

 packet to the next hop in a source route option;

 6 = Destination Network Unknown - This code SHOULD NOT be generated
 since it would imply on the part of the router that the
 destination network does not exist (net unreachable code 0
 SHOULD be used in place of code 6);

 7 = Destination Host Unknown - generated only when a router can
 determine (from link layer advice) that the destination host
 does not exist;

 11 = Network Unreachable For Type Of Service - generated by a router
 if a forwarding path (route) to the destination network with the
 requested or default TOS is not available;

 12 = Host Unreachable For Type Of Service - generated if a router
 cannot forward a packet because its route(s) to the destination
 do not match either the TOS requested in the datagram or the
 default TOS (0). "

If we now, e.g., try to send a packet to any port which uses a protocol that does not exist, there should
actually be a notification about a Destination Unreachable with code value 2 (Protocol Unreachable).
Further, with this example you should know first which protocols are "admitted". This, you can find out
when you look at your /etc/protocols. After the installation on one of my hosts the /etc/protocols looked
like this, e.g.:

 -------------- /etc/protocols ----------------
/etc/protocols:
$Id: protocols,v 1.2 2001/01/29 17:29:30 notting Exp $
#
Internet (IP) protocols
#
from: @(#)protocols 5.1 (Berkeley) 4/17/89
#
Updated for NetBSD based on RFC 1340, Assigned Numbers (July 1992).
#
See also http://www.isi.edu/in-notes/iana/assignments/protocol-numbers

ip 0 IP # internet protocol, pseudo protocol number
#hopopt 0 HOPOPT # hop-by-hop options for ipv6
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # internet group management protocol
ggp 3 GGP # gateway-gateway protocol
ipencap 4 IP-ENCAP # IP encapsulated in IP (officially ‘‘IP’’)
st 5 ST # ST datagram mode
tcp 6 TCP # transmission control protocol
cbt 7 CBT # CBT, Tony Ballardie
egp 8 EGP # exterior gateway protocol
igp 9 IGP # any private interior gateway
 # (Cisco: for IGRP)
bbn-rcc 10 BBN-RCC-MON # BBN RCC Monitoring
nvp 11 NVP-II # Network Voice Protocol
pup 12 PUP # PARC universal packet protocol
argus 13 ARGUS # ARGUS
emcon 14 EMCON # EMCON
xnet 15 XNET # Cross Net Debugger
chaos 16 CHAOS # Chaos
udp 17 UDP # user datagram protocol
mux 18 MUX # Multiplexing protocol
dcn 19 DCN-MEAS # DCN Measurement Subsystems

hmp 20 HMP # host monitoring protocol
prm 21 PRM # packet radio measurement protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
trunk-1 23 TRUNK-1 # Trunk-1
trunk-2 24 TRUNK-2 # Trunk-2
leaf-1 25 LEAF-1 # Leaf-1
leaf-2 26 LEAF-2 # Leaf-2
rdp 27 RDP # "reliable datagram" protocol
irtp 28 IRTP # Internet Reliable Transaction Protocol
iso-tp4 29 ISO-TP4 # ISO Transport Protocol Class 4
netblt 30 NETBLT # Bulk Data Transfer Protocol
mfe-nsp 31 MFE-NSP # MFE Network Services Protocol
merit-inp 32 MERIT-INP # MERIT Internodal Protocol
sep 33 SEP # Sequential Exchange Protocol
3pc 34 3PC # Third Party Connect Protocol
idpr 35 IDPR # Inter-Domain Policy Routing Protocol
xtp 36 XTP # Xpress Tranfer Protocol
ddp 37 DDP # Datagram Delivery Protocol
idpr-cmtp 38 IDPR-CMTP # IDPR Control Message Transport Proto
tp++ 39 TP++ # TP++ Transport Protocol
il 40 IL # IL Transport Protocol
ipv6 41 IPv6 # IPv6
sdrp 42 SDRP # Source Demand Routing Protocol
ipv6-route 43 IPv6-Route # Routing Header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment Header for IPv6
idrp 45 IDRP # Inter-Domain Routing Protocol
rsvp 46 RSVP # Resource ReSerVation Protocol
gre 47 GRE # Generic Routing Encapsulation
mhrp 48 MHRP # Mobile Host Routing Protocol
bna 49 BNA # BNA
ipv6-crypt 50 IPv6-Crypt # Encryption Header for IPv6
ipv6-auth 51 IPv6-Auth # Authentication Header for IPv6
i-nlsp 52 I-NLSP # Integrated Net Layer Security TUBA
swipe 53 SWIPE # IP with Encryption
narp 54 NARP # NBMA Address Resolution Protocol
mobile 55 MOBILE # IP Mobility
tlsp 56 TLSP # Transport Layer Security Protocol
skip 57 SKIP # SKIP
ipv6-icmp 58 IPv6-ICMP # ICMP for IPv6
ipv6-nonxt 59 IPv6-NoNxt # No Next Header for IPv6
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6
61 # any host internal protocol
cftp 62 CFTP # CFTP
63 # any local network
sat-expak 64 SAT-EXPAK # SATNET and Backroom EXPAK
kryptolan 65 KRYPTOLAN # Kryptolan
rvd 66 RVD # MIT Remote Virtual Disk Protocol
ippc 67 IPPC # Internet Pluribus Packet Core
68 # any distributed file system
sat-mon 69 SAT-MON # SATNET Monitoring
visa 70 VISA # VISA Protocol
ipcv 71 IPCV # Internet Packet Core Utility
cpnx 72 CPNX # Computer Protocol Network Executive
cphb 73 CPHB # Computer Protocol Heart Beat
wsn 74 WSN # Wang Span Network
pvp 75 PVP # Packet Video Protocol
br-sat-mon 76 BR-SAT-MON # Backroom SATNET Monitoring
sun-nd 77 SUN-ND # SUN ND PROTOCOL-Temporary
wb-mon 78 WB-MON # WIDEBAND Monitoring
wb-expak 79 WB-EXPAK # WIDEBAND EXPAK
iso-ip 80 ISO-IP # ISO Internet Protocol

vmtp 81 VMTP # Versatile Message Transport
secure-vmtp 82 SECURE-VMTP # SECURE-VMTP
vines 83 VINES # VINES
ttp 84 TTP # TTP
nsfnet-igp 85 NSFNET-IGP # NSFNET-IGP
dgp 86 DGP # Dissimilar Gateway Protocol
tcf 87 TCF # TCF
eigrp 88 EIGRP # Enhanced Interi

What if the host does not send back a Protocol Unreachable (though you used a protocol that actually
does not exist)? This can have two reasons. First, it could be that you have found an AIX, HP-UX or
Digital Unix machine or the set of rules of the host does not allow access to these ports. So, at first,
verify what kind of host you scan (among other possibilities with fingerprint OS detection) or else you
can assume that it gets filtered/blocked.

Note: The detection of such an attack is quite simple (and belongs to the section of Protocol Anomaly
Detection). Anomaly Detection will be discussed in the next chapter (Possibilities of analysis), now, it is
sufficient to know that traffic is searched for "anormalities" and the use of a non-existant protocol
belongs to these "anormalities".

- Denial of Service (DoS)
DoS (Denial of Service) attacks normally aim to paralyze the target server so that it is not reachable for
some time. There are so many techniques by wich you can "exhaust" the resources of the target host. In
the following I present you the most common:

ICMP Flooding:
ICMP Flooding "uses" ICMP. If a host receives an ICMP echo request it will normally try to answer
with an ICMP echo reply. This behaviour is used with ICMP Flooding: If you send the victim too many
echo requests its resources will be working on it to reply to these requests (as echo replies). As the IP of
the attacker is mostly additionally spoofed it does not get the replies but someone else.

SYN Flooding:
To understand SYN Flooding, I present again the "normal" three-way-handshake:

------------------ SYN -------------
| Host A | ------------------------------------ > | Host B |
------------------ -------------

------------------ ACK/SYN -------------
| Host A | <------------------------------------| Host B |
------------------ -------------

------------------ ACK -------------
| Host A | ------------------------------------ > | Host B |
------------------ -------------

Host A sends Host B a SYN to say that he wants a connection, B answers with ACK/SYN and waits for
the final ACK with which the connection would complete. But what if the last ACK is not sent? If B
sends back its SYN/ACK it waits (as said before) for the ACK of A, until then it will be queued in the
connectin queue of "B". If the connection is complete (A sent B an ACK) it will be removed from the
connection queue. But as mostly the IP address is spoofed B never receives an ACK (it should be so).
So, you can "fill" the connection queue as the host cannot make additonal connections.

UDP Flooding:
With this flooding attack the target server is flooded with UDP packets. If you send a UDP packet to a
port on the target server it will first check which service is responsible for this "request". Now, you
choose random ports to which you send the packets to rise the probability that a "Port Unreachable" is
sent by ICMP. As the result of such a flood the performance of a network segment suffers (often)
considerably.

Land:
Later you will see a filter which detects if there is a Land attack and can initiate counteractive measures,
but first the actual attack. A Land attack has similar source and destination IPs. When sending, e.g.,
SYN packets (with same source/destination IP) to an open port there will start a race condition on the
victims host which leads to paralysis of the whole system. Here, a trace of a Land attack:

 23/06/02 23:12:48 194.157.1.1 80 -> 194.157.1.1
 23/06/02 23:14:57 194.157.1.1 31337 -> 194.157.1.1

As you can see again, source and destination IP are the same.

 12:35:26.916369 192.168.38.110.135>192.168.38.110.135: udp 46[tos0x3,ECT,CE]
 4503 004a 96ac 0000 4011 15c7 c0a8 266e
 c0a8 266e 0087 0087 0036 8433 6920 616d
 206c 616d 6520 646f 7320 6b69 6420 6275
 7420 6920 7265
 12:35:26.916566 192.168.38.110.135>192.168.38.110.135: udp 46[tos0x3,ECT,CE]
 4503 004a 2923 0000 4011 8350 c0a8 266e
 c0a8 266e 0087 0087 0036 8433 6920 616d
 206c 616d 6520 646f 7320 6b69 6420 6275
 7420 6920 7265
 12:35:26.916682 192.168.38.110.135>192.168.38.110.135:udp 46[tos0x3,ECT,CE]
 4503 004a 50a0 0000 4011 5bd3 c0a8 266e
 c0a8 266e 0087 0087 0036 8433 6920 616d
 206c 616d 6520 646f 7320 6b69 6420 6275
 7420 6920 7265

The attack which you can see here is also called Snork.

Teardrop:
Here, the possibility of fragmentation of IP packets is used. As you see in the description of the scans
there is a fragmentation if datagrams are bigger than the size limit, this size limitation is called MTU
(Maximum Transmission Unit). With this attack, fragments overlap and as a result of this overlap many
OSs have (had) problems and mostly crashed the system.

 10:13:32.104203 10.10.10.10.53>192.168.1.3.53: udp 28(frag 242:36@0+)(ttl64)
 4500 0038 00f2 2000 4011 8404 0a0a 0a0a
 c0a8 0103 0035 0035 0024 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000 0000
 0000 0000 0000

 10:13:32.104272 10.10.10.10 >192.168.1.3: udp 28(frag 242:4@24)(ttl 64)
 4500 0018 00f2 0003 4011 a421 0a0a 0a0a
 c0a8 0103 0035 0035 0024 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000

Ping of Death:
Here, too, fragmentation of the IP packets again plays a role. Here, I will go into more detail (only a
little ;) on fragmentation. As told before, fragmentation means that the size of datagrams is "reduced",
whereas single fragments are not to be bigger than the MTU. When fragmenting you should actually
consider that you cannot fragment as you want, respectively that certain fields have to exist in every
fragment. So, every fragment has to contain, e.g., the IP protocol header to choose the right route. That
the router can rebuild fragments to a datagram every fragment receives a 16 bit flag (of the original,
"big" datagram"). With this 16 bit flag it is later possible to sort the single fragments to the right
datagram. Additionally, there is a fragment offset which tells at which position the fragment was in the
original datagram. But the position is in 8 octet units (as the position is measured in 8 octet units).
Additionally, the "more-bit" shows if further fragments of this datagram follow or not. If it is set to 1
further will follow if set to 0 it was the last fragment of the datagram. Now, we get to the actual
ping-of-death attack. Ping-of-death is given an offset of the last fragment for which is: offset + fragment
size > 65535 bytes. Thus, it is possible to flood internal 16 bit variables which would result, e.g., in a
system crash.

 17:43:58.431 pinger > target: icmp echo request (frag 4321: 380@0+)
 17:43:58.431 pinger > target: (frag 4321: 380@2656+)
 17:43:58.431 pinger > target: (frag 4321: 380@3040+)
 17:43:58.431 pinger > target: (frag 4321: 380@3416+)

Smurf:
A ping is sent to the broadcast address, better said, many pings are sent. Packets sent to the broadcast
address are sent to all hosts of the network. If you send many pings (ICMP echo requests) to the
broadcast address (e.g., 10000 per second) and you have a relatively large network with 1000 hosts, it
means that there are 10000 * 1000 ICMP echo replies per second at the victim’s host, that means
10000000 ICMP echo replies.

 09:28:28.666073 179.135.168.43>256.256.30.255: icmp: echo request (DF)
 4500 001c c014 4000 1e01 6172 b387 a82b
 c0a8 1eff 0800 f7ff 0000 0000 0000 0000
 0000 0000 0000 0000 0000 0000 0000
 09:28:28.696073 68.90.226.250>256.256.30.255: icmp: echo request (DF)
 4500 001c c015 4000 1e01 95cf 445a e2fa
 c0a8 1eff 0800 f7ff 0000 0000 3136 3803
 3133 3503 3137 3907 696e 2d61 6464
 09:28:28.726073 138.98.10.247>256.256.30.255: icmp: echo request (DF)
 4500 001c c016 4000 1e01 27ca 8a62 0af7
 c0a8 1eff 0800 f7ff 0000 0000 0332 3236
 3938 0331 3638 0769 6e2d 6164 6472
 09:28:28.756073 130.113.202.100 > 256.256.30.255: icmp: echo request (DF)
 4500 001c c017 4000 1e01 704c 8271ca64
 c0a8 1eff 0800 f7ff 0000 0000 0231 3002
 3938 0331 3338 0769 6e2d 6164 6472
 ...

For some time, there also existed DDoS attacks (Distributed Denial of Service). As the name suggests it
is a distributed/networked DoS attack. The attacker (client) looks for other hosts/networks... which are
easy to exloit. These first infected hosts are the so called handlers. Handlers infect further
hosts/networks, these infected hosts are then called agents, i.e. as a datagram:

 | YOU |

 |

 | | |
 Handler Handler Handler
 | | |
 ------ ------------------- ------------
 | | | | | |
 Agent Agent Agent Agent Agent Agent

Later, agents execute attacks.

This is the first article out of 2. We will continue in the next issue of LinuxFocus.

Webpages maintained by the LinuxFocus Editor
team

© Klaus Müller
"some rights reserved" see

linuxfocus.org/license/
http://www.LinuxFocus.org

Translation information:
de --> -- : Klaus Müller <Socma(at)gmx.net>

de --> en: Hubert Kaißer
<hubert(Q)faveve.uni-stuttgart.de>

2005-01-14, generated by lfparser_pdf version 2.51

