photosynthesisLRC: Nonlinear Least Squares Models for Photosynthetic Light Response
Provides functions for modeling, comparing, and visualizing photosynthetic light response curves using established mechanistic and empirical models like the rectangular hyperbola Michaelis-Menton based models ((eq1 (Baly (1935) <doi:10.1098/rspb.1935.0026>)) (eq2 (Kaipiainenn (2009) <doi:10.1134/S1021443709040025>)) (eq3 (Smith (1936) <doi:10.1073/pnas.22.8.504>))), hyperbolic tangent based models ((eq4 (Jassby & Platt (1976) <doi:10.4319/LO.1976.21.4.0540>)) (eq5 (Abe et al. (2009) <doi:10.1111/j.1444-2906.2008.01619.x>))), the non-rectangular hyperbola model (eq6 (Prioul & Chartier (1977) <doi:10.1093/oxfordjournals.aob.a085354>)), exponential based models ((eq8 (Webb et al. (1974) <doi:10.1007/BF00345747>)), (eq9 (Prado & de Moraes (1997) <doi:10.1007/BF02982542>))), and finally the Ye model (eq11 (Ye (2007) <doi:10.1007/s11099-007-0110-5>)). Each of these nonlinear least squares models are commonly used to express photosynthetic response under changing light conditions and has been well supported in the literature, but distinctions in each mathematical model represent moderately different assumptions about physiology and trait relationships which ultimately produce different calculated functional trait values. These models were all thoughtfully discussed and curated by Lobo et al. (2013) <doi:10.1007/s11099-013-0045-y> to express the importance of selecting an appropriate model for analysis, and methods were established in Davis et al. (in review) to evaluate the impact of analytical choice in phylogenetic analysis of the function-valued traits. Gas exchange data on 28 wild sunflower species from Davis et al.are included as an example data set here.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=photosynthesisLRC
to link to this page.