pdcor: Fast and Light-Weight Partial Distance Correlation
Fast and memory-less computation of the partial distance correlation for vectors and matrices. Permutation-based and asymptotic hypothesis testing for zero partial distance correlation are also performed. References include: Szekely G. J. and Rizzo M. L. (2014). "Partial distance correlation with methods for dissimilarities". The Annals Statistics, 42(6): 2382–2412. <doi:10.1214/14-AOS1255>. Shen C., Panda S. and Vogelstein J. T. (2022). "The Chi-Square Test of Distance Correlation". Journal of Computational and Graphical Statistics, 31(1): 254–262. <doi:10.1080/10618600.2021.1938585>. Szekely G. J. and Rizzo M. L. (2023). "The Energy of Data and Distance Correlation". Chapman and Hall/CRC. <ISBN:9781482242744>.
Version: |
1.0 |
Depends: |
R (≥ 4.0) |
Imports: |
dcov, Rfast, Rfast2, stats |
Published: |
2025-02-25 |
DOI: |
10.32614/CRAN.package.pdcor |
Author: |
Michail Tsagris [aut, cre],
Nikolaos Kontemeniotis [aut] |
Maintainer: |
Michail Tsagris <mtsagris at uoc.gr> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
no |
CRAN checks: |
pdcor results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=pdcor
to link to this page.