by Leonardo Giordani
<leo.giordani(at)libero.it>

About the author:
Student at the Faculty of

Telecommunication
Engineering in Politecnico

LinuxFocus article number 287
http://linuxfocus.org

D)

Abstract:

This series of articles has the purpose of introducing the reader to the

of Milan, works as network concept of multitasking and to its implementation in the Linux operating

administrator and is
interested in programming
(mostly in Assembly and

system. Starting from the theoretical concepts at the base of multitasking
we will end up writing a complete application demonstrating the
communication between processes, with a simple but efficient

C/C++). Since 1999 works ~ communication protocol.

amost only with
Linux/Unix.

Tranglated to English by:
Leonardo Giordani
<leo.giordani(at)libero.it>

I ntroduction

Prerequisites for the understanding of the article are:

® Minima knowledge of the shell
® Basic knowledge of C language (syntax, loops, libraries)

It isagood ideato read aso the other articlesin this series which
appeared in the last 2 issues of LinuxFocus (November2002 and
January2003).

In the past articles we introduced the concept of concurrent programming and studied a first solution to
the problem of inter process communication: the semaphores. As we saw, the use of semaphores allows
us to manage the access to shared resources, so that it roughly synchronizes two or more processes.

Synchronizing processes means timing their work, not in an absolute reference system (giving a precise

time in which the process should begin its operations) but in arelative one, where we can schedule
which process should work first and which second.

Using semaphores for this revealsitself as complex and limited: complex because every process should
manage a semaphore for every other process that has to synchronize with it. Limited because it does not
allow us the exchange parameters between the processes. Let’s consider for example the creation of a
new process: this event should be notified to every working process, but semaphores do not allow a
process to send such information.

The concurrency control of the access to shared resources through semaphores, moreover, can lead to
continuous blocking of a process, when one of the other processes involved release the resource and
lock it again before others can useit: as we saw, in the world of concurrency programming it is not
possible to know in advance which process will be executed and when.

These brief notes et usimmediately understand that semaphores are an inadequate tool for managing
complex synchronization problems. An elegant solution to this matter comes with the use of message
gueues: in this article we will study the theory of this interprocess communication facility and write a
little program using SysV primitives.

The Theory of M essage Queues

Every process can create one or more structures named queues: Every structure can hold one or more
messages of different type, which can originate from different sources and can contain information of
every nature; everyone can send a message to the queues provided that he knows itsidentifier. The
process can access sequentially the queue, reading the messages in chronological order (from the oldest,
thefirst, to the most recent, the last arrived), but selectively, that is considering only the messages of a
certain type: thislast feature gives us a sort of control on the priority of the messages we read.

The use of queues is thus a simple implementation of amail system between processes. every process
has an address with which it can other processes. The process can then read the messages delivered to its
box in a preferential order and act accorting to what has been notified.

The synchronization of two processes can thus be performed simply using messages between the two:
resources will still own semaphores to let the processes know their status, but timing between processes
will be performed directly. Immediately we can understand that the use of message queues simplified
very much what at the beginning was a extremely complex problem.

Before we can implement in C language the message queues it is necessary to speak about another
problem related to synchronzation: the need for acommunication protocol.

Creating a Protocol

A protocol isaset of rules which control the interaction of elementsin a set; in the past article we
implemented one of the simplest protocols creating a semaphore and ordering two processes to act

according to its status. The use of message queues lets us implement more complex protocols: it is
sufficient to think that every network protocol (TCP/IP, DNS, SMTP, ...) is built on a message exchange
architecture, even if the communication is between computers and not internal to one of them. The
comparison is compulsory: thereis not areal difference between interprocess communication on the
same machine and between machines. Aswe will see in a future article extending the concepts we are
speaking about to a distributed contest (several computers connected) is avery simple matter.

Thisisasimple example of a protocol based on message exchange: two processes A and B are
executing concurrently and process different data; once they end their processing the have to merge the
results. A simple protocol to rule their interaction could be the following

PROCESSB:

® Work with your data
® \When you finish send amessageto A
® When A answers begin sending it your results

PROCESSA:

® Work with your data

® Wait for amessage from B

® Answer the message

® Receive data and merge them with yours

Choosing which process has to merge dataisin this case totally arbitrary; commonly this happens on the
basis of the nature of the processinvolved (client/server) but this discussion deserves a dedicated article.

This protocol is simply extensible to the case of n processes. every process but A works with its own
data and then sends a message to A. When A answers every process sends it its results: the structure of
the individual processes (except A) has not been modified.

System V M essage Queues

Now it istime to speak about implementing these concepts in the Linux operating system. As already
said we have a set of primitives that allow us to manage the structures related to message queues and
that works as those given to manage semaphores: | will thus assume that the reader knows the basic
concepts related to process creation, use of system calls and 1PC keys.

The structure at the basis of the system describing amessageis caled msgbuf ;itisdeclaredin
['i nux/ msg. h

/* nmessage buffer for nmsgsnd and msgrcv calls */
struct megbuf {
| ong ntype; /* type of nessage */
char nmtext[1]; /* nessage text */

The field mtype represents the type of message and is a strictly positive number: the correspondence
between numbers and message types has to be set in advance and is part of the protocol definition. The
second field represents the content of the message but not have to be considered in the declaration. The
structure nsgbuf can be redefined so that it can contain complex data; for example it is possible to write

struct nessage {
| ong ntype;
| ong sender;
| ong receiver;
struct info data

nessage type */
sender id */
receiver id */
nessage content */

~ Y~~~

E I I

Before we face the arguments strictly related to concurrency theory we have to consider creating the
prototype of a message with the maximum size, fixed to 4056 bytes. Obvioudly it is always possible to
recompile the kernel increasing this dimension, but this makes the application unportable (more over
this bound has been fixed to grant good performances and increasing it much certainly is not good).

To create anew queue a process should call the msgget () function

int nsgget (key_t key, int nsgflg)

which receives as arguments an |PC key and some flags, which by now can be set to
| PC_CREAT | 0660

(create the queue if it does not exist and grant access to the owner and group users), and that returns the
gueue identifier.

Asin the previous articles we will assume that no errors will happen, so that we can simplify the code,
evenif inafuture article we will speak about secure IPC code.

To send a message to a queue of which we know the identifier we have to use the nsgsnd() primitive

int megsnd(int nsqid, struct msgbuf *msgp, int nsegsz, int nsgflg)

wherensqi d istheidentifier of the queue, negp isapointer to the message we have to send (which
typeishereidentified asst ruct nsgbuf but which isthe type we redefined), nsgsz the dimension of
the message (excluding the length of the nt ype that isthe length of along, which is commonly 4 bytes)
and nsgf | g aflag related to the waiting policy. The length of the message can be easily be found as

l ength = sizeof (struct nessage) - sizeof(long);
while the waiting policy refersto the case of full queue: if nsgf | g isset to IPC_NOWAIT the sender

process will not wait until some space is available and will exit with an error code; we will speak about
such a case when we will talk about error management.

To read the messages contained in a queue we use the msgr cv() System call

int msgrev(int msgid, struct msgbuf * msgp, int msgsz, long mtype, int msgflg)

wherethensgp pointer identifies the buffer where we will copy the message read from the queue and
nt ype identifiesthe subset of messages we want to consider.

Removing a queue can be performed through the use of the msgct 1 () primitive with the flag
IPC_RMID

nsgctl (qid, IPC_RMD, 0)

Let’stest what we said with a simple program wich creates a message queue, sends a message and reads
it; we will control that way the correct working of the system.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <l inux/ipc. h>
#i ncl ude <l i nux/nsg. h>

/* Redefines the struct msgbuf */
t ypedef struct mynsgbuf
{

| ong ntype;
int int_num
float float num
char ch;

} nmess_t;

int main()

int qid;
key t nmsgkey;

nmess_t sent;
nmess_t received;

int Iength;

/* Initializes the seed of the pseudo-random nunber generator */
srand (tinme (0));

/* Length of the message */
| ength = sizeof (nmess_t) - sizeof(long);

nmsgkey = ftok(".", m);

/* Creates the queue*/
gi d = msgget (nmsgkey, | PC CREAT | 0660);

printf("QD = %\n", qid);
/* Builds a nmessage */

sent. mype = 1;
sent.int_num = rand();

sent.float_num= (float)(rand())/3
sent.ch = 'f’

/* Sends the nessage */
nsgsnd(qi d, &sent, |length, 0);
printf("MESSAGE SENT...\n");

/* Receives the nessage */
nsgrcv(qid, & eceived, length, sent.ntype, 0);
printf("MESSAGE RECEI VED...\n");

/* Controls that received and sent nmessages are equal */

printf("lInteger nunber = % (sent %) -- ", received.int_num
sent.int_num;

if(received.int_num== sent.int_num printf(" OK\n");

el se printf("ERROR n");

printf("Float numero = % (sent %) -- ", received.float_num
sent.float_num;
i f(received.float_num == sent.float_num printf(" O\n");

el se printf("ERRORN");

printf("Char = % (sent %) -- ", received.ch, sent.ch);
i f(received.ch == sent.ch) printf(" OK\n");
el se printf("ERROR n");

/* Destroys the queue */
msgctl (qid, PC_RMD, 0);

Now we can create two processes and let them communicate through a message queue; think a bit about
process forking concepts: the value of all variables allocated by the father processis taken to those of the
son process (memory copy). This means we should create the queue before the fork the father process
and the son will known the queue identifier and thus accessiit.

The code | wrote creates a queue used by the son process to send its data to the father: the son generates
random numbers, sends them to the father and both print them on the standard output.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <linux/ipc. h>
#i ncl ude <lIinux/msg. h>
#i ncl ude <sys/types. h>

/* Redefines the nessage structure */
t ypedef struct mynsgbuf
{

| ong ntype;
int num

} mess_t;

int main()
int qid;
key t msgkey;
pid t pid;

nmess_t buf;

int length;
int cont;

l ength = sizeof (nmess_t) - sizeof(long);
megkey = ftok(".", 'm);
gi d = msgget (msgkey, | PC CREAT | 0660);

if(!(pid=fork())){
printf("SON - QD= %l\n", gid);

srand (time (0));

for(cont = 0; cont < 10; cont++){

sl eep (rand() %) ;

buf . mype = 1;

buf . num = rand() %4.00;

nmsgsnd(qi d, &buf, length, 0);

printf("SON - MESSAGE NUMBER %l: %\ n", cont+1, buf.num;
}

return O;

}
printf("FATHER - QD = %\ n", qid);

for(cont = 0; cont < 10; cont++){

sl eep (rand() %) ;

nsgrcv(qid, &buf, length, 1, 0);

printf("FATHER - MESSAGE NUMBER %d: %\ n", cont+1, buf.numn;
}

megctl (qid, IPCRMD, 0);

return O;

We created thus two processes, which can collaborate in an elementary manner through a message
exchange system. We didn’t need a (formal) protocol because the operations performed were very
simple; in the next article we will speak again about message queues and about managing different
message types. We will work moreover on the communication protocol in order to begin the building of
our big IPC project (atelephone switch simulator).

Recommended readings

® Silberschatz, Galvin, Gagne, Oper ating System Concepts - Sixth Edition, Wiley& Sons, 2001
Tanenbaum, WoodHull, Operating Systems: Design and | mplementation - Second Edition,
Prentice Hall, 2000

Stallings, Operating Systems - Fourth Edition, Prentice Hall, 2002

Bovet, Cesati, Under standing the Linux Kernel, O’ Reilly, 2000

The Linux Programmer’s Guide: http://www.tldp.org/L DP/lIpg/index.html

Linux Kernel 2.4 Internals http://www.tldp.org/L DP/Iki/lki-5.html

Web page of the #kernelnewbies IRC channel http://www.kernelnewbies.org/

® The linux-kernel mailing list FAQittp://www.tux.org/lkml/

Webpages maintained by the LinuxFocus Ed|tor
team Translation information:

© Leonardo Giordani it --> -- : Leonardo Giordanileo.giordani(at)libero.it>

"some rights reserved" séeuxfocus.org/licenseyit --> en: Leonardo Giordani <leo.giordani(at)libero.it>
http://www.LinuxFocus.org

2005-01-14, generated by Ifparser_pdf version 2.51

