
Package ‘cucumber’
February 24, 2025

Type Package

Title Behavior-Driven Development for R

Version 1.2.0

Description
Write executable specifications in a natural language that describes how your code should behave.
Write specifications in feature files using 'Gherkin' language and execute them using func-
tions implemented in R.
Use them as an extension to your 'testthat' tests to provide a high level descrip-
tion of how your code works.

License MIT + file LICENSE

URL https://github.com/jakubsob/cucumber,

https://jakubsob.github.io/cucumber/

BugReports https://github.com/jakubsob/cucumber/issues

Encoding UTF-8

Depends R (>= 4.1.0)

Imports checkmate, cli, dplyr, fs, glue, purrr, rlang, stringr,
testthat (>= 3.0.0), tibble, withr

Suggests mockery, box, shinytest2, chromote, covr, knitr, rmarkdown,
quarto, R6, pkgdown

Config/testthat/edition 3

RoxygenNote 7.3.2

VignetteBuilder quarto

Config/Needs/website rmarkdown

NeedsCompilation no

Author Jakub Sobolewski [aut, cre]

Maintainer Jakub Sobolewski <jakupsob@gmail.com>

Repository CRAN

Date/Publication 2025-02-24 18:40:02 UTC

1

https://github.com/jakubsob/cucumber
https://jakubsob.github.io/cucumber/
https://github.com/jakubsob/cucumber/issues

2 define_parameter_type

Contents

define_parameter_type . 2
hook . 3
opts . 4
step . 4
test . 6

Index 8

define_parameter_type Define extra parameters to use in Cucumber steps.

Description

The following parameter types are available by default:

Type Description
{int} Matches integers, for example 71 or -19. Converts value with as.integer.
{float} Matches floats, for example 3.6, .8 or -9.2. Converts value with as.double.
{word} Matches words without whitespace, for example banana (but not banana split).
{string} Matches single-quoted or double-quoted strings, for example "banana split" or ’banana split’ (but not banana split). Only the text between the quotes will be extracted. The quotes themselves are discarded.

To use custom parameter types, call define_parameter_type before cucumber::test is called.

Usage

define_parameter_type(name, regexp, transformer)

Arguments

name The name of the parameter.

regexp A regular expression that the parameter will match on. Note that if you want to
escape a special character, you need to use four backslashes.

transformer A function that will transform the parameter from a string to the desired type.
Must be a function that requires only a single argument.

Value

An object of class parameter, invisibly. Function should be called for side effects.

hook 3

Examples

define_parameter_type("color", "red|blue|green", as.character)
define_parameter_type(

name = "sci_number",
regexp = "[+-]?\\\\d*\\\\.?\\\\d+(e[+-]?\\\\d+)?",
transform = as.double

)

Not run:
#' tests/testthat/test-cucumber.R
cucumber::define_parameter_type("color", "red|blue|green", as.character)
cucumber::test(".", "./steps")

End(Not run)

hook Hooks

Description

Hooks are functions that are run before or after a scenario.

Usage

before(hook)

after(hook)

Arguments

hook A function that will be run. The function first argument is context and the sce-
nario name is the second argument.

Details

You can define them alongside steps definitions.

If you want to run a hook only before or after a specific scenario, use it’s name to execute hook only
for this scenario.

Examples

Not run:
before(function(context, scenario_name) {

context$session <- selenider::selenider_session()
})

after(function(context, scenario_name) {
selenider::close_session(context$session)

4 step

})

after(function(context, scenario_name) {
if (scenario_name == "Playing one round of the game") {
context$game$close()

}
})

End(Not run)

opts cucumber Options

Description

Internally used, package-specific options. They allow overriding the default behavior of the pack-
age.

Details

The following options are available:

• cucumber.indent

Regular expression for the indent of the feature files.
default: ^\\s{2}

• cucumber.interactive

Logical value indicating whether to ask which feature files to run.
default: FALSE

See base::options() and base::getOption() on how to work with options.

step Define a step

Description

Provide a description that matches steps in feature files and the implementation function that will
be run.

Usage

given(description, implementation)

when(description, implementation)

then(description, implementation)

step 5

Arguments

description A description of the step.
Cucumber executes each step in a scenario one at a time, in the sequence you’ve
written them in. When Cucumber tries to execute a step, it looks for a matching
step definition to execute.
Keywords are not taken into account when looking for a step definition.
This means you cannot have a Given, When, Then, And or But step with the
same text as another step.
Cucumber considers the following steps duplicates:

Given there is money in my account
Then there is money in my account

This might seem like a limitation, but it forces you to come up with a less am-
biguous, more clear domain language:

Given my account has a balance of £430
Then my account should have a balance of £430

To pass arguments, description can contain placeholders in curly braces.
To match:

Given my account has a balance of £430

use:

given("my account has a balance of £{float}", function(balance, context) {

})

If no step definition is found an error will be thrown.
If multiple steps definitions for a single step are found an error will be thrown.

implementation A function that will be run during test execution.
The implementation function must always have the last parameter named context.
It holds the environment where test state can be stored to be passed to the next
step.
If a step has a description "I have {int} cucumbers in my basket" then the
implementation function should be function(n, context). The {int} value
will be passed to n, this parameter can have any name.
If a table or a docstring is defined for a step, it will be passed as an argu-
ment after plceholder parameters and before context. The function should be a
function(n, table, context). See an example on how to write implemen-
tation that uses tables or docstrings.

Details

Placeholders in expressions are replaced with regular expressions that match values in the feature
file. Regular expressions are generated during runtime based on defined parameter types.

https://github.com/jakubsob/cucumber/blob/main/inst/examples/table/tests/testthat/steps/steps.R

6 test

The expression "I have {int} cucumbers in my basket" will be converted to "I have [+-]?(?<![.])[:digit:]+(?![.])
cucumbers in my basket". The extracted value of {int} will be passed to the implementation
function after being transformed with as.integer.

To define your own parameter types use define_parameter_type.

Value

A function of class step, invisibly. Function should be called for side effects.

See Also

define_parameter_type()

Examples

given("I have {int} cucumbers in my basket", function(n_cucumbers, context) {
context$n_cucumbers <- n_cucumbers

})

given("I have {int} cucumbers in my basket and a table", function(n_cucumbers, table, context) {
context$n_cucumbers <- n_cucumbers
context$table <- table

})

when("I eat {int} cucumbers", function(n_cucumbers, context) {
context$n_cucumbers <- context$n_cucumbers - n_cucumbers

})

then("I should have {int} cucumbers in my basket", function(n_cucumbers, context) {
expect_equal(context$n_cucumbers, n_cucumbers)

})

test Run all Cucumber tests

Description

This command runs all Cucumber tests. It takes all .feature files from the features_dir and runs
them using the steps from the steps_dir.

Usage

test(
features_dir,
steps_dir,
steps_loader = .default_steps_loader,
test_interactive = getOption("cucumber.interactive", default = FALSE)

)

test 7

Arguments

features_dir A character string of the directory containing the feature files.

steps_dir A character string of the directory containing the step files.

steps_loader A function that loads the steps implementations. By default it sources all files
from the steps_dir using the built-in mechanism. You can provide your own
function to load the steps. The function should take one argument, which will
be the steps_dir.
For packages: set to NULL to use default support-code load mechanism and
place your steps definitions in setup or helper files. Read more about those
files in testthat documentation.

test_interactive

A logical value indicating whether to ask which feature files to run.

Value

None, function called for side effects.

Examples

Not run:
#' testthat/acceptance/test-cucumber.R
cucumber::test(".", ".", steps_loader = NULL)
Steps are stored in `testthat/acceptance/setup-steps.R` file.

End(Not run)

https://testthat.r-lib.org/articles/special-files.html

Index

after (hook), 3

base::getOption(), 4
base::options(), 4
before (hook), 3

define_parameter_type, 2, 6
define_parameter_type(), 6

given (step), 4

hook, 3

opts, 4

step, 4

test, 6
then (step), 4

when (step), 4

8

	define_parameter_type
	hook
	opts
	step
	test
	Index

