
LinuxFocus article number 224
http://linuxfocus.org

by Hilaire Fernandes
<hilaire/at/ofset.org>

About the author:

Hilaire Fernandes is vice
president of OFSET, an
organization to promote and
develop free software for
education for the Gnome
project. He has as well
written Dr. Geo a software
for dynamic geometry.
Currently he is working on
Dr. Genius an other
mathematics software for
educational purposes for the
Gnome project.

Translated to English by:
Guido Socher
<guido/at/linuxfocus.org>

Developing Gnome applications with Python
(part 2)

Abstract:

This article series is mainly intended for programming beginners in the
area of Gnome and GNU/Linux. Python as the programming language
has been selected because beginners are usually getting much faster into
this language than compiled languages such as C. To understand this
article you need some programming basics in Python.

_________________ _________________ _________________

Needed tools

The software needed to execute the described program was listed in the first article in this series.

You need as well:

the file .glade, original [drill.glade] ;
the drill Python source code [drill.py].

The installation procedure and the usage of Python-Gnome with LibGlade are as well described in the
first part of this article series.

Drill, our support

The goal of the first article was to demonstrate the mechanism and the interaction modes between the
different components of a program written for a configuration using Gnome, Glade, LibGlade and
Python.

The example used the GnomeCanvas widget. This example provided us with a colorful presentation and
showed us the ease of development with this configuration.

For the next sections, I suggest to work within a framework in which we will explain the different
widgets of Gnome. This article concentrates on the setup of the framework. . Further articles will use
this framework adding more features to illustrate the many Gnome widgets.

Our framework is called Drill. This is a platform for educational purposes which will be used for our
examples and exercises. These examples are solely for educational purposes to demonstrate the usage of
the widgets.

Creating an interface with Glade

The widgets

The application window is created with Glade. Like in the previous article you first create a window for
a Gnome application. From that window you need to delete the useless icons and menus.

The main part of Drill has been divided into two workspaces using the GtkPaned widget.

Fig. 1 - Drill main window

Both workspaces are vertically separated with a handle used to adjust the size of each. The left
workspace contains the tree widget (GtkTree), in which the different parts of the exercise will be stored
by category. The right workspace is empty. This is where we’ll add the exercises according to the user’s
choice.

From Glade, viewing Drill’s interface gives us insight into the structure of its components.

Fig. 2 - tree view of Drill

You can see in Fig. 2 that the hpanedTree widget (of the type GtkPaned) only contains one widget,
frame2 (of the type GtkFrame), the one on the left side. frame2 contains the exerciceTree widget. It’s
preferable to first insert a GtkFrame widget with a shadow of the type GTK_SHADOW_IN into a GtkPaned
widget. This avoids masking the handle.

Last, the Gnome dialog box "About Drill" can look like this one.

Fig. 3 - Dialog box "About" Drill

Its different items are edited from Glade in the Widget leaf from the Properties window.

The widgets and processing functions names

Use the following names for these widgets to manipulate them under these names from Python.

Gnome application window:
drillApp

Handle separating the exercises tree :
hpanedTree

Exercises tree:
exerciceTree

Gnome dialog box About :
about

You can see these widget names in Fig. 2

We list here quickly the names of the processing functions. If you need more information on this subject
then you can read the part I of this article series.

Name of the widget Signal Processing

about clicked gtk_widget_destroy

about close gtk_widget_destroy

about destroy gtk_widget_destroy

button1 (Icon New in the
tool bar)

clicked on_new_activate

new activate on_new_activate

drillApp destroy on_exit_activate

exit activate on_exit_activate

about activate on_about_activate

Final adjustments

From Glade it is possible to specify the widgets geometry. In our case you can set the size of the
drillApp to 400 and 300 from the Common tab in the properties panel. You can also set the horizontal
divider position to 100 instead of 1.

Now the widget exerciceTree needs to be adjusted to only allow one selection at a time. As a matter of
fact, only one exercise can be selected at a time. From the properties panel, select
Selection->Single. The other options for this widget are less important.

Voilà! It’s all over as far as Drill is concerned. We’ll start developing exercises in the next article. For
now, let’s see how to use the interface from Python and how to manipulate the GtkTree widget.

The Python code

The complete source code can be found at the end of this document. You need to save it in the same
directory as the file drill.glade.

The required modules

from gtk import *
from gnome.ui import *
from GDK import *

from libglade import *

The graphical interface with LibGlade

The creation of the graphical interface and the connection of the processing functions with LibGlade is
done in the same way as in the previous example. We won’t come back on this particular aspect.

In the Python program we define the global variables:

currentExercice: Pointer to the widget that represents the current exercise. This last is placed in
the right part of the Drill application window. The exercises will also be created from Glade.
exerciceTree : Pointer to the tree widget on the left side of the Drill application window.
label : Pointer to a label (GtkLabel). This label is a palliative to the fact that we don’t have any
exercise at the moment. It will be placed on the right side of the tree -- where the exercises will be
placed -- and we’ll display there the identifiers of the selected exercises.

The tree is created from LibGlade, its pointer is obtained via the following call:

exerciceTree = wTree.get_widget ("exerciceTree")

We need as well the pointer to the horizontal panels, in fact the container reference (GtkPaned) of the
two horizontal panels separated by a handle. The one on the left contains the tree; the one on the right
contains the exercises; for now we’ll place the label there :

 paned = wTree.get_widget ("hpanedTree")
 label = GtkLabel ("No exercise selected")
 label.show ()
 paned.pack2 (label)

Once again, the use of both the GTK+ Reference manual -- on the objects GtkLabel and GtkPaned --
and the source code of Python /usr/lib/python1.5/site-packages/gtk.py provide you with the
required understanding on the right use of objects. .

The GtkTree widget

This is now the most important part of the article : how to use a tree of the GtkTree type.

The tree is filled up with consecutive calls to the addMathExercices(), addFrenchExercices(),
addHistoryExercices() and addGeographyExercices() functions. These functions are all very
similar. Each of these functions adds a new sub-category (a subtree) as well as titles of exercises (items)
:

def addMathExercices ():
 subtree = addSubtree ("Mathematics")

 addExercice (subtree, "Exercise 1", "Math. Ex1")
 addExercice (subtree, "Exercise 2", "Math. Ex2")

The subtree

def addSubtree (name):
 global exerciceTree
 subTree = GtkTree ()
 item = GtkTreeItem (name)
 exerciceTree.append (item)
 item.set_subtree (subTree)
 item.show ()
 item.connect ("select", selectSubtree)
 return subTree

To create a subtree in an existing tree you need to do two things: Generate a GtkTree tree and a
GtkTreeItem item, with the name of the subtree. Next, the item is added to the root tree -- the tree
containing all categories -- and we add the subtree to the item using the set_subtree() method. Finally
the select event is connected to the item, thus, when the category is selected, the selectSubtree()
function is called.

GtkTreeItem

def addExercice (category, title, idValue):
 item = GtkTreeItem (title)
 item.set_data ("id", idValue)
 category.append (item)
 item.show ()
 item.connect ("select", selectTreeItem)
 item.connect ("deselect", deselectTreeItem)

The items have the names of the exercises as their title, here just Exercice 1, Exercice 2, ... To each
item we associate an id additional attribute . GTK+ has the possibility to add to any object of the type
GtkObject -- every GTK+ widgets comes from it -- some attributes. To do this there are 2 methods,
set_data (key, value) and get_data (key) to initialize and get the value of an attribute. The item
is then added to its category -- a subtree. Its show() method is called since it is required to force the
display. Last, the select and deselect events are connected. The deselect event becomes active
when the item looses its selection. Chronologically, the deselectTreeItem() method is called on the
item loosing its selection, next selectTreeItem() is called on the item taking the selection.

The processing functions

We have defined three processing functions selectTreeItem(), deselectTreeItem() and
selectSubtree(). They update the text label -- on the right side -- with the value of the id attribute.
That’s all for now.

The final word

We just set the infrastructure in which we will add the exercises -- as many newly discovered widgets.
We have mainly discussed the GtkTree widget and how to associate attributes to widgets. This
mechanism is often used to get additional related information from the processing functions, what we
have done here. Until the next article you can try to transform the Couleur game, we used in part I, as
an exercise in Drill.

Appendix: The full source code

#!/usr/bin/python
Drill - Teo Serie
Copyright Hilaire Fernandes 2001
Release under the terms of the GPL licence
You can get a copy of the license at http://www.gnu.org from gtk import *
from gnome.ui import *
from GDK import *
from libglade import * exerciceTree = currentExercice = label = None

def on_about_activate(obj):
 "display the about dialog"
 about = GladeXML ("drill.glade", "about").get_widget ("about")
 about.show ()

def on_new_activate (obj):
 global exerciceTree, currentExercice

def selectTreeItem (item):
 global label
 label.set_text ("L’exercice " +
 item.get_data ("id") + "est sélectionné.")

def deselectTreeItem (item):
 global label
 label.set_text ("L’exercice " +
 item.get_data ("id") + "est désélectionné.")

def selectSubtree (subtree):
 global label
 label.set_text ("No selected exercise")

def addSubtree (name):
 global exerciceTree
 subTree = GtkTree ()

 item = GtkTreeItem (name)
 exerciceTree.append (item)
 item.set_subtree (subTree)
 item.show ()
 item.connect ("select", selectSubtree)
 return subTree

def addExercice (category, title, id):
 item = GtkTreeItem (title)
 item.set_data ("id", id)
 category.append (item)
 item.show ()
 item.connect ("select", selectTreeItem)
 item.connect ("deselect", deselectTreeItem)

def addMathExercices ():
 subtree = addSubtree ("Mathématiques")
 addExercice (subtree, "Exercice 1", "Math. Ex1")
 addExercice (subtree, "Exercice 2", "Math. Ex2")

def addFrenchExercices ():
 subtree = addSubtree ("Français")
 addExercice (subtree, "Exercice 1", "Français Ex1")
 addExercice (subtree, "Exercice 2", "Français Ex2")

def addHistoryExercices ():
 subtree = addSubtree ("Histoire")
 addExercice (subtree, "Exercice 1", "Histoire Ex1")
 addExercice (subtree, "Exercice 2", "Histoire Ex2")

def addGeographyExercices ():
 subtree = addSubtree ("Géographie")
 addExercice (subtree, "Exercice 1", "Géographie Ex1")
 addExercice (subtree, "Exercice 2", "Géographie Ex2")

def initDrill ():
 global exerciceTree, label
 wTree = GladeXML ("drill.glade", "drillApp")
 dic = {"on_about_activate": on_about_activate,
 "on_exit_activate": mainquit,
 "on_new_activate": on_new_activate}
 wTree.signal_autoconnect (dic)
 exerciceTree = wTree.get_widget ("exerciceTree")
 # Temporary until we implement real exercice
 paned = wTree.get_widget ("hpanedTree")
 label = GtkLabel ("No selected exercise")
 label.show ()
 paned.pack2 (label)

 # Free the GladeXML tree
 wTree.destroy ()
 # Add the exercices
 addMathExercices ()
 addFrenchExercices ()
 addHistoryExercices ()
 addGeographyExercices ()

initDrill ()
mainloop ()

Webpages maintained by the LinuxFocus Editor
team

© Hilaire Fernandes
"some rights reserved" see linuxfocus.org/license/

http://www.LinuxFocus.org

Translation information:
fr --> -- : Hilaire Fernandes <hilaire/at/ofset.org>

fr --> de: Günther Socher <gsocher/at/web.de>

de --> en: Guido Socher <guido/at/linuxfocus.org>

2005-01-14, generated by lfparser_pdf version 2.51

