OpenVDB 9.0.0
Merge.h
Go to the documentation of this file.
1// Copyright Contributors to the OpenVDB Project
2// SPDX-License-Identifier: MPL-2.0
3//
4/// @file Merge.h
5///
6/// @brief Functions to efficiently merge grids
7///
8/// @author Dan Bailey
9
10#ifndef OPENVDB_TOOLS_MERGE_HAS_BEEN_INCLUDED
11#define OPENVDB_TOOLS_MERGE_HAS_BEEN_INCLUDED
12
13#include <openvdb/Platform.h>
14#include <openvdb/Exceptions.h>
15#include <openvdb/Types.h>
16#include <openvdb/Grid.h>
19#include <openvdb/openvdb.h>
20
21#include <memory>
22#include <unordered_map>
23#include <unordered_set>
24
25namespace openvdb {
27namespace OPENVDB_VERSION_NAME {
28namespace tools {
29
30
31/// @brief Convenience class that contains a pointer to a tree to be stolen or
32/// deep copied depending on the tag dispatch class used and a subset of
33/// methods to retrieve data from the tree.
34///
35/// @details The primary purpose of this class is to be able to create an array
36/// of TreeToMerge objects that each store a tree to be stolen or a tree to be
37/// deep-copied in an arbitrary order. Certain operations such as floating-point
38/// addition are non-associative so the order in which they are merged is
39/// important for the operation to remain deterministic regardless of how the
40/// data is being extracted from the tree.
41///
42/// @note Stealing data requires a non-const tree pointer. There is a constructor
43/// to pass in a tree shared pointer for cases where it is desirable for this class
44/// to maintain shared ownership.
45template <typename TreeT>
47{
48 using TreeType = std::remove_const_t<TreeT>;
49 using RootNodeType = typename TreeType::RootNodeType;
50 using ValueType = typename TreeType::ValueType;
51 using MaskTreeType = typename TreeT::template ValueConverter<ValueMask>::Type;
52
53 TreeToMerge() = delete;
54
55 /// @brief Non-const pointer tree constructor for stealing data.
57 : mTree(&tree), mSteal(true) { }
58 /// @brief Non-const shared pointer tree constructor for stealing data.
59 TreeToMerge(typename TreeType::Ptr treePtr, Steal)
60 : mTreePtr(treePtr), mTree(mTreePtr.get()), mSteal(true) { }
61
62 /// @brief Const tree pointer constructor for deep-copying data. As the
63 /// tree is not mutable and thus cannot be pruned, a lightweight mask tree
64 /// with the same topology is created that can be pruned to use as a
65 /// reference. Initialization of this mask tree can optionally be disabled
66 /// for delayed construction.
67 TreeToMerge(const TreeType& tree, DeepCopy, bool initialize = true)
68 : mTree(&tree), mSteal(false)
69 {
70 if (mTree && initialize) this->initializeMask();
71 }
72
73 /// @brief Non-const tree pointer constructor for deep-copying data. The
74 /// tree is not intended to be modified so is not pruned, instead a
75 /// lightweight mask tree with the same topology is created that can be
76 /// pruned to use as a reference. Initialization of this mask tree can
77 /// optionally be disabled for delayed construction.
78 TreeToMerge(TreeType& tree, DeepCopy tag, bool initialize = true)
79 : TreeToMerge(static_cast<const TreeType&>(tree), tag, initialize) { }
80
81 /// @brief Reset the non-const tree shared pointer. This is primarily
82 /// used to preserve the order of trees to merge in a container but have
83 /// the data in the tree be lazily loaded or resampled.
84 void reset(typename TreeType::Ptr treePtr, Steal);
85
86 /// @brief Return a pointer to the tree to be stolen.
87 TreeType* treeToSteal() { return mSteal ? const_cast<TreeType*>(mTree) : nullptr; }
88 /// @brief Return a pointer to the tree to be deep-copied.
89 const TreeType* treeToDeepCopy() { return mSteal ? nullptr : mTree; }
90
91 /// @brief Retrieve a const pointer to the root node.
92 const RootNodeType* rootPtr() const;
93
94 /// @brief Return a pointer to the node of type @c NodeT that contains
95 /// voxel (x, y, z). If no such node exists, return @c nullptr.
96 template<typename NodeT>
97 const NodeT* probeConstNode(const Coord& ijk) const;
98
99 /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z).
100 /// If the tree is non-const, steal the node and replace it with an inactive
101 /// background-value tile.
102 /// If the tree is const, deep-copy the node and modify the mask tree to prune the node.
103 template <typename NodeT>
104 std::unique_ptr<NodeT> stealOrDeepCopyNode(const Coord& ijk);
105
106 /// @brief Add a tile containing voxel (x, y, z) at the level of NodeT,
107 /// deleting the existing branch if necessary.
108 template <typename NodeT>
109 void addTile(const Coord& ijk, const ValueType& value, bool active);
110
111 // build a lightweight mask using a union of the const tree where leaf nodes
112 // are converted into active tiles
113 void initializeMask();
114
115 // returns true if mask has been initialized
116 bool hasMask() const;
117
118 // returns MaskTree pointer or nullptr
119 MaskTreeType* mask() { return mMaskTree.ptr.get(); }
120 const MaskTreeType* mask() const { return mMaskTree.ptr.get(); }
121
122private:
123 struct MaskPtr;
124 struct MaskUnionOp;
125
126 typename TreeType::Ptr mTreePtr;
127 const TreeType* mTree;
128 MaskPtr mMaskTree;
129 bool mSteal;
130}; // struct TreeToMerge
131
132
133/// @brief Wrapper around unique_ptr that deep-copies mask on copy construction
134template <typename TreeT>
135struct TreeToMerge<TreeT>::MaskPtr
136{
137 std::unique_ptr<MaskTreeType> ptr;
138
139 MaskPtr() = default;
140 ~MaskPtr() = default;
141 MaskPtr(MaskPtr&& other) = default;
142 MaskPtr& operator=(MaskPtr&& other) = default;
143 MaskPtr(const MaskPtr& other)
144 : ptr(bool(other.ptr) ? std::make_unique<MaskTreeType>(*other.ptr) : nullptr) { }
145 MaskPtr& operator=(const MaskPtr& other)
146 {
147 if (bool(other.ptr)) ptr = std::make_unique<MaskTreeType>(*other.ptr);
148 else ptr.reset();
149 return *this;
150 }
151};
152
153/// @brief DynamicNodeManager operator used to generate a mask of the input
154/// tree, but with dense leaf nodes replaced with active tiles for compactness
155template <typename TreeT>
157{
159 using RootT = typename MaskT::RootNodeType;
160 using LeafT = typename MaskT::LeafNodeType;
161
162 explicit MaskUnionOp(const TreeT& tree) : mTree(tree) { }
163 bool operator()(RootT& root, size_t) const;
164 template<typename NodeT>
165 bool operator()(NodeT& node, size_t) const;
166 bool operator()(LeafT&, size_t) const { return false; }
167private:
168 const TreeT& mTree;
169}; // struct TreeToMerge<TreeT>::MaskUnionOp
170
171
172////////////////////////////////////////
173
174
175/// @brief DynamicNodeManager operator to merge trees using a CSG union or intersection.
176/// @note This class modifies the topology of the tree so is designed to be used
177/// from DynamicNodeManager::foreachTopDown().
178/// @details A union and an intersection are opposite operations to each other so
179/// implemented in a combined class. Use the CsgUnionOp and CsgIntersectionOp aliases
180/// for convenience.
181template<typename TreeT, bool Union>
183{
184 using ValueT = typename TreeT::ValueType;
185 using RootT = typename TreeT::RootNodeType;
186 using LeafT = typename TreeT::LeafNodeType;
187
188 /// @brief Convenience constructor to CSG union or intersect a single
189 /// non-const tree with another. This constructor takes a Steal or DeepCopy
190 /// tag dispatch class.
191 template <typename TagT>
192 CsgUnionOrIntersectionOp(TreeT& tree, TagT tag) { mTreesToMerge.emplace_back(tree, tag); }
193
194 /// @brief Convenience constructor to CSG union or intersect a single
195 /// const tree with another. This constructor requires a DeepCopy tag
196 /// dispatch class.
197 CsgUnionOrIntersectionOp(const TreeT& tree, DeepCopy tag) { mTreesToMerge.emplace_back(tree, tag); }
198
199 /// @brief Constructor to CSG union or intersect a container of multiple
200 /// const or non-const tree pointers. A Steal tag requires a container of
201 /// non-const trees, a DeepCopy tag will accept either const or non-const
202 /// trees.
203 template <typename TreesT, typename TagT>
204 CsgUnionOrIntersectionOp(TreesT& trees, TagT tag)
205 {
206 for (auto* tree : trees) {
207 if (tree) {
208 mTreesToMerge.emplace_back(*tree, tag);
209 }
210 }
211 }
212
213 /// @brief Constructor to accept a vector of TreeToMerge objects, primarily
214 /// used when mixing const/non-const trees.
215 /// @note Union/intersection order is preserved.
216 explicit CsgUnionOrIntersectionOp(const std::vector<TreeToMerge<TreeT>>& trees)
217 : mTreesToMerge(trees) { }
218
219 /// @brief Constructor to accept a deque of TreeToMerge objects, primarily
220 /// used when mixing const/non-const trees.
221 /// @note Union/intersection order is preserved.
222 explicit CsgUnionOrIntersectionOp(const std::deque<TreeToMerge<TreeT>>& trees)
223 : mTreesToMerge(trees.cbegin(), trees.cend()) { }
224
225 /// @brief Return true if no trees being merged
226 bool empty() const { return mTreesToMerge.empty(); }
227
228 /// @brief Return the number of trees being merged
229 size_t size() const { return mTreesToMerge.size(); }
230
231 // Processes the root node. Required by the NodeManager
232 bool operator()(RootT& root, size_t idx) const;
233
234 // Processes the internal nodes. Required by the NodeManager
235 template<typename NodeT>
236 bool operator()(NodeT& node, size_t idx) const;
237
238 // Processes the leaf nodes. Required by the NodeManager
239 bool operator()(LeafT& leaf, size_t idx) const;
240
241private:
242 // on processing the root node, the background value is stored, retrieve it
243 // and check that the root node has already been processed
244 const ValueT& background() const;
245
246 mutable std::vector<TreeToMerge<TreeT>> mTreesToMerge;
247 mutable const ValueT* mBackground = nullptr;
248}; // struct CsgUnionOrIntersectionOp
249
250
251template <typename TreeT>
252using CsgUnionOp = CsgUnionOrIntersectionOp<TreeT, /*Union=*/true>;
253
254template <typename TreeT>
255using CsgIntersectionOp = CsgUnionOrIntersectionOp<TreeT, /*Union=*/false>;
256
257
258/// @brief DynamicNodeManager operator to merge two trees using a CSG difference.
259/// @note This class modifies the topology of the tree so is designed to be used
260/// from DynamicNodeManager::foreachTopDown().
261template<typename TreeT>
263{
264 using ValueT = typename TreeT::ValueType;
265 using RootT = typename TreeT::RootNodeType;
266 using LeafT = typename TreeT::LeafNodeType;
267
268 /// @brief Convenience constructor to CSG difference a single non-const
269 /// tree from another. This constructor takes a Steal or DeepCopy tag
270 /// dispatch class.
271 template <typename TagT>
272 CsgDifferenceOp(TreeT& tree, TagT tag) : mTree(tree, tag) { }
273 /// @brief Convenience constructor to CSG difference a single const
274 /// tree from another. This constructor requires an explicit DeepCopy tag
275 /// dispatch class.
276 CsgDifferenceOp(const TreeT& tree, DeepCopy tag) : mTree(tree, tag) { }
277
278 /// @brief Constructor to CSG difference the tree in a TreeToMerge object
279 /// from another.
280 explicit CsgDifferenceOp(TreeToMerge<TreeT>& tree) : mTree(tree) { }
281
282 /// @brief Return the number of trees being merged (only ever 1)
283 size_t size() const { return 1; }
284
285 // Processes the root node. Required by the NodeManager
286 bool operator()(RootT& root, size_t idx) const;
287
288 // Processes the internal nodes. Required by the NodeManager
289 template<typename NodeT>
290 bool operator()(NodeT& node, size_t idx) const;
291
292 // Processes the leaf nodes. Required by the NodeManager
293 bool operator()(LeafT& leaf, size_t idx) const;
294
295private:
296 // on processing the root node, the background values are stored, retrieve them
297 // and check that the root nodes have already been processed
298 const ValueT& background() const;
299 const ValueT& otherBackground() const;
300
301 // note that this vector is copied in NodeTransformer every time a foreach call is made,
302 // however in typical use cases this cost will be dwarfed by the actual merge algorithm
303 mutable TreeToMerge<TreeT> mTree;
304 mutable const ValueT* mBackground = nullptr;
305 mutable const ValueT* mOtherBackground = nullptr;
306}; // struct CsgDifferenceOp
307
308
309/// @brief DynamicNodeManager operator to merge trees using a sum operation.
310/// @note This class modifies the topology of the tree so is designed to be used
311/// from DynamicNodeManager::foreachTopDown().
312template<typename TreeT>
314{
315 using ValueT = typename TreeT::ValueType;
316 using RootT = typename TreeT::RootNodeType;
317 using LeafT = typename TreeT::LeafNodeType;
318
319 /// @brief Convenience constructor to sum a single non-const tree with another.
320 /// This constructor takes a Steal or DeepCopy tag dispatch class.
321 template <typename TagT>
322 SumMergeOp(TreeT& tree, TagT tag) { mTreesToMerge.emplace_back(tree, tag); }
323
324 /// @brief Convenience constructor to sum a single const tree with another.
325 /// This constructor requires a DeepCopy tag dispatch class.
326 SumMergeOp(const TreeT& tree, DeepCopy tag) { mTreesToMerge.emplace_back(tree, tag); }
327
328 /// @brief Constructor to sum a container of multiple const or non-const tree pointers.
329 /// A Steal tag requires a container of non-const trees, a DeepCopy tag will accept
330 /// either const or non-const trees.
331 template <typename TreesT, typename TagT>
332 SumMergeOp(TreesT& trees, TagT tag)
333 {
334 for (auto* tree : trees) {
335 if (tree) {
336 mTreesToMerge.emplace_back(*tree, tag);
337 }
338 }
339 }
340
341 /// @brief Constructor to accept a vector of TreeToMerge objects, primarily
342 /// used when mixing const/non-const trees.
343 /// @note Sum order is preserved.
344 explicit SumMergeOp(const std::vector<TreeToMerge<TreeT>>& trees)
345 : mTreesToMerge(trees) { }
346
347 /// @brief Constructor to accept a deque of TreeToMerge objects, primarily
348 /// used when mixing const/non-const trees.
349 /// @note Sum order is preserved.
350 explicit SumMergeOp(const std::deque<TreeToMerge<TreeT>>& trees)
351 : mTreesToMerge(trees.cbegin(), trees.cend()) { }
352
353 /// @brief Return true if no trees being merged
354 bool empty() const { return mTreesToMerge.empty(); }
355
356 /// @brief Return the number of trees being merged
357 size_t size() const { return mTreesToMerge.size(); }
358
359 // Processes the root node. Required by the NodeManager
360 bool operator()(RootT& root, size_t idx) const;
361
362 // Processes the internal nodes. Required by the NodeManager
363 template<typename NodeT>
364 bool operator()(NodeT& node, size_t idx) const;
365
366 // Processes the leaf nodes. Required by the NodeManager
367 bool operator()(LeafT& leaf, size_t idx) const;
368
369private:
370 // on processing the root node, the background value is stored, retrieve it
371 // and check that the root node has already been processed
372 const ValueT& background() const;
373
374 mutable std::vector<TreeToMerge<TreeT>> mTreesToMerge;
375 mutable const ValueT* mBackground = nullptr;
376}; // struct SumMergeOp
377
378
379////////////////////////////////////////
380
381
382template<typename TreeT>
384{
385 if (mSteal) return;
386 mMaskTree.ptr.reset(new MaskTreeType);
387 MaskUnionOp op(*mTree);
388 tree::DynamicNodeManager<MaskTreeType, MaskTreeType::RootNodeType::LEVEL-1> manager(*this->mask());
389 manager.foreachTopDown(op);
390}
391
392template<typename TreeT>
394{
395 return bool(mMaskTree.ptr);
396}
397
398template<typename TreeT>
399void TreeToMerge<TreeT>::reset(typename TreeType::Ptr treePtr, Steal)
400{
401 if (!treePtr) {
402 OPENVDB_THROW(RuntimeError, "Cannot reset with empty Tree shared pointer.");
403 }
404 mSteal = true;
405 mTreePtr = treePtr;
406 mTree = mTreePtr.get();
407}
408
409template<typename TreeT>
412{
413 return &mTree->root();
414}
415
416template<typename TreeT>
417template<typename NodeT>
418const NodeT*
420{
421 // test mutable mask first, node may have already been pruned
422 if (!mSteal && !this->mask()->isValueOn(ijk)) return nullptr;
423 return mTree->template probeConstNode<NodeT>(ijk);
424}
425
426template<typename TreeT>
427template<typename NodeT>
428std::unique_ptr<NodeT>
430{
431 if (mSteal) {
432 TreeType* tree = const_cast<TreeType*>(mTree);
433 return std::unique_ptr<NodeT>(
434 tree->root().template stealNode<NodeT>(ijk, mTree->root().background(), false)
435 );
436 } else {
437 auto* child = this->probeConstNode<NodeT>(ijk);
438 if (child) {
439 assert(this->hasMask());
440 auto result = std::make_unique<NodeT>(*child);
441 // prune mask tree
442 this->mask()->addTile(NodeT::LEVEL, ijk, false, false);
443 return result;
444 }
445 }
446 return std::unique_ptr<NodeT>();
447}
448
449template<typename TreeT>
450template<typename NodeT>
451void
452TreeToMerge<TreeT>::addTile(const Coord& ijk, const ValueType& value, bool active)
453{
454 // ignore leaf node tiles (values)
455 if (NodeT::LEVEL == 0) return;
456
457 if (mSteal) {
458 TreeType* tree = const_cast<TreeType*>(mTree);
459 auto* node = tree->template probeNode<NodeT>(ijk);
460 if (node) {
461 const Index pos = NodeT::coordToOffset(ijk);
462 node->addTile(pos, value, active);
463 }
464 } else {
465 auto* node = mTree->template probeConstNode<NodeT>(ijk);
466 // prune mask tree
467 if (node) {
468 assert(this->hasMask());
469 this->mask()->addTile(NodeT::LEVEL, ijk, false, false);
470 }
471 }
472}
473
474
475////////////////////////////////////////
476
477
478template <typename TreeT>
479bool TreeToMerge<TreeT>::MaskUnionOp::operator()(RootT& root, size_t /*idx*/) const
480{
481 using ChildT = typename RootT::ChildNodeType;
482
483 const Index count = mTree.root().childCount();
484
485 std::vector<std::unique_ptr<ChildT>> children(count);
486
487 // allocate new root children
488
489 tbb::parallel_for(
490 tbb::blocked_range<Index>(0, count),
491 [&](tbb::blocked_range<Index>& range)
492 {
493 for (Index i = range.begin(); i < range.end(); i++) {
494 children[i] = std::make_unique<ChildT>(Coord::max(), true, true);
495 }
496 }
497 );
498
499 // apply origins and add root children to new root node
500
501 size_t i = 0;
502 for (auto iter = mTree.root().cbeginChildOn(); iter; ++iter) {
503 children[i]->setOrigin(iter->origin());
504 root.addChild(children[i].release());
505 i++;
506 }
507
508 return true;
509}
510
511template <typename TreeT>
512template <typename NodeT>
513bool TreeToMerge<TreeT>::MaskUnionOp::operator()(NodeT& node, size_t /*idx*/) const
514{
515 using ChildT = typename NodeT::ChildNodeType;
516
517 const auto* otherNode = mTree.template probeConstNode<NodeT>(node.origin());
518 if (!otherNode) return false;
519
520 // this mask tree stores active tiles in place of leaf nodes for compactness
521
522 if (NodeT::LEVEL == 1) {
523 for (auto iter = otherNode->cbeginChildOn(); iter; ++iter) {
524 node.addTile(iter.pos(), true, true);
525 }
526 } else {
527 for (auto iter = otherNode->cbeginChildOn(); iter; ++iter) {
528 auto* child = new ChildT(iter->origin(), true, true);
529 node.addChild(child);
530 }
531 }
532
533 return true;
534}
535
536
537////////////////////////////////////////
538
539/// @cond OPENVDB_DOCS_INTERNAL
540
541namespace merge_internal {
542
543
544template <typename BufferT, typename ValueT>
545struct UnallocatedBuffer
546{
547 static void allocateAndFill(BufferT& buffer, const ValueT& background)
548 {
549 if (buffer.empty()) {
550 if (!buffer.isOutOfCore()) {
551 buffer.allocate();
552 buffer.fill(background);
553 }
554 }
555 }
556
557 static bool isPartiallyConstructed(const BufferT& buffer)
558 {
559 return !buffer.isOutOfCore() && buffer.empty();
560 }
561}; // struct AllocateAndFillBuffer
562
563template <typename BufferT>
564struct UnallocatedBuffer<BufferT, bool>
565{
566 // do nothing for bool buffers as they cannot be unallocated
567 static void allocateAndFill(BufferT&, const bool&) { }
568 static bool isPartiallyConstructed(const BufferT&) { return false; }
569}; // struct AllocateAndFillBuffer
570
571
572// a convenience class that combines nested parallelism with the depth-visit
573// node visitor which can result in increased performance with large sub-trees
574template <Index LEVEL>
575struct Dispatch
576{
577 template <typename NodeT, typename OpT>
578 static void run(NodeT& node, OpT& op)
579 {
580 using ChildT = typename NodeT::ChildNodeType;
581
582 // use nested parallelism if there is more than one child
583
584 Index32 childCount = node.childCount();
585 if (childCount > 0) {
586 op(node, size_t(0));
587
588 // build linear list of child pointers
589 std::vector<ChildT*> children;
590 children.reserve(childCount);
591 for (auto iter = node.beginChildOn(); iter; ++iter) {
592 children.push_back(&(*iter));
593 }
594
595 // parallelize across children
596 tbb::parallel_for(
597 tbb::blocked_range<Index32>(0, childCount),
598 [&](tbb::blocked_range<Index32>& range) {
599 for (Index32 n = range.begin(); n < range.end(); n++) {
600 DepthFirstNodeVisitor<ChildT>::visit(*children[n], op);
601 }
602 }
603 );
604 } else {
605 DepthFirstNodeVisitor<NodeT>::visit(node, op);
606 }
607 }
608}; // struct Dispatch
609
610// when LEVEL = 0, do not attempt nested parallelism
611template <>
612struct Dispatch<0>
613{
614 template <typename NodeT, typename OpT>
615 static void run(NodeT& node, OpT& op)
616 {
617 DepthFirstNodeVisitor<NodeT>::visit(node, op);
618 }
619};
620
621
622// an DynamicNodeManager operator to add a value and modify active state
623// for every tile and voxel in a given subtree
624template <typename TreeT>
625struct ApplyTileToNodeOp
626{
627 using LeafT = typename TreeT::LeafNodeType;
628 using ValueT = typename TreeT::ValueType;
629
630 ApplyTileToNodeOp(const ValueT& value, const bool active):
631 mValue(value), mActive(active) { }
632
633 template <typename NodeT>
634 void operator()(NodeT& node, size_t) const
635 {
636 // TODO: Need to add an InternalNode::setValue(Index offset, ...) to
637 // avoid the cost of using a value iterator or coordToOffset() in the case
638 // where node.isChildMaskOff() is true
639
640 for (auto iter = node.beginValueAll(); iter; ++iter) {
641 iter.setValue(mValue + *iter);
642 }
643 if (mActive) node.setValuesOn();
644 }
645
646 void operator()(LeafT& leaf, size_t) const
647 {
648 auto* data = leaf.buffer().data();
649
650 if (mValue != zeroVal<ValueT>()) {
651 for (Index i = 0; i < LeafT::SIZE; ++i) {
652 data[i] += mValue;
653 }
654 }
655 if (mActive) leaf.setValuesOn();
656 }
657
658 template <typename NodeT>
659 void run(NodeT& node)
660 {
661 Dispatch<NodeT::LEVEL>::run(node, *this);
662 }
663
664private:
665 ValueT mValue;
666 bool mActive;
667}; // struct ApplyTileToNodeOp
668
669
670} // namespace merge_internal
671
672
673/// @endcond
674
675////////////////////////////////////////
676
677
678template <typename TreeT, bool Union>
680{
681 const bool Intersect = !Union;
682
683 if (this->empty()) return false;
684
685 // store the background value
686 if (!mBackground) mBackground = &root.background();
687
688 // does the key exist in the root node?
689 auto keyExistsInRoot = [&](const Coord& key) -> bool
690 {
691 return root.getValueDepth(key) > -1;
692 };
693
694 // does the key exist in all merge tree root nodes?
695 auto keyExistsInAllTrees = [&](const Coord& key) -> bool
696 {
697 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
698 const auto* mergeRoot = mergeTree.rootPtr();
699 if (!mergeRoot) return false;
700 if (mergeRoot->getValueDepth(key) == -1) return false;
701 }
702 return true;
703 };
704
705 // delete any background tiles
706 root.eraseBackgroundTiles();
707
708 // for intersection, delete any root node keys that are not present in all trees
709 if (Intersect) {
710 // find all tile coordinates to delete
711 std::vector<Coord> toDelete;
712 for (auto valueIter = root.cbeginValueAll(); valueIter; ++valueIter) {
713 const Coord& key = valueIter.getCoord();
714 if (!keyExistsInAllTrees(key)) toDelete.push_back(key);
715 }
716 // find all child coordinates to delete
717 for (auto childIter = root.cbeginChildOn(); childIter; ++childIter) {
718 const Coord& key = childIter.getCoord();
719 if (!keyExistsInAllTrees(key)) toDelete.push_back(key);
720 }
721 // only mechanism to delete elements in root node is to delete background tiles,
722 // so insert background tiles (which will replace any child nodes) and then delete
723 for (Coord& key : toDelete) root.addTile(key, *mBackground, false);
724 root.eraseBackgroundTiles();
725 }
726
727 // find all tile values in this root and track inside/outside and active state
728 // note that level sets should never contain active tiles, but we handle them anyway
729
730 constexpr uint8_t ACTIVE_TILE = 0x1;
731 constexpr uint8_t INSIDE_TILE = 0x2;
732 constexpr uint8_t OUTSIDE_TILE = 0x4;
733
734 constexpr uint8_t INSIDE_STATE = Union ? INSIDE_TILE : OUTSIDE_TILE;
735 constexpr uint8_t OUTSIDE_STATE = Union ? OUTSIDE_TILE : INSIDE_TILE;
736
737 const ValueT insideBackground = Union ? -this->background() : this->background();
738 const ValueT outsideBackground = -insideBackground;
739
740 auto getTileFlag = [&](auto& valueIter) -> uint8_t
741 {
742 uint8_t flag(0);
743 const ValueT& value = valueIter.getValue();
744 if (value < zeroVal<ValueT>()) flag |= INSIDE_TILE;
745 else if (value > zeroVal<ValueT>()) flag |= OUTSIDE_TILE;
746 if (valueIter.isValueOn()) flag |= ACTIVE_TILE;
747 return flag;
748 };
749
750 std::unordered_map<Coord, /*flags*/uint8_t> tiles;
751
752 if (root.getTableSize() > 0) {
753 for (auto valueIter = root.cbeginValueAll(); valueIter; ++valueIter) {
754 const Coord& key = valueIter.getCoord();
755 tiles.insert({key, getTileFlag(valueIter)});
756 }
757 }
758
759 // find all tiles values in other roots and replace outside tiles with inside tiles
760
761 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
762 const auto* mergeRoot = mergeTree.rootPtr();
763 if (!mergeRoot) continue;
764 for (auto valueIter = mergeRoot->cbeginValueAll(); valueIter; ++valueIter) {
765 const Coord& key = valueIter.getCoord();
766 auto it = tiles.find(key);
767 if (it == tiles.end()) {
768 // if no tile with this key, insert it
769 tiles.insert({key, getTileFlag(valueIter)});
770 } else {
771 // replace an outside tile with an inside tile
772 const uint8_t flag = it->second;
773 if (flag & OUTSIDE_STATE) {
774 const uint8_t newFlag = getTileFlag(valueIter);
775 if (newFlag & INSIDE_STATE) {
776 it->second = newFlag;
777 }
778 }
779 }
780 }
781 }
782
783 // insert all inside tiles
784
785 for (auto it : tiles) {
786 const uint8_t flag = it.second;
787 if (flag & INSIDE_STATE) {
788 const Coord& key = it.first;
789 const bool state = flag & ACTIVE_TILE;
790 // for intersection, only add the tile if the key already exists in the tree
791 if (Union || keyExistsInRoot(key)) {
792 root.addTile(key, insideBackground, state);
793 }
794 }
795 }
796
797 std::unordered_set<Coord> children;
798
799 if (root.getTableSize() > 0) {
800 for (auto childIter = root.cbeginChildOn(); childIter; ++childIter) {
801 const Coord& key = childIter.getCoord();
802 children.insert(key);
803 }
804 }
805
806 bool continueRecurse = false;
807
808 // find all children in other roots and insert them if a child or tile with this key
809 // does not already exist or if the child will replace an outside tile
810
811 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
812 const auto* mergeRoot = mergeTree.rootPtr();
813 if (!mergeRoot) continue;
814 for (auto childIter = mergeRoot->cbeginChildOn(); childIter; ++childIter) {
815 const Coord& key = childIter.getCoord();
816
817 // for intersection, only add child nodes if the key already exists in the tree
818 if (Intersect && !keyExistsInRoot(key)) continue;
819
820 // if child already exists, merge recursion will need to continue to resolve conflict
821 if (children.count(key)) {
822 continueRecurse = true;
823 continue;
824 }
825
826 // if an inside tile exists, do nothing
827 auto it = tiles.find(key);
828 if (it != tiles.end() && it->second == INSIDE_STATE) continue;
829
830 auto childPtr = mergeTree.template stealOrDeepCopyNode<typename RootT::ChildNodeType>(key);
831 childPtr->resetBackground(mergeRoot->background(), root.background());
832 if (childPtr) root.addChild(childPtr.release());
833
834 children.insert(key);
835 }
836 }
837
838 // insert all outside tiles that don't replace an inside tile or a child node
839
840 for (auto it : tiles) {
841 const uint8_t flag = it.second;
842 if (flag & OUTSIDE_STATE) {
843 const Coord& key = it.first;
844 if (!children.count(key)) {
845 const bool state = flag & ACTIVE_TILE;
846 // for intersection, only add the tile if the key already exists in the tree
847 if (Union || keyExistsInRoot(key)) {
848 root.addTile(key, outsideBackground, state);
849 }
850 }
851 }
852 }
853
854 // finish by removing any background tiles
855 root.eraseBackgroundTiles();
856
857 return continueRecurse;
858}
859
860template<typename TreeT, bool Union>
861template<typename NodeT>
863{
864 using NonConstNodeT = typename std::remove_const<NodeT>::type;
865
866 if (this->empty()) return false;
867
868 const ValueT insideBackground = Union ? -this->background() : this->background();
869 const ValueT outsideBackground = -insideBackground;
870
871 using NodeMaskT = typename NodeT::NodeMaskType;
872
873 // store temporary masks to track inside and outside tile states
874 NodeMaskT validTile;
875 NodeMaskT invalidTile;
876
877 auto isValid = [](const ValueT& value)
878 {
879 return Union ? value < zeroVal<ValueT>() : value > zeroVal<ValueT>();
880 };
881
882 auto isInvalid = [](const ValueT& value)
883 {
884 return Union ? value > zeroVal<ValueT>() : value < zeroVal<ValueT>();
885 };
886
887 for (auto iter = node.cbeginValueAll(); iter; ++iter) {
888 if (isValid(iter.getValue())) {
889 validTile.setOn(iter.pos());
890 } else if (isInvalid(iter.getValue())) {
891 invalidTile.setOn(iter.pos());
892 }
893 }
894
895 bool continueRecurse = false;
896
897 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
898
899 auto* mergeNode = mergeTree.template probeConstNode<NonConstNodeT>(node.origin());
900
901 if (!mergeNode) continue;
902
903 // iterate over all tiles
904
905 for (auto iter = mergeNode->cbeginValueAll(); iter; ++iter) {
906 Index pos = iter.pos();
907 // source node contains an inside tile, so ignore
908 if (validTile.isOn(pos)) continue;
909 // this node contains an inside tile, so turn into an inside tile
910 if (isValid(iter.getValue())) {
911 node.addTile(pos, insideBackground, iter.isValueOn());
912 validTile.setOn(pos);
913 }
914 }
915
916 // iterate over all child nodes
917
918 for (auto iter = mergeNode->cbeginChildOn(); iter; ++iter) {
919 Index pos = iter.pos();
920 const Coord& ijk = iter.getCoord();
921 // source node contains an inside tile, so ensure other node has no child
922 if (validTile.isOn(pos)) {
923 mergeTree.template addTile<NonConstNodeT>(ijk, outsideBackground, false);
924 } else if (invalidTile.isOn(pos)) {
925 auto childPtr = mergeTree.template stealOrDeepCopyNode<typename NodeT::ChildNodeType>(ijk);
926 if (childPtr) {
927 childPtr->resetBackground(mergeTree.rootPtr()->background(), this->background());
928 node.addChild(childPtr.release());
929 }
930 invalidTile.setOff(pos);
931 } else {
932 // if both source and target are child nodes, merge recursion needs to continue
933 // along this branch to resolve the conflict
934 continueRecurse = true;
935 }
936 }
937 }
938
939 return continueRecurse;
940}
941
942template <typename TreeT, bool Union>
944{
945 using LeafT = typename TreeT::LeafNodeType;
946 using ValueT = typename LeafT::ValueType;
947 using BufferT = typename LeafT::Buffer;
948
949 if (this->empty()) return false;
950
951 const ValueT background = Union ? this->background() : -this->background();
952
953 // if buffer is not out-of-core and empty, leaf node must have only been
954 // partially constructed, so allocate and fill with background value
955
956 merge_internal::UnallocatedBuffer<BufferT, ValueT>::allocateAndFill(
957 leaf.buffer(), background);
958
959 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
960 const LeafT* mergeLeaf = mergeTree.template probeConstNode<LeafT>(leaf.origin());
961 if (!mergeLeaf) continue;
962 // if buffer is not out-of-core yet empty, leaf node must have only been
963 // partially constructed, so skip merge
964 if (merge_internal::UnallocatedBuffer<BufferT, ValueT>::isPartiallyConstructed(
965 mergeLeaf->buffer())) {
966 continue;
967 }
968
969 for (Index i = 0 ; i < LeafT::SIZE; i++) {
970 const ValueT& newValue = mergeLeaf->getValue(i);
971 const bool doMerge = Union ? newValue < leaf.getValue(i) : newValue > leaf.getValue(i);
972 if (doMerge) {
973 leaf.setValueOnly(i, newValue);
974 leaf.setActiveState(i, mergeLeaf->isValueOn(i));
975 }
976 }
977 }
978
979 return false;
980}
981
982template <typename TreeT, bool Union>
985{
986 // this operator is only intended to be used with foreachTopDown()
987 assert(mBackground);
988 return *mBackground;
989}
990
991
992////////////////////////////////////////
993
994
995template <typename TreeT>
997{
998 // store the background values
999 if (!mBackground) mBackground = &root.background();
1000 if (!mOtherBackground) mOtherBackground = &mTree.rootPtr()->background();
1001
1002 // find all tile values in this root and track inside/outside and active state
1003 // note that level sets should never contain active tiles, but we handle them anyway
1004
1005 constexpr uint8_t ACTIVE_TILE = 0x1;
1006 constexpr uint8_t INSIDE_TILE = 0x2;
1007 constexpr uint8_t CHILD = 0x4;
1008
1009 auto getTileFlag = [&](auto& valueIter) -> uint8_t
1010 {
1011 uint8_t flag(0);
1012 const ValueT& value = valueIter.getValue();
1013 if (value < zeroVal<ValueT>()) flag |= INSIDE_TILE;
1014 if (valueIter.isValueOn()) flag |= ACTIVE_TILE;
1015 return flag;
1016 };
1017
1018 // delete any background tiles
1019 root.eraseBackgroundTiles();
1020
1021 std::unordered_map<Coord, /*flags*/uint8_t> flags;
1022
1023 if (root.getTableSize() > 0) {
1024 for (auto valueIter = root.cbeginValueAll(); valueIter; ++valueIter) {
1025 const Coord& key = valueIter.getCoord();
1026 const uint8_t flag = getTileFlag(valueIter);
1027 if (flag & INSIDE_TILE) {
1028 flags.insert({key, getTileFlag(valueIter)});
1029 }
1030 }
1031
1032 for (auto childIter = root.cbeginChildOn(); childIter; ++childIter) {
1033 const Coord& key = childIter.getCoord();
1034 flags.insert({key, CHILD});
1035 }
1036 }
1037
1038 bool continueRecurse = false;
1039
1040 const auto* mergeRoot = mTree.rootPtr();
1041
1042 if (mergeRoot) {
1043 for (auto valueIter = mergeRoot->cbeginValueAll(); valueIter; ++valueIter) {
1044 const Coord& key = valueIter.getCoord();
1045 const uint8_t flag = getTileFlag(valueIter);
1046 if (flag & INSIDE_TILE) {
1047 auto it = flags.find(key);
1048 if (it != flags.end()) {
1049 const bool state = flag & ACTIVE_TILE;
1050 root.addTile(key, this->background(), state);
1051 }
1052 }
1053 }
1054
1055 for (auto childIter = mergeRoot->cbeginChildOn(); childIter; ++childIter) {
1056 const Coord& key = childIter.getCoord();
1057 auto it = flags.find(key);
1058 if (it != flags.end()) {
1059 const uint8_t otherFlag = it->second;
1060 if (otherFlag & CHILD) {
1061 // if child already exists, merge recursion will need to continue to resolve conflict
1062 continueRecurse = true;
1063 } else if (otherFlag & INSIDE_TILE) {
1064 auto childPtr = mTree.template stealOrDeepCopyNode<typename RootT::ChildNodeType>(key);
1065 if (childPtr) {
1066 childPtr->resetBackground(this->otherBackground(), this->background());
1067 childPtr->negate();
1068 root.addChild(childPtr.release());
1069 }
1070 }
1071 }
1072 }
1073 }
1074
1075 // finish by removing any background tiles
1076 root.eraseBackgroundTiles();
1077
1078 return continueRecurse;
1079}
1080
1081template<typename TreeT>
1082template<typename NodeT>
1083bool CsgDifferenceOp<TreeT>::operator()(NodeT& node, size_t) const
1084{
1085 using NonConstNodeT = typename std::remove_const<NodeT>::type;
1086
1087 using NodeMaskT = typename NodeT::NodeMaskType;
1088
1089 // store temporary mask to track inside tile state
1090
1091 NodeMaskT insideTile;
1092 for (auto iter = node.cbeginValueAll(); iter; ++iter) {
1093 if (iter.getValue() < zeroVal<ValueT>()) {
1094 insideTile.setOn(iter.pos());
1095 }
1096 }
1097
1098 bool continueRecurse = false;
1099
1100 auto* mergeNode = mTree.template probeConstNode<NonConstNodeT>(node.origin());
1101
1102 if (!mergeNode) return continueRecurse;
1103
1104 // iterate over all tiles
1105
1106 for (auto iter = mergeNode->cbeginValueAll(); iter; ++iter) {
1107 Index pos = iter.pos();
1108 if (iter.getValue() < zeroVal<ValueT>()) {
1109 if (insideTile.isOn(pos) || node.isChildMaskOn(pos)) {
1110 node.addTile(pos, this->background(), iter.isValueOn());
1111 }
1112 }
1113 }
1114
1115 // iterate over all children
1116
1117 for (auto iter = mergeNode->cbeginChildOn(); iter; ++iter) {
1118 Index pos = iter.pos();
1119 const Coord& ijk = iter.getCoord();
1120 if (insideTile.isOn(pos)) {
1121 auto childPtr = mTree.template stealOrDeepCopyNode<typename NodeT::ChildNodeType>(ijk);
1122 if (childPtr) {
1123 childPtr->resetBackground(this->otherBackground(), this->background());
1124 childPtr->negate();
1125 node.addChild(childPtr.release());
1126 }
1127 } else if (node.isChildMaskOn(pos)) {
1128 // if both source and target are child nodes, merge recursion needs to continue
1129 // along this branch to resolve the conflict
1130 continueRecurse = true;
1131 }
1132 }
1133
1134 return continueRecurse;
1135}
1136
1137template <typename TreeT>
1139{
1140 using LeafT = typename TreeT::LeafNodeType;
1141 using ValueT = typename LeafT::ValueType;
1142 using BufferT = typename LeafT::Buffer;
1143
1144 // if buffer is not out-of-core and empty, leaf node must have only been
1145 // partially constructed, so allocate and fill with background value
1146
1147 merge_internal::UnallocatedBuffer<BufferT, ValueT>::allocateAndFill(
1148 leaf.buffer(), this->background());
1149
1150 const LeafT* mergeLeaf = mTree.template probeConstNode<LeafT>(leaf.origin());
1151 if (!mergeLeaf) return false;
1152
1153 // if buffer is not out-of-core yet empty, leaf node must have only been
1154 // partially constructed, so skip merge
1155
1156 if (merge_internal::UnallocatedBuffer<BufferT, ValueT>::isPartiallyConstructed(
1157 mergeLeaf->buffer())) {
1158 return false;
1159 }
1160
1161 for (Index i = 0 ; i < LeafT::SIZE; i++) {
1162 const ValueT& aValue = leaf.getValue(i);
1163 ValueT bValue = math::negative(mergeLeaf->getValue(i));
1164 if (aValue < bValue) { // a = max(a, -b)
1165 leaf.setValueOnly(i, bValue);
1166 leaf.setActiveState(i, mergeLeaf->isValueOn(i));
1167 }
1168 }
1169
1170 return false;
1171}
1172
1173template <typename TreeT>
1174const typename CsgDifferenceOp<TreeT>::ValueT&
1176{
1177 // this operator is only intended to be used with foreachTopDown()
1178 assert(mBackground);
1179 return *mBackground;
1180}
1181
1182template <typename TreeT>
1183const typename CsgDifferenceOp<TreeT>::ValueT&
1184CsgDifferenceOp<TreeT>::otherBackground() const
1185{
1186 // this operator is only intended to be used with foreachTopDown()
1187 assert(mOtherBackground);
1188 return *mOtherBackground;
1189}
1190
1191
1192////////////////////////////////////////
1193
1194
1195template <typename TreeT>
1196bool SumMergeOp<TreeT>::operator()(RootT& root, size_t) const
1197{
1198 using ValueT = typename RootT::ValueType;
1199 using ChildT = typename RootT::ChildNodeType;
1200 using NonConstChildT = typename std::remove_const<ChildT>::type;
1201
1202 if (this->empty()) return false;
1203
1204 // store the background value
1205 if (!mBackground) mBackground = &root.background();
1206
1207 // does the key exist in the root node?
1208 auto keyExistsInRoot = [](const auto& rootToTest, const Coord& key) -> bool
1209 {
1210 return rootToTest.getValueDepth(key) > -1;
1211 };
1212
1213 constexpr uint8_t TILE = 0x1;
1214 constexpr uint8_t CHILD = 0x2;
1215 constexpr uint8_t TARGET_CHILD = 0x4; // child already exists in the target tree
1216
1217 std::unordered_map<Coord, /*flags*/uint8_t> children;
1218
1219 // find all tiles and child nodes in our root
1220
1221 if (root.getTableSize() > 0) {
1222 for (auto valueIter = root.cbeginValueAll(); valueIter; ++valueIter) {
1223 const Coord& key = valueIter.getCoord();
1224 children.insert({key, TILE});
1225 }
1226
1227 for (auto childIter = root.cbeginChildOn(); childIter; ++childIter) {
1228 const Coord& key = childIter.getCoord();
1229 children.insert({key, CHILD | TARGET_CHILD});
1230 }
1231 }
1232
1233 // find all tiles and child nodes in other roots
1234
1235 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
1236 const auto* mergeRoot = mergeTree.rootPtr();
1237 if (!mergeRoot) continue;
1238
1239 for (auto valueIter = mergeRoot->cbeginValueAll(); valueIter; ++valueIter) {
1240 const Coord& key = valueIter.getCoord();
1241 auto it = children.find(key);
1242 if (it == children.end()) {
1243 // if no element with this key, insert it
1244 children.insert({key, TILE});
1245 } else {
1246 // mark as tile
1247 it->second |= TILE;
1248 }
1249 }
1250
1251 for (auto childIter = mergeRoot->cbeginChildOn(); childIter; ++childIter) {
1252 const Coord& key = childIter.getCoord();
1253 auto it = children.find(key);
1254 if (it == children.end()) {
1255 // if no element with this key, insert it
1256 children.insert({key, CHILD});
1257 } else {
1258 // mark as child
1259 it->second |= CHILD;
1260 }
1261 }
1262 }
1263
1264 // if any coords do not already exist in the root, insert an inactive background tile
1265
1266 for (const auto& it : children) {
1267 if (!keyExistsInRoot(root, it.first)) {
1268 root.addTile(it.first, root.background(), false);
1269 }
1270 }
1271
1272 // for each coord, merge each tile into the root until a child is found, then steal it
1273
1274 for (const auto& it : children) {
1275
1276 const Coord& key = it.first;
1277
1278 // do nothing if the target root already contains a child node,
1279 // merge recursion will need to continue to resolve conflict
1280 if (it.second & TARGET_CHILD) continue;
1281
1282 ValueT value;
1283 const bool active = root.probeValue(key, value);
1284
1285 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
1286 const auto* mergeRoot = mergeTree.rootPtr();
1287 if (!mergeRoot) continue;
1288 if (!keyExistsInRoot(*mergeRoot, key)) continue;
1289
1290 // steal or deep-copy the first child node that is encountered,
1291 // then cease processing of this root node coord as merge recursion
1292 // will need to continue to resolve conflict
1293
1294 const auto* mergeNode = mergeRoot->template probeConstNode<ChildT>(key);
1295 if (mergeNode) {
1296 auto childPtr = mergeTree.template stealOrDeepCopyNode<ChildT>(key);
1297 childPtr->resetBackground(mergeRoot->background(), root.background());
1298 if (childPtr) {
1299 // apply tile value and active state to the sub-tree
1300 merge_internal::ApplyTileToNodeOp<TreeT> applyOp(value, active);
1301 applyOp.run(*childPtr);
1302 root.addChild(childPtr.release());
1303 }
1304 break;
1305 }
1306
1307 ValueT mergeValue;
1308 const bool mergeActive = mergeRoot->probeValue(key, mergeValue);
1309
1310 if (active || mergeActive) {
1311 value += mergeValue;
1312 root.addTile(key, value, true);
1313 } else {
1314 value += mergeValue;
1315 root.addTile(key, value, false);
1316 }
1317
1318 // reset tile value to zero to prevent it being merged twice
1319 mergeTree.template addTile<NonConstChildT>(key, zeroVal<ValueT>(), false);
1320 }
1321 }
1322
1323 return true;
1324}
1325
1326template<typename TreeT>
1327template<typename NodeT>
1328bool SumMergeOp<TreeT>::operator()(NodeT& node, size_t) const
1329{
1330 using ChildT = typename NodeT::ChildNodeType;
1331 using NonConstNodeT = typename std::remove_const<NodeT>::type;
1332
1333 if (this->empty()) return false;
1334
1335 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
1336 const auto* mergeRoot = mergeTree.rootPtr();
1337 if (!mergeRoot) continue;
1338
1339 const auto* mergeNode = mergeRoot->template probeConstNode<NonConstNodeT>(node.origin());
1340 if (mergeNode) {
1341 // merge node
1342
1343 for (auto iter = node.beginValueAll(); iter; ++iter) {
1344 if (mergeNode->isChildMaskOn(iter.pos())) {
1345 // steal child node
1346 auto childPtr = mergeTree.template stealOrDeepCopyNode<ChildT>(iter.getCoord());
1347 childPtr->resetBackground(mergeRoot->background(), this->background());
1348 if (childPtr) {
1349 // apply tile value and active state to the sub-tree
1350 merge_internal::ApplyTileToNodeOp<TreeT> applyOp(*iter, iter.isValueOn());
1351 applyOp.run(*childPtr);
1352 node.addChild(childPtr.release());
1353 }
1354 } else {
1355 ValueT mergeValue;
1356 const bool mergeActive = mergeNode->probeValue(iter.getCoord(), mergeValue);
1357 iter.setValue(*iter + mergeValue);
1358 if (mergeActive && !iter.isValueOn()) iter.setValueOn();
1359 }
1360 }
1361
1362 } else {
1363 // merge tile or background value
1364
1365 ValueT mergeValue;
1366 const bool mergeActive = mergeRoot->probeValue(node.origin(), mergeValue);
1367 for (auto iter = node.beginValueAll(); iter; ++iter) {
1368 iter.setValue(*iter + mergeValue);
1369 if (mergeActive && !iter.isValueOn()) iter.setValueOn();
1370 }
1371 }
1372 }
1373
1374 return true;
1375}
1376
1377template <typename TreeT>
1378bool SumMergeOp<TreeT>::operator()(LeafT& leaf, size_t) const
1379{
1380 using RootT = typename TreeT::RootNodeType;
1381 using RootChildT = typename RootT::ChildNodeType;
1382 using NonConstRootChildT = typename std::remove_const<RootChildT>::type;
1383 using LeafT = typename TreeT::LeafNodeType;
1384 using ValueT = typename LeafT::ValueType;
1385 using BufferT = typename LeafT::Buffer;
1386 using NonConstLeafT = typename std::remove_const<LeafT>::type;
1387
1388 if (this->empty()) return false;
1389
1390 const Coord& ijk = leaf.origin();
1391
1392 // if buffer is not out-of-core and empty, leaf node must have only been
1393 // partially constructed, so allocate and fill with background value
1394
1395 merge_internal::UnallocatedBuffer<BufferT, ValueT>::allocateAndFill(
1396 leaf.buffer(), this->background());
1397
1398 auto* data = leaf.buffer().data();
1399
1400 for (TreeToMerge<TreeT>& mergeTree : mTreesToMerge) {
1401 const RootT* mergeRoot = mergeTree.rootPtr();
1402 if (!mergeRoot) continue;
1403
1404 const RootChildT* mergeRootChild = mergeRoot->template probeConstNode<NonConstRootChildT>(ijk);
1405 const LeafT* mergeLeaf = mergeRootChild ?
1406 mergeRootChild->template probeConstNode<NonConstLeafT>(ijk) : nullptr;
1407 if (mergeLeaf) {
1408 // merge leaf
1409
1410 // if buffer is not out-of-core yet empty, leaf node must have only been
1411 // partially constructed, so skip merge
1412
1413 if (merge_internal::UnallocatedBuffer<BufferT, ValueT>::isPartiallyConstructed(
1414 mergeLeaf->buffer())) {
1415 return false;
1416 }
1417
1418 for (Index i = 0; i < LeafT::SIZE; ++i) {
1419 data[i] += mergeLeaf->getValue(i);
1420 }
1421
1422 leaf.getValueMask() |= mergeLeaf->getValueMask();
1423 } else {
1424 // merge root tile or background value
1425
1426 ValueT mergeValue;
1427 bool mergeActive = mergeRootChild ?
1428 mergeRootChild->probeValue(ijk, mergeValue) : mergeRoot->probeValue(ijk, mergeValue);
1429
1430 if (mergeValue != zeroVal<ValueT>()) {
1431 for (Index i = 0; i < LeafT::SIZE; ++i) {
1432 data[i] += mergeValue;
1433 }
1434 }
1435
1436 if (mergeActive) leaf.setValuesOn();
1437 }
1438 }
1439
1440 return false;
1441}
1442
1443template <typename TreeT>
1444const typename SumMergeOp<TreeT>::ValueT&
1446{
1447 // this operator is only intended to be used with foreachTopDown()
1448 assert(mBackground);
1449 return *mBackground;
1450}
1451
1452
1453////////////////////////////////////////
1454
1455
1456// Explicit Template Instantiation
1457
1458#ifdef OPENVDB_USE_EXPLICIT_INSTANTIATION
1459
1460#ifdef OPENVDB_INSTANTIATE_MERGE
1462#endif
1463
1464OPENVDB_INSTANTIATE_STRUCT TreeToMerge<MaskTree>;
1465OPENVDB_INSTANTIATE_STRUCT TreeToMerge<BoolTree>;
1466OPENVDB_INSTANTIATE_STRUCT TreeToMerge<FloatTree>;
1467OPENVDB_INSTANTIATE_STRUCT TreeToMerge<DoubleTree>;
1468OPENVDB_INSTANTIATE_STRUCT TreeToMerge<Int32Tree>;
1469OPENVDB_INSTANTIATE_STRUCT TreeToMerge<Int64Tree>;
1470OPENVDB_INSTANTIATE_STRUCT TreeToMerge<Vec3STree>;
1471OPENVDB_INSTANTIATE_STRUCT TreeToMerge<Vec3DTree>;
1472OPENVDB_INSTANTIATE_STRUCT TreeToMerge<Vec3ITree>;
1473
1474OPENVDB_INSTANTIATE_STRUCT SumMergeOp<MaskTree>;
1475OPENVDB_INSTANTIATE_STRUCT SumMergeOp<BoolTree>;
1476OPENVDB_INSTANTIATE_STRUCT SumMergeOp<FloatTree>;
1477OPENVDB_INSTANTIATE_STRUCT SumMergeOp<DoubleTree>;
1478OPENVDB_INSTANTIATE_STRUCT SumMergeOp<Int32Tree>;
1479OPENVDB_INSTANTIATE_STRUCT SumMergeOp<Int64Tree>;
1480OPENVDB_INSTANTIATE_STRUCT SumMergeOp<Vec3STree>;
1481OPENVDB_INSTANTIATE_STRUCT SumMergeOp<Vec3DTree>;
1482OPENVDB_INSTANTIATE_STRUCT SumMergeOp<Vec3ITree>;
1483
1484OPENVDB_INSTANTIATE_STRUCT CsgUnionOrIntersectionOp<FloatTree, true>;
1485OPENVDB_INSTANTIATE_STRUCT CsgUnionOrIntersectionOp<DoubleTree, true>;
1486
1487OPENVDB_INSTANTIATE_STRUCT CsgUnionOrIntersectionOp<FloatTree, false>;
1488OPENVDB_INSTANTIATE_STRUCT CsgUnionOrIntersectionOp<DoubleTree, false>;
1489
1490OPENVDB_INSTANTIATE_STRUCT CsgDifferenceOp<FloatTree>;
1491OPENVDB_INSTANTIATE_STRUCT CsgDifferenceOp<DoubleTree>;
1492
1493#endif // OPENVDB_USE_EXPLICIT_INSTANTIATION
1494
1495
1496} // namespace tools
1497} // namespace OPENVDB_VERSION_NAME
1498} // namespace openvdb
1499
1500#endif // OPENVDB_TOOLS_MERGE_HAS_BEEN_INCLUDED
#define OPENVDB_INSTANTIATE_STRUCT
Definition: ExplicitInstantiation.h:13
ValueT value
Definition: GridBuilder.h:1287
ChildT * child
Definition: GridBuilder.h:1286
Implementation of a depth-first node visitor.
Tag dispatch class that distinguishes constructors that deep copy.
Definition: Types.h:566
Definition: Exceptions.h:63
Tag dispatch class that distinguishes constructors that steal.
Definition: Types.h:568
Signed (x, y, z) 32-bit integer coordinates.
Definition: Coord.h:25
Definition: NodeManager.h:890
bool isValid(GridType gridType, GridClass gridClass)
return true if the combination of GridType and GridClass is valid.
Definition: NanoVDB.h:520
void run(const char *ax, openvdb::GridBase &grid)
Run a full AX pipeline (parse, compile and execute) on a single OpenVDB Grid.
T negative(const T &val)
Return the unary negation of the given value.
Definition: Math.h:127
Index32 Index
Definition: Types.h:54
OPENVDB_IMPORT void initialize()
Global registration of basic types.
uint32_t Index32
Definition: Types.h:52
Definition: Exceptions.h:13
Definition: Coord.h:586
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
NodeManager produces linear arrays of all tree nodes allowing for efficient threading and bottom-up p...
DynamicNodeManager operator to merge two trees using a CSG difference.
Definition: Merge.h:263
CsgDifferenceOp(TreeToMerge< TreeT > &tree)
Constructor to CSG difference the tree in a TreeToMerge object from another.
Definition: Merge.h:280
size_t size() const
Return the number of trees being merged (only ever 1)
Definition: Merge.h:283
typename TreeT::RootNodeType RootT
Definition: Merge.h:265
typename TreeT::LeafNodeType LeafT
Definition: Merge.h:266
typename TreeT::ValueType ValueT
Definition: Merge.h:264
CsgDifferenceOp(const TreeT &tree, DeepCopy tag)
Convenience constructor to CSG difference a single const tree from another. This constructor requires...
Definition: Merge.h:276
CsgDifferenceOp(TreeT &tree, TagT tag)
Convenience constructor to CSG difference a single non-const tree from another. This constructor take...
Definition: Merge.h:272
DynamicNodeManager operator to merge trees using a CSG union or intersection.
Definition: Merge.h:183
CsgUnionOrIntersectionOp(const TreeT &tree, DeepCopy tag)
Convenience constructor to CSG union or intersect a single const tree with another....
Definition: Merge.h:197
size_t size() const
Return the number of trees being merged.
Definition: Merge.h:229
typename TreeT::RootNodeType RootT
Definition: Merge.h:185
typename TreeT::LeafNodeType LeafT
Definition: Merge.h:186
CsgUnionOrIntersectionOp(const std::vector< TreeToMerge< TreeT > > &trees)
Constructor to accept a vector of TreeToMerge objects, primarily used when mixing const/non-const tre...
Definition: Merge.h:216
bool empty() const
Return true if no trees being merged.
Definition: Merge.h:226
CsgUnionOrIntersectionOp(const std::deque< TreeToMerge< TreeT > > &trees)
Constructor to accept a deque of TreeToMerge objects, primarily used when mixing const/non-const tree...
Definition: Merge.h:222
CsgUnionOrIntersectionOp(TreeT &tree, TagT tag)
Convenience constructor to CSG union or intersect a single non-const tree with another....
Definition: Merge.h:192
typename TreeT::ValueType ValueT
Definition: Merge.h:184
CsgUnionOrIntersectionOp(TreesT &trees, TagT tag)
Constructor to CSG union or intersect a container of multiple const or non-const tree pointers....
Definition: Merge.h:204
DynamicNodeManager operator to merge trees using a sum operation.
Definition: Merge.h:314
SumMergeOp(const std::deque< TreeToMerge< TreeT > > &trees)
Constructor to accept a deque of TreeToMerge objects, primarily used when mixing const/non-const tree...
Definition: Merge.h:350
size_t size() const
Return the number of trees being merged.
Definition: Merge.h:357
SumMergeOp(TreesT &trees, TagT tag)
Constructor to sum a container of multiple const or non-const tree pointers. A Steal tag requires a c...
Definition: Merge.h:332
typename TreeT::RootNodeType RootT
Definition: Merge.h:316
typename TreeT::LeafNodeType LeafT
Definition: Merge.h:317
SumMergeOp(const TreeT &tree, DeepCopy tag)
Convenience constructor to sum a single const tree with another. This constructor requires a DeepCopy...
Definition: Merge.h:326
bool empty() const
Return true if no trees being merged.
Definition: Merge.h:354
SumMergeOp(TreeT &tree, TagT tag)
Convenience constructor to sum a single non-const tree with another. This constructor takes a Steal o...
Definition: Merge.h:322
typename TreeT::ValueType ValueT
Definition: Merge.h:315
SumMergeOp(const std::vector< TreeToMerge< TreeT > > &trees)
Constructor to accept a vector of TreeToMerge objects, primarily used when mixing const/non-const tre...
Definition: Merge.h:344
Wrapper around unique_ptr that deep-copies mask on copy construction.
Definition: Merge.h:136
std::unique_ptr< MaskTreeType > ptr
Definition: Merge.h:137
MaskPtr & operator=(MaskPtr &&other)=default
MaskPtr(const MaskPtr &other)
Definition: Merge.h:143
MaskPtr & operator=(const MaskPtr &other)
Definition: Merge.h:145
DynamicNodeManager operator used to generate a mask of the input tree, but with dense leaf nodes repl...
Definition: Merge.h:157
typename MaskT::LeafNodeType LeafT
Definition: Merge.h:160
MaskUnionOp(const TreeT &tree)
Definition: Merge.h:162
bool operator()(LeafT &, size_t) const
Definition: Merge.h:166
MaskTreeType MaskT
Definition: Merge.h:158
typename MaskT::RootNodeType RootT
Definition: Merge.h:159
Convenience class that contains a pointer to a tree to be stolen or deep copied depending on the tag ...
Definition: Merge.h:47
TreeToMerge(typename TreeType::Ptr treePtr, Steal)
Non-const shared pointer tree constructor for stealing data.
Definition: Merge.h:59
std::remove_const_t< TreeT > TreeType
Definition: Merge.h:48
typename TreeType::ValueType ValueType
Definition: Merge.h:50
MaskTreeType * mask()
Definition: Merge.h:119
typename TreeType::RootNodeType RootNodeType
Definition: Merge.h:49
typename TreeT::template ValueConverter< ValueMask >::Type MaskTreeType
Definition: Merge.h:51
const MaskTreeType * mask() const
Definition: Merge.h:120
const TreeType * treeToDeepCopy()
Return a pointer to the tree to be deep-copied.
Definition: Merge.h:89
TreeToMerge(const TreeType &tree, DeepCopy, bool initialize=true)
Const tree pointer constructor for deep-copying data. As the tree is not mutable and thus cannot be p...
Definition: Merge.h:67
TreeToMerge(TreeType &tree, DeepCopy tag, bool initialize=true)
Non-const tree pointer constructor for deep-copying data. The tree is not intended to be modified so ...
Definition: Merge.h:78
void reset(typename TreeType::Ptr treePtr, Steal)
Reset the non-const tree shared pointer. This is primarily used to preserve the order of trees to mer...
Definition: Merge.h:399
TreeToMerge(TreeType &tree, Steal)
Non-const pointer tree constructor for stealing data.
Definition: Merge.h:56
TreeType * treeToSteal()
Return a pointer to the tree to be stolen.
Definition: Merge.h:87
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:116
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:202