LinuxFocus article number 266
http://linuxfocus.org

Developing Applications for Gnome with
Python (Part 3)

ad
L
by Hilaire Fernandes "%
<hilaire(at)ofset.org>
About the author: Abstract:
Hilaire Fernandesis the This series of articlesis specially written for newbie programmers using

Vice-President of OFSET, Gnome and GNU/Linux. Python, the chosen language for development,
an organization to promote @voids the usual overhead of compiled languages like C. To understand
the development of 'Free thisarticle you need abasic understanding of Python programming.
Gnome desktop. He also http://www.python.org and http://www.gnome.org.

wrote Dr. Geo, a primer

program for dynamic Previous articlesin the series:
geometry, and iscurrently - firstarticle

working on Dr. Genius- - Second article

another education program

for Gnome.

Trandated to English by:
Lorne Bailey
<sherm_pbody/(at)yahoo.com>

Required tools

For the software dependencies needed to execute the program described in this article, please refer to the
list from part | of this series of articles.

Y ou will also need:

® Intheorigina .gladefile[drill.glade] . Thisfile has been slightly modified since last time to
incorporate sliders to choose exercises in the interface.

® Thistime the Python source code is distributed in four files:
1. [drilll.py].
2. [templateExercice.py].
3. [colorExercice.py].
4. [labelExercice.py].

For installation and use of Python-Gnome and LibGlade please refer to Part 1.

Development Model for the Exercises

In the preceeding article (part 2), we created the user interface -- Drill -- which isaframe for the coding
of the exercises described further on. Now, we shall take a closer ook at object oriented development
using Python, in order to add functionalitiesto Drill. In this study, we will leave aside the aspects of
Python development in Gnome.

So let’ s pick up where we left off, the insertion of a color game into Drill as an exercise for the reader.
We will use thisto illustrate our current subject and at the same time offer a solution for that exercise.

Object Oriented Development

Briefly, without claiming to make an exhaustive analysis, object oriented development attempts to
define and categorize things by is a relationships, whether they exist in the physical world or not. This
can be seen as abstracting the objects related to the problem in which we' re interested. We can find
comparisons in different domains like the categories of Aristotle, taxonomies, or ontologies. In each
case, one must understand a complex situation through an abstraction. This type of development could
very well have been called category oriented development.

In this development model, objects manipulated by the program, or constituting the program, are called
classes and representatives of these abstract objects are instances. Classes are defined by attributes
(containing values) and methods (functions). We speak of a parent-child relationship for a given class
where a child classinherits properties from a parent. Classes are organized by an is a relationship, where
achild still is a type of the parent as well as a child type. Classes might not be completely defined, in
which case they are called abstract classes. When a method is declared but not defined (the body of the
functionisvoid) it is also called avirtual method. An abstract class has one or more of these undefined
methods and therefore cannot be instantiated. Abstract classes permit specification of the form taken by
derived classes - child classesin which the pure virtual methods will be defined.

Different languages have more or less elegance in defining objects, but the common denominator seems
to be the following :

1. Inheritance of attributes and methods of the parent class by the child.
2. Ability of the child classto override and overload the methods inherited from the parent.
3. Polymorphism, where a class might have many parent classes.

Python and Object Oriented Development

In the case of Python, thisis the lowest common denominator that has been chosen. This permits
learning object oriented development without getting lost in the details of this methodology.

In Python, an object’s methods are always virtual methods. This means they can always be overridden
by achild class -- which is generally what we want using object oriented development -- and which
dlightly ssimplifies the syntax. But it’s not easy to distinguish between methods that are overridden or
not. Furthermore it isimpossible to render an object opague and therefore deny access to attributes and
methods from outside an object. In conclusion, attributes of a Python object are both readable and
writable from outside the object.

Parent Class exercice

In our example, (seethefilet enpl at eExer ci ce. py), wewould like to define many objects of the type
exer ci ce. We define an object of type exer ci ce to serve as an abstract base class for deriving other
exercises that we will create later. The object exenpl e isthe parent class of al the other types of
exercises created. These derived types of exercises will have at least the same attributes and methods as
the classexer ci ce because they will inherit them. Thiswill permit usto manipulate all the diverse types
of exercice objectsidentically, regardless of the object they are instantiated from.

For example, to create an instance of the classexer ci ce we can write :

fromtenpl at eExerci ce i nport exercice

nonExer ci ce = exercice ()
nonExer ci ce. acti vate (ceW dget)

In fact, there’ s no need to create an instance of the class exer ci ce because it’s only atemplate from
which other classes are derived.

Attributes

® exerci ceW dget : the widget containing the exercise' s user interface ;
® exer ci ceNane : the name of the exercise.

If we are interested in other aspects of an exercise we can add attributes, e.g. the score obtained or the
number of timesit has been run.

Methods

® init__ (self):thismethod hasavery preciserolein aPython object. It is automatically
called during the creation of an instance of this object. For thisreason it is also called the
constructor. The argument sel f isareference to the instance of the classexer ci ce that called the
__init__ method. It is aways necessary to specify this argument in methods, which means that a
method cannot have zero arguments. Careful, this argument is added automatically by Python, so
it is not necessary to include it when calling the method. The argument sel f allows access to the
attributes and other methods of an instance. Without it, such access isimpossible. We will see that
in greater detail later.

® activate (self, area) : activatesthisinstance of exercice by placing its widget in the exercice
zone of Drill. The argument ar ea is actually a GTK+ container that controls the widget's
placement in Drill. Knowing that the attribute exer ci ceW dget contains the exercise's widget,
one need only call area. add (sel f.exerci ceW dget) towrap the exercicein Drill.

® unactivate (self, area) : removesthewidget from the container Drill. In terms of placement,
thisisthe opposite operation, so calling ar ea. renove (sel f. exerci ceW dget) will suffice.

® reset (self) :resetthe exerciseto zero.

In Python code this givesyou :

cl ass exerci ce:

"A tenpl ate exercice"

exerci ceWdget = None

exerci ceNane = "No Nane"

def _init__ (self):
"Create the exericice w dget"

def activate (self, area):
"Set the exercice on the area container"
area. add (sel f.exerciceWdget)

def unactivate (self, area):
"Renove the exercice front the container"
area.renove (self.exerciceWdget)

def reset (self):
"Reset the exercice"

Thiscodeisincluded in itsown filet enpl at eFi chi er . py, which permits usto clarify the specific roles
of each object. The methods are declared inside the class exer ci ce, and are in fact functions.

We will see that the argument ar ea isareference to a GTK+ widget constructed by LibGlade, it'sa
window with diders.

In this object, the methods__i nit__ andreset are empty and will be overridden by the child classes if
necessary.

labelExercice, First Example of Inheritance

Thisisamost an empty exercise. It only does one thing, it puts the name of the exercise into the

exercise zone ddrill . It serves as a starter for the exercises that populate the left-handDrek lodit
that we haven’t created yet.

In the same way as the objeger ci ce, the object abel Exerci ce is put in it's own file,
| abel Exer ci ce. py . Next, since this object is a child of the objeair ci ce , we need to tell it how tf
parent is defined. This is done simply by an import :

fromtenpl at eExercice i nport exercice

This literally means that the definition of the clagsr ci ce in the filet enpl at eExer ci ce. py IS
imported in the current code.

We come now to the most important aspect, the declaration of the abes&xer ci ce as a child clas:
of exerci ce.
| abel Exer ci ce is declared in the following fashion :

cl ass | abel Exerci ce(exercice):

Voila, that's enough so thatbel Exer ci ce inherits all the attributes and methodxér ci ce.

Of course we still have work to do, in particular we need to initialize the widget of the exercise.
this by overriding the method i nit __ (i.e. in redefining it in the classbel Exer ci ce), this last is
called when an instance is created. Also, this widget must be referenced in the attribute

exer ci ceW dget SO we will not need to override thet i vat e andunact i vat e methods of the paren
classexerci ce.

def init__ (self, name):

sel f.exerci ceName = "Un exercice vide" (Trans. note: an enpty exercise)
sel f.exerci ceWdget = GkLabel (nane)
sel f. exerci ceWdget. show ()

This is the only method that we override. To create an instane@fExer ci ce, one need only call .

monExercice = labelExercice ("Un exercice qui ne fait rien™)
(Translator Note: "Un exercice qui ne fait rien" means "an exercise doing nothing")

To access it's attributes or methods :

Le nom de I'exercice (Translator Note: name of the exercise)
print monExercice.exerciceName

Placer le widget de I'exercice dans le container "area"
(Translator Note: place the exercise’s

widget in the container "area")

monExerice.activate (area)

color Exer cice, Second Example of Inheritance

Here we begin the transformation of the color game seen in the first article of this seriesinto a class of
type exer ci ce that we will name col or Exer ci ce. We placeitinit'sown file, col or Exer ci ce. py ,
that is appended to this article with complete source code.

The changes required to the initial source code consist mostly of a redistribution of functions and
variables into methods and attributes in the class col or Exer ci ce.

The global variables are transformed into attributes declared at the beginning of the class:

cl ass col or Exerci ce(exercice):
wi dth, iteniroSel ect = 200, 8
sel ectedltem = root G oup = None
to keep trace of the canvas item
col or Shape = []

Likefor theclass| abel Exerci ce, themethod i nit___ isoverridden to accommodate the construction
of the exercise’ swidgets :

def __init__ (self):
sel f.exerciceName = "Le jeu de couleur" # Translator Note: the col or gane
sel f. exerci ceWdget = GhoneCanvas ()
sel f.root Group = sel f.exerciceWdget.root ()
sel f. bui |l dGanmeArea ()
sel f.exerci ceWdget.set _usize (self.w dth, self.wi dth)
sel f.exerci ceWdget.set_scroll _region (0, 0, self.width, self.wdth)
sel f. exerci ceWdget. show ()

Nothing new compared to the initial codeif it’s only the GhromeCanvas referenced in the attribute
exerci ceW dget .

The other overridden method isr eset . Since it resets the game to zero, it must be customized for the
color game::

def reset (self):
for itemin self.col orShape:
itemdestroy ()
del sel f.col or Shape[0:]
sel f. bui | dGanmeArea ()

The other methods are direct copies of the original functions, with the added use of the variable sel f to
allow access to the attributes and methods of the instance. There is one exception in the methods

bui | dSt ar and bui | dShape where the decimal parameter k is replaced by awhole number. | noted
strange behavior in the document col or Exer ci ce. py where the decimal numbers grabbed by the source
code are truncated. The problem seemsto betied to the module gnore. ui and to the French locale
(where decimal numbers use acomma for a separator instead of a period). | will work at finding the

source of the problem before the next article.

Final adjustmentsin Drill

We now have two types of exercise -- | abel Exer ci ce and col or Exer ci ce. We create instances of
them with the functions addXxxXXExer ci ce inthe codedri I | 1. py. Theinstances are referenced in a
dictionary exer ci ceLi st inwhich the keys are al'so arguments to the pages of each exercise in the tree
at left:

def addExercice (category, title, id):
item= GkTreeltem (title)
itemset _data ("id", id)
category. append (item
item show ()
itemconnect ("select", selectTreeltem
item connect ("deselect"”, deselectTreelten

o]
def addGaneExercice ():
gl obal exercicelLi st
subtree = addSubtree ("Jeux")
addExerci ce (subtree, "Coul eur", "Ganes/Color")
exerciceList ["Ganes/ Color"] = col orExercice ()

The function addGanmeExer ci ce creates aleaf in the tree with the attribute i d="Ganes/ Col or" by
calling the function addExer ci ce. This attribute is used as akey for the instance of the color game
created by the command col or Exer ci ce() inthedictionary exer ci celLi st .

Next, due to the elegance of polymorphism in object oriented development, we can run the exercises by
using same functions that act differently for each object without worrying about their internal
implementation. We only call methods defined in the abstract base class exer ci ce and they do different
thingsin class colorExercice or label Exercice. The programmer "speaks' to all the exercises in the same
way, even if the "response” of each exerciseisalittle different. To do this we combine the use of the
attributei d of the pages of the tree and the dictionary exer ci ceLi st or the variable exoSel ect ed that
refersto the exercise in use. Given that all the exercises are children of the classexer ci ce, we useits
methods the same way to control the exercisesin all their variety.

def on_new_ activate (obj):
gl obal exoSel ect ed
i f exoSel ected != None:
exoSel ected. reset ()

def selectTreeltem (item:
gl obal exoArea, exoSel ected, exercicelist
exoSel ected = exerciceList [itemget _data ("id")]
exoSel ect ed. acti vate (exoArea)

def deselectTreeltem (item:
gl obal exoArea, exerciceli st
exercicelList [itemget _data ("id")].unactivate (exoArea)

(]
=
]

Fichier Parametres Aide

>

A Mouveau

= —
Mathématicues o
Frangais

Histoire

OO0
P
563, 6@3.
*00Q

s '
|

Fig. 1 - Main window of Drill, with the color exercise

Géographie
EFE Exercice 1
Exercice 2

ii Jeux

~1

Thus ends our article. We have discovered the attractions of object oriented development in Python
within the realm of a graphical user interface. In the next articles, we will continue discovering Gnome
widgets through coding new exercises that we will insert into Drill.

Appendix: Complete Source Code
drill1.py

#! [usr/ bi n/ pyt hon

Drill - Teo Serie

Copyright Hilaire Fernandes 2002

Rel ease under the terms of the GPL |icence

You can get a copy of the license at http://ww.gnu.org

fromgnone.ui inmport *
fromlibglade inmport *

Inport the exercice class
from col or Exerci ce inmport *
from| abel Exercice inport *

exerci ceTree = current Exerci ce = None
The exercice hol der

exoArea = None

exoSel ect ed = None

exerciceList = {}

def on_about_activate(obj):
"display the about dialog"
about = GladeXML ("drill.glade", "about").get_widget ("about")
about.show ()

def on_new_activate (obj):
global exoSelected
if exoSelected != None:
exoSelected.reset ()

def selectTreeltem (item):
global exoArea, exoSelected, exerciceList
exoSelected = exercicelist [item.get_data ("id")]
exoSelected.activate (exoArea)

def deselectTreeltem (item):
global exoArea, exerciceList
exercicelList [item.get_data ("id")].unactivate (exoArea)

def addSubtree (name):
global exerciceTree
subTree = GtkTree ()
item = GtkTreeltem (name)
exerciceTree.append (item)
item.set_subtree (subTree)
item.show ()
return subTree

def addExercice (category, title, id):
item = GtkTreeltem (title)
item.set_data ("id", id)
category.append (item)
item.show ()
item.connect ("select", selectTreeltem)
item.connect ("deselect"”, deselectTreeltem)

def addMathExercice ():
global exercicelList
subtree = addSubtree ("Mathématiques")
addExercice (subtree, "Exercice 1", "Math/Ex1")
exercicelList ["Math/Ex1"] = labelExercice ("Exercice 1")
addExercice (subtree, "Exercice 2", "Math. Ex2")
exerciceList ["Math/Ex2"] = labelExercice ("Exercice 2")

def addFrenchExercice ():
global exercicelList
subtree = addSubtree ("Francais")
addExercice (subtree, "Exercice 1", "French/Ex1")
exercicelList ["French/Ex1"] = labelExercice ("Exercice 1")
addExercice (subtree, "Exercice 2", "French/Ex2")
exercicelList ["French/Ex2"] = labelExercice ("Exercice 2")

def addHistoryExercice ():
global exercicelList
subtree = addSubtree ("Histoire")
addExercice (subtree, "Exercice 1", "Histoiry/Ex1")
exerciceList ["History/Ex1"] = labelExercice ("Exercice 1")
addExercice (subtree, "Exercice 2", "Histoiry/Ex2")

exerciceList ["History/Ex2"] = labelExercice ("Exercice 2")

def addGeographyExercice ():
global exercicelList
subtree = addSubtree ("Géographie")
addExercice (subtree, "Exercice 1", "Geography/Ex1")
exercicelList ["Geography/Ex1"] = labelExercice ("Exercice 1")
addExercice (subtree, "Exercice 2", "Geography/Ex2")
exercicelList ["Geography/Ex2"] = labelExercice ("Exercice 2")

def addGameExercice ():
global exercicelList
subtree = addSubtree ("Jeux")
addExercice (subtree, "Couleur”, "Games/Color")
exercicelList ['"Games/Color"] = colorExercice ()

def initDrill ():

global exerciceTree, label, exoArea

wTree = GladeXML ("drill.glade”, "drillApp")

dic = {"on_about_activate": on_about_activate,
"on_exit_activate": mainquit,
"on_new_activate": on_new_activate}

wTree.signal_autoconnect (dic)

exerciceTree = wTree.get_widget ("exerciceTree")

Temporary until we implement real exercice

exoArea = wTree.get_widget ("exoArea")

Free the GladeXML tree

wTree.destroy ()

Add the exercice

addMathExercice ()

addFrenchExercice ()

addHistoryExercice ()

addGeographyExercice ()

addGameExercice ()

initDrill ()
mainloop ()

templateExer cice.py

Exercice pure virtual class
exercice class methods should be override
when exercice class is derived
class exercice:
"A template exercice"
exerciceWidget = None
exerciceName = "No Name"
def __init__ (self):
"Create the exericice widget"
def activate (self, area):
"Set the exercice on the area container”
area.add (self.exerciceWidget)
def unactivate (self, area):
"Remove the exercice fromt the container"
area.remove (self.exerciceWidget)
def reset (self):
"Reset the exercice"

label Exer cice.py

Dummy Exercice - Teo Serie

Copyright Hilaire Fernandes 2001

Rel ease under the terns of the GPL |icence

You can get a copy of the license at http://ww.gnu.org

fromgtk inmport *
fromtenpl at eExercice i nport exercice

cl ass | abel Exerci ce(exercice):
"A dummy exercie, it just prints a label in the exercice area
def __init__ (self, nane):
sel f. exerciceName = "Un exercice vide"
sel f.exerci ceWdget = GkLabel (nane)
sel f. exerci ceWdget. show ()

color Exer cice.py

Col or Exercice - Teo Serie

Copyright Hilaire Fernandes 2001

Rel ease under the terms of the GPL |icence

You can get a copy of the license at http://ww.gnu.org

frommth inport cos, sin, pi
from whrandom i nport randint
fromGK inmport *
fromgnone.ui inmport *

from tenpl at eExerci ce i nport exercice

Exercice 1 : color gane

cl ass col or Exerci ce(exercice):
wi dth, itenfoSel ect = 200, 8
sel ectedltem = root G oup = None
to keep trace of the canvas item
col or Shape = []
def __init__ (self):
sel f.exerci ceName = "Le jeu de coul eur"
sel f.exerci ceWdget = GrhoneCanvas ()
sel f.root Goup = sel f.exerci ceWdget.root ()
sel f. bui |l dGanmeArea ()
sel f.exerci ceWdget.set usize (self.w dth, self.width)
sel f.exerci ceWdget.set _scroll _region (0, 0, self.wdth,
sel f. exerci ceW dget . show ()
def reset (self):
for itemin self.col orShape:
itemdestroy ()
del sel f. col or Shape[0:]
sel f. bui |l dGanmeArea ()
def shapeEvent (self, item event):

sel f. wi dt h)

def

def

def

def

if event.type == ENTER NOTI FY and self.selectedltem!= item

itemset(outline _color = "white’') #highligh outline
elif event.type == LEAVE NOTI FY and self.selectedltem!= item
itemset(outline_color = "'black’) #unlight outline

elif event.type == BUTTON PRESS:
if not self.selectedltem
itemset (outline_color = "white')
sel f.selectedltem = item

elif item ' fill _color_gdk’'] == self.selectedlten] fill _color_gdk'] \

and item!= self.selectedltem
itemdestroy ()
sel f.sel ectedltem destroy ()
sel f. col or Shape. renove (iten)
sel f. col or Shape. renove (self.selectedlten)
self.selectedltem self.itenToSel ect = None, \
self.itenToSelect - 1
if self.itenToSel ect == 0:
sel f. bui | dGanmeArea ()
return 1

bui | dShape (sel f, group, nunber, type, color):
"build a shape of 'type' and 'color’"
w=self.width / 4

X, Y, r = (number %4) * w+ w/ 2, (nunber / 4) * w+w/ 2, w/ 2 -

if type == "circle’
item= self.buildCrcle (group, x, y, r, color)
elif type == 'squarre’

item= self.buildSquare (group, x, y, r, color)
elif type == "star’:

item= self.buildStar (group, X, y, r, 2, randint (3, 15),
elif type == "star?2’

item= self.buildStar (group, x, y, r, 3, randint (3, 15),
item connect ('event’, self.shapeEvent)
sel f. col or Shape. append (iten)

buildCrcle (self,group, x, y, r, color):

item= group.add ("ellipse", x1 =x - r, yl = -r
x2 =x +r, y2 =y +r, fill _color = color,
outline_color = "black", width_units = 2.5)

return item

bui | dSquare (self,group, x, y, a, color):
item= group.add ("rect", x1 =x - a, yl =y - a,
X2 =x +a, y2 =y + a, fill _color = color,
outline_color = "black", width _units = 2.5)
return item

buil dStar (self,group, x, vy, r, k, n, color):
"k: factor to get the internal radius"

“n: nunmber of branch"

angleCenter = 2 * pi / n

col or)

col or)

pts =[]
for i in range (n):
pts.append (x + r * cos (i * angleCenter))
pts.append (y + r * sin (i * angleCenter))
pts.append (x + r / k * cos (i * angleCenter + angleCenter / 2))
pts.append (y +r / k * sin (i * angleCenter + angleCenter / 2))
pts. append (pts[0])
pts. append (pts[1])
item = group.add ("polygon", points = pts, fill_color = col or,

outline_color = "black", width _units = 2.5)

2

return item

def getEnmptyCell (self,l, n):
"get the n-th non null element of I"

length, i =1len (1), O
while i < length:
if I[i] ==
n=n-1
if n<O:
return
i =i + 1
return

def buil dGaneArea (self):

itemColor = ['red, 'yellow, 'green’, 'brown', ’'blue’,
" darkgreen’, ’'bisquel’]

itenShape = ['circle’, 'squarre', 'star’, 'star2']

emptyCell =70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

self.itemloSel ect, i, self.selectedltem= 8, 15, None

for color in itenColor:
two itens of same col or
n =2
while n > O:
cel | Random = randint (0, i)

"magenta’,

cel Il Number = self.getEnptyCell (enptyCell, cell Random

enmptyCel | [cel | Nunber] =1

sel f. bui | dShape (sel f.root Group, cell Nunmber, \
i tenShape[randint (0, 3)], color)

i, n=i -1, n-1

Webpages maintained by the LinuxFocus Edijtor
team Translation information:

http://www.LinuxFocus.org

© Hilaire Fernandes fr --> -- : Hilaire Fernandeshilaire(at)ofset.org>
"some rights reserved" séeuxfocus.org/licensé/fr --> en: Lorne Bailey <sherm_pbody(at)yahoo.com>

2005-01-14, generated by Ifparser_pdf version 2.51

