
Warnings and errors for the expl3 analysis tool
Vít Starý Novotný

2026-02-05

Contents
Introduction 4

1 Preprocessing 4
No standard delimiters [W100] . 4
Unexpected delimiters [W101] . 5
Expl3 material in non-expl3 parts [E102] 5
Line too long [S103] . 6
Multiple delimiters \ProvidesExpl* in a single file [E104] 6
Needlessly ignored issue [S105] . 6

2 Lexical analysis 6
“Do not use” argument specifiers [W200] 6
Unknown argument specifiers [E201] 7
Deprecated control sequences [W202] 7
Missing stylistic whitespaces [S204] . 7
Too many closing braces [E208] . 7
Invalid characters [E209] . 8

3 Syntactic analysis 8
Unexpected function call argument [E300] 8
End of expl3 part within function call [E301] 8
Unbraced n-type function call argument [W302] 8
Braced N-type function call argument [W303] 9
Unexpected parameter number [E304] 9
Expanding an unexpandable variable or constant [T305] 9

4 Semantic analysis 10
4.1 Functions and conditional functions 10

Unused private function [W401] 10
Unused private function variant [W402] 10
Function variant of incompatible type [T403] 11
Protected predicate function [E404] 11
Function variant for an undefined function [E405] 11

1

Calling an undefined function [E408] 12
Function variant of deprecated type [W410] 12
Indirect function definition from an undefined function [E411] . . 13
Malformed function name [S412] 14

4.2 Variables and constants . 15
Malformed variable or constant name [S413] 15
Malformed quark or scan mark name [S414] 16
Unused variable or constant [W415] 16
Setting an undeclared variable [W416] 17
Setting a variable as a constant [E417] 17
Setting a constant [E418] . 17
Using an undeclared variable or constant [W419] 17
Locally setting a global variable [E420] 18
Globally setting a local variable [E421] 18
Using a variable of an incompatible type [T422] 18

4.3 Messages . 23
Unused message [W423] . 23
Using an undefined message [E424] 24
Incorrect parameters in message text [E425] 24
Incorrect number of arguments supplied to message [W426] . . . 24

4.4 Sorting . 25
Comparison conditional without signature :nnTF [E427] 25

5 Flow analysis 25
5.1 Functions and conditional functions 25

Multiply defined function [E500] 25
Multiply defined function variant [W501] 27
Unused private function [W502] 28
Unused private function variant [W503] 28
Function variant for an undefined function [E504] 29
Calling an undefined function [E505] 30
Indirect function definition from an undefined function [E506] . . 31
Setting a function before definition [W507] 32
Unexpandable or restricted-expandable boolean expression [E508] 33
Expanding an unexpandable function [E509] 33
Fully-expanding a restricted-expandable function [E510] 34
Defined an expandable function as protected [W511] 34
Defined an unexpandable function as unprotected [W512] 35
Conditional function with no return value [E513] 35
Comparison code with no return value [E514] 36
Paragraph token in the parameter of a ”nopar” function [E515] . 36

5.2 Variables and constants . 37
Unused variable or constant [W516] 37
Setting an undeclared variable [E517] 37
Using an undeclared variable or constant [W518] 37
Multiply declared variable or constant [E519] 38

2

5.3 Messages . 38
Unused message [W520] . 38
Using an undefined message [E521] 38
Incorrect number of arguments supplied to message [W522] . . . 39
Multiply defined message [E523] 39

5.4 Input–output streams . 40
Using an unopened or closed stream [E524] 40
Multiply opened stream [E525] 40
Unclosed stream [W526] . 40

5.5 Piecewise token list construction 41
Building on a regular token list [T527] 41
Using a semi-built token list [T528] 41
Multiply started building a token list [E529] 42
Unfinished semi-built token list [W530] 42

Caveats 43

References 45

Index 46

3

Introduction
In this document, I list the warnings and errors for the different processing steps
of the expl3 linter [1]:

Preprocessing Determine which parts of the input files contain expl3 code.

Lexical analysis Convert expl3 parts of the input files into TEX tokens.

Syntactic analysis Convert TEX tokens into a tree of function calls.

Semantic analysis Determine the meaning of the different function calls.

Flow analysis Determine additional emergent properties of the code.

For each warning and error, I specify a unique identifier that can be used to
disable the warning or error, a description of the condition for the warning or
error, and a code example that demonstrates the condition and serves as a test
case for the linter.

Warnings and errors have different types that decides the prefix of their
idenfitiers:

• Warnings:
S : Style warnings
W : Other warnings

• Errors:
T : Type errors
E : Other errors

Issues that are planned but not yet implemented are grayed out.

1 Preprocessing
In the preprocessing step, the expl3 analysis tool determines which parts of the
input files contain expl3 code. Inline TEX comments that disable warnings and
errors are also analyzed in this step.

No standard delimiters [W100]
An input file contains no delimiters such as \ExplSyntaxOn, \ExplSyntaxOff,
\ProvidesExplPackage, \ProvidesExplClass, and \ProvidesExplFile [2, Sec-
tion 2.1]. The analysis tool should assume that the whole input file is in expl3.

4

1 % file-wide warning
2 \tl_new:N
3 \g_example_tl
4 \tl_gset:Nn
5 \g_example_tl
6 { Hello,~ }
7 \tl_gput_right:Nn
8 \g_example_tl
9 { world! }

10 \tl_use:N
11 \g_example_tl

Unexpected delimiters [W101]
An input file contains extraneous \ExplSyntaxOn delimiters [2, Section 2.1] in
expl3 parts or extraneous \ExplSyntaxOff delimiters in non-expl3 parts.

1 \input expl3-generic
2 \ExplSyntaxOff % warning on this line
3 \ExplSyntaxOn
4 \tl_new:N
5 \g_example_tl
6 \tl_gset:Nn
7 \g_example_tl
8 { Hello,~ }
9 \ExplSyntaxOn % warning on this line

10 \tl_gput_right:Nn
11 \g_example_tl
12 { world! }
13 \tl_use:N
14 \g_example_tl

Expl3 material in non-expl3 parts [E102]
An input file contains what looks like expl3 material [2, Section 1.1] in non-expl3
parts.

1 \ProvidesExplFile{example.tex}{2024-04-09}{1.0.0}{An example
file}↪→

2 \tl_new:N
3 \g_example_tl
4 \tl_gset:Nn
5 \g_example_tl
6 { Hello,~ }
7 \tl_gput_right:Nn
8 \g_example_tl
9 { world! }

5

10 \ExplSyntaxOff
11 \tl_use:N % error on this line
12 \g_example_tl % error on this line

Line too long [S103]
Some lines in expl3 parts are longer than 80 characters [3, Section 2].

1 This line is not very long, because it is 80 characters long, not
81 characters.↪→

2 This line is overly long, because it is 81 characters long
excluding the comment. % warning on this line↪→

3 This line is not very long, because it is 80 characters long,
comments excluded. % no warning on this line↪→

The maximum line length can be configured using the command-line option
--max-line-length or with the Lua option max_line_length.

Multiple delimiters \ProvidesExpl* in a single file [E104]
An input file contains multiple delimiters \ProvidesExplPackage, \ProvidesExplClass,
and \ProvidesExplFile.

1 \ProvidesExplPackage
2 {example.sty}{2024-04-09}{1.0.0}{An example package}
3 \ExplSyntaxOff
4 \ProvidesExplClass % error on this line
5 {example.cls}{2024-04-09}{1.0.0}{An example class}

Needlessly ignored issue [S105]
An input file contains % noqa comments with needlessly ignored issues.

1 % warning on the following line
2 There is no issue here. % noqa: e123

2 Lexical analysis
In the lexical analysis step, the expl3 analysis tool converts the expl3 parts of
the input files into a list of TEX tokens.

“Do not use” argument specifiers [W200]
Some control sequence tokens correspond to functions with D (do not use)
argument specifiers.

6

1 \tex_space:D % warning on this line
2 \tex_italiccor^^3aD % warning on this line
3 \tex_hyphen^^zD % warning on this line
4 \tex_let:^^44 % warning on this line

The above example has been taken from The LATEX Project [2, Chapter 24].

Unknown argument specifiers [E201]
Some control sequence tokens correspond to functions with unknown argument
specifiers. [2, Section 1.1]

1 \cs_new:Nn
2 \example:bar % error on this line
3 { foo }
4 { bar }
5 { baz }

Deprecated control sequences [W202]
Some control sequence tokens correspond to deprecated expl3 control sequences
from l3obsolete.txt [5].

1 \str_lower_case:n % warning on this line
2 { FOO BAR }

Missing stylistic whitespaces [S204]
Some control sequences and curly braces are not surrounded by whitespaces [4,
Section 6, 3, Section 3].

1 \cs_new:Npn \foo_bar:Nn #1#2
2 {
3 \cs_if_exist:NTF#1 % warning on this line
4 { __foo_bar:n {#2} }
5 { __foo_bar:nn{#2}{literal} } % warning on this line
6 }

Too many closing braces [E208]
An expl3 part of the input file contains too many closing braces.

1 \tl_new:N
2 \g_example_tl
3 \tl_gset:Nn
4 \g_example_tl
5 { Hello,~ } } % error on this line

7

Invalid characters [E209]
An expl3 part of the input file contains invalid characters.

1 ^^7f % error on this line
2 \fo^^?o % error on this line

3 Syntactic analysis
In the syntactic analysis step, the expl3 analysis tool converts the list of TEX
tokens into a tree of function calls.

Unexpected function call argument [E300]
A function is called with an unexpected argument.

1 \cs_new:Nn
2 { unexpected } % error on this line
3 \l_tmpa_tl

Partial applications are detected by analysing closing braces (}) and do not
produce an error:

1 \cs_new:Nn
2 \example_foo:n
3 { foo~#1 }
4 \cs_new:Nn
5 \example_bar:
6 { \example_foo:n }
7 \cs_new:Nn
8 \example_baz:
9 {

10 \example_bar:
11 { bar }
12 }

End of expl3 part within function call [E301]
A function call is cut off by the end of a file or an expl3 part of a file:

1 \cs_new:Nn % error on this line
2 \example_foo:n

Unbraced n-type function call argument [W302]
An n-type function call argument is unbraced:

8

1 \tl_set:No
2 \l_tmpa_tl
3 \l_tmpb_tl % warning on this line

Depending on the specific function, this may or may not be an error.

Braced N-type function call argument [W303]
An N-type function call argument is braced:

1 \cs_new:Nn
2 { \example_foo:n } % warning on this line
3 { bar }

Depending on the specific function, this may or may not be an error.

Unexpected parameter number [E304]
A parameter or replacement text contains parameter tokens (#) followed by
unexpected numbers:

1 \cs_new:Npn
2 \example_foo:nnn
3 #1#2#9 % error on this line
4 { foo~#1 }

1 \cs_new:Npn
2 \example_foo:nnn
3 #1#2#3
4 { foo~#4 } % error on this line

Expanding an unexpandable variable or constant [T305]
A function with a V-type argument is called with a variable or constant that
does not support V-type expansion [2, Section 1.1].

1 \cs_new:Nn
2 \module_foo:n
3 { #1 }
4 \cs_generate_variant:Nn
5 \module_foo:n
6 { V, v }
7 \module_foo:V
8 \c_false_bool % error on this line
9 \module_foo:v

10 { c_false_bool } % error on this line

9

4 Semantic analysis
In the semantic analysis step, the expl3 analysis tool determines the meaning of
the different function calls.

4.1 Functions and conditional functions
Unused private function [W401]

A private function or conditional function is defined but unused.

1 \cs_new:Nn % warning on this line
2 __module_foo:
3 { bar }

1 \prg_new_conditional:Nnn % warning on this line
2 __module_foo:
3 { p, T, F, TF }
4 { \prg_return_true: }

Unused private function variant [W402]

A private function or conditional function variant is defined but unused.

1 \cs_new:Nn
2 __module_foo:n
3 { bar~#1 }
4 \cs_generate_variant:Nn % warning on this line
5 __module_foo:n
6 { V }
7 __module_foo:n
8 { baz }

1 \prg_new_conditional:Nnn
2 __module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn % warning on this line
6 __module_foo:n
7 { V }
8 { TF }
9 __module_foo:nTF

10 { foo }
11 { bar }
12 { baz }

10

Function variant of incompatible type [T403]

A function or conditional function variant is generated from an incompatible
argument type [2, Section 5.2, documentation of function \cs_generate_-
variant:Nn].

1 \cs_new:Nn
2 \module_foo:Nn
3 { bar }
4 \cs_generate_variant:Nn
5 \module_foo:Nn
6 { Nnn } % error on this line

Higher-order variants can be created from existing variants as long as only n
and N arguments are changed to other types:

1 \cs_new:Nn
2 \module_foo:Nn
3 { bar }
4 \cs_generate_variant:Nn
5 \module_foo:Nn
6 { cn }
7 \cs_generate_variant:Nn
8 \module_foo:cn
9 { cx }

10 \cs_generate_variant:Nn
11 \module_foo:cx
12 { Ne } % error on this line

Protected predicate function [E404]

A protected predicate function is defined.

1 \prg_new_protected_conditional:Nnn
2 \module_foo:
3 { p }
4 { \prg_return_true: }

Function variant for an undefined function [E405]

A function or conditional function variant is defined for an undefined function.

1 \cs_new:Nn
2 \module_foo:n
3 { bar }
4 \cs_generate_variant:Nn
5 \module_bar:n % error on this line
6 { V }

11

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn
6 \module_bar:n % error on this line
7 { V }
8 { T }
9 \prg_generate_conditional_variant:Nnn

10 \module_foo:n % error on this line
11 { V }
12 { TF }

Calling an undefined function [E408]

A function or conditional function (variant) is called but undefined.

1 \module_foo: % error on this line

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \tl_set:Nn
5 \l_tmpa_tl
6 { baz }
7 \module_foo:V % error on this line
8 \l_tmpa_tl

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn
6 \module_foo:n
7 { V }
8 { T }
9 \module_foo:VTF % error on this line

10 \l_tmpa_tl
11 { foo }
12 { bar }

Function variant of deprecated type [W410]

A function or conditional function variant is generated from a deprecated
argument type [2, Section 5.2, documentation of function \cs_generate_-
variant:Nn].

1 \cs_new:Nn

12

2 \module_foo:Nn
3 { bar }
4 \cs_generate_variant:Nn
5 \module_foo:Nn
6 { nn } % warning on this line
7 \cs_generate_variant:Nn
8 \module_foo:Nn
9 { NN } % warning on this line

10 \cs_generate_variant:Nn
11 \module_foo:Nn
12 { vc } % warning on this line

Indirect function definition from an undefined function [E411]

A function or conditional function is indirectly defined from an undefined function.

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_new_eq:NN
5 \module_bar:n
6 \module_foo:n
7 \cs_new_eq:NN
8 \module_baz:n
9 \module_bar:n

10 \module_baz:n
11 { foo }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_new_eq:NN
6 \module_bar:nTF
7 \module_foo:nTF
8 \cs_new_eq:NN
9 \module_baz:nTF

10 \module_bar:nTF
11 \module_baz:nTF
12 { foo }
13 { bar }
14 { baz }

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_new_eq:NN % error on this line

13

5 \module_baz:n
6 \module_bar:n
7 \module_baz:n
8 { foo }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_new_eq:NN % error on this line
6 \module_baz:nTF
7 \module_bar:nTF
8 \module_baz:nTF
9 { foo }

10 { bar }
11 { baz }

Malformed function name [S412]

Some function have names that are not in the format \〈module〉_〈description〉:〈arg-
spec〉 [4, Section 3.2].

1 \cs_new:Nn
2 \description: % warning on this line
3 { foo }

1 \cs_gset:Npn
2 \module__description: % warning on this line
3 { foo }

1 \cs_new:Nn
2 \example_foo:
3 { bar }
4 \cs_set_eq:NN
5 _module_description: % warning on this line
6 \example_foo:

1 \cs_generate_from_arg_count:NNnn
2 __module_description:
3 \cs_new:Npn
4 { 0 }
5 { foo }

This also extends to conditional functions:

1 \prg_new_conditional:Nn
2 \description: % warning on this line
3 { p, T, F, TF }
4 { foo }

14

1 \prg_gset_conditional:Npn
2 \module__description: % warning on this line
3 { p, T, F, TF }
4 { foo }

1 \prg_new_conditional:Nnn
2 \example_foo:
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_set_eq_conditional:NNn
6 _module_description: % warning on this line
7 \example_foo:
8 { p, T, F, TF }

Furthermore, this also extends to function variants:

1 \cs_new:Nn
2 \example:n % warning on this line
3 { #1 }
4 \cs_generate_variant:Nn
5 \example:n % warning on this line
6 { e, x, V }

4.2 Variables and constants
Malformed variable or constant name [S413]

Some expl3 variables and constants have names that are not in the format
\〈scope〉_〈module〉_〈description〉_〈type〉 [4, Section 3.2].

1 \tl_new:N
2 \g_description_tl % warning on this line
3 \box_use:N
4 \l__description_box % warning on this line
5 \int_const:Nn
6 \c_description % warning on this line
7 { 123 }

1 \regex_new:N
2 \g_module_description_regex
3 \coffin_new:N
4 \l_module_description_coffin
5 \str_const:Nn
6 \c__module_description_str
7 { foo }

1 \tl_use:N
2 \l_tmpa_tl

15

3 \int_gset:Nn
4 \g_tmpb_int
5 { 1 + 2 }
6 \str_show:N
7 \g_tmpa_str
8 \bool_set_true:N
9 \l_tmpa_bool

Malformed quark or scan mark name [S414]

Some expl3 quarks and scan marks have names that do not start with \q_ and
\s_, respectively [4, Chapter 19].

1 \quark_new:N
2 \foo_bar % warning on this line

1 \quark_new:N
2 \q_foo_bar

1 \scan_new:N
2 \foo_bar % error on this line

1 \scan_new:N
2 \s_foo_bar

Unused variable or constant [W415]

A variable or a constant is declared and perhaps defined but unused.

1 \tl_new:N
2 \g_declared_but_undefined_tl % warning on this line

1 \tl_new:N
2 \g_defined_but_unused_tl % warning on this line
3 \tl_gset:Nn
4 \g_defined_but_unused_tl
5 { foo }

1 \tl_new:N
2 \g_defined_and_used_tl
3 \tl_gset:Nn
4 \g_defined_and_used_tl
5 { foo }
6 \tl_use:N
7 \g_defined_and_used_tl

1 \tl_const:Nn
2 \c_defined_but_unused_tl % warning on this line
3 { foo }

16

1 \tl_const:Nn
2 \c_defined_and_used_tl
3 { foo }
4 \tl_use:N
5 \c_defined_and_used_tl

Setting an undeclared variable [W416]

An undeclared variable is set.

1 \tl_gset:Nn
2 \g_example_tl % warning on this line
3 { bar }

Setting a variable as a constant [E417]

A variable is set as though it were a constant.

1 \tl_const:Nn
2 \g_example_tl % error on this line
3 { bar }

Setting a constant [E418]

A constant is set.

1 \tl_gset:Nn
2 \c_example_tl % error on this line
3 { bar }

Using an undeclared variable or constant [W419]

A variable or constant is used but undeclared or undefined.

1 \tl_use:N
2 \g_undeclared_tl % error on this line

1 \tl_new:N
2 \g_declared_but_undefined_tl
3 \tl_use:N
4 \g_declared_but_undefined_tl

1 \tl_new:N
2 \g_defined_tl
3 \tl_gset:Nn
4 \g_defined_tl
5 { foo }
6 \tl_use:N
7 \g_defined_tl

17

1 \tl_use:N
2 \c_undefined_tl % error on this line

1 \tl_const:Nn
2 \c_defined_tl
3 { foo }
4 \tl_use:N
5 \c_defined_tl

Locally setting a global variable [E420]

A global variable is locally set.

1 \tl_new:N
2 \g_example_tl
3 \tl_set:Nn % error on this line
4 \g_example_tl
5 { foo }

Globally setting a local variable [E421]

A local variable is globally set.

1 \tl_new:N
2 \l_example_tl
3 \tl_gset:Nn % error on this line
4 \l_example_tl
5 { foo }

Using a variable of an incompatible type [T422]

A variable of one type is used where a variable of a different type should be used.

1 \tl_new:N % error on this line
2 \l_example_str
3 \str_new:N % error on this line
4 \l_example_tl

1 \tl_new:N
2 \l_example_tl
3 \tl_count:N
4 \l_example_tl
5 \str_count:N
6 \l_example_tl
7 \seq_count:N % error on this line
8 \l_example_tl
9 \clist_count:N

10 \l_example_tl

18

11 \prop_count:N % error on this line
12 \l_example_tl
13 \intarray_count:N % error on this line
14 \l_example_tl
15 \fparray_count:N % error on this line
16 \l_example_tl

1 \str_new:N
2 \l_example_str
3 \tl_count:N
4 \l_example_str
5 \str_count:N
6 \l_example_str
7 \seq_count:N % error on this line
8 \l_example_str
9 \clist_count:N % error on this line

10 \l_example_str
11 \prop_count:N % error on this line
12 \l_example_str
13 \intarray_count:N % error on this line
14 \l_example_str
15 \fparray_count:N % error on this line
16 \l_example_str

1 \int_new:N
2 \l_example_int
3 \tl_count:N % error on this line
4 \l_example_int
5 \str_count:N % error on this line
6 \l_example_int
7 \seq_count:N % error on this line
8 \l_example_int
9 \clist_count:N % error on this line

10 \l_example_int
11 \prop_count:N % error on this line
12 \l_example_int
13 \intarray_count:N % error on this line
14 \l_example_int
15 \fparray_count:N % error on this line
16 \l_example_int

1 \seq_new:N
2 \l_example_seq
3 \tl_count:N % error on this line
4 \l_example_seq
5 \str_count:N % error on this line
6 \l_example_seq

19

7 \seq_count:N
8 \l_example_seq
9 \clist_count:N % error on this line

10 \l_example_seq
11 \prop_count:N % error on this line
12 \l_example_seq
13 \intarray_count:N % error on this line
14 \l_example_seq
15 \fparray_count:N % error on this line
16 \l_example_seq

1 \clist_new:N
2 \l_example_clist
3 \tl_count:N
4 \l_example_clist
5 \str_count:N % error on this line
6 \l_example_clist
7 \seq_count:N % error on this line
8 \l_example_clist
9 \clist_count:N

10 \l_example_clist
11 \prop_count:N % error on this line
12 \l_example_clist
13 \intarray_count:N % error on this line
14 \l_example_clist
15 \fparray_count:N % error on this line
16 \l_example_clist

1 \clist_new:N % error on this line
2 \l_example_prop
3 \tl_count:N % error on this line
4 \l_example_prop
5 \str_count:N % error on this line
6 \l_example_prop
7 \seq_count:N % error on this line
8 \l_example_prop
9 \clist_count:N % error on this line

10 \l_example_prop
11 \prop_count:N
12 \l_example_prop
13 \intarray_count:N % error on this line
14 \l_example_prop
15 \fparray_count:N % error on this line
16 \l_example_prop

1 \intarray_new:Nn
2 \g_example_intarray

20

3 { 5 }
4 \tl_count:N % error on this line
5 \g_example_intarray
6 \str_count:N % error on this line
7 \g_example_intarray
8 \seq_count:N % error on this line
9 \g_example_intarray

10 \clist_count:N % error on this line
11 \g_example_intarray
12 \prop_count:N % error on this line
13 \g_example_intarray
14 \intarray_count:N
15 \g_example_intarray
16 \fparray_count:N % error on this line
17 \g_example_intarray

1 \fparray_new:Nn
2 \g_example_fparray
3 { 5 }
4 \tl_count:N % error on this line
5 \g_example_fparray
6 \str_count:N % error on this line
7 \g_example_fparray
8 \seq_count:N % error on this line
9 \g_example_fparray

10 \clist_count:N % error on this line
11 \g_example_fparray
12 \prop_count:N % error on this line
13 \g_example_fparray
14 \intarray_count:N % error on this line
15 \g_example_fparray
16 \fparray_count:N
17 \g_example_fparray

1 \ior_new:N
2 \l_example_ior
3 \iow_open:Nn % error on this line
4 \l_example_ior
5 { example }

1 \clist_new:N
2 \l_example_clist
3 \tl_set:Nn
4 \l_tmpa_tl
5 { foo }
6 \clist_set_eq:NN % error on this line
7 \l_example_clist
8 \l_tmpa_tl

21

1 \tl_set:Nn
2 \l_tmpa_tl
3 { foo }
4 \seq_set_from_clist:NN % error on this line
5 \l_tmpa_seq
6 \l_tmpa_tl

1 \tl_set:Nn
2 \l_tmpa_tl
3 { foo }
4 \regex_set:Nn
5 \l_tmpa_regex
6 { foo }
7 \int_set:Nn
8 \l_tmpa_int
9 { 1 + 2 }

10 \regex_show:N % error on this line
11 \l_tmpa_tl
12 \regex_show:N
13 \l_tmpa_regex
14 \regex_show:N % error on this line
15 \l_tmpa_int

1 \tl_set:Nn
2 \l_tmpa_tl
3 { foo }
4 \int_set_eq:NN % error on this line
5 \l_tmpa_int
6 \l_tmpa_tl

1 \str_new:N
2 \l_example_str
3 \tl_const:Nn
4 \c_example_tl
5 { foo }
6 \str_set_eq:NN % error on this line
7 \l_example_str
8 \c_example_tl

1 \tl_new:N
2 \l_example_tl
3 \str_new:N
4 \l_example_str
5 \str_set:Nn
6 \l_example_str
7 { foo }
8 \tl_set_eq:NN
9 \l_example_tl

22

10 \l_example_str
11 \str_set_eq:NN
12 \l_example_tl
13 \l_example_str
14 \tl_set_eq:NN % error on this line
15 \l_example_str
16 \l_example_tl
17 \str_set_eq:NN % error on this line
18 \l_example_str
19 \l_example_tl

1 \str_set_eq:NN % error on this line
2 \l_example_tl
3 \l_example_tl
4 \tl_set_eq:NN % error on this line
5 \l_example_str
6 \l_example_str

1 \seq_set_from_clist:NN
2 \l_tmpa_seq
3 \l_tmpa_clist
4 \seq_set_from_clist:NN % error on this line
5 \l_tmpa_seq
6 \l_tmpa_tl
7 \seq_set_from_clist:NN % error on this line
8 \l_tmpa_seq
9 \l_tmpa_seq

10 \clist_set_from_seq:NN
11 \l_tmpa_clist
12 \l_tmpa_seq
13 \clist_set_from_seq:NN % error on this line
14 \l_tmpa_clist
15 \l_tmpa_int

4.3 Messages
Unused message [W423]

A message is defined but unused.

1 \msg_new:nnn % warning on this line
2 { foo }
3 { bar }
4 { baz }

1 \msg_new:nnn
2 { bar }
3 { bar }

23

4 { baz }
5 \msg_info:nn
6 { bar }
7 { bar }

Using an undefined message [E424]

A message is used but undefined.

1 \msg_info:nnn % error on this line
2 { foo }
3 { bar }
4 { baz }

Incorrect parameters in message text [E425]

Parameter tokens other than #1, #2, #3, and #4 are specified in a message text.

1 \msg_new:nnn
2 { foo }
3 { bar }
4 { #5 } % error on this line

1 \msg_new:nnnn
2 { foo }
3 { bar }
4 { #5~#6 } % two errors on this line
5 { #6~#7 } % two errors on this line

1 \msg_new:nnnn
2 { foo }
3 { bar }
4 { #1~#2 }
5 { #3~#4 }

Incorrect number of arguments supplied to message [W426]

A message was supplied fewer or more arguments than there are parameters in
the message text.

1 \msg_new:nnn
2 { foo }
3 { bar }
4 { #1~#2 }
5 \msg_info:nn % warning on this line
6 { foo }
7 { bar }
8 \msg_info:nnn % warning on this line

24

9 { foo }
10 { bar }
11 { foo }
12 \msg_info:nnnn
13 { foo }
14 { bar }
15 { foo }
16 { bar }
17 \msg_info:nnnnn % warning on this line
18 { foo }
19 { bar }
20 { foo }
21 { bar }
22 { baz }

4.4 Sorting
Comparison conditional without signature :nnTF [E427]

A sorting function is called with a conditional that has a signature different than
:nnTF [2, Section 15.5.4].

1 \cs_new:Nn
2 \example_foo:
3 { \prg_return_true: }
4 \tl_sort:nN
5 { { foo } { bar } }
6 \example_foo:nnT % error on this line

1 \cs_new:Nn
2 \example_foo:
3 { \prg_return_true: }
4 \tl_sort:nN
5 { { foo } { bar } }
6 \example_foo:nnTF

5 Flow analysis
In the flow analysis step, the expl3 analysis tool determines compiler-theoretic
properties of functions, such as expandability, and variables, such as reaching
definitions.

5.1 Functions and conditional functions
Multiply defined function [E500]

A function or conditional function is defined multiple times.

25

1 \cs_new:Nn
2 \module_foo:
3 { bar }
4 \cs_new:Nn % error on this line
5 \module_foo:
6 { bar }

1 \cs_new:Nn
2 \module_foo:
3 { bar }
4 \cs_undefine:N
5 \module_foo:
6 \cs_new:Nn
7 \module_foo:
8 { bar }

1 \cs_new:Nn
2 \module_foo:
3 { bar }
4 \cs_gset:Nn
5 \module_foo:
6 { bar }

1 \prg_new_conditional:Nnn
2 \module_foo:
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_new_conditional:Nnn % error on this line
6 \module_foo:
7 { p, T, F, TF }
8 { \prg_return_true: }

1 \prg_new_conditional:Nnn
2 \module_foo:
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_undefine:N
6 \module_foo_p:
7 \cs_undefine:N
8 \module_foo:T
9 \cs_undefine:N

10 \module_foo:F
11 \cs_undefine:N
12 \module_foo:TF
13 \prg_new_conditional:Nnn
14 \module_foo:
15 { p, T, F, TF }
16 { \prg_return_true: }

26

1 \prg_new_conditional:Nnn
2 \module_foo:
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_gset_conditional:Nnn
6 \module_foo:
7 { p, T, F, TF }
8 { \prg_return_true: }

Multiply defined function variant [W501]

A function or conditional function variant is defined multiple times.

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_generate_variant:Nn
5 \module_foo:n
6 { V }
7 \cs_generate_variant:Nn % warning on this line
8 \module_foo:n
9 { o, V }

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_generate_variant:Nn
5 \module_foo:n
6 { V }
7 \cs_undefine:N
8 \module_foo:V
9 \cs_generate_variant:Nn

10 \module_foo:n
11 { o, V }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn
6 \module_foo:n
7 { V }
8 { TF }
9 \prg_generate_conditional_variant:Nnn % warning on this line

10 \module_foo:n
11 { o, V }
12 { TF }

27

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn
6 \module_foo:n
7 { V }
8 { TF }
9 \cs_undefine:N

10 \module_foo:VTF
11 \prg_generate_conditional_variant:Nnn
12 \module_foo:n
13 { o, V }
14 { TF }

Unused private function [W502]

A private function or conditional function is defined but all its calls are unreach-
able.1

1 \cs_new:Nn % warning on this line
2 __module_foo:
3 { bar }
4 \cs_new:Nn
5 __module_baz:
6 { __module_foo: }

This check is a stronger version of W401 and should only be emitted if W401
has not previously been emitted for this function.

Unused private function variant [W503]

A private function or conditional function variant is defined but all its calls are
unreachable.

1 \cs_new:Nn
2 __module_foo:n
3 { bar~#1 }
4 \cs_new:Nn
5 __module_baz:
6 {
7 \tl_set:Nn
8 \l_tmpa_tl
9 { baz }

1Code is unreachable if it is only reachable through private functions which that are either
unused or also unreachable.

28

10 __module_foo:V
11 \l_tmpa_tl
12 }
13 \cs_generate_variant:Nn % warning on this line
14 __module_foo:n
15 { V }
16 __module_foo:n
17 { baz }

This check is a stronger version of W402 and should only be emitted if W402
has not previously been emitted for this function variant.

Function variant for an undefined function [E504]

A function or conditional function variant is defined before the base function
has been defined or after it has been undefined.

1 \cs_new:Nn
2 \module_foo:n
3 { bar }
4 \cs_generate_variant:Nn
5 \module_foo:n
6 { V }

1 \cs_generate_variant:Nn % error on this line
2 \module_foo:n
3 { V }
4 \cs_new:Nn
5 \module_foo:n
6 { bar }

1 \cs_new:Nn
2 \module_foo:n
3 { bar }
4 \cs_undefine:N
5 \module_foo:n
6 \cs_generate_variant:Nn % error on this line
7 \module_foo:n
8 { V }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \prg_generate_conditional_variant:Nnn
6 \module_foo:n
7 { V }
8 { TF }

29

1 \prg_generate_conditional_variant:Nnn % error on this line
2 \module_foo:n
3 { V }
4 { TF }
5 \prg_new_conditional:Nnn
6 \module_foo:n
7 { p, T, F, TF }
8 { \prg_return_true: }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_undefine:N
6 \module_foo:nTF
7 \prg_generate_conditional_variant:Nnn % error on this line
8 \module_foo:n
9 { V }

10 { TF }

This check is a stronger version of E405 and should only be emitted if E405
has not previously been emitted for this function variant.

Calling an undefined function [E505]

A function or conditional function (variant) is called before it has been defined
or after it has been undefined.

1 \module_foo: % error on this line
2 \cs_new:Nn
3 \module_foo:
4 { bar }

1 \cs_new:Nn
2 \module_foo:
3 { bar }
4 \cs_undefine:N
5 \module_foo:
6 \module_foo: % error on this line

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \tl_set:Nn
5 \l_tmpa_tl
6 { baz }
7 \module_foo:V % error on this line
8 \l_tmpa_tl

30

9 \cs_generate_variant:Nn
10 \module_foo:n
11 { V }

This check is a stronger version of E408 and should only be emitted if E408
has not previously been emitted for this function.

Indirect function definition from an undefined function [E506]

A function or conditional function is indirectly defined from a function that has
yet to be defined or after it has been undefined.

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_new_eq:NN % error on this line
5 \module_baz:n
6 \module_bar:n
7 \cs_new_eq:NN
8 \module_bar:n
9 \module_foo:n

10 \module_baz:n
11 { foo }

1 \cs_new:Nn
2 \module_foo:n
3 { bar~#1 }
4 \cs_new_eq:NN
5 \module_bar:n
6 \module_foo:n
7 \cs_undefine:N
8 \module_bar:n
9 \cs_new_eq:NN % error on this line

10 \module_baz:n
11 \module_bar:n
12 \module_baz:n
13 { foo }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_new_eq:NN % error on this line
6 \module_baz:nTF
7 \module_bar:nTF
8 \cs_new_eq:NN
9 \module_bar:nTF

10 \module_foo:nTF

31

11 \module_baz:nTF
12 { foo }
13 { bar }
14 { baz }

1 \prg_new_conditional:Nnn
2 \module_foo:n
3 { p, T, F, TF }
4 { \prg_return_true: }
5 \cs_new_eq:NN
6 \module_bar:nTF
7 \module_foo:nTF
8 \cs_undefine:N
9 \module_bar:nTF

10 \cs_new_eq:NN % error on this line
11 \module_baz:nTF
12 \module_bar:nTF
13 \module_baz:nTF
14 { foo }
15 { bar }
16 { baz }

This check is a stronger version of E411 and should only be emitted if E411
has not previously been emitted for this function.

Setting a function before definition [W507]

A function is set before it has been defined or after it has been undefined.

1 \cs_gset:N % warning on this line
2 \module_foo:
3 { foo }
4 \cs_new:Nn
5 \module_foo:
6 { bar }

1 \cs_new:Nn
2 \module_foo:
3 { bar }
4 \cs_undefine:N
5 \module_foo:
6 \cs_gset:N % warning on this line
7 \module_foo:
8 { foo }

32

Unexpandable or restricted-expandable boolean expression [E508]

A boolean expression [2, Section 9.2] is not fully-expandable.

1 \cs_new_protected:N
2 \example_unexpandable:
3 {
4 \tl_set:Nn
5 \l_tmpa_tl
6 { bar }
7 \c_true_bool
8 }
9 \cs_new:N

10 \example_restricted_expandable:
11 {
12 \bool_do_while:Nn
13 \c_false_bool
14 { }
15 \c_true_bool
16 }
17 \cs_new_protected:N
18 \example_expandable:
19 { \c_true_bool }
20 \bool_set:Nn
21 \l_tmpa_bool
22 { \example_unexpandable: } % error on this line
23 \bool_set:Nn
24 \l_tmpa_bool
25 { \example_restricted_expandable: } % error on this line
26 \bool_set:Nn
27 \l_tmpa_bool
28 { \example_expandable: }

Expanding an unexpandable function [E509]

An unexpandable function or conditional function is called within an x-type,
e-type, or f-type argument.

1 \cs_new_protected:N
2 \example_unexpandable:
3 {
4 \tl_set:Nn
5 \l_tmpa_tl
6 { bar }
7 }
8 \cs_new:N
9 \module_foo:n

33

10 { #1 }
11 \cs_generate_variant:Nn
12 \module_foo:n
13 { x, e, f }
14 \module_foo:n
15 { \example_unexpandable: }
16 \module_foo:x
17 { \example_unexpandable: } % error on this line
18 \module_foo:e
19 { \example_unexpandable: } % error on this line
20 \module_foo:f
21 { \example_unexpandable: } % error on this line

Fully-expanding a restricted-expandable function [E510]

An restricted-expadable function or conditional function is called within an
f-type argument.

1 \cs_new:N
2 \example_restricted_expandable:
3 {
4 \int_to_roman:n
5 { 1 + 2 }
6 }
7 \cs_new:N
8 \module_foo:n
9 { #1 }

10 \cs_generate_variant:Nn
11 \module_foo:n
12 { x, e, f }
13 \module_foo:n
14 { \example_restricted_expandable: }
15 \module_foo:x
16 { \example_restricted_expandable: }
17 \module_foo:e
18 { \example_restricted_expandable: }
19 \module_foo:f
20 { \example_restricted_expandable: } % error on this line

Defined an expandable function as protected [W511]

A fully expandable function or conditional function is defined using a creator
function \cs_new_protected:* or \prg_new_protected_conditional:*. [3,
Section 4]

1 \cs_new_protected:Nn % warning on this line

34

2 \example_expandable:
3 { foo }

1 \prg_new_protected_conditional:Nnn % warning on this line
2 \example_expandable:
3 { T, F, TF }
4 { \prg_return_true: }

Defined an unexpandable function as unprotected [W512]

An unexpandable or restricted-expandable function or conditional function is
defined using a creator function \cs_new:* or \prg_new_conditional:*. [3,
Section 4]

1 \cs_new:Nn % warning on this line
2 \example_unexpandable:
3 {
4 \tl_set:Nn
5 \l_tmpa_tl
6 { bar }
7 }

1 \prg_new_conditional:Nnn % warning on this line
2 \example_unexpandable:
3 { p, T, F, TF }
4 {
5 \tl_set:Nn
6 \l_tmpa_tl
7 { bar }
8 \prg_return_true:
9 }

Conditional function with no return value [E513]

A conditional functions has no return value.

1 \prg_new_conditional:Nnn % error on this line
2 \example_no_return_value:
3 { p, T, F, TF }
4 { foo }

1 \prg_new_conditional:Nnn
2 \example_has_return_value:
3 { p, T, F, TF }
4 { \example_foo: }
5 \cs_new:Nn
6 \example_foo:
7 { \prg_return_true: }

35

Comparison code with no return value [E514]

A comparison code [2, Section 6.1] has no return value.

1 \clist_set:Nn
2 \l_foo_clist
3 { 3 , 01 , -2 , 5 , +1 }
4 \clist_sort:Nn % error on this line
5 \l_foo_clist
6 { foo }

1 \clist_set:Nn
2 \l_foo_clist
3 { 3 , 01 , -2 , 5 , +1 }
4 \clist_sort:Nn
5 \l_foo_clist
6 { \example_foo: }
7 \cs_new:Nn
8 \example_foo:
9 {

10 \int_compare:nNnTF { #1 } > { #2 }
11 { \sort_return_swapped: }
12 { \sort_return_same: }
13 }

The above example has been taken from The LATEX Project [2, Chapter 6].

Paragraph token in the parameter of a ”nopar” function [E515]

An argument that contains \par tokens may reach a function with the ”nopar”
restriction.

1 \cs_new_nopar:Nn
2 \example_foo:n
3 { #1 }
4 \cs_new:nn
5 \example_bar:n
6 {
7 \example_foo:n
8 { #1 }
9 }

10 \example_bar:n
11 {
12 foo
13 \par % error on this line
14 bar
15 }

36

5.2 Variables and constants
Unused variable or constant [W516]

A variable or a constant is declared and perhaps defined but all its uses are
unreachable.

1 \tl_new:N % warning on this line
2 \g_defined_but_unreachable_tl
3 \tl_gset:Nn
4 \g_defined_but_unreachable_tl
5 { foo }
6 \cs_new:Nn
7 __module_baz:
8 {
9 \tl_use:N

10 \g_defined_but_unreachable_tl
11 }

This check is a stronger version of W415 and should only be emitted if W415
has not previously been emitted for this variable or constant.

Setting an undeclared variable [E517]

A variable is set before it has been declared.

1 \tl_gset:Nn % error on this line
2 \g_example_tl
3 { bar }
4 \tl_new:N
5 \g_example_tl

This check is a stronger version of W416 and should prevent W416 from
being emitted for this variable.

Using an undeclared variable or constant [W518]

A variable or constant is used before it has been declared.

1 \tl_use:N % error on this line
2 \g_example_tl
3 \tl_new:N
4 \g_example_tl

1 \tl_use:N % error on this line
2 \c_example_tl
3 \tl_const:N
4 \c_example_tl
5 { foo }

This check is a stronger version of W419 and should only be emitted if W419
has not previously been emitted for this variable or constant.

37

Multiply declared variable or constant [E519]

A variable or constant is declared multiple times.

1 \tl_new:N
2 \g_example_tl
3 \tl_new:N % error on this line
4 \g_example_tl

1 \tl_const:Nn
2 \c_example_tl
3 { foo }
4 \tl_const:Nn % error on this line
5 \c_example_tl
6 { bar }

5.3 Messages
Unused message [W520]

A message is defined but all its uses are unreachable.

1 \msg_new:nnn % warning on this line
2 { foo }
3 { bar }
4 { baz }
5 \cs_new:Nn
6 __module_baz:
7 {
8 \msg_info:nn
9 { foo }

10 { bar }
11 }

This check is a stronger version of W423 and should only be emitted if W423
has not previously been emitted for this message.

Using an undefined message [E521]

A message is used before it has been defined.

1 \msg_info:nn % error on this line
2 { foo }
3 { bar }
4 \msg_new:nnn
5 { foo }
6 { bar }
7 { baz }

This check is a stronger version of E424 and should only be emitted if E424
has not previously been emitted for this message.

38

Incorrect number of arguments supplied to message [W522]

A message was supplied fewer or more arguments than there are parameters in
the message text.

1 \msg_new:nnn
2 { foo }
3 { bar }
4 { #1 }
5 \msg_set:nnn
6 { foo }
7 { bar }
8 { baz }
9 \msg_info:nnn % error on this line

10 { foo }
11 { bar }
12 { baz }

1 \msg_new:nnn
2 { foo }
3 { bar }
4 { #1 }
5 \msg_info:nnn
6 { foo }
7 { bar }
8 { baz }
9 \msg_set:nnn

10 { foo }
11 { bar }
12 { baz }

This check is a stronger version of W426 and should only be emitted if W426
has not previously been emitted for this message.

Multiply defined message [E523]

A message is defined multiple times.

1 \msg_new:nnn
2 { foo }
3 { bar }
4 { baz }
5 \msg_new:nnn % error on this line
6 { foo }
7 { bar }
8 { baz }

39

5.4 Input–output streams
Using an unopened or closed stream [E524]

A stream is used before it has been opened or after it has been closed.

1 \ior_new:N
2 \l_example_ior
3 \ior_str_get:NN % error on this line
4 \l_example_ior
5 \l_tmpa_tl
6 \ior_open:Nn
7 \l_example_ior
8 { example }

1 \ior_new:N
2 \l_example_ior
3 \ior_open:Nn
4 \l_example_ior
5 { example }
6 \ior_close:N
7 \l_example_ior
8 \ior_str_get:NN % error on this line
9 \l_example_ior

10 \l_tmpa_tl

Multiply opened stream [E525]

A stream is opened a second time without closing the stream first.

1 \iow_new:N
2 \l_example_iow
3 \iow_open:Nn
4 \l_example_iow
5 { foo }
6 \iow_open:Nn % error on this line
7 \l_example_iow
8 { bar }
9 \iow_close:N

10 \l_example_iow

Unclosed stream [W526]

A stream is opened but not closed.

1 % file-wide warning
2 \ior_new:N

40

3 \l_example_ior
4 \ior_open:Nn
5 \l_example_ior
6 { example }

5.5 Piecewise token list construction
Building on a regular token list [T527]

A token list variable is used with \tl_build_* functions before a function
\tl_build_*begin:N has been called or after a function \tl_build_*end:N has
been called.

1 \tl_new:N
2 \l_example_tl
3 \tl_build_put_right:Nn % error on this line
4 \l_example_tl
5 { foo }
6 \tl_build_begin:N
7 \l_example_tl
8 \tl_build_end:N
9 \l_example_tl

1 \tl_new:N
2 \l_example_tl
3 \tl_build_begin:N
4 \l_example_tl
5 \tl_build_put_right:Nn
6 \l_example_tl
7 { foo }
8 \tl_build_end:N
9 \l_example_tl

1 \tl_new:N
2 \l_example_tl
3 \tl_build_begin:N
4 \l_example_tl
5 \tl_build_end:N
6 \l_example_tl
7 \tl_build_put_right:Nn % error on this line
8 \l_example_tl
9 { foo }

Using a semi-built token list [T528]

A token list variable is used where a regular token list is expected after a function
\tl_build_*begin:N has been called and before a function \tl_build_*end:N
has been called.

41

1 \tl_new:N
2 \l_example_tl
3 \tl_use:N
4 \l_example_tl
5 \tl_build_begin:N
6 \l_example_tl
7 \tl_build_end:N
8 \l_example_tl

1 \tl_new:N
2 \l_example_tl
3 \tl_build_begin:N
4 \l_example_tl
5 \tl_use:N
6 \l_example_tl % error on this line
7 \tl_build_end:N
8 \l_example_tl

1 \tl_new:N
2 \l_example_tl
3 \tl_build_begin:N
4 \l_example_tl
5 \tl_build_end:N
6 \l_example_tl
7 \tl_use:N
8 \l_example_tl

Multiply started building a token list [E529]

A function \tl_build_*begin:N is called on a token list variable a second time
without calling a function \tl_build_*end:N first.

1 \tl_new:N
2 \l_example_tl
3 \tl_build_begin:N
4 \l_example_tl
5 \tl_build_begin:N % error on this line
6 \l_example_tl
7 \tl_build_end:N
8 \l_example_tl

Unfinished semi-built token list [W530]

A function \tl_build_*begin:N is called on a token list variable without calling
a function \tl_build_*end:N later.

42

1 % file-wide warning
2 \tl_new:N
3 \l_example_tl
4 \tl_build_begin:N
5 \l_example_tl

Caveats
The warnings and errors in this documents do not cover the complete expl3
language. The caveats currently include the following areas, among others:

• Functions with “weird” (w) argument specifiers
• Symbolic evaluation of expansion functions [2, sections 5.4–5.10]
• Validation of parameters in (inline) functions (c.f. E425 and W426)
• Shorthands such as \~ and \\ in message texts [2, sections 11.4 and 12.1.3]
• Quotes in shell commands and file names [2, Section 10.7 and Chapter 12]
• Functions used outside their intended context:

– \sort_return_*: outside comparison code [2, Section 6.1]
– \prg_return_*: outside conditional functions [2, Section 9.1]
– Predicates (*_p:*) outside boolean expressions [2, Section 9.3]
– *_map_break:* outside a corresponding mapping [2, sections 9.8]
– \msg_line_*:, \iow_char:N, and \iow_newline: outside message

text [2, sections 11.3 and 12.1.3]
– \iow_wrap_allow_break: and \iow_indent:n outside wrapped mes-

sage text [2, Section 12.1.4]
– Token list and string variables without accessor functions \tl_use:N

and \str_use:N
– Boolean variable without an accessor function \bool_to_str:N out-

side boolean expressions [2, Section 21.4]
– Integer variable without an accessor function \int_use:N outside

integer or floating point expressions [2, Section 21.4]
– Dimension variable without an accessor function \dim_use:N outside

dimension or floating point expressions [2, Section 26.7]
– Skip variable without an accessor function \skip_use:N outside skip

or floating point expressions [2, Section 26.14]
– Muskip variable without an accessor function \muskip_use:N outside

muskip or floating point expressions [2, Section 26.21]
– Floating point variable without an accessor function \fp_use:N out-

side floating point expressions [2, Section 29.3]
– Box variable without accessor functions \box_use(_drop)?:N or
\[hv]box_unpack(_drop)?:N, or without a measuring function \box_-
(dp|ht|wd|ht_plus_dp):* outside dimension or floating point ex-
pressions [2, sections 35.2 and 35.3]

43

– Coffin variable without accessor function \coffin_typeset:Nnnnn
outside dimension or floating point expressions [2, Section 36.4]

– Lonely variables of other types that may or may not have accessor
functions

• Validation of literal expressions:

– Comparison expressions in functions *_compare(_p:n|:nT?F?)
– Regular expressions and replacement text [2, sections 8.1 and 8.2]
– Boolean expressions [2, Section 9.3]
– Integer expressions and bases [2, sections 21.1 and 21.8]
– Dimension, skip, and muskip expressions [2, Chapter 26]
– Floating point expressions [2, Section 29.12]
– Color expressions [2, Chapter 37.3]

• Validation of naming schemes and member access:

– String encoding and escaping [2, Section 18.1]
– Key–value interfaces [2, Chapter 27]:

∗ Are keys defined at the point of use or is the module or its
subdivision set up to accept unknown keys? [2, sections 27.2,
27.5, and 27.6]

∗ Are inheritance parents, choices, multi-choices, and groups used
in a key definition defined at points of use? [2, sections 27.1,
27.3, and 27.7]

– Floating-point symbolic expressions and user-defined functions [2,
sections 29.6 and 29.7]

– Names of bitset indexes [2, Section 31.1]
– BCP-47 language tags [2, Section 34.2]
– Color support [2, Chapter 37]:

∗ Named colors [2, Section 37.4]
∗ Color export targets [2, Section 37.8]
∗ Color models and their families and params [2, sections 37.2 and 37.9]

• Function \file_input_stop: not used on its own line [2, Section 12.2.3]
• Exhaustively or fully expanding quarks and scan marks [2, Chapter 19]
• Bounds checking for accessing constant sequences and other sequences

where the number of items can be easily bounded such as integer and
floating point arrays [2, chapters 28 and 30]:

– Index checking functions *_range*:* and *_item*:*
– Endless loop checking in functions *_step_*:* [2, Section 21.7]
– Number of symbols in a value-to-symbol mapping [2, Section 21.8]

• Applying functions \clist_remove_duplicates:N and \clist_if_in:*
to comma lists that contain {, }, or * [2, sections 23.3 and 23.4]

44

• Incorrect parameters to function \char_generate:nn [2, Section 24.1]
• Incorrect parameters to functions \char_set_*code:nn [2, Section 24.2]
• Using implicit tokens \c_catcode_(letter|other)_token or the token

list \c_catcode_active_tl [2, Section 24.3]
• Validation of key–value interfaces [2, Chapter 27]:

– Setting a key with some properties .*_g?(set|put)*:* should be
validated similarly to calling the corresponding functions directly:
Have the variables been declared, do they have the correct type, does
the value have the correct type?

– Do points of use always set keys with property .value_required:n
and never set keys with property .value_forbidden:n?

• Horizontal box operation on a vertical box or vice versa [2, Chapter 35],
similarly for coffins

References
[1] Vít Starý Novotný. Static analysis of expl3 programs (3). Design Specification.

To be released. url: https://witiko.github.io/Expl3-Linter-3/.
[2] The LATEX Project. The LATEX3 interfaces. The referenced version of the

document is attached to this document. May 8, 2024. url: http://mirrors.
ctan.org/macros/latex/required/l3kernel/interface3.pdf (visited
on 05/15/2024).

[3] The LATEX Project. The LATEX3 kernel. Style guide for code authors. The ref-
erenced version of the document is attached to this document. Apr. 11, 2024.
url: http://mirrors.ctan.org/macros/latex/required/l3kernel/
l3styleguide.pdf (visited on 05/08/2024).

[4] The LATEX Project. The expl3 package and LATEX3 programming. The refer-
enced version of the document is attached to this document. Apr. 11, 2024.
url: http://mirrors.ctan.org/macros/latex/required/l3kernel/
expl3.pdf (visited on 05/08/2024).

[5] Joseph Wright. Apr. 29, 2024. url: https://github.com/latex3/latex3/
pull/1542#issuecomment-2082352499 (visited on 05/15/2024).

45

https://witiko.github.io/Expl3-Linter-3/
http://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
http://mirrors.ctan.org/macros/latex/required/l3kernel/interface3.pdf
http://mirrors.ctan.org/macros/latex/required/l3kernel/l3styleguide.pdf
http://mirrors.ctan.org/macros/latex/required/l3kernel/l3styleguide.pdf
http://mirrors.ctan.org/macros/latex/required/l3kernel/expl3.pdf
http://mirrors.ctan.org/macros/latex/required/l3kernel/expl3.pdf
https://github.com/latex3/latex3/pull/1542#issuecomment-2082352499
https://github.com/latex3/latex3/pull/1542#issuecomment-2082352499

Index
E
E102, 5
E104, 6
E201, 7
E203, 7
E208, 7
E209, 8
E300, 8
E301, 8
E304, 9
E404, 11
E405, 11
E408, 12
E411, 13
E417, 17
E418, 17
E420, 18
E421, 18
E424, 24
E425, 24
E427, 25
E500, 25
E504, 29
E505, 30
E506, 31
E508, 33
E509, 33

E510, 34
E513, 35
E514, 36
E515, 36
E517, 37
E519, 38
E521, 38
E523, 39
E524, 40
E525, 40
E529, 42

S
S103, 6
S105, 6
S204, 7
S412, 14
S413, 15
S414, 16

T
T305, 9
T403, 11
T422, 18
T527, 41
T528, 41

W
W100, 4
W101, 5
W200, 6
W202, 7
W302, 8
W303, 9
W401, 10
W402, 10
W410, 12
W415, 16
W416, 17
W419, 17
W423, 23
W426, 24
W501, 27
W502, 28
W503, 28
W507, 32
W511, 34
W512, 35
W516, 37
W518, 37
W520, 38
W522, 39
W526, 40
W530, 42

46

	Introduction
	Preprocessing
	No standard delimiters [W100]
	Unexpected delimiters [W101]
	Expl3 material in non-expl3 parts [E102]
	Line too long [S103]
	Multiple delimiters ProvidesExpl* in a single file [E104]
	Needlessly ignored issue [S105]

	Lexical analysis
	“Do not use” argument specifiers [W200]
	Unknown argument specifiers [E201]
	Deprecated control sequences [W202]
	Missing stylistic whitespaces [S204]
	Too many closing braces [E208]
	Invalid characters [E209]

	Syntactic analysis
	Unexpected function call argument [E300]
	End of expl3 part within function call [E301]
	Unbraced n-type function call argument [W302]
	Braced N-type function call argument [W303]
	Unexpected parameter number [E304]
	Expanding an unexpandable variable or constant [T305]

	Semantic analysis
	Functions and conditional functions
	Unused private function [W401]
	Unused private function variant [W402]
	Function variant of incompatible type [T403]
	Protected predicate function [E404]
	Function variant for an undefined function [E405]
	Calling an undefined function [E408]
	Function variant of deprecated type [W410]
	Indirect function definition from an undefined function [E411]
	Malformed function name [S412]

	Variables and constants
	Malformed variable or constant name [S413]
	Malformed quark or scan mark name [S414]
	Unused variable or constant [W415]
	Setting an undeclared variable [W416]
	Setting a variable as a constant [E417]
	Setting a constant [E418]
	Using an undeclared variable or constant [W419]
	Locally setting a global variable [E420]
	Globally setting a local variable [E421]
	Using a variable of an incompatible type [T422]

	Messages
	Unused message [W423]
	Using an undefined message [E424]
	Incorrect parameters in message text [E425]
	Incorrect number of arguments supplied to message [W426]

	Sorting
	Comparison conditional without signature :nnTF [E427]

	Flow analysis
	Functions and conditional functions
	Multiply defined function [E500]
	Multiply defined function variant [W501]
	Unused private function [W502]
	Unused private function variant [W503]
	Function variant for an undefined function [E504]
	Calling an undefined function [E505]
	Indirect function definition from an undefined function [E506]
	Setting a function before definition [W507]
	Unexpandable or restricted-expandable boolean expression [E508]
	Expanding an unexpandable function [E509]
	Fully-expanding a restricted-expandable function [E510]
	Defined an expandable function as protected [W511]
	Defined an unexpandable function as unprotected [W512]
	Conditional function with no return value [E513]
	Comparison code with no return value [E514]
	Paragraph token in the parameter of a "nopar" function [E515]

	Variables and constants
	Unused variable or constant [W516]
	Setting an undeclared variable [E517]
	Using an undeclared variable or constant [W518]
	Multiply declared variable or constant [E519]

	Messages
	Unused message [W520]
	Using an undefined message [E521]
	Incorrect number of arguments supplied to message [W522]
	Multiply defined message [E523]

	Input–output streams
	Using an unopened or closed stream [E524]
	Multiply opened stream [E525]
	Unclosed stream [W526]

	Piecewise token list construction
	Building on a regular token list [T527]
	Using a semi-built token list [T528]
	Multiply started building a token list [E529]
	Unfinished semi-built token list [W530]

	Caveats
	References
	Index

The LATEX3 Interfaces
The LATEX Project∗

Released 2024-05-08

Abstract

This is the reference documentation for the expl3 programming environment; see the
matching source3 PDF for the typeset sources. The expl3 modules set up a naming
scheme for LATEX commands, which allow the LATEX programmer to systematically
name functions and variables, and specify the argument types of functions.

The TEX and ε-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level LATEX3 programming
language.

The expl3 modules are designed to be loaded on top of LATEX 2ε. With an up-to-
date LATEX 2ε kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

∗E-mail: latex-team@latex-project.org

i

mailto:latex-team@latex-project.org

Contents

I Introduction 1

1 Introduction to expl3 and this document 2
1.1 Naming functions and variables . 2

1.1.1 Scratch variables . 5
1.1.2 Terminological inexactitude . 5

1.2 Documentation conventions . 5
1.3 Formal language conventions which apply generally 7
1.4 TEX concepts not supported by LATEX3 7

II Bootstrapping 8

2 The l3bootstrap module: Bootstrap code 9
2.1 Using the LATEX3 modules . 9

3 The l3names module: Namespace for primitives 11
3.1 Setting up the LATEX3 programming language 11

III Programming Flow 12

4 The l3basics module: Basic definitions 13
4.1 No operation functions . 13
4.2 Grouping material . 13
4.3 Control sequences and functions . 14

4.3.1 Defining functions . 14
4.3.2 Defining new functions using parameter text 15
4.3.3 Defining new functions using the signature 17
4.3.4 Copying control sequences . 19
4.3.5 Deleting control sequences . 20
4.3.6 Showing control sequences . 20
4.3.7 Converting to and from control sequences 21

4.4 Analysing control sequences . 22
4.5 Using or removing tokens and arguments 23

4.5.1 Selecting tokens from delimited arguments 26
4.6 Predicates and conditionals . 27

4.6.1 Tests on control sequences . 28
4.6.2 Primitive conditionals . 28

4.7 Starting a paragraph . 30
4.8 Debugging support . 30

ii

5 The l3expan module: Argument expansion 31
5.1 Defining new variants . 31
5.2 Methods for defining variants . 32
5.3 Introducing the variants . 34
5.4 Manipulating the first argument . 35
5.5 Manipulating two arguments . 37
5.6 Manipulating three arguments . 37
5.7 Unbraced expansion . 39
5.8 Preventing expansion . 40
5.9 Controlled expansion . 41
5.10 Internal functions . 43

6 The l3sort module: Sorting functions 44
6.1 Controlling sorting . 44

7 The l3tl-analysis module: Analysing token lists 46

8 The l3regex module: Regular expressions in TEX 47
8.1 Syntax of regular expressions . 48

8.1.1 Regular expression examples . 48
8.1.2 Characters in regular expressions 49
8.1.3 Characters classes . 49
8.1.4 Structure: alternatives, groups, repetitions 50
8.1.5 Matching exact tokens . 51
8.1.6 Miscellaneous . 53

8.2 Syntax of the replacement text . 53
8.3 Pre-compiling regular expressions . 55
8.4 Matching . 56
8.5 Submatch extraction . 57
8.6 Replacement . 58
8.7 Scratch regular expressions . 60
8.8 Bugs, misfeatures, future work, and other possibilities 60

9 The l3prg module: Control structures 63
9.1 Defining a set of conditional functions . 63
9.2 The boolean data type . 65

9.2.1 Constant and scratch booleans . 67
9.3 Boolean expressions . 68
9.4 Logical loops . 70
9.5 Producing multiple copies . 71
9.6 Detecting TEX’s mode . 71
9.7 Primitive conditionals . 72
9.8 Nestable recursions and mappings . 72

9.8.1 Simple mappings . 73
9.9 Internal programming functions . 73

iii

10 The l3sys module: System/runtime functions 74
10.1 The name of the job . 74
10.2 Date and time . 74
10.3 Engine . 75
10.4 Output format . 76
10.5 Platform . 76
10.6 Random numbers . 76
10.7 Access to the shell . 77
10.8 System queries . 78
10.9 Loading configuration data . 79

10.9.1 Final settings . 79

11 The l3msg module: Messages 80
11.1 Creating new messages . 80
11.2 Customizable information for message modules 81
11.3 Contextual information for messages . 82
11.4 Issuing messages . 83

11.4.1 Messages for showing material . 87
11.4.2 Expandable error messages . 87

11.5 Redirecting messages . 88

12 The l3file module: File and I/O operations 90
12.1 Input–output stream management . 90

12.1.1 Reading from files . 92
12.1.2 Reading from the terminal . 96
12.1.3 Writing to files . 96
12.1.4 Wrapping lines in output . 98
12.1.5 Constant input–output streams, and variables 99
12.1.6 Primitive conditionals . 99

12.2 File operations . 99
12.2.1 Basic file operations . 99
12.2.2 Information about files and file contents 100
12.2.3 Accessing file contents . 103

13 The l3luatex module: LuaTEX-specific functions 105
13.1 Breaking out to Lua . 105
13.2 Lua interfaces . 106

14 The l3legacy module: Interfaces to legacy concepts 108

IV Data types 109

iv

15 The l3tl module: Token lists 110
15.1 Creating and initialising token list variables 110
15.2 Adding data to token list variables . 111
15.3 Token list conditionals . 112

15.3.1 Testing the first token . 114
15.4 Working with token lists as a whole . 115

15.4.1 Using token lists . 115
15.4.2 Counting and reversing token lists 116
15.4.3 Viewing token lists . 117

15.5 Manipulating items in token lists . 118
15.5.1 Mapping over token lists . 118
15.5.2 Head and tail of token lists . 119
15.5.3 Items and ranges in token lists . 121
15.5.4 Sorting token lists . 123

15.6 Manipulating tokens in token lists . 123
15.6.1 Replacing tokens . 123
15.6.2 Reassigning category codes . 124

15.7 Constant token lists . 125
15.8 Scratch token lists . 126

16 The l3tl-build module: Piecewise tl constructions 127
16.1 Constructing ⟨tl var⟩ by accumulation 127

17 The l3str module: Strings 129
17.1 Creating and initialising string variables 130
17.2 Adding data to string variables . 131
17.3 String conditionals . 131
17.4 Mapping over strings . 133
17.5 Working with the content of strings . 135
17.6 Modifying string variables . 138
17.7 String manipulation . 139
17.8 Viewing strings . 140
17.9 Constant strings . 141
17.10 Scratch strings . 141

18 The l3str-convert module: String encoding conversions 142
18.1 Encoding and escaping schemes . 142
18.2 Conversion functions . 144
18.3 Conversion by expansion (for PDF contexts) 144
18.4 Possibilities, and things to do . 144

19 The l3quark module: Quarks and scan marks 146
19.1 Quarks . 146
19.2 Defining quarks . 147
19.3 Quark tests . 147
19.4 Recursion . 148

19.4.1 An example of recursion with quarks 149
19.5 Scan marks . 150

v

20 The l3seq module: Sequences and stacks 151
20.1 Creating and initialising sequences . 151
20.2 Appending data to sequences . 153
20.3 Recovering items from sequences . 153
20.4 Recovering values from sequences with branching 155
20.5 Modifying sequences . 156
20.6 Sequence conditionals . 157
20.7 Mapping over sequences . 157
20.8 Using the content of sequences directly 160
20.9 Sequences as stacks . 161
20.10 Sequences as sets . 162
20.11 Constant and scratch sequences . 163
20.12 Viewing sequences . 164

21 The l3int module: Integers 165
21.1 Integer expressions . 165
21.2 Creating and initialising integers . 168
21.3 Setting and incrementing integers . 169
21.4 Using integers . 170
21.5 Integer expression conditionals . 170
21.6 Integer expression loops . 172
21.7 Integer step functions . 174
21.8 Formatting integers . 175
21.9 Converting from other formats to integers 176
21.10 Random integers . 177
21.11 Viewing integers . 177
21.12 Constant integers . 178
21.13 Scratch integers . 178
21.14 Direct number expansion . 179
21.15 Primitive conditionals . 179

22 The l3flag module: Expandable flags 181
22.1 Setting up flags . 181
22.2 Expandable flag commands . 182

23 The l3clist module: Comma separated lists 184
23.1 Creating and initialising comma lists . 185
23.2 Adding data to comma lists . 186
23.3 Modifying comma lists . 187
23.4 Comma list conditionals . 188
23.5 Mapping over comma lists . 188
23.6 Using the content of comma lists directly 191
23.7 Comma lists as stacks . 192
23.8 Using a single item . 193
23.9 Viewing comma lists . 193
23.10 Constant and scratch comma lists . 194

vi

24 The l3token module: Token manipulation 195
24.1 Creating character tokens . 196
24.2 Manipulating and interrogating character tokens 197
24.3 Generic tokens . 200
24.4 Converting tokens . 201
24.5 Token conditionals . 201
24.6 Peeking ahead at the next token . 205
24.7 Description of all possible tokens . 210

25 The l3prop module: Property lists 213
25.1 Creating and initialising property lists 214
25.2 Adding and updating property list entries 216
25.3 Recovering values from property lists . 217
25.4 Modifying property lists . 218
25.5 Property list conditionals . 218
25.6 Recovering values from property lists with branching 219
25.7 Mapping over property lists . 220
25.8 Viewing property lists . 221
25.9 Scratch property lists . 222
25.10 Constants . 222

26 The l3skip module: Dimensions and skips 223
26.1 Creating and initialising dim variables . 223
26.2 Setting dim variables . 224
26.3 Utilities for dimension calculations . 224
26.4 Dimension expression conditionals . 225
26.5 Dimension expression loops . 227
26.6 Dimension step functions . 228
26.7 Using dim expressions and variables . 229
26.8 Viewing dim variables . 231
26.9 Constant dimensions . 232
26.10 Scratch dimensions . 232
26.11 Creating and initialising skip variables 232
26.12 Setting skip variables . 233
26.13 Skip expression conditionals . 234
26.14 Using skip expressions and variables . 234
26.15 Viewing skip variables . 234
26.16 Constant skips . 235
26.17 Scratch skips . 235
26.18 Inserting skips into the output . 235
26.19 Creating and initialising muskip variables 236
26.20 Setting muskip variables . 236
26.21 Using muskip expressions and variables 237
26.22 Viewing muskip variables . 237
26.23 Constant muskips . 238
26.24 Scratch muskips . 238
26.25 Primitive conditional . 238

vii

27 The l3keys module: Key–value interfaces 239
27.1 Creating keys . 240
27.2 Sub-dividing keys . 245
27.3 Choice and multiple choice keys . 246
27.4 Key usage scope . 248
27.5 Setting keys . 248
27.6 Handling of unknown keys . 249
27.7 Selective key setting . 250
27.8 Digesting keys . 251
27.9 Utility functions for keys . 251
27.10 Low-level interface for parsing key–val lists 252

28 The l3intarray module: Fast global integer arrays 255
28.1 Creating and initialising integer array variables 255
28.2 Adding data to integer arrays . 256
28.3 Counting entries in integer arrays . 256
28.4 Using a single entry . 256
28.5 Integer array conditional . 256
28.6 Viewing integer arrays . 256
28.7 Implementation notes . 257

29 The l3fp module: Floating points 258
29.1 Creating and initialising floating point variables 260
29.2 Setting floating point variables . 260
29.3 Using floating points . 261
29.4 Floating point conditionals . 262
29.5 Floating point expression loops . 264
29.6 Symbolic expressions . 266
29.7 User-defined functions . 268
29.8 Some useful constants, and scratch variables 269
29.9 Scratch variables . 269
29.10 Floating point exceptions . 270
29.11 Viewing floating points . 271
29.12 Floating point expressions . 271

29.12.1 Input of floating point numbers . 271
29.12.2 Precedence of operators . 272
29.12.3 Operations . 273

29.13 Disclaimer and roadmap . 280

30 The l3fparray module: Fast global floating point arrays 283
30.1 Creating and initialising floating point array variables 283
30.2 Adding data to floating point arrays . 283
30.3 Counting entries in floating point arrays 284
30.4 Using a single entry . 284
30.5 Floating point array conditional . 284

31 The l3bitset module: Bitsets 285
31.1 Creating bitsets . 286
31.2 Setting and unsetting bits . 287
31.3 Using bitsets . 287

viii

32 The l3cctab module: Category code tables 289
32.1 Creating and initialising category code tables 289
32.2 Using category code tables . 290
32.3 Category code table conditionals . 290
32.4 Constant and scratch category code tables 290

V Text manipulation 292

33 The l3unicode module: Unicode support functions 293

34 The l3text module: Text processing 296
34.1 Expanding text . 296
34.2 Case changing . 297
34.3 Removing formatting from text . 299
34.4 Control variables . 299
34.5 Mapping to graphemes . 300

VI Typesetting 301

35 The l3box module: Boxes 302
35.1 Creating and initialising boxes . 302
35.2 Using boxes . 303
35.3 Measuring and setting box dimensions 304
35.4 Box conditionals . 305
35.5 The last box inserted . 305
35.6 Constant boxes . 305
35.7 Scratch boxes . 305
35.8 Viewing box contents . 306
35.9 Boxes and color . 306
35.10 Horizontal mode boxes . 306
35.11 Vertical mode boxes . 307
35.12 Using boxes efficiently . 309
35.13 Affine transformations . 310
35.14 Viewing part of a box . 313
35.15 Primitive box conditionals . 314

36 The l3coffins module: Coffin code layer 315
36.1 Creating and initialising coffins . 315
36.2 Setting coffin content and poles . 316
36.3 Coffin affine transformations . 317
36.4 Joining and using coffins . 318
36.5 Measuring coffins . 318
36.6 Coffin diagnostics . 319
36.7 Constants and variables . 320

ix

37 The l3color module: Color support 321
37.1 Color in boxes . 321
37.2 Color models . 321
37.3 Color expressions . 323
37.4 Named colors . 324
37.5 Selecting colors . 324
37.6 Colors for fills and strokes . 325

37.6.1 Coloring math mode material . 325
37.7 Multiple color models . 325
37.8 Exporting color specifications . 326
37.9 Creating new color models . 327

37.9.1 Color profiles . 328

38 The l3pdf module: Core PDF support 329
38.1 Objects . 329

38.1.1 Named objects . 329
38.1.2 Indexed objects . 330
38.1.3 General functions . 330

38.2 Version . 331
38.3 Page (media) size . 331
38.4 Compression . 331
38.5 Destinations . 332

Index 333

x

Part I

Introduction

1

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the LATEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables
LATEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

c This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

2

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for exhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The f specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a ⟨space token⟩, it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \l_mya_tl { A }
\tl_set:Nn \l_myb_tl { B }
\tl_set:Nf \l_mya_tl { \l_mya_tl \l_myb_tl }

will leave \l_mya_tl with the content A\l_myb_tl, as A cannot be expanded and
so terminates expansion before \l_myb_tl is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in this documentation.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.

3

g Parameters whose value should only be set globally.

l Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module1 name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bitset a set of bits (a string made up of a series of 0 and 1 tokens that are accessed by
position).

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

skip “Rubber” lengths.

str String variables: contain character data.

tl Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.

box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Non-negative integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.

prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

seq “Sequence”: a data type used to implement lists (with access at both ends) and
stacks.

1The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \l_tmpa_int, \l_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \l_int_tmpa_int would be very unreadable.

4

1.1.1 Scratch variables
Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \⟨scope⟩_tmpa_⟨type⟩/\⟨scope⟩_tmpb_⟨type⟩.
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude
A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.2 On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions
This document is typeset with the experimental l3doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

\ExplSyntaxOn
\ExplSyntaxOff

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

2TEXnically, functions with no arguments are \long while token list variables are not.

5

\seq_new:N ⟨sequence⟩

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, ⟨sequence⟩ indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

\seq_new:N
\seq_new:c

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N ⟨cs⟩

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a ⟨cs⟩, shorthand for a ⟨control sequence⟩.

\cs_to_str:N ⋆

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN ⟨seq⟩ ⟨function⟩\seq_map_function:NN ✩

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {⟨true code⟩} {⟨false code⟩}

The underlining and italic of TF indicates that three functions are available:

• \sys_if_engine_xetex:T

• \sys_if_engine_xetex:F

• \sys_if_engine_xetex:TF

Usually, the illustration will use the TF variant, and so both ⟨true code⟩ and ⟨false
code⟩ will be shown. The two variant forms T and F take only ⟨true code⟩ and ⟨false
code⟩, respectively. Here, the star also shows that this function is expandable. With
some minor exceptions, all conditional functions in the expl3 modules should be defined
in this way.

\sys_if_engine_xetex:TF ⋆

Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.\l_tmpa_tl

In some cases, the function is similar to one in LATEX 2ε or plain TEX. In these cases,
the text will include an extra “TEXhackers note” section:

6

\token_to_str:N ⟨token⟩

The normal description text.

TEXhackers note: Detail for the experienced TEX or LATEX 2ε programmer. In this case,
it would point out that this function is the TEX primitive \string.

\token_to_str:N ⋆

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way unless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for LATEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the ⟨true code⟩ or the
⟨false code⟩ will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TEX concepts not supported by LATEX3
The TEX concept of an “\outer” macro is not supported at all by LATEX3. As such, the
functions provided here may break when used on top of LATEX 2ε if \outer tokens are
used in the arguments.

7

Part II

Bootstrapping

8

Chapter 2

The l3bootstrap module
Bootstrap code

2.1 Using the LATEX3 modules
The modules documented in this file (and source3 for documented sources) are designed
to be used on top of LATEX 2ε and are already pre-loaded since LATEX 2ε 2020-02-02. To
support older formats, the \usepackage{expl3} or \RequirePackage{expl3} instruc-
tions are still available to load them all as one.

As the modules use a coding syntax different from standard LATEX 2ε it provides a
few functions for setting it up.

\ExplSyntaxOn ⟨code⟩ \ExplSyntaxOff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntaxOff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\ExplSyntaxOn
\ExplSyntaxOff

Updated: 2011-08-13

\ProvidesExplPackage {⟨package⟩} {⟨date⟩} {⟨version⟩} {⟨description⟩}

These functions act broadly in the same way as the corresponding LATEX 2ε kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end
of the file, \ExplSyntaxOff will be called to reverse this. (This is the same concept as
LATEX 2ε provides in turning on \makeatletter within package and class code.) The
⟨date⟩ should be given in the format ⟨year⟩/⟨month⟩/⟨day⟩ or in the ISO date format
⟨year⟩-⟨month⟩-⟨day⟩. If the ⟨version⟩ is given then a leading v is optional: if given as
a “pure” version string, a v will be prepended.

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2023-08-03

9

\GetIdInfo $Id: ⟨SVN info field⟩ $ {⟨description⟩}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

\GetIdInfo

Updated: 2012-06-04

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual LATEX 2ε category codes and the
LATEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The l3names module
Namespace for primitives

3.1 Setting up the LATEX3 programming language
This module is at the core of the LATEX3 programming language. It performs the following
tasks:

• defines new names for all TEX primitives;

• emulate required primitives not provided by default in LuaTEX;

• switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within LATEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TEXbook, TEX by Topic and the manuals
for pdfTEX, X ETEX, LuaTEX, pTEX and upTEX should be consulted for details of the
primitives. These are named \tex_⟨name⟩:D, typically based on the primitive’s ⟨name⟩
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part III

Programming Flow

12

Chapter 4

The l3basics module
Basic definitions

As the name suggests, this module holds some basic definitions which are needed by most
or all other modules in this set.

Here we describe those functions that are used all over the place. By that, we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\prg_do_nothing: ⋆

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

\scan_stop:

4.2 Grouping material

\group_begin:
\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

TEXhackers note: These are the TEX primitives \begingroup and \endgroup.

\group_begin:
\group_end:

13

\group_insert_after:N ⟨token⟩

Adds ⟨token⟩ to the list of ⟨tokens⟩ to be inserted when the current group level ends.
The list of ⟨tokens⟩ to be inserted is empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one ⟨token⟩
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group), namely a } if standard category codes apply.

TEXhackers note: This is the TEX primitive \aftergroup.

\group_insert_after:N

\group_show_list:
\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the ε-TEX primitive \showgroups.

\group_show_list:
\group_log_list:

New: 2021-05-11

4.3 Control sequences and functions
As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, ⟨code⟩ is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an e-type or x-type
expansion. In contrast, “protected” functions are not expanded within e and x expan-
sions.

4.3.1 Defining functions
Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new...
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, . . .).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

14

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an e-type or x-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new:Npn
\cs_new:cpn
\cs_new:Npe
\cs_new:cpe
\cs_new:Npx
\cs_new:cpx

\cs_new_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new_nopar:Npn
\cs_new_nopar:cpn
\cs_new_nopar:Npe
\cs_new_nopar:cpe
\cs_new_nopar:Npx
\cs_new_nopar:cpx

\cs_new_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_new_protected:Npn
\cs_new_protected:cpn
\cs_new_protected:Npe
\cs_new_protected:cpe
\cs_new_protected:Npx
\cs_new_protected:cpx

15

\cs_new_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_new_protected_nopar:Npn
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npe
\cs_new_protected_nopar:cpe
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_set:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set:Npn
\cs_set:cpn
\cs_set:Npe
\cs_set:cpe
\cs_set:Npx
\cs_set:cpx

\cs_set_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_nopar:Npn
\cs_set_nopar:cpn
\cs_set_nopar:Npe
\cs_set_nopar:cpe
\cs_set_nopar:Npx
\cs_set_nopar:cpx

\cs_set_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.
The ⟨function⟩ will not expand within an e-type or x-type argument.

\cs_set_protected:Npn
\cs_set_protected:cpn
\cs_set_protected:Npe
\cs_set_protected:cpe
\cs_set_protected:Npx
\cs_set_protected:cpx

\cs_set_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_set_protected_nopar:Npn
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npe
\cs_set_protected_nopar:cpe
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.
The ⟨function⟩ will not expand within an e-type or x-type argument.

16

\cs_gset:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX group
level: the assignment is global.

\cs_gset:Npn
\cs_gset:cpn
\cs_gset:Npe
\cs_gset:cpe
\cs_gset:Npx
\cs_gset:cpx

\cs_gset_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function.
When the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens.
The assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX
group level: the assignment is global.

\cs_gset_nopar:Npn
\cs_gset_nopar:cpn
\cs_gset_nopar:Npe
\cs_gset_nopar:cpe
\cs_gset_nopar:Npx
\cs_gset_nopar:cpx

\cs_gset_protected:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX group
level: the assignment is global. The ⟨function⟩ will not expand within an e-type or
x-type argument.

\cs_gset_protected:Npn
\cs_gset_protected:cpn
\cs_gset_protected:Npe
\cs_gset_protected:cpe
\cs_gset_protected:Npx
\cs_gset_protected:cpx

\cs_gset_protected_nopar:Npn ⟨function⟩ ⟨parameters⟩ {⟨code⟩}\cs_gset_protected_nopar:Npn
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

Globally sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩,
the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function.
When the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens.
The assignment of a meaning to the ⟨function⟩ is not restricted to the current TEX
group level: the assignment is global. The ⟨function⟩ will not expand within an e-type
or x-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new:Nn
\cs_new:(cn|Ne|ce)

\cs_new_nopar:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
definition is global and an error results if the ⟨function⟩ is already defined.

\cs_new_nopar:Nn
\cs_new_nopar:(cn|Ne|ce)

17

\cs_new_protected:Nn ⟨function⟩ {⟨code⟩}

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is global
and an error results if the ⟨function⟩ is already defined.

\cs_new_protected:Nn
\cs_new_protected:(cn|Ne|ce)

\cs_new_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_new_protected_nopar:Nn
\cs_new_protected_nopar:(cn|Ne|ce)

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The definition is
global and an error results if the ⟨function⟩ is already defined.

\cs_set:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set:Nn
\cs_set:(cn|Ne|ce)

\cs_set_nopar:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Ne|ce)

\cs_set_protected:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is restricted to the current TEX group level.

\cs_set_protected:Nn
\cs_set_protected:(cn|Ne|ce)

\cs_set_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_set_protected_nopar:Nn
\cs_set_protected_nopar:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is restricted to the current TEX group level.

18

\cs_gset:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the ⟨function⟩ is global.

\cs_gset:Nn
\cs_gset:(cn|Ne|ce)

\cs_gset_nopar:Nn ⟨function⟩ {⟨code⟩}

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
assignment of a meaning to the ⟨function⟩ is global.

\cs_gset_nopar:Nn
\cs_gset_nopar:(cn|Ne|ce)

\cs_gset_protected:Nn ⟨function⟩ {⟨code⟩}\cs_gset_protected:Nn
\cs_gset_protected:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is global.

\cs_gset_protected_nopar:Nn ⟨function⟩ {⟨code⟩}\cs_gset_protected_nopar:Nn
\cs_gset_protected_nopar:(cn|Ne|ce)

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the
number of ⟨parameters⟩ is detected automatically from the function signature. These
⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When
the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The
⟨function⟩ will not expand within an e-type or x-type argument. The assignment of a
meaning to the ⟨function⟩ is global.

\cs_generate_from_arg_count:NNnn ⟨function⟩ ⟨creator⟩
{⟨number⟩} {⟨code⟩}

\cs_generate_from_arg_count:NNnn
\cs_generate_from_arg_count:(NNno|cNnn|Ncnn)

Updated: 2012-01-14

Uses the ⟨creator⟩ function (which should have signature Npn, for example \cs_-
new:Npn) to define a ⟨function⟩ which takes ⟨number⟩ arguments and has ⟨code⟩ as
replacement text. The ⟨number⟩ of arguments is an integer expression, evaluated as
detailed for \int_eval:n.

4.3.4 Copying control sequences
Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

19

\cs_new_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_new_eq:NN ⟨cs1⟩ ⟨token⟩

Globally creates ⟨control sequence1⟩ and sets it to have the same meaning as ⟨control
sequence2⟩ or ⟨token⟩. The second control sequence may subsequently be altered with-
out affecting the copy.

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

\cs_set_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_set_eq:NN ⟨cs1⟩ ⟨token⟩

Sets ⟨control sequence1⟩ to have the same meaning as ⟨control sequence2⟩ (or
⟨token⟩). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the ⟨control sequence1⟩ is restricted to the
current TEX group level.

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN ⟨cs1⟩ ⟨cs2⟩
\cs_gset_eq:NN ⟨cs1⟩ ⟨token⟩

Globally sets ⟨control sequence1⟩ to have the same meaning as ⟨control sequence2⟩
(or ⟨token⟩). The second control sequence may subsequently be altered without affecting
the copy. The assignment of a meaning to the ⟨control sequence1⟩ is not restricted to
the current TEX group level: the assignment is global.

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

4.3.5 Deleting control sequences
There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N ⟨control sequence⟩

Sets ⟨control sequence⟩ to be globally undefined.
\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

4.3.6 Showing control sequences

\cs_meaning:N ⟨control sequence⟩

This function expands to the meaning of the ⟨control sequence⟩ control sequence. For
a macro, this includes the ⟨replacement text⟩.

TEXhackers note: This is the TEX primitive \meaning. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_meaning:N ⋆
\cs_meaning:c ⋆

Updated: 2011-12-22

\cs_show:N ⟨control sequence⟩

Displays the definition of the ⟨control sequence⟩ on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_show:N
\cs_show:c

Updated: 2017-02-14

20

\cs_log:N ⟨control sequence⟩

Writes the definition of the ⟨control sequence⟩ in the log file. See also \cs_show:N
which displays the result in the terminal.

\cs_log:N
\cs_log:c

New: 2014-08-22

Updated: 2017-02-14

4.3.7 Converting to and from control sequences

\use:c {⟨control sequence name⟩}

Expands the ⟨control sequence name⟩ until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-
type arguments the ⟨control sequence name⟩ must, when fully expanded, consist of
character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12
(other).

\use:c ⋆

As an example of the \use:c function, both

\use:c { a b c }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\use:c { \tl_use:N \l_my_tl }

would be equivalent to

\abc

after two expansions of \use:c.

\cs_if_exist_use:N ⟨control sequence⟩
\cs_if_exist_use:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it
is inserts the ⟨control sequence⟩ into the input stream followed by the ⟨true code⟩.
Otherwise the ⟨false code⟩ is used.

\cs_if_exist_use:N ⋆
\cs_if_exist_use:c ⋆
\cs_if_exist_use:NTF ⋆
\cs_if_exist_use:cTF ⋆

New: 2012-11-10

\cs:w ⟨control sequence name⟩ \cs_end:

Converts the given ⟨control sequence name⟩ into a single control sequence token. This
process requires one expansion. The content for ⟨control sequence name⟩ may be
literal material or from other expandable functions. The ⟨control sequence name⟩
must, when fully expanded, consist of character tokens which are not active: typically of
category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.

\cs:w ⋆
\cs_end: ⋆

As an example of the \cs:w and \cs_end: functions, both

\cs:w a b c \cs_end:

and

21

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\cs:w \tl_use:N \l_my_tl \cs_end:

would be equivalent to

\abc

after one expansion of \cs:w.

\cs_to_str:N ⟨control sequence⟩

Converts the given ⟨control sequence⟩ into a series of characters with category code
12 (other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an e-type or x-type expansion, or two o-type expansions
are required to convert the ⟨control sequence⟩ to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

\cs_to_str:N ⋆

4.4 Analysing control sequences

\cs_split_function:N ⟨function⟩

Splits the ⟨function⟩ into the ⟨name⟩ (i.e. the part before the colon) and the ⟨signature⟩
(i.e. after the colon). This information is then placed in the input stream in three
parts: the ⟨name⟩, the ⟨signature⟩ and a logic token indicating if a colon was found
(to differentiate variables from function names). The ⟨name⟩ does not include the escape
character, and both the ⟨name⟩ and ⟨signature⟩ are made up of tokens with category
code 12 (other).

\cs_split_function:N ⋆

New: 2018-04-06

The next three functions decompose TEX macros into their constituent parts: if the
⟨token⟩ passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

\cs_prefix_spec:N ⋆

New: 2019-02-27

22

\cs_parameter_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_parameter_spec:N ⋆

New: 2022-06-24

\cs_replacement_spec:N ⟨token⟩

If the ⟨token⟩ is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1␣y#2 in the input stream. If the ⟨token⟩ is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N ⋆
\cs_replacement_spec:c ⋆

New: 2019-02-27

4.5 Using or removing tokens and arguments
Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

23

\use:n {⟨group1⟩}
\use:nn {⟨group1⟩} {⟨group2⟩}
\use:nnn {⟨group1⟩} {⟨group2⟩} {⟨group3⟩}
\use:nnnn {⟨group1⟩} {⟨group2⟩} {⟨group3⟩} {⟨group4⟩}
As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }

results in the input stream containing

abc { def }

i.e. only the outer braces are removed.

TEXhackers note: The \use:n function is equivalent to LATEX 2ε’s \@firstofone.

\use:n ⋆
\use:nn ⋆
\use:nnn ⋆
\use:nnnn ⋆

24

\use_i:nn {⟨arg1⟩} {⟨arg2⟩}
\use_i:nnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}
\use_i:nnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩}
\use_i:nnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩}
\use_i:nnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩}
\use_i:nnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
\use_i:nnnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
{⟨arg8⟩}
\use_i:nnnnnnnnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩} {⟨arg4⟩} {⟨arg5⟩} {⟨arg6⟩} {⟨arg7⟩}
{⟨arg8⟩} {⟨arg9⟩}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn ⋆
\use_ii:nn ⋆
\use_i:nnn ⋆
\use_ii:nnn ⋆
\use_iii:nnn ⋆
\use_i:nnnn ⋆
\use_ii:nnnn ⋆
\use_iii:nnnn ⋆
\use_iv:nnnn ⋆
\use_i:nnnnn ⋆
\use_ii:nnnnn ⋆
\use_iii:nnnnn ⋆
\use_iv:nnnnn ⋆
\use_v:nnnnn ⋆
\use_i:nnnnnn ⋆
\use_ii:nnnnnn ⋆
\use_iii:nnnnnn ⋆
\use_iv:nnnnnn ⋆
\use_v:nnnnnn ⋆
\use_vi:nnnnnn ⋆
\use_i:nnnnnnn ⋆
\use_ii:nnnnnnn ⋆
\use_iii:nnnnnnn ⋆
\use_iv:nnnnnnn ⋆
\use_v:nnnnnnn ⋆
\use_vi:nnnnnnn ⋆
\use_vii:nnnnnnn ⋆
\use_i:nnnnnnnn ⋆
\use_ii:nnnnnnnn ⋆
\use_iii:nnnnnnnn ⋆
\use_iv:nnnnnnnn ⋆
\use_v:nnnnnnnn ⋆
\use_vi:nnnnnnnn ⋆
\use_vii:nnnnnnnn ⋆
\use_viii:nnnnnnnn ⋆
\use_i:nnnnnnnnn ⋆
\use_ii:nnnnnnnnn ⋆
\use_iii:nnnnnnnnn ⋆
\use_iv:nnnnnnnnn ⋆
\use_v:nnnnnnnnn ⋆
\use_vi:nnnnnnnnn ⋆
\use_vii:nnnnnnnnn ⋆
\use_viii:nnnnnnnnn ⋆
\use_ix:nnnnnnnnn ⋆

25

\use_i_ii:nnn {⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }

results in the input stream containing

abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_i_ii:nnn ⋆

\use_ii_i:nn {⟨arg1⟩} {⟨arg2⟩}

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_ii_i:nn ⋆

New: 2019-06-02

\use_none:n {⟨group1⟩}

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to LATEX 2ε’s \@gobble, \@gobbletwo, etc.

\use_none:n ⋆
\use_none:nn ⋆
\use_none:nnn ⋆
\use_none:nnnn ⋆
\use_none:nnnnn ⋆
\use_none:nnnnnn ⋆
\use_none:nnnnnnn ⋆
\use_none:nnnnnnnn ⋆
\use_none:nnnnnnnnn ⋆

\use:e {⟨expandable tokens⟩}

Fully expands the ⟨token list⟩ in an e-type manner, in which parameter character
(usually #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

\use:e ⋆

New: 2018-06-18

Updated: 2023-07-05

4.5.1 Selecting tokens from delimited arguments
A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w ⟨balanced text⟩ \q_nil
\use_none_delimit_by_q_stop:w ⟨balanced text⟩ \q_stop
\use_none_delimit_by_q_recursion_stop:w ⟨balanced text⟩
\q_recursion_stop

\use_none_delimit_by_q_nil:w ⋆
\use_none_delimit_by_q_stop:w ⋆
\use_none_delimit_by_q_recursion_stop:w ⋆

Absorb the ⟨balanced text⟩ from the input stream delimited by the marker given in
the function name, leaving nothing in the input stream.

26

\use_i_delimit_by_q_nil:nw {⟨inserted tokens⟩} ⟨balanced text⟩
\q_nil
\use_i_delimit_by_q_stop:nw {⟨inserted tokens⟩} ⟨balanced
text⟩ \q_stop
\use_i_delimit_by_q_recursion_stop:nw {⟨inserted tokens⟩}
⟨balanced text⟩ \q_recursion_stop

\use_i_delimit_by_q_nil:nw ⋆
\use_i_delimit_by_q_stop:nw ⋆
\use_i_delimit_by_q_recursion_stop:nw ⋆

Absorb the ⟨balanced text⟩ from the input stream delimited by the marker given in the
function name, leaving ⟨inserted tokens⟩ in the input stream for further processing.

4.6 Predicates and conditionals
LATEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied as the ⟨true code⟩ or the ⟨false code⟩.
These arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {⟨true code⟩} {⟨false code⟩}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).
These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.
Important to note is that these branching conditionals with ⟨true code⟩ and/or
⟨false code⟩ are always defined in a way that the code of the chosen alternative
can operate on following tokens in the input stream.
These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl

} {⟨true code⟩} {⟨false code⟩}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

27

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and LATEX 2ε. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN ⟨cs1⟩ ⟨cs2⟩
\cs_if_eq:NNTF ⟨cs1⟩ ⟨cs2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the definition of two ⟨control sequences⟩ and is logically true if they are
the same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_eq_p:NN ⋆
\cs_if_eq:NNTF ⋆

\cs_if_exist_p:N ⟨control sequence⟩
\cs_if_exist:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently defined (whether as a function or an-
other control sequence type). Any definition of ⟨control sequence⟩ other than \relax
evaluates as true.

\cs_if_exist_p:N ⋆
\cs_if_exist_p:c ⋆
\cs_if_exist:NTF ⋆
\cs_if_exist:cTF ⋆

\cs_if_free_p:N ⟨control sequence⟩
\cs_if_free:NTF ⟨control sequence⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨control sequence⟩ is currently free to be defined. This test is false
if the ⟨control sequence⟩ currently exists (as defined by \cs_if_exist:NTF).

\cs_if_free_p:N ⋆
\cs_if_free_p:c ⋆
\cs_if_free:NTF ⋆
\cs_if_free:cTF ⋆

4.6.2 Primitive conditionals
The ε-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if_int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_, except for \if:w.

\if_true: ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_false: ⟨true code⟩ \else: ⟨false code⟩ \fi:
\reverse_if:N ⟨primitive conditional⟩

\if_true: always executes ⟨true code⟩, while \if_false: always executes ⟨false
code⟩. \reverse_if:N reverses any two-way primitive conditional. \else: and \fi:
delimit the branches of the conditional. The function \or: is documented in l3int and
used in case switches.

TEXhackers note: \if_true: and \if_false: are equivalent to their corresponding TEX
primitive conditionals \iftrue and \iffalse; \else: and \fi: are the TEX primitives \else
and \fi; \reverse_if:N is the ε-TEX primitive \unless.

\if_true: ⋆
\if_false: ⋆
\else: ⋆
\fi: ⋆
\reverse_if:N ⋆

28

\if_meaning:w ⟨arg1⟩ ⟨arg2⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

\if_meaning:w executes ⟨true code⟩ when ⟨arg1⟩ and ⟨arg2⟩ are the same, otherwise
it executes ⟨false code⟩. ⟨arg1⟩ and ⟨arg2⟩ could be functions, variables, tokens; in all
cases the unexpanded definitions are compared.

TEXhackers note: This is the TEX primitive \ifx.

\if_meaning:w ⋆

\if:w ⟨token(s)⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_catcode:w ⟨token(s)⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

\if_charcode:w is an alternative name for \if:w. These conditionals expand ⟨token(s)⟩
until two unexpandable tokens ⟨token1⟩ and ⟨token2⟩ are found; any further tokens up
to the next unbalanced \else: are the true branch, ending with ⟨true code⟩. It is
executed if the condition is fulfilled, otherwise ⟨false code⟩ is executed. You can omit
\else: when just in front of \fi: and you can nest \if...\else:...\fi: constructs
inside the true branch or the ⟨false code⟩. With \exp_not:N, you can prevent the
expansion of a token.

\if_catcode:w tests if ⟨token1⟩ and ⟨token2⟩ have the same category code whereas
\if:w and \if_charcode:w test if they have the same character code.

TEXhackers note: \if:w and \if_charcode:w are both the TEX primitive \if. \if_-
catcode:w is the TEX primitive \ifcat.

\if:w ⋆
\if_charcode:w ⋆
\if_catcode:w ⋆

\if_cs_exist:N ⟨cs⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:
\if_cs_exist:w ⟨tokens⟩ \cs_end: ⟨true code⟩ \else: ⟨false code⟩ \fi:

Check if ⟨cs⟩ appears in the hash table or if the control sequence that can be formed
from ⟨tokens⟩ appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are the TEX primitives \ifdefined and \ifcsname.

\if_cs_exist:N ⋆
\if_cs_exist:w ⋆

\if_mode_horizontal: ⟨true code⟩ \else: ⟨false code⟩ \fi:

Execute ⟨true code⟩ if currently in horizontal mode, otherwise execute ⟨false code⟩.
Similar for the other functions.

TEXhackers note: These are the TEX primitives \ifhmode, \ifvmode, \ifmmode,
and \ifinner.

\if_mode_horizontal: ⋆
\if_mode_vertical: ⋆
\if_mode_math: ⋆
\if_mode_inner: ⋆

29

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TEXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the LATEX 2ε
\leavevmode approach, no box is used by the method implemented here.

\mode_leave_vertical:

New: 2017-07-04

4.8 Debugging support

\debug_on:n { ⟨comma-separated list⟩ }
\debug_off:n { ⟨comma-separated list⟩ }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the ⟨list⟩ are

• check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

• check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

• deprecation that makes deprecated commands produce errors;

• log-functions that logs function definitions and variable declarations;

• all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_on:n
\debug_off:n

New: 2017-07-16

Updated: 2023-05-23

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors. These pairs of commands can be nested. This can be used around pieces of code
that are known to fail checks, if such failures should be ignored. See for instance l3cctab
and l3coffins.

\debug_suspend:
\debug_resume:

New: 2017-11-28

30

Chapter 5

The l3expan module
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the LATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants
The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
.... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \l_tmpa_tl }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

31

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants
We recall the set of available argument specifiers.

• N is used for single-token arguments while c constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

• Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, f expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

• A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

32

\cs_generate_variant:Nn ⟨parent control sequence⟩ {⟨variant argument specifiers⟩}

This function is used to define argument-specifier variants of the ⟨parent control
sequence⟩ for LATEX3 code-level macros. The ⟨parent control sequence⟩ is first
separated into the ⟨base name⟩ and ⟨original argument specifier⟩. The comma-
separated list of ⟨variant argument specifiers⟩ is then used to define variants of the
⟨original argument specifier⟩ if these are not already defined; entries which corre-
spond to existing functions are silently ignored. For each ⟨variant⟩ given, a function is
created that expands its arguments as detailed and passes them to the ⟨parent control
sequence⟩. So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the ⟨parent control sequence⟩ is al-
ready defined. (This is only enforced if debugging support check-declarations is en-
abled.) If the ⟨parent control sequence⟩ is protected or if the ⟨variant⟩ involves any
x argument, then the ⟨variant control sequence⟩ is also protected. The ⟨variant⟩
is created globally, as is any \exp_args:N⟨variant⟩ function needed to carry out the
expansion. There is no need to re-apply \cs_generate_variant:Nn after changing the
definition of the parent function: the variant will always use the current definition of
the parent. Providing variants repeatedly is safe as \cs_generate_variant:Nn will only
create new definitions if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

• c variant of an N parent;

• o, V, v, f, e, or x variant of an n parent;

• N, n, T, F, or p argument unchanged.

This means the ⟨parent⟩ of a ⟨variant⟩ form is always unambiguous, even in cases
where both an n-type parent and an N-type parent exist, such as for \tl_count:n and
\tl_count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, f, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

\cs_generate_variant:Nn
\cs_generate_variant:cn

Updated: 2017-11-28

33

\exp_args_generate:n {⟨variant argument specifiers⟩}

Defines \exp_args:N⟨variant⟩ functions for each ⟨variant⟩ given in the comma list
{⟨variant argument specifiers⟩}. Each ⟨variant⟩ should consist of the letters N, c, n,
V, v, o, f, e, x, p and the resulting function is protected if the letter x appears in
the ⟨variant⟩. This is only useful for cases where \cs_generate_variant:Nn is not
applicable.

\exp_args_generate:n

New: 2018-04-04

Updated: 2019-02-08

5.3 Introducing the variants
The V type returns the value of a register, which can be one of tl, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside e or x expansion.

The f type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and f-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }

results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }

while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

34

at the cost of being protected for x-type. If you use f type expansion in conditional
processing then you should stick to using TF type functions only as the expansion does
not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \l_tmpa_tl { { \g_tmpb_tl } }

and

\tl_set:Nf \l_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_tl unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

• Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

• In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

• Finally f expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants
are used numerous times in a document) the following considerations apply because the
speed of internal functions that expand the arguments of a base function depend on what
needs doing with each argument and where this happens in the list of arguments:

• for fastest processing any c-type arguments should come first followed by all other
modified arguments;

• unchanged N-type args that appear before modified ones have a small performance
hit;

• unchanged n-type args that appear before modified ones have a relative larger
performance hit.

5.4 Manipulating the first argument
These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

35

\exp_args:Nc ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the ⟨function⟩.
Thus the ⟨function⟩ may take more than one argument: all others are left unchanged.

The :cc variant constructs the ⟨function⟩ name in the same manner as described
for the ⟨tokens⟩.

\exp_args:Nc ⋆
\exp_args:cc ⋆

\exp_args:No ⟨function⟩ {⟨tokens⟩} ...

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded once, and the result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:No ⋆

\exp_args:NV ⟨function⟩ ⟨variable⟩

This function absorbs two arguments (the names of the ⟨function⟩ and the ⟨variable⟩).
The content of the ⟨variable⟩ are recovered and placed inside braces into the input
stream after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than
one argument: all others are left unchanged.

\exp_args:NV ⋆

\exp_args:Nv ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are expanded until only characters remain, and are then turned into a control
sequence. This control sequence should be the name of a ⟨variable⟩. The content of the
⟨variable⟩ are recovered and placed inside braces into the input stream after reinsertion
of the ⟨function⟩. Thus the ⟨function⟩ may take more than one argument: all others
are left unchanged.

\exp_args:Nv ⋆

\exp_args:Ne ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩) and
exhaustively expands the ⟨tokens⟩. The result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:Ne ⋆

New: 2018-05-15

\exp_args:Nf ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩). The
⟨tokens⟩ are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after
reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one argument:
all others are left unchanged.

\exp_args:Nf ⋆

\exp_args:Nx ⟨function⟩ {⟨tokens⟩}

This function absorbs two arguments (the ⟨function⟩ name and the ⟨tokens⟩) and
exhaustively expands the ⟨tokens⟩. The result is inserted in braces into the input stream
after reinsertion of the ⟨function⟩. Thus the ⟨function⟩ may take more than one
argument: all others are left unchanged.

\exp_args:Nx

36

5.5 Manipulating two arguments

\exp_args:NNc ⟨token1⟩ ⟨token2⟩ {⟨tokens⟩}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:NNc ⋆
\exp_args:NNo ⋆
\exp_args:NNV ⋆
\exp_args:NNv ⋆
\exp_args:NNe ⋆
\exp_args:NNf ⋆
\exp_args:Ncc ⋆
\exp_args:Nco ⋆
\exp_args:NcV ⋆
\exp_args:Ncv ⋆
\exp_args:Ncf ⋆
\exp_args:NVV ⋆

Updated: 2018-05-15

\exp_args:Noo ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on the
input stream, followed by the expansion of the second and third arguments.

\exp_args:Nnc ⋆
\exp_args:Nno ⋆
\exp_args:NnV ⋆
\exp_args:Nnv ⋆
\exp_args:Nne ⋆
\exp_args:Nnf ⋆
\exp_args:Noc ⋆
\exp_args:Noo ⋆
\exp_args:Nof ⋆
\exp_args:NVo ⋆
\exp_args:Nfo ⋆
\exp_args:Nff ⋆
\exp_args:Nee ⋆

Updated: 2018-05-15

\exp_args:NNx ⟨token1⟩ ⟨token2⟩ {⟨tokens⟩}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

5.6 Manipulating three arguments

\exp_args:NNNo ⟨token1⟩ ⟨token2⟩ ⟨token3⟩ {⟨tokens⟩}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNNo ⋆
\exp_args:NNNV ⋆
\exp_args:NNNv ⋆
\exp_args:NNNe ⋆
\exp_args:Nccc ⋆
\exp_args:NcNc ⋆
\exp_args:NcNo ⋆
\exp_args:Ncco ⋆

37

\exp_args:NNoo ⟨token1⟩ ⟨token2⟩ {⟨token3⟩} {⟨tokens⟩}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNcf ⋆
\exp_args:NNno ⋆
\exp_args:NNnV ⋆
\exp_args:NNoo ⋆
\exp_args:NNVV ⋆
\exp_args:Ncno ⋆
\exp_args:NcnV ⋆
\exp_args:Ncoo ⋆
\exp_args:NcVV ⋆
\exp_args:Nnnc ⋆
\exp_args:Nnno ⋆
\exp_args:Nnnf ⋆
\exp_args:Nnff ⋆
\exp_args:Nooo ⋆
\exp_args:Noof ⋆
\exp_args:Nffo ⋆
\exp_args:Neee ⋆

\exp_args:NNnx ⟨token1⟩ ⟨token2⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

\exp_args:NNNx
\exp_args:NNnx
\exp_args:NNox
\exp_args:Nccx
\exp_args:Ncnx
\exp_args:Nnnx
\exp_args:Nnox
\exp_args:Noox

New: 2015-08-12

38

5.7 Unbraced expansion

\exp_last_unbraced:Nno ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \q_stop leads to an infinite loop, as the quark is f-
expanded.

\exp_last_unbraced:No ⋆
\exp_last_unbraced:NV ⋆
\exp_last_unbraced:Nv ⋆
\exp_last_unbraced:Ne ⋆
\exp_last_unbraced:Nf ⋆
\exp_last_unbraced:NNo ⋆
\exp_last_unbraced:NNV ⋆
\exp_last_unbraced:NNf ⋆
\exp_last_unbraced:Nco ⋆
\exp_last_unbraced:NcV ⋆
\exp_last_unbraced:Nno ⋆
\exp_last_unbraced:Nnf ⋆
\exp_last_unbraced:Noo ⋆
\exp_last_unbraced:Nfo ⋆
\exp_last_unbraced:NNNo ⋆
\exp_last_unbraced:NNNV ⋆
\exp_last_unbraced:NNNf ⋆
\exp_last_unbraced:NnNo ⋆
\exp_last_unbraced:NNNNo ⋆
\exp_last_unbraced:NNNNf ⋆

Updated: 2018-05-15

\exp_last_unbraced:Nx ⟨function⟩ {⟨tokens⟩}

This function fully expands the ⟨tokens⟩ and leaves the result in the input stream after
reinsertion of the ⟨function⟩. This function is not expandable.

\exp_last_unbraced:Nx

\exp_last_two_unbraced:Noo ⟨token⟩ {⟨tokens1⟩} {⟨tokens2⟩}\exp_last_two_unbraced:Noo ⋆

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN ⟨token1⟩ ⟨token2⟩

Carries out a single expansion of ⟨token2⟩ (which may consume arguments) prior to the
expansion of ⟨token1⟩. If ⟨token2⟩ has no expansion (for example, if it is a character)
then it is left unchanged. It is important to notice that ⟨token1⟩ may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX cat-
egory codes). Unless specifically required this should be avoided: expansion should be
carried out using an appropriate argument specifier variant or the appropriate \exp_-
args:N⟨variant⟩ function.

TEXhackers note: This is the TEX primitive \expandafter.

\exp_after:wN ⋆

39

5.8 Preventing expansion
Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N ⟨token⟩

Prevents expansion of the ⟨token⟩ in a context where it would otherwise be expanded, for
example an e-type or x-type argument or the first token in an o-type or f-type argument.

TEXhackers note: This is the TEX primitive \noexpand. It only prevents expansion. At
the beginning of an f-type argument, a space ⟨token⟩ is removed even if it appears as \exp_not:N
\c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:N ⋆

\exp_not:c {⟨tokens⟩}

Expands the ⟨tokens⟩ until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

\exp_not:c ⋆

\exp_not:n {⟨tokens⟩}

Prevents expansion of the ⟨tokens⟩ in an e-type or x-type argument. In all other cases
the ⟨tokens⟩ continue to be expanded, for example in the input stream or in other types
of arguments such as c, f, v. The argument of \exp_not:n must be surrounded by
braces.

TEXhackers note: This is the ε-TEX primitive \unexpanded. In an e-expanding definition
(\cs_new:Npe), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1, and \exp_not:n {#} is equivalent to #, namely it inserts the character #.

\exp_not:n ⋆

\exp_not:o {⟨tokens⟩}

Expands the ⟨tokens⟩ once, then prevents any further expansion in e-type or x-type
arguments using \exp_not:n.

\exp_not:o ⋆

\exp_not:V ⟨variable⟩

Recovers the content of the ⟨variable⟩, then prevents expansion of this material in
e-type or x-type arguments using \exp_not:n.

\exp_not:V ⋆

\exp_not:v {⟨tokens⟩}

Expands the ⟨tokens⟩ until only characters remains, and then converts this into a con-
trol sequence which should be a ⟨variable⟩ name. The content of the ⟨variable⟩
is recovered, and further expansion in e-type or x-type arguments is prevented using
\exp_not:n.

\exp_not:v ⋆

40

\exp_not:e {⟨tokens⟩}

Expands ⟨tokens⟩ exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e-type or x-type arguments
using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:e ⋆

\exp_not:f {⟨tokens⟩}

Expands ⟨tokens⟩ fully until the first unexpandable token is found (if it is a space
it is removed). Expansion then stops, and the result of the expansion (including any
tokens which were not expanded) is protected from further expansion in e-type or x-type
arguments using \exp_not:n.

\exp_not:f ⋆

\foo_bar:f { ⟨tokens⟩ \exp_stop_f: ⟨more tokens⟩ }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of ⟨tokens⟩ are expandable \exp_stop_f: terminates the
expansion of tokens even if ⟨more tokens⟩ are also expandable. The function itself is an
implicit space token. Inside an e-type or x-type expansion, it retains its form, but when
typeset it produces the underlying space (␣).

\exp_stop_f: ⋆

Updated: 2011-06-03

5.9 Controlled expansion
The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of ⟨expandable-tokens⟩ as that will break badly if unexpandable tokens
are encountered in that place!

41

\exp:w ⟨expandable tokens⟩ \exp_end:

Expands ⟨expandable-tokens⟩ until reaching \exp_end: at which point expansion
stops. The full expansion of ⟨expandable tokens⟩ has to be empty. If any token in
⟨expandable tokens⟩ or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end: will be misin-
terpreted later on.3

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
⟨expandable-tokens⟩ rather than being on the same expansion level than \exp:w, e.g.,
you may see code such as

\exp:w \@@_case:NnTF #1 {#2} { } { }

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the ⟨expandable tokens⟩, but this should
not be relied upon.

\exp:w ⋆
\exp_end: ⋆

New: 2015-08-23

\exp:w ⟨expandable-tokens⟩ \exp_end_continue_f:w ⟨further-tokens⟩

Expands ⟨expandable-tokens⟩ until reaching \exp_end_continue_f:w at which point
expansion continues as an f-type expansion expanding ⟨further-tokens⟩ until an un-
expandable token is encountered (or the f-type expansion is explicitly terminated by
\exp_stop_f:). As with all f-type expansions a space ending the expansion gets re-
moved.

The full expansion of ⟨expandable-tokens⟩ has to be empty. If any token in
⟨expandable-tokens⟩ or any token generated by expanding the tokens therein is not
expandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.4

In typical use cases ⟨expandable-tokens⟩ contains no tokens at all, e.g., you will
see code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w ⟨expandable-tokens⟩ \exp_end:

can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.

\exp:w \exp_end_continue_f:w ⟨expandable-tokens⟩ \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w ⋆
\exp_end_continue_f:w ⋆

New: 2015-08-23

3Due to the implementation you might get the character in position 0 in the current font (typically
“‘”) in the output without any error message!

42

\exp:w ⟨expandable-tokens⟩ \exp_end_continue_f:nw ⟨further-tokens⟩

The difference to \exp_end_continue_f:w is that we first we pick up an argument which
is then returned to the input stream. If ⟨further-tokens⟩ starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

\exp:w ⋆
\exp_end_continue_f:nw ⋆

New: 2015-08-23

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
LATEX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\::n
\::N
\::p
\::c
\::o
\::e
\::f
\::x
\::v
\::V
\:::

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general LATEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

\::o_unbraced
\::e_unbraced
\::f_unbraced
\::x_unbraced
\::v_unbraced
\::V_unbraced

4In this particular case you may get a character into the output as well as an error message.

43

Chapter 6

The l3sort module
Sorting functions

6.1 Controlling sorting
LATEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \l_foo_clist { 3 , 01 , -2 , 5 , +1 }
\clist_sort:Nn \l_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \l_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a ⟨comparison code⟩ consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a ⟨comparison code⟩ consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from l3sort stores items in \toks registers allocated locally. Thus,
the ⟨comparison code⟩ should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

44

\seq_sort:Nn ⟨seq var⟩
{ ... \sort_return_same: or \sort_return_swapped: ... }

Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_... functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

\sort_return_same:
\sort_return_swapped:

New: 2017-02-06

45

Chapter 7

The l3tl-analysis module
Analysing token lists

This module provides functions that are particularly useful in the l3regex module for
mapping through a token list one ⟨token⟩ at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in l3token finds tokens in the input stream instead. In both cases the user
provides ⟨inline code⟩ that receives three arguments for each ⟨token⟩:

• ⟨tokens⟩, which both o-expand and e/x-expand to the ⟨token⟩. The detailed form
of ⟨tokens⟩ may change in later releases.

• ⟨char code⟩, a decimal representation of the character code of the ⟨token⟩, −1 if
it is a control sequence.

• ⟨catcode⟩, a capital hexadecimal digit which denotes the category code of the
⟨token⟩ (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "⟨catcode⟩.

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:n {⟨token list⟩}
\tl_analysis_log:n {⟨token list⟩}

Displays to the terminal (or log) the detailed decomposition of the ⟨token list⟩ into to-
kens, showing the category code of each character token, the meaning of control sequences
and active characters, and the value of registers.

\tl_analysis_show:N
\tl_analysis_show:n
\tl_analysis_log:N
\tl_analysis_log:n

New: 2021-05-11

\tl_analysis_map_inline:nn {⟨token list⟩} {⟨inline function⟩}

Applies the ⟨inline function⟩ to each individual ⟨token⟩ in the ⟨token list⟩. The
⟨inline function⟩ receives three arguments as explained above. As all other mappings
the mapping is done at the current group level, i.e. any local assignments made by the
⟨inline function⟩ remain in effect after the loop.

\tl_analysis_map_inline:nn
\tl_analysis_map_inline:Nn

New: 2018-04-09

Updated: 2022-03-26

46

Chapter 8

The l3regex module
Regular expressions in TEX

The l3regex module provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the pcre syntax (and very close to posix), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl

the token list variable \l_my_tl holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \l_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \0 denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \l_foo_regex
\regex_set:Nn \l_foo_regex { \c{begin} \cB. (\c[^BE].*) \cE. }

stores in \l_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c[^BE].*), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c[^BE].*, giving us access to the name of the environment when doing
replacements.

47

8.1 Syntax of regular expressions
8.1.1 Regular expression examples
We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

• Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

• [abc] matches one letter among “a”, “b”, “c”; the pattern (a|b|c) matches the
same three possible letters (but see the discussion of submatches below).

• [A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

• \c{[A-Za-z]*} matches a control sequence made of Latin letters.

• _[^_]*_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier *? means to match as few characters as possible,
thus avoiding matching underscores.

• [\+\-]?\d+ matches an explicit integer with at most one sign.

• [\+\-\␣]*\d+\␣* matches an explicit integer with any number of + and − signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

• [\+\-\␣]*(\d+|\d*\.\d+)\␣* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

• [\+\-\␣]*(\d+|\d*\.\d+)\␣*((?i)pt|in|[cem]m|ex|[bs]p|[dn]d|[pcn]c)\␣*
matches an explicit dimension with any unit that TEX knows, where (?i) means
to treat lowercase and uppercase letters identically.

• [\+\-\␣]*((?i)nan|inf|(\d+|\d*\.\d+)(\␣*e[\+\-\␣]*\d+)?)\␣* matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

• [\+\-\␣]*(\d+|\cC.)\␣* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

• \G.*?\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
[\+\-\(]*\d+\)*([\+\-*/][\+\-\(]*\d+\)*)* matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

48

8.1.2 Characters in regular expressions
Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash–letter also have a special meaning (for
instance \d matches any digit). As a rule,

• every alphanumeric character (A–Z, a–z, 0–9) matches exactly itself, and should
not be escaped, because \A, \B, . . . have special meanings;

• non-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(, \), \?, \., \^);

• spaces should always be escaped (even in character classes);

• any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\% matches
the characters \abc% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{⟨regex⟩} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh...} Character with hex code hh...

\xhh Character with hex code hh.

\a Alarm (hex 07).

\e Escape (hex 1B).

\f Form-feed (hex 0C).

\n New line (hex 0A).

\r Carriage return (hex 0D).

\t Horizontal tab (hex 09).

8.1.3 Characters classes
Character properties.

. A single period matches any token.

\d Any decimal digit.

\h Any horizontal space character, equivalent to [\ \^^I]: space and tab.

\s Any space character, equivalent to [\ \^^I\^^J\^^L\^^M].

49

\v Any vertical space character, equivalent to [\^^J\^^K\^^L\^^M]. Note that \^^K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.

\H Any token not matched by \h.

\N Any token other than the \n character (hex 0A).

\S Any token not matched by \s.

\V Any token not matched by \v.

\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.

[^...] Negative character class. Matches any token other than the specified characters.

[x-y] Within a character class, this denotes a range (can be used with escaped characters).

[:⟨name⟩:] Within a character class (one more set of brackets), this denotes the posix character
class ⟨name⟩, which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:^⟨name⟩:] Negative posix character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, ^, -,], \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ^, then the meaning of the character class is inverted; ^ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ^) is] then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and [^6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).

? 0 or 1, greedy.

?? 0 or 1, lazy.

* 0 or more, greedy.

*? 0 or more, lazy.

+ 1 or more, greedy.

50

+? 1 or more, lazy.

{n} Exactly n.

{n,} n or more, greedy.

{n,}? n or more, lazy.

{n, m} At least n, no more than m, greedy.

{n, m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|B|C Either one of A, B, or C, investigating A first.

(...) Capturing group.

(?:...) Non-capturing group.

(?|...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { a123aaxyz } \l_foo_seq

results in \l_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \l_foo_seq

results in \l_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens
The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

• C for control sequences;

• B for begin-group tokens;

• E for end-group tokens;

51

• M for math shift;

• T for alignment tab tokens;

• P for macro parameter tokens;

• U for superscript tokens (up);

• D for subscript tokens (down);

• S for spaces;

• L for letters;

• O for others; and

• A for active characters.

The \c escape sequence is used as follows.

\c{⟨regex⟩} A control sequence whose csname matches the ⟨regex⟩, anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \cO(abc) matches abc where each character has category other.5

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO](..) matches two
tokens of category letter, space, or other.

\c[^XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c[^O]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO][A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{⟨var name⟩} matches the exact contents (both character codes and cate-
gory codes) of the variable \⟨var name⟩, which are obtained by applying \exp_not:v
{⟨var name⟩} at the time the regular expression is compiled. Within a \c{...} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{l_tmpa_regex}D matches the tokens A and

5This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\cO(?:abc).

52

D separated by something that matches the regular expression \l_tmpa_regex. This
behaves as if a non-capturing group were surrounding \l_tmpa_regex, and any group
contained in \l_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \l_tmpa_regex has value B|C, then A\ur{l_tmpa_regex}D is equiv-
alent to A(?:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \l_-
mymodule_BC_tl contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_tl} D }
\regex_show:n { A B | C D }

8.1.6 Miscellaneous
Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

^or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ^ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \l_tmpa_int
yields 2, but replacing \G by ^ would result in \l_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A–Z and a–z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?-i). For instance, in
(?i)(a(?-i)b|c)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i)[\?-B] is equivalent to [\?@ABab]
(and differs from the much larger class [\?-b]), and (?i)[^aeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?i)\u{l_foo_tl}\d\d[[:lower:]].

8.2 Syntax of the replacement text
Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

• \0 is the whole match;

• \1 is the submatch that was matched by the first (capturing) group (...); similarly
for \2, . . . , \9 and \g{⟨number⟩};

• \␣ inserts a space (spaces are ignored when not escaped);

53

• \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

• \c{⟨cs name⟩} inserts a control sequence;

• \c⟨category⟩⟨character⟩ (see below);

• \u{⟨tl var name⟩} inserts the contents of the ⟨tl var⟩ (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \l_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?l|o) . } { (\0--\1) } \l_my_tl

results in \l_my_tl holding H(ell--el)(o,--o) w(or--o)(ld--l)!
The submatches are numbered according to the order in which the opening paren-

thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code regime at the time where the replacement is made,
with two exceptions:

• space characters (with character code 32) inserted with \␣ or \x20 or \x{20} have
category code 10 regardless of the prevailing category code regime;

• if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “. . . ” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{⟨text⟩} Produces the control sequence with csname ⟨text⟩. The ⟨text⟩ may contain ref-
erences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{⟨var name⟩} allows to insert the contents of the variable with
name ⟨var name⟩ directly into the replacement, giving an easier control of category codes.
When nested in \c{. . . } and \u{. . . } constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \l_my_one_tl { first }
\tl_set:Nn \l_my_two_tl { \emph{second} }
\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { [^,]+ } { \u{l_my_\0_tl} } \l_my_tl

54

results in \l_my_tl holding first,\emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary

category codes. For instance

\tl_clear:N \l_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \l_tmpa_tl

results in \l_tmpa_tl containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions
If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the l3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N ⟨regex var⟩

Creates a new ⟨regex var⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨regex var⟩ is initially such that it never matches.

\regex_new:N

New: 2017-05-26

\regex_set:Nn ⟨regex var⟩ {⟨regex⟩}

Stores a compiled version of the ⟨regular expression⟩ in the ⟨regex var⟩. The as-
signment is local for \regex_set:Nn and global for \regex_gset:Nn. For instance, this
function can be used as

\regex_new:N \l_my_regex
\regex_set:Nn \l_my_regex { my\ (simple\)? reg(ex|ular\ expression) }

\regex_set:Nn
\regex_gset:Nn

New: 2017-05-26

\regex_const:Nn ⟨regex var⟩ {⟨regex⟩}

Creates a new constant ⟨regex var⟩ or raises an error if the name is already taken.
The value of the ⟨regex var⟩ is set globally to the compiled version of the ⟨regular
expression⟩.

\regex_const:Nn

New: 2017-05-26

\regex_show:n {⟨regex⟩}
\regex_log:n {⟨regex⟩}

Displays in the terminal or writes in the log file (respectively) how l3regex interprets the
⟨regex⟩. For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)

+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26

Updated: 2021-04-29

55

8.4 Matching
All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_match:nnTF {⟨regex⟩} {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨regular expression⟩ matches any part of the ⟨token list⟩. For
instance,

\regex_match:nnTF { b [cde]* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_match:nnTF
\regex_match:nVTF
\regex_match:NnTF
\regex_match:NVTF

New: 2017-05-26

\regex_count:nnN {⟨regex⟩} {⟨token list⟩} ⟨int var⟩

Sets ⟨int var⟩ within the current TEX group level equal to the number of times ⟨regular
expression⟩ appears in ⟨token list⟩. The search starts by finding the left-most longest
match, respecting greedy and lazy (non-greedy) operators. Then the search starts again
from the character following the last character of the previous match, until reaching the
end of the token list. Infinite loops are prevented in the case where the regular expression
can match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \l_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \l_foo_int

results in \l_foo_int taking the value 5.

\regex_count:nnN
\regex_count:nVN
\regex_count:NnN
\regex_count:NVN

New: 2017-05-26

\regex_match_case:nnTF
{

{⟨regex1⟩} {⟨code case1⟩}
{⟨regex2⟩} {⟨code case2⟩}
...
{⟨regexn⟩} {⟨code casen⟩}

} {⟨token list⟩}
{⟨true code⟩} {⟨false code⟩}

Determines which of the ⟨regular expressions⟩ matches at the earliest point in the
⟨token list⟩, and leaves the corresponding ⟨codei⟩ followed by the ⟨true code⟩ in the
input stream. If several ⟨regex⟩ match starting at the same point, then the first one
in the list is selected and the others are discarded. If none of the ⟨regex⟩ match, the
⟨false code⟩ is left in the input stream. Each ⟨regex⟩ can either be given as a regex
variable or as an explicit regular expression.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then the corresponding ⟨code⟩ is used and
everything else is discarded, while if none of the ⟨regex⟩ match at a given position then
the next starting position is attempted. If none of the ⟨regex⟩ match anywhere in the
⟨token list⟩ then nothing is left in the input stream. Note that this differs from nested
\regex_match:nnTF statements since all ⟨regex⟩ are attempted at each position rather
than attempting to match ⟨regex1⟩ at every position before moving on to ⟨regex2⟩.

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

56

8.5 Submatch extraction

\regex_extract_once:nnN {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩
\regex_extract_once:nnNTF {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩} {⟨false
code⟩}

Finds the first match of the ⟨regular expression⟩ in the ⟨token list⟩. If it exists,
the match is stored as the first item of the ⟨seq var⟩, and further items are the contents
of capturing groups, in the order of their opening parenthesis. The ⟨seq var⟩ is assigned
locally. If there is no match, the ⟨seq var⟩ is cleared. The testing versions insert
the ⟨true code⟩ into the input stream if a match was found, and the ⟨false code⟩
otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \l_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \l_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \l_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n − 1) in functions such as \regex_replace_once:nnN.

\regex_extract_once:nnN
\regex_extract_once:nVN
\regex_extract_once:nnNTF
\regex_extract_once:nVNTF
\regex_extract_once:NnN
\regex_extract_once:NVN
\regex_extract_once:NnNTF
\regex_extract_once:NVNTF

New: 2017-05-26

\regex_extract_all:nnN {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩
\regex_extract_all:nnNTF {⟨regex⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩} {⟨false
code⟩}

Finds all matches of the ⟨regular expression⟩ in the ⟨token list⟩, and stores all
the submatch information in a single sequence (concatenating the results of multiple
\regex_extract_once:nnN calls). The ⟨seq var⟩ is assigned locally. If there is no
match, the ⟨seq var⟩ is cleared. The testing versions insert the ⟨true code⟩ into the
input stream if a match was found, and the ⟨false code⟩ otherwise. For instance,
assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \l_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

\regex_extract_all:nnN
\regex_extract_all:nVN
\regex_extract_all:nnNTF
\regex_extract_all:nVNTF
\regex_extract_all:NnN
\regex_extract_all:NVN
\regex_extract_all:NnNTF
\regex_extract_all:NVNTF

New: 2017-05-26

57

\regex_split:nnN {⟨regular expression⟩} {⟨token list⟩} ⟨seq var⟩
\regex_split:nnNTF {⟨regular expression⟩} {⟨token list⟩} ⟨seq var⟩ {⟨true code⟩}
{⟨false code⟩}

Splits the ⟨token list⟩ into a sequence of parts, delimited by matches of the ⟨regular
expression⟩. If the ⟨regular expression⟩ has capturing groups, then the token lists
that they match are stored as items of the sequence as well. The assignment to ⟨seq var⟩
is local. If no match is found the resulting ⟨seq var⟩ has the ⟨token list⟩ as its sole
item. If the ⟨regular expression⟩ matches the empty token list, then the ⟨token
list⟩ is split into single tokens. The testing versions insert the ⟨true code⟩ into the
input stream if a match was found, and the ⟨false code⟩ otherwise. For example, after

\seq_new:N \l_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \l_path_seq
{ true } { false }

the sequence \l_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

\regex_split:nnN
\regex_split:nVN
\regex_split:nnNTF
\regex_split:nVNTF
\regex_split:NnN
\regex_split:NVN
\regex_split:NnNTF
\regex_split:NVNTF

New: 2017-05-26

8.6 Replacement

\regex_replace_once:nnN {⟨regular expression⟩} {⟨replacement⟩} ⟨tl var⟩
\regex_replace_once:nnNTF {⟨regular expression⟩} {⟨replacement⟩} ⟨tl var⟩ {⟨true
code⟩} {⟨false code⟩}

Searches for the ⟨regular expression⟩ in the contents of the ⟨tl var⟩ and replaces
the first match with the ⟨replacement⟩. In the ⟨replacement⟩, \0 represents the full
match, \1 represent the contents of the first capturing group, \2 of the second, etc. The
result is assigned locally to ⟨tl var⟩.

\regex_replace_once:nnN
\regex_replace_once:nVN
\regex_replace_once:nnNTF
\regex_replace_once:nVNTF
\regex_replace_once:NnN
\regex_replace_once:NVN
\regex_replace_once:NnNTF
\regex_replace_once:NVNTF

New: 2017-05-26

\regex_replace_all:nnN {⟨regular expression⟩} {⟨replacement⟩} ⟨tl var⟩
\regex_replace_all:nnNTF {⟨regular expression⟩} {⟨replacement⟩} ⟨tl var⟩ {⟨true
code⟩} {⟨false code⟩}

Replaces all occurrences of the ⟨regular expression⟩ in the contents of the ⟨tl var⟩
by the ⟨replacement⟩, where \0 represents the full match, \1 represent the contents of
the first capturing group, \2 of the second, etc. Every match is treated independently,
and matches cannot overlap. The result is assigned locally to ⟨tl var⟩.

\regex_replace_all:nnN
\regex_replace_all:nVN
\regex_replace_all:nnNTF
\regex_replace_all:nVNTF
\regex_replace_all:NnN
\regex_replace_all:NVN
\regex_replace_all:NnNTF
\regex_replace_all:NVNTF

New: 2017-05-26

58

\regex_replace_case_once:nNTF
{

{⟨regex1⟩} {⟨replacement1⟩}
{⟨regex2⟩} {⟨replacement2⟩}
...
{⟨regexn⟩} {⟨replacementn⟩}

} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\regex_replace_case_once:nN
\regex_replace_case_once:nNTF

New: 2022-01-10

Replaces the earliest match of the regular expression (?|⟨regex1⟩|. . . |⟨regexn⟩) in
the ⟨token list variable⟩ by the ⟨replacement⟩ corresponding to which ⟨regexi⟩
matched, then leaves the ⟨true code⟩ in the input stream. If none of the ⟨regex⟩
match, then the ⟨tl var⟩ is not modified, and the ⟨false code⟩ is left in the input
stream. Each ⟨regex⟩ can either be given as a regex variable or as an explicit regular
expression.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then it is replaced by the corresponding
⟨replacement⟩ as described for \regex_replace_once:nnN. This is equivalent to check-
ing with \regex_match_case:nn which ⟨regex⟩ matches, then performing the replace-
ment with \regex_replace_once:nnN.

\regex_replace_case_all:nNTF
{

{⟨regex1⟩} {⟨replacement1⟩}
{⟨regex2⟩} {⟨replacement2⟩}
...
{⟨regexn⟩} {⟨replacementn⟩}

} ⟨tl var⟩
{⟨true code⟩} {⟨false code⟩}

\regex_replace_case_all:nN
\regex_replace_case_all:nNTF

New: 2022-01-10

Replaces all occurrences of all ⟨regex⟩ in the ⟨token list⟩ by the corresponding
⟨replacement⟩. Every match is treated independently, and matches cannot overlap.
The result is assigned locally to ⟨tl var⟩, and the ⟨true code⟩ or ⟨false code⟩ is left
in the input stream depending on whether any replacement was made or not.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is
searched in turn. If one of them matches then it is replaced by the corresponding
⟨replacement⟩, and the search resumes at the position that follows this match (and
replacement). For instance

\tl_set:Nn \l_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN
{
{ [A-Za-z]+ } { ‘‘\0’’ }
{ \b } { --- }
{ . } { [\0] }

} \l_tmpa_tl

results in \l_tmpa_tl having the contents ‘‘Hello’’---[,][␣]‘‘world’’---[!]. Note
in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

59

8.7 Scratch regular expressions

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_regex
\l_tmpb_regex

New: 2017-12-11

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

8.8 Bugs, misfeatures, future work, and other possi-
bilities

The following need to be done now.

• Rewrite the documentation in a more ordered way, perhaps add a bnf?

Additional error-checking to come.

• Clean up the use of messages.

• Cleaner error reporting in the replacement phase.

• Add tracing information.

• Detect attempts to use back-references and other non-implemented syntax.

• Test for the maximum register \c_max_register_int.

• Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

• The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.

Code improvements to come.

• Shift arrays so that the useful information starts at position 1.

• Only build \c{...} once.

• Use arrays for the left and right state stacks when compiling a regex.

• Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

• Quantifiers for \u and assertions.

• When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

• If possible, when a state is reused by the same thread, kill other subthreads.

60

• Use an array rather than \g__regex_balance_tl to build the function __regex_-
replacement_balance_one_match:n.

• Reduce the number of epsilon-transitions in alternatives.

• Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

• Optimize groups with no alternative.

• Optimize states with a single __regex_action_free:n.

• Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

• Optimize the use of \int_step_... functions.

• Groups don’t capture within regexes for csnames; optimize and document.

• Better “show” for anchors, properties, and catcode tests.

• Does \K really need a new state for itself?

• When compiling, use a boolean in_cs and less magic numbers.

The following features are likely to be implemented at some point in the future.

• General look-ahead/behind assertions.

• Regex matching on external files.

• Conditional subpatterns with look ahead/behind: “if what follows is [. . .], then
[. . .]”.

• (*..) and (?..) sequences to set some options.

• UTF-8 mode for pdfTEX.

• Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ^, and \Z, \z and $ should differ.

• Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of pcre or Perl may or may not be implemented.

• Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \tl_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

• Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

61

• Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of pcre or Perl will definitely not be implemented.

• Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

• Recursion: this is a non-regular feature.

• Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

• Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

• Backtracking control verbs: intrinsically tied to backtracking.

• \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, . . .), making it harder to produce useful error message.

• \cx, similar to TEX’s own \^^x.

• Comments: TEX already has its own system for comments.

• \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

• \C single byte in UTF-8 mode: X ETEX and LuaTEX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

62

Chapter 9

The l3prg module
Control structures

Conditional processing in LATEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are ⟨true⟩ and ⟨false⟩.

LATEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean ⟨true⟩ or ⟨false⟩.
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean ⟨true⟩ or ⟨false⟩ values to be used
in testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn \⟨name⟩:⟨arg spec⟩ ⟨parameters⟩ {⟨conditions⟩} {⟨code⟩}
\prg_new_conditional:Nnn \⟨name⟩:⟨arg spec⟩ {⟨conditions⟩} {⟨code⟩}

These functions create a family of conditionals using the same {⟨code⟩} to perform the
test created. Those conditionals are expandable if ⟨code⟩ is. The new versions check for
existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of ⟨conditions⟩, which should
be one or more of p, T, F and TF.

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_gset_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn

Updated: 2022-11-01

63

\prg_new_protected_conditional:Npnn \⟨name⟩:⟨arg spec⟩
⟨parameters⟩ {⟨conditions⟩} {⟨code⟩}
\prg_new_protected_conditional:Nnn \⟨name⟩:⟨arg spec⟩
{⟨conditions⟩} {⟨code⟩}

\prg_new_protected_conditional:Npnn
\prg_set_protected_conditional:Npnn
\prg_gset_protected_conditional:Npnn
\prg_new_protected_conditional:Nnn
\prg_set_protected_conditional:Nnn
\prg_gset_protected_conditional:Nnn

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {⟨code⟩} to
perform the test created. The ⟨code⟩ does not need to be expandable. The new version
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set version do not (cf. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of ⟨conditions⟩, which should be one or more of T, F and TF (not
p).

The conditionals are defined by \prg_new_conditional:Npnn and friends as:

• \⟨name⟩_p:⟨arg spec⟩ — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

• \⟨name⟩:⟨arg spec⟩T — a function with one more argument than the original ⟨arg
spec⟩ demands. The ⟨true branch⟩ code in this additional argument will be left
on the input stream only if the test is true.

• \⟨name⟩:⟨arg spec⟩F — a function with one more argument than the original ⟨arg
spec⟩ demands. The ⟨false branch⟩ code in this additional argument will be left
on the input stream only if the test is false.

• \⟨name⟩:⟨arg spec⟩TF — a function with two more argument than the original
⟨arg spec⟩ demands. The ⟨true branch⟩ code in the first additional argument
will be left on the input stream if the test is true, while the ⟨false branch⟩ code
in the second argument will be left on the input stream if the test is false.

The ⟨code⟩ of the test may use ⟨parameters⟩ as specified by the second argument to
\prg_set_conditional:Npnn: this should match the ⟨argument specification⟩ but
this is not enforced. The Nnn versions infer the number of arguments from the argument
specification given (cf. \cs_new:Nn, etc.). Within the ⟨code⟩, the functions \prg_-
return_true: and \prg_return_false: are used to indicate the logical outcomes of the
test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if_meaning:w \l_tmpa_tl #1
\prg_return_true:

\else:
\if_meaning:w \l_tmpa_tl #2
\prg_return_true:

\else:
\prg_return_false:

\fi:

64

\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the ⟨conditions⟩ list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

The special case where the code of a conditional ends with \prg_return_true:
\else: \prg_return_false: \fi: is optimized.

\prg_new_eq_conditional:NNn \⟨name1⟩:⟨arg spec1⟩ \⟨name2⟩:⟨arg spec2⟩
{⟨conditions⟩}

\prg_new_eq_conditional:NNn
\prg_set_eq_conditional:NNn
\prg_gset_eq_conditional:NNn

Updated: 2023-05-26

These functions copy a family of conditionals. The new version checks for existing defin-
itions (cf. \cs_new_eq:NN) whereas the set version does not (cf. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of ⟨conditions⟩, which
should be one or more of p, T, F and TF.

\prg_return_true:
\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions exactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_return_true: ⋆
\prg_return_false: ⋆

\prg_generate_conditional_variant:Nnn \⟨name⟩:⟨arg spec⟩
{⟨variant argument specifiers⟩} {⟨condition specifiers⟩}

\prg_generate_conditional_variant:Nnn

New: 2017-12-12

Defines argument-specifier variants of conditionals. This is equivalent to running
\cs_generate_variant:Nn ⟨conditional⟩ {⟨variant argument specifiers⟩} on each
⟨conditional⟩ described by the ⟨condition specifiers⟩. These base-form ⟨conditionals⟩
are obtained from the ⟨name⟩ and ⟨arg spec⟩ as described for \prg_new_conditional:Npnn,
and they should be defined.

9.2 The boolean data type
This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and

65

\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, LATEX 2ε and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N ⟨boolean⟩

Creates a new ⟨boolean⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨boolean⟩ is initially false.

\bool_new:N
\bool_new:c

\bool_const:Nn ⟨boolean⟩ {⟨boolexpr⟩}

Creates a new constant ⟨boolean⟩ or raises an error if the name is already taken. The
value of the ⟨boolean⟩ is set globally to the result of evaluating the ⟨boolexpr⟩.

\bool_const:Nn
\bool_const:cn

New: 2017-11-28

\bool_set_false:N ⟨boolean⟩

Sets ⟨boolean⟩ logically false.
\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N ⟨boolean⟩

Sets ⟨boolean⟩ logically true.
\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN ⟨boolean1⟩ ⟨boolean2⟩

Sets ⟨boolean1⟩ to the current value of ⟨boolean2⟩.
\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn ⟨boolean⟩ {⟨boolexpr⟩}

Evaluates the ⟨boolean expression⟩ as described for \bool_if:nTF, and sets the
⟨boolean⟩ variable to the logical truth of this evaluation.

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_set_inverse:N ⟨boolean⟩

Toggles the ⟨boolean⟩ from true to false and conversely: sets it to the inverse of its
current value.

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

New: 2018-05-10

66

\bool_if_p:N ⟨boolean⟩
\bool_if:NTF ⟨boolean⟩ {⟨true code⟩} {⟨false code⟩}

Tests the current truth of ⟨boolean⟩, and continues expansion based on this result.

\bool_if_p:N ⋆
\bool_if_p:c ⋆
\bool_if:NTF ⋆
\bool_if:cTF ⋆

Updated: 2017-07-15

\bool_to_str:N ⟨boolean⟩
\bool_to_str:n ⟨boolean expression⟩

Expands to the string true or false depending on the logical truth of the ⟨boolean⟩ or
⟨boolean expression⟩.

\bool_to_str:N ⋆
\bool_to_str:c ⋆
\bool_to_str:n ⋆

New: 2021-11-01

Updated: 2023-11-14

\bool_show:N ⟨boolean⟩

Displays the logical truth of the ⟨boolean⟩ on the terminal.
\bool_show:N
\bool_show:c

New: 2012-02-09

Updated: 2021-04-29

\bool_show:n {⟨boolean expression⟩}

Displays the logical truth of the ⟨boolean expression⟩ on the terminal.
\bool_show:n

New: 2012-02-09

Updated: 2017-07-15

\bool_log:N ⟨boolean⟩

Writes the logical truth of the ⟨boolean⟩ in the log file.
\bool_log:N
\bool_log:c

New: 2014-08-22

Updated: 2021-04-29

\bool_log:n {⟨boolean expression⟩}

Writes the logical truth of the ⟨boolean expression⟩ in the log file.
\bool_log:n

New: 2014-08-22

Updated: 2017-07-15

\bool_if_exist_p:N ⟨boolean⟩
\bool_if_exist:NTF ⟨boolean⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨boolean⟩ is currently defined. This does not check that the ⟨boolean⟩
really is a boolean variable.

\bool_if_exist_p:N ⋆
\bool_if_exist_p:c ⋆
\bool_if_exist:NTF ⋆
\bool_if_exist:cTF ⋆

New: 2012-03-03

9.2.1 Constant and scratch booleans

Constants that represent true and false, respectively. Used to implement predicates.\c_true_bool
\c_false_bool

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\l_tmpa_bool
\l_tmpb_bool

67

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any LATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\g_tmpa_bool
\g_tmpb_bool

9.3 Boolean expressions
As we have a boolean datatype and predicate functions returning boolean ⟨true⟩
or ⟨false⟩ values, it seems only fitting that we also provide a parser for ⟨boolean
expressions⟩.

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean ⟨true⟩ or ⟨false⟩. It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than ||). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }

) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.
Contrarily to some other programming languages, the operators && and || evaluate

both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TEXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \l_tmpa_bool were true.

(\l_tmpa_bool || \token_if_eq_meaning_p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn
{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 = 3 } }
{ \int_compare_p:n { 4 <= 4 } }
{ \int_compare_p:n { 1 = \error } } % skipped

}
}
{ ! \int_compare_p:n { 2 = 4 } }

68

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {⟨boolean expression⟩}
\bool_if:nTF {⟨boolean expression⟩} {⟨true code⟩} {⟨false code⟩}

Tests the current truth of ⟨boolean expression⟩, and continues expansion based on this
result. The ⟨boolean expression⟩ should consist of a series of predicates or boolean
variables with the logical relationship between these defined using && (“And”), || (“Or”),
! (“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_if_p:n ⋆
\bool_if:nTF ⋆

Updated: 2017-07-15

\bool_lazy_all_p:n { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} }
\bool_lazy_all:nTF { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} } {⟨true code⟩}
{⟨false code⟩}

Implements the “And” operation on the ⟨boolean expressions⟩, hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the ⟨boolean expressions⟩ which are needed to determine the result of \bool_-
lazy_all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two
⟨boolean expressions⟩.

\bool_lazy_all_p:n ⋆
\bool_lazy_all:nTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_lazy_and_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_lazy_and:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the ⟨boolexpr2⟩ is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two ⟨boolean expressions⟩.

\bool_lazy_and_p:nn ⋆
\bool_lazy_and:nnTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_lazy_any_p:n { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} }
\bool_lazy_any:nTF { {⟨boolexpr1⟩} {⟨boolexpr2⟩} · · · {⟨boolexprN ⟩} } {⟨true code⟩}
{⟨false code⟩}

Implements the “Or” operation on the ⟨boolean expressions⟩, hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the ⟨boolean expressions⟩ which are needed to determine the result of \bool_-
lazy_any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two
⟨boolean expressions⟩.

\bool_lazy_any_p:n ⋆
\bool_lazy_any:nTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_lazy_or_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_lazy_or:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the ⟨boolexpr2⟩ is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two ⟨boolean expressions⟩.

\bool_lazy_or_p:nn ⋆
\bool_lazy_or:nnTF ⋆

New: 2015-11-15

Updated: 2017-07-15

\bool_not_p:n {⟨boolean expression⟩}

Function version of !(⟨boolean expression⟩) within a boolean expression.
\bool_not_p:n ⋆

Updated: 2017-07-15

69

\bool_xor_p:nn {⟨boolexpr1⟩} {⟨boolexpr2⟩}
\bool_xor:nnTF {⟨boolexpr1⟩} {⟨boolexpr2⟩} {⟨true code⟩} {⟨false code⟩}
Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

\bool_xor_p:nn ⋆
\bool_xor:nnTF ⋆

New: 2018-05-09

9.4 Logical loops
Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn ⟨boolean⟩ {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean⟩. If it is false then the ⟨code⟩ is inserted into the input stream
again and the process loops until the ⟨boolean⟩ is true.

\bool_do_until:Nn ✩

\bool_do_until:cn ✩

Updated: 2017-07-15

\bool_do_while:Nn ⟨boolean⟩ {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean⟩. If it is true then the ⟨code⟩ is inserted into the input stream
again and the process loops until the ⟨boolean⟩ is false.

\bool_do_while:Nn ✩

\bool_do_while:cn ✩

Updated: 2017-07-15

\bool_until_do:Nn ⟨boolean⟩ {⟨code⟩}

This function first checks the logical value of the ⟨boolean⟩. If it is false the ⟨code⟩ is
placed in the input stream and expanded. After the completion of the ⟨code⟩ the truth
of the ⟨boolean⟩ is re-evaluated. The process then loops until the ⟨boolean⟩ is true.

\bool_until_do:Nn ✩

\bool_until_do:cn ✩

Updated: 2017-07-15

\bool_while_do:Nn ⟨boolean⟩ {⟨code⟩}

This function first checks the logical value of the ⟨boolean⟩. If it is true the ⟨code⟩ is
placed in the input stream and expanded. After the completion of the ⟨code⟩ the truth
of the ⟨boolean⟩ is re-evaluated. The process then loops until the ⟨boolean⟩ is false.

\bool_while_do:Nn ✩

\bool_while_do:cn ✩

Updated: 2017-07-15

\bool_do_until:nn {⟨boolean expression⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical value
of the ⟨boolean expression⟩ as described for \bool_if:nTF. If it is false then the
⟨code⟩ is inserted into the input stream again and the process loops until the ⟨boolean
expression⟩ evaluates to true.

\bool_do_until:nn ✩

Updated: 2017-07-15

\bool_do_while:nn {⟨boolean expression⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then checks the logical
value of the ⟨boolean expression⟩ as described for \bool_if:nTF. If it is true then the
⟨code⟩ is inserted into the input stream again and the process loops until the ⟨boolean
expression⟩ evaluates to false.

\bool_do_while:nn ✩

Updated: 2017-07-15

\bool_until_do:nn {⟨boolean expression⟩} {⟨code⟩}

This function first checks the logical value of the ⟨boolean expression⟩ (as described
for \bool_if:nTF). If it is false the ⟨code⟩ is placed in the input stream and ex-
panded. After the completion of the ⟨code⟩ the truth of the ⟨boolean expression⟩ is
re-evaluated. The process then loops until the ⟨boolean expression⟩ is true.

\bool_until_do:nn ✩

Updated: 2017-07-15

70

\bool_while_do:nn {⟨boolean expression⟩} {⟨code⟩}

This function first checks the logical value of the ⟨boolean expression⟩ (as described for
\bool_if:nTF). If it is true the ⟨code⟩ is placed in the input stream and expanded. After
the completion of the ⟨code⟩ the truth of the ⟨boolean expression⟩ is re-evaluated. The
process then loops until the ⟨boolean expression⟩ is false.

\bool_while_do:nn ✩

Updated: 2017-07-15

\bool_case:nTF
{

{⟨boolexpr case1⟩} {⟨code case1⟩}
{⟨boolexpr case2⟩} {⟨code case2⟩}
...
{⟨boolexpr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

Evaluates in turn each of the ⟨boolean expression cases⟩ until the first one that
evaluates to true. The ⟨code⟩ associated to this first case is left in the input stream,
followed by the ⟨true code⟩, and other cases are discarded. If none of the cases match
then only the ⟨false code⟩ is inserted. The function \bool_case:n, which does nothing
if there is no match, is also available. For example

\bool_case:nF
{
{ \dim_compare_p:n { \l__mypkg_wd_dim <= 10pt } }

{ Fits }
{ \int_compare_p:n { \l__mypkg_total_int >= 10 } }

{ Many }
{ \l__mypkg_special_bool }

{ Special }
}
{ No idea! }

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way
similar to some other language’s “if . . . elseif . . . elseif . . . else . . . ”.

\bool_case:n ⋆
\bool_case:nTF ⋆

New: 2023-05-03

9.5 Producing multiple copies

\prg_replicate:nn {⟨integer expression⟩} {⟨tokens⟩}

Evaluates the ⟨integer expression⟩ (which should be zero or positive) and creates the
resulting number of copies of the ⟨tokens⟩. The function is both expandable and safe
for nesting. It yields its result after two expansion steps.

\prg_replicate:nn ⋆

Updated: 2011-07-04

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in horizontal mode.

\mode_if_horizontal_p: ⋆
\mode_if_horizontal:TF ⋆

71

\mode_if_inner_p:
\mode_if_inner:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in inner mode.

\mode_if_inner_p: ⋆
\mode_if_inner:TF ⋆

\mode_if_math_p:
\mode_if_math:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in maths mode.

\mode_if_math_p: ⋆
\mode_if_math:TF ⋆

Updated: 2011-09-05

\mode_if_vertical_p:
\mode_if_vertical:TF {⟨true code⟩} {⟨false code⟩}
Detects if TEX is currently in vertical mode.

\mode_if_vertical_p: ⋆
\mode_if_vertical:TF ⋆

9.7 Primitive conditionals

\if_predicate:w ⟨predicate⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the ⟨predicate⟩ but
to make the coding clearer this should be done through \if_bool:N.)

\if_predicate:w ⋆

\if_bool:N ⟨boolean⟩ ⟨true code⟩ \else: ⟨false code⟩ \fi:

This function takes a boolean variable and branches according to the result.
\if_bool:N ⋆

9.8 Nestable recursions and mappings
There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \⟨type⟩_map_break: {⟨code⟩}

Used to mark the end of a recursion or mapping: the functions \⟨type⟩_map_break:
and \⟨type⟩_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the ⟨code⟩ is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

\prg_break_point:Nn ⋆

New: 2018-03-26

72

\prg_map_break:Nn \⟨type⟩_map_break: {⟨user code⟩}
...
\prg_break_point:Nn \⟨type⟩_map_break: {⟨ending code⟩}

Breaks a recursion in mapping contexts, inserting in the input stream the ⟨user code⟩
after the ⟨ending code⟩ for the loop. The function breaks loops, inserting their ⟨ending
code⟩, until reaching a loop with the same ⟨type⟩ as its first argument. This \⟨type⟩_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
⟨type⟩.

For types with mappings defined in the kernel, \⟨type⟩_map_break: and \⟨type⟩_-
map_break:n are defined as \prg_map_break:Nn \⟨type⟩_map_break: {} and the same
with {} omitted.

\prg_map_break:Nn ⋆

New: 2018-03-26

9.8.1 Simple mappings
In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break_point: ⋆

New: 2018-03-27

\prg_break:n {⟨code⟩} ... \prg_break_point:

Breaks a recursion which has no ⟨ending code⟩ and which is not a user-breakable map-
ping (see for instance implementation of \int_step_function:nnnN), and inserts the
⟨code⟩ in the input stream.

\prg_break: ⋆
\prg_break:n ⋆

New: 2018-03-27

9.9 Internal programming functions

\group_align_safe_begin:
...
\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

\group_align_safe_begin: ⋆
\group_align_safe_end: ⋆

Updated: 2011-08-11

73

Chapter 10

The l3sys module
System/runtime functions

10.1 The name of the job

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This is the TEX primitive \jobname. For technical reasons, the string
here is not of the same internal form as other, but may be manipulated using normal string
functions.

\c_sys_jobname_str

New: 2015-09-19

Updated: 2019-10-27

10.2 Date and time

The date and time at which the current job was started: these are all reported as integers.

TEXhackers note: Whilst the underlying TEX primitives \time, \day, \month, and \year
can be altered by the user, this interface to the time and date is intended to be the “real” values.

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int

New: 2015-09-22

The timestamp for the current job: the format is as described for \file_timestamp:n.\c_sys_timestamp_str

New: 2023-08-27

74

10.3 Engine

\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF {⟨true code⟩} {⟨false code⟩}
Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)ptex tests are for ε-pTEX and ε-upTEX
as expl3 requires the ε-TEX extensions. Each conditional is true for exactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for ε-pTEX but false for ε-upTEX.

\sys_if_engine_luatex_p: ⋆
\sys_if_engine_luatex:TF ⋆
\sys_if_engine_pdftex_p: ⋆
\sys_if_engine_pdftex:TF ⋆
\sys_if_engine_ptex_p: ⋆
\sys_if_engine_ptex:TF ⋆
\sys_if_engine_uptex_p: ⋆
\sys_if_engine_uptex:TF ⋆
\sys_if_engine_xetex_p: ⋆
\sys_if_engine_xetex:TF ⋆

New: 2015-09-07

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

\c_sys_engine_str

New: 2015-09-19

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

\c_sys_engine_exec_str

New: 2020-08-20

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex
for LATEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e. the \fmtname).

\c_sys_engine_format_str

New: 2020-08-20

The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdfTEX and LuaTEX this is of the form

⟨major⟩.⟨minor⟩.⟨revision⟩

For X ETEX, the form is

⟨major⟩.⟨minor⟩

For pTEX and upTEX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pTEX version, the upTEX version and the
e-pTEX version.

p⟨major⟩.⟨minor⟩.⟨revision⟩-u⟨major⟩.⟨minor⟩-⟨epTeX⟩

where the u part is only present for upTEX.

\c_sys_engine_version_str

New: 2018-05-02

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2−16 seconds).

\sys_timer: ⋆

New: 2021-05-12

75

\sys_if_timer_exist_p:
\sys_if_timer_exist:TF {⟨true code⟩} {⟨false code⟩}
Tests whether current engine has timer support.

\sys_if_timer_exist_p: ⋆
\sys_if_timer_exist:TF ⋆

New: 2021-05-12

10.4 Output format

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF {⟨true code⟩} {⟨false code⟩}
Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

\sys_if_output_dvi_p: ⋆
\sys_if_output_dvi:TF ⋆
\sys_if_output_pdf_p: ⋆
\sys_if_output_pdf:TF ⋆

New: 2015-09-19

The current output mode given as a lower case string: one of dvi or pdf.\c_sys_output_str

New: 2015-09-19

10.5 Platform

\sys_if_platform_unix_p:
\sys_if_platform_unix:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_platform_unix_p: ⋆
\sys_if_platform_unix:TF ⋆
\sys_if_platform_windows_p: ⋆
\sys_if_platform_windows:TF ⋆

New: 2018-07-27

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, i.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.\c_sys_platform_str

New: 2018-07-27

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

\sys_rand_seed: ⋆

New: 2017-05-27

76

\sys_gset_rand_seed:n {⟨int expr⟩}

Globally sets the seed for the engine’s pseudo-random number generator to the ⟨integer
expression⟩. This random seed affects all \..._rand functions (such as \int_rand:nn
or \clist_rand_item:n) as well as other packages relying on the engine’s random num-
ber generator. In engines without random number support this produces an error.

TEXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute
value is used and any number beyond 228 is divided by an appropriate power of 2. We recommend
using an integer in [0, 228 − 1].

\sys_gset_rand_seed:n

New: 2017-05-27

10.7 Access to the shell

\sys_get_shell:nnN {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩
\sys_get_shell:nnNTF {⟨shell command⟩} {⟨setup⟩} ⟨tl var⟩ {⟨true code⟩} {⟨false
code⟩}

Defines ⟨tl var⟩ to the text returned by the ⟨shell command⟩. The ⟨shell command⟩ is
converted to a string using \tl_to_str:n. Category codes may need to be set appropri-
ately via the ⟨setup⟩ argument, which is run just before running the ⟨shell command⟩
(in a group). If shell escape is disabled, the ⟨tl var⟩ will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the ⟨shell
command⟩. The \sys_get_shell:nnNTF conditional inserts the ⟨true code⟩ if the shell
is available and no quote is detected, and the ⟨false code⟩ otherwise.

Note: It is not possible to tell from TEX if a command is allowed in restricted shell
escape. If restricted escape is enabled, the true branch is taken: if the command is
forbidden at this stage, a low-level TEX error will arise.

\sys_get_shell:nnN
\sys_get_shell:nnNTF

New: 2019-09-20

This variable exposes the internal triple of the shell escape status. The possible values
are

0 Shell escape is disabled

1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\c_sys_shell_escape_int

New: 2017-05-27

\sys_if_shell_p:
\sys_if_shell:TF {⟨true code⟩} {⟨false code⟩}
Performs a check for whether shell escape is enabled. This returns true if either of
restricted or unrestricted shell escape is enabled.

\sys_if_shell_p: ⋆
\sys_if_shell:TF ⋆

New: 2017-05-27

\sys_if_shell_unrestricted_p:
\sys_if_shell_unrestricted:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_shell_unrestricted_p: ⋆
\sys_if_shell_unrestricted:TF ⋆

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

77

\sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF {⟨true code⟩} {⟨false code⟩}

\sys_if_shell_restricted_p: ⋆
\sys_if_shell_restricted:TF ⋆

New: 2017-05-27

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:TF.

\sys_shell_now:n {⟨tokens⟩}

Execute ⟨tokens⟩ through shell escape immediately.
\sys_shell_now:n
\sys_shell_now:e

New: 2017-05-27

\sys_shell_shipout:n {⟨tokens⟩}

Execute ⟨tokens⟩ through shell escape at shipout.
\sys_shell_shipout:n
\sys_shell_shipout:e

New: 2017-05-27

10.8 System queries
Some queries can be made about the file system, etc., without needing to use unrestricted
shell escape. This is carried out using the script l3sys-query, which is documented
separately. The wrappers here use this script, if available, to obtain system information
that is not directly available within the TEX run. Note that if restricted shell escape is
disabled, no results can be obtained.

\sys_get_query:nN {⟨cmd⟩} {⟨tl var⟩}
\sys_get_query:nnN {⟨cmd⟩} {⟨spec⟩} {⟨tl var⟩}
\sys_get_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} {⟨tl var⟩}

Sets the ⟨tl var⟩ to the information returned by the l3sys-query ⟨cmd⟩, potentially
supplying the ⟨options⟩ and ⟨spec⟩ to the query call. The valid ⟨cmd⟩ names are at
present

• pwd Returns the present working directory

• ls Returns a directory listing, using the ⟨spec⟩ to select files and applying the
⟨options⟩ if given

The ⟨spec⟩ is likely to contain the wildcards * or ?, and will automatically be passed to
the script without shell expansion. In a glob is needed within the ⟨options⟩, this will
need to be protected from shell expansion using ’ tokens.

The ⟨spec⟩ and ⟨options⟩, if given, are expanded fully before passing to the under-
lying script.

Spaces in the output are stored as active tokens, allowing them to be replaced by
for example a visible space easily. Other non-letter characters in the ASCII range are
set to category code 12. The category codes for characters out of the ASCII range are
left unchanged: typically this will mean that with an 8-bit engine, accented values can
be typeset directly whilst in Unicode engines, standard category code setup will apply.

If more than one line of text is returned by the ⟨cmd⟩, these will be separated by
character 13 (^^M) tokens of category code 12. In most cases, \sys_split_query:nnnN
should be preferred when multi-line output is expected.

\sys_get_query:nN
\sys_get_query:nnN
\sys_get_query:nnnN

New: 2024-03-08

Updated: 2024-04-08

78

\sys_split_query:nN {⟨cmd⟩} {⟨seq⟩}
\sys_split_query:nnN {⟨cmd⟩} {⟨spec⟩} {⟨seq⟩}
\sys_split_query:nnnN {⟨cmd⟩} {⟨options⟩} {⟨spec⟩} {⟨seq⟩}

Works as described for \sys_split_query:nnnN, but sets the ⟨seq⟩ to contain one entry
for each line returned by l3sys-query. This function should therefore be preferred where
multi-line return is expected, e.g. for the ls command.

\sys_split_query:nN
\sys_split_query:nnN
\sys_split_query:nnnN

New: 2024-03-08

10.9 Loading configuration data

\sys_load_backend:n {⟨backend⟩}

Loads the additional configuration file needed for backend support. If the ⟨backend⟩ is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

\sys_load_backend:n

New: 2019-09-12

\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.
\sys_ensure_backend:

New: 2022-07-29

Set to the name of the backend in use by \sys_load_backend:n when issued. Possible
values are

• pdftex

• luatex

• xetex

• dvips

• dvipdfmx

• dvisvgm

\c_sys_backend_str

\sys_load_debug:

Load the additional configuration file for debugging support.
\sys_load_debug:

New: 2019-09-12

10.9.1 Final settings

\sys_finalise:

Finalises all system-dependent functionality: required before loading a backend.
\sys_finalise:

New: 2019-10-06

79

Chapter 11

The l3msg module
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The l3msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by l3msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

11.1 Creating new messages
All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \␣ forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the LATEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.
Some authors may find the need to include spaces as ~ characters tedious. This can

be avoided by locally resetting the category code of ␣.

80

\char_set_catcode_space:n { ‘\ }
\msg_new:nnn { foo } { bar }

{Some message text using ’#1’ and usual message shorthands \{ \ \ \}.}
\char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters
is the method favored by the team.

\msg_new:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩}

Creates a ⟨message⟩ for a given ⟨module⟩. The message is defined to first give ⟨text⟩ and
then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available then a standard
text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters (#1 to #4) can
be used: these will be supplied at the time the message is used. An error is raised if the
⟨message⟩ already exists.

\msg_new:nnnn
\msg_new:nnee
\msg_new:nnn
\msg_new:nne

Updated: 2011-08-16

\msg_set:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩}

Sets up the text for a ⟨message⟩ for a given ⟨module⟩. The message is defined to first
give ⟨text⟩ and then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available
then a standard text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters
(#1 to #4) can be used: these will be supplied at the time the message is used.

\msg_set:nnnn
\msg_set:nnn

\msg_if_exist_p:nn {⟨module⟩} {⟨message⟩}
\msg_if_exist:nnTF {⟨module⟩} {⟨message⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨message⟩ for the ⟨module⟩ is currently defined.

\msg_if_exist_p:nn ⋆
\msg_if_exist:nnTF ⋆

New: 2012-03-03

11.2 Customizable information for message modules

\msg_module_name:n {⟨module⟩}

Expands to the public name of the ⟨module⟩ as defined by \g_msg_module_name_prop
(or otherwise leaves the ⟨module⟩ unchanged).

\msg_module_name:n ⋆

New: 2018-10-10

\msg_module_type:n {⟨module⟩}

Expands to the description which applies to the ⟨module⟩, for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\msg_module_type:n ⋆

New: 2018-10-10

Provides a mapping between the module name used for messages, and that for documen-
tation.

\g_msg_module_name_prop

New: 2018-10-10

Provides a mapping between the module name used for messages, and that type of
module. For example, for LATEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

\g_msg_module_type_prop

New: 2018-10-10

81

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_context: ✩

\msg_line_number:

Prints the current line number when a message is given.
\msg_line_number: ⋆

\msg_fatal_text:n {⟨module⟩}

Produces the standard text

Fatal Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_fatal_text:n ⋆

\msg_critical_text:n {⟨module⟩}

Produces the standard text

Critical Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_critical_text:n ⋆

\msg_error_text:n {⟨module⟩}

Produces the standard text

Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. Any redefinition must produce output
containing the ⟨module⟩ name, and will affect all messages using the expl3 mechanism.

\msg_error_text:n ⋆

\msg_warning_text:n {⟨module⟩}

Produces the standard text

Package ⟨module⟩ Warning

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the ⟨module⟩ name, and will affect all messages using
the expl3 mechanism.

\msg_warning_text:n ⋆

82

\msg_info_text:n {⟨module⟩}

Produces the standard text:

Package ⟨module⟩ Info

This function can be redefined to alter the language in which the message is given,
using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be
adjusted: Package is the standard outcome: see \msg_module_type:n. Any redefinition
must produce output containing the ⟨module⟩ name, and will affect all messages using
the expl3 mechanism.

\msg_info_text:n ⋆

\msg_see_documentation_text:n {⟨module⟩}\msg_see_documentation_text:n ⋆

Updated: 2018-09-30

Produces the standard text

See the ⟨module⟩ documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the ⟨module⟩ to be included. The name of the ⟨module⟩ is produced
using \msg_module_name:n.

11.4 Issuing messages
Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the e-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

• fatal, ending the TEX run;

• critical, ending the file being input;

• error, interrupting the TEX run without ending it;

• warning, written to terminal and log file, for important messages that may require
corrections by the user;

• note (less common than info) for important information messages written to the
terminal and log file;

• info for normal information messages written to the log file only;

• term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

• none for suppressed messages.

83

\msg_fatal:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩}
{⟨arg three⟩} {⟨arg four⟩}

\msg_fatal:nnnnnn
\msg_fatal:nneeee
\msg_fatal:nnnnn
\msg_fatal:(nneee|nnnee)
\msg_fatal:nnnn
\msg_fatal:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_fatal:nnn
\msg_fatal:(nnV|nne)
\msg_fatal:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

\msg_critical:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg
two⟩} {⟨arg three⟩} {⟨arg four⟩}

\msg_critical:nnnnnn
\msg_critical:nneeee
\msg_critical:nnnnn
\msg_critical:(nneee|nnnee)
\msg_critical:nnnn
\msg_critical:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_critical:nnn
\msg_critical:(nnV|nne)
\msg_critical:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩}
{⟨arg three⟩} {⟨arg four⟩}

\msg_error:nnnnnn
\msg_error:nneeee
\msg_error:nnnnn
\msg_error:(nneee|nnnee)
\msg_error:nnnn
\msg_error:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_error:nnn
\msg_error:(nnV|nne)
\msg_error:nn

Updated: 2012-08-11

Issues ⟨module⟩ error ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

84

\msg_warning:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg
two⟩} {⟨arg three⟩} {⟨arg four⟩}

\msg_warning:nnnnnn
\msg_warning:nneeee
\msg_warning:nnnnn
\msg_warning:(nneee|nnnee)
\msg_warning:nnnn
\msg_warning:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_warning:nnn
\msg_warning:(nnV|nne)
\msg_warning:nn

Updated: 2012-08-11

Issues ⟨module⟩ warning ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The warning text is added to the log file and the terminal, but
the TEX run is not interrupted.

\msg_note:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}
\msg_info:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_note:nnnnnn
\msg_note:nneeee
\msg_note:nnnnn
\msg_note:(nneee|nnnee)
\msg_note:nnnn
\msg_note:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_note:nnn
\msg_note:(nnV|nne)
\msg_note:nn
\msg_info:nnnnnn
\msg_info:nneeee
\msg_info:nnnnn
\msg_info:(nneee|nnnee)
\msg_info:nnnn
\msg_info:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_info:nnn
\msg_info:(nnV|nne)
\msg_info:nn

New: 2021-05-18

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. For the more common \msg_info:nnnnnn, the information text is
added to the log file only, while \msg_note:nnnnnn adds the info text to both the log file
and the terminal. The TEX run is not interrupted.

85

\msg_term:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}
\msg_log:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_term:nnnnnn
\msg_term:nneeee
\msg_term:nnnnn
\msg_term:(nneee|nnnee)
\msg_term:nnnn
\msg_term:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_term:nnn
\msg_term:(nnV|nne)
\msg_term:nn
\msg_log:nnnnnn
\msg_log:nneeee
\msg_log:nnnnn
\msg_log:(nneee|nnnee)
\msg_log:nnnn
\msg_log:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_log:nnn
\msg_log:(nnV|nne)
\msg_log:nn

Updated: 2012-08-11

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The output is briefer than \msg_info:nnnnnn, omitting for in-
stance the module name. It is added to the log file by \msg_log:nnnnnn while \msg_-
term:nnnnnn also prints it on the terminal.

\msg_none:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_none:nnnnnn
\msg_none:nneeee
\msg_none:nnnnn
\msg_none:(nneee|nnnee)
\msg_none:nnnn
\msg_none:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_none:nnn
\msg_none:(nnV|nne)
\msg_none:nn

Updated: 2012-08-11

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

86

11.4.1 Messages for showing material

\msg_show:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg two⟩} {⟨arg
three⟩} {⟨arg four⟩}

\msg_show:nnnnnn
\msg_show:nneeee
\msg_show:nnnnn
\msg_show:(nneee|nnnee)
\msg_show:nnnn
\msg_show:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_show:nnn
\msg_show:(nnV|nne)
\msg_show:nn

New: 2017-12-04

Issues ⟨module⟩ information ⟨message⟩, passing ⟨arg one⟩ to ⟨arg four⟩ to the text-
creating functions. The information text is shown on the terminal and the TEX run is
interrupted in a manner similar to \tl_show:n. This is used in conjunction with \msg_-
show_item:n and similar functions to print complex variable contents completely. If the
formatted text does not contain >~ at the start of a line, an additional line >~. will be
put at the end. In addition, a final period is added if not present.

\seq_map_function:NN ⟨seq⟩ \msg_show_item:n
\prop_map_function:NN ⟨prop⟩ \msg_show_item:nn

\msg_show_item:n ⋆
\msg_show_item_unbraced:n ⋆
\msg_show_item:nn ⋆
\msg_show_item_unbraced:nn ⋆

New: 2017-12-04

Used in the text of messages for \msg_show:nnnnnn to show or log a list of items or
key–value pairs. The output of \msg_show_item:n produces a newline, the prefix >,
two spaces, then the braced string representation of its argument. The two-argument
versions separates the key and value using ␣␣=>␣␣, and the unbraced versions don’t
print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_-
function:NN, \prop_map_function:NN, etc. For example, with a sequence \l_tmpa_seq
containing a, {b} and \c,

\seq_map_function:NN \l_tmpa_seq \msg_show_item:n

would expand to three lines:

>␣␣{a}
>␣␣{{b}}
>␣␣{\c␣}

11.4.2 Expandable error messages
In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error:nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools

87

to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

\msg_expandable_error:nnnnnn {⟨module⟩} {⟨message⟩} {⟨arg one⟩} {⟨arg
two⟩} {⟨arg three⟩} {⟨arg four⟩}

\msg_expandable_error:nnnnnn ⋆
\msg_expandable_error:nnffff ⋆
\msg_expandable_error:nnnnn ⋆
\msg_expandable_error:nnfff ⋆
\msg_expandable_error:nnnn ⋆
\msg_expandable_error:nnff ⋆
\msg_expandable_error:nnn ⋆
\msg_expandable_error:nnf ⋆
\msg_expandable_error:nn ⋆

New: 2015-08-06

Updated: 2019-02-28

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\??? then prints “! ⟨module⟩: ”⟨error message⟩, which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages
Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }

to define a message, with

\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with

\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even

\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error

88

immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A → B, B → C and C → A in this order, then the A → B redirection is
cancelled.

\msg_redirect_class:nn {⟨class one⟩} {⟨class two⟩}

Changes the behaviour of messages of ⟨class one⟩ so that they are processed using the
code for those of ⟨class two⟩. Each ⟨class⟩ can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn {⟨module⟩} {⟨class one⟩} {⟨class two⟩}

Redirects message of ⟨class one⟩ for ⟨module⟩ to act as though they were from ⟨class
two⟩. Messages of ⟨class one⟩ from sources other than ⟨module⟩ are not affected by
this redirection. This function can be used to make some messages “silent” by default.
For example, all of the warning messages of ⟨module⟩ could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn {⟨module⟩} {⟨message⟩} {⟨class⟩}

Redirects a specific ⟨message⟩ from a specific ⟨module⟩ to act as a member of ⟨class⟩
of messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

\msg_redirect_name:nnn

Updated: 2012-04-27

89

Chapter 12

The l3file module
File and I/O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_..., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a ⟨file name⟩ argument, this argument may contain
both literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \l_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input–output stream management
As TEX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in LATEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

90

\ior_new:N ⟨stream⟩
\iow_new:N ⟨stream⟩

Globally reserves the name of the ⟨stream⟩, either for reading or for writing as appropri-
ate. The ⟨stream⟩ is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a ⟨stream⟩ which has not been opened is an error, and the ⟨stream⟩
will behave as the corresponding \c_term_....

\ior_new:N
\ior_new:c
\iow_new:N
\iow_new:c

New: 2011-09-26

Updated: 2011-12-27

\ior_open:Nn ⟨stream⟩ {⟨file name⟩}

Opens ⟨file name⟩ for reading using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until an \ior_close:N instruction is given or the TEX run ends. If the file is not found,
an error is raised.

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF ⟨stream⟩ {⟨file name⟩} {⟨true code⟩} {⟨false code⟩}

Opens ⟨file name⟩ for reading using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until a \ior_close:N instruction is given or the TEX run ends. The ⟨true code⟩ is then
inserted into the input stream. If the file is not found, no error is raised and the ⟨false
code⟩ is inserted into the input stream.

\ior_open:NnTF
\ior_open:cnTF

New: 2013-01-12

\iow_open:Nn ⟨stream⟩ {⟨file name⟩}

Opens ⟨file name⟩ for writing using ⟨stream⟩ as the control sequence for file access.
If the ⟨stream⟩ was already open it is closed before the new operation begins. The
⟨stream⟩ is available for access immediately and will remain allocated to ⟨file name⟩
until a \iow_close:N instruction is given or the TEX run ends. Opening a file for writing
clears any existing content in the file (i.e. writing is not additive).

\iow_open:Nn
\iow_open:(NV|cn|cV)

Updated: 2012-02-09

\ior_shell_open:Nn ⟨stream⟩ {⟨shell command⟩}

Opens the pseudo-file created by the output of the ⟨shell command⟩ for reading using
⟨stream⟩ as the control sequence for access. If the ⟨stream⟩ was already open it is closed
before the new operation begins. The ⟨stream⟩ is available for access immediately and
will remain allocated to ⟨shell command⟩ until a \ior_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the ⟨shell command⟩, see \sys_get_shell:nnNTF.

\ior_shell_open:Nn

New: 2019-05-08

\iow_shell_open:Nn ⟨stream⟩ {⟨shell command⟩}

Opens the pseudo-file created by the output of the ⟨shell command⟩ for writing using
⟨stream⟩ as the control sequence for access. If the ⟨stream⟩ was already open it is closed
before the new operation begins. The ⟨stream⟩ is available for access immediately and
will remain allocated to ⟨shell command⟩ until an \iow_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the ⟨shell command⟩, see \sys_get_shell:nnNTF.

\iow_shell_open:Nn

New: 2023-05-25

91

\ior_close:N ⟨stream⟩
\iow_close:N ⟨stream⟩

Closes the ⟨stream⟩. Streams should always be closed when they are finished with as
this ensures that they remain available to other programmers.

\ior_close:N
\ior_close:c
\iow_close:N
\iow_close:c

Updated: 2012-07-31

\ior_show:N ⟨stream⟩
\ior_log:N ⟨stream⟩
\iow_show:N ⟨stream⟩
\iow_log:N ⟨stream⟩

Display (to the terminal or log file) the file name associated to the (read or write)
⟨stream⟩.

\ior_show:N
\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N
\iow_log:c

New: 2021-05-11

\ior_show_list:
\ior_log_list:
\iow_show_list:
\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

\ior_show_list:
\ior_log_list:
\iow_show_list:
\iow_log_list:

New: 2017-06-27

12.1.1 Reading from files
Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

92

\ior_get:NN ⟨stream⟩ ⟨token list variable⟩
\ior_get:NNTF ⟨stream⟩ ⟨token list variable⟩ ⟨true code⟩ ⟨false code⟩

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input ⟨stream⟩ and stores the result locally in the ⟨token list⟩
variable. The material read from the ⟨stream⟩ is tokenized by TEX according to the
category codes and \endlinechar in force when the function is used. Assuming normal
settings, any lines which do not end in a comment character % have the line ending
converted to a space, so for example input

a b c

results in a token list a␣b␣c␣. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \l_my_stream \l_tmpa_tl
\tl_set:Nn \l_tmpb_tl { \par }
\tl_if_eq:NNF \l_tmpa_tl \l_tmpb_tl
...

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the ⟨stream⟩ is not open
the ⟨tl var⟩ is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_get:NN
\ior_get:NNTF

New: 2012-06-24

Updated: 2019-03-23

\ior_str_get:NN ⟨stream⟩ ⟨token list variable⟩
\ior_str_get:NNTF ⟨stream⟩ ⟨token list variable⟩ ⟨true code⟩ ⟨false code⟩

Function that reads one line from the file input ⟨stream⟩ and stores the result locally in
the ⟨token list⟩ variable. The material is read from the ⟨stream⟩ as a series of tokens
with category code 12 (other), with the exception of space characters which are given
category code 10 (space). Multiple whitespace characters are retained by this process.
It always only reads one line and any blank lines in the input result in the ⟨token
list variable⟩ being empty. Unlike \ior_get:NN, line ends do not receive any special
treatment. Thus input

a b c

results in a token list a b c with the letters a, b, and c having category code 12. In
the non-branching version, where the⟨stream⟩ is not open the ⟨tl var⟩ is set to \q_-
no_value.

TEXhackers note: This protected macro is a wrapper around the ε-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

\ior_str_get:NN
\ior_str_get:NNTF

New: 2016-12-04

Updated: 2019-03-23

All mappings are done at the current group level, i.e. any local assignments made

93

by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\ior_map_inline:Nn ⟨stream⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to each set of ⟨lines⟩ obtained by calling \ior_get:NN
until reaching the end of the file. TEX ignores any trailing new-line marker from the file
it reads. The ⟨inline function⟩ should consist of code which receives the ⟨line⟩ as
#1.

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn ⟨stream⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨line⟩ in the ⟨stream⟩. The material is read
from the ⟨stream⟩ as a series of tokens with category code 12 (other), with the exception
of space characters which are given category code 10 (space). The ⟨inline function⟩
should consist of code which receives the ⟨line⟩ as #1. Note that TEX removes trailing
space and tab characters (character codes 32 and 9) from every line upon input. TEX
also ignores any trailing new-line marker from the file it reads.

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_variable:NNn ⟨stream⟩ ⟨tl var⟩ {⟨code⟩}

For each set of ⟨lines⟩ obtained by calling \ior_get:NN until reaching the end of the
file, stores the ⟨lines⟩ in the ⟨tl var⟩ then applies the ⟨code⟩. The ⟨code⟩ will usually
make use of the ⟨variable⟩, but this is not enforced. The assignments to the ⟨variable⟩
are local. Its value after the loop is the last set of ⟨lines⟩, or its original value if the
⟨stream⟩ is empty. TEX ignores any trailing new-line marker from the file it reads. This
function is typically faster than \ior_map_inline:Nn.

\ior_map_variable:NNn

New: 2019-01-13

\ior_str_map_variable:NNn ⟨stream⟩ ⟨variable⟩ {⟨code⟩}

For each ⟨line⟩ in the ⟨stream⟩, stores the ⟨line⟩ in the ⟨variable⟩ then applies the
⟨code⟩. The material is read from the ⟨stream⟩ as a series of tokens with category
code 12 (other), with the exception of space characters which are given category code 10
(space). The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨line⟩,
or its original value if the ⟨stream⟩ is empty. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads. This function is typically faster than
\ior_str_map_inline:Nn.

\ior_str_map_variable:NNn

New: 2019-01-13

94

\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the ⟨stream⟩ have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\ior_map_break:

New: 2012-06-29

\ior_map_break:n {⟨code⟩}

Used to terminate a \ior_map_... function before all lines in the ⟨stream⟩ have been
processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \ior_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N ⟨stream⟩
\ior_if_eof:NTF ⟨stream⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the end of a file ⟨stream⟩ has been reached during a reading operation. The test
also returns a true value if the ⟨stream⟩ is not open.

\ior_if_eof_p:N ⋆
\ior_if_eof:NTF ⋆

Updated: 2012-02-10

95

12.1.2 Reading from the terminal

\ior_get_term:nN {⟨prompt⟩} ⟨token list variable⟩

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the ⟨token list⟩ variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the ⟨prompt⟩ is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the ⟨prompt⟩ is given, it will appear in the terminal followed by an =, e.g.

prompt=

\ior_get_term:nN
\ior_str_get_term:nN

New: 2019-03-23

12.1.3 Writing to files

\iow_now:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ immediately (i.e. the write op-
eration is called on expansion of \iow_now:Nn).

\iow_now:Nn
\iow_now:(NV|Ne|cn|cV|ce)

Updated: 2012-06-05

\iow_log:n {⟨tokens⟩}

This function writes the given ⟨tokens⟩ to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_log:n
\iow_log:e

\iow_term:n {⟨tokens⟩}

This function writes the given ⟨tokens⟩ to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_term:n
\iow_term:e

\iow_shipout:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ when the current page is finalised
(i.e. at shipout). The e-type variants expand the ⟨tokens⟩ at the point where the
function is used but not when the resulting tokens are written to the ⟨stream⟩ (cf. \iow_-
shipout_e:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout:Nn
\iow_shipout:(Ne|cn|ce)

96

\iow_shipout_e:Nn ⟨stream⟩ {⟨tokens⟩}

This function writes ⟨tokens⟩ to the specified ⟨stream⟩ when the current page is finalised
(i.e. at shipout). The ⟨tokens⟩ are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than LATEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_shipout_e:Nn
\iow_shipout_e:(Ne|cn|ce)

Updated: 2023-09-17

\iow_char:N \⟨char⟩

Inserts ⟨char⟩ into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Ne \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_char:N ⋆

\iow_newline:

Function to add a new line within the ⟨tokens⟩ written to a file. The function has
no effect if writing is taking place without expansion (e.g. in the second argument of
\iow_now:Nn).

TEXhackers note: When using expl3 with a format other than LATEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_e:Nn and direct
uses of primitive operations.

\iow_newline: ⋆

97

12.1.4 Wrapping lines in output

\iow_wrap:nnnN {⟨text⟩} {⟨run-on text⟩} {⟨set up⟩} ⟨function⟩

This function wraps the ⟨text⟩ to a fixed number of characters per line. At the start
of each line which is wrapped, the ⟨run-on text⟩ is inserted. The line character count
targeted is the value of \l_iow_line_count_int minus the number of characters in the
⟨run-on text⟩ for all lines except the first, for which the target number of characters is
simply \l_iow_line_count_int since there is no run-on text. The ⟨text⟩ and ⟨run-on
text⟩ are exhaustively expanded by the function, with the following substitutions:

• \\ or \iow_newline: may be used to force a new line,

• \␣ may be used to represent a forced space (for example after a control sequence),

• \#, \%, \{, \}, \~ may be used to represent the corresponding character,

• \iow_wrap_allow_break: may be used to allow a line-break without inserting a
space,

• \iow_indent:n may be used to indent a part of the ⟨text⟩ (not the ⟨run-on
text⟩).

Additional functions may be added to the wrapping by using the ⟨set up⟩, which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the ⟨text⟩ which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
⟨function⟩, which is typically a wrapper around a write operation. The output of
\iow_wrap:nnnN (i.e. the argument passed to the ⟨function⟩) consists of characters of
category “other” (category code 12), with the exception of spaces which have category
“space” (category code 10). This means that the output does not expand further when
written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an e-type expansion on the
⟨text⟩ to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the ⟨text⟩.

\iow_wrap:nnnN
\iow_wrap:nenN

New: 2012-06-28

Updated: 2017-12-04

\iow_wrap_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_wrap_allow_break:

New: 2023-04-25

\iow_indent:n {⟨text⟩}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents ⟨text⟩ by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the ⟨text⟩. In case the indented ⟨text⟩ should appear on separate
lines from the surrounding text, use \\ to force line breaks.

\iow_indent:n

New: 2011-09-21

98

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTEX systems.

\l_iow_line_count_int

New: 2012-06-24

12.1.5 Constant input–output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

\c_log_iow
\c_term_iow

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

12.1.6 Primitive conditionals

\if_eof:w ⟨stream⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests if the ⟨stream⟩ returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

\if_eof:w ⋆

12.2 File operations
12.2.1 Basic file operations

Contain the directory, name and extension of the current file. The directory is empty
if the file was loaded without an explicit path (i.e. if it is in the TEX search path), and
does not end in / other than the case that it is exactly equal to the root directory. The
⟨name⟩ and ⟨ext⟩ parts together make up the file name, thus the ⟨name⟩ part may be
thought of as the “job name” for the current file.

Note that TEX does not provide information on the ⟨dir⟩ and ⟨ext⟩ part for the
main (top level) file and that this file always has empty ⟨dir⟩ and ⟨ext⟩ components.
Also, the ⟨name⟩ here will be equal to \c_sys_jobname_str, which may be different from
the real file name (if set using --jobname, for example).

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

99

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and need not include the trailing slash. Spaces need not
be quoted.

TEXhackers note: When working as a package in LATEX 2ε, expl3 will automatically
append the current \input@path to the set of values from \l_file_search_path_seq.

\l_file_search_path_seq

New: 2017-06-18

Updated: 2023-06-15

\file_if_exist_p:n {⟨file name⟩}
\file_if_exist:nTF {⟨file name⟩} {⟨true code⟩} {⟨false code⟩}

Tests if ⟨file name⟩ is found in the path as detailed for \file_if_exist:nTF.

\file_if_exist_p:n ⋆
\file_if_exist_p:V ⋆
\file_if_exist:nTF ⋆
\file_if_exist:VTF ⋆

Updated: 2023-09-18

12.2.2 Information about files and file contents
Functions in this section return information about files as expl3 str data, except that the
non-expandable functions set their return token list to \q_no_value if the file requested
is not found. As such, comparison of file names, hashes, sizes, etc., should use \str_-
if_eq:nnTF rather than \tl_if_eq:nnTF and so on.

\file_hex_dump:n {⟨file name⟩}
\file_hex_dump:nnn {⟨file name⟩} {⟨start index⟩} {⟨end index⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the hexadecimal
dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {⟨start index⟩} and {⟨end index⟩} values work as
described for \str_range:nnn.

\file_hex_dump:n ✩

\file_hex_dump:V ✩

\file_hex_dump:nnn ✩

\file_hex_dump:Vnn ✩

New: 2019-11-19

\file_get_hex_dump:nN {⟨file name⟩} ⟨tl var⟩
\file_get_hex_dump:nnnN {⟨file name⟩} {⟨start index⟩} {⟨end index⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the ⟨file⟩. If the file is not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_hex_dump:nN
\file_get_hex_dump:VN
\file_get_hex_dump:nNTF
\file_get_hex_dump:VNTF
\file_get_hex_dump:nnnN
\file_get_hex_dump:VnnN
\file_get_hex_dump:nnnNTF
\file_get_hex_dump:VnnNTF

New: 2019-11-19

100

\file_mdfive_hash:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the MD5 sum gen-
erated from the contents of the file in the input stream. The file is read as bytes, which
means that in contrast to most TEX behaviour there will be a difference in result de-
pending on the line endings used in text files. The same file will produce the same result
between different engines: the algorithm used is the same in all cases. When the file is
not found, the result of expansion is empty.

\file_mdfive_hash:n ✩

\file_mdfive_hash:V ✩

New: 2019-09-03

\file_get_mdfive_hash:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_mdfive_hash:n to the ⟨file⟩. If the
file is not found, the ⟨tl var⟩ will be set to \q_no_value.

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:VN
\file_get_mdfive_hash:nNTF
\file_get_mdfive_hash:VNTF

New: 2017-07-11

Updated: 2019-02-16

\file_size:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
controlled by \l_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_size:n ✩

\file_size:V ✩

New: 2019-09-03

\file_get_size:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_size:n to the ⟨file⟩. If the file is not
found, the ⟨tl var⟩ will be set to \q_no_value. This is not available in older versions
of X ETEX.

\file_get_size:nN
\file_get_size:VN
\file_get_size:nNTF
\file_get_size:VNTF

New: 2017-07-09

Updated: 2019-02-16

\file_timestamp:n {⟨file name⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional
paths controlled by \l_file_search_path_seq. It then expands to leave the mod-
ification timestamp of the file in the input stream. The timestamp is of the form
D:⟨year⟩⟨month⟩⟨day⟩⟨hour⟩⟨minute⟩⟨second⟩⟨offset⟩, where the latter may be Z
(UTC) or ⟨plus-minus⟩⟨hours⟩’⟨minutes⟩’. When the file is not found, the result
of expansion is empty. This is not available in older versions of X ETEX.

\file_timestamp:n ✩

\file_timestamp:V ✩

New: 2019-09-03

\file_get_timestamp:nN {⟨file name⟩} ⟨tl var⟩

Sets the ⟨tl var⟩ to the result of applying \file_timestamp:n to the ⟨file⟩. If the
file is not found, the ⟨tl var⟩ will be set to \q_no_value. This is not available in older
versions of X ETEX.

\file_get_timestamp:nN
\file_get_timestamp:VN
\file_get_timestamp:nNTF
\file_get_timestamp:VNTF

New: 2017-07-09

Updated: 2019-02-16

101

\file_compare_timestamp_p:nNn {⟨file-1⟩} ⟨comparator⟩
{⟨file-2⟩}
\file_compare_timestamp:nNnTF {⟨file-1⟩} ⟨comparator⟩
{⟨file-2⟩} {⟨true code⟩} {⟨false code⟩}

\file_compare_timestamp_p:nNn ⋆
\file_compare_timestamp_p:(nNV|VNn|VNV) ⋆
\file_compare_timestamp:nNnTF ⋆
\file_compare_timestamp:(nNV|VNn|VNV)TF ⋆

New: 2019-05-13

Updated: 2019-09-20

Compares the file stamps on the two ⟨files⟩ as indicated by the ⟨comparator⟩, and
inserts either the ⟨true code⟩ or ⟨false case⟩ as required. A file which is not found is
treated as older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different. This is not available in older versions of X ETEX.

\file_get_full_name:nN {⟨file name⟩} ⟨tl⟩
\file_get_full_name:nNTF {⟨file name⟩} ⟨tl⟩ {⟨true code⟩} {⟨false code⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
sets the ⟨tl var⟩ the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given ⟨file name⟩ has no extension but the file
found has that extension. In the non-branching version, the ⟨tl var⟩ will be set to
\q_no_value in the case that the file does not exist.

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VNTF

Updated: 2019-02-16

\file_full_name:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream.
This includes an extension .tex when the given ⟨file name⟩ has no extension but the
file found has that extension. If the file is not found on the path, the expansion is empty.

\file_full_name:n ✩

\file_full_name:V ✩

New: 2019-09-03

\file_parse_full_name:nNNN {⟨full name⟩} ⟨dir⟩ ⟨name⟩ ⟨ext⟩

Parses the ⟨full name⟩ and splits it into three parts, each of which is returned by setting
the appropriate local string variable:

• The ⟨dir⟩: everything up to the last / (path separator) in the ⟨file path⟩. As
with system PATH variables and related functions, the ⟨dir⟩ does not include the
trailing / unless it points to the root directory. If there is no path (only a file
name), ⟨dir⟩ is empty.

• The ⟨name⟩: everything after the last / up to the last ., where both of those
characters are optional. The ⟨name⟩ may contain multiple . characters. It is empty
if ⟨full name⟩ consists only of a directory name.

• The ⟨ext⟩: everything after the last . (including the dot). The ⟨ext⟩ is empty if
there is no . after the last /.

Before parsing, the ⟨full name⟩ is expanded until only non-expandable tokens re-
main, except that active characters are also not expanded. Quotes (") are invalid in file
names and are discarded from the input.

\file_parse_full_name:nNNN
\file_parse_full_name:VNNN

New: 2017-06-23

Updated: 2020-06-24

102

\file_parse_full_name:n {⟨full name⟩}

Parses the ⟨full name⟩ as described for \file_parse_full_name:nNNN, and leaves
⟨dir⟩, ⟨name⟩, and ⟨ext⟩ in the input stream, each inside a pair of braces.

\file_parse_full_name:n ⋆
\file_parse_full_name:V ⋆

New: 2020-06-24

\file_parse_full_name_apply:nN {⟨full name⟩} ⟨function⟩\file_parse_full_name_apply:nN ⋆
\file_parse_full_name_apply:VN ⋆

New: 2020-06-24

Parses the ⟨full name⟩ as described for \file_parse_full_name:nNNN, and passes
⟨dir⟩, ⟨name⟩, and ⟨ext⟩ as arguments to ⟨function⟩, as an n-type argument each,
in this order.

12.2.3 Accessing file contents

\file_get:nnN {⟨file name⟩} {⟨setup⟩} ⟨tl⟩
\file_get:nnNTF {⟨file name⟩} {⟨setup⟩} ⟨tl⟩ {⟨true code⟩} {⟨false code⟩}

Defines ⟨tl⟩ to the contents of ⟨file name⟩. Category codes may need to be set ap-
propriately via the ⟨setup⟩ argument. The non-branching version sets the ⟨tl⟩ to \q_-
no_value if the file is not found. The branching version runs the ⟨true code⟩ after the
assignment to ⟨tl⟩ if the file is found, and ⟨false code⟩ otherwise. The file content will
be tokenized using the current category code régime,

\file_get:nnN
\file_get:VnN
\file_get:nnNTF
\file_get:VnNTF

New: 2019-01-16

Updated: 2019-02-16

\file_input:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional LATEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_input:n
\file_input:V

Updated: 2017-06-26

\file_input_raw:n {⟨file name⟩}

Searches for ⟨file name⟩ in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional TEX source. No data concerning the file is tracked. If the
file is not found, no action is taken.

TEXhackers note: This function is intended only for contexts where files must be read
purely by expansion, for example at the start of a table cell in an \halign.

\file_input_raw:n ⋆
\file_input_raw:V ⋆

New: 2023-05-18

\file_if_exist_input:n {⟨file name⟩}
\file_if_exist_input:nF {⟨file name⟩} {⟨false code⟩}

Searches for ⟨file name⟩ using the current TEX search path and the additional paths
included in \l_file_search_path_seq. If found then reads in the file as additional LATEX
source as described for \file_input:n, otherwise inserts the ⟨false code⟩. Note that
these functions do not raise an error if the file is not found, in contrast to \file_input:n.

\file_if_exist_input:n
\file_if_exist_input:V
\file_if_exist_input:nF
\file_if_exist_input:VF

New: 2014-07-02

103

\file_input_stop:

Ends the reading of a file started by \file_input:n or similar before the end of the
file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TEXhackers note: This function must be used on a line on its own: TEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_input_stop:

New: 2017-07-07

\file_show_list:
\file_log_list:

These functions list all files loaded by LATEX 2ε commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

\file_show_list:
\file_log_list:

104

Chapter 13

The l3luatex module
LuaTEX-specific functions

The LuaTEX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pTEX, upTEX or X ETEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTEX engine are given in the LuaTEX manual.

13.1 Breaking out to Lua

\lua_now:n {⟨token list⟩}

The ⟨token list⟩ is first tokenized by TEX, which includes converting line ends to spaces
in the usual TEX manner and which respects currently-applicable TEX category codes.
The resulting ⟨Lua input⟩ is passed to the Lua interpreter for processing. Each \lua_-
now:n block is treated by Lua as a separate chunk. The Lua interpreter executes the
⟨Lua input⟩ immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTEX is
in use two expansions are required to yield the result of the Lua code.

\lua_now:n ⋆
\lua_now:e ⋆

New: 2018-06-18

\lua_shipout:n {⟨token list⟩}

The ⟨token list⟩ is first tokenized by TEX, which includes converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting ⟨Lua input⟩ is passed to the Lua interpreter when the current
page is finalised (i.e. at shipout). Each \lua_shipout:n block is treated by Lua as
a separate chunk. The Lua interpreter will execute the ⟨Lua input⟩ during the page-
building routine: no TEX expansion of the ⟨Lua input⟩ will occur at this stage.

In the case of the \lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TEX level, the ⟨Lua input⟩ is stored as a “whatsit”.

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

105

\lua_escape:n {⟨token list⟩}

Converts the ⟨token list⟩ such that it can safely be passed to Lua: embedded back-
slashes, double and single quotes, and newlines and carriage returns are escaped. This is
done by prepending an extra token consisting of a backslash with category code 12, and
for the line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTEX is in use two expansions are required to yield the result of the Lua code.

\lua_escape:n ⋆
\lua_escape:e ⋆

New: 2015-06-29

\lua_load_module:n {⟨Lua module name⟩}

Loads a Lua module into the Lua interpreter.
\lua_now:n passes its {⟨token list⟩} argument to the Lua interpreter as a single line,

with characters interpreted under the current catcode regime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TEXhackers note: This is a wrapper around the Lua call require ’⟨module⟩’.

\lua_load_module:n

New: 2022-05-14

13.2 Lua interfaces
As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the ltx.utils table.ltx.utils

⟨dump⟩ = ltx.utils.filedump(⟨file⟩,⟨offset⟩,⟨length⟩)

Returns the uppercase hexadecimal representation of the content of the ⟨file⟩ read as
bytes. If the ⟨length⟩ is given, only this part of the file is returned; similarly, one may
specify the ⟨offset⟩ from the start of the file. If the ⟨length⟩ is not given, the entire
file is read starting at the ⟨offset⟩.

ltx.utils.filedump

⟨hash⟩ = ltx.utils.filemd5sum(⟨file⟩)

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behaviour.
If the ⟨file⟩ is not found, nothing is returned with no error raised.

ltx.utils.filemd5sum

⟨date⟩ = ltx.utils.filemoddate(⟨file⟩)

Returns the date/time of last modification of the ⟨file⟩ in the format

D:⟨year⟩⟨month⟩⟨day⟩⟨hour⟩⟨minute⟩⟨second⟩⟨offset⟩

where the latter may be Z (UTC) or ⟨plus-minus⟩⟨hours⟩’⟨minutes⟩’. If the ⟨file⟩
is not found, nothing is returned with no error raised.

ltx.utils.filemoddate

106

size = ltx.utils.filesize(⟨file⟩)

Returns the size of the ⟨file⟩ in bytes. If the ⟨file⟩ is not found, nothing is returned
with no error raised.

ltx.utils.filesize

107

Chapter 14

The l3legacy module
Interfaces to legacy concepts

There are a small number of TEX or LATEX 2ε concepts which are not used in expl3 code
but which need to be manipulated when working as a LATEX 2ε package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n {⟨name⟩}
\legacy_if:nTF {⟨name⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the LATEX 2ε/plain TEX conditional (generated by \newif) is true or false and
branches accordingly. The ⟨name⟩ of the conditional should omit the leading if.

\legacy_if_p:n ⋆
\legacy_if:nTF ⋆

\legacy_if_set_true:n {⟨name⟩}
\legacy_if_set_false:n {⟨name⟩}

Sets the LATEX 2ε/plain TEX conditional \if⟨name⟩ (generated by \newif) to be true or
false.

\legacy_if_set_true:n
\legacy_if_set_false:n
\legacy_if_gset_true:n
\legacy_if_gset_false:n

New: 2021-05-10

\legacy_if_set:nn {⟨name⟩} {⟨boolexpr⟩}

Sets the LATEX 2ε/plain TEX conditional \if⟨name⟩ (generated by \newif) to the result
of evaluating the ⟨boolean expression⟩.

\legacy_if_set:nn
\legacy_if_gset:nn

New: 2021-05-10

108

Part IV

Data types

109

Chapter 15

The l3tl module
Token lists

TEX works with tokens, and LATEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix tl: a token
list variable can also be used as the argument to a function, for example

\foo:N \l_some_tl

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix tl. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ␣, {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, l and d), but thirteen tokens ({, H, e, l, l, o, }, ␣, w,
o, r, l and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initialising token list variables

\tl_new:N ⟨tl var⟩

Creates a new ⟨tl var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨tl var⟩ is initially empty.

\tl_new:N
\tl_new:c

110

\tl_const:Nn ⟨tl var⟩ {⟨tokens⟩}

Creates a new constant ⟨tl var⟩ or raises an error if the name is already taken. The
value of the ⟨tl var⟩ is set globally to the ⟨tokens⟩.

\tl_const:Nn
\tl_const:(Ne|cn|ce)

\tl_clear:N ⟨tl var⟩

Clears all entries from the ⟨tl var⟩.
\tl_clear:N
\tl_clear:c
\tl_gclear:N
\tl_gclear:c

\tl_clear_new:N ⟨tl var⟩

Ensures that the ⟨tl var⟩ exists globally by applying \tl_new:N if necessary, then ap-
plies \tl_(g)clear:N to leave the ⟨tl var⟩ empty.

\tl_clear_new:N
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

\tl_set_eq:NN ⟨tl var1⟩ ⟨tl var2⟩

Sets the content of ⟨tl var1⟩ equal to that of ⟨tl var2⟩.
\tl_set_eq:NN
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN
\tl_gset_eq:(cN|Nc|cc)

\tl_concat:NNN ⟨tl var1⟩ ⟨tl var2⟩ ⟨tl var3⟩

Concatenates the content of ⟨tl var2⟩ and ⟨tl var3⟩ together and saves the result in
⟨tl var1⟩. The ⟨tl var2⟩ is placed at the left side of the new token list.

\tl_concat:NNN
\tl_concat:ccc
\tl_gconcat:NNN
\tl_gconcat:ccc

New: 2012-05-18

\tl_if_exist_p:N ⟨tl var⟩
\tl_if_exist:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨tl var⟩ is currently defined. This does not check that the ⟨tl var⟩
really is a token list variable.

\tl_if_exist_p:N ⋆
\tl_if_exist_p:c ⋆
\tl_if_exist:NTF ⋆
\tl_if_exist:cTF ⋆

New: 2012-03-03

15.2 Adding data to token list variables

\tl_set:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_set:Nn
\tl_set:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|cf)
\tl_gset:Nn
\tl_gset:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|cf)

Sets ⟨tl var⟩ to contain ⟨tokens⟩, removing any previous content from the variable.

\tl_put_left:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_put_left:Nn
\tl_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\tl_gput_left:Nn
\tl_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends ⟨tokens⟩ to the left side of the current content of ⟨tl var⟩.

111

\tl_put_right:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_put_right:Nn
\tl_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\tl_gput_right:Nn
\tl_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends ⟨tokens⟩ to the right side of the current content of ⟨tl var⟩.

15.3 Token list conditionals

\tl_if_blank_p:n {⟨token list⟩}
\tl_if_blank:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ consists only of blank spaces (i.e. contains no item). The test
is true if ⟨token list⟩ is zero or more explicit space characters (explicit tokens with
character code 32 and category code 10), and is false otherwise.

\tl_if_blank_p:n ⋆
\tl_if_blank_p:(e|V|o) ⋆
\tl_if_blank:nTF ⋆
\tl_if_blank:(e|V|o)TF ⋆

Updated: 2019-09-04

\tl_if_empty_p:N ⟨tl var⟩
\tl_if_empty:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tl var⟩ is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:N ⋆
\tl_if_empty_p:c ⋆
\tl_if_empty:NTF ⋆
\tl_if_empty:cTF ⋆

\tl_if_empty_p:n {⟨token list⟩}
\tl_if_empty:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n ⋆
\tl_if_empty_p:(V|o|e) ⋆
\tl_if_empty:nTF ⋆
\tl_if_empty:(V|o|e)TF ⋆

New: 2012-05-24

Updated: 2012-06-05

\tl_if_eq_p:NN ⟨tl var1⟩ ⟨tl var2⟩
\tl_if_eq:NNTF ⟨tl var1⟩ ⟨tl var2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the content of ⟨tl var1⟩ and ⟨tl var2⟩ and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \l_tmpa_tl { abc }
\tl_set:Ne \l_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \l_tmpa_tl \l_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq_p:NN ⋆
\tl_if_eq_p:(Nc|cN|cc) ⋆
\tl_if_eq:NNTF ⋆
\tl_if_eq:(Nc|cN|cc)TF ⋆

\tl_if_eq:NnTF ⟨tl var1⟩ {⟨token list2⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tl var1⟩ and the ⟨token list2⟩ contain the same list of tokens, both in
respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

\tl_if_eq:NnTF
\tl_if_eq:cnTF

New: 2020-07-14

112

\tl_if_eq:nnTF {⟨token list1⟩} {⟨token list2⟩} {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token list1⟩ and ⟨token list2⟩ contain the same list of tokens, both in respect
of character codes and category codes. This conditional is not expandable: see \tl_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

\tl_if_eq:nnTF
\tl_if_eq:(nV|ne|Vn|en|ee)TF

\tl_if_in:NnTF ⟨tl var⟩ {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ is found in the content of the ⟨tl var⟩. The ⟨token list⟩
cannot contain the tokens {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:NnTF
\tl_if_in:(NV|No|cn|cV|co)TF

\tl_if_in:nnTF {⟨token list1⟩} {⟨token list2⟩} {⟨true code⟩} {⟨false
code⟩}

\tl_if_in:nnTF
\tl_if_in:(Vn|VV|on|oo|nV|no)TF

Tests if ⟨token list2⟩ is found inside ⟨token list1⟩. The ⟨token list2⟩ cannot con-
tain the tokens {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6). The search does not
enter brace (category code 1/2) groups.

\tl_if_novalue_p:n {⟨token list⟩}
\tl_if_novalue:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ and the special \c_novalue_tl marker contain the same list
of tokens, both in respect of character codes and category codes. This means that
\exp_args:No \tl_if_novalue:nTF { \c_novalue_tl } is logically true but \tl_-
if_novalue:nTF { \c_novalue_tl } is logically false. This function is intended to
allow construction of flexible document interface structures in which missing optional
arguments are detected.

\tl_if_novalue_p:n ⋆
\tl_if_novalue:nTF ⋆

New: 2017-11-14

\tl_if_single_p:N ⟨tl var⟩
\tl_if_single:NTF ⟨tl var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the content of the ⟨tl var⟩ consists of a single ⟨item⟩, i.e. is a single normal
token (neither an explicit space character nor a begin-group character) or a single brace
group, surrounded by optional spaces on both sides. In other words, such a token list
has token count 1 according to \tl_count:N.

\tl_if_single_p:N ⋆
\tl_if_single_p:c ⋆
\tl_if_single:NTF ⋆
\tl_if_single:cTF ⋆

Updated: 2011-08-13

\tl_if_single_p:n {⟨token list⟩}
\tl_if_single:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ has exactly one ⟨item⟩, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \tl_count:n.

\tl_if_single_p:n ⋆
\tl_if_single:nTF ⋆

Updated: 2011-08-13

\tl_if_single_token_p:n {⟨token list⟩}
\tl_if_single_token:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}
Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single normal token. Token groups ({. . . }) are not single tokens.

\tl_if_single_token_p:n ⋆
\tl_if_single_token:nTF ⋆

113

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_catcode:nNTF {⟨token list⟩} ⟨test token⟩

{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_catcode_p:nN ⋆
\tl_if_head_eq_catcode_p:(VN|eN|oN) ⋆
\tl_if_head_eq_catcode:nNTF ⋆
\tl_if_head_eq_catcode:(VN|eN|oN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same category code as the ⟨test
token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_charcode:nNTF {⟨token list⟩} ⟨test token⟩

{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_charcode_p:nN ⋆
\tl_if_head_eq_charcode_p:(VN|eN|fN) ⋆
\tl_if_head_eq_charcode:nNTF ⋆
\tl_if_head_eq_charcode:(VN|eN|fN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same character code as the ⟨test
token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_meaning:nNTF {⟨token list⟩} ⟨test token⟩

{⟨true code⟩} {⟨false code⟩}

\tl_if_head_eq_meaning_p:nN ⋆
\tl_if_head_eq_meaning_p:(VN|eN) ⋆
\tl_if_head_eq_meaning:nNTF ⋆
\tl_if_head_eq_meaning:(VN|eN)TF ⋆

Updated: 2012-07-09

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same meaning as the ⟨test token⟩.
In the case where ⟨token list⟩ is empty, the test is always false.

\tl_if_head_is_group_p:n {⟨token list⟩}
\tl_if_head_is_group:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit begin-group character (with
category code 1 and any character code), in other words, if the ⟨token list⟩ starts
with a brace group. In particular, the test is false if the ⟨token list⟩ starts with an
implicit token such as \c_group_begin_token, or if it is empty. This function is useful
to implement actions on token lists on a token by token basis.

\tl_if_head_is_group_p:n ⋆
\tl_if_head_is_group:nTF ⋆

New: 2012-07-08

\tl_if_head_is_N_type_p:n {⟨token list⟩}
\tl_if_head_is_N_type:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

\tl_if_head_is_N_type_p:n ⋆
\tl_if_head_is_N_type:nTF ⋆

New: 2012-07-08

Tests if the first ⟨token⟩ in the ⟨token list⟩ is a normal N-type argument. In other
words, it is neither an explicit space character (explicit token with character code 32 and
category code 10) nor an explicit begin-group character (with category code 1 and any
character code). An empty argument yields false, as it does not have a normal first
token. This function is useful to implement actions on token lists on a token by token
basis.

114

\tl_if_head_is_space_p:n {⟨token list⟩}
\tl_if_head_is_space:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit space character (explicit
token with character code 32 and category code 10). In particular, the test is false
if the ⟨token list⟩ starts with an implicit token such as \c_space_token, or if it is
empty. This function is useful to implement actions on token lists on a token by token
basis.

\tl_if_head_is_space_p:n ⋆
\tl_if_head_is_space:nTF ⋆

Updated: 2012-07-08

15.4 Working with token lists as a whole
15.4.1 Using token lists

\tl_to_str:n {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩, leaving the resulting character tokens in the
input stream. A ⟨string⟩ is a series of tokens with category code 12 (other) with the
exception of spaces, which retain category code 10 (space). The base function requires
only a single expansion. Its argument must be braced.

TEXhackers note: This is the ε-TEX primitive \detokenize. Converting a ⟨token list⟩
to a ⟨string⟩ yields a concatenation of the string representations of every token in the ⟨token
list⟩. The string representation of a control sequence is

• an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

• the control sequence name, as defined by \cs_to_str:N;
• a space, unless the control sequence name is a single character whose category at the time

of expansion of \tl_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:n ⋆
\tl_to_str:(o|V|v|e) ⋆

\tl_to_str:N ⟨tl var⟩

Converts the content of the ⟨tl var⟩ into a series of characters with category code
12 (other) with the exception of spaces, which retain category code 10 (space). This
⟨string⟩ is then left in the input stream. For low-level details, see the notes given for
\tl_to_str:n.

\tl_to_str:N ⋆
\tl_to_str:c ⋆

\tl_use:N ⟨tl var⟩

Recovers the content of a ⟨tl var⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
⟨tl var⟩ directly without an accessor function.

\tl_use:N ⋆
\tl_use:c ⋆

115

15.4.2 Counting and reversing token lists

\tl_count:n {⟨token list⟩}

Counts the number of ⟨items⟩ in the ⟨token list⟩ and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({. . . }). This
process ignores any unprotected spaces within the ⟨token list⟩. See also \tl_count:N.
This function requires three expansions, giving an ⟨integer denotation⟩.

\tl_count:n ⋆
\tl_count:(V|v|e|o) ⋆

New: 2012-05-13

\tl_count:N ⟨tl var⟩

Counts the number of ⟨items⟩ in the ⟨tl var⟩ and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({. . . }). This
process ignores any unprotected spaces within the ⟨tl var⟩. See also \tl_count:n.
This function requires three expansions, giving an ⟨integer denotation⟩.

\tl_count:N ⋆
\tl_count:c ⋆

New: 2012-05-13

\tl_count_tokens:n {⟨token list⟩}

Counts the number of TEX tokens in the ⟨token list⟩ and leaves this information in
the input stream. Every token, including spaces and braces, contributes one to the total;
thus for instance, the token count of a~{bc} is 6.

\tl_count_tokens:n ⋆

New: 2019-02-25

\tl_reverse:n {⟨token list⟩}

Reverses the order of the ⟨items⟩ in the ⟨token list⟩, so that ⟨item1⟩⟨item2⟩⟨item3⟩
. . . ⟨itemn⟩ becomes ⟨itemn⟩. . . ⟨item3⟩⟨item2⟩⟨item1⟩. This process preserves unpro-
tected space within the ⟨token list⟩. Tokens are not reversed within braced token
groups, which keep their outer set of braces. In situations where performance is impor-
tant, consider \tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_reverse:n ⋆
\tl_reverse:(V|o|f|e) ⋆

Updated: 2012-01-08

\tl_reverse:N ⟨tl var⟩

Sets the ⟨tl var⟩ to contain the result of reversing the order of its ⟨items⟩, so
that ⟨item1⟩⟨item2⟩⟨item3⟩ . . . ⟨itemn⟩ becomes ⟨itemn⟩. . . ⟨item3⟩⟨item2⟩⟨item1⟩. This
process preserves unprotected spaces within the ⟨tl var⟩. Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n {⟨token list⟩}

Reverses the order of the ⟨items⟩ in the ⟨token list⟩, so that ⟨item1⟩⟨item2⟩⟨item3⟩
. . . ⟨itemn⟩ becomes {⟨itemn⟩} . . . {⟨item3⟩}{⟨item2⟩}{⟨item1⟩}. This process removes
any unprotected space within the ⟨token list⟩. Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \tl_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_reverse_items:n ⋆

New: 2012-01-08

116

\tl_trim_spaces:n {⟨token list⟩}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the ⟨token list⟩ and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_spaces:n ⋆
\tl_trim_spaces:(V|v|e|o) ⋆

New: 2011-07-09

Updated: 2012-06-25

\tl_trim_spaces_apply:nN {⟨token list⟩} ⟨function⟩

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the ⟨token list⟩ and passes the result to the
⟨function⟩ as an n-type argument.

\tl_trim_spaces_apply:nN ⋆
\tl_trim_spaces_apply:oN ⋆

New: 2018-04-12

\tl_trim_spaces:N ⟨tl var⟩

Sets the ⟨tl var⟩ to contain the result of removing any leading and trailing explicit
space characters (explicit tokens with character code 32 and category code 10) from its
contents.

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

15.4.3 Viewing token lists

\tl_show:N ⟨tl var⟩

Displays the content of the ⟨tl var⟩ on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:N
\tl_show:c

Updated: 2021-04-29

\tl_show:n {⟨token list⟩}

Displays the ⟨token list⟩ on the terminal.

TEXhackers note: This is similar to the ε-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_show:n
\tl_show:e

Updated: 2015-08-07

\tl_log:N ⟨tl var⟩

Writes the content of the ⟨tl var⟩ in the log file. See also \tl_show:N which displays
the result in the terminal.

\tl_log:N
\tl_log:c

New: 2014-08-22

Updated: 2021-04-29

\tl_log:n {⟨token list⟩}

Writes the ⟨token list⟩ in the log file. See also \tl_show:n which displays the result
in the terminal.

\tl_log:n
\tl_log:(e|x)

New: 2014-08-22

Updated: 2015-08-07

117

15.5 Manipulating items in token lists
15.5.1 Mapping over token lists
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\tl_map_function:NN ⟨tl var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ in the ⟨tl var⟩. The ⟨function⟩ receives one
argument for each iteration. This may be a number of tokens if the ⟨item⟩ was stored
within braces. Hence the ⟨function⟩ should anticipate receiving n-type arguments. See
also \tl_map_function:nN.

\tl_map_function:NN ✩

\tl_map_function:cN ✩

Updated: 2012-06-29

\tl_map_function:nN {⟨token list⟩} ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ in the ⟨token list⟩, The ⟨function⟩ receives one
argument for each iteration. This may be a number of tokens if the ⟨item⟩ was stored
within braces. Hence the ⟨function⟩ should anticipate receiving n-type arguments. See
also \tl_map_function:NN.

\tl_map_function:nN ✩

Updated: 2012-06-29

\tl_map_inline:Nn ⟨tl var⟩ {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨tl var⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. See also
\tl_map_function:NN.

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn {⟨token list⟩} {⟨inline function⟩}

Applies the ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨token list⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. See also
\tl_map_function:nN.

\tl_map_inline:nn

Updated: 2012-06-29

\tl_map_tokens:Nn ⟨tl var⟩ {⟨code⟩}
\tl_map_tokens:nn {⟨token list⟩} {⟨code⟩}
Analogue of \tl_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each ⟨item⟩ in the ⟨tl var⟩ or in the ⟨token list⟩ as a
trailing brace group. For instance,

\tl_map_tokens:Nn \l_my_tl { \prg_replicate:nn { 2 } }

expands to twice each ⟨item⟩ in the ⟨tl var⟩: for each ⟨item⟩ in \l_my_tl the function
\prg_replicate:nn receives 2 and ⟨item⟩ as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_tokens:Nn ✩

\tl_map_tokens:cn ✩

\tl_map_tokens:nn ✩

New: 2019-09-02

\tl_map_variable:NNn ⟨tl var⟩ ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨tl var⟩ in turn in the (token list) ⟨variable⟩ and applies the
⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨tl var⟩, or its original value if the ⟨tl var⟩ is blank. See also \tl_map_inline:Nn.

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

118

\tl_map_variable:nNn {⟨token list⟩} ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨token list⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨tl var⟩, or its original value if the ⟨tl var⟩ is blank. See also \tl_map_inline:nn.

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break:

Used to terminate a \tl_map_... function before all entries in the ⟨token list⟩ have
been processed. This normally takes place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \tl_map_... scenario leads to low level
TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\tl_map_break: ✩

Updated: 2012-06-29

\tl_map_break:n {⟨code⟩}

Used to terminate a \tl_map_... function before all entries in the ⟨token list⟩ have
been processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes
place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }

% Do something useful
}

Use outside of a \tl_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\tl_map_break:n ✩

Updated: 2012-06-29

15.5.2 Head and tail of token lists
Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

119

\tl_head:n {⟨token list⟩}

Leaves in the input stream the first ⟨item⟩ in the ⟨token list⟩, discarding the rest of
the ⟨token list⟩. All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded; for example

\tl_head:n { abc }

and

\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ ab } c }

yields ␣ab. A blank ⟨token list⟩ (see \tl_if_blank:nTF) results in \tl_head:n leav-
ing nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_head:N ⋆
\tl_head:n ⋆
\tl_head:(V|v|f) ⋆

Updated: 2012-09-09

\tl_head:w ⟨token list⟩ { } \q_stop

Leaves in the input stream the first ⟨item⟩ in the ⟨token list⟩, discarding the rest of
the ⟨token list⟩. All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank ⟨token list⟩ (which consists
only of space characters) results in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \tl_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \tl_head:n should be preferred if the
number of expansions is not critical.

\tl_head:w ⋆

\tl_tail:n {⟨token list⟩}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first ⟨item⟩ in the ⟨token list⟩, and leaves the remaining
tokens in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }

and

\tl_tail:n { ~ a ~ {bc} d }

both leave ␣{bc}d in the input stream. A blank ⟨token list⟩ (see \tl_if_blank:nTF)
results in \tl_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_tail:N ⋆
\tl_tail:n ⋆
\tl_tail:(V|v|f) ⋆

Updated: 2012-09-01

If you wish to handle token lists where the first token may be a space, and this

120

needs to be treated as the head/tail, this can be accomplished using \tl_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }

\cs_new:Npn \mypkg_tl_head_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ ~ }
{ \tl_head:n {#1} }

}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }

}

15.5.3 Items and ranges in token lists

\tl_item:nn {⟨token list⟩} {⟨integer expression⟩}

Indexing items in the ⟨token list⟩ from 1 on the left, this function evaluates the
⟨integer expression⟩ and leaves the appropriate item from the ⟨token list⟩ in the
input stream. If the ⟨integer expression⟩ is negative, indexing occurs from the right
of the token list, starting at −1 for the right-most item. If the index is out of bounds,
then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_item:nn ⋆
\tl_item:Nn ⋆
\tl_item:cn ⋆

New: 2014-07-17

\tl_rand_item:N ⟨tl var⟩
\tl_rand_item:n {⟨token list⟩}

Selects a pseudo-random item of the ⟨token list⟩. If the ⟨token list⟩ is blank, the
result is empty. This is not available in older versions of X ETEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_rand_item:N ⋆
\tl_rand_item:c ⋆
\tl_rand_item:n ⋆

New: 2016-12-06

121

\tl_range:Nnn ⟨tl var⟩ {⟨start index⟩} {⟨end index⟩}
\tl_range:nnn {⟨token list⟩} {⟨start index⟩} {⟨end index⟩}

Leaves in the input stream the items from the ⟨start index⟩ to the ⟨end index⟩ inclu-
sive. Spaces and braces are preserved between the items returned (but never at either end
of the list). Here ⟨start index⟩ and ⟨end index⟩ should be ⟨integer expressions⟩.
For describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let l be the count
of the token list.

The actual start point is determined as M = m if m > 0 and as M = l + m + 1
if m < 0. Similarly the actual end point is N = n if n > 0 and N = l + n + 1 if n < 0.
If M > N , the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s ≤ 0 or s > l.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with l = 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { 1 } { 12 }
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 } { -3 } }

are all equivalent and will print bcd{e{}} on the terminal; similarly

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3 } }

are all equivalent and will print bcd {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } { 2 } { 4 }

will discard the space after ‘d’.
If we want to get the items from, say, the third to the last in a token list <tl>, the

call is \tl_range:nnn { <tl> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <tl> } { 1 } { -2 }.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\tl_range:Nnn ⋆
\tl_range:nnn ⋆

New: 2017-02-17

Updated: 2017-07-15

122

15.5.4 Sorting token lists

\tl_sort:Nn ⟨tl var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨tl var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨tl var⟩. The details of sorting comparison are described in Section 6.1.

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN {⟨token list⟩} ⟨conditional⟩

Sorts the items in the ⟨token list⟩, using the ⟨conditional⟩ to compare items, and
leaves the result in the input stream. The ⟨conditional⟩ should have signature :nnTF,
and return true if the two items being compared should be left in the same order, and
false if the items should be swapped. The details of sorting comparison are described
in Section 6.1.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_sort:nN ⋆

New: 2017-02-06

15.6 Manipulating tokens in token lists
15.6.1 Replacing tokens
Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a categroy code 1/2 pair).

\tl_replace_once:Nnn ⟨tl var⟩ {⟨old tokens⟩} {⟨new
tokens⟩}

\tl_replace_once:Nnn
\tl_replace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
\tl_greplace_once:Nnn
\tl_greplace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
Updated: 2011-08-11

Replaces the first (leftmost) occurrence of ⟨old tokens⟩ in the ⟨tl var⟩ with ⟨new
tokens⟩. ⟨Old tokens⟩ cannot contain {, } or # (more precisely, explicit character
tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category
code 6).

123

\tl_replace_all:Nnn ⟨tl var⟩ {⟨old tokens⟩} {⟨new
tokens⟩}

\tl_replace_all:Nnn
\tl_replace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
\tl_greplace_all:Nnn
\tl_greplace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|

cne|cee)
Updated: 2011-08-11

Replaces all occurrences of ⟨old tokens⟩ in the ⟨tl var⟩ with ⟨new tokens⟩. ⟨Old
tokens⟩ cannot contain {, } or # (more precisely, explicit character tokens with category
code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern ⟨old tokens⟩ may remain after the replacement
(see \tl_remove_all:Nn for an example).

\tl_remove_once:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_remove_once:Nn
\tl_remove_once:(NV|Ne|cn|cV|ce)
\tl_gremove_once:Nn
\tl_gremove_once:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes the first (leftmost) occurrence of ⟨tokens⟩ from the ⟨tl var⟩. The ⟨tokens⟩
cannot contain {, } or # (more precisely, explicit character tokens with category code 1
(begin-group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn ⟨tl var⟩ {⟨tokens⟩}\tl_remove_all:Nn
\tl_remove_all:(NV|Ne|cn|cV|ce)
\tl_gremove_all:Nn
\tl_gremove_all:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes all occurrences of ⟨tokens⟩ from the ⟨tl var⟩. The ⟨tokens⟩ cannot contain
{, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or
2 (end-group), and tokens with category code 6). As this function operates from left to
right, the pattern ⟨tokens⟩ may remain after the removal, for instance,

\tl_set:Nn \l_tmpa_tl {abbccd} \tl_remove_all:Nn \l_tmpa_tl {bc}

results in \l_tmpa_tl containing abcd.

15.6.2 Reassigning category codes
These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

124

\tl_set_rescan:Nnn ⟨tl var⟩ {⟨setup⟩} {⟨tokens⟩}\tl_set_rescan:Nnn
\tl_set_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)
\tl_gset_rescan:Nnn
\tl_gset_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

Updated: 2015-08-11

Sets ⟨tl var⟩ to contain ⟨tokens⟩, applying the category code régime specified in the
⟨setup⟩ before carrying out the assignment. (Category codes applied to tokens not
explicitly covered by the ⟨setup⟩ are those in force at the point of use of \tl_set_-
rescan:Nnn.) This allows the ⟨tl var⟩ to contain material with category codes other
than those that apply when ⟨tokens⟩ are absorbed. The ⟨setup⟩ is run within a group
and may contain any valid input, although only changes in category codes, such as uses
of \cctab_select:N, are relevant. See also \tl_rescan:nn.

TEXhackers note: The ⟨tokens⟩ are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user ⟨setup⟩), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {⟨setup⟩} {⟨tokens⟩}

Rescans ⟨tokens⟩ applying the category code régime specified in the ⟨setup⟩, and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the ⟨setup⟩ are those in force at the point of use of \tl_rescan:nn.) The
⟨setup⟩ is run within a group and may contain any valid input, although only changes
in category codes, such as uses of \cctab_select:N, are relevant. See also \tl_set_-
rescan:Nnn, which is more robust than using \tl_set:Nn in the ⟨tokens⟩ argument of
\tl_rescan:nn.

TEXhackers note: The ⟨tokens⟩ are first turned into a string (using \tl_to_str:n).
If the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user ⟨setup⟩), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

Contrarily to the \scantokens ε-TEX primitive, \tl_rescan:nn tokenizes the whole string
in the same category code regime rather than one token at a time, so that directives such as
\verb that rely on changing category codes will not function properly.

\tl_rescan:nn
\tl_rescan:nV

Updated: 2015-08-11

15.7 Constant token lists

Constant that is always empty.\c_empty_tl

125

A marker for the absence of an argument. This constant tl can safely be typeset (cf. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_tl is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:NnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_tl marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty tl.

\c_novalue_tl

New: 2017-11-14

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

\c_space_tl

15.8 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_tl
\l_tmpb_tl

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_tl
\g_tmpb_tl

126

Chapter 16

The l3tl-build module
Piecewise tl constructions

16.1 Constructing ⟨tl var⟩ by accumulation
When creating a ⟨tl var⟩ by accumulation of many tokens, the performance available
using a combination of \tl_set:Nn and \tl_put_right:Nn or similar begins to become
an issue. To address this, a set of functions are available to “build” a ⟨tl var⟩. The per-
formance of this approach is much more efficient than the standard \tl_put_right:Nn,
but the constructed token list cannot be accessed during construction other than by
methods provided in this section.

Whilst the exact performance difference is dependent on the size of each added
block of tokens and the total number of blocks, in general, the \tl_build_(g)put...
functions will out-perform the basic \tl_(g)put... equivalent if more than 100 non-
empty addition operations occur. See https://github.com/latex3/latex3/issues/
1393#issuecomment-1880164756 for a more detailed analysis.

\tl_build_begin:N ⟨tl var⟩

Clears the ⟨tl var⟩ and sets it up to support other \tl_build_... functions. Un-
til \tl_build_end:N ⟨tl var⟩ or \tl_build_gend:N ⟨tl var⟩ is called, applying any
function from l3tl other than \tl_build_... will lead to incorrect results. The begin
and gbegin functions must be used for local and global ⟨tl var⟩ respectively.

\tl_build_begin:N
\tl_build_gbegin:N

New: 2018-04-01

\tl_build_put_left:Nn ⟨tl var⟩ {⟨tokens⟩}
\tl_build_put_right:Nn ⟨tl var⟩ {⟨tokens⟩}

Adds ⟨tokens⟩ to the left or right side of the current contents of ⟨tl var⟩. The ⟨tl var⟩
must have been set up with \tl_build_begin:N or \tl_build_gbegin:N. The put and
gput functions must be used for local and global ⟨tl var⟩ respectively. The right
functions are about twice faster than the left functions.

\tl_build_put_left:Nn
\tl_build_put_left:Ne
\tl_build_gput_left:Nn
\tl_build_gput_left:Ne
\tl_build_put_right:Nn
\tl_build_put_right:Ne
\tl_build_gput_right:Nn
\tl_build_gput_right:Ne

New: 2018-04-01

127

https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756

https://github.com/latex3/latex3/issues/1393#issuecomment-1880164756

\tl_build_end:N ⟨tl var⟩

Gets the contents of ⟨tl var⟩ and stores that into the ⟨tl var⟩ using \tl_set:Nn or
\tl_gset:Nn. The ⟨tl var⟩ must have been set up with \tl_build_begin:N or \tl_-
build_gbegin:N. The end and gend functions must be used for local and global ⟨tl var⟩
respectively. These functions completely remove the setup code that enabled ⟨tl var⟩ to
be used for other \tl_build_... functions. After the action of end/gend, the ⟨tl var⟩
may be manipulated using standard tl functions.

\tl_build_end:N
\tl_build_gend:N

New: 2018-04-01

\tl_build_get_intermediate:NN ⟨tl var1⟩ ⟨tl var2⟩\tl_build_get_intermediate:NN

New: 2023-12-14

Stores the contents of the ⟨tl var1⟩ in the ⟨tl var2⟩. The ⟨tl var1⟩ must have been
set up with \tl_build_begin:N or \tl_build_gbegin:N. The ⟨tl var2⟩ is a “normal”
token list variable, assigned locally using \tl_set:Nn.

128

Chapter 17

The l3str module
Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TEX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \tl_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
l3basics, l3tl and l3token, respectively.

Most expandable functions in this module come in three flavours:

• \str_...:N, which expect a token list or string variable as their argument;

• \str_...:n, taking any token list (or string) as an argument;

• \str_..._ignore_spaces:n, which ignores any space encountered during the op-
eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

129

17.1 Creating and initialising string variables

\str_new:N ⟨str var⟩

Creates a new ⟨str var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨str var⟩ is initially empty.

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn ⟨str var⟩ {⟨token list⟩}

Creates a new constant ⟨str var⟩ or raises an error if the name is already taken. The
value of the ⟨str var⟩ is set globally to the ⟨token list⟩, converted to a string.

\str_const:Nn
\str_const:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

\str_clear:N ⟨str var⟩

Clears the content of the ⟨str var⟩.
\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N ⟨str var⟩

Ensures that the ⟨str var⟩ exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the ⟨str var⟩ empty.

\str_clear_new:N
\str_clear_new:c
\str_gclear_new:N
\str_gclear_new:c

New: 2015-09-18

\str_set_eq:NN ⟨str var1⟩ ⟨str var2⟩

Sets the content of ⟨str var1⟩ equal to that of ⟨str var2⟩.
\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat:NNN ⟨str var1⟩ ⟨str var2⟩ ⟨str var3⟩

Concatenates the content of ⟨str var2⟩ and ⟨str var3⟩ together and saves the result in
⟨str var1⟩. The ⟨str var2⟩ is placed at the left side of the new string variable. The
⟨str var2⟩ and ⟨str var3⟩ must indeed be strings, as this function does not convert
their contents to a string.

\str_concat:NNN
\str_concat:ccc
\str_gconcat:NNN
\str_gconcat:ccc

New: 2017-10-08

\str_if_exist_p:N ⟨str var⟩
\str_if_exist:NTF ⟨str var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨str var⟩ is currently defined. This does not check that the ⟨str var⟩
really is a string.

\str_if_exist_p:N ⋆
\str_if_exist_p:c ⋆
\str_if_exist:NTF ⋆
\str_if_exist:cTF ⋆

New: 2015-09-18

130

17.2 Adding data to string variables

\str_set:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩, and stores the result in ⟨str var⟩.
\str_set:Nn
\str_set:(NV|Ne|cn|cV|ce)
\str_gset:Nn
\str_gset:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

\str_put_left:Nn ⟨str var⟩ {⟨token list⟩}\str_put_left:Nn
\str_put_left:(NV|Ne|cn|cV|ce)
\str_gput_left:Nn
\str_gput_left:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

Converts the ⟨token list⟩ to a ⟨string⟩, and prepends the result to ⟨str var⟩. The
current contents of the ⟨str var⟩ are not automatically converted to a string.

\str_put_right:Nn ⟨str var⟩ {⟨token list⟩}\str_put_right:Nn
\str_put_right:(NV|Ne|cn|cV|Ne)
\str_gput_right:Nn
\str_gput_right:(NV|Ne|cn|cV|ce)

New: 2015-09-18

Updated: 2018-07-28

Converts the ⟨token list⟩ to a ⟨string⟩, and appends the result to ⟨str var⟩. The
current contents of the ⟨str var⟩ are not automatically converted to a string.

17.3 String conditionals

\str_if_empty_p:N ⟨str var⟩
\str_if_empty:NTF ⟨str var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨string variable⟩ is entirely empty (i.e. contains no characters at all).

\str_if_empty_p:N ⋆
\str_if_empty_p:c ⋆
\str_if_empty:NTF ⋆
\str_if_empty:cTF ⋆
\str_if_empty_p:n ⋆
\str_if_empty:nTF ⋆

New: 2015-09-18

Updated: 2022-03-21

\str_if_eq_p:NN ⟨str var1⟩ ⟨str var2⟩
\str_if_eq:NNTF ⟨str var1⟩ ⟨str var2⟩ {⟨true code⟩} {⟨false code⟩}

Compares the content of two ⟨str variables⟩ and is logically true if the two contain the
same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including
their category codes) rather than characters.

\str_if_eq_p:NN ⋆
\str_if_eq_p:(Nc|cN|cc) ⋆
\str_if_eq:NNTF ⋆
\str_if_eq:(Nc|cN|cc)TF ⋆

New: 2015-09-18

131

\str_if_eq_p:nn {⟨tl1⟩} {⟨tl2⟩}
\str_if_eq:nnTF {⟨tl1⟩} {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

\str_if_eq_p:nn ⋆
\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee) ⋆
\str_if_eq:nnTF ⋆
\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF ⋆

Updated: 2018-06-18

Compares the two ⟨token lists⟩ on a character by character basis (namely after con-
verting them to strings), and is true if the two ⟨strings⟩ contain the same characters
in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true. See \tl_if_eq:nnTF to compare tokens (including their category codes)
rather than characters.

\str_if_in:NnTF ⟨str var⟩ {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ and tests if that ⟨string⟩ is found in the
content of the ⟨str var⟩.

\str_if_in:NnTF
\str_if_in:cnTF

New: 2017-10-08

\str_if_in:nnTF {⟨tl1⟩} {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

Converts both ⟨token lists⟩ to ⟨strings⟩ and tests whether ⟨string2⟩ is found inside
⟨string1⟩.

\str_if_in:nnTF

New: 2017-10-08

\str_case:nnTF {⟨test string⟩}
{

{⟨string case1⟩} {⟨code case1⟩}
{⟨string case2⟩} {⟨code case2⟩}
...
{⟨string casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

\str_case:nn ⋆
\str_case:(Vn|on|en|nV|nv) ⋆
\str_case:nnTF ⋆
\str_case:(Vn|on|en|nV|nv)TF ⋆
\str_case:Nn ⋆
\str_case:NnTF ⋆

New: 2013-07-24

Updated: 2022-03-21

Compares the ⟨test string⟩ in turn with each of the ⟨string case⟩s (all token lists
are converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then
the associated ⟨code⟩ is left in the input stream and other cases are discarded. If any of
the cases are matched, the ⟨true code⟩ is also inserted into the input stream (after the
code for the appropriate case), while if none match then the ⟨false code⟩ is inserted.
The function \str_case:nn, which does nothing if there is no match, is also available.

This set of functions performs no expansion on each ⟨string case⟩ argument,
so any variable in there will be compared as a string. If expansion is needed in the
⟨string case⟩s, then \str_case_e:nn(TF) should be used instead.

132

\str_case_e:nnTF {⟨test string⟩}
{

{⟨string case1⟩} {⟨code case1⟩}
{⟨string case2⟩} {⟨code case2⟩}
...
{⟨string casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

Compares the full expansion of the ⟨test string⟩ in turn with the full expansion of
the ⟨string case⟩s (all token lists are converted to strings). If the two full expansions
are equal (as described for \str_if_eq:eeTF) then the associated ⟨code⟩ is left in the
input stream and other cases are discarded. If any of the cases are matched, the ⟨true
code⟩ is also inserted into the input stream (after the code for the appropriate case),
while if none match then the ⟨false code⟩ is inserted. The function \str_case_e:nn,
which does nothing if there is no match, is also available. In \str_case_e:nn(TF), the
⟨test string⟩ is expanded in each comparison, and must always yield the same result:
for example, random numbers must not be used within this string.

\str_case_e:nn ⋆
\str_case_e:en ⋆
\str_case_e:nnTF ⋆
\str_case_e:enTF ⋆

New: 2018-06-19

\str_compare_p:nNn {⟨tl1⟩} ⟨relation⟩ {⟨tl2⟩}
\str_compare:nNnTF {⟨tl1⟩} ⟨relation⟩ {⟨tl2⟩} {⟨true code⟩} {⟨false code⟩}

Compares the two ⟨token lists⟩ on a character by character basis (namely after con-
verting them to strings) in a lexicographic order according to the character codes of the
characters. The ⟨relation⟩ can be <, =, or > and the test is true under the following
conditions:

• for <, if the first string is earlier than the second in lexicographic order;

• for =, if the two strings have exactly the same characters;

• for >, if the first string is later than the second in lexicographic order.

Thus for example the following is logically true:

\str_compare_p:nNn { ab } < { abc }

TEXhackers note: This is a wrapper around the TEX primitive \(pdf)strcmp. It is meant for
programming and not for sorting textual contents, as it simply considers character codes and
not more elaborate considerations of grapheme clusters, locale, etc.

\str_compare_p:nNn ⋆
\str_compare_p:eNe ⋆
\str_compare:nNnTF ⋆
\str_compare:eNeTF ⋆

New: 2021-05-17

17.4 Mapping over strings
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\str_map_function:nN {⟨token list⟩} ⟨function⟩
\str_map_function:NN ⟨str var⟩ ⟨function⟩

Converts the ⟨token list⟩ to a ⟨string⟩ then applies ⟨function⟩ to every ⟨character⟩
in the ⟨string⟩ including spaces.

\str_map_function:nN ✩

\str_map_function:NN ✩

\str_map_function:cN ✩

New: 2017-11-14

133

\str_map_inline:nn {⟨token list⟩} {⟨inline function⟩}
\str_map_inline:Nn ⟨str var⟩ {⟨inline function⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then applies the ⟨inline function⟩ to every
⟨character⟩ in the ⟨str var⟩ including spaces. The ⟨inline function⟩ should consist
of code which receives the ⟨character⟩ as #1.

\str_map_inline:nn
\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_tokens:nn {⟨token list⟩} {⟨code⟩}
\str_map_tokens:Nn ⟨str var⟩ {⟨code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then applies ⟨code⟩ to every ⟨character⟩ in
the ⟨string⟩ including spaces. The ⟨code⟩ receives each character as a trailing brace
group. This is equivalent to \str_map_function:nN if the ⟨code⟩ consists of a single
function.

\str_map_tokens:nn ✩

\str_map_tokens:Nn ✩

\str_map_tokens:cn ✩

New: 2021-05-05

\str_map_variable:nNn {⟨token list⟩} ⟨variable⟩ {⟨code⟩}
\str_map_variable:NNn ⟨str var⟩ ⟨variable⟩ {⟨code⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then stores each ⟨character⟩ in the ⟨string⟩
(including spaces) in turn in the (string or token list) ⟨variable⟩ and applies the ⟨code⟩.
The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced. The
assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨character⟩
in the ⟨string⟩, or its original value if the ⟨string⟩ is empty. See also \str_map_-
inline:Nn.

\str_map_variable:nNn
\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_break:

Used to terminate a \str_map_... function before all characters in the ⟨string⟩ have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_... scenario leads to low level
TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

\str_map_break: ✩

New: 2017-10-08

134

\str_map_break:n {⟨code⟩}

Used to terminate a \str_map_... function before all characters in the ⟨string⟩ have
been processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }

% Do something useful
}

Use outside of a \str_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\str_map_break:n ✩

New: 2017-10-08

17.5 Working with the content of strings

\str_use:N ⟨str var⟩

Recovers the content of a ⟨str var⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
⟨str⟩ directly without an accessor function.

\str_use:N ⋆
\str_use:c ⋆

New: 2015-09-18

\str_count:n {⟨token list⟩}\str_count:N ⋆
\str_count:c ⋆
\str_count:n ⋆
\str_count_ignore_spaces:n ⋆

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of ⟨token
list⟩, as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {⟨token list⟩}

Leaves in the input stream the number of space characters in the string representation of
⟨token list⟩, as an integer denotation. Of course, this function has no _ignore_spaces
variant.

\str_count_spaces:N ⋆
\str_count_spaces:c ⋆
\str_count_spaces:n ⋆

New: 2015-09-18

135

\str_head:n {⟨token list⟩}\str_head:N ⋆
\str_head:c ⋆
\str_head:n ⋆
\str_head_ignore_spaces:n ⋆

New: 2015-09-18

Converts the ⟨token list⟩ into a ⟨string⟩. The first character in the ⟨string⟩ is
then left in the input stream, with category code “other”. The functions differ if the
first character is a space: \str_head:N and \str_head:n return a space token with
category code 10 (blank space), while the \str_head_ignore_spaces:n function ignores
this space character and leaves the first non-space character in the input stream. If the
⟨string⟩ is empty (or only contains spaces in the case of the _ignore_spaces function),
then nothing is left on the input stream.

\str_tail:n {⟨token list⟩}\str_tail:N ⋆
\str_tail:c ⋆
\str_tail:n ⋆
\str_tail_ignore_spaces:n ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, removes the first character, and leaves the
remaining characters (if any) in the input stream, with category codes 12 and 10 (for
spaces). The functions differ in the case where the first character is a space: \str_tail:N
and \str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the
first non-space character and any space before it. If the ⟨token list⟩ is empty (or blank
in the case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:nn {⟨token list⟩} {⟨integer expression⟩}\str_item:Nn ⋆
\str_item:nn ⋆
\str_item_ignore_spaces:nn ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the char-
acter in position ⟨integer expression⟩ of the ⟨string⟩, starting at 1 for the first
(left-most) character. In the case of \str_item:Nn and \str_item:nn, all characters
including spaces are taken into account. The \str_item_ignore_spaces:nn function
skips spaces when counting characters. If the ⟨integer expression⟩ is negative, char-
acters are counted from the end of the ⟨string⟩. Hence, −1 is the right-most character,
etc.

136

\str_range:nnn {⟨token list⟩} {⟨start index⟩} {⟨end index⟩}\str_range:Nnn ⋆
\str_range:cnn ⋆
\str_range:nnn ⋆
\str_range_ignore_spaces:nnn ⋆

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the characters
from the ⟨start index⟩ to the ⟨end index⟩ inclusive. Spaces are preserved and counted
as items (contrast this with \tl_range:nnn where spaces are not counted as items and
are possibly discarded from the output).

Here ⟨start index⟩ and ⟨end index⟩ should be integer denotations. For describing
in detail the functions’ behavior, let m and n be the start and end index respectively.
If either is 0, the result is empty. A positive index means ‘start counting from the left
end’, a negative index means ‘start counting from the right end’. Let l be the count of
the token list.

The actual start point is determined as M = m if m > 0 and as M = l + m + 1
if m < 0. Similarly the actual end point is N = n if n > 0 and N = l + n + 1 if n < 0.
If M > N , the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s ≤ 0 or s > l. For
instance,

\iow_term:e { \str_range:nnn { abcdef } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:e { \str_range:nnn { abcdef } { -2 } { -1 } }
\iow_term:e { \str_range:nnn { abcdef } { 0 } { -1 } }

prints bcde, cdef, ef, and an empty line to the terminal. The ⟨start index⟩ must
always be smaller than or equal to the ⟨end index⟩: if this is not the case then no
output is generated. Thus

\iow_term:e { \str_range:nnn { abcdef } { 5 } { 2 } }
\iow_term:e { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed

before starting the job. The input

\iow_term:e { \str_range:nnn { abcdefg } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range:nnn { abcdefg } { -6 } { -3 } }

\iow_term:e { \str_range:nnn { abc~efg } { 2 } { 5 } }
\iow_term:e { \str_range:nnn { abc~efg } { 2 } { -3 } }
\iow_term:e { \str_range:nnn { abc~efg } { -6 } { 5 } }
\iow_term:e { \str_range:nnn { abc~efg } { -6 } { -3 } }

\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

137

\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

17.6 Modifying string variables

\str_replace_once:Nnn ⟨str var⟩ {⟨old⟩} {⟨new⟩}

Converts the ⟨old⟩ and ⟨new⟩ token lists to strings, then replaces the first (leftmost)
occurrence of ⟨old string⟩ in the ⟨str var⟩ with ⟨new string⟩.

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn ⟨str var⟩ {⟨old⟩} {⟨new⟩}

Converts the ⟨old⟩ and ⟨new⟩ token lists to strings, then replaces all occurrences of ⟨old
string⟩ in the ⟨str var⟩ with ⟨new string⟩. As this function operates from left to
right, the pattern ⟨old string⟩ may remain after the replacement (see \str_remove_-
all:Nn for an example).

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then removes the first (leftmost) occurrence
of ⟨string⟩ from the ⟨str var⟩.

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn ⟨str var⟩ {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨string⟩ then removes all occurrences of ⟨string⟩ from
the ⟨str var⟩. As this function operates from left to right, the pattern ⟨string⟩ may
remain after the removal, for instance,

\str_set:Nn \l_tmpa_str {abbccd} \str_remove_all:Nn \l_tmpa_str
{bc}

results in \l_tmpa_str containing abcd.

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

138

17.7 String manipulation

\str_lowercase:n {⟨tokens⟩}
\str_uppercase:n {⟨tokens⟩}

Converts the input ⟨tokens⟩ to their string representation, as described for \tl_to_-
str:n, and then to the lower or upper case representation using a one-to-one mapping
as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2
{
\cs_set_protected:cpn
{
user
\str_uppercase:f { \tl_head:n {#1} }
\str_lowercase:f { \tl_tail:n {#1} }

}
{ #2 }

}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

• Caseless comparisons: use \str_casefold:n for this situation (case folding is dis-
tinct from lower casing).

• Case changing text for typesetting: see the \text_lowercase:n(n), \text_-
uppercase:n(n) and \text_titlecase_(all|once):n(n) functions which cor-
rectly deal with context-dependence and other factors appropriate to text case
changing.

\str_lowercase:n ⋆
\str_lowercase:f ⋆
\str_uppercase:n ⋆
\str_uppercase:f ⋆

New: 2019-11-26

139

\str_casefold:n {⟨tokens⟩}

Converts the input ⟨tokens⟩ to their string representation, as described for \tl_to_-
str:n, and then folds the case of the resulting ⟨string⟩ to remove case information. The
result of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_casefold:n follows the mappings provided by the Unicode
Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined
by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-insensitive
process, there is no special treatment of Turkic input (i.e. I always folds to i and not to
ı).

\str_casefold:n ⋆
\str_casefold:V ⋆

New: 2022-10-16

\str_mdfive_hash:n {⟨tl⟩}

Expands to the MD5 sum generated from the ⟨tl⟩, which is converted to a ⟨string⟩ as
described for \tl_to_str:n.

\str_mdfive_hash:n ⋆
\str_mdfive_hash:e ⋆

New: 2023-05-19

17.8 Viewing strings

\str_show:N ⟨str var⟩

Displays the content of the ⟨str var⟩ on the terminal.
\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18

Updated: 2021-04-29

\str_log:N ⟨str var⟩

Writes the content of the ⟨str var⟩ in the log file.
\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15

Updated: 2021-04-29

140

http://www.unicode.org

http://www.unicode.org

http://www.unicode.org/faq/casemap_charprop.html#2

17.9 Constant strings

Constant strings, containing a single character token, with category code 12.\c_ampersand_str
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
\c_zero_str

New: 2015-09-19

Updated: 2020-12-22

Constant that is always empty.\c_empty_str

New: 2023-12-07

17.10 Scratch strings

Scratch strings for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_str
\l_tmpb_str

Scratch strings for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str
\g_tmpb_str

141

Chapter 18

The l3str-convert module
String encoding conversions

18.1 Encoding and escaping schemes
Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., pdf string objects, urls). Hence, storing
a string of characters is done in two steps.

• The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be utf-16, iso 8859-1, etc. See Table 1 for a list of supported
encodings.6

• Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.6

6Encodings and escapings will be added as they are requested.

142

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

⟨Encoding⟩ description
utf8 utf-8
utf16 utf-16, with byte-order mark
utf16be utf-16, big-endian
utf16le utf-16, little-endian
utf32 utf-32, with byte-order mark
utf32be utf-32, big-endian
utf32le utf-32, little-endian

iso88591, latin1 iso 8859-1
iso88592, latin2 iso 8859-2
iso88593, latin3 iso 8859-3
iso88594, latin4 iso 8859-4

iso88595 iso 8859-5
iso88596 iso 8859-6
iso88597 iso 8859-7
iso88598 iso 8859-8

iso88599, latin5 iso 8859-9
iso885910, latin6 iso 8859-10

iso885911 iso 8859-11
iso885913, latin7 iso 8859-13
iso885914, latin8 iso 8859-14
iso885915, latin9 iso 8859-15
iso885916, latin10 iso 8859-16

clist comma-list of integers
⟨empty⟩ native (Unicode) string
default like utf8 with 8-bit engines, and like native with unicode-engines

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

⟨Escaping⟩ description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits

name see \pdfescapename
string see \pdfescapestring
url encoding used in urls

143

18.2 Conversion functions

\str_set_convert:Nnnn ⟨str var⟩ {⟨string⟩} {⟨name 1⟩} {⟨name 2⟩}

This function converts the ⟨string⟩ from the encoding given by ⟨name 1⟩ to the encoding
given by ⟨name 2⟩, and stores the result in the ⟨str var⟩. Each ⟨name⟩ can have the
form ⟨encoding⟩ or ⟨encoding⟩/⟨escaping⟩, where the possible values of ⟨encoding⟩
and ⟨escaping⟩ are given in Tables 1 and 2, respectively. The default escaping is to
input and output bytes directly. The special case of an empty ⟨name⟩ indicates the use
of “native” strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }

results in the variable \l_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the utf-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the ⟨string⟩ is not valid according to the ⟨escaping 1⟩ and
⟨encoding 1⟩, or if it cannot be reencoded in the ⟨encoding 2⟩ and ⟨escaping 2⟩ (for
instance, if a character does not exist in the ⟨encoding 2⟩). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the ⟨encoding 2⟩,
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF ⟨str var⟩ {⟨string⟩} {⟨name 1⟩} {⟨name 2⟩} {⟨true code⟩}
{⟨false code⟩}

As \str_set_convert:Nnnn, converts the ⟨string⟩ from the encoding given by ⟨name 1⟩
to the encoding given by ⟨name 2⟩, and assigns the result to ⟨str var⟩. Contrarily
to \str_set_convert:Nnnn, the conditional variant does not raise errors in case the
⟨string⟩ is not valid according to the ⟨name 1⟩ encoding, or cannot be expressed in the
⟨name 2⟩ encoding. Instead, the ⟨false code⟩ is performed.

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

18.3 Conversion by expansion (for PDF contexts)
A small number of expandable functions are provided for use in PDF string/name con-
texts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n ⟨string⟩

As \str_set_convert:Nnnn, converts the ⟨string⟩ on a byte-by-byte basis with non-
ASCII codepoints escaped using hashes.

\str_convert_pdfname:n ⋆

18.4 Possibilities, and things to do
Encoding/escaping-related tasks.

144

• In X ETEX/LuaTEX, would it be better to use the ^^^^.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ^ the category
superscript, and use \scantokens.

• Change \str_set_convert:Nnnn to expand its last two arguments.

• Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

• Add documentation about each encoding and escaping method, and add examples.

• The hex unescaping should raise an error for odd-token count strings.

• Decide what bytes should be escaped in the url escaping. Perhaps the characters
!’()*-./0123456789_ are safe, and all other characters should be escaped?

• Automate generation of 8-bit mapping files.

• Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

• More encodings (see Heiko’s stringenc). CESU?

• More escapings: ascii85, shell escapes, lua escapes, etc.?

145

Chapter 19

The l3quark module
Quarks and scan marks

Two special types of constants in LATEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

19.1 Quarks
Quarks are control sequences (and in fact, token lists) that expand to themselves and
should therefore never be executed directly in the code. This would result in an endless
loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}

one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get:NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\q_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \tl_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster.

146

19.2 Defining quarks

\quark_new:N ⟨quark⟩

Creates a new ⟨quark⟩ which expands only to ⟨quark⟩. The ⟨quark⟩ is defined globally,
and an error message is raised if the name was already taken.

\quark_new:N

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

\q_stop

Used as a marker for delimited arguments when \q_stop is already in use.\q_mark

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

\q_nil

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

\q_no_value

19.3 Quark tests
The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N ⟨token⟩
\quark_if_nil:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is equal to \q_nil.

\quark_if_nil_p:N ⋆
\quark_if_nil:NTF ⋆

\quark_if_nil_p:n {⟨token list⟩}
\quark_if_nil:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ contains only \q_nil (distinct from ⟨token list⟩ being empty
or containing \q_nil plus one or more other tokens).

\quark_if_nil_p:n ⋆
\quark_if_nil_p:(o|V) ⋆
\quark_if_nil:nTF ⋆
\quark_if_nil:(o|V)TF ⋆

\quark_if_no_value_p:N ⟨token⟩
\quark_if_no_value:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is equal to \q_no_value.

\quark_if_no_value_p:N ⋆
\quark_if_no_value_p:c ⋆
\quark_if_no_value:NTF ⋆
\quark_if_no_value:cTF ⋆

\quark_if_no_value_p:n {⟨token list⟩}
\quark_if_no_value:nTF {⟨token list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token list⟩ contains only \q_no_value (distinct from ⟨token list⟩ being
empty or containing \q_no_value plus one or more other tokens).

\quark_if_no_value_p:n ⋆
\quark_if_no_value:nTF ⋆

147

19.4 Recursion
This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 19.4.1.

This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_tail

This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\q_recursion_stop

\quark_if_recursion_tail_stop:N ⟨token⟩\quark_if_recursion_tail_stop:N ⋆

Tests if ⟨token⟩ contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n {⟨token list⟩}\quark_if_recursion_tail_stop:n ⋆
\quark_if_recursion_tail_stop:o ⋆

Updated: 2011-09-06

Tests if the ⟨token list⟩ contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn ⟨token⟩ {⟨insertion⟩}\quark_if_recursion_tail_stop_do:Nn ⋆

Tests if ⟨token⟩ contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The ⟨insertion⟩ code is then added to the
input stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn {⟨token list⟩} {⟨insertion⟩}\quark_if_recursion_tail_stop_do:nn ⋆
\quark_if_recursion_tail_stop_do:on ⋆

Updated: 2011-09-06

Tests if the ⟨token list⟩ contains only \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The ⟨insertion⟩ code is then added to the
input stream after the recursion has ended.

148

\quark_if_recursion_tail_break:nN {⟨token list⟩}
\⟨type⟩_map_break:

\quark_if_recursion_tail_break:NN ⋆
\quark_if_recursion_tail_break:nN ⋆

New: 2018-04-10

Tests if ⟨token list⟩ contains only \q_recursion_tail, and if so terminates the recur-
sion using \⟨type⟩_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \⟨type⟩_map_break:.

19.4.1 An example of recursion with quarks
Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]~} would produce “[–a–b–] [–c–d–] ”. Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2
{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail
\q_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn
{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to LATEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

149

19.5 Scan marks
Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see l3regex).

\scan_new:N ⟨scan mark⟩

Creates a new ⟨scan mark⟩ which is set equal to \scan_stop:. The ⟨scan mark⟩ is
defined globally, and an error message is raised if the name was already taken by another
scan mark.

\scan_new:N

New: 2018-04-01

Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
none_delimit_by_s_stop:w.

\s_stop

New: 2018-04-01

\use_none_delimit_by_s_stop:w ⟨tokens⟩ \s_stop\use_none_delimit_by_s_stop:w ⋆

New: 2018-04-01

Removes the ⟨tokens⟩ and \s_stop from the input stream. This leads to a low-level
TEX error if \s_stop is absent.

150

Chapter 20

The l3seq module
Sequences and stacks

LATEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any ⟨balanced text⟩. It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in LATEX3. This is achieved
using a number of dedicated stack functions.

20.1 Creating and initialising sequences

\seq_new:N ⟨seq var⟩

Creates a new ⟨seq var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨seq var⟩ initially contains no items.

\seq_new:N
\seq_new:c

\seq_clear:N ⟨seq var⟩

Clears all items from the ⟨seq var⟩.
\seq_clear:N
\seq_clear:c
\seq_gclear:N
\seq_gclear:c

\seq_clear_new:N ⟨seq var⟩

Ensures that the ⟨seq var⟩ exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the ⟨seq var⟩ empty.

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN ⟨seq var1⟩ ⟨seq var2⟩

Sets the content of ⟨seq var1⟩ equal to that of ⟨seq var2⟩.
\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

151

\seq_set_from_clist:NN ⟨seq var⟩ ⟨comma-list⟩\seq_set_from_clist:NN
\seq_set_from_clist:(cN|Nc|cc)
\seq_set_from_clist:Nn
\seq_set_from_clist:cn
\seq_gset_from_clist:NN
\seq_gset_from_clist:(cN|Nc|cc)
\seq_gset_from_clist:Nn
\seq_gset_from_clist:cn

New: 2014-07-17

Converts the data in the ⟨comma list⟩ into a ⟨seq var⟩: the original ⟨comma list⟩ is
unchanged.

\seq_const_from_clist:Nn ⟨seq var⟩ {⟨comma-list⟩}

Creates a new constant ⟨seq var⟩ or raises an error if the name is already taken. The
⟨seq var⟩ is set globally to contain the items in the ⟨comma list⟩.

\seq_const_from_clist:Nn
\seq_const_from_clist:cn

New: 2017-11-28

\seq_set_split:Nnn ⟨seq var⟩ {⟨delimiter⟩} {⟨token list⟩}\seq_set_split:Nnn
\seq_set_split:(NVn|NnV|NVV|Nne|Nee)
\seq_gset_split:Nnn
\seq_gset_split:(NVn|NnV|NVV|Nne|Nee)

New: 2011-08-15

Updated: 2012-07-02

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result
to the ⟨seq var⟩. Spaces on both sides of each ⟨item⟩ are ignored, then one set of outer
braces is removed (if any); this space trimming behaviour is identical to that of l3clist
functions. Empty ⟨items⟩ are preserved by \seq_set_split:Nnn, and can be removed
afterwards using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain
{, } or # (assuming TEX’s normal category code régime). If the ⟨delimiter⟩ is empty,
the ⟨token list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split_-
keep_spaces:Nnn, which omits space stripping.

\seq_set_split_keep_spaces:Nnn ⟨seq var⟩ {⟨delimiter⟩} {⟨token list⟩}\seq_set_split_keep_spaces:Nnn
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn
\seq_gset_split_keep_spaces:NnV

New: 2021-03-24

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result
to the ⟨seq var⟩. One set of outer braces is removed (if any) but any surrounding spaces
are retained: any braces inside one or more spaces are therefore kept. Empty ⟨items⟩
are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards
using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain {, } or #
(assuming TEX’s normal category code régime). If the ⟨delimiter⟩ is empty, the ⟨token
list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split:Nnn, which
removes spaces around the delimiters.

152

\seq_set_filter:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline boolexpr⟩}

Evaluates the ⟨inline boolexpr⟩ for every ⟨item⟩ stored within the ⟨seq var2⟩. The
⟨inline boolexpr⟩ receives the ⟨item⟩ as #1. The sequence of all ⟨items⟩ for which
the ⟨inline boolexpr⟩ evaluated to true is assigned to ⟨seq var1⟩.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_filter:NNn
\seq_gset_filter:NNn

New: 2012-06-15

\seq_concat:NNN ⟨seq var1⟩ ⟨seq var2⟩ ⟨seq var3⟩

Concatenates the content of ⟨seq var2⟩ and ⟨seq var3⟩ together and saves the result in
⟨seq var1⟩. The items in ⟨seq var2⟩ are placed at the left side of the new sequence.

\seq_concat:NNN
\seq_concat:ccc
\seq_gconcat:NNN
\seq_gconcat:ccc

\seq_if_exist_p:N ⟨seq var⟩
\seq_if_exist:NTF ⟨seq var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨seq var⟩ is currently defined. This does not check that the ⟨seq var⟩
really is a sequence variable.

\seq_if_exist_p:N ⋆
\seq_if_exist_p:c ⋆
\seq_if_exist:NTF ⋆
\seq_if_exist:cTF ⋆

New: 2012-03-03

20.2 Appending data to sequences

\seq_put_left:Nn ⟨seq var⟩ {⟨item⟩}\seq_put_left:Nn
\seq_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gput_left:Nn
\seq_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the ⟨item⟩ to the left of the ⟨seq var⟩.

\seq_put_right:Nn ⟨seq var⟩ {⟨item⟩}\seq_put_right:Nn
\seq_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gput_right:Nn
\seq_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the ⟨item⟩ to the right of the ⟨seq var⟩.

20.3 Recovering items from sequences
Items can be recovered from either the left or the right of sequences. For implementation
reasons, the actions at the left of the sequence are faster than those acting on the right.
These functions all assign the recovered material locally, i.e. setting the ⟨token list
variable⟩ used with \tl_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN ⟨seq var⟩ ⟨token list variable⟩

Stores the left-most item from a ⟨seq var⟩ in the ⟨token list variable⟩ without re-
moving it from the ⟨seq var⟩. The ⟨token list variable⟩ is assigned locally. If
⟨seq var⟩ is empty the ⟨token list variable⟩ is set to the special marker \q_no_-
value.

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

153

\seq_get_right:NN ⟨seq var⟩ ⟨token list variable⟩

Stores the right-most item from a ⟨seq var⟩ in the ⟨token list variable⟩ without
removing it from the ⟨seq var⟩. The ⟨token list variable⟩ is assigned locally. If
⟨seq var⟩ is empty the ⟨token list variable⟩ is set to the special marker \q_no_-
value.

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

\seq_pop_left:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the left-most item from a ⟨seq var⟩ into the ⟨token list variable⟩, i.e. removes
the item from the sequence and stores it in the ⟨token list variable⟩. Both of the
variables are assigned locally. If ⟨seq var⟩ is empty the ⟨token list variable⟩ is set
to the special marker \q_no_value.

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the left-most item from a ⟨seq var⟩ into the ⟨token list variable⟩, i.e. removes
the item from the sequence and stores it in the ⟨token list variable⟩. The ⟨seq var⟩
is modified globally, while the assignment of the ⟨token list variable⟩ is local. If
⟨seq var⟩ is empty the ⟨token list variable⟩ is set to the special marker \q_no_-
value.

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the right-most item from a ⟨seq var⟩ into the ⟨token list variable⟩, i.e. re-
moves the item from the sequence and stores it in the ⟨token list variable⟩. Both of
the variables are assigned locally. If ⟨seq var⟩ is empty the ⟨token list variable⟩ is
set to the special marker \q_no_value.

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the right-most item from a ⟨seq var⟩ into the ⟨token list variable⟩, i.e. re-
moves the item from the sequence and stores it in the ⟨token list variable⟩. The
⟨seq var⟩ is modified globally, while the assignment of the ⟨token list variable⟩ is
local. If ⟨seq var⟩ is empty the ⟨token list variable⟩ is set to the special marker
\q_no_value.

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn ⟨seq var⟩ {⟨integer expression⟩}

Indexing items in the ⟨seq var⟩ from 1 at the top (left), this function evaluates the
⟨integer expression⟩ and leaves the appropriate item from the sequence in the input
stream. If the ⟨integer expression⟩ is negative, indexing occurs from the bottom
(right) of the sequence. If the ⟨integer expression⟩ is larger than the number of items
in the ⟨seq var⟩ (as calculated by \seq_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\seq_item:Nn ⋆
\seq_item:(NV|Ne|cn|cV|ce) ⋆

New: 2014-07-17

154

\seq_rand_item:N ⟨seq var⟩

Selects a pseudo-random item of the ⟨seq var⟩. If the ⟨seq var⟩ is empty the result is
empty. This is not available in older versions of X ETEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\seq_rand_item:N ⋆
\seq_rand_item:c ⋆

New: 2016-12-06

20.4 Recovering values from sequences with branch-
ing

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨seq var⟩ is non-empty, stores the left-most item from the ⟨seq var⟩ in the ⟨token
list variable⟩ without removing it from the ⟨seq var⟩, then leaves the ⟨true code⟩
in the input stream. The ⟨token list variable⟩ is assigned locally.

\seq_get_left:NNTF
\seq_get_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_get_right:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the
⟨token list variable⟩ is not defined in this case and should not be relied upon. If the
⟨seq var⟩ is non-empty, stores the right-most item from the ⟨seq var⟩ in the ⟨token
list variable⟩ without removing it from the ⟨seq var⟩, then leaves the ⟨true code⟩
in the input stream. The ⟨token list variable⟩ is assigned locally.

\seq_get_right:NNTF
\seq_get_right:cNTF

New: 2012-05-19

\seq_pop_left:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨seq var⟩ is non-empty, pops the left-most item from the ⟨seq var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩
in the input stream. Both the ⟨seq var⟩ and the ⟨token list variable⟩ are assigned
locally.

\seq_pop_left:NNTF
\seq_pop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop_left:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the
⟨token list variable⟩ is not defined in this case and should not be relied upon. If the
⟨seq var⟩ is non-empty, pops the left-most item from the ⟨seq var⟩ in the ⟨token list
variable⟩, i.e. removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the
input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is
assigned locally.

\seq_gpop_left:NNTF
\seq_gpop_left:cNTF

New: 2012-05-14

Updated: 2012-05-19

155

\seq_pop_right:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩
in the input stream. Both the ⟨seq var⟩ and the ⟨token list variable⟩ are assigned
locally.

\seq_pop_right:NNTF
\seq_pop_right:cNTF

New: 2012-05-19

\seq_gpop_right:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon.
If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the
⟨token list variable⟩, i.e. removes the item from the ⟨seq var⟩, then leaves the
⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token
list variable⟩ is assigned locally.

\seq_gpop_right:NNTF
\seq_gpop_right:cNTF

New: 2012-05-19

20.5 Modifying sequences
While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N ⟨seq var⟩

Removes duplicate items from the ⟨seq var⟩, leaving the left most copy of each item in
the ⟨seq var⟩. The ⟨item⟩ comparison takes place on a token basis, as for \tl_if_-
eq:nnTF.

TEXhackers note: This function iterates through every item in the ⟨seq var⟩ and does a
comparison with the ⟨items⟩ already checked. It is therefore relatively slow with large sequences.

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_remove_all:Nn ⟨seq var⟩ {⟨item⟩}\seq_remove_all:Nn
\seq_remove_all:(NV|Ne|cn|cV|ce)
\seq_gremove_all:Nn
\seq_gremove_all:(NV|Ne|cn|cV|ce)

Removes every occurrence of ⟨item⟩ from the ⟨seq var⟩. The ⟨item⟩ comparison takes
place on a token basis, as for \tl_if_eq:nnTF.

\seq_set_item:Nnn ⟨seq var⟩ {⟨int expr⟩} {⟨item⟩}
\seq_set_item:NnnTF ⟨seq var⟩ {⟨int expr⟩} {⟨item⟩} {⟨true code⟩} {⟨false code⟩}

Removes the item of ⟨seq var⟩ at the position given by evaluating the ⟨int expr⟩ and
replaces it by ⟨item⟩. Items are indexed from 1 on the left/top of the ⟨seq var⟩, or
from −1 on the right/bottom. If the ⟨int expr⟩ is zero or is larger (in absolute value)
than the number of items in the sequence, the ⟨seq var⟩ is not modified. In these cases,
\seq_set_item:Nnn raises an error while \seq_set_item:NnnTF runs the ⟨false code⟩.
In cases where the assignment was successful, ⟨true code⟩ is run afterwards.

\seq_set_item:Nnn
\seq_set_item:cnn
\seq_set_item:NnnTF
\seq_set_item:cnnTF
\seq_gset_item:Nnn
\seq_gset_item:cnn
\seq_gset_item:NnnTF
\seq_gset_item:cnnTF

New: 2021-04-29

156

\seq_reverse:N ⟨seq var⟩

Reverses the order of the items stored in the ⟨seq var⟩.
\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

\seq_sort:Nn ⟨seq var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨seq var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨seq var⟩. The details of sorting comparison are described in Section 6.1.

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

\seq_shuffle:N ⟨seq var⟩

Sets the ⟨seq var⟩ to the result of placing the items of the ⟨seq var⟩ in a random order.
Each item is (roughly) as likely to end up in any given position.

TEXhackers note: For sequences with more than 13 items or so, only a small proportion
of all possible permutations can be reached, because the random seed \sys_rand_seed: only
has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535
items (depending on the engine) cannot be shuffled.

\seq_shuffle:N
\seq_shuffle:c
\seq_gshuffle:N
\seq_gshuffle:c

New: 2018-04-29

20.6 Sequence conditionals

\seq_if_empty_p:N ⟨seq var⟩
\seq_if_empty:NTF ⟨seq var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨seq var⟩ is empty (containing no items).

\seq_if_empty_p:N ⋆
\seq_if_empty_p:c ⋆
\seq_if_empty:NTF ⋆
\seq_if_empty:cTF ⋆

\seq_if_in:NnTF ⟨seq var⟩ {⟨item⟩} {⟨true code⟩} {⟨false code⟩}\seq_if_in:NnTF
\seq_if_in:(NV|Nv|Ne|No|cn|cV|cv|ce|co)TF

Tests if the ⟨item⟩ is present in the ⟨seq var⟩.

20.7 Mapping over sequences
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\seq_map_function:NN ⟨seq var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ stored in the ⟨seq var⟩. The ⟨function⟩ will
receive one argument for each iteration. The ⟨items⟩ are returned from left to right.
To pass further arguments to the ⟨function⟩, see \seq_map_tokens:Nn. The function
\seq_map_inline:Nn is faster than \seq_map_function:NN for sequences with more
than about 10 items.

\seq_map_function:NN ✩

\seq_map_function:cN ✩

Updated: 2012-06-29

157

\seq_map_inline:Nn ⟨seq var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The ⟨items⟩ are
returned from left to right.

\seq_map_inline:Nn
\seq_map_inline:cn

Updated: 2012-06-29

\seq_map_tokens:Nn ⟨seq var⟩ {⟨code⟩}

Analogue of \seq_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each item in the ⟨seq var⟩ as a trailing brace group. For
instance,

\seq_map_tokens:Nn \l_my_seq { \prg_replicate:nn { 2 } }

expands to twice each item in the ⟨seq var⟩: for each item in \l_my_seq the function
\prg_replicate:nn receives 2 and ⟨item⟩ as its two arguments. The function \seq_-
map_inline:Nn is typically faster but it is not expandable.

\seq_map_tokens:Nn ✩

\seq_map_tokens:cn ✩

New: 2019-08-30

\seq_map_variable:NNn ⟨seq var⟩ ⟨variable⟩ {⟨code⟩}\seq_map_variable:NNn
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each ⟨item⟩ of the ⟨seq var⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨seq var⟩, or its original value if the ⟨seq var⟩ is empty. The ⟨items⟩ are returned
from left to right.

\seq_map_indexed_function:NN ⟨seq var⟩ ⟨function⟩\seq_map_indexed_function:NN ✩

New: 2018-05-03

Applies ⟨function⟩ to every entry in the ⟨seq var⟩. The ⟨function⟩ should have sig-
nature :nn. It receives two arguments for each iteration: the ⟨index⟩ (namely 1 for the
first entry, then 2 and so on) and the ⟨item⟩.

\seq_map_indexed_inline:Nn ⟨seq var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every entry in the ⟨seq var⟩. The ⟨inline function⟩
should consist of code which receives the ⟨index⟩ (namely 1 for the first entry, then 2
and so on) as #1 and the ⟨item⟩ as #2.

\seq_map_indexed_inline:Nn

New: 2018-05-03

\seq_map_pairwise_function:NNN ⟨seq1⟩ ⟨seq2⟩ ⟨function⟩\seq_map_pairwise_function:NNN ✩

\seq_map_pairwise_function:(NcN|cNN|ccN) ✩

New: 2023-05-10

Applies ⟨function⟩ to every pair of items ⟨seq1-item⟩–⟨seq2-item⟩ from the two se-
quences, returning items from both sequences from left to right. The ⟨function⟩ receives
two n-type arguments for each iteration. The mapping terminates when the end of ei-
ther sequence is reached (i.e. whichever sequence has fewer items determines how many
iterations occur).

158

\seq_map_break:

Used to terminate a \seq_map_... function before all entries in the ⟨seq var⟩ have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\seq_map_break: ✩

Updated: 2012-06-29

\seq_map_break:n {⟨code⟩}

Used to terminate a \seq_map_... function before all entries in the ⟨seq var⟩ have been
processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \seq_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\seq_map_break:n ✩

Updated: 2012-06-29

\seq_set_map:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var2⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The sequence
resulting applying ⟨inline function⟩ to each ⟨item⟩ is assigned to ⟨seq var1⟩.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22

Updated: 2020-07-16

159

\seq_set_map_e:NNn ⟨seq var1⟩ ⟨seq var2⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨seq var2⟩. The ⟨inline
function⟩ should consist of code which will receive the ⟨item⟩ as #1. The sequence
resulting from e-expanding ⟨inline function⟩ applied to each ⟨item⟩ is assigned to
⟨seq var1⟩. As such, the code in ⟨inline function⟩ should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_set_map_e:NNn
\seq_gset_map_e:NNn

New: 2020-07-16

Updated: 2023-10-26

\seq_count:N ⟨seq var⟩

Leaves the number of items in the ⟨seq var⟩ in the input stream as an ⟨integer
denotation⟩. The total number of items in a ⟨seq var⟩ includes those which are empty
and duplicates, i.e. every item in a ⟨seq var⟩ is unique.

\seq_count:N ⋆
\seq_count:c ⋆

New: 2012-07-13

20.8 Using the content of sequences directly

\seq_use:Nnnn ⟨seq var⟩ {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}

Places the contents of the ⟨seq var⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. Namely, if the sequence has more than two items,
the ⟨separator between more than two⟩ is placed between each pair of items except
the last, for which the ⟨separator between final two⟩ is used. If the sequence has
exactly two items, then they are placed in the input stream separated by the ⟨separator
between two⟩. If the sequence has a single item, it is placed in the input stream, and
an empty sequence produces no output. An error is raised if the variable does not exist
or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\seq_use:Nnnn ⋆
\seq_use:cnnn ⋆

New: 2013-05-26

160

\seq_use:Nn ⟨seq var⟩ {⟨separator⟩}

Places the contents of the ⟨seq var⟩ in the input stream, with the ⟨separator⟩ between
the items. If the sequence has a single item, it is placed in the input stream with no
⟨separator⟩, and an empty sequence produces no output. An error is raised if the
variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nn \l_tmpa_seq { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\seq_use:Nn ⋆
\seq_use:cn ⋆

New: 2013-05-26

20.9 Sequences as stacks
Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN ⟨seq var⟩ ⟨token list variable⟩

Reads the top item from a ⟨seq var⟩ into the ⟨token list variable⟩ without removing
it from the ⟨seq var⟩. The ⟨token list variable⟩ is assigned locally. If ⟨seq var⟩ is
empty the ⟨token list variable⟩ is set to the special marker \q_no_value.

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the top item from a ⟨seq var⟩ into the ⟨token list variable⟩. Both of the
variables are assigned locally. If ⟨seq var⟩ is empty the ⟨token list variable⟩ is set
to the special marker \q_no_value.

\seq_pop:NN
\seq_pop:cN

Updated: 2012-05-14

\seq_gpop:NN ⟨seq var⟩ ⟨token list variable⟩

Pops the top item from a ⟨seq var⟩ into the ⟨token list variable⟩. The ⟨seq var⟩
is modified globally, while the ⟨token list variable⟩ is assigned locally. If ⟨seq var⟩
is empty the ⟨token list variable⟩ is set to the special marker \q_no_value.

\seq_gpop:NN
\seq_gpop:cN

Updated: 2012-05-14

\seq_get:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨seq var⟩ is non-empty, stores the top item from a ⟨seq var⟩ in the ⟨token list
variable⟩ without removing it from the ⟨seq var⟩. The ⟨token list variable⟩ is
assigned locally.

\seq_get:NNTF
\seq_get:cNTF

New: 2012-05-14

Updated: 2012-05-19

161

\seq_pop:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon.
If the ⟨seq var⟩ is non-empty, pops the top item from the ⟨seq var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨seq var⟩. Both the ⟨seq var⟩ and
the ⟨token list variable⟩ are assigned locally.

\seq_pop:NNTF
\seq_pop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF ⟨seq var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon.
If the ⟨seq var⟩ is non-empty, pops the top item from the ⟨seq var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨seq var⟩. The ⟨seq var⟩ is modified
globally, while the ⟨token list variable⟩ is assigned locally.

\seq_gpop:NNTF
\seq_gpop:cNTF

New: 2012-05-14

Updated: 2012-05-19

\seq_push:Nn ⟨seq var⟩ {⟨item⟩}\seq_push:Nn
\seq_push:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\seq_gpush:Nn
\seq_gpush:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Adds the {⟨item⟩} to the top of the ⟨seq var⟩.

20.10 Sequences as sets
Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
⟨seq var⟩ only has distinct items, use \seq_remove_duplicates:N ⟨seq var⟩. This
function is relatively slow, and to avoid performance issues one should only use it when
necessary.

Some operations on a set ⟨seq var⟩ are straightforward. For instance, \seq_-
count:N ⟨seq var⟩ expands to the number of items, while \seq_if_in:NnTF ⟨seq var⟩
{⟨item⟩} tests if the ⟨item⟩ is in the set.

Adding an ⟨item⟩ to a set ⟨seq var⟩ can be done by appending it to the ⟨seq var⟩
if it is not already in the ⟨seq var⟩:

\seq_if_in:NnF ⟨seq var⟩ {⟨item⟩}
{ \seq_put_right:Nn ⟨seq var⟩ {⟨item⟩} }

Removing an ⟨item⟩ from a set ⟨seq var⟩ can be done using \seq_remove_all:Nn,

\seq_remove_all:Nn ⟨seq var⟩ {⟨item⟩}

The intersection of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into
⟨seq var3⟩ by collecting items of ⟨seq var1⟩ which are in ⟨seq var2⟩.

162

\seq_clear:N ⟨seq var3⟩
\seq_map_inline:Nn ⟨seq var1⟩
{
\seq_if_in:NnT ⟨seq var2⟩ {#1}
{ \seq_put_right:Nn ⟨seq var3⟩ {#1} }

}

The code as written here only works if ⟨seq var3⟩ is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\l__⟨pkg⟩_internal_seq, then ⟨seq var3⟩ should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into ⟨seq var3⟩
through

\seq_concat:NNN ⟨seq var3⟩ ⟨seq var1⟩ ⟨seq var2⟩
\seq_remove_duplicates:N ⟨seq var3⟩

or by adding items to (a copy of) ⟨seq var1⟩ one by one
\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{
\seq_if_in:NnF ⟨seq var3⟩ {#1}
{ \seq_put_right:Nn ⟨seq var3⟩ {#1} }

}

The second approach is faster than the first when the ⟨seq var2⟩ is short compared to
⟨seq var1⟩.

The difference of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into ⟨seq var3⟩
by removing items of the ⟨seq var2⟩ from (a copy of) the ⟨seq var1⟩ one by one.

\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{ \seq_remove_all:Nn ⟨seq var3⟩ {#1} }

The symmetric difference of two sets ⟨seq var1⟩ and ⟨seq var2⟩ can be stored into
⟨seq var3⟩ by computing the difference between ⟨seq var1⟩ and ⟨seq var2⟩ and stor-
ing the result as \l__⟨pkg⟩_internal_seq, then the difference between ⟨seq var2⟩ and
⟨seq var1⟩, and finally concatenating the two differences to get the symmetric differ-
ences.

\seq_set_eq:NN \l__⟨pkg⟩_internal_seq ⟨seq var1⟩
\seq_map_inline:Nn ⟨seq var2⟩
{ \seq_remove_all:Nn \l__⟨pkg⟩_internal_seq {#1} }

\seq_set_eq:NN ⟨seq var3⟩ ⟨seq var2⟩
\seq_map_inline:Nn ⟨seq var1⟩
{ \seq_remove_all:Nn ⟨seq var3⟩ {#1} }

\seq_concat:NNN ⟨seq var3⟩ ⟨seq var3⟩ \l__⟨pkg⟩_internal_seq

20.11 Constant and scratch sequences

Constant that is always empty.\c_empty_seq

New: 2012-07-02

163

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_seq
\l_tmpb_seq

New: 2012-04-26

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

20.12 Viewing sequences

\seq_show:N ⟨seq var⟩

Displays the entries in the ⟨seq var⟩ in the terminal.
\seq_show:N
\seq_show:c

Updated: 2021-04-29

\seq_log:N ⟨seq var⟩

Writes the entries in the ⟨seq var⟩ in the log file.
\seq_log:N
\seq_log:c

New: 2014-08-12

Updated: 2021-04-29

164

Chapter 21

The l3int module
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators +,
-, / and * and parentheses can be used within such expressions to carry arithmetic oper-
ations. This module carries out these functions on integer expressions (“⟨int expr⟩”).

21.1 Integer expressions
Throughout this module, (almost) all n-type argument allow for an ⟨intexpr⟩ argument
with the following syntax. The ⟨integer expression⟩ should consist, after expansion,
of +, -, *, /, (,) and of course integer operands. The result is calculated by applying
standard mathematical rules with the following peculiarities:

• / denotes division rounded to the closest integer with ties rounded away from zero;

• there is an error and the overall expression evaluates to zero whenever the absolute
value of any intermediate result exceeds 231 − 1, except in the case of scaling oper-
ations a*b/c, for which a*b may be arbitrarily large (but the operands a, b, c are
still constrained to an absolute value at most 231 − 1);

• parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_show:n { 5 + 4 * 3 - (3 + 4 * 5) }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { 5 }
\int_new:N \l_my_int
\int_set:Nn \l_my_int { 4 }
\int_show:n { \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) }

165

show the same result −6 because \l_my_tl expands to the integer denotation 5 while
the integer variable \l_my_int takes the value 4. As the ⟨integer expression⟩ is fully
expanded from left to right during evaluation, fully expandable and restricted-expandable
functions can both be used, and \exp_not:n and its variants have no effect while \exp_-
not:N may incorrectly interrupt the expression.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an ⟨internal integer⟩, and therefore should be terminated by a space if used in
\int_value:w or in a TEX-style integer assignment.

As all TEX integers, integer operands can also be: \value{⟨LATEX 2ε counter⟩}; dimension
or skip variables, converted to integers in sp; the character code of some character given as
‘⟨char⟩ or ‘\⟨char⟩; octal numbers given as ’ followed by digits from 0 to 7; or hexadecimal
numbers given as " followed by digits and upper case letters from A to F.

166

\int_eval:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ and leaves the result in the input stream as an integer deno-
tation: for positive results an explicit sequence of decimal digits not starting with 0, for
negative results - followed by such a sequence, and 0 for zero. The ⟨int expr⟩ should
consist, after expansion, of +, -, *, /, (,) and of course integer operands. The result is
calculated by applying standard mathematical rules with the following peculiarities:

• / denotes division rounded to the closest integer with ties rounded away from zero;

• there is an error and the overall expression evaluates to zero whenever the ab-
solute value of any intermediate result exceeds 231 − 1, except in the case of scaling
operations a*b/c, for which a*b may be arbitrarily large;

• parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_eval:n { 5 + 4 * 3 - (3 + 4 * 5) }

and

\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { 5 }
\int_new:N \l_my_int
\int_set:Nn \l_my_int { 4 }
\int_eval:n { \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) }

evaluate to −6 because \l_my_tl expands to the integer denotation 5. As the ⟨int expr⟩
is fully expanded from left to right during evaluation, fully expandable and restricted-
expandable functions can both be used, and \exp_not:n and its variants have no effect
while \exp_not:N may incorrectly interrupt the expression.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an ⟨internal integer⟩, and therefore requires suitable termination if used in a
TEX-style integer assignment.

As all TEX integers, integer operands can also be dimension or skip variables, converted to
integers in sp, or octal numbers given as ’ followed by digits other than 8 and 9, or hexadecimal
numbers given as " followed by digits or upper case letters from A to F, or the character code of
some character or one-character control sequence, given as ‘⟨char⟩.

\int_eval:n ⋆

\int_eval:w ⟨int expr⟩

Evaluates the ⟨int expr⟩ as described for \int_eval:n. The end of the expression is
the first token encountered that cannot form part of such an expression. If that token
is \scan_stop: it is removed, otherwise not. Spaces do not terminate the expression.
However, spaces terminate explicit integers, and this may terminate the expression: for
instance, \int_eval:w 1␣+␣1␣9 (with explicit space tokens inserted using ~ in a code
setting) expands to 29 since the digit 9 is not part of the expression. Expansion details,
etc., are as given for \int_eval:n.

\int_eval:w ⋆

New: 2018-03-30

167

\int_sign:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ then leaves 1 or 0 or −1 in the input stream according to the
sign of the result.

\int_sign:n ⋆

New: 2018-11-03

\int_abs:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ as described for \int_eval:n and leaves the absolute value of
the result in the input stream as an ⟨integer denotation⟩ after two expansions.

\int_abs:n ⋆

Updated: 2012-09-26

\int_div_round:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then divides the first value by the
second, and rounds the result to the closest integer. Ties are rounded away from zero.
Note that this is identical to using / directly in an ⟨int expr⟩. The result is left in the
input stream as an ⟨integer denotation⟩ after two expansions.

\int_div_round:nn ⋆

Updated: 2012-09-26

\int_div_truncate:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then divides the first value by the
second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an ⟨integer denotation⟩
after two expansions.

\int_div_truncate:nn ⋆

Updated: 2012-02-09

\int_max:nn {⟨int expr1⟩} {⟨int expr2⟩}
\int_min:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the ⟨int expr⟩s as described for \int_eval:n and leaves either the larger or
smaller value in the input stream as an ⟨integer denotation⟩ after two expansions.

\int_max:nn ⋆
\int_min:nn ⋆

Updated: 2012-09-26

\int_mod:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s as described earlier, then calculates the integer remainder
of dividing the first expression by the second. This is obtained by subtracting \int_div_-
truncate:nn {⟨int expr1⟩} {⟨int expr2⟩} times ⟨int expr2⟩ from ⟨int expr1⟩. Thus, the
result has the same sign as ⟨int expr1⟩ and its absolute value is strictly less than that of
⟨int expr2⟩. The result is left in the input stream as an ⟨integer denotation⟩ after
two expansions.

\int_mod:nn ⋆

Updated: 2012-09-26

21.2 Creating and initialising integers

\int_new:N ⟨integer⟩

Creates a new ⟨integer⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨integer⟩ is initially equal to 0.

\int_new:N
\int_new:c

\int_const:Nn ⟨integer⟩ {⟨int expr⟩}

Creates a new constant ⟨integer⟩ or raises an error if the name is already taken. The
value of the ⟨integer⟩ is set globally to the ⟨int expr⟩.

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

168

\int_zero:N ⟨integer⟩

Sets ⟨integer⟩ to 0.
\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N ⟨integer⟩

Ensures that the ⟨integer⟩ exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the ⟨integer⟩ set to zero.

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN ⟨integer1⟩ ⟨integer2⟩

Sets the content of ⟨integer1⟩ equal to that of ⟨integer2⟩.
\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_if_exist_p:N ⟨int⟩
\int_if_exist:NTF ⟨int⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨int⟩ is currently defined. This does not check that the ⟨int⟩ really
is an integer variable.

\int_if_exist_p:N ⋆
\int_if_exist_p:c ⋆
\int_if_exist:NTF ⋆
\int_if_exist:cTF ⋆

New: 2012-03-03

21.3 Setting and incrementing integers

\int_add:Nn ⟨integer⟩ {⟨int expr⟩}

Adds the result of the ⟨int expr⟩ to the current content of the ⟨integer⟩.
\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N ⟨integer⟩

Decreases the value stored in ⟨integer⟩ by 1.
\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N ⟨integer⟩

Increases the value stored in ⟨integer⟩ by 1.
\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_set:Nn ⟨integer⟩ {⟨int expr⟩}

Sets ⟨integer⟩ to the value of ⟨int expr⟩, which must evaluate to an integer (as de-
scribed for \int_eval:n).

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

Updated: 2011-10-22

169

\int_sub:Nn ⟨integer⟩ {⟨int expr⟩}

Subtracts the result of the ⟨int expr⟩ from the current content of the ⟨integer⟩.
\int_sub:Nn
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Updated: 2011-10-22

21.4 Using integers

\int_use:N ⟨integer⟩

Recovers the content of an ⟨integer⟩ and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Can be omitted in places where an
⟨integer⟩ is required (such as in the first and third arguments of \int_compare:nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\int_use:N ⋆
\int_use:c ⋆

Updated: 2011-10-22

21.5 Integer expression conditionals

\int_compare_p:nNn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩}
\int_compare:nNnTF

{⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨int expr⟩s as described for \int_eval:n. The
two results are then compared using the ⟨relation⟩:

Equal =
Greater than >
Less than <

This function is less flexible than \int_compare:nTF but around 5 times faster.

\int_compare_p:nNn ⋆
\int_compare:nNnTF ⋆

170

\int_compare_p:n
{

⟨int expr1⟩ ⟨relation1⟩
...
⟨int exprN ⟩ ⟨relationN ⟩
⟨int exprN+1⟩

}
\int_compare:nTF

{
⟨int expr1⟩ ⟨relation1⟩
...
⟨int exprN ⟩ ⟨relationN ⟩
⟨int exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

This function evaluates the ⟨int expr⟩s as described for \int_eval:n and compares
consecutive result using the corresponding ⟨relation⟩, namely it compares ⟨int expr1⟩
and ⟨int expr2⟩ using the ⟨relation1⟩, then ⟨int expr2⟩ and ⟨int expr3⟩ using
the ⟨relation2⟩, until finally comparing ⟨int exprN ⟩ and ⟨int exprN+1⟩ using the
⟨relationN ⟩. The test yields true if all comparisons are true. Each ⟨int expr⟩ is
evaluated only once, and the evaluation is lazy, in the sense that if one comparison is
false, then no other ⟨integer expression⟩ is evaluated and no other comparison is
performed. The ⟨relations⟩ can be any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

This function is more flexible than \int_compare:nNnTF but around 5 times slower.

\int_compare_p:n ⋆
\int_compare:nTF ⋆

Updated: 2013-01-13

171

\int_case:nnTF {⟨test int expr⟩}
{

{⟨int expr case1⟩} {⟨code case1⟩}
{⟨int expr case2⟩} {⟨code case2⟩}
...
{⟨int expr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

This function evaluates the ⟨test int expr⟩ and compares this in turn to each of the
⟨int expr cases⟩. If the two are equal then the associated ⟨code⟩ is left in the input
stream and other cases are discarded. If any of the cases are matched, the ⟨true code⟩
is also inserted into the input stream (after the code for the appropriate case), while if
none match then the ⟨false code⟩ is inserted. The function \int_case:nn, which does
nothing if there is no match, is also available. For example

\int_case:nnF
{ 2 * 5 }
{
{ 5 } { Small }
{ 4 + 6 } { Medium }
{ -2 * 10 } { Negative }

}
{ No idea! }

leaves “Medium” in the input stream.

\int_case:nn ⋆
\int_case:nnTF ⋆

New: 2013-07-24

\int_if_odd_p:n {⟨int expr⟩}
\int_if_odd:nTF {⟨int expr⟩}

{⟨true code⟩} {⟨false code⟩}

This function first evaluates the ⟨int expr⟩ as described for \int_eval:n. It then
evaluates if this is odd or even, as appropriate.

\int_if_even_p:n ⋆
\int_if_even:nTF ⋆
\int_if_odd_p:n ⋆
\int_if_odd:nTF ⋆

\int_if_zero_p:n {⟨int expr⟩}
\int_if_zero:nTF {⟨int expr⟩}

{⟨true code⟩} {⟨false code⟩}

This function first evaluates the ⟨int expr⟩ as described for \int_eval:n. It then
evaluates if this is zero or not.

\int_if_zero_p:n ⋆
\int_if_zero:nTF ⋆

New: 2023-05-17

21.6 Integer expression loops

\int_do_until:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨int expr⟩s as described for \int_compare:nNnTF. If the test
is false then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is true.

\int_do_until:nNnn ✩

172

\int_do_while:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨int expr⟩s as described for \int_compare:nNnTF. If the test
is true then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is false.

\int_do_while:nNnn ✩

\int_until_do:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨int expr⟩s as described for \int_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
false. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\int_until_do:nNnn ✩

\int_while_do:nNnn {⟨int expr1⟩} ⟨relation⟩ {⟨int expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨int expr⟩s as described for \int_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
true. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is false.

\int_while_do:nNnn ✩

\int_do_until:nn {⟨integer relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the ⟨integer
relation⟩ as described for \int_compare:nTF. If the test is false then the ⟨code⟩ is
inserted into the input stream again and a loop occurs until the ⟨relation⟩ is true.

\int_do_until:nn ✩

Updated: 2013-01-13

\int_do_while:nn {⟨integer relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the ⟨integer
relation⟩ as described for \int_compare:nTF. If the test is true then the ⟨code⟩ is
inserted into the input stream again and a loop occurs until the ⟨relation⟩ is false.

\int_do_while:nn ✩

Updated: 2013-01-13

\int_until_do:nn {⟨integer relation⟩} {⟨code⟩}

Evaluates the ⟨integer relation⟩ as described for \int_compare:nTF, and then places
the ⟨code⟩ in the input stream if the ⟨relation⟩ is false. After the ⟨code⟩ has been
processed by TEX the test is repeated, and a loop occurs until the test is true.

\int_until_do:nn ✩

Updated: 2013-01-13

\int_while_do:nn {⟨integer relation⟩} {⟨code⟩}

Evaluates the ⟨integer relation⟩ as described for \int_compare:nTF, and then places
the ⟨code⟩ in the input stream if the ⟨relation⟩ is true. After the ⟨code⟩ has been
processed by TEX the test is repeated, and a loop occurs until the test is false.

\int_while_do:nn ✩

Updated: 2013-01-13

173

21.7 Integer step functions

\int_step_function:nN {⟨final value⟩} ⟨function⟩
\int_step_function:nnN {⟨initial value⟩} {⟨final value⟩} ⟨function⟩
\int_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. The ⟨function⟩ is then placed in front of each
⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between
each ⟨value⟩). The ⟨step⟩ must be non-zero. If the ⟨step⟩ is positive, the loop stops
when the ⟨value⟩ becomes larger than the ⟨final value⟩. If the ⟨step⟩ is negative, the
loop stops when the ⟨value⟩ becomes smaller than the ⟨final value⟩. The ⟨function⟩
should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[I saw 1] [I saw 2] [I saw 3] [I saw 4] [I saw 5]

The functions \int_step_function:nN and \int_step_function:nnN both use a
fixed ⟨step⟩ of 1, and in the case of \int_step_function:nN the ⟨initial value⟩ is
also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_function:nN ✩

\int_step_function:nnN ✩

\int_step_function:nnnN ✩

New: 2012-06-04

Updated: 2018-04-22

\int_step_inline:nn {⟨final value⟩} {⟨code⟩}
\int_step_inline:nnn {⟨initial value⟩} {⟨final value⟩} {⟨code⟩}
\int_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. Then for each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted
into the input stream with #1 replaced by the current ⟨value⟩. Thus the ⟨code⟩ should
define a function of one argument (#1).

The functions \int_step_inline:nn and \int_step_inline:nnn both use a fixed
⟨step⟩ of 1, and in the case of \int_step_inline:nn the ⟨initial value⟩ is also fixed
as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_inline:nn
\int_step_inline:nnn
\int_step_inline:nnnn

New: 2012-06-04

Updated: 2018-04-22

\int_step_variable:nNn {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}
\int_step_variable:nnNn {⟨initial value⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}
\int_step_variable:nnnNn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩
{⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be integer expressions. Then for each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted
into the input stream, with the ⟨tl var⟩ defined as the current ⟨value⟩. Thus the ⟨code⟩
should make use of the ⟨tl var⟩.

The functions \int_step_variable:nNn and \int_step_variable:nnNn both use
a fixed ⟨step⟩ of 1, and in the case of \int_step_variable:nNn the ⟨initial value⟩
is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_variable:nNn
\int_step_variable:nnNn
\int_step_variable:nnnNn

New: 2012-06-04

Updated: 2018-04-22

174

21.8 Formatting integers
Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {⟨int expr⟩}

Places the value of the ⟨int expr⟩ in the input stream as digits, with category code 12
(other).

\int_to_arabic:n ⋆
\int_to_arabic:v ⋆

Updated: 2011-10-22

\int_to_alph:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ and converts the result into a series of letters, which are then
left in the input stream. The conversion rule uses the 26 letters of the English alphabet, in
order, adding letters when necessary to increase the total possible range of representable
numbers. Thus

\int_to_alph:n { 1 }

places a in the input stream,

\int_to_alph:n { 26 }

is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_alph:n ⋆
\int_to_Alph:n ⋆

Updated: 2011-09-17

\int_to_symbols:nnn
{⟨int expr⟩} {⟨total symbols⟩}
{⟨value to symbol mapping⟩}

This is the low-level function for conversion of an ⟨int expr⟩ into a symbolic form (often
letters). The ⟨total symbols⟩ available should be given as an integer expression. Values
are actually converted to symbols according to the ⟨value to symbol mapping⟩. This
should be given as ⟨total symbols⟩ pairs of entries, a number and the appropriate
symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1
{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1 } { a }
{ 2 } { b }
...
{ 26 } { z }

}
}

\int_to_symbols:nnn ⋆

Updated: 2011-09-17

175

\int_to_bin:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the binary representation of the result
in the input stream.

\int_to_bin:n ⋆

New: 2014-02-11

\int_to_hex:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the hexadecimal (base 16) represen-
tation of the result in the input stream. Letters are used for digits beyond 9: lower case
letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The resulting tokens
are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_hex:n ⋆
\int_to_Hex:n ⋆

New: 2014-02-11

\int_to_oct:n {⟨int expr⟩}

Calculates the value of the ⟨int expr⟩ and places the octal (base 8) representation of
the result in the input stream. The resulting tokens are digits with category code 12
(other) and letters with category code 11 (letter).

\int_to_oct:n ⋆

New: 2014-02-11

\int_to_base:nn {⟨int expr⟩} {⟨base⟩}

Calculates the value of the ⟨int expr⟩ and converts it into the appropriate representation
in the ⟨base⟩; the later may be given as an integer expression. For bases greater than
10 the higher “digits” are represented by letters from the English alphabet: lower case
letters for \int_to_base:n and upper case ones for \int_to_Base:n. The maximum
⟨base⟩ value is 36. The resulting tokens are digits with category code 12 (other) and
letters with category code 11 (letter).

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_base:nn ⋆
\int_to_Base:nn ⋆

Updated: 2014-02-11

\int_to_roman:n {⟨int expr⟩}

Places the value of the ⟨int expr⟩ in the input stream as Roman numerals, either lower
case (\int_to_roman:n) or upper case (\int_to_Roman:n). If the value is negative or
zero, the output is empty. The Roman numerals are letters with category code 11 (letter).
The letters used are mdclxvi, repeated as needed: the notation with bars (such as v̄ for
5000) is not used. For instance \int_to_roman:n { 8249 } expands to mmmmmmmmccxlix.

\int_to_roman:n ✩

\int_to_Roman:n ✩

Updated: 2011-10-22

21.9 Converting from other formats to integers

\int_from_alph:n {⟨letters⟩}

Converts the ⟨letters⟩ into the integer (base 10) representation and leaves this in the
input stream. The ⟨letters⟩ are first converted to a string, with no expansion. Lower
and upper case letters from the English alphabet may be used, with “a” equal to 1
through to “z” equal to 26. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_alph:n ⋆

Updated: 2014-08-25

\int_from_bin:n {⟨binary number⟩}

Converts the ⟨binary number⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨binary number⟩ is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by binary digits. This is
the inverse function of \int_to_bin:n.

\int_from_bin:n ⋆

New: 2014-02-11

Updated: 2014-08-25

176

\int_from_hex:n {⟨hexadecimal number⟩}

Converts the ⟨hexadecimal number⟩ into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the ⟨hexadecimal
number⟩ by upper or lower case letters. The ⟨hexadecimal number⟩ is first converted to
a string, with no expansion. The function also accepts a leading sign, made of + and -.
This is the inverse function of \int_to_hex:n and \int_to_Hex:n.

\int_from_hex:n ⋆

New: 2014-02-11

Updated: 2014-08-25

\int_from_oct:n {⟨octal number⟩}

Converts the ⟨octal number⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨octal number⟩ is first converted to a string, with no expansion.
The function accepts a leading sign, made of + and -, followed by octal digits. This is
the inverse function of \int_to_oct:n.

\int_from_oct:n ⋆

New: 2014-02-11

Updated: 2014-08-25

\int_from_roman:n {⟨roman numeral⟩}

Converts the ⟨roman numeral⟩ into the integer (base 10) representation and leaves this in
the input stream. The ⟨roman numeral⟩ is first converted to a string, with no expansion.
The ⟨roman numeral⟩ may be in upper or lower case; if the numeral contains characters
besides mdclxvi or MDCLXVI then the resulting value is −1. This is the inverse function
of \int_to_roman:n and \int_to_Roman:n.

\int_from_roman:n ⋆

Updated: 2014-08-25

\int_from_base:nn {⟨number⟩} {⟨base⟩}

Converts the ⟨number⟩ expressed in ⟨base⟩ into the appropriate value in base 10. The
⟨number⟩ is first converted to a string, with no expansion. The ⟨number⟩ should consist
of digits and letters (either lower or upper case), plus optionally a leading sign. The
maximum ⟨base⟩ value is 36. This is the inverse function of \int_to_base:nn and
\int_to_Base:nn.

\int_from_base:nn ⋆

Updated: 2014-08-25

21.10 Random integers

\int_rand:nn {⟨int expr1⟩} {⟨int expr2⟩}

Evaluates the two ⟨int expr⟩s and produces a pseudo-random number between the two
(with bounds included). This is not available in older versions of X ETEX.

\int_rand:nn ⋆

New: 2016-12-06

Updated: 2018-04-27

\int_rand:n {⟨int expr⟩}

Evaluates the ⟨int expr⟩ then produces a pseudo-random number between 1 and the
⟨int expr⟩ (included). This is not available in older versions of X ETEX.

\int_rand:n ⋆

New: 2018-05-05

21.11 Viewing integers

\int_show:N ⟨integer⟩

Displays the value of the ⟨integer⟩ on the terminal.
\int_show:N
\int_show:c

177

\int_show:n {⟨int expr⟩}

Displays the result of evaluating the ⟨int expr⟩ on the terminal.
\int_show:n

New: 2011-11-22

Updated: 2015-08-07

\int_log:N ⟨integer⟩

Writes the value of the ⟨integer⟩ in the log file.
\int_log:N
\int_log:c

New: 2014-08-22

Updated: 2015-08-03

\int_log:n {⟨int expr⟩}

Writes the result of evaluating the ⟨int expr⟩ in the log file.
\int_log:n

New: 2014-08-22

Updated: 2015-08-07

21.12 Constant integers

Integer values used with primitive tests and assignments: their self-terminating nature
makes these more convenient and faster than literal numbers.

\c_zero_int
\c_one_int

New: 2018-05-07

The maximum value that can be stored as an integer.\c_max_int

Maximum number of registers.\c_max_register_int

Maximum character code completely supported by the engine.\c_max_char_int

21.13 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_int
\l_tmpb_int

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_int
\g_tmpb_int

178

21.14 Direct number expansion

\int_value:w ⟨integer⟩
\int_value:w ⟨integer denotation⟩ ⟨optional space⟩

Expands the following tokens until an ⟨integer⟩ is formed, and leaves a normalized form
(no leading sign except for negative numbers, no leading digit 0 except for zero) in the
input stream as category code 12 (other) characters. The ⟨integer⟩ can consist of any
number of signs (with intervening spaces) followed by

• an integer variable (in fact, any TEX register except \toks) or

• explicit digits (or by ’⟨octal digits⟩ or "⟨hexadecimal digits⟩ or ‘⟨character⟩).

In this last case expansion stops once a non-digit is found; if that is a space it is removed
as in f-expansion, and so \exp_stop_f: may be employed as an end marker. Note that
protected functions are expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable
for use in cases where a number is required “directly”. In general, \int_eval:n is the
preferred approach to generating numbers.

TEXhackers note: This is the TEX primitive \number.

\int_value:w ⋆

New: 2018-03-27

21.15 Primitive conditionals

\if_int_compare:w ⟨integer1⟩ ⟨relation⟩ ⟨integer2⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Compare two integers using ⟨relation⟩, which must be one of =, < or > with category
code 12. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifnum.

\if_int_compare:w ⋆

\if_case:w ⟨integer⟩ ⟨case0⟩
\or: ⟨case1⟩
\or: ...
\else: ⟨default⟩

\fi:

Selects a case to execute based on the value of the ⟨integer⟩. The first case (⟨case0⟩) is
executed if ⟨integer⟩ is 0, the second (⟨case1⟩) if the ⟨integer⟩ is 1, etc. The ⟨integer⟩
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_case:w ⋆
\or: ⋆

179

\if_int_odd:w ⟨tokens⟩ ⟨optional space⟩
⟨true code⟩

\else:
⟨true code⟩

\fi:

Expands ⟨tokens⟩ until a non-numeric token or a space is found, and tests whether
the resulting ⟨integer⟩ is odd. If so, ⟨true code⟩ is executed. The \else: branch is
optional.

TEXhackers note: This is the TEX primitive \ifodd.

\if_int_odd:w ⋆

180

Chapter 22

The l3flag module
Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This
module is meant mostly for kernel use: in almost all cases, booleans or integers should
be preferred to flags because they are very significantly faster.

A flag can hold any (small) non-negative value, which we call its ⟨height⟩. In
expansion-only contexts, a flag can only be “raised”: this increases the ⟨height⟩ by 1.
The ⟨height⟩ can also be queried expandably. However, decreasing it, or setting it to
zero requires non-expandable assignments.

Flag variables are always local.
A typical use case of flags would be to keep track of whether an exceptional condition

has occurred during expandable processing, and produce a meaningful (non-expandable)
message after the end of the expandable processing. This is exemplified by l3str-convert,
which for performance reasons performs conversions of individual characters expandably
and for readability reasons produces a single error message describing incorrect inputs
that were encountered.

Flags should not be used without carefully considering the fact that raising a flag
takes a time and memory proportional to its height and that the memory cannot be
reclaimed even if the flag is cleared. Flags should not be used unless it is unavoidable.

In earlier versions, flags were referenced by an n-type ⟨flag name⟩ such as fp_-
overflow, used as part of \use:c constructions. All of the commands described below
have n-type analogues that can still appear in old code, but the N-type commands are
to be preferred moving forward. The n-type ⟨flag name⟩ is simply mapped to \l_⟨flag
name⟩_flag, which makes it easier for packages using public flags (such as l3fp) to retain
backwards compatibility.

22.1 Setting up flags

\flag_new:N ⟨flag var⟩

Creates a new ⟨flag var⟩, or raises an error if the name is already taken. The declaration
is global, but flags are always local variables. The ⟨flag var⟩ initially has zero height.

\flag_new:N
\flag_new:c

New: 2024-01-12

181

\flag_clear:N ⟨flag var⟩

Sets the height of the ⟨flag var⟩ to zero. The assignment is local.
\flag_clear:N
\flag_clear:c

New: 2024-01-12

\flag_clear_new:N ⟨flag var⟩

Ensures that the ⟨flag var⟩ exists globally by applying \flag_new:N if necessary, then
applies \flag_clear:N, setting the height to zero locally.

\flag_clear_new:N
\flag_clear_new:c

New: 2024-01-12

\flag_show:N ⟨flag var⟩

Displays the height of the ⟨flag var⟩ in the terminal.
\flag_show:N
\flag_show:c

New: 2024-01-12

\flag_log:N ⟨flag var⟩

Writes the height of the ⟨flag var⟩ in the log file.
\flag_log:N
\flag_log:c

New: 2024-01-12

22.2 Expandable flag commands

\flag_if_exist_p:N ⟨flag var⟩
\flag_if_exist:NTF ⟨flag var⟩ {⟨true code⟩} {⟨false code⟩}

This function returns true if the ⟨flag var⟩ is currently defined, and false otherwise.
This does not check that the ⟨flag var⟩ really is a flag variable.

\flag_if_exist_p:N ⋆
\flag_if_exist_p:c ⋆
\flag_if_exist:NTF ⋆
\flag_if_exist:cTF ⋆

New: 2024-01-12

\flag_if_raised_p:N ⟨flag var⟩
\flag_if_raised:NTF ⟨flag var⟩ {⟨true code⟩} {⟨false code⟩}

This function returns true if the ⟨flag var⟩ has non-zero height, and false if the
⟨flag var⟩ has zero height.

\flag_if_raised_p:N ⋆
\flag_if_raised_p:c ⋆
\flag_if_raised:NTF ⋆
\flag_if_raised:cTF ⋆

New: 2024-01-12

\flag_height:N ⟨flag var⟩

Expands to the height of the ⟨flag var⟩ as an integer denotation.
\flag_height:N ⋆
\flag_height:c ⋆

New: 2024-01-12

\flag_raise:N ⟨flag var⟩

The height of ⟨flag var⟩ is increased by 1 locally.
\flag_raise:N ⋆
\flag_raise:c ⋆

New: 2024-01-12

\flag_ensure_raised:N ⟨flag var⟩

Ensures the ⟨flag var⟩ is raised by making its height at least 1, locally.
\flag_ensure_raised:N ⋆
\flag_ensure_raised:c ⋆

New: 2024-01-12

182

Scratch flag for local assignment. These are never used by the kernel code, and so are safe
for use with any LATEX3-defined function. However, they may be overwritten by other
non-kernel code and so should only be used for short-term storage.

\l_tmpa_flag
\l_tmpb_flag

New: 2024-01-12

183

Chapter 23

The l3clist module
Comma separated lists

Comma lists (in short, clist) contain ordered data where items can be added to the
left or right end of the list. This data type allows basic list manipulations such as
adding/removing items, applying a function to every item, removing duplicate items,
extracting a given item, using the comma list with specified separators, and so on. Se-
quences (defined in l3seq) are safer, faster, and provide more features, so they should
often be preferred to comma lists. Comma lists are mostly useful when interfacing with
LATEX 2ε or other code that expects or provides items separated by commas.

Several items can be added at once. To ease input of comma lists from data provided
by a user outside an \ExplSyntaxOn . . . \ExplSyntaxOff block, spaces are removed
from both sides of each comma-delimited argument upon input. Blank arguments are
ignored, to allow for trailing commas or repeated commas (which may otherwise arise
when concatenating comma lists “by hand”). In addition, a set of braces is removed if
the result of space-trimming is braced: this allows the storage of any item in a comma
list. For instance,

\clist_new:N \l_my_clist
\clist_put_left:Nn \l_my_clist { ~a~ , ~{b}~ , c~\d }
\clist_put_right:Nn \l_my_clist { ~{e~} , , {{f}} , }

results in \l_my_clist containing a,b,c~\d,{e~},{{f}} namely the five items a, b,
c~\d, e~ and {f}. Comma lists normally do not contain empty or blank items so the
following gives an empty comma list:

\clist_clear_new:N \l_my_clist
\clist_set:Nn \l_my_clist { , ~ , , }
\clist_if_empty:NTF \l_my_clist { true } { false }

and it leaves true in the input stream. To include an “unsafe” item (empty, or one that
contains a comma, or starts or ends with a space, or is a single brace group), surround
it with braces.

Any n-type token list is a valid comma list input for l3clist functions, which will
split the token list at every comma and process the items as described above. On the
other hand, N-type functions expect comma list variables, which are particular token
list variables in which this processing of items (and removal of blank items) has already

184

occurred. Because comma list variables are token list variables, expanding them once
yields their items separated by commas, and l3tl functions such as \tl_show:N can be
applied to them. (These functions often have l3clist analogues, which should be preferred.)

Almost all operations on comma lists are noticeably slower than those on sequences
so converting the data to sequences using \seq_set_from_clist:Nn (see l3seq) may be
advisable if speed is important. The exception is that \clist_if_in:NnTF and \clist_-
remove_duplicates:N may be faster than their sequence analogues for large lists. How-
ever, these functions work slowly for “unsafe” items that must be braced, and may pro-
duce errors when their argument contains {, } or # (assuming the usual TEX category
codes apply). The sequence data type should thus certainly be preferred to comma lists
to store such items.

23.1 Creating and initialising comma lists

\clist_new:N ⟨clist var⟩

Creates a new ⟨clist var⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨clist var⟩ initially contains no items.

\clist_new:N
\clist_new:c

\clist_const:Nn ⟨clist var⟩ {⟨comma list⟩}

Creates a new constant ⟨clist var⟩ or raises an error if the name is already taken. The
value of the ⟨clist var⟩ is set globally to the ⟨comma list⟩.

\clist_const:Nn
\clist_const:(Ne|cn|ce)

New: 2014-07-05

\clist_clear:N ⟨clist var⟩

Clears all items from the ⟨clist var⟩.
\clist_clear:N
\clist_clear:c
\clist_gclear:N
\clist_gclear:c

\clist_clear_new:N ⟨clist var⟩

Ensures that the ⟨clist var⟩ exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

\clist_clear_new:N
\clist_clear_new:c
\clist_gclear_new:N
\clist_gclear_new:c

\clist_set_eq:NN ⟨clist var1⟩ ⟨clist var2⟩

Sets the content of ⟨clist var1⟩ equal to that of ⟨clist var2⟩. To set a token list
variable equal to a comma list variable, use \tl_set_eq:NN. Conversely, setting a comma
list variable to a token list is unadvisable unless one checks space-trimming and related
issues.

\clist_set_eq:NN
\clist_set_eq:(cN|Nc|cc)
\clist_gset_eq:NN
\clist_gset_eq:(cN|Nc|cc)

\clist_set_from_seq:NN ⟨clist var⟩ ⟨seq var⟩\clist_set_from_seq:NN
\clist_set_from_seq:(cN|Nc|cc)
\clist_gset_from_seq:NN
\clist_gset_from_seq:(cN|Nc|cc)

New: 2014-07-17

Converts the data in the ⟨seq var⟩ into a ⟨clist var⟩: the original ⟨seq var⟩ is un-
changed. Items which contain either spaces or commas are surrounded by braces.

185

\clist_concat:NNN ⟨clist var1⟩ ⟨clist var2⟩ ⟨clist var3⟩

Concatenates the content of ⟨clist var2⟩ and ⟨clist var3⟩ together and saves the
result in ⟨clist var1⟩. The items in ⟨clist var2⟩ are placed at the left side of the new
comma list.

\clist_concat:NNN
\clist_concat:ccc
\clist_gconcat:NNN
\clist_gconcat:ccc

\clist_if_exist_p:N ⟨clist var⟩
\clist_if_exist:NTF ⟨clist var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨clist var⟩ is currently defined. This does not check that the
⟨clist var⟩ really is a comma list.

\clist_if_exist_p:N ⋆
\clist_if_exist_p:c ⋆
\clist_if_exist:NTF ⋆
\clist_if_exist:cTF ⋆

New: 2012-03-03

23.2 Adding data to comma lists

\clist_set:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_set:Nn
\clist_set:(NV|Ne|No|cn|cV|ce|co)
\clist_gset:Nn
\clist_gset:(NV|Ne|No|cn|cV|ce|co)

New: 2011-09-06

Sets ⟨clist var⟩ to contain the ⟨items⟩, removing any previous content from the vari-
able. Blank items are omitted, spaces are removed from both sides of each item, then
a set of braces is removed if the resulting space-trimmed item is braced. To store some
⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩ contain commas or spaces, add a set of
braces: \clist_set:Nn ⟨clist var⟩ { {⟨tokens⟩} }.

\clist_put_left:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_put_left:Nn
\clist_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\clist_gput_left:Nn
\clist_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Updated: 2011-09-05

Appends the ⟨items⟩ to the left of the ⟨clist var⟩. Blank items are omitted, spaces are
removed from both sides of each item, then a set of braces is removed if the resulting space-
trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if the ⟨tokens⟩
contain commas or spaces, add a set of braces: \clist_put_left:Nn ⟨clist var⟩ {
{⟨tokens⟩} }.

\clist_put_right:Nn ⟨clist var⟩ {⟨item1⟩,...,⟨itemn⟩}\clist_put_right:Nn
\clist_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)
\clist_gput_right:Nn
\clist_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Updated: 2011-09-05

Appends the ⟨items⟩ to the right of the ⟨clist var⟩. Blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. To append some ⟨tokens⟩ as a single ⟨item⟩ even if
the ⟨tokens⟩ contain commas or spaces, add a set of braces: \clist_put_right:Nn
⟨clist var⟩ { {⟨tokens⟩} }.

186

23.3 Modifying comma lists
While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N ⟨clist var⟩\clist_remove_duplicates:N
\clist_remove_duplicates:c
\clist_gremove_duplicates:N
\clist_gremove_duplicates:c

Removes duplicate items from the ⟨clist var⟩, leaving the left most copy of each item
in the ⟨clist var⟩. The ⟨item⟩ comparison takes place on a token basis, as for \tl_-
if_eq:nnTF.

TEXhackers note: This function iterates through every item in the ⟨clist var⟩ and
does a comparison with the ⟨items⟩ already checked. It is therefore relatively slow with large
comma lists. Furthermore, it may fail if any of the items in the ⟨clist var⟩ contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn ⟨clist var⟩ {⟨item⟩}\clist_remove_all:Nn
\clist_remove_all:(cn|NV|cV)
\clist_gremove_all:Nn
\clist_gremove_all:(cn|NV|cV)

Updated: 2011-09-06

Removes every occurrence of ⟨item⟩ from the ⟨clist var⟩. The ⟨item⟩ comparison
takes place on a token basis, as for \tl_if_eq:nnTF.

TEXhackers note: The function may fail if the ⟨item⟩ contains {, }, or # (assuming the
usual TEX category codes apply).

\clist_reverse:N ⟨clist var⟩

Reverses the order of items stored in the ⟨clist var⟩.
\clist_reverse:N
\clist_reverse:c
\clist_greverse:N
\clist_greverse:c

New: 2014-07-18

\clist_reverse:n {⟨comma list⟩}

Leaves the items in the ⟨comma list⟩ in the input stream in reverse order. Contrarily
to other what is done for other n-type ⟨comma list⟩ arguments, braces and spaces are
preserved by this process.

TEXhackers note: The result is returned within \unexpanded, which means that the
comma list does not expand further when appearing in an e-type or x-type argument expansion.

\clist_reverse:n

New: 2014-07-18

187

\clist_sort:Nn ⟨clist var⟩ {⟨comparison code⟩}

Sorts the items in the ⟨clist var⟩ according to the ⟨comparison code⟩, and assigns the
result to ⟨clist var⟩. The details of sorting comparison are described in Section 6.1.

\clist_sort:Nn
\clist_sort:cn
\clist_gsort:Nn
\clist_gsort:cn

New: 2017-02-06

23.4 Comma list conditionals

\clist_if_empty_p:N ⟨clist var⟩
\clist_if_empty:NTF ⟨clist var⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨clist var⟩ is empty (containing no items).

\clist_if_empty_p:N ⋆
\clist_if_empty_p:c ⋆
\clist_if_empty:NTF ⋆
\clist_if_empty:cTF ⋆

\clist_if_empty_p:n {⟨comma list⟩}
\clist_if_empty:nTF {⟨comma list⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨clist var⟩ is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

\clist_if_empty_p:n ⋆
\clist_if_empty:nTF ⋆

New: 2014-07-05

\clist_if_in:NnTF ⟨clist var⟩ {⟨item⟩} {⟨true code⟩} {⟨false code⟩}\clist_if_in:NnTF
\clist_if_in:(NV|No|cn|cV|co)TF
\clist_if_in:nnTF
\clist_if_in:(nV|no)TF

Updated: 2011-09-06

Tests if the ⟨item⟩ is present in the ⟨clist var⟩. In the case of an n-type ⟨comma list⟩,
the usual rules of space trimming and brace stripping apply. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , c } { b } {true} {false}

yields true.

TEXhackers note: The function may fail if the ⟨item⟩ contains {, }, or # (assuming the
usual TEX category codes apply).

23.5 Mapping over comma lists
The functions described in this section apply a specified function to each item of a comma
list. All mappings are done at the current group level, i.e. any local assignments made
by the ⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result
is passed to the mapped function. Thus, if the comma list that is being mapped is
{a␣,␣{{b}␣},␣,{},␣{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}␣’, an empty argument, and ‘c’.

188

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN ⟨clist var⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨item⟩ stored in the ⟨clist var⟩. The ⟨function⟩ receives
one argument for each iteration. The ⟨items⟩ are returned from left to right. The func-
tion \clist_map_inline:Nn is in general more efficient than \clist_map_function:NN.

\clist_map_function:NN ✩

\clist_map_function:cN ✩

\clist_map_function:nN ✩

\clist_map_function:eN ✩

Updated: 2012-06-29

\clist_map_inline:Nn ⟨clist var⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨item⟩ stored within the ⟨clist var⟩. The
⟨inline function⟩ should consist of code which receives the ⟨item⟩ as #1. The ⟨items⟩
are returned from left to right.

\clist_map_inline:Nn
\clist_map_inline:cn
\clist_map_inline:nn

Updated: 2012-06-29

\clist_map_variable:NNn ⟨clist var⟩ ⟨variable⟩ {⟨code⟩}

Stores each ⟨item⟩ of the ⟨clist var⟩ in turn in the (token list) ⟨variable⟩ and applies
the ⟨code⟩. The ⟨code⟩ will usually make use of the ⟨variable⟩, but this is not enforced.
The assignments to the ⟨variable⟩ are local. Its value after the loop is the last ⟨item⟩ in
the ⟨clist var⟩, or its original value if there were no ⟨item⟩. The ⟨items⟩ are returned
from left to right.

\clist_map_variable:NNn
\clist_map_variable:cNn
\clist_map_variable:nNn

Updated: 2012-06-29

\clist_map_tokens:Nn ⟨clist var⟩ {⟨code⟩}
\clist_map_tokens:nn {⟨comma list⟩} {⟨code⟩}

Calls ⟨code⟩ {⟨item⟩} for every ⟨item⟩ stored in the ⟨clist var⟩. The ⟨code⟩ receives
each ⟨item⟩ as a trailing brace group. If the ⟨code⟩ consists of a single function this is
equivalent to \clist_map_function:nN.

\clist_map_tokens:Nn ✩

\clist_map_tokens:cn ✩

\clist_map_tokens:nn ✩

New: 2021-05-05

\clist_map_break:

Used to terminate a \clist_map_... function before all entries in the ⟨comma list⟩ have
been processed. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\clist_map_break: ✩

Updated: 2012-06-29

189

\clist_map_break:n {⟨code⟩}

Used to terminate a \clist_map_... function before all entries in the ⟨comma list⟩
have been processed, inserting the ⟨code⟩ after the mapping has ended. This normally
takes place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \clist_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\clist_map_break:n ✩

Updated: 2012-06-29

\clist_count:N ⟨clist var⟩

Leaves the number of items in the ⟨clist var⟩ in the input stream as an ⟨integer
denotation⟩. The total number of items in a ⟨clist var⟩ includes those which are
duplicates, i.e. every item in a ⟨clist var⟩ is counted.

\clist_count:N ⋆
\clist_count:c ⋆
\clist_count:n ⋆
\clist_count:e ⋆

New: 2012-07-13

190

23.6 Using the content of comma lists directly

\clist_use:Nnnn ⟨clist var⟩ {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}

Places the contents of the ⟨clist var⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. Namely, if the comma list has more than two items,
the ⟨separator between more than two⟩ is placed between each pair of items except
the last, for which the ⟨separator between final two⟩ is used. If the comma list has
exactly two items, then they are placed in the input stream separated by the ⟨separator
between two⟩. If the comma list has a single item, it is placed in the input stream, and
a comma list with no items produces no output. An error is raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nnnn \l_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not
used in this case because the comma list has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:Nnnn ⋆
\clist_use:cnnn ⋆

New: 2013-05-26

\clist_use:Nn ⟨clist var⟩ {⟨separator⟩}

Places the contents of the ⟨clist var⟩ in the input stream, with the ⟨separator⟩ be-
tween the items. If the comma list has a single item, it is placed in the input stream, and
a comma list with no items produces no output. An error is raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nn \l_tmpa_clist { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:Nn ⋆
\clist_use:cn ⋆

New: 2013-05-26

191

\clist_use:nnnn ⟨comma list⟩ {⟨separator between two⟩}
{⟨separator between more than two⟩} {⟨separator between final two⟩}
\clist_use:nn ⟨comma list⟩ {⟨separator⟩}

Places the contents of the ⟨comma list⟩ in the input stream, with the appropriate
⟨separator⟩ between the items. As for \clist_set:Nn, blank items are omitted, spaces
are removed from both sides of each item, then a set of braces is removed if the resulting
space-trimmed item is braced. The ⟨separators⟩ are then inserted in the same way as
for \clist_use:Nnnn and \clist_use:Nn, respectively.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨items⟩ do not expand further when appearing in an e-type or x-type
argument expansion.

\clist_use:nnnn ⋆
\clist_use:nn ⋆

New: 2021-05-10

23.7 Comma lists as stacks
Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The
stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN ⟨clist var⟩ ⟨token list variable⟩

Stores the left-most item from a ⟨clist var⟩ in the ⟨token list variable⟩ without
removing it from the ⟨clist var⟩. The ⟨token list variable⟩ is assigned locally. In
the non-branching version, if the ⟨clist var⟩ is empty the ⟨token list variable⟩ is
set to the marker value \q_no_value.

\clist_get:NN
\clist_get:cN
\clist_get:NNTF
\clist_get:cNTF

New: 2012-05-14

Updated: 2019-02-16

\clist_pop:NN ⟨clist var⟩ ⟨token list variable⟩

Pops the left-most item from a ⟨clist var⟩ into the ⟨token list variable⟩, i.e. re-
moves the item from the comma list and stores it in the ⟨token list variable⟩. Both
of the variables are assigned locally.

\clist_pop:NN
\clist_pop:cN

Updated: 2011-09-06

\clist_gpop:NN ⟨clist var⟩ ⟨token list variable⟩

Pops the left-most item from a ⟨clist var⟩ into the ⟨token list variable⟩, i.e. re-
moves the item from the comma list and stores it in the ⟨token list variable⟩. The
⟨clist var⟩ is modified globally, while the assignment of the ⟨token list variable⟩
is local.

\clist_gpop:NN
\clist_gpop:cN

\clist_pop:NNTF ⟨clist var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨clist var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨clist var⟩ is non-empty, pops the top item from the ⟨clist var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨clist var⟩. Both the ⟨clist var⟩
and the ⟨token list variable⟩ are assigned locally.

\clist_pop:NNTF
\clist_pop:cNTF

New: 2012-05-14

192

\clist_gpop:NNTF ⟨clist var⟩ ⟨token list variable⟩ {⟨true code⟩} {⟨false code⟩}

If the ⟨clist var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of
the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If
the ⟨clist var⟩ is non-empty, pops the top item from the ⟨clist var⟩ in the ⟨token
list variable⟩, i.e. removes the item from the ⟨clist var⟩. The ⟨clist var⟩ is
modified globally, while the ⟨token list variable⟩ is assigned locally.

\clist_gpop:NNTF
\clist_gpop:cNTF

New: 2012-05-14

\clist_push:Nn ⟨clist var⟩ {⟨items⟩}\clist_push:Nn
\clist_push:(NV|No|cn|cV|co)
\clist_gpush:Nn
\clist_gpush:(NV|No|cn|cV|co)

Adds the {⟨items⟩} to the top of the ⟨clist var⟩. Spaces are removed from both sides
of each item as for any n-type comma list.

23.8 Using a single item

\clist_item:Nn ⟨clist var⟩ {⟨int expr⟩}

Indexing items in the ⟨clist var⟩ from 1 at the top (left), this function evaluates the
⟨int expr⟩ and leaves the appropriate item from the comma list in the input stream.
If the ⟨int expr⟩ is negative, indexing occurs from the bottom (right) of the comma
list. When the ⟨int expr⟩ is larger than the number of items in the ⟨clist var⟩ (as
calculated by \clist_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\clist_item:Nn ⋆
\clist_item:cn ⋆
\clist_item:nn ⋆
\clist_item:en ⋆

New: 2014-07-17

\clist_rand_item:N ⟨clist var⟩
\clist_rand_item:n {⟨comma list⟩}

Selects a pseudo-random item of the ⟨clist var⟩/⟨comma list⟩. If the ⟨comma list⟩
has no item, the result is empty.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the ⟨item⟩ does not expand further when appearing in an e-type or x-type
argument expansion.

\clist_rand_item:N ⋆
\clist_rand_item:c ⋆
\clist_rand_item:n ⋆

New: 2016-12-06

23.9 Viewing comma lists

\clist_show:N ⟨clist var⟩

Displays the entries in the ⟨clist var⟩ in the terminal.
\clist_show:N
\clist_show:c

Updated: 2021-04-29

193

\clist_show:n {⟨tokens⟩}

Displays the entries in the comma list in the terminal.
\clist_show:n

Updated: 2013-08-03

\clist_log:N ⟨clist var⟩

Writes the entries in the ⟨clist var⟩ in the log file. See also \clist_show:N which
displays the result in the terminal.

\clist_log:N
\clist_log:c

New: 2014-08-22

Updated: 2021-04-29

\clist_log:n {⟨tokens⟩}

Writes the entries in the comma list in the log file. See also \clist_show:n which displays
the result in the terminal.

\clist_log:n

New: 2014-08-22

23.10 Constant and scratch comma lists

Constant that is always empty.\c_empty_clist

New: 2012-07-02

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_clist
\l_tmpb_clist

New: 2011-09-06

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

194

Chapter 24

The l3token module
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TEX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such has two primary function categories:
\token_ for anything that deals with tokens and \peek_ for looking ahead in the token
stream.

Most functions we describe here can be used on control sequences, as those are tokens
as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better
word), which affects the matching of delimited arguments and the comparison of token
lists containing this token, and its “meaning”, which affects whether the token expands
or what operation it performs. One can have tokens of different shapes with the same
meaning, but not the converse.

For instance, \if:w, \if_charcode:w, and \tex_if:D are three names for the same
internal operation of TEX, namely the primitive testing the next two characters for equal-
ity of their character code. They have the same meaning hence behave identically in many
situations. However, TEX distinguishes them when searching for a delimited argument.
Namely, the example function \show_until_if:w defined below takes everything until
\if:w as an argument, despite the presence of other copies of \if:w under different
names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

A list of all possible shapes and a list of all possible meanings are given in section 24.7.

195

24.1 Creating character tokens

\char_set_active_eq:NN ⟨char⟩ ⟨function⟩

Sets the behaviour of the ⟨char⟩ in situations where it is active (category code 13) to be
equivalent to that of the definition of the ⟨function⟩ at the time \char_set_active_-
eq:NN is used. The category code of the ⟨char⟩ is unchanged by this process. The
⟨function⟩ may itself be an active character.

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc

Updated: 2015-11-12

\char_set_active_eq:nN {⟨integer expression⟩} ⟨function⟩

Sets the behaviour of the ⟨char⟩ which has character code as given by the ⟨integer
expression⟩ in situations where it is active (category code 13) to be equivalent to that
of the ⟨function⟩ at the time \char_set_active_eq:nN is used. The category code
of the ⟨char⟩ is unchanged by this process. The ⟨function⟩ may itself be an active
character.

\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

New: 2015-11-12

\char_generate:nn {⟨charcode⟩} {⟨catcode⟩}

Generates a character token of the given ⟨charcode⟩ and ⟨catcode⟩ (both of which may
be integer expressions). The ⟨catcode⟩ may be one of

• 1 (begin group)

• 2 (end group)

• 3 (math toggle)

• 4 (alignment)

• 6 (parameter)

• 7 (math superscript)

• 8 (math subscript)

• 10 (space)

• 11 (letter)

• 12 (other)

• 13 (active)

and other values raise an error. The ⟨charcode⟩ may be any one valid for the engine in
use, except that for ⟨catcode⟩ 10, ⟨charcode⟩ 0 is not allowed. Active characters cannot
be generated in older versions of X ETEX. Another way to build token lists with unusual
category codes is \regex_replace:nnN {.*} {⟨replacement⟩} ⟨tl var⟩.

TEXhackers note: Exactly two expansions are needed to produce the character.

\char_generate:nn ⋆

New: 2015-09-09

Updated: 2019-01-16

Token list containing one character with category code 13, (“active”), and character code
32 (space).

\c_catcode_active_space_tl

New: 2017-08-07

196

Token list containing one character with category code 12, (“other”), and character code
32 (space).

\c_catcode_other_space_tl

New: 2011-09-05

24.2 Manipulating and interrogating character tokens

\char_set_catcode_letter:N ⟨character⟩\char_set_catcode_escape:N
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Updated: 2015-11-11

Sets the category code of the ⟨character⟩ to that indicated in the function name. De-
pending on the current category code of the ⟨token⟩ the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

197

\char_set_catcode_letter:n {⟨integer expression⟩}\char_set_catcode_escape:n
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Updated: 2015-11-11

Sets the category code of the ⟨character⟩ which has character code as given by the
⟨integer expression⟩. This version can be used to set up characters which cannot
otherwise be given (cf. the N-type variants). The assignment is local.

\char_set_catcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

These functions set the category code of the ⟨character⟩ which has character code as
given by the ⟨integer expression⟩. The first ⟨integer expression⟩ is the character
code and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_⟨type⟩ should be
preferred, but there are cases where these lower-level functions may be useful.

\char_set_catcode:nn

Updated: 2015-11-11

\char_value_catcode:n {⟨integer expression⟩}

Expands to the current category code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_catcode:n ⋆

\char_show_value_catcode:n {⟨integer expression⟩}

Displays the current category code of the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_show_value_catcode:n

\char_set_lccode:nn {⟨int expr1⟩} {⟨int expr2⟩}

Sets up the behaviour of the ⟨character⟩ when found inside \text_lowercase:n, such
that ⟨character1⟩ will be converted into ⟨character2⟩. The two ⟨characters⟩ may be
specified using an ⟨integer expression⟩ for the character code concerned. This may
include the TEX ‘⟨character⟩ method for converting a single character into its character
code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_set_lccode:nn

Updated: 2015-08-06

198

\char_value_lccode:n {⟨integer expression⟩}

Expands to the current lower case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_lccode:n ⋆

\char_show_value_lccode:n {⟨integer expression⟩}

Displays the current lower case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩ on the terminal.

\char_show_value_lccode:n

\char_set_uccode:nn {⟨int expr1⟩} {⟨int expr2⟩}

Sets up the behaviour of the ⟨character⟩ when found inside \text_uppercase:n, such
that ⟨character1⟩ will be converted into ⟨character2⟩. The two ⟨characters⟩ may be
specified using an ⟨integer expression⟩ for the character code concerned. This may
include the TEX ‘⟨character⟩ method for converting a single character into its character
code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_set_uccode:nn

Updated: 2015-08-06

\char_value_uccode:n {⟨integer expression⟩}

Expands to the current upper case code of the ⟨character⟩ with character code given
by the ⟨integer expression⟩.

\char_value_uccode:n ⋆

\char_show_value_uccode:n {⟨integer expression⟩}

Displays the current upper case code of the ⟨character⟩ with character code given by
the ⟨integer expression⟩ on the terminal.

\char_show_value_uccode:n

\char_set_mathcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

This function sets up the math code of ⟨character⟩. The ⟨character⟩ is specified
as an ⟨integer expression⟩ which will be used as the character code of the relevant
character. The setting applies within the current TEX group.

\char_set_mathcode:nn

Updated: 2015-08-06

\char_value_mathcode:n {⟨integer expression⟩}

Expands to the current math code of the ⟨character⟩ with character code given by the
⟨integer expression⟩.

\char_value_mathcode:n ⋆

\char_show_value_mathcode:n {⟨integer expression⟩}\char_show_value_mathcode:n

Displays the current math code of the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_set_sfcode:nn {⟨int expr1⟩} {⟨int expr2⟩}

This function sets up the space factor for the ⟨character⟩. The ⟨character⟩ is specified
as an ⟨integer expression⟩ which will be used as the character code of the relevant
character. The setting applies within the current TEX group.

\char_set_sfcode:nn

Updated: 2015-08-06

199

\char_value_sfcode:n {⟨integer expression⟩}

Expands to the current space factor for the ⟨character⟩ with character code given by
the ⟨integer expression⟩.

\char_value_sfcode:n ⋆

\char_show_value_sfcode:n {⟨integer expression⟩}

Displays the current space factor for the ⟨character⟩ with character code given by the
⟨integer expression⟩ on the terminal.

\char_show_value_sfcode:n

Used to track which tokens may require special handling at the document level as they
are (or have been at some point) of category ⟨active⟩ (catcode 13). Each entry in the
sequence consists of a single escaped token, for example \~. Active tokens should be
added to the sequence when they are defined for general document use.

\l_char_active_seq

New: 2012-01-23

Updated: 2015-11-11

Used to track which tokens will require special handling when working with verbatim-like
material at the document level as they are not of categories ⟨letter⟩ (catcode 11) or
⟨other⟩ (catcode 12). Each entry in the sequence consists of a single escaped token,
for example \\ for the backslash or \{ for an opening brace. Escaped tokens should be
added to the sequence when they are defined for general document use.

\l_char_special_seq

New: 2012-01-23

Updated: 2015-11-11

24.3 Generic tokens

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

TEXhackers note: The tokens \c_group_begin_token, \c_group_end_token, and \c_-
space_token are expl3 counterparts of LATEX 2ε’s \bgroup, \egroup, and \@sptoken.

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

\c_catcode_letter_token
\c_catcode_other_token

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

\c_catcode_active_tl

200

24.4 Converting tokens

\token_to_meaning:N ⟨token⟩

Inserts the current meaning of the ⟨token⟩ into the input stream as a series of characters
of category code 12 (other). This is the primitive TEX description of the ⟨token⟩, thus for
example both functions defined by \cs_set_nopar:Npn and token list variables defined
using \tl_new:N are described as macros.

TEXhackers note: This is the TEX primitive \meaning. The ⟨token⟩ can thus be an
explicit space token or an explicit begin-group or end-group character token ({ or } when normal
TEX category codes apply) even though these are not valid N-type arguments.

\token_to_meaning:N ⋆
\token_to_meaning:c ⋆

\token_to_str:N ⟨token⟩

Converts the given ⟨token⟩ into a series of characters with category code 12 (other). If
the ⟨token⟩ is a control sequence, this will start with the current escape character with
category code 12 (the escape character is part of the ⟨token⟩). This function requires
only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string. The ⟨token⟩ can thus
be an explicit space tokens or an explicit begin-group or end-group character token ({ or } when
normal TEX category codes apply) even though these are not valid N-type arguments.

\token_to_str:N ⋆
\token_to_str:c ⋆

\token_to_catcode:N ⟨token⟩

Converts the given ⟨token⟩ into a number describing its category code. If ⟨token⟩ is a
control sequence this expands to 16. This can’t detect the categories 0 (escape character),
5 (end of line), 9 (ignored character), 14 (comment character), or 15 (invalid character).
Control sequences or active characters let to a token of one of the detectable category
codes will yield that category.

\token_to_catcode:N ⋆

New: 2023-10-15

24.5 Token conditionals

\token_if_group_begin_p:N ⟨token⟩
\token_if_group_begin:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_group_begin_p:N ⋆
\token_if_group_begin:NTF ⋆

Tests if ⟨token⟩ has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N ⟨token⟩
\token_if_group_end:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an end group token (} when normal TEX
category codes are in force). Note that an explicit end group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N ⋆
\token_if_group_end:NTF ⋆

201

\token_if_math_toggle_p:N ⟨token⟩
\token_if_math_toggle:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_toggle_p:N ⋆
\token_if_math_toggle:NTF ⋆

Tests if ⟨token⟩ has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N ⟨token⟩
\token_if_alignment:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an alignment token (& when normal TEX
category codes are in force).

\token_if_alignment_p:N ⋆
\token_if_alignment:NTF ⋆

\token_if_parameter_p:N ⟨token⟩
\token_if_parameter:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_parameter_p:N ⋆
\token_if_parameter:NTF ⋆

\token_if_math_superscript_p:N ⟨token⟩
\token_if_math_superscript:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_superscript_p:N ⋆
\token_if_math_superscript:NTF ⋆

Tests if ⟨token⟩ has the category code of a superscript token (^ when normal TEX
category codes are in force).

\token_if_math_subscript_p:N ⟨token⟩
\token_if_math_subscript:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_math_subscript_p:N ⋆
\token_if_math_subscript:NTF ⋆

Tests if ⟨token⟩ has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N ⟨token⟩
\token_if_space:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a space token. Note that an explicit space
token with character code 32 cannot be tested in this way, as it is not a valid N-type
argument.

\token_if_space_p:N ⋆
\token_if_space:NTF ⋆

\token_if_letter_p:N ⟨token⟩
\token_if_letter:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of a letter token.

\token_if_letter_p:N ⋆
\token_if_letter:NTF ⋆

\token_if_other_p:N ⟨token⟩
\token_if_other:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an “other” token.

\token_if_other_p:N ⋆
\token_if_other:NTF ⋆

\token_if_active_p:N ⟨token⟩
\token_if_active:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨token⟩ has the category code of an active character.

\token_if_active_p:N ⋆
\token_if_active:NTF ⋆

\token_if_eq_catcode_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_catcode:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_catcode_p:NN ⋆
\token_if_eq_catcode:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same category code.

202

\token_if_eq_charcode_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_charcode:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_charcode_p:NN ⋆
\token_if_eq_charcode:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same character code.

\token_if_eq_meaning_p:NN ⟨token1⟩ ⟨token2⟩
\token_if_eq_meaning:NNTF ⟨token1⟩ ⟨token2⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_eq_meaning_p:NN ⋆
\token_if_eq_meaning:NNTF ⋆

Tests if the two ⟨tokens⟩ have the same meaning when expanded.

\token_if_macro_p:N ⟨token⟩
\token_if_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a TEX macro.

\token_if_macro_p:N ⋆
\token_if_macro:NTF ⋆

Updated: 2011-05-23

\token_if_cs_p:N ⟨token⟩
\token_if_cs:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a control sequence.

\token_if_cs_p:N ⋆
\token_if_cs:NTF ⋆

\token_if_expandable_p:N ⟨token⟩
\token_if_expandable:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is expandable. This test returns ⟨false⟩ for an undefined token.

\token_if_expandable_p:N ⋆
\token_if_expandable:NTF ⋆

\token_if_long_macro_p:N ⟨token⟩
\token_if_long_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is a long macro.

\token_if_long_macro_p:N ⋆
\token_if_long_macro:NTF ⋆

Updated: 2012-01-20

\token_if_protected_macro_p:N ⟨token⟩
\token_if_protected_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_protected_macro_p:N ⋆
\token_if_protected_macro:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is a protected macro: for a macro which is both protected and long
this returns false.

\token_if_protected_long_macro_p:N ⟨token⟩
\token_if_protected_long_macro:NTF ⟨token⟩ {⟨true code⟩} {⟨false
code⟩}

\token_if_protected_long_macro_p:N ⋆
\token_if_protected_long_macro:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is a protected long macro.

\token_if_chardef_p:N ⟨token⟩
\token_if_chardef:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is defined to be a chardef.

TEXhackers note: Booleans, boxes and small integer constants are implemented as
\chardefs.

\token_if_chardef_p:N ⋆
\token_if_chardef:NTF ⋆

Updated: 2012-01-20

203

\token_if_mathchardef_p:N ⟨token⟩
\token_if_mathchardef:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_mathchardef_p:N ⋆
\token_if_mathchardef:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a mathchardef.

\token_if_font_selection_p:N ⟨token⟩
\token_if_font_selection:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_font_selection_p:N ⋆
\token_if_font_selection:NTF ⋆

New: 2020-10-27

Tests if the ⟨token⟩ is defined to be a font selection command.

\token_if_dim_register_p:N ⟨token⟩
\token_if_dim_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_dim_register_p:N ⋆
\token_if_dim_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a dimension register.

\token_if_int_register_p:N ⟨token⟩
\token_if_int_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_int_register_p:N ⋆
\token_if_int_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, \chardefs,
or \mathchardefs depending on their value.

\token_if_muskip_register_p:N ⟨token⟩
\token_if_muskip_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_muskip_register_p:N ⋆
\token_if_muskip_register:NTF ⋆

New: 2012-02-15

Tests if the ⟨token⟩ is defined to be a muskip register.

\token_if_skip_register_p:N ⟨token⟩
\token_if_skip_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_skip_register_p:N ⋆
\token_if_skip_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a skip register.

\token_if_toks_register_p:N ⟨token⟩
\token_if_toks_register:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

\token_if_toks_register_p:N ⋆
\token_if_toks_register:NTF ⋆

Updated: 2012-01-20

Tests if the ⟨token⟩ is defined to be a toks register (not used by LATEX3).

\token_if_primitive_p:N ⟨token⟩
\token_if_primitive:NTF ⟨token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨token⟩ is an engine primitive. In LuaTEX this includes primitive-like com-
mands defined using token.set_lua.

\token_if_primitive_p:N ⋆
\token_if_primitive:NTF ⋆

Updated: 2020-09-11

204

\token_case_meaning:NnTF ⟨test token⟩
{

⟨token case1⟩ {⟨code case1⟩}
⟨token case2⟩ {⟨code case2⟩}
...
⟨token casen⟩ {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

\token_case_catcode:Nn ⋆
\token_case_catcode:NnTF ⋆
\token_case_charcode:Nn ⋆
\token_case_charcode:NnTF ⋆
\token_case_meaning:Nn ⋆
\token_case_meaning:NnTF ⋆

New: 2020-12-03

This function compares the ⟨test token⟩ in turn with each of the ⟨token cases⟩.
If the two are equal (as described for \token_if_eq_catcode:NNTF, \token_if_eq_-
charcode:NNTF and \token_if_eq_meaning:NNTF, respectively) then the associated
⟨code⟩ is left in the input stream and other cases are discarded. If any of the cases are
matched, the ⟨true code⟩ is also inserted into the input stream (after the code for the
appropriate case), while if none match then the ⟨false code⟩ is inserted. The functions
\token_case_catcode:Nn, \token_case_charcode:Nn, and \token_case_meaning:Nn,
which do nothing if there is no match, are also available.

24.6 Peeking ahead at the next token
There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. Peeking ahead does
not skip spaces: rather, \peek_remove_spaces:n. should be used. In addition, using
\peek_analysis_map_inline:n, one can map through the following tokens in the input
stream and repeatedly perform some tests.

\peek_after:Nw ⟨function⟩ ⟨token⟩

Locally sets the test variable \l_peek_token equal to ⟨token⟩ (as an implicit token,
not as a token list), and then expands the ⟨function⟩. The ⟨token⟩ remains in the
input stream as the next item after the ⟨function⟩. The ⟨token⟩ here may be ␣, { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\peek_after:Nw

\peek_gafter:Nw ⟨function⟩ ⟨token⟩

Globally sets the test variable \g_peek_token equal to ⟨token⟩ (as an implicit token,
not as a token list), and then expands the ⟨function⟩. The ⟨token⟩ remains in the
input stream as the next item after the ⟨function⟩. The ⟨token⟩ here may be ␣, { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\peek_gafter:Nw

Token set by \peek_after:Nw and available for testing as described above.\l_peek_token

Token set by \peek_gafter:Nw and available for testing as described above.\g_peek_token

205

\peek_catcode:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same category code as the ⟨test
token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_catcode:NTF

Updated: 2012-12-20

\peek_catcode_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same category code as the ⟨test
token⟩ (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is removed from the input stream if the test is true. The function
then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate
to the result of the test).

\peek_catcode_remove:NTF

Updated: 2012-12-20

\peek_charcode:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test
token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_charcode:NTF

Updated: 2012-12-20

\peek_charcode_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same character code as the ⟨test
token⟩ (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected
by the test and the ⟨token⟩ is removed from the input stream if the test is true. The
function then places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as
appropriate to the result of the test).

\peek_charcode_remove:NTF

Updated: 2012-12-20

\peek_meaning:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same meaning as the ⟨test token⟩
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false code⟩ (as
appropriate to the result of the test).

\peek_meaning:NTF

Updated: 2011-07-02

\peek_meaning_remove:NTF ⟨test token⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream has the same meaning as the ⟨test token⟩
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the ⟨token⟩ is removed from the input stream if the test is true. The function then
places either the ⟨true code⟩ or ⟨false code⟩ in the input stream (as appropriate to
the result of the test).

\peek_meaning_remove:NTF

Updated: 2011-07-02

\peek_remove_spaces:n {⟨code⟩}

Peeks ahead and detect if the following token is a space (category code 10 and character
code 32). If so, removes the token and checks the next token. Once a non-space token
is found, the ⟨code⟩ will be inserted into the input stream. Typically this will contain a
peek operation, but this is not required.

\peek_remove_spaces:n

New: 2018-10-01

206

\peek_remove_filler:n {⟨code⟩}

Peeks ahead and detect if the following token is a space (category code 10) or has meaning
equal to \scan_stop:. If so, removes the token and checks the next token. If neither
of these cases apply, expands the next token using f-type expansion, then checks the
resulting leading token in the same way. If after expansion the next token is neither of
the two test cases, the ⟨code⟩ will be inserted into the input stream. Typically this will
contain a peek operation, but this is not required.

TEXhackers note: This is essentially a macro-based implementation of how TEX handles
the search for a left brace after for example \everypar, except that any non-expandable token
cleanly ends the ⟨filler⟩ (i.e. it does not lead to a TEX error).

In contrast to TEX’s filler removal, a construct \exp_not:N \foo will be treated in the same
way as \foo.

\peek_remove_filler:n

New: 2022-01-10

\peek_N_type:TF {⟨true code⟩} {⟨false code⟩}

Tests if the next ⟨token⟩ in the input stream can be safely grabbed as an N-type argument.
The test is ⟨false⟩ if the next ⟨token⟩ is either an explicit or implicit begin-group or
end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), or an outer token (never used in LATEX3)
and ⟨true⟩ in all other cases. Note that a ⟨true⟩ result ensures that the next ⟨token⟩ is
a valid N-type argument. However, if the next ⟨token⟩ is for instance \c_space_token,
the test takes the ⟨false⟩ branch, even though the next ⟨token⟩ is in fact a valid N-type
argument. The ⟨token⟩ is left in the input stream after the ⟨true code⟩ or ⟨false
code⟩ (as appropriate to the result of the test).

\peek_N_type:TF

Updated: 2012-12-20

207

\peek_analysis_map_inline:n {⟨inline function⟩}\peek_analysis_map_inline:n

New: 2020-12-03

Updated: 2024-02-07

Repeatedly removes one ⟨token⟩ from the input stream and applies the ⟨inline
function⟩ to it, until \peek_analysis_map_break: is called. The ⟨inline function⟩
receives three arguments for each ⟨token⟩ in the input stream:

• ⟨tokens⟩, which both o-expand and e/x-expand to the ⟨token⟩. The detailed form
of ⟨tokens⟩ may change in later releases.

• ⟨char code⟩, a decimal representation of the character code of the ⟨token⟩, −1 if
it is a control sequence.

• ⟨catcode⟩, a capital hexadecimal digit which denotes the category code of the
⟨token⟩ (0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: align-
ment tab, 6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other,
D: active). This can be converted to an integer by writing "⟨catcode⟩.

These arguments are the same as for \tl_analysis_map_inline:nn defined in l3tl-
analysis. The ⟨char code⟩ and ⟨catcode⟩ do not take the meaning of a control sequence
or active character into account: for instance, upon encountering the token \c_group_-
begin_token in the input stream, \peek_analysis_map_inline:n calls the ⟨inline
function⟩ with #1 being \exp_not:n { \c_group_begin_token } (with the current
implementation), #2 being −1, and #3 being 0, as for any other control sequence. In
contrast, upon encountering an explicit begin-group token {, the ⟨inline function⟩ is
called with arguments \exp_after:wN { \if_false: } \fi:, 123 and 1.

The mapping is done at the current group level, i.e. any local assignments made by
the ⟨inline function⟩ remain in effect after the loop. Within the code, \l_peek_token
is set equal (as a token, not a token list) to the token under consideration.

Peek functions cannot be used within this mapping function (nor other mapping
functions) since the input stream contains trailing material necessary for the functioning
of the loop.

TEXhackers note: In case the input stream has not yet been tokenized (converted from
characters to tokens), characters are tokenized one by one as needed by \peek_analysis_map_-
inline:n using the current category code regime.

\peek_analysis_map_inline:n
{ ... \peek_analysis_map_break:n {⟨code⟩} }

Stops the \peek_analysis_map_inline:n loop from seeking more tokens, and inserts
⟨code⟩ in the input stream (empty for \peek_analysis_map_break:).

\peek_analysis_map_break:
\peek_analysis_map_break:n

New: 2020-12-03

208

\peek_regex:nTF {⟨regex⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨tokens⟩ that follow in the input stream match the ⟨regular expression⟩.
Any ⟨tokens⟩ that have been read are left in the input stream after the ⟨true code⟩ or
⟨false code⟩ (as appropriate to the result of the test). See l3regex for documentation
of the syntax of regular expressions. The ⟨regular expression⟩ is implicitly anchored
at the start, so for instance \peek_regex:nTF { a } is essentially equivalent to \peek_-
charcode:NTF a.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex:nTF
as control sequences, while functions that inspect individual tokens (for instance \peek_-
charcode:NTF) only take into account their meaning.

The \peek_regex:nTF function only inspects as few tokens as necessary to determine
whether the regular expression matches. For instance \peek_regex:nTF { abc | [a-z] }
{ } { } abc will only inspect the first token a even though the first branch abc of the al-
ternative is preferred in functions such as \peek_regex_remove_once:nTF. This may have an
effect on tokenization if the input stream has not yet been tokenized and category codes are
changed.

\peek_regex:nTF
\peek_regex:NTF

New: 2020-12-03

\peek_regex_remove_once:nTF {⟨regex⟩} {⟨true code⟩} {⟨false code⟩}\peek_regex_remove_once:nTF
\peek_regex_remove_once:NTF

New: 2020-12-03

Tests if the ⟨tokens⟩ that follow in the input stream match the ⟨regex⟩. If the test is
true, the ⟨tokens⟩ are removed from the input stream and the ⟨true code⟩ is inserted,
while if the test is false, the ⟨false code⟩ is inserted followed by the ⟨tokens⟩ that
were originally in the input stream. See l3regex for documentation of the syntax of
regular expressions. The ⟨regular expression⟩ is implicitly anchored at the start, so
for instance \peek_regex_remove_once:nTF { a } is essentially equivalent to \peek_-
charcode_remove:NTF a.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
remove_once:nTF as control sequences, while functions that inspect individual tokens (for in-
stance \peek_charcode:NTF) only take into account their meaning.

209

\peek_regex_replace_once:nnTF {⟨regex⟩} {⟨replacement⟩} {⟨true code⟩}
{⟨false code⟩}

\peek_regex_replace_once:nn
\peek_regex_replace_once:nnTF
\peek_regex_replace_once:Nn
\peek_regex_replace_once:NnTF

New: 2020-12-03

If the ⟨tokens⟩ that follow in the input stream match the ⟨regex⟩, replaces them ac-
cording to the ⟨replacement⟩ as for \regex_replace_once:nnN, and leaves the result
in the input stream, after the ⟨true code⟩. Otherwise, leaves ⟨false code⟩ followed by
the ⟨tokens⟩ that were originally in the input stream, with no modifications. See l3regex
for documentation of the syntax of regular expressions and of the ⟨replacement⟩: for in-
stance \0 in the ⟨replacement⟩ is replaced by the tokens that were matched in the input
stream. The ⟨regular expression⟩ is implicitly anchored at the start. In contrast to
\regex_replace_once:nnN, no error arises if the ⟨replacement⟩ leads to an unbalanced
token list: the tokens are inserted into the input stream without issue.

TEXhackers note: Implicit character tokens are correctly considered by \peek_regex_-
replace_once:nnTF as control sequences, while functions that inspect individual tokens (for
instance \peek_charcode:NTF) only take into account their meaning.

24.7 Description of all possible tokens
Let us end by reviewing every case that a given token can fall into. This section is quite
technical and some details are only meant for completeness. We distinguish the meaning
of the token, which controls the expansion of the token and its effect on TEX’s state,
and its shape, which is used when comparing token lists such as for delimited arguments.
Two tokens of the same shape must have the same meaning, but the converse does not
hold.

A token has one of the following shapes.

• A control sequence, characterized by the sequence of characters that constitute its
name: for instance, \use:n is a five-letter control sequence.

• An active character token, characterized by its character code (between 0 and
1114111 for LuaTEX and X ETEX and less for other engines) and category code 13.

• A character token, characterized by its character code and category code (one of 1,
2, 3, 4, 6, 7, 8, 10, 11 or 12 whose meaning is described below).

There are also a few internal tokens. The following list may be incomplete in some
engines.

• Expanding \the\font results in a token that looks identical to the command that
was used to select the current font (such as \tenrm) but it differs from it in shape.

• A “frozen” \relax, which differs from the primitive in shape (but has the same
meaning), is inserted when the closing \fi of a conditional is encountered before
the conditional is evaluated.

• Expanding \noexpand ⟨token⟩ (when the ⟨token⟩ is expandable) results in an
internal token, displayed (temporarily) as \notexpanded: ⟨token⟩, whose shape
coincides with the ⟨token⟩ and whose meaning differs from \relax.

210

• An \outer endtemplate: can be encountered when peeking ahead at the next
token; this expands to another internal token, end of alignment template.

• Tricky programming might access a frozen \endwrite.

• Some frozen tokens can only be accessed in interactive sessions: \cr, \right,
\endgroup, \fi, \inaccessible.

• In LuaTEX, there is also the strange case of “bytes” ^^^^^^1100xy where x, y
are any two lowercase hexadecimal digits, so that the hexadecimal number ranges
from "11 0000 = 1 114 112 to "110 0ff = 1 114 367. These are used to output indi-
vidual bytes to files, rather than UTF-8. For the purposes of token comparisons
they behave like non-expandable primitive control sequences (not characters) whose
\meaning is the␣character␣ followed by the given byte. If this byte is in the range
80–ff this gives an “invalid utf-8 sequence” error: applying \token_to_str:N or
\token_to_meaning:N to these tokens is unsafe. Unfortunately, they don’t seem
to be detectable safely by any means except perhaps Lua code.

The meaning of a (non-active) character token is fixed by its category code (and
character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample
output of the TEX primitive \meaning, together with their LATEX3 names and most
common example:

1 begin-group character (group_begin, often {),

2 end-group character (group_end, often }),

3 math shift character (math_toggle, often $),

4 alignment tab character (alignment, often &),

6 macro parameter character (parameter, often #),

7 superscript character (math_superscript, often ^),

8 subscript character (math_subscript, often _),

10 blank space (space, often character code 32),

11 the letter (letter, such as A),

12 the character (other, such as 0).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (escape), 5 (end_line), 9 (ignore), 14 (comment), and 15 (invalid).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

• a macro, used in LATEX3 for most functions and some variables (tl, fp, seq, . . .),

• a primitive such as \def or \topmark, used in LATEX3 for some functions,

• a register such as \count123, used in LATEX3 for the implementation of some vari-
ables (int, dim, . . .),

211

• a constant integer such as \char"56 or \mathchar"121,

• a font selection command,

• undefined.

Macros can be \protected or not, \long or not (the opposite of what LATEX3 calls
nopar), and \outer or not (unused in LATEX3). Their \meaning takes the form

⟨prefix⟩ macro:⟨argument⟩->⟨replacement⟩

where ⟨prefix⟩ is among \protected\long\outer, ⟨argument⟩ describes parameters
that the macro expects, such as #1#2#3, and ⟨replacement⟩ describes how the parame-
ters are manipulated, such as \int_eval:n{#2+#1*#3}.

Now is perhaps a good time to mention some subtleties relating to tokens with
category code 10 (space). Any input character with this category code (normally, space
and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with char-
acter code 32 and category code 10) are ignored. If the following token is an explicit
character token with category code 1 (begin-group) and an arbitrary character code,
then TEX scans ahead to obtain an equal number of explicit character tokens with cate-
gory code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer
braces removed) becomes the argument. Otherwise, a single token is taken as the argu-
ment for the macro: we call such single tokens “N-type”, as they are suitable to be used
as an argument for a function with the signature :N.

When a macro takes a delimited argument TEX scans ahead until finding the delim-
iter (outside any pairs of begin-group/end-group explicit characters), and the resulting
list of tokens (with outer braces removed) becomes the argument. Note that explicit
space characters at the start of the argument are not ignored in this case (and they
prevent brace-stripping).

212

Chapter 25

The l3prop module
Property lists

expl3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a ⟨key⟩ (string) and an associated ⟨value⟩ (token list). The
⟨key⟩ and ⟨value⟩ may both be given as any balanced text, and the ⟨key⟩ is processed
using \tl_to_str:n, meaning that category codes are ignored. Entries can be manipu-
lated individually, as well as collectively by applying a function to every key–value pair
within the list.

Each entry in a property list must have a unique ⟨key⟩: if an entry is added to a
property list which already contains the ⟨key⟩ then the new entry overwrites the existing
one. The ⟨keys⟩ are compared on a string basis, using the same method as \str_if_-
eq:nnTF.

Property lists are intended for storing key-based information for use within code.
They can be converted from and to key–value lists, which are a form of input parsed
by the l3keys module. If a key–value list contains a ⟨key⟩ multiple times, only the last
⟨value⟩ associated to it will be kept in the conversion to a property list.

Internally, property lists can use two distinct implementations with different data
storage, which are decided when declaring the property list variable using \prop_new:N
(“flat” storage) or \prop_new_linked:N (“linked” storage). After a property list is de-
clared with \prop_new:N or \prop_new_linked:N, the type of internal data storage can
be changed by \prop_make_flat:N or \prop_make_linked:N, but only at the outermost
group level. All other l3prop functions transparently manipulate either storage method
and convert as needed.

• The (default) “flat” storage method is suited for a relatively small number of en-
tries, or when the property list is likely to be manipulated (copied, mapped) as a
whole rather than entry-wise. It is significantly faster for \prop_set_eq:NN, and
only slightly faster for \prop_clear:N, \prop_concat:NNN, and mapping functions
\prop_map_....

• The “linked” storage method is meant for property lists with a large numbers of
entries. It takes up more of TEX’s memory during a run, but is significantly faster
(for long lists) when accessing or modifying individual entries using functions such
as \prop_if_in:Nn, \prop_item:Nn, \prop_put:Nnn, \prop_get:NnN, \prop_-
pop:NnN, \prop_remove:Nn, as it takes a constant time for these operations (rather

213

than the number of items for a “flat” property list). A technical drawback is that
memory is permanently used7 by ⟨keys⟩ stored in a “linked” property list, even
after they are removed and the property list is deleted.

25.1 Creating and initialising property lists

\prop_new:N ⟨property list⟩

Creates a new “flat” ⟨property list⟩ or raises an error if the name is already taken.
The declaration is global. The ⟨property list⟩ initially contains no entries. See also
\prop_new_linked:N.

\prop_new:N
\prop_new:c

\prop_new_linked:N ⟨property list⟩

Creates a new “linked” ⟨property list⟩ or raises an error if the name is already taken.
The declaration is global. The ⟨property list⟩ initially contains no entries. The in-
ternal data storage differs from that produced by \prop_new:N and it is optimized for
property lists with a large number of entries.

\prop_new_linked:N
\prop_new_linked:c

New: 2024-02-12

\prop_clear:N ⟨property list⟩

Clears all entries from the ⟨property list⟩.
\prop_clear:N
\prop_clear:c
\prop_gclear:N
\prop_gclear:c

\prop_clear_new:N ⟨property list⟩

Ensures that the ⟨property list⟩ exists globally by applying \prop_new:N if necessary,
then applies \prop_(g)clear:N to leave the list empty.

TEXhackers note: If the property list exists and is of “linked” type, it is cleared but not
made into a flat property list.

\prop_clear_new:N
\prop_clear_new:c
\prop_gclear_new:N
\prop_gclear_new:c

\prop_clear_new_linked:N ⟨property list⟩

Ensures that the ⟨property list⟩ exists globally by applying \prop_new_linked:N if
necessary, then applies \prop_(g)clear:N to leave the list empty.

TEXhackers note: If the property list exists and is of “flat” type, it is cleared but not
made into a linked property list.

\prop_clear_new_linked:N
\prop_clear_new_linked:c
\prop_gclear_new_linked:N
\prop_gclear_new_linked:c

New: 2024-02-12

\prop_set_eq:NN ⟨property list1⟩ ⟨property list2⟩

Sets the content of ⟨property list1⟩ equal to that of ⟨property list2⟩. This converts
as needed between the two storage types.

\prop_set_eq:NN
\prop_set_eq:(cN|Nc|cc)
\prop_gset_eq:NN
\prop_gset_eq:(cN|Nc|cc)

7Until the end of the run, that is.

214

\prop_set_from_keyval:Nn ⟨property list⟩
{
⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...
}

Sets ⟨property list⟩ to contain key–value pairs given in the second argument. If du-
plicate keys appear only the last of the values is kept. In contrast to most keyval lists
(e.g. those in l3keys), each key here must be followed with an = sign even to specify an
empty ⟨value⟩.

Spaces are trimmed around every ⟨key⟩ and every ⟨value⟩, and if the result of
trimming spaces consists of a single brace group then a set of outer braces is removed.
This enables both the ⟨key⟩ and the ⟨value⟩ to contain spaces, commas or equal signs.
The ⟨key⟩ is then processed by \tl_to_str:n. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_set_from_keyval:Nn
\prop_set_from_keyval:cn
\prop_gset_from_keyval:Nn
\prop_gset_from_keyval:cn

New: 2017-11-28

Updated: 2021-11-07

\prop_const_from_keyval:Nn ⟨property list⟩
{
⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...
}

Creates a new constant “flat” ⟨property list⟩ or raises an error if the name is already
taken. The ⟨property list⟩ is set globally to contain key–value pairs given in the second
argument, processed in the way described for \prop_set_from_keyval:Nn. If duplicate
keys appear only the last of the values is kept. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_const_from_keyval:Nn
\prop_const_from_keyval:cn

New: 2017-11-28

Updated: 2021-11-07

\prop_const_linked_from_keyval:Nn ⟨prop var⟩
{
⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...
}

\prop_const_linked_from_keyval:Nn
\prop_const_linked_from_keyval:cn

New: 2024-02-12

Creates a new constant “linked” ⟨prop var⟩ or raises an error if the name is already
taken. The ⟨prop var⟩ is set globally to contain key–value pairs given in the second
argument, processed in the way described for \prop_set_from_keyval:Nn. If duplicate
keys appear only the last of the values is kept. This function correctly detects the = and
, signs provided they have the standard category code 12 or they are active.

\prop_make_flat:N ⟨property list⟩

Changes the internal storage type of the ⟨property list⟩ to be the same “flat” storage
as \prop_new:N. The key–value pairs of the ⟨property list⟩ are preserved by the
change. If the property list was already flat then nothing is done. This function can only
be used at the outermost group level.

\prop_make_flat:N
\prop_make_flat:c

New: 2024-02-12

\prop_make_linked:N ⟨property list⟩

Changes the internal storage type of the ⟨property list⟩ to be the same “linked” storage
as \prop_new_linked:N. The key–value pairs of the ⟨property list⟩ are preserved by
the change. If the property list was already linked then nothing is done. This function
can only be used at the outermost group level.

\prop_make_linked:N
\prop_make_linked:c

New: 2024-02-12

215

25.2 Adding and updating property list entries

\prop_put:Nnn ⟨property list⟩ {⟨key⟩} {⟨value⟩}\prop_put:Nnn
\prop_put:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|Nno|Non|Noo|
cnn|cnV|cnv|cne|cVn|cVV|cVv|cVe|cvn|
cvV|cvv|cve|cen|ceV|cev|cee|cno|con|
coo)

\prop_gput:Nnn
\prop_gput:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|Nno|Non|Noo|
cnn|cnV|cnv|cne|cVn|cVV|cVv|cVe|cvn|
cvV|cvv|cve|cen|ceV|cev|cee|cno|con|
coo)

Updated: 2012-07-09

Adds an entry to the ⟨property list⟩ which may be accessed using the ⟨key⟩ and
which has ⟨value⟩. If the ⟨key⟩ is already present in the ⟨property list⟩, the existing
entry is overwritten by the new ⟨value⟩. Both the ⟨key⟩ and ⟨value⟩ may contain any
⟨balanced text⟩. The ⟨key⟩ is stored after processing with \tl_to_str:n, meaning
that category codes are ignored.

\prop_put_if_not_in:Nnn ⟨property list⟩ {⟨key⟩}
{⟨value⟩}

\prop_put_if_not_in:Nnn
\prop_put_if_not_in:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|cnn|cnV|cnv|
cne|cVn|cVV|cVv|cVe|cvn|cvV|cvv|cve|
cen|ceV|cev|cee)

\prop_gput_if_not_in:Nnn
\prop_gput_if_not_in:(NnV|Nnv|Nne|NVn|NVV|NVv|NVe|Nvn|NvV|

Nvv|Nve|Nen|NeV|Nev|Nee|cnn|cnV|cnv|
cne|cVn|cVV|cVv|cVe|cvn|cvV|cvv|cve|
cen|ceV|cev|cee)

New: 2024-03-30

Updated: 2024-05-07

If the ⟨key⟩ is present in the ⟨property list⟩ then no action is taken. Otherwise, a
new entry is added as described for \prop_put:Nnn.

\prop_concat:NNN ⟨property list1⟩ ⟨property list2⟩ ⟨property list3⟩

Combines the key–value pairs of ⟨property list2⟩ and ⟨property list3⟩, and saves the
result in ⟨property list1⟩. If a key appears in both ⟨property list2⟩ and ⟨property
list3⟩ then the last value, namely the value in ⟨property list3⟩ is kept. This converts
as needed between the two storage types.

\prop_concat:NNN
\prop_concat:ccc
\prop_gconcat:NNN
\prop_gconcat:ccc

New: 2021-05-16

216

\prop_put_from_keyval:Nn ⟨property list⟩
{
⟨key1⟩ = ⟨value1⟩ ,
⟨key2⟩ = ⟨value2⟩ , ...
}

Updates the ⟨property list⟩ by adding entries for each key–value pair given in the
second argument. The addition is done through \prop_put:Nnn, hence if the ⟨property
list⟩ already contains some of the keys, the corresponding values are discarded and
replaced by those given in the key–value list. If duplicate keys appear in the key–value
list then only the last of the values is kept.

The function is equivalent to storing the key–value pairs in a temporary property
list using \prop_set_from_keyval:Nn, then combining ⟨property list⟩ with the tem-
porary variable using \prop_concat:NNN. In particular, the ⟨keys⟩ and ⟨values⟩ are
space-trimmed and unbraced as described in \prop_set_from_keyval:Nn. This function
correctly detects the = and , signs provided they have the standard category code 12 or
they are active.

\prop_put_from_keyval:Nn
\prop_put_from_keyval:cn
\prop_gput_from_keyval:Nn
\prop_gput_from_keyval:cn

New: 2021-05-16

Updated: 2021-11-07

25.3 Recovering values from property lists

\prop_get:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_get:NnN
\prop_get:(NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN|

cnc)
Updated: 2011-08-28

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then the
⟨token list variable⟩ is set to the special marker \q_no_value. The ⟨token list
variable⟩ is set within the current TEX group. See also \prop_get:NnNTF.

\prop_pop:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_pop:NnN
\prop_pop:(NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-18

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then
the ⟨token list variable⟩ is set to the special marker \q_no_value. The ⟨key⟩ and
⟨value⟩ are then deleted from the property list. Both assignments are local. See also
\prop_pop:NnNTF.

\prop_gpop:NnN ⟨property list⟩ {⟨key⟩} ⟨tl var⟩\prop_gpop:NnN
\prop_gpop:(NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-18

Recovers the ⟨value⟩ stored with ⟨key⟩ from the ⟨property list⟩, and places this in
the ⟨token list variable⟩. If the ⟨key⟩ is not found in the ⟨property list⟩ then
the ⟨token list variable⟩ is set to the special marker \q_no_value. The ⟨key⟩ and
⟨value⟩ are then deleted from the property list. The ⟨property list⟩ is modified
globally, while the assignment of the ⟨token list variable⟩ is local. See also \prop_-
gpop:NnNTF.

217

\prop_item:Nn ⟨property list⟩ {⟨key⟩}\prop_item:Nn ⋆
\prop_item:(NV|Ne|No|cn|cV|ce|co) ⋆

New: 2014-07-17

Expands to the ⟨value⟩ corresponding to the ⟨key⟩ in the ⟨property list⟩. If the
⟨key⟩ is missing, this has an empty expansion.

TEXhackers note: For “flat” property lists, this expandable function iterates through
every key–value pair and is therefore slower than a non-expandable approach based on \prop_-
get:NnN. (For “linked” property lists both functions are fast.)

The result is returned within the \unexpanded primitive (\exp_not:n), which means that
the ⟨value⟩ does not expand further when appearing in an e-type or x-type argument expansion.

\prop_count:N ⟨property list⟩

Leaves the number of key–value pairs in the ⟨property list⟩ in the input stream as an
⟨integer denotation⟩.

\prop_count:N ⋆
\prop_count:c ⋆

\prop_to_keyval:N ⟨property list⟩

Expands to the ⟨property list⟩ in a key–value notation. Keep in mind that a
⟨property list⟩ is unordered, while key–value interfaces are not necessarily, so this
cannot be used for arbitrary interfaces.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the key–value list does not expand further when appearing in an e-type or
x-type argument expansion. It also needs exactly two steps of expansion.

\prop_to_keyval:N ⋆

25.4 Modifying property lists

\prop_remove:Nn ⟨property list⟩ {⟨key⟩}\prop_remove:Nn
\prop_remove:(NV|Ne|cn|cV|ce)
\prop_gremove:Nn
\prop_gremove:(NV|Ne|cn|cV|ce)

New: 2012-05-12

Removes the entry listed under ⟨key⟩ from the ⟨property list⟩. If the ⟨key⟩ is not
found in the ⟨property list⟩ no change occurs, i.e there is no need to test for the
existence of a key before deleting it.

25.5 Property list conditionals

\prop_if_exist_p:N ⟨property list⟩
\prop_if_exist:NTF ⟨property list⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨property list⟩ is currently defined. This does not check that the
⟨property list⟩ really is a property list variable.

\prop_if_exist_p:N ⋆
\prop_if_exist_p:c ⋆
\prop_if_exist:NTF ⋆
\prop_if_exist:cTF ⋆

New: 2012-03-03

218

\prop_if_empty_p:N ⟨property list⟩
\prop_if_empty:NTF ⟨property list⟩ {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨property list⟩ is empty (containing no entries).

\prop_if_empty_p:N ⋆
\prop_if_empty_p:c ⋆
\prop_if_empty:NTF ⋆
\prop_if_empty:cTF ⋆

\prop_if_in_p:Nn ⟨property list⟩ {⟨key⟩}
\prop_if_in:NnTF ⟨property list⟩ {⟨key⟩} {⟨true code⟩} {⟨false
code⟩}

\prop_if_in_p:Nn ⋆
\prop_if_in_p:(NV|Ne|No|cn|cV|ce|co) ⋆
\prop_if_in:NnTF ⋆
\prop_if_in:(NV|Ne|No|cn|cV|ce|co)TF ⋆

Updated: 2011-09-15

Tests if the ⟨key⟩ is present in the ⟨property list⟩, making the comparison using the
method described by \str_if_eq:nnTF.

TEXhackers note: For “flat” property lists, this expandable function iterates through
every key–value pair and is therefore slower than a non-expandable approach based on \prop_-
get:NnNTF. (For “linked” property lists both functions are fast.)

25.6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list
with recovery of the associated valued. This makes them useful for cases where different
code follows depending on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

\prop_get:NnNTF ⟨property list⟩ {⟨key⟩} ⟨token list
variable⟩

{⟨true code⟩} {⟨false code⟩}

\prop_get:NnNTF
\prop_get:(NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN|

cnc)TF

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the
input stream. The value of the ⟨token list variable⟩ is not defined in this case and
should not be relied upon. If the ⟨key⟩ is present in the ⟨property list⟩, stores the
corresponding ⟨value⟩ in the ⟨token list variable⟩ without removing it from the
⟨property list⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨token list
variable⟩ is assigned locally.

\prop_pop:NnNTF ⟨property list⟩ {⟨key⟩} ⟨token list variable⟩
{⟨true code⟩} {⟨false code⟩}

\prop_pop:NnNTF
\prop_pop:(NVN|NoN|cnN|cVN|coN)TF

New: 2011-08-18

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the
input stream. The value of the ⟨token list variable⟩ is not defined in this case
and should not be relied upon. If the ⟨key⟩ is present in the ⟨property list⟩, pops
the corresponding ⟨value⟩ in the ⟨token list variable⟩, i.e. removes the item from
the ⟨property list⟩. Both the ⟨property list⟩ and the ⟨token list variable⟩ are
assigned locally.

219

\prop_gpop:NnNTF ⟨property list⟩ {⟨key⟩} ⟨token list variable⟩
{⟨true code⟩} {⟨false code⟩}

\prop_gpop:NnNTF
\prop_gpop:(NVN|NoN|cnN|cVN|coN)TF

New: 2011-08-18

Updated: 2012-05-19

If the ⟨key⟩ is not present in the ⟨property list⟩, leaves the ⟨false code⟩ in the
input stream. The value of the ⟨token list variable⟩ is not defined in this case and
should not be relied upon. If the ⟨key⟩ is present in the ⟨property list⟩, pops the
corresponding ⟨value⟩ in the ⟨token list variable⟩, i.e. removes the item from the
⟨property list⟩. The ⟨property list⟩ is modified globally, while the ⟨token list
variable⟩ is assigned locally.

25.7 Mapping over property lists
All mappings are done at the current group level, i.e. any local assignments made by the
⟨function⟩ or ⟨code⟩ discussed below remain in effect after the loop.

\prop_map_function:NN ⟨property list⟩ ⟨function⟩

Applies ⟨function⟩ to every ⟨entry⟩ stored in the ⟨property list⟩. The ⟨function⟩
receives two arguments for each iteration: the ⟨key⟩ and associated ⟨value⟩. The order
in which ⟨entries⟩ are returned is not defined and should not be relied upon. To pass
further arguments to the ⟨function⟩, see \prop_map_inline:Nn (non-expandable) or
\prop_map_tokens:Nn.

\prop_map_function:NN ✩

\prop_map_function:cN ✩

Updated: 2013-01-08

\prop_map_inline:Nn ⟨property list⟩ {⟨inline function⟩}

Applies ⟨inline function⟩ to every ⟨entry⟩ stored within the ⟨property list⟩. The
⟨inline function⟩ should consist of code which receives the ⟨key⟩ as #1 and the ⟨value⟩
as #2. The order in which ⟨entries⟩ are returned is not defined and should not be relied
upon.

\prop_map_inline:Nn
\prop_map_inline:cn

Updated: 2013-01-08

\prop_map_tokens:Nn ⟨property list⟩ {⟨code⟩}

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The ⟨code⟩ receives each key–value pair in the ⟨property list⟩ as two trailing
brace groups. For instance,

\prop_map_tokens:Nn \l_my_prop { \str_if_eq:nnT { mykey } }

expands to the value corresponding to mykey: for each pair in \l_my_prop the function
\str_if_eq:nnT receives mykey, the ⟨key⟩ and the ⟨value⟩ as its three arguments. For
that specific task, \prop_item:Nn is faster.

\prop_map_tokens:Nn ✩

\prop_map_tokens:cn ✩

220

\prop_map_break:

Used to terminate a \prop_map_... function before all entries in the ⟨property list⟩
have been processed. This normally takes place within a conditional statement, for
example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\prop_map_break: ✩

Updated: 2012-06-29

\prop_map_break:n {⟨code⟩}

Used to terminate a \prop_map_... function before all entries in the ⟨property list⟩
have been processed, inserting the ⟨code⟩ after the mapping has ended. This normally
takes place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <code> } }
{
% Do something useful

}
}

Use outside of a \prop_map_... scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

\prop_map_break:n ✩

Updated: 2012-06-29

25.8 Viewing property lists

\prop_show:N ⟨property list⟩

Displays the entries in the ⟨property list⟩ in the terminal, and specifies its storage
type.

\prop_show:N
\prop_show:c

Updated: 2021-04-29

221

\prop_log:N ⟨property list⟩

Writes the entries in the ⟨property list⟩ in the log file, and specifies its storage type.
\prop_log:N
\prop_log:c

New: 2014-08-12

Updated: 2021-04-29

25.9 Scratch property lists
There is no need to include both flat and linked property lists as scratch variables. We
arbitrarily pick the older implementation.

Scratch “flat” property lists for local assignment. These are never used by the kernel
code, and so are safe for use with any LATEX3-defined function. However, they may be
overwritten by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_prop
\l_tmpb_prop

New: 2012-06-23

Scratch “flat” property lists for global assignment. These are never used by the kernel
code, and so are safe for use with any LATEX3-defined function. However, they may be
overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

25.10 Constants

A permanently-empty property list used for internal comparisons.\c_empty_prop

222

Chapter 26

The l3skip module
Dimensions and skips

LATEX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

Many functions take dimension expressions (“⟨dim expr⟩”) or skip expressions
(“⟨skip expr⟩”) as arguments.

26.1 Creating and initialising dim variables

\dim_new:N ⟨dimension⟩

Creates a new ⟨dimension⟩ or raises an error if the name is already taken. The declara-
tion is global. The ⟨dimension⟩ is initially equal to 0 pt.

\dim_new:N
\dim_new:c

\dim_const:Nn ⟨dimension⟩ {⟨dim expr⟩}

Creates a new constant ⟨dimension⟩ or raises an error if the name is already taken. The
value of the ⟨dimension⟩ is set globally to the ⟨dim expr⟩.

\dim_const:Nn
\dim_const:cn

New: 2012-03-05

\dim_zero:N ⟨dimension⟩

Sets ⟨dimension⟩ to 0 pt.
\dim_zero:N
\dim_zero:c
\dim_gzero:N
\dim_gzero:c

\dim_zero_new:N ⟨dimension⟩

Ensures that the ⟨dimension⟩ exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the ⟨dimension⟩ set to zero.

\dim_zero_new:N
\dim_zero_new:c
\dim_gzero_new:N
\dim_gzero_new:c

New: 2012-01-07

223

\dim_if_exist_p:N ⟨dimension⟩
\dim_if_exist:NTF ⟨dimension⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨dimension⟩ is currently defined. This does not check that the
⟨dimension⟩ really is a dimension variable.

\dim_if_exist_p:N ⋆
\dim_if_exist_p:c ⋆
\dim_if_exist:NTF ⋆
\dim_if_exist:cTF ⋆

New: 2012-03-03

26.2 Setting dim variables

\dim_add:Nn ⟨dimension⟩ {⟨dim expr⟩}

Adds the result of the ⟨dim expr⟩ to the current content of the ⟨dimension⟩.
\dim_add:Nn
\dim_add:cn
\dim_gadd:Nn
\dim_gadd:cn

Updated: 2011-10-22

\dim_set:Nn ⟨dimension⟩ {⟨dim expr⟩}

Sets ⟨dimension⟩ to the value of ⟨dim expr⟩, which must evaluate to a length with units.
\dim_set:Nn
\dim_set:cn
\dim_gset:Nn
\dim_gset:cn

Updated: 2011-10-22

\dim_set_eq:NN ⟨dimension1⟩ ⟨dimension2⟩

Sets the content of ⟨dimension1⟩ equal to that of ⟨dimension2⟩.
\dim_set_eq:NN
\dim_set_eq:(cN|Nc|cc)
\dim_gset_eq:NN
\dim_gset_eq:(cN|Nc|cc)

\dim_sub:Nn ⟨dimension⟩ {⟨dim expr⟩}

Subtracts the result of the ⟨dim expr⟩ from the current content of the ⟨dimension⟩.
\dim_sub:Nn
\dim_sub:cn
\dim_gsub:Nn
\dim_gsub:cn

Updated: 2011-10-22

26.3 Utilities for dimension calculations

\dim_abs:n {⟨dim expr⟩}

Converts the ⟨dim expr⟩ to its absolute value, leaving the result in the input stream as
a ⟨dimension denotation⟩.

\dim_abs:n ⋆

Updated: 2012-09-26

\dim_max:nn {⟨dim expr1⟩} {⟨dim expr2⟩}
\dim_min:nn {⟨dim expr1⟩} {⟨dim expr2⟩}

Evaluates the two ⟨dim exprs⟩ and leaves either the maximum or minimum value in the
input stream as appropriate, as a ⟨dimension denotation⟩.

\dim_max:nn ⋆
\dim_min:nn ⋆

New: 2012-09-09

Updated: 2012-09-26

224

\dim_ratio:nn {⟨dim expr1⟩} {⟨dim expr2⟩}

Parses the two ⟨dim exprs⟩ and converts the ratio of the two to a form suitable for use
inside a ⟨dim expr⟩. This ratio is then left in the input stream, allowing syntax such as

\dim_set:Nn \l_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ratio expression between two integers,
with all distances converted to scaled points. Thus

\tl_set:Ne \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \l_my_tl

displays 327680/655360 on the terminal.

\dim_ratio:nn ✩

Updated: 2011-10-22

26.4 Dimension expression conditionals

\dim_compare_p:nNn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩}
\dim_compare:nNnTF

{⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨dim exprs⟩ as described for \dim_eval:n. The
two results are then compared using the ⟨relation⟩:

Equal =
Greater than >
Less than <

This function is less flexible than \dim_compare:nTF but around 5 times faster.

\dim_compare_p:nNn ⋆
\dim_compare:nNnTF ⋆

225

\dim_compare_p:n
{

⟨dim expr1⟩ ⟨relation1⟩
...
⟨dim exprN ⟩ ⟨relationN ⟩
⟨dim exprN+1⟩

}
\dim_compare:nTF

{
⟨dim expr1⟩ ⟨relation1⟩
...
⟨dim exprN ⟩ ⟨relationN ⟩
⟨dim exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

This function evaluates the ⟨dim exprs⟩ as described for \dim_eval:n and compares
consecutive result using the corresponding ⟨relation⟩, namely it compares ⟨dim expr1⟩
and ⟨dim expr2⟩ using the ⟨relation1⟩, then ⟨dim expr2⟩ and ⟨dim expr3⟩ using
the ⟨relation2⟩, until finally comparing ⟨dim exprN ⟩ and ⟨dim exprN+1⟩ using the
⟨relationN ⟩. The test yields true if all comparisons are true. Each ⟨dim expr⟩ is
evaluated only once, and the evaluation is lazy, in the sense that if one comparison is
false, then no other ⟨dim expr⟩ is evaluated and no other comparison is performed.
The ⟨relations⟩ can be any of the following:

Equal = or ==
Greater than or equal to >=
Greater than >
Less than or equal to <=
Less than <
Not equal !=

This function is more flexible than \dim_compare:nNnTF but around 5 times slower.

\dim_compare_p:n ⋆
\dim_compare:nTF ⋆

Updated: 2013-01-13

226

\dim_case:nnTF {⟨test dim expr⟩}
{

{⟨dim expr case1⟩} {⟨code case1⟩}
{⟨dim expr case2⟩} {⟨code case2⟩}
...
{⟨dim expr casen⟩} {⟨code casen⟩}

}
{⟨true code⟩}
{⟨false code⟩}

This function evaluates the ⟨test dim expr⟩ and compares this in turn to each of the
⟨dim expr cases⟩. If the two are equal then the associated ⟨code⟩ is left in the input
stream and other cases are discarded. If any of the cases are matched, the ⟨true code⟩
is also inserted into the input stream (after the code for the appropriate case), while if
none match then the ⟨false code⟩ is inserted. The function \dim_case:nn, which does
nothing if there is no match, is also available. For example

\dim_set:Nn \l_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \l_tmpa_dim }
{
{ 5 pt } { Small }
{ 4 pt + 6 pt } { Medium }
{ - 10 pt } { Negative }

}
{ No idea! }

leaves “Medium” in the input stream.

\dim_case:nn ⋆
\dim_case:nnTF ⋆

New: 2013-07-24

26.5 Dimension expression loops

\dim_do_until:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨dim exprs⟩ as described for \dim_compare:nNnTF. If the test
is false then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is true.

\dim_do_until:nNnn ✩

\dim_do_while:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the rela-
tionship between the two ⟨dim exprs⟩ as described for \dim_compare:nNnTF. If the test
is true then the ⟨code⟩ is inserted into the input stream again and a loop occurs until
the ⟨relation⟩ is false.

\dim_do_while:nNnn ✩

\dim_until_do:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨dim exprs⟩ as described for \dim_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
false. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is true.

\dim_until_do:nNnn ✩

227

\dim_while_do:nNnn {⟨dim expr1⟩} ⟨relation⟩ {⟨dim expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨dim exprs⟩ as described for \dim_-
compare:nNnTF, and then places the ⟨code⟩ in the input stream if the ⟨relation⟩ is
true. After the ⟨code⟩ has been processed by TEX the test is repeated, and a loop
occurs until the test is false.

\dim_while_do:nNnn ✩

\dim_do_until:nn {⟨dimension relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
⟨dimension relation⟩ as described for \dim_compare:nTF. If the test is false then
the ⟨code⟩ is inserted into the input stream again and a loop occurs until the ⟨relation⟩
is true.

\dim_do_until:nn ✩

Updated: 2013-01-13

\dim_do_while:nn {⟨dimension relation⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
⟨dimension relation⟩ as described for \dim_compare:nTF. If the test is true then the
⟨code⟩ is inserted into the input stream again and a loop occurs until the ⟨relation⟩ is
false.

\dim_do_while:nn ✩

Updated: 2013-01-13

\dim_until_do:nn {⟨dimension relation⟩} {⟨code⟩}

Evaluates the ⟨dimension relation⟩ as described for \dim_compare:nTF, and then
places the ⟨code⟩ in the input stream if the ⟨relation⟩ is false. After the ⟨code⟩
has been processed by TEX the test is repeated, and a loop occurs until the test is true.

\dim_until_do:nn ✩

Updated: 2013-01-13

\dim_while_do:nn {⟨dimension relation⟩} {⟨code⟩}

Evaluates the ⟨dimension relation⟩ as described for \dim_compare:nTF, and then
places the ⟨code⟩ in the input stream if the ⟨relation⟩ is true. After the ⟨code⟩
has been processed by TEX the test is repeated, and a loop occurs until the test is false.

\dim_while_do:nn ✩

Updated: 2013-01-13

26.6 Dimension step functions

\dim_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. The ⟨function⟩ is then placed in front of each
⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between
each ⟨value⟩). The ⟨step⟩ must be non-zero. If the ⟨step⟩ is positive, the loop stops
when the ⟨value⟩ becomes larger than the ⟨final value⟩. If the ⟨step⟩ is negative, the
loop stops when the ⟨value⟩ becomes smaller than the ⟨final value⟩. The ⟨function⟩
should absorb one argument.

\dim_step_function:nnnN ✩

New: 2018-02-18

\dim_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. Then for each ⟨value⟩ from the ⟨initial
value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩
is inserted into the input stream with #1 replaced by the current ⟨value⟩. Thus the
⟨code⟩ should define a function of one argument (#1).

\dim_step_inline:nnnn

New: 2018-02-18

228

\dim_step_variable:nnnNn
{⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be dimension expressions. Then for each ⟨value⟩ from the ⟨initial
value⟩ to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩
is inserted into the input stream, with the ⟨tl var⟩ defined as the current ⟨value⟩. Thus
the ⟨code⟩ should make use of the ⟨tl var⟩.

\dim_step_variable:nnnNn

New: 2018-02-18

26.7 Using dim expressions and variables

\dim_eval:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, expanding any dimensions and token list variables within the
⟨expression⟩ to their content (without requiring \dim_use:N/\tl_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a ⟨dimension denotation⟩ after two expansions. This is expressed in points (pt), and
requires suitable termination if used in a TEX-style assignment as it is not an ⟨internal
dimension⟩.

\dim_eval:n ⋆

Updated: 2011-10-22

\dim_sign:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩ then leaves 1 or 0 or −1 in the input stream according to the
sign of the result.

\dim_sign:n ⋆

New: 2018-11-03

\dim_use:N ⟨dimension⟩

Recovers the content of a ⟨dimension⟩ and places it directly in the input stream. An
error is raised if the variable does not exist or if it is invalid. Can be omitted in places
where a ⟨dimension⟩ is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\dim_use:N ⋆
\dim_use:c ⋆

\dim_to_decimal:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in points (pt) in the input
stream, with no units. The result is rounded by TEX to at most five decimal places. If
the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal:n { 1bp }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted
to (TEX) points.

\dim_to_decimal:n ⋆

New: 2014-07-15

229

\dim_to_decimal_in_bp:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in big points (bp) in the input
stream, with no units. The result is rounded by TEX to at most five decimal places. If
the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example

\dim_to_decimal_in_bp:n { 1pt }

leaves 0.99628 in the input stream, i.e. the magnitude of one (TEX) point when converted
to big points.

TEXhackers note: The implementation of this function is re-entrant: the result of
\dim_compare:nNnTF

{ <x>bp } =
{ \dim_to_decimal_in_bp:n { <x>bp } bp }

will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

\dim_to_decimal_in_bp:n ⋆

New: 2014-07-15

Updated: 2023-05-20

\dim_to_decimal_in_cm:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed with the appropriate scaling
in the input stream, with no units. If the decimal part of the result is zero, it is omitted,
together with the decimal marker. The precisions of the result is limited to a maximum
of five decimal places with trailing zeros omitted.

The maximum TEX allowable dimension value (available as \maxdimen in plain TEX
and LATEX and \c_max_dim in expl3) can only be expressed exactly in the units pt, bp
and sp. The maximum allowable input values to five decimal places are

1276.00215 cc
575.83174 cm

15312.02584 dd
226.70540 in

5758.31742 mm
1365.33333 pc

(Note that these are not all equal, but rather any larger value will overflow due to the
way TEX converts to sp.) Values given to five decimal places larger that these will result
in TEX errors; the behavior if additional decimal places are given depends on the TEX
internals and thus larger values are not supported by expl3.

TEXhackers note: The implementation of these functions is re-entrant: the result of
\dim_compare:nNnTF

{ <x><unit> } =
{ \dim_to_decimal_in_<unit>:n { <x><unit> } <unit> }

will be logically true. The decimal representations may differ provided they produce the same
TEX dimension.

\dim_to_decimal_in_cc:n ⋆
\dim_to_decimal_in_cm:n ⋆
\dim_to_decimal_in_dd:n ⋆
\dim_to_decimal_in_in:n ⋆
\dim_to_decimal_in_mm:n ⋆
\dim_to_decimal_in_pc:n ⋆

New: 2023-05-20

230

\dim_to_decimal_in_sp:n {⟨dim expr⟩}

Evaluates the ⟨dim expr⟩, and leaves the result, expressed in scaled points (sp) in the
input stream, with no units. The result is necessarily an integer.

\dim_to_decimal_in_sp:n ⋆

New: 2015-05-18

\dim_to_decimal_in_unit:nn {⟨dim expr1⟩} {⟨dim expr2⟩}\dim_to_decimal_in_unit:nn ⋆

New: 2014-07-15

Updated: 2023-05-20

Evaluates the ⟨dim exprs⟩, and leaves the value of ⟨dim expr1⟩, expressed in a unit
given by ⟨dim expr2⟩, in the input stream. If the decimal part of the result is zero, it is
omitted, together with the decimal marker. The precisions of the result is limited to a
maximum of five decimal places with trailing zeros omitted.

For example

\dim_to_decimal_in_unit:nn { 1bp } { 1mm }

leaves 0.35278 in the input stream, i.e. the magnitude of one big point when expressed
in millimetres. The conversions do not guarantee that TEX would yield identical results
for the direct input in an equality test, thus for instance

\dim_compare:nNnTF
{ 1bp } =
{ \dim_to_decimal_in_unit:nn { 1bp } { 1mm } mm }

will take the false branch.

\dim_to_fp:n {⟨dim expr⟩}

Expands to an internal floating point number equal to the value of the ⟨dim expr⟩ in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision and a smaller range are acceptable.

\dim_to_fp:n ⋆

New: 2012-05-08

26.8 Viewing dim variables

\dim_show:N ⟨dimension⟩

Displays the value of the ⟨dimension⟩ on the terminal.
\dim_show:N
\dim_show:c

\dim_show:n {⟨dim expr⟩}

Displays the result of evaluating the ⟨dim expr⟩ on the terminal.
\dim_show:n

New: 2011-11-22

Updated: 2015-08-07

\dim_log:N ⟨dimension⟩

Writes the value of the ⟨dimension⟩ in the log file.
\dim_log:N
\dim_log:c

New: 2014-08-22

Updated: 2015-08-03

231

\dim_log:n {⟨dim expr⟩}

Writes the result of evaluating the ⟨dim expr⟩ in the log file.
\dim_log:n

New: 2014-08-22

Updated: 2015-08-07

26.9 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

\c_max_dim

A zero length as a dimension. This can also be used as a component of a skip.\c_zero_dim

26.10 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_dim
\l_tmpb_dim

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_dim
\g_tmpb_dim

26.11 Creating and initialising skip variables

\skip_new:N ⟨skip⟩

Creates a new ⟨skip⟩ or raises an error if the name is already taken. The declaration is
global. The ⟨skip⟩ is initially equal to 0 pt.

\skip_new:N
\skip_new:c

\skip_const:Nn ⟨skip⟩ {⟨skip expr⟩}

Creates a new constant ⟨skip⟩ or raises an error if the name is already taken. The value
of the ⟨skip⟩ is set globally to the ⟨skip expr⟩.

\skip_const:Nn
\skip_const:cn

New: 2012-03-05

\skip_zero:N ⟨skip⟩

Sets ⟨skip⟩ to 0 pt.
\skip_zero:N
\skip_zero:c
\skip_gzero:N
\skip_gzero:c

232

\skip_zero_new:N ⟨skip⟩

Ensures that the ⟨skip⟩ exists globally by applying \skip_new:N if necessary, then ap-
plies \skip_(g)zero:N to leave the ⟨skip⟩ set to zero.

\skip_zero_new:N
\skip_zero_new:c
\skip_gzero_new:N
\skip_gzero_new:c

New: 2012-01-07

\skip_if_exist_p:N ⟨skip⟩
\skip_if_exist:NTF ⟨skip⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨skip⟩ is currently defined. This does not check that the ⟨skip⟩ really
is a skip variable.

\skip_if_exist_p:N ⋆
\skip_if_exist_p:c ⋆
\skip_if_exist:NTF ⋆
\skip_if_exist:cTF ⋆

New: 2012-03-03

26.12 Setting skip variables

\skip_add:Nn ⟨skip⟩ {⟨skip expr⟩}

Adds the result of the ⟨skip expr⟩ to the current content of the ⟨skip⟩.
\skip_add:Nn
\skip_add:cn
\skip_gadd:Nn
\skip_gadd:cn

Updated: 2011-10-22

\skip_set:Nn ⟨skip⟩ {⟨skip expr⟩}

Sets ⟨skip⟩ to the value of ⟨skip expr⟩, which must evaluate to a length with units and
may include a rubber component (for example 1 cm plus 0.5 cm.

\skip_set:Nn
\skip_set:cn
\skip_gset:Nn
\skip_gset:cn

Updated: 2011-10-22

\skip_set_eq:NN ⟨skip1⟩ ⟨skip2⟩

Sets the content of ⟨skip1⟩ equal to that of ⟨skip2⟩.
\skip_set_eq:NN
\skip_set_eq:(cN|Nc|cc)
\skip_gset_eq:NN
\skip_gset_eq:(cN|Nc|cc)

\skip_sub:Nn ⟨skip⟩ {⟨skip expr⟩}

Subtracts the result of the ⟨skip expr⟩ from the current content of the ⟨skip⟩.
\skip_sub:Nn
\skip_sub:cn
\skip_gsub:Nn
\skip_gsub:cn

Updated: 2011-10-22

233

26.13 Skip expression conditionals

\skip_if_eq_p:nn {⟨skip expr1⟩} {⟨skip expr2⟩}
\skip_if_eq:nnTF

{⟨skip expr1⟩} {⟨skip expr2⟩}
{⟨true code⟩} {⟨false code⟩}

This function first evaluates each of the ⟨skip exprs⟩ as described for \skip_eval:n.
The two results are then compared for exact equality, i.e. both the fixed and rubber
components must be the same for the test to be true.

\skip_if_eq_p:nn ⋆
\skip_if_eq:nnTF ⋆

\skip_if_finite_p:n {⟨skip expr⟩}
\skip_if_finite:nTF {⟨skip expr⟩} {⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨skip expr⟩ as described for \skip_eval:n, and then tests if all of its
components are finite.

\skip_if_finite_p:n ⋆
\skip_if_finite:nTF ⋆

New: 2012-03-05

26.14 Using skip expressions and variables

\skip_eval:n {⟨skip expr⟩}

Evaluates the ⟨skip expr⟩, expanding any skips and token list variables within the
⟨expression⟩ to their content (without requiring \skip_use:N/\tl_use:N) and apply-
ing the standard mathematical rules. The result of the calculation is left in the in-
put stream as a ⟨glue denotation⟩ after two expansions. This is expressed in points
(pt), and requires suitable termination if used in a TEX-style assignment as it is not an
⟨internal glue⟩.

\skip_eval:n ⋆

Updated: 2011-10-22

\skip_use:N ⟨skip⟩

Recovers the content of a ⟨skip⟩ and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
⟨dimension⟩ or ⟨skip⟩ is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\skip_use:N ⋆
\skip_use:c ⋆

26.15 Viewing skip variables

\skip_show:N ⟨skip⟩

Displays the value of the ⟨skip⟩ on the terminal.
\skip_show:N
\skip_show:c

Updated: 2015-08-03

\skip_show:n {⟨skip expr⟩}

Displays the result of evaluating the ⟨skip expr⟩ on the terminal.
\skip_show:n

New: 2011-11-22

Updated: 2015-08-07

234

\skip_log:N ⟨skip⟩

Writes the value of the ⟨skip⟩ in the log file.
\skip_log:N
\skip_log:c

New: 2014-08-22

Updated: 2015-08-03

\skip_log:n {⟨skip expr⟩}

Writes the result of evaluating the ⟨skip expr⟩ in the log file.
\skip_log:n

New: 2014-08-22

Updated: 2015-08-07

26.16 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

\c_max_skip

Updated: 2012-11-02

A zero length as a skip, with no stretch nor shrink component.\c_zero_skip

Updated: 2012-11-01

26.17 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_skip
\l_tmpb_skip

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_skip
\g_tmpb_skip

26.18 Inserting skips into the output

\skip_horizontal:N ⟨skip⟩
\skip_horizontal:n {⟨skip expr⟩}

Inserts a horizontal ⟨skip⟩ into the current list. The argument can also be a ⟨dim⟩.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip.

\skip_horizontal:N
\skip_horizontal:c
\skip_horizontal:n

Updated: 2011-10-22

235

\skip_vertical:N ⟨skip⟩
\skip_vertical:n {⟨skip expr⟩}

Inserts a vertical ⟨skip⟩ into the current list. The argument can also be a ⟨dim⟩.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip.

\skip_vertical:N
\skip_vertical:c
\skip_vertical:n

Updated: 2011-10-22

26.19 Creating and initialising muskip variables

\muskip_new:N ⟨muskip⟩

Creates a new ⟨muskip⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨muskip⟩ is initially equal to 0 mu.

\muskip_new:N
\muskip_new:c

\muskip_const:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Creates a new constant ⟨muskip⟩ or raises an error if the name is already taken. The
value of the ⟨muskip⟩ is set globally to the ⟨muskip expr⟩.

\muskip_const:Nn
\muskip_const:cn

New: 2012-03-05

\skip_zero:N ⟨muskip⟩

Sets ⟨muskip⟩ to 0 mu.
\muskip_zero:N
\muskip_zero:c
\muskip_gzero:N
\muskip_gzero:c

\muskip_zero_new:N ⟨muskip⟩

Ensures that the ⟨muskip⟩ exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the ⟨muskip⟩ set to zero.

\muskip_zero_new:N
\muskip_zero_new:c
\muskip_gzero_new:N
\muskip_gzero_new:c

New: 2012-01-07

\muskip_if_exist_p:N ⟨muskip⟩
\muskip_if_exist:NTF ⟨muskip⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨muskip⟩ is currently defined. This does not check that the ⟨muskip⟩
really is a muskip variable.

\muskip_if_exist_p:N ⋆
\muskip_if_exist_p:c ⋆
\muskip_if_exist:NTF ⋆
\muskip_if_exist:cTF ⋆

New: 2012-03-03

26.20 Setting muskip variables

\muskip_add:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Adds the result of the ⟨muskip expr⟩ to the current content of the ⟨muskip⟩.
\muskip_add:Nn
\muskip_add:cn
\muskip_gadd:Nn
\muskip_gadd:cn

Updated: 2011-10-22

236

\muskip_set:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Sets ⟨muskip⟩ to the value of ⟨muskip expr⟩, which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set:Nn
\muskip_set:cn
\muskip_gset:Nn
\muskip_gset:cn

Updated: 2011-10-22

\muskip_set_eq:NN ⟨muskip1⟩ ⟨muskip2⟩

Sets the content of ⟨muskip1⟩ equal to that of ⟨muskip2⟩.
\muskip_set_eq:NN
\muskip_set_eq:(cN|Nc|cc)
\muskip_gset_eq:NN
\muskip_gset_eq:(cN|Nc|cc)

\muskip_sub:Nn ⟨muskip⟩ {⟨muskip expr⟩}

Subtracts the result of the ⟨muskip expr⟩ from the current content of the ⟨muskip⟩.
\muskip_sub:Nn
\muskip_sub:cn
\muskip_gsub:Nn
\muskip_gsub:cn

Updated: 2011-10-22

26.21 Using muskip expressions and variables

\muskip_eval:n {⟨muskip expr⟩}

Evaluates the ⟨muskip expr⟩, expanding any skips and token list variables within the
⟨expression⟩ to their content (without requiring \muskip_use:N/\tl_use:N) and ap-
plying the standard mathematical rules. The result of the calculation is left in the input
stream as a ⟨muglue denotation⟩ after two expansions. This is expressed in mu, and
requires suitable termination if used in a TEX-style assignment as it is not an ⟨internal
muglue⟩.

\muskip_eval:n ⋆

Updated: 2011-10-22

\muskip_use:N ⟨muskip⟩

Recovers the content of a ⟨skip⟩ and places it directly in the input stream. An error is
raised if the variable does not exist or if it is invalid. Can be omitted in places where a
⟨dimension⟩ is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several LATEX3
names for this primitive.

\muskip_use:N ⋆
\muskip_use:c ⋆

26.22 Viewing muskip variables

\muskip_show:N ⟨muskip⟩

Displays the value of the ⟨muskip⟩ on the terminal.
\muskip_show:N
\muskip_show:c

Updated: 2015-08-03

237

\muskip_show:n {⟨muskip expr⟩}

Displays the result of evaluating the ⟨muskip expr⟩ on the terminal.
\muskip_show:n

New: 2011-11-22

Updated: 2015-08-07

\muskip_log:N ⟨muskip⟩

Writes the value of the ⟨muskip⟩ in the log file.
\muskip_log:N
\muskip_log:c

New: 2014-08-22

Updated: 2015-08-03

\muskip_log:n {⟨muskip expr⟩}

Writes the result of evaluating the ⟨muskip expr⟩ in the log file.
\muskip_log:n

New: 2014-08-22

Updated: 2015-08-07

26.23 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

\c_max_muskip

A zero length as a muskip, with no stretch nor shrink component.\c_zero_muskip

26.24 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_muskip
\l_tmpb_muskip

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip
\g_tmpb_muskip

26.25 Primitive conditional

\if_dim:w ⟨dimen1⟩ ⟨relation⟩ ⟨dimen2⟩
⟨true code⟩

\else:
⟨false⟩

\fi:

Compare two dimensions. The ⟨relation⟩ is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

\if_dim:w ⋆

238

Chapter 27

The l3keys module
Key–value interfaces

The key–value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro[
key-one = value one,
key-two = value two

]{argument}

for the user.
The high level functions here are intended as a method to create key–value controls.

Keys are themselves created using a key–value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n = code including parameter #1,
key-two .tl_set:N = \l_mymodule_store_tl

}

These values can then be set as with other key–value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

}

239

As illustrated, keys are created inside a ⟨module⟩: a set of related keys, typically those
for a single module/LATEX 2ε package. See Section 27.2 for suggestions on how to divide
large numbers of keys for a single module.

At a document level, \keys_set:nn is used within a document function, for example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } }

\DeclareDocumentCommand \MyModuleMacro { o m }
{
\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro

\group_end:
}

Key names may contain any tokens, as they are handled internally using \tl_to_-
str:n. As discussed in section 27.2, it is suggested that the character / is reserved for
sub-division of keys into different subsets. Functions and variables are not expanded
when creating key names, and so

\tl_set:Nn \l_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\l_mymodule_tmp_tl .code:n = code

}

creates a key called \l_mymodule_tmp_tl, and not one called key.

27.1 Creating keys

\keys_define:nn {⟨module⟩} {⟨keyval list⟩}

Parses the ⟨keyval list⟩ and defines the keys listed there for ⟨module⟩. The ⟨module⟩
name is treated as a string. In practice the ⟨module⟩ should be chosen to be unique to
the module in question (unless deliberately adding keys to an existing module).

The ⟨keyval list⟩ should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}

where the properties of the key begin from the . after the key name.

\keys_define:nn
\keys_define:ne

Updated: 2017-11-14

The various properties available take either no arguments at all, or require one
or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary ⟨key⟩, which when used may be supplied with a ⟨value⟩. All key definitions
are local.

240

Key properties are applied in the reading order and so the ordering is significant.
Key properties which define “actions”, such as .code:n, .tl_set:N, etc., override one
another. Some other properties are mutually exclusive, notably .value_required:n and
.value_forbidden:n, and so they replace one another. However, properties covering
non-exclusive behaviours may be given in any order. Thus for example the following
definitions are equivalent.
\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:n = true

}
\keys_define:nn { mymodule }
{
keyname .value_required:n = true,
keyname .code:n = Some~code~using~#1

}

Note that all key properties define the key within the current TEX group, with an ex-
ception that the special .undefine: property undefines the key within the current TEX
group.

⟨key⟩ .bool_set:N = ⟨boolean variable⟩

Defines ⟨key⟩ to set ⟨boolean variable⟩ to ⟨value⟩ (which must be either “true” or
“false”). If the variable does not exist, it will be created globally at the point that the
key is set up.

.bool_set:N

.bool_set:c

.bool_gset:N

.bool_gset:c

Updated: 2013-07-08

⟨key⟩ .bool_set_inverse:N = ⟨boolean variable⟩

Defines ⟨key⟩ to set ⟨boolean variable⟩ to the logical inverse of ⟨value⟩ (which must
be either “true” or “false”). If the ⟨boolean variable⟩ does not exist, it will be
created globally at the point that the key is set up.

.bool_set_inverse:N

.bool_set_inverse:c

.bool_gset_inverse:N

.bool_gset_inverse:c

New: 2011-08-28

Updated: 2013-07-08

⟨key⟩ .choice:

Sets ⟨key⟩ to act as a choice key. Each valid choice for ⟨key⟩ must then be created, as
discussed in section 27.3.

.choice:

⟨key⟩ .choices:nn = {⟨choices⟩} {⟨code⟩}

Sets ⟨key⟩ to act as a choice key, and defines a series ⟨choices⟩ which are implemented
using the ⟨code⟩. Inside ⟨code⟩, \l_keys_choice_tl will be the name of the choice
made, and \l_keys_choice_int will be the position of the choice in the list of ⟨choices⟩
(indexed from 1). Choices are discussed in detail in section 27.3.

.choices:nn

.choices:(Vn|en|on)

New: 2011-08-21

Updated: 2013-07-10

⟨key⟩ .clist_set:N = ⟨comma list variable⟩

Defines ⟨key⟩ to set ⟨comma list variable⟩ to ⟨value⟩. Spaces around commas and
empty items will be stripped. If the variable does not exist, it is created globally at the
point that the key is set up.

.clist_set:N

.clist_set:c

.clist_gset:N

.clist_gset:c

New: 2011-09-11

241

⟨key⟩ .code:n = {⟨code⟩}

Stores the ⟨code⟩ for execution when ⟨key⟩ is used. The ⟨code⟩ can include one para-
meter (#1), which will be the ⟨value⟩ given for the ⟨key⟩.

.code:n

Updated: 2013-07-10

⟨key⟩ .cs_set:Np = ⟨control sequence⟩ ⟨arg. spec.⟩

Defines ⟨key⟩ to set ⟨control sequence⟩ to have ⟨arg. spec.⟩ and replacement text
⟨value⟩.

.cs_set:Np

.cs_set:cp

.cs_set_protected:Np

.cs_set_protected:cp

.cs_gset:Np

.cs_gset:cp

.cs_gset_protected:Np

.cs_gset_protected:cp

New: 2020-01-11

⟨key⟩ .default:n = {⟨default⟩}

Creates a ⟨default⟩ value for ⟨key⟩, which is used if no value is given. This will be used
if only the key name is given, but not if a blank ⟨value⟩ is given:

\keys_define:nn { mymodule }
{
key .code:n = Hello~#1,
key .default:n = World

}
\keys_set:nn { mymodule }
{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

The default does not affect keys where values are required or forbidden. Thus a required
value cannot be supplied by a default value, and giving a default value for a key which
cannot take a value does not trigger an error.

When no value is given for a key as part of \keys_set:nn, the .default:n value
provides the value before key properties are considered. The only exception is when
the .value_required:n property is active: a required value cannot be supplied by the
default, and must be explicitly given as part of \keys_set:nn.

.default:n

.default:(V|e|o)

Updated: 2013-07-09

⟨key⟩ .dim_set:N = ⟨dimension⟩

Defines ⟨key⟩ to set ⟨dimension⟩ to ⟨value⟩ (which must a dimension expression). If
the variable does not exist, it is created globally at the point that the key is set up. The
key will require a value at point-of-use unless a default is set.

.dim_set:N

.dim_set:c

.dim_gset:N

.dim_gset:c

Updated: 2020-01-17

⟨key⟩ .fp_set:N = ⟨floating point⟩

Defines ⟨key⟩ to set ⟨floating point⟩ to ⟨value⟩ (which must a floating point expres-
sion). If the variable does not exist, it is created globally at the point that the key is set
up. The key will require a value at point-of-use unless a default is set.

.fp_set:N

.fp_set:c

.fp_gset:N

.fp_gset:c

Updated: 2020-01-17

242

⟨key⟩ .groups:n = {⟨groups⟩}

Defines ⟨key⟩ as belonging to the ⟨groups⟩ (a comma-separated list). Groups provide a
“secondary axis” for selectively setting keys, and are described in Section 27.7.

TEXhackers note: The ⟨groups⟩ argument is turned into a string then interpreted as a
comma-separated list, so group names cannot contain commas nor start or end with a space
character.

.groups:n

New: 2013-07-14

⟨key⟩ .inherit:n = {⟨parents⟩}

Specifies that the ⟨key⟩ path should inherit the keys listed as any of the ⟨parents⟩ (a
comma list), which can be a module or a sub-division thereof. For example, after setting

\keys_define:nn { foo } { test .code:n = \tl_show:n {#1} }
\keys_define:nn { } { bar .inherit:n = foo }

setting

\keys_set:nn { bar } { test = a }

will be equivalent to

\keys_set:nn { foo } { test = a }

Inheritance applies at point of use, not at definition, thus keys may be added to the
⟨parent⟩ after the use of .inherit:n and will be active. If more than one ⟨parent⟩ is
specified, the presence of the ⟨key⟩ will be tested for each in turn, with the first successful
hit taking priority.

.inherit:n

New: 2016-11-22

⟨key⟩ .initial:n = {⟨value⟩}

Initialises the ⟨key⟩ with the ⟨value⟩, equivalent to

\keys_set:nn {⟨module⟩} { ⟨key⟩ = ⟨value⟩ }

.initial:n

.initial:(V|e|o)

Updated: 2013-07-09

⟨key⟩ .int_set:N = ⟨integer⟩

Defines ⟨key⟩ to set ⟨integer⟩ to ⟨value⟩ (which must be an integer expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

.int_set:N

.int_set:c

.int_gset:N

.int_gset:c

Updated: 2020-01-17

⟨key⟩ .legacy_if_set:n = ⟨switch⟩

Defines ⟨key⟩ to set legacy \if⟨switch⟩ to ⟨value⟩ (which must be either “true” or
“false”). The ⟨switch⟩ is the name of the switch without the leading if.

The inverse versions will set the ⟨switch⟩ to the logical opposite of the ⟨value⟩.

.legacy_if_set:n

.legacy_if_gset:n

.legacy_if_set_inverse:n

.legacy_if_gset_inverse:n

Updated: 2022-01-15

⟨key⟩ .meta:n = {⟨keyval list⟩}

Makes ⟨key⟩ a meta-key, which will set ⟨keyval list⟩ in one go. The ⟨keyval list⟩
can refer as #1 to the value given at the time the ⟨key⟩ is used (or, if no value is given,
the ⟨key⟩’s default value).

.meta:n

Updated: 2013-07-10

243

⟨key⟩ .meta:nn = {⟨path⟩} {⟨keyval list⟩}

Makes ⟨key⟩ a meta-key, which will set ⟨keyval list⟩ in one go using the ⟨path⟩ in
place of the current one. The ⟨keyval list⟩ can refer as #1 to the value given at the
time the ⟨key⟩ is used (or, if no value is given, the ⟨key⟩’s default value).

.meta:nn

New: 2013-07-10

⟨key⟩ .multichoice:

Sets ⟨key⟩ to act as a multiple choice key. Each valid choice for ⟨key⟩ must then be
created, as discussed in section 27.3.

.multichoice:

New: 2011-08-21

⟨key⟩ .multichoices:nn {⟨choices⟩} {⟨code⟩}

Sets ⟨key⟩ to act as a multiple choice key, and defines a series ⟨choices⟩ which are
implemented using the ⟨code⟩. Inside ⟨code⟩, \l_keys_choice_tl will be the name of
the choice made, and \l_keys_choice_int will be the position of the choice in the list
of ⟨choices⟩ (indexed from 1). Choices are discussed in detail in section 27.3.

.multichoices:nn

.multichoices:(Vn|en|on)

New: 2011-08-21

Updated: 2013-07-10

⟨key⟩ .muskip_set:N = ⟨muskip⟩

Defines ⟨key⟩ to set ⟨muskip⟩ to ⟨value⟩ (which must be a muskip expression). If the
variable does not exist, it is created globally at the point that the key is set up. The key
will require a value at point-of-use unless a default is set.

.muskip_set:N

.muskip_set:c

.muskip_gset:N

.muskip_gset:c

New: 2019-05-05

Updated: 2020-01-17

⟨key⟩ .prop_put:N = ⟨property list⟩

Defines ⟨key⟩ to put the ⟨value⟩ onto the ⟨property list⟩ stored under the ⟨key⟩. If
the variable does not exist, it is created globally at the point that the key is set up.

.prop_put:N

.prop_put:c

.prop_gput:N

.prop_gput:c

New: 2019-01-31

⟨key⟩ .skip_set:N = ⟨skip⟩

Defines ⟨key⟩ to set ⟨skip⟩ to ⟨value⟩ (which must be a skip expression). If the variable
does not exist, it is created globally at the point that the key is set up. The key will
require a value at point-of-use unless a default is set.

.skip_set:N

.skip_set:c

.skip_gset:N

.skip_gset:c

Updated: 2020-01-17

⟨key⟩ .str_set:N = ⟨string variable⟩

Defines ⟨key⟩ to set ⟨string variable⟩ to ⟨value⟩. If the variable does not exist, it is
created globally at the point that the key is set up.

.str_set:N

.str_set:c

.str_gset:N

.str_gset:c

New: 2021-10-30

⟨key⟩ .str_set_e:N = ⟨string variable⟩

Defines ⟨key⟩ to set ⟨string variable⟩ to ⟨value⟩, which will be subjected to an e-type
expansion (i.e. using \str_set:Ne). If the variable does not exist, it is created globally
at the point that the key is set up.

.str_set_e:N

.str_set_e:c

.str_gset_e:N

.str_gset_e:c

New: 2023-09-18

244

⟨key⟩ .tl_set:N = ⟨token list variable⟩

Defines ⟨key⟩ to set ⟨token list variable⟩ to ⟨value⟩. If the variable does not exist,
it is created globally at the point that the key is set up.

.tl_set:N

.tl_set:c

.tl_gset:N

.tl_gset:c

⟨key⟩ .tl_set_e:N = ⟨token list variable⟩

Defines ⟨key⟩ to set ⟨token list variable⟩ to ⟨value⟩, which will be subjected to an
e-type expansion (i.e. using \tl_set:Ne). If the variable does not exist, it is created
globally at the point that the key is set up.

.tl_set_e:N

.tl_set_e:c

.tl_gset_e:N

.tl_gset_e:c

New: 2023-09-18

⟨key⟩ .undefine:

Removes the definition of the ⟨key⟩ within the current TEX group.
.undefine:

New: 2015-07-14

⟨key⟩ .value_forbidden:n = true|false

Specifies that ⟨key⟩ cannot receive a ⟨value⟩ when used. If a ⟨value⟩ is given then an
error will be issued. Setting the property “false” cancels the restriction.

.value_forbidden:n

New: 2015-07-14

⟨key⟩ .value_required:n = true|false

Specifies that ⟨key⟩ must receive a ⟨value⟩ when used. If a ⟨value⟩ is not given then
an error will be issued. Setting the property “false” cancels the restriction.

.value_required:n

New: 2015-07-14

27.2 Sub-dividing keys
When creating large numbers of keys, it may be desirable to divide them into several
subsets for a given module. This can be achieved either by adding a sub-division to the
module name:

\keys_define:nn { mymodule / subset }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subset / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name mymodule/subset/key.

As illustrated in the next section, this subdivision is particularly relevant to making
multiple choices.

245

27.3 Choice and multiple choice keys
The l3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependent only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

The index \l_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \l_keys_-
choice_tl and \l_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the
choice name) is also available as #1.

\l_keys_choice_int
\l_keys_choice_tl

On the other hand, it is sometimes useful to create choices which use entirely different
code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

It is possible to mix the two methods, but manually-created choices should not
use \l_keys_choice_tl or \l_keys_choice_int. These variables do not have defined

246

behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 27.6. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =
\msg_error:nneee { mymodule } { unknown-choice }
{ key } % Name of choice key
{ choice-a , choice-b , choice-c } % Valid choices
{ \exp_not:n {#1} } % Invalid choice given

%
%

}

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

\keys_define:nn { mymodule }
{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }
{
You~gave~choice~’\tl_use:N \l_keys_choice_tl’,~
which~is~in~position~
\int_use:N \l_keys_choice_int \c_space_tl
in~the~list.

}
}

and

\keys_define:nn { mymodule }
{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

are valid.
When a multiple choice key is set

247

\keys_set:nn { mymodule }
{
key = { a , b , c } % ’key’ defined as a multiple choice

}

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }
{
key = a ,
key = b ,
key = c ,

}

Thus each separate choice will have passed to it the \l_keys_choice_tl and \l_keys_-
choice_int in exactly the same way as described for .choices:nn.

27.4 Key usage scope
Some keys will be used as settings which have a strictly limited scope of usage. Some
will be only available once, others will only be valid until typesetting begins. To allow
formats to support this in a structured way, l3keys allows this information to be specified
using the .usage:n property.

⟨key⟩ .usage:n = ⟨scope⟩

Defines the ⟨key⟩ to have usage within the ⟨scope⟩, which should be one of general,
preamble or load.

.usage:n

New: 2022-01-10

\l_keys_usage_load_prop
\l_keys_usage_preamble_prop

New: 2022-01-10

l3keys itself does not attempt to redefine keys based on the usage scope. Rather, this
information is made available with these two property lists. These hold an entry for each
module (prefix); the value of each entry is a comma-separated list of the usage-restricted
key(s).

27.5 Setting keys

\keys_set:nn {⟨module⟩} {⟨keyval list⟩}

Parses the ⟨keyval list⟩, and sets those keys which are defined for ⟨module⟩. The
behaviour on finding an unknown key can be set by defining a special unknown key: this
is illustrated later.

\keys_set:nn
\keys_set:(nV|nv|ne|no)

Updated: 2017-11-14

248

For each key processed, information of the full path of the key, the name of the key and
the value of the key is available within two string and one token list variables. These
may be used within the code of the key.

The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }

has path mymodule/key-a while

\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \l_keys_path_str.
The name of the key is the part of the path after the last /, and thus is not unique.

In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \l_keys_key_str.

The value is everything after the =, which may be empty if no value was given. This
is stored in \l_keys_value_tl, and is not processed in any way by \keys_set:nn.

\l_keys_path_str
\l_keys_key_str
\l_keys_value_tl

Updated: 2020-02-08

27.6 Handling of unknown keys
If a key has not previously been defined (is unknown), \keys_set:nn looks for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts. The unknown key also supports the .default:n property.

\keys_define:nn { mymodule }
{
unknown .code:n =
You~tried~to~set~key~’\l_keys_key_str’~to~’#1’. ,

unknown .default:V = \c_novalue_tl
}

\keys_set_known:nn {⟨module⟩} {⟨keyval list⟩}
\keys_set_known:nnN {⟨module⟩} {⟨keyval list⟩} ⟨tl⟩
\keys_set_known:nnnN {⟨module⟩} {⟨keyval list⟩} {⟨root⟩} ⟨tl⟩

\keys_set_known:nn
\keys_set_known:(nV|nv|ne|no)
\keys_set_known:nnN
\keys_set_known:(nVN|nvN|neN|noN)
\keys_set_known:nnnN
\keys_set_known:(nVnN|nvnN|nenN|nonN)

New: 2011-08-23

Updated: 2019-01-29

These functions set keys which are known for the ⟨module⟩, and simply ignore other keys.
The \keys_set_known:nn function parses the ⟨keyval list⟩, and sets those keys which
are defined for ⟨module⟩. Any keys which are unknown are not processed further by
the parser. In addition, \keys_set_known:nnN stores the key–value pairs in the ⟨tl⟩ in
comma-separated form (i.e. an edited version of the ⟨keyval list⟩). When a ⟨root⟩ is
given (\keys_set_known:nnnN), the key–value entries are returned relative to this point
in the key tree. When it is absent, only the key name and value are provided. The correct
list is returned by nested calls.

249

27.7 Selective key setting
In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys_define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \l_my_a_tl ,
key-three .tl_set:N = \l_my_b_tl ,
key-four .fp_set:N = \l_my_a_fp ,

}

the use of \keys_set:nn attempts to set all four keys. However, in some contexts it may
only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys_define:nn { mymodule }
{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \l_my_a_tl ,
key-two .groups:n = { first } ,
key-three .tl_set:N = \l_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \l_my_a_fp ,

}

assigns key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_exclude_groups:nnn {⟨module⟩} {⟨groups⟩} {⟨keyval
list⟩}
\keys_set_exclude_groups:nnnN {⟨module⟩} {⟨groups⟩}
{⟨keyval list⟩} ⟨tl⟩
\keys_set_exclude_groups:nnnnN {⟨module⟩} {⟨groups⟩}
{⟨keyval list⟩} ⟨root⟩ ⟨tl⟩

\keys_set_exclude_groups:nnn
\keys_set_exclude_groups:(nnV|nnv|nno)
\keys_set_exclude_groups:nnnN
\keys_set_exclude_groups:(nnVN|nnvN|nnoN)
\keys_set_exclude_groups:nnnnN
\keys_set_exclude_groups:(nnVnN|nnvnN|nnonN)

New: 2024-01-10

Sets keys by excluding those in the specified ⟨groups⟩. The ⟨groups⟩ are given as a
comma-separated list. Unknown keys are not assigned to any group and are thus always
set. The key–value pairs for each key which is filtered out are stored in the ⟨tl⟩ in a
comma-separated form (i.e. an edited version of the ⟨keyval list⟩). The \keys_set_-
exclude_groups:nnn version skips this stage.

Use of \keys_set_exclude_groups:nnnN can be nested, with the correct residual
⟨keyval list⟩ returned at each stage. In the version which takes a ⟨root⟩ argument,
the key list is returned relative to that point in the key tree. In the cases without a
⟨root⟩ argument, only the key names and values are returned.

250

\keys_set_groups:nnn {⟨module⟩} {⟨groups⟩} {⟨keyval list⟩}\keys_set_groups:nnn
\keys_set_groups:(nnV|nnv|nno)
\keys_set_groups:nnnN
\keys_set_groups:(nnVN|nnvN|nnoN)
\keys_set_groups:nnnnN
\keys_set_groups:(nnVnN|nnvnN|nnonN)

New: 2013-07-14

Updated: 2024-05-08

Activates key filtering in an “opt-in” sense: only keys assigned to one or more of the
⟨groups⟩ specified are set. The ⟨groups⟩ are given as a comma-separated list. Unknown
keys are not assigned to any group and are thus never set. The key–value pairs for each
key which is filtered out are stored in the ⟨tl⟩ in a comma-separated form (i.e. an edited
version of the ⟨keyval list⟩). The \keys_set_groups:nnn version skips this stage

27.8 Digesting keys

\keys_precompile:nnN {⟨module⟩} {⟨keyval list⟩} ⟨tl⟩

Parses the ⟨keyval list⟩ as for \keys_set:nn, placing the resulting code for those
which set variables or functions into the ⟨tl⟩. Thus this function “precompiles” the
keyval list into a set of results which can be applied rapidly.

\keys_precompile:nnN

New: 2022-03-09

27.9 Utility functions for keys

\keys_if_exist_p:nn {⟨module⟩} {⟨key⟩}
\keys_if_exist:nnTF {⟨module⟩} {⟨key⟩} {⟨true code⟩} {⟨false code⟩}

Tests if the ⟨key⟩ exists for ⟨module⟩, i.e. if any code has been defined for ⟨key⟩.

\keys_if_exist_p:nn ⋆
\keys_if_exist_p:ne ⋆
\keys_if_exist:nnTF ⋆
\keys_if_exist:neTF ⋆

Updated: 2022-01-10

\keys_if_choice_exist_p:nnn {⟨module⟩} {⟨key⟩} {⟨choice⟩}
\keys_if_choice_exist:nnnTF {⟨module⟩} {⟨key⟩} {⟨choice⟩} {⟨true code⟩}
{⟨false code⟩}

\keys_if_choice_exist_p:nnn ⋆
\keys_if_choice_exist:nnnTF ⋆

New: 2011-08-21

Updated: 2017-11-14

Tests if the ⟨choice⟩ is defined for the ⟨key⟩ within the ⟨module⟩, i.e. if any code has
been defined for ⟨key⟩/⟨choice⟩. The test is false if the ⟨key⟩ itself is not defined.

\keys_show:nn {⟨module⟩} {⟨key⟩}

Displays in the terminal the information associated to the ⟨key⟩ for a ⟨module⟩, including
the function which is used to actually implement it.

\keys_show:nn

Updated: 2015-08-09

\keys_log:nn {⟨module⟩} {⟨key⟩}

Writes in the log file the information associated to the ⟨key⟩ for a ⟨module⟩. See also
\keys_show:nn which displays the result in the terminal.

\keys_log:nn

New: 2014-08-22

Updated: 2015-08-09

251

27.10 Low-level interface for parsing key–val lists
To re-cap from earlier, a key–value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key–value pair is separated by a comma from the rest of the list, and each
key–value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The low-
level parsing system converts a ⟨key–value list⟩ into ⟨keys⟩ and associated ⟨values⟩.
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key–value
list. One function is needed to process key–value pairs (it receives two arguments), and
a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces have exactly one
set removed (after space trimming), thus

key = {value here},

and

key = value here,

are treated identically.

252

\keyval_parse:nnn {⟨code1⟩} {⟨code2⟩} {⟨key–value list⟩}

Parses the ⟨key–value list⟩ into a series of ⟨keys⟩ and associated ⟨values⟩, or keys
alone (if no ⟨value⟩ was given). ⟨code1⟩ receives each ⟨key⟩ (with no ⟨value⟩) as a
trailing brace group, whereas ⟨code2⟩ is appended by two brace groups, the ⟨key⟩ and
⟨value⟩. The order of the ⟨keys⟩ in the ⟨key–value list⟩ is preserved. Thus

\keyval_parse:nnn
{ \use_none:nn { code 1 } }
{ \use_none:nnn { code 2 } }
{ key1 = value1 , key2 = value2, key3 = , key4 }

is converted into an input stream

\use_none:nnn { code 2 } { key1 } { value1 }
\use_none:nnn { code 2 } { key2 } { value2 }
\use_none:nnn { code 2 } { key3 } { }
\use_none:nn { code 1 } { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
⟨key⟩ and ⟨value⟩, then one outer set of braces is removed from the ⟨key⟩ and ⟨value⟩
as part of the processing. If you need exactly the output shown above, you’ll need to
either e-type or x-type expand the function.

TEXhackers note: The result of each list element is returned within \exp_not:n, which
means that the converted input stream does not expand further when appearing in an e-type or
x-type argument expansion.

\keyval_parse:nnn ✩

\keyval_parse:(nnV|nnv) ✩

New: 2020-12-19

Updated: 2021-05-10

253

\keyval_parse:NNn ⟨function1⟩ ⟨function2⟩ {⟨key–value list⟩}

Parses the ⟨key–value list⟩ into a series of ⟨keys⟩ and associated ⟨values⟩, or
keys alone (if no ⟨value⟩ was given). ⟨function1⟩ should take one argument, while
⟨function2⟩ should absorb two arguments. After \keyval_parse:NNn has parsed
the ⟨key–value list⟩, ⟨function1⟩ is used to process keys given with no value and
⟨function2⟩ is used to process keys given with a value. The order of the ⟨keys⟩ in the
⟨key–value list⟩ is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ key1 = value1 , key2 = value2, key3 = , key4 }

is converted into an input stream

\function:nn { key1 } { value1 }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
⟨key⟩ and ⟨value⟩, then one outer set of braces is removed from the ⟨key⟩ and ⟨value⟩
as part of the processing.

This shares the implementation of \keyval_parse:nnn, the difference is only se-
mantically.

TEXhackers note: The result is returned within \exp_not:n, which means that the con-
verted input stream does not expand further when appearing in an e-type or x-type argument
expansion.

\keyval_parse:NNn ✩

\keyval_parse:(NNV|NNv) ✩

Updated: 2021-05-10

254

Chapter 28

The l3intarray module
Fast global integer arrays

For applications requiring heavy use of integers, this module provides arrays which can
be accessed in constant time (contrast l3seq, where access time is linear). These arrays
have several important features

• The size of the array is fixed and must be given at point of initialisation

• The absolute value of each entry has maximum 230 − 1 (i.e. one power lower than
the usual \c_max_int ceiling of 231 − 1)

The use of intarray data is therefore recommended for cases where the need for fast
access is of paramount importance.

28.1 Creating and initialising integer array variables

\intarray_new:Nn ⟨intarray var⟩ {⟨size⟩}

Evaluates the integer expression ⟨size⟩ and allocates an ⟨integer array variable⟩
with that number of (zero) entries. The variable name should start with \g_ because
assignments are always global.

\intarray_new:Nn
\intarray_new:cn

New: 2018-03-29

\intarray_const_from_clist:Nn ⟨intarray var⟩ ⟨int expr clist⟩\intarray_const_from_clist:Nn
\intarray_const_from_clist:cn

New: 2018-05-04

Creates a new constant ⟨integer array variable⟩ or raises an error if the name is
already taken. The ⟨integer array variable⟩ is set (globally) to contain as its items
the results of evaluating each ⟨integer expression⟩ in the ⟨comma list⟩.

\intarray_gzero:N ⟨intarray var⟩

Sets all entries of the ⟨integer array variable⟩ to zero. Assignments are always global.
\intarray_gzero:N
\intarray_gzero:c

New: 2018-05-04

255

28.2 Adding data to integer arrays

\intarray_gset:Nnn ⟨intarray var⟩ {⟨position⟩} {⟨value⟩}

Stores the result of evaluating the integer expression ⟨value⟩ into the ⟨integer array
variable⟩ at the (integer expression) ⟨position⟩. If the ⟨position⟩ is not between 1
and the \intarray_count:N, or the ⟨value⟩’s absolute value is bigger than 230 − 1, an
error occurs. Assignments are always global.

\intarray_gset:Nnn
\intarray_gset:cnn

New: 2018-03-29

28.3 Counting entries in integer arrays

\intarray_count:N ⟨intarray var⟩

Expands to the number of entries in the ⟨integer array variable⟩. Contrarily to
\seq_count:N this is performed in constant time.

\intarray_count:N ⋆
\intarray_count:c ⋆

New: 2018-03-29

28.4 Using a single entry

\intarray_item:Nn ⟨intarray var⟩ {⟨position⟩}

Expands to the integer entry stored at the (integer expression) ⟨position⟩ in the
⟨integer array variable⟩. If the ⟨position⟩ is not between 1 and the \intarray_-
count:N, an error occurs.

\intarray_item:Nn ⋆
\intarray_item:cn ⋆

New: 2018-03-29

\intarray_rand_item:N ⟨intarray var⟩

Selects a pseudo-random item of the ⟨integer array⟩. If the ⟨integer array⟩ is empty,
produce an error.

\intarray_rand_item:N ⋆
\intarray_rand_item:c ⋆

New: 2018-05-05

28.5 Integer array conditional

\intarray_if_exist_p:N ⟨intarray var⟩
\intarray_if_exist:NTF ⟨intarray var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨intarray var⟩ is currently defined. This does not check that the
⟨intarray var⟩ really is an integer array variable.

\intarray_if_exist_p:N ⋆
\intarray_if_exist_p:c ⋆
\intarray_if_exist:NTF ⋆
\intarray_if_exist:cTF ⋆

New: 2024-03-31

28.6 Viewing integer arrays

\intarray_show:N ⟨intarray var⟩
\intarray_log:N ⟨intarray var⟩

Displays the items in the ⟨integer array variable⟩ in the terminal or writes them in
the log file.

\intarray_show:N
\intarray_show:c
\intarray_log:N
\intarray_log:c

New: 2018-05-04

256

28.7 Implementation notes
It is a wrapper around the \fontdimen primitive, used to store arrays of integers (with
a restricted range: absolute value at most 230 − 1). In contrast to l3seq sequences the
access to individual entries is done in constant time rather than linear time, but only
integers can be stored. More precisely, the primitive \fontdimen stores dimensions but
the l3intarray module transparently converts these from/to integers. Assignments are
always global.

While LuaTEX’s memory is extensible, other engines can “only” deal with a bit less
than 4 × 106 entries in all \fontdimen arrays combined (with default TEX Live settings).

257

Chapter 29

The l3fp module
Floating points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions (“⟨fp expr⟩”) support the following operations
with their usual precedence.

• Basic arithmetic: addition x + y, subtraction x − y, multiplication x ∗ y, division
x/y, square root

√
x, and parentheses.

• Comparison operators: x < y, x <= y, x >? y, x ! = y etc.

• Boolean logic: sign sign x, negation ! x, conjunction x && y, disjunction x || y,
ternary operator x ? y : z.

• Exponentials: exp x, ln x, xy, logb x.

• Integer factorial: fact x.

• Trigonometry: sin x, cos x, tan x, cot x, sec x, csc x expecting their arguments in
radians, and sind x, cosd x, tand x, cotd x, secd x, cscd x expecting their arguments
in degrees.

• Inverse trigonometric functions: asin x, acos x, atan x, acot x, asec x, acsc x giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

(not yet) Hyperbolic functions and their inverse functions: sinh x, cosh x, tanh x, coth x,
sech x, csch, and asinh x, acosh x, atanh x, acoth x, asech x, acsch x.

• Extrema: max(x1, x2, . . .), min(x1, x2, . . .), abs(x).

• Rounding functions, controlled by two optional values, n (number of places, 0 by
default) and t (behavior on a tie, nan by default):

– trunc(x, n) rounds towards zero,
– floor(x, n) rounds towards −∞,

258

– ceil(x, n) rounds towards +∞,
– round(x, n, t) rounds to the closest value, with ties rounded to an even value

by default, towards zero if t = 0, towards +∞ if t > 0 and towards −∞ if
t < 0.

And (not yet) modulo, and “quantize”.

• Random numbers: rand(), randint(m, n).

• Constants: pi, deg (one degree in radians).

• Dimensions, automatically expressed in points, e.g., pc is 12.

• Automatic conversion (no need for \⟨type⟩_use:N) of integer, dimension, and skip
variables to floating point numbers, expressing dimensions in points and ignoring
the stretch and shrink components of skips.

• Tuples: (x1, . . . , xn) that can be stored in variables, added together, multiplied or
divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. A “floating point” is a floating point number or a tuple thereof. See sec-
tion 29.12.1 for a description of what a floating point is, section 29.12.2 for details about
how an expression is parsed, and section 29.12.3 to know what the various operations do.
Some operations may raise exceptions (error messages), described in section 29.10.

An example of use could be the following.

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin(3.5)/2 + 2e-3} $.

The operation round can be used to limit the result’s precision. Adding +0 avoids the
possibly undesirable output -0, replacing it by +0. However, the l3fp module is mostly
meant as an underlying tool for higher-level commands. For example, one could provide
a function to typeset nicely the result of floating point computations.

\documentclass{article}
\usepackage{siunitx}
\ExplSyntaxOn
\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff
\begin{document}
\calcnum { 2 pi * sin (2.3 ^ 5) }
\end{document}

See the documentation of siunitx for various options of \num.

259

29.1 Creating and initialising floating point variables

\fp_new:N ⟨fp var⟩

Creates a new ⟨fp var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨fp var⟩ is initially +0.

\fp_new:N
\fp_new:c

Updated: 2012-05-08

\fp_const:Nn ⟨fp var⟩ {⟨fp expr⟩}

Creates a new constant ⟨fp var⟩ or raises an error if the name is already taken. The
⟨fp var⟩ is set globally equal to the result of evaluating the ⟨fp expr⟩.

\fp_const:Nn
\fp_const:cn

Updated: 2012-05-08

\fp_zero:N ⟨fp var⟩

Sets the ⟨fp var⟩ to +0.
\fp_zero:N
\fp_zero:c
\fp_gzero:N
\fp_gzero:c

Updated: 2012-05-08

\fp_zero_new:N ⟨fp var⟩

Ensures that the ⟨fp var⟩ exists globally by applying \fp_new:N if necessary, then ap-
plies \fp_(g)zero:N to leave the ⟨fp var⟩ set to +0.

\fp_zero_new:N
\fp_zero_new:c
\fp_gzero_new:N
\fp_gzero_new:c

Updated: 2012-05-08

29.2 Setting floating point variables

\fp_set:Nn ⟨fp var⟩ {⟨fp expr⟩}

Sets ⟨fp var⟩ equal to the result of computing the ⟨fp expr⟩.
\fp_set:Nn
\fp_set:cn
\fp_gset:Nn
\fp_gset:cn

Updated: 2012-05-08

\fp_set_eq:NN ⟨fp var1⟩ ⟨fp var2⟩

Sets the floating point variable ⟨fp var1⟩ equal to the current value of ⟨fp var2⟩.
\fp_set_eq:NN
\fp_set_eq:(cN|Nc|cc)
\fp_gset_eq:NN
\fp_gset_eq:(cN|Nc|cc)

Updated: 2012-05-08

\fp_add:Nn ⟨fp var⟩ {⟨fp expr⟩}

Adds the result of computing the ⟨fp expr⟩ to the ⟨fp var⟩. This also applies if
⟨fp var⟩ and ⟨floating point expression⟩ evaluate to tuples of the same size.

\fp_add:Nn
\fp_add:cn
\fp_gadd:Nn
\fp_gadd:cn

Updated: 2012-05-08

260

\fp_sub:Nn ⟨fp var⟩ {⟨fp expr⟩}

Subtracts the result of computing the ⟨floating point expression⟩ from the ⟨fp var⟩.
This also applies if ⟨fp var⟩ and ⟨floating point expression⟩ evaluate to tuples of
the same size.

\fp_sub:Nn
\fp_sub:cn
\fp_gsub:Nn
\fp_gsub:cn

Updated: 2012-05-08

29.3 Using floating points

\fp_eval:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_eval:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1
and (⟨fp1⟩,) or () for fewer items. This function is identical to \fp_to_decimal:n.

\fp_eval:n ⋆

New: 2012-05-08

Updated: 2012-07-08

\fp_sign:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and leaves its sign in the input stream using \fp_eval:n
{sign(⟨result⟩)}: +1 for positive numbers and for +∞, −1 for negative numbers and
for −∞, ±0 for ±0. If the operand is a tuple or is nan, then “invalid operation” occurs
and the result is 0.

\fp_sign:n ⋆

New: 2018-11-03

\fp_to_decimal:N ⟨fp var⟩
\fp_to_decimal:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a decimal number with no exponent.
Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant
trailing zeros are trimmed, and integers are expressed without a decimal separator. The
values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩)
if n > 1 and (⟨fp1⟩,) or () for fewer items.

\fp_to_decimal:N ⋆
\fp_to_decimal:c ⋆
\fp_to_decimal:n ⋆

New: 2012-05-08

Updated: 2012-07-08

\fp_to_dim:N ⟨fp var⟩
\fp_to_dim:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result as a dimension (in pt) suitable for
use in dimension expressions. The output is identical to \fp_to_decimal:n, with an
additional trailing pt (both letter tokens). In particular, the result may be outside the
range [−214 +2−17, 214 −2−17] of valid TEX dimensions, leading to overflow errors if used
as a dimension. Tuples, as well as the values ±∞ and nan, trigger an “invalid operation”
exception.

\fp_to_dim:N ⋆
\fp_to_dim:c ⋆
\fp_to_dim:n ⋆

Updated: 2016-03-22

\fp_to_int:N ⟨fp var⟩
\fp_to_int:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩, and rounds the result to the closest integer, rounding exact
ties to an even integer. The result may be outside the range [−231 + 1, 231 − 1] of valid
TEX integers, leading to overflow errors if used in an integer expression. Tuples, as well
as the values ±∞ and nan, trigger an “invalid operation” exception.

\fp_to_int:N ⋆
\fp_to_int:c ⋆
\fp_to_int:n ⋆

Updated: 2012-07-08

261

\fp_to_scientific:N ⟨fp var⟩
\fp_to_scientific:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result in scientific notation:

⟨optional -⟩⟨digit⟩.⟨15 digits⟩e⟨optional sign⟩⟨exponent⟩

The leading ⟨digit⟩ is non-zero except in the case of ±0. The values ±∞ and nan trigger
an “invalid operation” exception. Normal category codes apply: thus the e is category
code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and
they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1 and (⟨fp1⟩,) or () for fewer
items.

\fp_to_scientific:N ⋆
\fp_to_scientific:c ⋆
\fp_to_scientific:n ⋆

New: 2012-05-08

Updated: 2016-03-22

\fp_to_tl:N ⟨fp var⟩
\fp_to_tl:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and expresses the result in (almost) the shortest possible form.
Numbers in the ranges (0, 10−3) and [1016, ∞) are expressed in scientific notation with
trailing zeros trimmed and no decimal separator when there is a single significant digit
(this differs from \fp_to_scientific:n). Numbers in the range [10−3, 1016) are ex-
pressed in a decimal notation without exponent, with trailing zeros trimmed, and no
decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start
with -. The special values ±0, ±∞ and nan are rendered as 0, -0, inf, -inf, and nan
respectively. Normal category codes apply and thus inf or nan, if produced, are made up
of letters. For a tuple, each item is converted using \fp_to_tl:n and they are combined
as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩) if n > 1 and (⟨fp1⟩,) or () for fewer items.

\fp_to_tl:N ⋆
\fp_to_tl:c ⋆
\fp_to_tl:n ⋆

Updated: 2016-03-22

\fp_use:N ⟨fp var⟩

Inserts the value of the ⟨fp var⟩ into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-
significant trailing zeros are trimmed. Integers are expressed without a decimal separator.
The values ±∞ and nan trigger an “invalid operation” exception. For a tuple, each item is
converted using \fp_to_decimal:n and they are combined as (⟨fp1⟩,␣⟨fp2⟩,␣. . . ⟨fpn⟩)
if n > 1 and (⟨fp1⟩,) or () for fewer items. This function is identical to \fp_to_-
decimal:N.

\fp_use:N ⋆
\fp_use:c ⋆

Updated: 2012-07-08

29.4 Floating point conditionals

\fp_if_exist_p:N ⟨fp var⟩
\fp_if_exist:NTF ⟨fp var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨fp var⟩ is currently defined. This does not check that the ⟨fp var⟩
really is a floating point variable.

\fp_if_exist_p:N ⋆
\fp_if_exist_p:c ⋆
\fp_if_exist:NTF ⋆
\fp_if_exist:cTF ⋆

Updated: 2012-05-08

262

\fp_compare_p:nNn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩}
\fp_compare:nNnTF {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨true code⟩} {⟨false code⟩}

Compares the ⟨fp expr1⟩ and the ⟨fp expr2⟩, and returns true if the ⟨relation⟩ is
obeyed. Two floating points x and y may obey four mutually exclusive relations: x < y,
x = y, x > y, or x?y (“not ordered”). The last case occurs exactly if one or both operands
is nan or is a tuple, unless they are equal tuples. Note that a nan is distinct from any
value, even another nan, hence x = x is not true for a nan. To test if a value is nan,
compare it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } ? { 0 }
{ } % <value> is nan
{ } % <value> is not nan

Tuples are equal if they have the same number of items and items compare equal (in
particular there must be no nan). At present any other comparison with tuples yields ?
(not ordered). This is experimental.

This function is less flexible than \fp_compare:nTF but slightly faster. It is provided
for consistency with \int_compare:nNnTF and \dim_compare:nNnTF.

\fp_compare_p:nNn ⋆
\fp_compare:nNnTF ⋆

Updated: 2012-05-08

263

\fp_compare_p:n
{

⟨fp expr1⟩ ⟨relation1⟩
...
⟨fp exprN ⟩ ⟨relationN ⟩
⟨fp exprN+1⟩

}
\fp_compare:nTF

{
⟨fp expr1⟩ ⟨relation1⟩
...
⟨fp exprN ⟩ ⟨relationN ⟩
⟨fp exprN+1⟩

}
{⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨fp exprs⟩ as described for \fp_eval:n and compares consecutive result
using the corresponding ⟨relation⟩, namely it compares ⟨fp expr1⟩ and ⟨fp expr2⟩
using the ⟨relation1⟩, then ⟨fp expr2⟩ and ⟨fp expr3⟩ using the ⟨relation2⟩, until
finally comparing ⟨fp exprN ⟩ and ⟨fp exprN+1⟩ using the ⟨relationN ⟩. The test yields
true if all comparisons are true. Each ⟨floating point expression⟩ is evaluated
only once. Contrarily to \int_compare:nTF, all ⟨fp exprs⟩ are computed, even if one
comparison is false. Two floating points x and y may obey four mutually exclusive
relations: x < y, x = y, x > y, or x?y (“not ordered”). The last case occurs exactly if
one or both operands is nan or is a tuple, unless they are equal tuples. Each ⟨relation⟩
can be any (non-empty) combination of <, =, >, and ?, plus an optional leading ! (which
negates the ⟨relation⟩), with the restriction that the ⟨relation⟩ may not start with ?,
as this symbol has a different meaning (in combination with :) within floating point
expressions. The comparison x ⟨relation⟩ y is then true if the ⟨relation⟩ does not
start with ! and the actual relation (<, =, >, or ?) between x and y appears within the
⟨relation⟩, or on the contrary if the ⟨relation⟩ starts with ! and the relation between
x and y does not appear within the ⟨relation⟩. Common choices of ⟨relation⟩ include
>= (greater or equal), != (not equal), !? or <=> (comparable).

This function is more flexible than \fp_compare:nNnTF and only slightly slower.

\fp_compare_p:n ⋆
\fp_compare:nTF ⋆

Updated: 2013-12-14

\fp_if_nan_p:n {⟨fp expr⟩}
\fp_if_nan:nTF {⟨fp expr⟩} {⟨true code⟩} {⟨false code⟩}

Evaluates the ⟨fp expr⟩ and tests whether the result is exactly nan. The test returns
false for any other result, even a tuple containing nan.

\fp_if_nan_p:n ⋆
\fp_if_nan:nTF ⋆

New: 2019-08-25

29.5 Floating point expression loops

\fp_do_until:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nNnTF. If the test is false then the ⟨code⟩ is inserted into the input stream
again and a loop occurs until the ⟨relation⟩ is true.

\fp_do_until:nNnn ✩

New: 2012-08-16

264

\fp_do_while:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nNnTF. If the test is true then the ⟨code⟩ is inserted into the input stream
again and a loop occurs until the ⟨relation⟩ is false.

\fp_do_while:nNnn ✩

New: 2012-08-16

\fp_until_do:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nNnTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is false. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is true.

\fp_until_do:nNnn ✩

New: 2012-08-16

\fp_while_do:nNnn {⟨fp expr1⟩} ⟨relation⟩ {⟨fp expr2⟩} {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nNnTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is true. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is false.

\fp_while_do:nNnn ✩

New: 2012-08-16

\fp_do_until:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nTF. If the test is false then the ⟨code⟩ is inserted into the input stream again
and a loop occurs until the ⟨relation⟩ is true.

\fp_do_until:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_do_while:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Places the ⟨code⟩ in the input stream for TEX to process, and then evaluates the
relationship between the two ⟨floating point expressions⟩ as described for \fp_-
compare:nTF. If the test is true then the ⟨code⟩ is inserted into the input stream again
and a loop occurs until the ⟨relation⟩ is false.

\fp_do_while:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_until_do:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is false. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is true.

\fp_until_do:nn ✩

New: 2012-08-16

Updated: 2013-12-14

\fp_while_do:nn { ⟨fp expr1⟩ ⟨relation⟩ ⟨fp expr2⟩ } {⟨code⟩}

Evaluates the relationship between the two ⟨floating point expressions⟩ as de-
scribed for \fp_compare:nTF, and then places the ⟨code⟩ in the input stream if the
⟨relation⟩ is true. After the ⟨code⟩ has been processed by TEX the test is repeated,
and a loop occurs until the test is false.

\fp_while_do:nn ✩

New: 2012-08-16

Updated: 2013-12-14

265

\fp_step_function:nnnN {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨function⟩

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, each of
which should be a floating point expression evaluating to a floating point number, not a
tuple. The ⟨function⟩ is then placed in front of each ⟨value⟩ from the ⟨initial value⟩
to the ⟨final value⟩ in turn (using ⟨step⟩ between each ⟨value⟩). The ⟨step⟩ must
be non-zero. If the ⟨step⟩ is positive, the loop stops when the ⟨value⟩ becomes larger
than the ⟨final value⟩. If the ⟨step⟩ is negative, the loop stops when the ⟨value⟩
becomes smaller than the ⟨final value⟩. The ⟨function⟩ should absorb one numerical
argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\fp_step_function:nnnN { 1.0 } { 0.1 } { 1.5 } \my_func:n

would print

[I saw 1.0] [I saw 1.1] [I saw 1.2] [I saw 1.3] [I saw 1.4] [I saw 1.5]

TEXhackers note: Due to rounding, it may happen that adding the ⟨step⟩ to the ⟨value⟩
does not change the ⟨value⟩; such cases give an error, as they would otherwise lead to an infinite
loop.

\fp_step_function:nnnN ✩

\fp_step_function:nnnc ✩

New: 2016-11-21

Updated: 2016-12-06

\fp_step_inline:nnnn {⟨initial value⟩} {⟨step⟩} {⟨final value⟩} {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be floating point expressions evaluating to a floating point number, not a
tuple. Then for each ⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn
(using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted into the input stream with
#1 replaced by the current ⟨value⟩. Thus the ⟨code⟩ should define a function of one
argument (#1).

\fp_step_inline:nnnn

New: 2016-11-21

Updated: 2016-12-06

\fp_step_variable:nnnNn
{⟨initial value⟩} {⟨step⟩} {⟨final value⟩} ⟨tl var⟩ {⟨code⟩}

This function first evaluates the ⟨initial value⟩, ⟨step⟩ and ⟨final value⟩, all of
which should be floating point expressions evaluating to a floating point number, not a
tuple. Then for each ⟨value⟩ from the ⟨initial value⟩ to the ⟨final value⟩ in turn
(using ⟨step⟩ between each ⟨value⟩), the ⟨code⟩ is inserted into the input stream, with
the ⟨tl var⟩ defined as the current ⟨value⟩. Thus the ⟨code⟩ should make use of the
⟨tl var⟩.

\fp_step_variable:nnnNn

New: 2017-04-12

29.6 Symbolic expressions
Floating point expressions support variables: these can only be set locally, so act like
standard \l_... variables.

\fp_new_variable:n { A }
\fp_set:Nn \l_tmpb_fp { 1 * sin(A) + 3**2 }
\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp
\fp_set_variable:nn { A } { pi/2 }

266

\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp
\fp_set_variable:nn { A } { 0 }
\fp_show:n { \l_tmpb_fp }
\fp_show:N \l_tmpb_fp

defines A to be a variable, then defines \l_tmpb_fp to stand for 1*sin(A)+9 (note that
3**2 is evaluated, but the 1* product is not simplified away). Until \l_tmpb_fp is
changed, \fp_show:N \l_tmpb_fp will show ((1*sin(A))+9) regardless of the value
of A. The next step defines A to be equal to pi/2: then \fp_show:n { \l_tmpb_fp }
will evaluate \l_tmpb_fp and show 10. We then redefine A to be 0: since \l_tmpb_-
fp still stands for 1*sin(A)+9, the value shown is then 9. Variables can be set with
\fp_set_variable:nn to arbitrary floating point expressions including other variables.

\fp_new_variable:n {⟨identifier⟩}

Declares the ⟨identifier⟩ as a variable, which allows it to be used in floating point
expressions. For instance,

\fp_new_variable:n { A }
\fp_show:n { A**2 - A + 1 }

shows (((A^2)-A)+1). If the declaration was missing, the parser would complain about
an “Unknown fp word ’A’”. The ⟨identifier⟩ must consist entirely of Latin letters
among [a-zA-Z].

\fp_new_variable:n

New: 2023-10-19

\fp_set_variable:nn {⟨identifier⟩} {⟨fp expr⟩}

Defines the ⟨identifier⟩ to stand in any further expression for the result of evaluating
the ⟨floating point expression⟩ as much as possible. The result may contain other
variables, which are then replaced by their values if they have any. For instance,

\fp_new_variable:n { A }
\fp_new_variable:n { B }
\fp_new_variable:n { C }
\fp_set_variable:nn { A } { 3 }
\fp_set_variable:nn { C } { A ** 2 + B * 1 }
\fp_show:n { C + 4 }
\fp_set_variable:nn { A } { 4 }
\fp_show:n { C + 4 }

shows ((9+(B*1))+4) twice: changing the value of A to 4 does not alter C because A was
replaced by its value 3 when evaluating A**2+B*1.

\fp_set_variable:nn

New: 2023-10-19

267

\fp_clear_variable:n {⟨identifier⟩}

Removes any value given by \fp_set_variable:nn to the variable with this ⟨identifier⟩.
For instance,

\fp_new_variable:n { A }
\fp_set_variable:nn { A } { 3 }
\fp_show:n { A ^ 2 }
\fp_clear_variable:n { A }
\fp_show:n { A ^ 2 }

shows 9, then (A^2).

\fp_clear_variable:n

New: 2023-10-19

29.7 User-defined functions
It is possible to define new user functions which can be used inside the argument to
\fp_eval:n, etc. These functions may take one or more named arguments, and should
be implemented using expansion methods only.

\fp_new_function:n {⟨identifier⟩}

Declares the ⟨identifier⟩ as a function, which allows it to be used in floating point
expressions. For instance,

\fp_new_function:n { foo }
\fp_show:n { foo (1 + 2 , foo(3), A) ** 2 } }

shows (foo(3, foo(3), A))^(2). If the declaration was missing, the parser would
complain about an “Unknown fp word ’foo’”. The ⟨identifier⟩ must consist entirely
of Latin letters [a-zA-Z].

\fp_new_function:n

New: 2023-10-19

\fp_set_function:nnn {⟨identifier⟩} {⟨vars⟩} {⟨fp expr⟩}

Defines the ⟨identifier⟩ to stand in any further expression for the result of evaluating
the ⟨floating point expression⟩, with the ⟨identifier⟩ accepting the ⟨vars⟩ (a
non-empty comma-separated list). The result may contain other functions, which are
then replaced by their results if they have any. For instance,

\fp_new_function:n { foo }
\fp_set_function:nnn { npow } { a,b } { a**b }
\fp_show:n { npow(16,0.25) } }

shows 2. The names of the ⟨vars⟩ must consist entirely of Latin letters [a-zA-Z], but
are otherwise not restricted: in particular, they are independent of any variables declared
by \fp_new_variable:n.

\fp_set_function:nnn

New: 2023-10-19

\fp_clear_function:n {⟨identifier⟩}

Removes any definition given by \fp_set_function:nnn to the function with this
⟨identifier⟩.

\fp_clear_function:n

New: 2023-10-19

268

29.8 Some useful constants, and scratch variables

Zero, with either sign.\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

One as an fp: useful for comparisons in some places.\c_one_fp

New: 2012-05-08

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

Not a number. This can be input directly in a floating point expression as nan.\c_nan_fp

New: 2012-05-08

The value of the base of the natural logarithm, e = exp(1).\c_e_fp

Updated: 2012-05-08

The value of π. This can be input directly in a floating point expression as pi.\c_pi_fp

Updated: 2013-11-17

The value of 1◦ in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

\c_one_degree_fp

New: 2012-05-08

Updated: 2013-11-17

29.9 Scratch variables

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any LATEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_fp
\l_tmpb_fp

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any LATEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_fp
\g_tmpb_fp

269

29.10 Floating point exceptions
The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0, or 10 ** 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

• Overflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in ±∞.

• Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in ±0.

• Invalid operation occurs for operations with no defined outcome, for instance 0/0
or sin(∞), and results in a nan. It also occurs for conversion functions whose target
type does not have the appropriate infinite or nan value (e.g., \fp_to_dim:n).

• Division by zero occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., ln(0) or cot(0). This results in ±∞.

(not yet) Inexact occurs whenever the result of a computation is not exact, in other words,
almost always. At the moment, this exception is entirely ignored in LATEX3.

To each exception we associate a “flag”: \l_fp_overflow_flag, \l_fp_underflow_-
flag, \l_fp_invalid_operation_flag and \l_fp_division_by_zero_flag. The state
of these flags can be tested and modified with commands from l3flag

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_-
trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.

\fp_trap:nn {⟨exception⟩} {⟨trap type⟩}

All occurrences of the ⟨exception⟩ (overflow, underflow, invalid_operation or
division_by_zero) within the current group are treated as ⟨trap type⟩, which can
be

• none: the ⟨exception⟩ will be entirely ignored, and leave no trace;

• flag: the ⟨exception⟩ will turn the corresponding flag on when it occurs;

• error: additionally, the ⟨exception⟩ will halt the TEX run and display some
information about the current operation in the terminal.

This function is experimental, and may be altered or removed.

\fp_trap:nn

New: 2012-07-19

Updated: 2017-02-13

\l_fp_overflow_flag
\l_fp_underflow_flag
\l_fp_invalid_operation_flag
\l_fp_division_by_zero_flag

Flags denoting the occurrence of various floating-point exceptions.

270

29.11 Viewing floating points

\fp_show:N ⟨fp var⟩
\fp_show:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and displays the result in the terminal.

\fp_show:N
\fp_show:c
\fp_show:n

New: 2012-05-08

Updated: 2021-04-29

\fp_log:N ⟨fp var⟩
\fp_log:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ and writes the result in the log file.

\fp_log:N
\fp_log:c
\fp_log:n

New: 2014-08-22

Updated: 2021-04-29

29.12 Floating point expressions
29.12.1 Input of floating point numbers
We support four types of floating point numbers:

• ±m · 10n, a floating point number, with integer 1 ≤ m ≤ 1016, and −10000 ≤ n ≤
10000;

• ±0, zero, with a given sign;

• ±∞, infinity, with a given sign;

• nan, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

Normal floating point numbers are stored in base 10, with up to 16 significant figures.
On input, a normal floating point number consists of:

• ⟨sign⟩: a possibly empty string of + and - characters;

• ⟨significand⟩: a non-empty string of digits together with zero or one dot;

• ⟨exponent⟩ optionally: the character e or E, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

The sign of the resulting number is + if ⟨sign⟩ contains an even number of -, and -
otherwise, hence, an empty ⟨sign⟩ denotes a non-negative input. The stored significand
is obtained from ⟨significand⟩ by omitting the decimal separator and leading zeros,
and rounding to 16 significant digits, filling with trailing zeros if necessary. In particular,
the value stored is exact if the input ⟨significand⟩ has at most 16 digits. The stored
⟨exponent⟩ is obtained by combining the input ⟨exponent⟩ (0 if absent) with a shift
depending on the position of the significand and the number of leading zeros.

A special case arises if the resulting ⟨exponent⟩ is either too large or too small
for the floating point number to be represented. This results either in an overflow (the
number is then replaced by ±∞), or an underflow (resulting in ±0).

271

The result is thus ±0 if and only if ⟨significand⟩ contains no non-zero digit (i.e.,
consists only in characters 0, and an optional period), or if there is an underflow. Note
that a single dot is currently a valid floating point number, equal to +0, but that is not
guaranteed to remain true.

The ⟨significand⟩ must be non-empty, so e1 and e-1 are not valid floating point
numbers. Note that the latter could be mistaken with the difference of “e” and 1. To
avoid confusions, the base of natural logarithms cannot be input as e and should be input
as exp(1) or \c_e_fp (which is faster).

Special numbers are input as follows:

• inf represents +∞, and can be preceded by any ⟨sign⟩, yielding ±∞ as appropri-
ate.

• nan represents a (quiet) non-number. It can be preceded by any sign, but that sign
is ignored.

• Any unrecognizable string triggers an error, and produces a nan.

• Note that commands such as \infty, \pi, or \sin do not work in floating point
expressions. They may silently be interpreted as completely unexpected numbers,
because integer constants (allowed in expressions) are commonly stored as mathe-
matical characters.

29.12.2 Precedence of operators
We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

• Function calls (sin, ln, etc).

• Binary ** and ^ (right associative).

• Unary +, -, !.

• Implicit multiplication by juxtaposition (2pi) when neither factor is in parentheses.

• Binary * and /, implicit multiplication by juxtaposition with parentheses (for in-
stance 3(4+5)).

• Binary + and -.

• Comparisons >=, !=, <?, etc.

• Logical and, denoted by &&.

• Logical or, denoted by ||.

• Ternary operator ?: (right associative).

• Comma (to build tuples).

272

The precedence of operations can be overridden using parentheses. In particular, the
precedence of juxtaposition implies that

1/2pi = 1/(2π),
1/2pi(pi + pi) = (2π)−1(π + π) ≃ 1,

sin2pi = sin(2)π ̸= 0,

2ˆ2max(3, 5) = 22 max(3, 5) = 20,

1in/1cm = (1in)/(1cm) = 2.54.

Functions are called on the value of their argument, contrarily to TEX macros.

29.12.3 Operations
We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is ±0, and true otherwise, including when it is nan or a tuple such as (0, 0).
Tuples are only supported to some extent by operations that work with truth values
(?:, ||, &&, !), by comparisons (!<=>?), and by +, -, *, /. Unless otherwise specified,
providing a tuple as an argument of any other operation yields the “invalid operation”
exception and a nan result.

\fp_eval:n { ⟨operand1⟩ ? ⟨operand2⟩ : ⟨operand3⟩ }

The ternary operator ?: results in ⟨operand2⟩ if ⟨operand1⟩ is true (not ±0), and
⟨operand3⟩ if ⟨operand1⟩ is false (±0). All three ⟨operands⟩ are evaluated in all cases;
they may be tuples. The operator is right associative, hence

\fp_eval:n
{
1 + 3 > 4 ? 1 :
2 + 4 > 5 ? 2 :
3 + 5 > 6 ? 3 : 4

}

first tests whether 1 + 3 > 4; since this isn’t true, the branch following : is taken, and
2+4 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

?:

\fp_eval:n { ⟨operand1⟩ || ⟨operand2⟩ }

If ⟨operand1⟩ is true (not ±0), use that value, otherwise the value of ⟨operand2⟩. Both
⟨operands⟩ are evaluated in all cases; they may be tuples. In ⟨operand1⟩ || ⟨operand2⟩
|| . . . || ⟨operandsn⟩, the first true (nonzero) ⟨operand⟩ is used and if all are zero the
last one (±0) is used.

||

\fp_eval:n { ⟨operand1⟩ && ⟨operand2⟩ }

If ⟨operand1⟩ is false (equal to ±0), use that value, otherwise the value of ⟨operand2⟩.
Both ⟨operands⟩ are evaluated in all cases; they may be tuples. In ⟨operand1⟩ &&
⟨operand2⟩ && . . . && ⟨operandsn⟩, the first false (±0) ⟨operand⟩ is used and if none is
zero the last one is used.

&&

273

\fp_eval:n
{

⟨operand1⟩ ⟨relation1⟩
...
⟨operandN ⟩ ⟨relationN ⟩
⟨operandN+1⟩

}

Each ⟨relation⟩ consists of a non-empty string of <, =, >, and ?, optionally preceded
by !, and may not start with ?. This evaluates to +1 if all comparisons ⟨operandi⟩
⟨relationi⟩ ⟨operandi+1⟩ are true, and +0 otherwise. All ⟨operands⟩ are evaluated
(once) in all cases. See \fp_compare:nTF for details.

<
=
>
?

Updated: 2013-12-14

\fp_eval:n { ⟨operand1⟩ + ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ - ⟨operand2⟩ }

Computes the sum or the difference of its two ⟨operands⟩. The “invalid operation”
exception occurs for ∞−∞. “Underflow” and “overflow” occur when appropriate. These
operations supports the itemwise addition or subtraction of two tuples, but if they have a
different number of items the “invalid operation” exception occurs and the result is nan.

+
-

\fp_eval:n { ⟨operand1⟩ * ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ / ⟨operand2⟩ }

Computes the product or the ratio of its two ⟨operands⟩. The “invalid operation” ex-
ception occurs for ∞/∞, 0/0, or 0 ∗ ∞. “Division by zero” occurs when dividing a
finite non-zero number by ±0. “Underflow” and “overflow” occur when appropriate.
When ⟨operand1⟩ is a tuple and ⟨operand2⟩ is a floating point number, each item of
⟨operand1⟩ is multiplied or divided by ⟨operand2⟩. Multiplication also supports the case
where ⟨operand1⟩ is a floating point number and ⟨operand2⟩ a tuple. Other combinations
yield an “invalid operation” exception and a nan result.

*
/

\fp_eval:n { + ⟨operand⟩ }
\fp_eval:n { - ⟨operand⟩ }
\fp_eval:n { ! ⟨operand⟩ }

The unary + does nothing, the unary - changes the sign of the ⟨operand⟩ (for a tuple,
of all its components), and ! ⟨operand⟩ evaluates to 1 if ⟨operand⟩ is false (is ±0) and
0 otherwise (this is the not boolean function). Those operations never raise exceptions.

+
-
!

\fp_eval:n { ⟨operand1⟩ ** ⟨operand2⟩ }
\fp_eval:n { ⟨operand1⟩ ^ ⟨operand2⟩ }

Raises ⟨operand1⟩ to the power ⟨operand2⟩. This operation is right associative, hence 2
** 2 ** 3 equals 223 = 256. If ⟨operand1⟩ is negative or −0 then: the result’s sign is +
if the ⟨operand2⟩ is infinite and (−1)p if the ⟨operand2⟩ is p/5q with p, q integers; the
result is +0 if abs(⟨operand1⟩)^⟨operand2⟩ evaluates to zero; in other cases the “invalid
operation” exception occurs because the sign cannot be determined. “Division by zero”
occurs when raising ±0 to a finite strictly negative power. “Underflow” and “overflow”
occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

**
^

\fp_eval:n { abs(⟨fp expr⟩) }

Computes the absolute value of the ⟨fp expr⟩. If the operand is a tuple, “invalid opera-
tion” occurs. This operation does not raise exceptions in other cases. See also \fp_abs:n.

abs

274

\fp_eval:n { exp(⟨fp expr⟩) }

Computes the exponential of the ⟨fp expr⟩. “Underflow” and “overflow” occur when
appropriate. If the operand is a tuple, “invalid operation” occurs.

exp

\fp_eval:n { fact(⟨fp expr⟩) }

Computes the factorial of the ⟨fp expr⟩. If the ⟨fp expr⟩ is an integer between −0 and
3248 included, the result is finite and correctly rounded. Larger positive integers give
+∞ with “overflow”, while fact(+∞) = +∞ and fact(nan) = nan with no exception.
All other inputs give nan with the “invalid operation” exception.

fact

\fp_eval:n { ln(⟨fp expr⟩) }

Computes the natural logarithm of the ⟨fp expr⟩. Negative numbers have no (real)
logarithm, hence the “invalid operation” is raised in that case, including for ln(−0).
“Division by zero” occurs when evaluating ln(+0) = −∞. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

ln

\fp_eval:n { logb(⟨fp expr⟩) }

Determines the exponent of the ⟨fp expr⟩, namely the floor of the base-10 logarithm of
its absolute value. “Division by zero” occurs when evaluating logb(±0) = −∞. Other
special values are logb(±∞) = +∞ and logb(nan) = nan. If the operand is a tuple or is
nan, then “invalid operation” occurs and the result is nan.

logb ⋆

New: 2018-11-03

\fp_eval:n { max(⟨fp expr1⟩ , ⟨fp expr2⟩ , ...) }
\fp_eval:n { min(⟨fp expr1⟩ , ⟨fp expr2⟩ , ...) }

Evaluates each ⟨fp expr⟩ and computes the largest (smallest) of those. If any of the ⟨fp
expr⟩ is a nan or tuple, the result is nan. If any operand is a tuple, “invalid operation”
occurs; these operations do not raise exceptions in other cases.

max
min

275

\fp_eval:n { round (⟨fp expr⟩) }
\fp_eval:n { round (⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { round (⟨fp expr1⟩ , ⟨fp expr2⟩ , ⟨fp expr3⟩) }

Only round accepts a third argument. Evaluates ⟨fp expr1⟩ = x and ⟨fp expr2⟩ = n
and ⟨fp expr3⟩ = t then rounds x to n places. If n is an integer, this rounds x to a
multiple of 10−n; if n = +∞, this always yields x; if n = −∞, this yields one of ±0, ±∞,
or nan; if n = nan, this yields nan; if n is neither ±∞ nor an integer, then an “invalid
operation” exception is raised. When ⟨fp expr2⟩ is omitted, n = 0, i.e., ⟨fp expr1⟩ is
rounded to an integer. The rounding direction depends on the function.

• round yields the multiple of 10−n closest to x, with ties (x half-way between two
such multiples) rounded as follows. If t is nan (or not given) the even multiple is
chosen (“ties to even”), if t = ±0 the multiple closest to 0 is chosen (“ties to zero”),
if t is positive/negative the multiple closest to ∞/−∞ is chosen (“ties towards
positive/negative infinity”).

• floor yields the largest multiple of 10−n smaller or equal to x (“round towards
negative infinity”);

• ceil yields the smallest multiple of 10−n greater or equal to x (“round towards
positive infinity”);

• trunc yields a multiple of 10−n with the same sign as x and with the largest
absolute value less than that of x (“round towards zero”).

“Overflow” occurs if x is finite and the result is infinite (this can only happen if
⟨fp expr2⟩ < −9984). If any operand is a tuple, “invalid operation” occurs.

round
trunc
ceil
floor

New: 2013-12-14

Updated: 2015-08-08

\fp_eval:n { sign(⟨fp expr⟩) }

Evaluates the ⟨fp expr⟩ and determines its sign: +1 for positive numbers and for +∞,
−1 for negative numbers and for −∞, ±0 for ±0, and nan for nan. If the operand is a
tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases.

sign

\fp_eval:n { sin(⟨fp expr⟩) }
\fp_eval:n { cos(⟨fp expr⟩) }
\fp_eval:n { tan(⟨fp expr⟩) }
\fp_eval:n { cot(⟨fp expr⟩) }
\fp_eval:n { csc(⟨fp expr⟩) }
\fp_eval:n { sec(⟨fp expr⟩) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the ⟨fp expr⟩ given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

sin
cos
tan
cot
csc
sec

Updated: 2013-11-17

276

\fp_eval:n { sind(⟨fp expr⟩) }
\fp_eval:n { cosd(⟨fp expr⟩) }
\fp_eval:n { tand(⟨fp expr⟩) }
\fp_eval:n { cotd(⟨fp expr⟩) }
\fp_eval:n { cscd(⟨fp expr⟩) }
\fp_eval:n { secd(⟨fp expr⟩) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the ⟨fp expr⟩
given in degrees. For arguments given in radians, see sin, cos, etc. Note that since π is
irrational, sin(8pi) is not quite zero, while its analogue sind(8 × 180) is exactly zero. The
trigonometric functions are undefined for an argument of ±∞, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

\fp_eval:n { asin(⟨fp expr⟩) }
\fp_eval:n { acos(⟨fp expr⟩) }
\fp_eval:n { acsc(⟨fp expr⟩) }
\fp_eval:n { asec(⟨fp expr⟩) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the ⟨fp expr⟩ and returns
the result in radians, in the range [−π/2, π/2] for asin and acsc and [0, π] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [−1, 1], or the argument of acsc or asec inside the range (−1, 1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If
the operand is a tuple, “invalid operation” occurs.

asin
acos
acsc
asec

New: 2013-11-02

\fp_eval:n { asind(⟨fp expr⟩) }
\fp_eval:n { acosd(⟨fp expr⟩) }
\fp_eval:n { acscd(⟨fp expr⟩) }
\fp_eval:n { asecd(⟨fp expr⟩) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the ⟨fp expr⟩ and returns
the result in degrees, in the range [−90, 90] for asind and acscd and [0, 180] for acosd
and asecd. For a result in radians, use asin, etc. If the argument of asind or acosd lies
outside the range [−1, 1], or the argument of acscd or asecd inside the range (−1, 1), an
“invalid operation” exception is raised. “Underflow” and “overflow” occur when appro-
priate. If the operand is a tuple, “invalid operation” occurs.

asind
acosd
acscd
asecd

New: 2013-11-02

277

\fp_eval:n { atan(⟨fp expr⟩) }
\fp_eval:n { atan(⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { acot(⟨fp expr⟩) }
\fp_eval:n { acot(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Those functions yield an angle in radians: atand and acotd are their analogs in de-
grees. The one-argument versions compute the arctangent or arccotangent of the ⟨fp
expr⟩: arctangent takes values in the range [−π/2, π/2], and arccotangent in the range
[0, π]. The two-argument arctangent computes the angle in polar coordinates of the
point with Cartesian coordinates (⟨fp expr2⟩, ⟨fp expr1⟩): this is the arctangent of
⟨fp expr1⟩/⟨fp expr2⟩, possibly shifted by π depending on the signs of ⟨fp expr1⟩ and
⟨fp expr2⟩. The two-argument arccotangent computes the angle in polar coordinates of
the point (⟨fp expr1⟩, ⟨fp expr2⟩), equal to the arccotangent of ⟨fp expr1⟩/⟨fp expr2⟩,
possibly shifted by π. Both two-argument functions take values in the wider range [−π, π].
The ratio ⟨fp expr1⟩/⟨fp expr2⟩ need not be defined for the two-argument arctangent:
when both expressions yield ±0, or when both yield ±∞, the resulting angle is one
of {±π/4, ±3π/4} depending on signs. The “underflow” exception can occur. If any
operand is a tuple, “invalid operation” occurs.

atan
acot

New: 2013-11-02

\fp_eval:n { atand(⟨fp expr⟩) }
\fp_eval:n { atand(⟨fp expr1⟩ , ⟨fp expr2⟩) }
\fp_eval:n { acotd(⟨fp expr⟩) }
\fp_eval:n { acotd(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Those functions yield an angle in degrees: atan and acot are their analogs in radi-
ans. The one-argument versions compute the arctangent or arccotangent of the ⟨fp
expr⟩: arctangent takes values in the range [−90, 90], and arccotangent in the range
[0, 180]. The two-argument arctangent computes the angle in polar coordinates of the
point with Cartesian coordinates (⟨fp expr2⟩, ⟨fp expr1⟩): this is the arctangent of
⟨fp expr1⟩/⟨fp expr2⟩, possibly shifted by 180 depending on the signs of ⟨fp expr1⟩ and
⟨fp expr2⟩. The two-argument arccotangent computes the angle in polar coordinates of
the point (⟨fp expr1⟩, ⟨fp expr2⟩), equal to the arccotangent of ⟨fp expr1⟩/⟨fp expr2⟩,
possibly shifted by 180. Both two-argument functions take values in the wider range
[−180, 180]. The ratio ⟨fp expr1⟩/⟨fp expr2⟩ need not be defined for the two-argument
arctangent: when both expressions yield ±0, or when both yield ±∞, the resulting angle
is one of {±45, ±135} depending on signs. The “underflow” exception can occur. If any
operand is a tuple, “invalid operation” occurs.

atand
acotd

New: 2013-11-02

\fp_eval:n { sqrt(⟨fp expr⟩) }

Computes the square root of the ⟨fp expr⟩. The “invalid operation” is raised when the
⟨fp expr⟩ is negative or is a tuple; no other exception can occur. Special values yield√

−0 = −0,
√

+0 = +0,
√

+∞ = +∞ and
√
nan = nan.

sqrt

New: 2013-12-14

278

\fp_eval:n { rand() }

Produces a pseudo-random floating-point number (multiple of 10−16) between 0 included
and 1 excluded. This is not available in older versions of X ETEX. The random seed can
be queried using \sys_rand_seed: and set using \sys_gset_rand_seed:n.

TEXhackers note: This is based on pseudo-random numbers provided by the engine’s
primitive \pdfuniformdeviate in pdfTEX, pTEX, upTEX and \uniformdeviate in LuaTEX and
X ETEX. The underlying code is based on Metapost, which follows an additive scheme recom-
mended in Section 3.6 of “The Art of Computer Programming, Volume 2”.

While we are more careful than \uniformdeviate to preserve uniformity of the underlying
stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be
relied upon for serious numerical computations nor cryptography.

rand

New: 2016-12-05

\fp_eval:n { randint(⟨fp expr⟩) }
\fp_eval:n { randint(⟨fp expr1⟩ , ⟨fp expr2⟩) }

Produces a pseudo-random integer between 1 and ⟨fp expr⟩ or between ⟨fp expr1⟩ and
⟨fp expr2⟩ inclusive. The bounds must be integers in the range (−1016, 1016) and the
first must be smaller or equal to the second. See rand for important comments on how
these pseudo-random numbers are generated.

randint

New: 2016-12-05

The special values +∞, −∞, and nan are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_fp).

inf
nan

The value of π (see \c_pi_fp).pi

The value of 1◦ in radians (see \c_one_degree_fp).deg

279

Those units of measurement are equal to their values in pt, namely

1 in = 72.27 pt
1 pt = 1 pt
1 pc = 12 pt

1 cm = 1
2.54 in = 28.45275590551181 pt

1 mm = 1
25.4 in = 2.845275590551181 pt

1 dd = 0.376065 mm = 1.07000856496063 pt
1 cc = 12 dd = 12.84010277952756 pt
1 nd = 0.375 mm = 1.066978346456693 pt
1 nc = 12 nd = 12.80374015748031 pt

1 bp = 1
72 in = 1.00375 pt

1 sp = 2−16 pt = 1.52587890625 × 10−5 pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

em
ex
in
pt
pc
cm
mm
dd
cc
nd
nc
bp
sp

Other names for 1 and +0.true
false

\fp_abs:n {⟨fp expr⟩}

Evaluates the ⟨fp expr⟩ as described for \fp_eval:n and leaves the absolute value of
the result in the input stream. If the argument is ±∞, nan or a tuple, “invalid operation”
occurs. Within floating point expressions, abs() can be used; it accepts ±∞ and nan as
arguments.

\fp_abs:n ⋆

New: 2012-05-14

Updated: 2012-07-08

\fp_max:nn {⟨fp expr1⟩} {⟨fp expr2⟩}

Evaluates the ⟨fp exprs⟩ as described for \fp_eval:n and leaves the resulting larger
(max) or smaller (min) value in the input stream. If the argument is a tuple, “invalid
operation” occurs, but no other case raises exceptions. Within floating point expressions,
max() and min() can be used.

\fp_max:nn ⋆
\fp_min:nn ⋆

New: 2012-09-26

29.13 Disclaimer and roadmap
This module may break if the escape character is among 0123456789_+, or if it receives
a TEX primitive conditional affected by \exp_not:N.

The following need to be done. I’ll try to time-order the items.

• Function to count items in a tuple (and to determine if something is a tuple).

• Decide what exponent range to consider.

280

• Support signalling nan.

• Modulo and remainder, and rounding function quantize (and its friends analogous
to trunc, ceil, floor).

• \fp_format:nn {⟨fp expr⟩} {⟨format⟩}, but what should ⟨format⟩ be? More gen-
eral pretty printing?

• Add and, or, xor? Perhaps under the names all, any, and xor?

• Add log(x, b) for logarithm of x in base b.

• hypot (Euclidean length). Cartesian-to-polar transform.

• Hyperbolic functions cosh, sinh, tanh.

• Inverse hyperbolics.

• Base conversion, input such as 0xAB.CDEF.

• Factorial (not with !), gamma function.

• Improve coefficients of the sin and tan series.

• Treat upper and lower case letters identically in identifiers, and ignore underscores.

• Add an array(1,2,3) and i=complex(0,1).

• Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)?

• Provide an isnan function analogue of \fp_if_nan:nTF?

• Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs, and tests to add.

• Check that functions are monotonic when they should.

• Add exceptions to ?:, !<=>?, &&, ||, and !.

• Logarithms of numbers very close to 1 are inaccurate.

• When rounding towards −∞, \dim_to_fp:n {0pt} should return −0, not +0.

• The result of (±0) + (±0), of x + (−x), and of (−x) + x should depend on the
rounding mode.

• 0e9999999999 gives a TEX “number too large” error.

• Subnormals are not implemented.

Possible optimizations/improvements.

• Document that l3trial/l3fp-types introduces tools for adding new types.

• In subsection 29.12.1, write a grammar.

281

• It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in l3fp-parse.

• Some functions should get an _o ending to indicate that they expand after their
result.

• More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

• The code for the ternary set of functions is ugly.

• There are many ~ missing in the doc to avoid bad line-breaks.

• The algorithm for computing the logarithm of the significand could be made to use
a 5 terms Taylor series instead of 10 terms by taking c = 2000/(⌊200x⌋+1) ∈ [10, 95]
instead of c ∈ [1, 10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

• Improve notations in the explanations of the division algorithm (l3fp-basics).

• Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to l3fp-aux under a better name.

• Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

• Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. . .

• Also take into account the “inexact” exception?

• Support multi-character prefix operators (e.g., @/ or whatever)?

282

Chapter 30

The l3fparray module
Fast global floating point
arrays

For applications requiring heavy use of floating points, this module provides arrays which
can be accessed in constant time (contrast l3seq, where access time is linear). The
interface is very close to that of l3intarray. The size of the array is fixed and must be
given at point of initialisation

30.1 Creating and initialising floating point array
variables

\fparray_new:Nn ⟨fparray var⟩ {⟨size⟩}

Evaluates the integer expression ⟨size⟩ and allocates an ⟨floating point array
variable⟩ with that number of (zero) entries. The variable name should start with
\g_ because assignments are always global.

\fparray_new:Nn
\fparray_new:cn

New: 2018-05-05

\fparray_gzero:N ⟨fparray var⟩

Sets all entries of the ⟨floating point array variable⟩ to +0. Assignments are al-
ways global.

\fparray_gzero:N
\fparray_gzero:c

New: 2018-05-05

30.2 Adding data to floating point arrays

\fparray_gset:Nnn ⟨fparray var⟩ {⟨position⟩} {⟨value⟩}

Stores the result of evaluating the floating point expression ⟨value⟩ into the ⟨floating
point array variable⟩ at the (integer expression) ⟨position⟩. If the ⟨position⟩ is
not between 1 and the \fparray_count:N, an error occurs. Assignments are always
global.

\fparray_gset:Nnn
\fparray_gset:cnn

New: 2018-05-05

283

30.3 Counting entries in floating point arrays

\fparray_count:N ⟨fparray var⟩

Expands to the number of entries in the ⟨floating point array variable⟩. This is
performed in constant time.

\fparray_count:N ⋆
\fparray_count:c ⋆

New: 2018-05-05

30.4 Using a single entry

\fparray_item:Nn ⟨fparray var⟩ {⟨position⟩}

Applies \fp_use:N or \fp_to_tl:N (respectively) to the floating point entry stored at
the (integer expression) ⟨position⟩ in the ⟨floating point array variable⟩. If the
⟨position⟩ is not between 1 and the \fparray_count:N ⟨fparray var⟩, an error occurs.

\fparray_item:Nn ⋆
\fparray_item:cn ⋆
\fparray_item_to_tl:Nn ⋆
\fparray_item_to_tl:cn ⋆

New: 2018-05-05

30.5 Floating point array conditional

\fparray_if_exist_p:N ⟨fparray var⟩
\fparray_if_exist:NTF ⟨fparray var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨fparray var⟩ is currently defined. This does not check that the
⟨fparray var⟩ really is a floating point array variable.

\fparray_if_exist_p:N ⋆
\fparray_if_exist_p:c ⋆
\fparray_if_exist:NTF ⋆
\fparray_if_exist:cTF ⋆

New: 2024-03-31

284

Chapter 31

The l3bitset module
Bitsets

This module defines and implements the data type bitset, a vector of bits. The size
of the vector may grow dynamically. Individual bits can be set and unset by names
pointing to an index position. The names 1, 2, 3, . . . are predeclared and point to
the index positions 1, 2, 3,. . . . More names can be added and existing names can be
changed. The index is like all other indices in expl3 modules 1-based. A bitset can be
output as binary number or—as needed e.g. in a PDF dictionary—as decimal (arabic)
number. Currently only a small subset of the functions provided by the bitset package
are implemented here, mainly the functions needed to use bitsets in PDF dictionaries.

The bitset is stored as a string (but one shouldn’t rely on the internal representation)
and so the vector size is theoretically unlimited, only restricted by TEX-memory. But
the functions to set and clear bits use integer functions for the index so bitsets can’t be
longer than 231 − 1. The export function \bitset_to_arabic:N can use functions from
the int module only if the largest index used for this bitset is smaller than 32, for longer
bitsets fp is used and this is slower.

285

31.1 Creating bitsets

\bitset_new:N ⟨bitset var⟩
\bitset_new:Nn ⟨bitset var⟩

{
⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...

}

Creates a new ⟨bitset var⟩ or raises an error if the name is already taken. The decla-
ration is global. The ⟨bitset var⟩ is initially 0.

Bitsets are implemented as string variables consisting of 1’s and 0’s. The rightmost
number is the index position 1, so the string variable can be viewed directly as the binary
number. But one shouldn’t rely on the internal representation, but use the dedicated
\bitset_to_bin:N instead to get the binary number.

The name–index pairs given in the second argument of \bitset_new:Nn declares
names for some indices, which can be used to set and unset bits. The names 1, 2, 3, . . .
are predeclared and point to the index positions 1, 2, 3,

⟨index...⟩ should be a positive number or an ⟨integer expression⟩ which eval-
uates to a positive number. The expression is evaluated when the index is used, not at
declaration time. The names ⟨name...⟩ should be unique. Using a number as name,
e.g. 10=1, is allowed, it then overwrites the predeclared name 10, but the index position
10 can then only be reached if some other name for it exists, e.g. ten=10. It is not
necessary to give every index a name, and an index can have more than one name. The
named index can be extended or changed with the next function.

\bitset_new:N
\bitset_new:c
\bitset_new:Nn
\bitset_new:cn

New: 2023-11-15

\bitset_addto_named_index:Nn ⟨bitset var⟩
{

⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...

}

\bitset_addto_named_index:Nn

New: 2023-11-15

This extends or changes the name–index pairs for ⟨bitset var⟩ globally as described
for \bitset_new:Nn.

For example after these settings

\bitset_new:Nn \l_pdfannot_F_bitset
{
Invisible = 1,
Hidden = 2,
Print = 3,
NoZoom = 4,
NoRotate = 5,
NoView = 6,
ReadOnly = 7,
Locked = 8,
ToggleNoView = 9,
LockedContents = 10

}
\bitset_addto_named_index:Nn \l_pdfannot_F_bitset
{

286

print = 3
}

it is possible to set bit 3 by using any of these alternatives:

\bitset_set_true:Nn \l_pdfannot_F_bitset {Print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {3}

\bitset_if_exist_p:N ⟨bitset var⟩
\bitset_if_exist:NTF ⟨bitset var⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨bitset var⟩ exist.

\bitset_if_exist_p:N ⋆
\bitset_if_exist_p:c ⋆
\bitset_if_exist:NTF ⋆
\bitset_if_exist:cTF ⋆

New: 2023-11-15

31.2 Setting and unsetting bits

\bitset_set_true:Nn ⟨bitset var⟩ {⟨name⟩}

This sets the bit of the index position represented by {⟨name⟩} to 1. ⟨name⟩ should be
either one of the predeclared names 1, 2, 3, . . . , or one of the names added manually.
Index position are 1-based. If needed the length of the bit vector is enlarged.

\bitset_set_true:Nn
\bitset_set_true:cn
\bitset_gset_true:Nn
\bitset_gset_true:cn

New: 2023-11-15

\bitset_set_false:Nn ⟨bitset var⟩ {⟨name⟩}

This unsets the bit of the index position represented by {⟨name⟩} (sets it to 0). ⟨name⟩
should be either one of the predeclared names 1, 2, 3, . . . , or one of the names added
manually. The index is 1-based. If the index position is larger than the current length
of the bit vector nothing happens. If the leading (left most) bit is unset, zeros are not
trimmed but stay in the bit vector and are still shown by \bitset_show:N.

\bitset_set_false:Nn
\bitset_set_false:cn
\bitset_gset_false:Nn
\bitset_gset_false:cn

New: 2023-11-15

\bitset_clear:N ⟨bitset var⟩

This resets the bitset to the initial state. The declared names are not changed.
\bitset_clear:N
\bitset_clear:c
\bitset_gclear:N
\bitset_gclear:c

New: 2023-11-15

31.3 Using bitsets

\bitset_item:Nn ⟨bitset var⟩ {⟨name⟩}

\bitset_item:Nn outputs 1 if the bit with the index number represented by ⟨name⟩ is
set and 0 otherwise. ⟨name⟩ is either one of the predeclared names 1, 2, 3, . . . , or one of
the names added manually.

\bitset_item:Nn ⋆
\bitset_item:cn ⋆

New: 2023-11-15

287

\bitset_to_bin:N ⟨bitset var⟩

This leaves the current value of the bitset expressed as a binary (string) number in the
input stream. If no bit has been set yet, the output is zero.

\bitset_to_bin:N ⋆
\bitset_to_bin:c ⋆

New: 2023-11-15

\bitset_to_arabic:N ⟨bitset var⟩

This leaves the current value of the bitset expressed as a decimal number in the input
stream. If no bit has been set yet, the output is zero. The function uses \int_from_-
bin:n if the largest index that have been set or unset is smaller than 32, and a slower
implementation based on \fp_eval:n otherwise.

\bitset_to_arabic:N ⋆
\bitset_to_arabic:c ⋆

New: 2023-11-15

\bitset_show:N ⟨bitset var⟩

Displays the binary and decimal values of the ⟨bitset var⟩ on the terminal.
\bitset_show:N
\bitset_show:c

New: 2023-11-15

\bitset_log:N ⟨bitset var⟩

Writes the binary and decimal values of the ⟨bitset var⟩ in the log file.
\bitset_log:N
\bitset_log:c

New: 2023-11-15

\bitset_show_named_index:N ⟨bitset var⟩

Displays declared name–index pairs of the ⟨bitset var⟩ on the terminal.
\bitset_show_named_index:N
\bitset_show_named_index:c

New: 2023-11-15

\bitset_log_named_index:N ⟨bitset var⟩

Writes declared name–index pairs of the ⟨bitset var⟩ in the log file.
\bitset_log_named_index:N
\bitset_log_named_index:c

New: 2023-12-11

288

Chapter 32

The l3cctab module
Category code tables

A category code table enables rapid switching of all category codes in one operation. For
LuaTEX, this is possible over the entire Unicode range. For other engines, only the 8-bit
range (0–255) is covered by such tables. The implementation of category code tables in
expl3 also saves and restores the TEX \endlinechar primitive value, meaning they could
be used for example to implement \ExplSyntaxOn.

32.1 Creating and initialising category code tables

\cctab_new:N ⟨category code table⟩

Creates a new ⟨category code table⟩ variable or raises an error if the name is already
taken. The declaration is global. The ⟨category code table⟩ is initialised with the
codes as used by iniTEX.

\cctab_new:N
\cctab_new:c

Updated: 2020-07-02

\cctab_const:Nn ⟨category code table⟩ {⟨category code set up⟩}

Creates a new ⟨category code table⟩, applies (in a group) the ⟨category code set
up⟩ on top of iniTEX settings, then saves them globally as a constant table. The
⟨category code set up⟩ can include a call to \cctab_select:N.

\cctab_const:Nn
\cctab_const:cn

Updated: 2020-07-07

\cctab_gset:Nn ⟨category code table⟩ {⟨category code set up⟩}

Starting from the iniTEX category codes, applies (in a group) the ⟨category code set
up⟩, then saves them globally in the ⟨category code table⟩. The ⟨category code set
up⟩ can include a call to \cctab_select:N.

\cctab_gset:Nn
\cctab_gset:cn

Updated: 2020-07-07

\cctab_gsave_current:N ⟨category code table⟩

Saves the current prevailing category codes in the ⟨category code table⟩.
\cctab_gsave_current:N
\cctab_gsave_current:c

New: 2023-05-26

289

32.2 Using category code tables

\cctab_begin:N ⟨category code table⟩

Switches locally the category codes in force to those stored in the ⟨category code
table⟩. The prevailing codes before the function is called are added to a stack, for
use with \cctab_end:. This function does not start a TEX group.

\cctab_begin:N
\cctab_begin:c

Updated: 2020-07-02

\cctab_end:

Ends the scope of a ⟨category code table⟩ started using \cctab_begin:N, returning
the codes to those in force before the matching \cctab_begin:N was used. This must
be used within the same TEX group (and at the same TEX group level) as the matching
\cctab_begin:N.

\cctab_end:

Updated: 2020-07-02

\cctab_select:N ⟨category code table⟩

Selects the ⟨category code table⟩ for the scope of the current group. This is in particu-
lar useful in the ⟨setup⟩ arguments of \tl_set_rescan:Nnn, \tl_rescan:nn, \cctab_-
const:Nn, and \cctab_gset:Nn.

\cctab_select:N
\cctab_select:c

New: 2020-05-19

Updated: 2020-07-02

\cctab_item:Nn ⟨category code table⟩ {⟨int expr⟩}

Determines the ⟨character⟩ with character code given by the ⟨int expr⟩ and expands
to its category code specified by the ⟨category code table⟩.

\cctab_item:Nn ⋆
\cctab_item:cn ⋆

New: 2021-05-10

32.3 Category code table conditionals

\cctab_if_exist_p:N ⟨category code table⟩
\cctab_if_exist:NTF ⟨category code table⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨category code table⟩ is currently defined. This does not check
that the ⟨category code table⟩ really is a category code table.

\cctab_if_exist_p:N ⋆
\cctab_if_exist_p:c ⋆
\cctab_if_exist:NTF ⋆
\cctab_if_exist:cTF ⋆

32.4 Constant and scratch category code tables

Category code table for the expl3 code environment; this does not include @, which is
retained as an “other” character. Sets the \endlinechar value to 32 (a space).

\c_code_cctab

Updated: 2020-07-10

Category code table for a standard LATEX document, as set by the LATEX kernel. In
particular, the upper-half of the 8-bit range will be set to “active” with pdfTEX only.
No babel shorthands will be activated. Sets the \endlinechar value to 13 (normal line
ending).

\c_document_cctab

Updated: 2020-07-08

290

Category code table as set up by iniTEX.\c_initex_cctab

Updated: 2020-07-02

Category code table where all characters have category code 12 (other). Sets the
\endlinechar value to −1.

\c_other_cctab

Updated: 2020-07-02

Category code table where all characters have category code 12 (other) with the exception
of spaces, which have category code 10 (space). Sets the \endlinechar value to −1.

\c_str_cctab

Updated: 2020-07-02

Scratch category code tables.\g_tmpa_cctab
\g_tmpb_cctab

New: 2023-05-26

291

Part V

Text manipulation

292

Chapter 33

The l3unicode module
Unicode support functions

This module provides Unicode-specific functions along with loading data from a range
of Unicode Consortium files. Most of the code here is internal, but there are a small set
of public functions. These work with Unicode ⟨codepoints⟩ and are designed to give
usable results with both Unicode-aware and 8-bit engines.

293

\codepoint_generate:nn {⟨codepoint⟩} {⟨catcode⟩}

Generates one or more character tokens representing the ⟨codepoint⟩. With Unicode
engines, exactly one character token will be generated, and this will have the ⟨catcode⟩
specified as the second argument:

• 1 (begin group)

• 2 (end group)

• 3 (math toggle)

• 4 (alignment)

• 6 (parameter)

• 7 (math superscript)

• 8 (math subscript)

• 10 (space)

• 11 (letter)

• 12 (other)

• 13 (active)

For 8-bit engines, between one and four character tokens will be produced: these will be
the bytes of the UTF-8 representation of the ⟨codepoint⟩. For all codepoints outside of
the classical ASCII range, the generated character tokens will be active (category code
13); for codepoints in the ASCII range, the given ⟨catcode⟩ will be used. To allow the
result of this function to be used inside an expansion context, the result is protected by
\exp_not:n.

TEXhackers note: Users of (u)pTEX note that these engines are treated as 8-bit in this
context. In particular, for upTEX, irrespective of the \kcatcode of the ⟨codepoint⟩, any value
outside the ASCII range will result in a series of active bytes being generated.

\codepoint_generate:nn ⋆

New: 2022-10-09

Updated: 2022-11-09

\codepoint_str_generate:n {⟨codepoint⟩}\codepoint_str_generate:n ⋆

New: 2022-10-09

Generates one or more character tokens representing the ⟨codepoint⟩. With Unicode
engines, exactly one character token will be generated. For 8-bit engines, between one
and four character tokens will be produced: these will be the bytes of the UTF-8 repre-
sentation of the ⟨codepoint⟩. All of the generated character tokens will be of category
code 12, except any spaces (codepoint 32), which will be category code 10.

294

\codepoint_to_category:n {⟨codepoint⟩}

Expands to the Unicode general category identifier of the ⟨codepoint⟩. The general
category identifier is a string made up of two letter characters, the first uppercase and
the second lowercase. The uppercase letters divide codepoints into broader groups, which
are then refined by the lowercase letter. For example, codepoints representing letters all
have identifiers starting L, for example Lu (uppercase letter), Lt (titlecase letter), etc.
Full details are available in the documentation provided by the Unicode Consortium: see
https://www.unicode.org/reports/tr44/#General_Category_Values

\codepoint_to_category:n ⋆

New: 2023-06-19

\codepoint_to_nfd:n {⟨codepoint⟩}

Converts the ⟨codepoint⟩ to the Unicode Normalization Form Canonical Decomposition.
The generated character(s) will have the current category code as they would if typed in
directly for Unicode engines; for 8-bit engines, active characters are used for all codepoints
outside of the ASCII range.

\codepoint_to_nfd:n ⋆

New: 2022-10-09

295

https://www.unicode.org/reports/tr44/#General_Category_Values

Chapter 34

The l3text module
Text processing

This module deals with manipulation of (formatted) text; such material is comprised of
a restricted set of token list content. The functions provided here concern conversion of
textual content for example in case changing, generation of bookmarks and extraction
to tags. All of the major functions operate by expansion. Begin-group and end-group
tokens in the ⟨text⟩ are normalized and become { and }, respectively.

34.1 Expanding text

\text_expand:n {⟨text⟩}

Takes user input ⟨text⟩ and expands the content. Protected commands (typically for-
matting) are left in place, and no processing takes place of math mode material (as
delimited by pairs given in \l_text_math_delims_tl or as the argument to commands
listed in \l_text_math_arg_tl). Commands which are neither engine- nor LATEX pro-
tected are expanded exhaustively. Any commands listed in \l_text_expand_exclude_tl
are excluded from expansion, as are those in \l_text_case_exclude_arg_tl and \l_-
text_math_arg_tl.

\text_expand:n ⋆

New: 2020-01-02

Updated: 2023-06-09

\text_declare_expand_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_expand_equivalent:Nn
\text_declare_expand_equivalent:cn

New: 2020-01-22

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered. The ⟨replacement⟩ tokens should be expandable. A token can
be “replaced” by itself if the defined replacement wraps it in \exp_not:n, for example

\text_declare_expand_equivalent:Nn \’ { \exp_not:n { \’ } }

296

34.2 Case changing

\text_uppercase:n {⟨tokens⟩}
\text_uppercase:nn {⟨BCP-47⟩} {⟨tokens⟩}

Takes user input ⟨text⟩ first applies \text_expand:n, then transforms the case of char-
acter tokens as specified by the function name. The category code of letters are not
changed by this process when Unicode engines are used; in 8-bit engines, case changed
charters in the ASCII range will have the current prevailing category code, while those
outside of it will be represented by active characters.

\text_lowercase:n ⋆
\text_uppercase:n ⋆
\text_titlecase_all:n ⋆
\text_titlecase_first:n ⋆
\text_lowercase:nn ⋆
\text_uppercase:nn ⋆
\text_titlecase_all:nn ⋆
\text_titlecase_first:nn ⋆

New: 2019-11-20

Updated: 2023-07-08

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded
informally as converting the first character of the ⟨tokens⟩ to uppercase. However, the
process is more complex than this as there are some situations where a single lowercase
character maps to a special form, for example ij in Dutch which becomes IJ. There are
two functions available for titlecasing: one which applies the change to each “word” and a
second which only applies at the start of the input. (Here, “word” boundaries are spaces:
at present, full Unicode word breaking is not attempted.)

Importantly, notice that these functions are intended for working with user text for
typesetting. For case changing programmatic data see the l3str module and discussion
there of \str_lowercase:n, \str_uppercase:n and \str_casefold:n.

Case changing does not take place within math mode material so for example

\text_uppercase:n { Some~text~$y = mx + c$~with~{Braces} }

becomes

SOME TEXT $y = mx + c$ WITH {BRACES}

The first mandatory argument of commands listed in \l_text_case_exclude_arg_-
tl is excluded from case changing; the latter are entirely non-textual content (such as
labels).

The standard mappings here follow those defined by the Unicode Consortium in
UnicodeData.txt and SpecialCasing.txt. For pTEX, only the ASCII range is covered
as the engine treats input outside of this range as east Asian.

Locale-sensitive conversions are enabled using the ⟨BCP-47⟩ argument, and follow
Unicode Consortium guidelines. Currently, the locale strings recognized for special han-
dling are as follows.

• Armenian (hy and hy-x-yiwn) The setting hy maps the codepoint U+0587, the
ligature of letters ech and yiwn, to the codepoints for capital ech and vew when
uppercasing: this follows the spelling reform which is used in Armenia. The alter-
native hy-x-yiwn maps U+0587 to capital ech and yiwn on uppercasing (also the
output if Armenian is not selected at all).

• Azeri and Turkish (az and tr). The case pairs I/i-dotless and I-dot/i are activated
for these languages. The combining dot mark is removed when lowercasing I-dot
and introduced when upper casing i-dotless.

• German (de-x-eszett). An alternative mapping for German in which the lower-
case Eszett maps to a großes Eszett.

297

http://www.unicode.org

• Greek (el). Removes accents from Greek letters when uppercasing; titlecasing
leaves accents in place. A variant el-x-iota is available which converts the ypoge-
grammeni (subscript muted iota) to capital iota when uppercasing: the standard
version retains the subscript versions.

• Lithuanian (lt). The lowercase letters i and j should retain a dot above when the
accents grave, acute or tilde are present. This is implemented for lowercasing of the
relevant uppercase letters both when input as single Unicode codepoints and when
using combining accents. The combining dot is removed when uppercasing in these
cases. Note that only the accents used in Lithuanian are covered: the behaviour of
other accents are not modified.

• Medieval Latin (la-x-medieval). The characters u and V are interchanged on case
changing.

• Dutch (nl). Capitalisation of ij at the beginning of titlecased input produces IJ
rather than Ij.

Determining whether non-letter characters at the start of text should count as the
uppercase element is controllable. When \l_text_titlecase_check_letter_bool is
true, codepoints which are not letters (Unicode general category L) are not changed,
and only the first letter is uppercased. When \l_text_titlecase_check_letter_-
bool is false, the first codepoint is uppercased, irrespective of the general code of the
character.

\text_declare_case_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_case_equivalent:Nn

New: 2022-07-04

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered during case changing.

\text_declare_lowercase_mapping:nn {⟨codeppoint⟩} {⟨replacement⟩}
\text_declare_lowercase_mapping:nnn {⟨BCP-47⟩} {⟨codeppoint⟩}
{⟨replacement⟩}

\text_declare_lowercase_mapping:nn
\text_declare_lowercase_mapping:nnn
\text_declare_titlecase_mapping:nn
\text_declare_titlecase_mapping:nnn
\text_declare_uppercase_mapping:nn
\text_declare_uppercase_mapping:nnn

New: 2023-04-11

Updated: 2023-04-20

Declares that the ⟨replacement⟩ tokens should be used when case mapping the
⟨codepoint⟩, rather than the standard mapping given in the Unicode data files. The
nnn version takes a BCP-47 tag, which can be used to specify that the customisation
only applies to that locale.

\text_case_switch:nnnn {⟨normal⟩} {⟨upper⟩} {⟨lower⟩} {⟨title⟩}

Context-sensitive function which will expand to one of the ⟨normal⟩, ⟨upper⟩, ⟨lower⟩
or ⟨title⟩ tokens depending on the current case changing operation. Outside of case
changing, the ⟨normal⟩ tokens are produced. Within case changing, the appropriate
mapping tokens are inserted.

\text_case_switch:nnnn ⋆

New: 2022-07-04

298

34.3 Removing formatting from text

\text_purify:n {⟨text⟩}

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then removes all
functions from the resulting text. Math mode material (as delimited by pairs given in
\l_text_math_delims_tl or as the argument to commands listed in \l_text_math_-
arg_tl) is left contained in a pair of $ delimiters. Non-expandable functions present
in the ⟨text⟩ must either have a defined equivalent (see \text_declare_purify_-
equivalent:Nn) or will be removed from the result. Implicit tokens are converted to
their explicit equivalent.

\text_purify:n ⋆

New: 2020-03-05

Updated: 2020-05-14

\text_declare_purify_equivalent:Nn ⟨cmd⟩ {⟨replacement⟩}\text_declare_purify_equivalent:Nn
\text_declare_purify_equivalent:Ne

New: 2020-03-05

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single
token) is encountered. The ⟨replacement⟩ tokens should be expandable.

34.4 Control variables

Lists commands present in the ⟨text⟩ where the argument of the command should
be treated as math mode material. The treatment here is similar to \l_text_math_-
delims_tl but for a command rather than paired delimiters.

\l_text_math_arg_tl

Lists pairs of tokens which delimit (in-line) math mode content; such content may be
excluded from processing.

\l_text_math_delims_tl

\l_text_case_exclude_arg_tl

Lists commands where the first mandatory argument is excluded from case changing.

Lists commands which are excluded from expansion. This protection includes everything
up to and including their first braced argument.

\l_text_expand_exclude_tl

\l_text_titlecase_check_letter_bool

Controls how the start of titlecasing is handled: when true, the first letter in text is
considered. The standard setting is true.

299

34.5 Mapping to graphemes
Grapheme splitting is implemented using the algorithm described in Unicode Standard
Annex #29. This includes support for extended grapheme clusters. Text starting with a
line feed or carriage return character will drop this due to standard TEX processing. At
present extended pictograms are not supported: these may be added in a future release.

\text_map_function:nN ⟨text⟩ {⟨function⟩}

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the ⟨function⟩. Broadly a
grapheme is a “user perceived character”: the Unicode Consortium describe the decom-
position of input to graphemes in depth, and the approach used here implements that
algorithm. The ⟨function⟩ should accept one argument as ⟨balanced text⟩: this may
be comprise codepoints or may be a control sequence. With 8-bit engines, the code-
point(s) themselves may of course be made up of multiple bytes: the mapping will pass
the correct codepoints independent of the engine in use. See also \text_map_inline:nn.

\text_map_function:nN ✩

New: 2022-08-04

\text_map_inline:nn ⟨text⟩ {⟨inline function⟩}

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then maps over
the graphemes within the result, passing each grapheme to the ⟨inline function⟩.
Broadly a grapheme is a “user perceived character”: the Unicode Consortium describe
the decomposition of input to graphemes in depth, and the approach used here imple-
ments that algorithm. The ⟨inline function⟩ should consist of code which receives the
grapheme as ⟨balanced text⟩: this may be comprise codepoints or may be a control
sequence. With 8-bit engines, the codepoint(s) themselves may of course be made up of
multiple bytes: the mapping will pass the correct codepoints independent of the engine
in use. See also \text_map_function:nN.

\text_map_inline:nn

New: 2022-08-04

\text_map_break:
\text_map_break:n {⟨code⟩}

Used to terminate a \text_map_... function before all entries in the ⟨text⟩ have been
processed. This normally takes place within a conditional statement.

\text_map_break: ✩

\text_map_break:n ✩

New: 2022-08-04

300

Part VI

Typesetting

301

Chapter 35

The l3box module
Boxes

Box variables contain typeset material that can be inserted on the page or in other
boxes. Their contents cannot be converted back to lists of tokens. There are three
kinds of box operations: horizontal mode denoted with prefix \hbox_, vertical mode
with prefix \vbox_, and the generic operations working in both modes with prefix \box_.
For instance, a new box variable containing the words “Hello, world!” (in a horizontal
box) can be obtained by the following code.

\box_new:N \l_hello_box
\hbox_set:Nn \l_hello_box { Hello, ~ world! }

The argument is typeset inside a TEX group so that any variables assigned during the
construction of this box restores its value afterwards.

Box variables from l3box are compatible with those of LATEX 2ε and plain TEX and
can be used interchangeably. The l3box commands to construct boxes, such as \hbox:n
or \hbox_set:Nn, are “color-safe”, meaning that

\hbox:n { \color_select:n { blue } Hello, } ~ world!

will result in “Hello,” taking the color blue, but “world!” remaining with the prevailing
color outside the box.

35.1 Creating and initialising boxes

\box_new:N ⟨box⟩

Creates a new ⟨box⟩ or raises an error if the name is already taken. The declaration is
global. The ⟨box⟩ is initially void.

\box_new:N
\box_new:c

\box_clear:N ⟨box⟩

Clears the content of the ⟨box⟩ by setting the box equal to \c_empty_box.
\box_clear:N
\box_clear:c
\box_gclear:N
\box_gclear:c

302

\box_clear_new:N ⟨box⟩

Ensures that the ⟨box⟩ exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the ⟨box⟩ empty.

\box_clear_new:N
\box_clear_new:c
\box_gclear_new:N
\box_gclear_new:c

\box_set_eq:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ equal to that of ⟨box2⟩.
\box_set_eq:NN
\box_set_eq:(cN|Nc|cc)
\box_gset_eq:NN
\box_gset_eq:(cN|Nc|cc)

\box_if_exist_p:N ⟨box⟩
\box_if_exist:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨box⟩ is currently defined. This does not check that the ⟨box⟩ really
is a box.

\box_if_exist_p:N ⋆
\box_if_exist_p:c ⋆
\box_if_exist:NTF ⋆
\box_if_exist:cTF ⋆

New: 2012-03-03

35.2 Using boxes

\box_use:N ⟨box⟩

Inserts the current content of the ⟨box⟩ onto the current list for typesetting. An error is
raised if the variable does not exist or if it is invalid.

TEXhackers note: This is the TEX primitive \copy.

\box_use:N
\box_use:c

\box_move_right:nn {⟨dim expr⟩} {⟨box function⟩}

This function operates in vertical mode, and inserts the material specified by the ⟨box
function⟩ such that its reference point is displaced horizontally by the given ⟨dim expr⟩
from the reference point for typesetting, to the right or left as appropriate. The ⟨box
function⟩ should be a box operation such as \box_use:N \<box> or a “raw” box speci-
fication such as \vbox:n { xyz }.

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn {⟨dim expr⟩} {⟨box function⟩}

This function operates in horizontal mode, and inserts the material specified by the ⟨box
function⟩ such that its reference point is displaced vertically by the given ⟨dim expr⟩
from the reference point for typesetting, up or down as appropriate. The ⟨box function⟩
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

\box_move_up:nn
\box_move_down:nn

303

35.3 Measuring and setting box dimensions

\box_dp:N ⟨box⟩

Calculates the depth (below the baseline) of the ⟨box⟩ in a form suitable for use in a
⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \dp.

\box_dp:N
\box_dp:c

\box_ht:N ⟨box⟩

Calculates the height (above the baseline) of the ⟨box⟩ in a form suitable for use in a
⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \ht.

\box_ht:N
\box_ht:c

\box_wd:N ⟨box⟩

Calculates the width of the ⟨box⟩ in a form suitable for use in a ⟨dim expr⟩.

TEXhackers note: This is the TEX primitive \wd.

\box_wd:N
\box_wd:c

\box_ht_plus_dp:N ⟨box⟩

Calculates the total vertical size (height plus depth) of the ⟨box⟩ in a form suitable for
use in a ⟨dim expr⟩.

\box_ht_plus_dp:N
\box_ht_plus_dp:c

New: 2021-05-05

\box_set_dp:Nn ⟨box⟩ {⟨dim expr⟩}

Set the depth (below the baseline) of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_dp:Nn
\box_set_dp:cn
\box_gset_dp:Nn
\box_gset_dp:cn

Updated: 2019-01-22

\box_set_ht:Nn ⟨box⟩ {⟨dim expr⟩}

Set the height (above the baseline) of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_ht:Nn
\box_set_ht:cn
\box_gset_ht:Nn
\box_gset_ht:cn

Updated: 2019-01-22

\box_set_wd:Nn ⟨box⟩ {⟨dim expr⟩}

Set the width of the ⟨box⟩ to the value of the {⟨dim expr⟩}.
\box_set_wd:Nn
\box_set_wd:cn
\box_gset_wd:Nn
\box_gset_wd:cn

Updated: 2019-01-22

304

35.4 Box conditionals

\box_if_empty_p:N ⟨box⟩
\box_if_empty:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a empty (equal to \c_empty_box).

\box_if_empty_p:N ⋆
\box_if_empty_p:c ⋆
\box_if_empty:NTF ⋆
\box_if_empty:cTF ⋆

\box_if_horizontal_p:N ⟨box⟩
\box_if_horizontal:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a horizontal box.

\box_if_horizontal_p:N ⋆
\box_if_horizontal_p:c ⋆
\box_if_horizontal:NTF ⋆
\box_if_horizontal:cTF ⋆

\box_if_vertical_p:N ⟨box⟩
\box_if_vertical:NTF ⟨box⟩ {⟨true code⟩} {⟨false code⟩}

Tests if ⟨box⟩ is a vertical box.

\box_if_vertical_p:N ⋆
\box_if_vertical_p:c ⋆
\box_if_vertical:NTF ⋆
\box_if_vertical:cTF ⋆

35.5 The last box inserted

\box_set_to_last:N ⟨box⟩

Sets the ⟨box⟩ equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the ⟨box⟩ is
always void as it is not possible to recover the last added item.

\box_set_to_last:N
\box_set_to_last:c
\box_gset_to_last:N
\box_gset_to_last:c

35.6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

TEXhackers note: At the TEX level this is a void box.

\c_empty_box

Updated: 2012-11-04

35.7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_box
\l_tmpb_box

Updated: 2012-11-04

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_box
\g_tmpb_box

305

35.8 Viewing box contents

\box_show:N ⟨box⟩

Shows full details of the content of the ⟨box⟩ in the terminal.
\box_show:N
\box_show:c

Updated: 2012-05-11

\box_show:Nnn ⟨box⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Display the contents of ⟨box⟩ in the terminal, showing the first ⟨int expr1⟩ items of the
box, and descending into ⟨int expr2⟩ group levels.

\box_show:Nnn
\box_show:cnn

New: 2012-05-11

\box_log:N ⟨box⟩

Writes full details of the content of the ⟨box⟩ to the log.
\box_log:N
\box_log:c

New: 2012-05-11

\box_log:Nnn ⟨box⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Writes the contents of ⟨box⟩ to the log, showing the first ⟨int expr1⟩ items of the box,
and descending into ⟨int expr2⟩ group levels.

\box_log:Nnn
\box_log:cnn

New: 2012-05-11

35.9 Boxes and color
All LATEX3 boxes are “color safe”: a color set inside the box stops applying after the end
of the box has occurred.

35.10 Horizontal mode boxes

\hbox:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of natural width and then includes this
box in the current list for typesetting.

\hbox:n

Updated: 2017-04-05

\hbox_to_wd:nn {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of width ⟨dim expr⟩ and then includes
this box in the current list for typesetting.

\hbox_to_wd:nn

Updated: 2017-04-05

\hbox_to_zero:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width and then includes this box
in the current list for typesetting.

\hbox_to_zero:n

Updated: 2017-04-05

\hbox_set:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural width and then stores the result inside the ⟨box⟩.
\hbox_set:Nn
\hbox_set:cn
\hbox_gset:Nn
\hbox_gset:cn

Updated: 2017-04-05

306

\hbox_set_to_wd:Nnn ⟨box⟩ {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ to the width given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩.

\hbox_set_to_wd:Nnn
\hbox_set_to_wd:cnn
\hbox_gset_to_wd:Nnn
\hbox_gset_to_wd:cnn

Updated: 2017-04-05

\hbox_overlap_center:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
equally to both sides of the insertion point.

\hbox_overlap_center:n

New: 2020-08-25

\hbox_overlap_right:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
to the right of the insertion point.

\hbox_overlap_right:n

Updated: 2017-04-05

\hbox_overlap_left:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a horizontal box of zero width such that material protrudes
to the left of the insertion point.

\hbox_overlap_left:n

Updated: 2017-04-05

\hbox_set:Nw ⟨box⟩ ⟨contents⟩ \hbox_set_end:

Typesets the ⟨contents⟩ at natural width and then stores the result inside the ⟨box⟩.
In contrast to \hbox_set:Nn this function does not absorb the argument when finding
the ⟨content⟩, and so can be used in circumstances where the ⟨content⟩ may not be a
simple argument.

\hbox_set:Nw
\hbox_set:cw
\hbox_set_end:
\hbox_gset:Nw
\hbox_gset:cw
\hbox_gset_end:

Updated: 2017-04-05

\hbox_set_to_wd:Nnw ⟨box⟩ {⟨dim expr⟩} ⟨contents⟩ \hbox_set_end:

Typesets the ⟨contents⟩ to the width given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩. In contrast to \hbox_set_to_wd:Nnn this function does not absorb the
argument when finding the ⟨content⟩, and so can be used in circumstances where the
⟨content⟩ may not be a simple argument

\hbox_set_to_wd:Nnw
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

New: 2017-06-08

\hbox_unpack:N ⟨box⟩

Unpacks the content of the horizontal ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set.

TEXhackers note: This is the TEX primitive \unhcopy.

\hbox_unpack:N
\hbox_unpack:c

35.11 Vertical mode boxes
Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box. This
means that the box has no depth unless the last item added to it had depth. As a result
most vertical boxes have a large height value and small or zero depth. The exception are

307

_top boxes, where the reference point is that of the first item added. These tend to have
a large depth and small height, although the latter is typically non-zero.

\vbox:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in
the current list for typesetting.

\vbox:n

Updated: 2017-04-05

\vbox_top:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of natural height and includes this box in
the current list for typesetting. The baseline of the box is equal to that of the first item
added to the box.

\vbox_top:n

Updated: 2017-04-05

\vbox_to_ht:nn {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of height ⟨dim expr⟩ and then includes this
box in the current list for typesetting.

\vbox_to_ht:nn

Updated: 2017-04-05

\vbox_to_zero:n {⟨contents⟩}

Typesets the ⟨contents⟩ into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_to_zero:n

Updated: 2017-04-05

\vbox_set:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
\vbox_set:Nn
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn

Updated: 2017-04-05

\vbox_set_top:Nn ⟨box⟩ {⟨contents⟩}

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
The baseline of the box is equal to that of the first item added to the box.

\vbox_set_top:Nn
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn

Updated: 2017-04-05

\vbox_set_to_ht:Nnn ⟨box⟩ {⟨dim expr⟩} {⟨contents⟩}

Typesets the ⟨contents⟩ to the height given by the ⟨dim expr⟩ and then stores the
result inside the ⟨box⟩.

\vbox_set_to_ht:Nnn
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn

Updated: 2017-04-05

\vbox_set:Nw ⟨box⟩ ⟨contents⟩ \vbox_set_end:

Typesets the ⟨contents⟩ at natural height and then stores the result inside the ⟨box⟩.
In contrast to \vbox_set:Nn this function does not absorb the argument when finding
the ⟨content⟩, and so can be used in circumstances where the ⟨content⟩ may not be a
simple argument.

\vbox_set:Nw
\vbox_set:cw
\vbox_set_end:
\vbox_gset:Nw
\vbox_gset:cw
\vbox_gset_end:

Updated: 2017-04-05

308

\vbox_set_to_ht:Nnw ⟨box⟩ {⟨dim expr⟩} ⟨contents⟩ \vbox_set_end:

Typesets the ⟨contents⟩ to the height given by the ⟨dim expr⟩ and then stores the result
inside the ⟨box⟩. In contrast to \vbox_set_to_ht:Nnn this function does not absorb the
argument when finding the ⟨content⟩, and so can be used in circumstances where the
⟨content⟩ may not be a simple argument

\vbox_set_to_ht:Nnw
\vbox_set_to_ht:cnw
\vbox_gset_to_ht:Nnw
\vbox_gset_to_ht:cnw

New: 2017-06-08

\vbox_set_split_to_ht:NNn ⟨box1⟩ ⟨box2⟩ {⟨dim expr⟩}\vbox_set_split_to_ht:NNn
\vbox_set_split_to_ht:(cNn|Ncn|ccn)
\vbox_gset_split_to_ht:NNn
\vbox_gset_split_to_ht:(cNn|Ncn|ccn)

Updated: 2018-12-29

Sets ⟨box1⟩ to contain material to the height given by the ⟨dim expr⟩ by removing
content from the top of ⟨box2⟩ (which must be a vertical box).

\vbox_unpack:N ⟨box⟩

Unpacks the content of the vertical ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set.

TEXhackers note: This is the TEX primitive \unvcopy.

\vbox_unpack:N
\vbox_unpack:c

35.12 Using boxes efficiently
The functions above for using box contents work in exactly the same way as for any other
expl3 variable. However, for efficiency reasons, it is also useful to have functions which
drop box contents on use. When a box is dropped, the box becomes empty at the group
level where the box was originally set rather than necessarily at the current group level.
For example, with

\hbox_set:Nn \l_tmpa_box { A }
\group_begin:
\hbox_set:Nn \l_tmpa_box { B }
\group_begin:
\box_use_drop:N \l_tmpa_box
\group_end:
\box_show:N \l_tmpa_box

\group_end:
\box_show:N \l_tmpa_box

the first use of \box_show:N will show an entirely cleared (void) box, and the second will
show the letter A in the box.

These functions should be preferred when the content of the box is no longer required
after use. Note that due to the unusual scoping behaviour of drop functions they may be
applied to both local and global boxes: the latter will naturally be set and thus cleared
at a global level.

309

\box_use_drop:N ⟨box⟩

Inserts the current content of the ⟨box⟩ onto the current list for typesetting then drops
the box content. An error is raised if the variable does not exist or if it is invalid. This
function may be applied to local or global boxes.

TEXhackers note: This is the TEX primitive \box.

\box_use_drop:N
\box_use_drop:c

\box_set_eq_drop:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ equal to that of ⟨box2⟩, then drops ⟨box2⟩.
\box_set_eq_drop:NN
\box_set_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\box_gset_eq_drop:NN ⟨box1⟩ ⟨box2⟩

Sets the content of ⟨box1⟩ globally equal to that of ⟨box2⟩, then drops ⟨box2⟩.
\box_gset_eq_drop:NN
\box_gset_eq_drop:(cN|Nc|cc)

New: 2019-01-17

\hbox_unpack_drop:N ⟨box⟩

Unpacks the content of the horizontal ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set. The original ⟨box⟩ is then dropped.

TEXhackers note: This is the TEX primitive \unhbox.

\hbox_unpack_drop:N
\hbox_unpack_drop:c

New: 2019-01-17

\vbox_unpack_drop:N ⟨box⟩

Unpacks the content of the vertical ⟨box⟩, retaining any stretching or shrinking applied
when the ⟨box⟩ was set. The original ⟨box⟩ is then dropped.

TEXhackers note: This is the TEX primitive \unvbox.

\vbox_unpack_drop:N
\vbox_unpack_drop:c

New: 2019-01-17

35.13 Affine transformations
Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

310

\box_autosize_to_wd_and_ht:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_autosize_to_wd_and_ht:Nnn
\box_autosize_to_wd_and_ht:cnn
\box_gautosize_to_wd_and_ht:Nnn
\box_gautosize_to_wd_and_ht:cnn

New: 2017-04-04

Updated: 2019-01-22

Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (verti-
cally); both of the sizes are dimension expressions. The ⟨y-size⟩ is the height only: it
does not include any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature
of the ⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of
{⟨x-size⟩} and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative
sizes cause the material in the ⟨box⟩ to be reversed in direction, but the reference point
of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth
dependent on the height of the original and vice versa.

\box_autosize_to_wd_and_ht_plus_dp:Nnn ⟨box⟩ {⟨x-size⟩}
{⟨y-size⟩}

\box_autosize_to_wd_and_ht_plus_dp:Nnn
\box_autosize_to_wd_and_ht_plus_dp:cnn
\box_gautosize_to_wd_and_ht_plus_dp:Nnn
\box_gautosize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-04

Updated: 2019-01-22

Resizes the ⟨box⟩ to fit within the given ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (verti-
cally); both of the sizes are dimension expressions. The ⟨y-size⟩ is the total vertical
size (height plus depth). The updated ⟨box⟩ is an hbox, irrespective of the nature of the
⟨box⟩ before the resizing is applied. The final size of the ⟨box⟩ is the smaller of {⟨x-size⟩}
and {⟨y-size⟩}, i.e. the result fits within the dimensions specified. Negative sizes cause
the material in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩
is unchanged. Thus a negative ⟨y-size⟩ results in the ⟨box⟩ having a depth dependent
on the height of the original and vice versa.

\box_resize_to_ht:Nn ⟨box⟩ {⟨y-size⟩}

Resizes the ⟨box⟩ to ⟨y-size⟩ (vertically), scaling the horizontal size by the same amount;
⟨y-size⟩ is a dimension expression. The ⟨y-size⟩ is the height only: it does not include
any depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before
the resizing is applied. A negative ⟨y-size⟩ causes the material in the ⟨box⟩ to be
reversed in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative
⟨y-size⟩ results in the ⟨box⟩ having a depth dependent on the height of the original and
vice versa.

\box_resize_to_ht:Nn
\box_resize_to_ht:cn
\box_gresize_to_ht:Nn
\box_gresize_to_ht:cn

Updated: 2019-01-22

311

\box_resize_to_ht_plus_dp:Nn ⟨box⟩ {⟨y-size⟩}\box_resize_to_ht_plus_dp:Nn
\box_resize_to_ht_plus_dp:cn
\box_gresize_to_ht_plus_dp:Nn
\box_gresize_to_ht_plus_dp:cn

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨y-size⟩ (vertically), scaling the horizontal size by the same amount;
⟨y-size⟩ is a dimension expression. The ⟨y-size⟩ is the total vertical size (height plus
depth). The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the
resizing is applied. A negative ⟨y-size⟩ causes the material in the ⟨box⟩ to be reversed
in direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩
results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd:Nn ⟨box⟩ {⟨x-size⟩}

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally), scaling the vertical size by the same amount;
⟨x-size⟩ is a dimension expression. The updated ⟨box⟩ is an hbox, irrespective of the
nature of the ⟨box⟩ before the resizing is applied. A negative ⟨x-size⟩ causes the material
in the ⟨box⟩ to be reversed in direction, but the reference point of the ⟨box⟩ is unchanged.
Thus a negative ⟨x-size⟩ results in the ⟨box⟩ having a depth dependent on the height
of the original and vice versa.

\box_resize_to_wd:Nn
\box_resize_to_wd:cn
\box_gresize_to_wd:Nn
\box_gresize_to_wd:cn

Updated: 2019-01-22

\box_resize_to_wd_and_ht:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_resize_to_wd_and_ht:Nnn
\box_resize_to_wd_and_ht:cnn
\box_gresize_to_wd_and_ht:Nnn
\box_gresize_to_wd_and_ht:cnn

New: 2014-07-03

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically): both of the sizes
are dimension expressions. The ⟨y-size⟩ is the height only and does not include any
depth. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before
the resizing is applied. Negative sizes cause the material in the ⟨box⟩ to be reversed in
direction, but the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩
results in the ⟨box⟩ having a depth dependent on the height of the original and vice versa.

\box_resize_to_wd_and_ht_plus_dp:Nnn ⟨box⟩ {⟨x-size⟩} {⟨y-size⟩}\box_resize_to_wd_and_ht_plus_dp:Nnn
\box_resize_to_wd_and_ht_plus_dp:cnn
\box_gresize_to_wd_and_ht_plus_dp:Nnn
\box_gresize_to_wd_and_ht_plus_dp:cnn

New: 2017-04-06

Updated: 2019-01-22

Resizes the ⟨box⟩ to ⟨x-size⟩ (horizontally) and ⟨y-size⟩ (vertically): both of the sizes
are dimension expressions. The ⟨y-size⟩ is the total vertical size (height plus depth).
The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩ before the resizing
is applied. Negative sizes cause the material in the ⟨box⟩ to be reversed in direction, but
the reference point of the ⟨box⟩ is unchanged. Thus a negative ⟨y-size⟩ results in the
⟨box⟩ having a depth dependent on the height of the original and vice versa.

312

\box_rotate:Nn ⟨box⟩ {⟨angle⟩}

Rotates the ⟨box⟩ by ⟨angle⟩ (a ⟨fp expr⟩ in degrees) anti-clockwise about its reference
point. The reference point of the updated box is moved horizontally such that it is at
the left side of the smallest rectangle enclosing the rotated material. The updated ⟨box⟩
is an hbox, irrespective of the nature of the ⟨box⟩ before the rotation is applied.

\box_rotate:Nn
\box_rotate:cn
\box_grotate:Nn
\box_grotate:cn

Updated: 2019-01-22

\box_scale:Nnn ⟨box⟩ {⟨x-scale⟩} {⟨y-scale⟩}

Scales the ⟨box⟩ by factors ⟨x-scale⟩ and ⟨y-scale⟩ in the horizontal and vertical
directions, respectively (both scales are ⟨fp expr⟩). The updated ⟨box⟩ is an hbox,
irrespective of the nature of the ⟨box⟩ before the scaling is applied. Negative scalings
cause the material in the ⟨box⟩ to be reversed in direction, but the reference point of
the ⟨box⟩ is unchanged. Thus a negative ⟨y-scale⟩ results in the ⟨box⟩ having a depth
dependent on the height of the original and vice versa.

\box_scale:Nnn
\box_scale:cnn
\box_gscale:Nnn
\box_gscale:cnn

Updated: 2019-01-22

35.14 Viewing part of a box

\box_set_clipped:N ⟨box⟩

Clips the ⟨box⟩ in the output so that only material inside the bounding box is displayed
in the output. The updated ⟨box⟩ is an hbox, irrespective of the nature of the ⟨box⟩
before the clipping is applied. Additional box levels are also generated by this operation.

TEXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

\box_set_clipped:N
\box_set_clipped:c
\box_gset_clipped:N
\box_gset_clipped:c

Updated: 2023-04-14

\box_set_trim:Nnnnn ⟨box⟩ {⟨left⟩} {⟨bottom⟩} {⟨right⟩} {⟨top⟩}

Adjusts the bounding box of the ⟨box⟩ ⟨left⟩ is removed from the left-hand edge of
the bounding box, ⟨right⟩ from the right-hand edge and so fourth. All adjustments
are ⟨dim exprs⟩. Material outside of the bounding box is still displayed in the output
unless \box_set_clipped:N is subsequently applied. The updated ⟨box⟩ is an hbox,
irrespective of the nature of the ⟨box⟩ before the trim operation is applied. Additional
box levels are also generated by this operation. The behavior of the operation where the
trims requested is greater than the size of the box is undefined.

\box_set_trim:Nnnnn
\box_set_trim:cnnnn
\box_gset_trim:Nnnnn
\box_gset_trim:cnnnn

New: 2019-01-23

\box_set_viewport:Nnnnn ⟨box⟩ {⟨llx⟩} {⟨lly⟩} {⟨urx⟩} {⟨ury⟩}

Adjusts the bounding box of the ⟨box⟩ such that it has lower-left coordinates (⟨llx⟩,
⟨lly⟩) and upper-right coordinates (⟨urx⟩, ⟨ury⟩). All four coordinate positions are
⟨dim exprs⟩. Material outside of the bounding box is still displayed in the output unless
\box_set_clipped:N is subsequently applied. The updated ⟨box⟩ is an hbox, irrespective
of the nature of the ⟨box⟩ before the viewport operation is applied. Additional box levels
are also generated by this operation.

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn
\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn

New: 2019-01-23

313

35.15 Primitive box conditionals

\if_hbox:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_hbox:N ⋆

\if_vbox:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_vbox:N ⋆

\if_box_empty:N ⟨box⟩
⟨true code⟩

\else:
⟨false code⟩

\fi:

Tests is ⟨box⟩ is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

\if_box_empty:N ⋆

314

Chapter 36

The l3coffins module
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the l3experimental bundle).

36.1 Creating and initialising coffins

\coffin_new:N ⟨coffin⟩

Creates a new ⟨coffin⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨coffin⟩ is initially empty.

\coffin_new:N
\coffin_new:c

New: 2011-08-17

\coffin_clear:N ⟨coffin⟩

Clears the content of the ⟨coffin⟩.
\coffin_clear:N
\coffin_clear:c
\coffin_gclear:N
\coffin_gclear:c

New: 2011-08-17

Updated: 2019-01-21

\coffin_set_eq:NN ⟨coffin1⟩ ⟨coffin2⟩

Sets both the content and poles of ⟨coffin1⟩ equal to those of ⟨coffin2⟩.
\coffin_set_eq:NN
\coffin_set_eq:(Nc|cN|cc)
\coffin_gset_eq:NN
\coffin_gset_eq:(Nc|cN|cc)

New: 2011-08-17

Updated: 2019-01-21

\coffin_if_exist_p:N ⟨coffin⟩
\coffin_if_exist:NTF ⟨coffin⟩ {⟨true code⟩} {⟨false code⟩}

Tests whether the ⟨coffin⟩ is currently defined.

\coffin_if_exist_p:N ⋆
\coffin_if_exist_p:c ⋆
\coffin_if_exist:NTF ⋆
\coffin_if_exist:cTF ⋆

New: 2012-06-20

315

36.2 Setting coffin content and poles

\hcoffin_set:Nn ⟨coffin⟩ {⟨material⟩}

Typesets the ⟨material⟩ in horizontal mode, storing the result in the ⟨coffin⟩. The
standard poles for the ⟨coffin⟩ are then set up based on the size of the typeset material.

\hcoffin_set:Nn
\hcoffin_set:cn
\hcoffin_gset:Nn
\hcoffin_gset:cn

New: 2011-08-17

Updated: 2019-01-21

\hcoffin_set:Nw ⟨coffin⟩ ⟨material⟩ \hcoffin_set_end:

Typesets the ⟨material⟩ in horizontal mode, storing the result in the ⟨coffin⟩. The
standard poles for the ⟨coffin⟩ are then set up based on the size of the typeset material.
These functions are useful for setting the entire contents of an environment in a coffin.

\hcoffin_set:Nw
\hcoffin_set:cw
\hcoffin_set_end:
\hcoffin_gset:Nw
\hcoffin_gset:cw
\hcoffin_gset_end:

New: 2011-09-10

Updated: 2019-01-21

\vcoffin_set:Nnn ⟨coffin⟩ {⟨width⟩} {⟨material⟩}

Typesets the ⟨material⟩ in vertical mode constrained to the given ⟨width⟩ and stores
the result in the ⟨coffin⟩. The standard poles for the ⟨coffin⟩ are then set up based
on the size of the typeset material.

\vcoffin_set:Nnn
\vcoffin_set:cnn
\vcoffin_gset:Nnn
\vcoffin_gset:cnn

New: 2011-08-17

Updated: 2023-02-03

\vcoffin_set:Nnw ⟨coffin⟩ {⟨width⟩} ⟨material⟩ \vcoffin_set_end:

Typesets the ⟨material⟩ in vertical mode constrained to the given ⟨width⟩ and stores
the result in the ⟨coffin⟩. The standard poles for the ⟨coffin⟩ are then set up based on
the size of the typeset material. These functions are useful for setting the entire contents
of an environment in a coffin.

\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_set_end:
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
\vcoffin_gset_end:

New: 2011-09-10

Updated: 2023-02-03

\coffin_set_horizontal_pole:Nnn ⟨coffin⟩
{⟨pole⟩} {⟨offset⟩}

\coffin_set_horizontal_pole:Nnn
\coffin_set_horizontal_pole:cnn
\coffin_gset_horizontal_pole:Nnn
\coffin_gset_horizontal_pole:cnn

New: 2012-07-20

Updated: 2019-01-21

Sets the ⟨pole⟩ to run horizontally through the ⟨coffin⟩. The ⟨pole⟩ is placed at
the ⟨offset⟩ from the baseline of the ⟨coffin⟩. The ⟨offset⟩ should be given as a
dimension expression.

316

\coffin_set_vertical_pole:Nnn ⟨coffin⟩ {⟨pole⟩} {⟨offset⟩}\coffin_set_vertical_pole:Nnn
\coffin_set_vertical_pole:cnn
\coffin_gset_vertical_pole:Nnn
\coffin_gset_vertical_pole:cnn

New: 2012-07-20

Updated: 2019-01-21

Sets the ⟨pole⟩ to run vertically through the ⟨coffin⟩. The ⟨pole⟩ is placed at the
⟨offset⟩ from the left-hand edge of the bounding box of the ⟨coffin⟩. The ⟨offset⟩
should be given as a dimension expression.

\coffin_reset_poles:N ⟨coffin⟩

Resets the poles of the ⟨coffin⟩ to the standard set, removing any custom or inherited
poles. The poles will therefore be equal to those that would be obtained from \hcoffin_-
set:Nn or similar; the bounding box of the coffin is not reset, so any material outside of
the formal bounding box will not influence the poles.

\coffin_reset_poles:N
\coffin_greset_poles:N

New: 2023-05-17

36.3 Coffin affine transformations

\coffin_resize:Nnn ⟨coffin⟩ {⟨width⟩} {⟨total-height⟩}

Resized the ⟨coffin⟩ to ⟨width⟩ and ⟨total-height⟩, both of which should be given as
dimension expressions.

\coffin_resize:Nnn
\coffin_resize:cnn
\coffin_gresize:Nnn
\coffin_gresize:cnn

Updated: 2019-01-23

\coffin_rotate:Nn ⟨coffin⟩ {⟨angle⟩}

Rotates the ⟨coffin⟩ by the given ⟨angle⟩ (given in degrees counter-clockwise). This
process rotates both the coffin content and poles. Multiple rotations do not result in the
bounding box of the coffin growing unnecessarily.

\coffin_rotate:Nn
\coffin_rotate:cn
\coffin_grotate:Nn
\coffin_grotate:cn

\coffin_scale:Nnn ⟨coffin⟩ {⟨x-scale⟩} {⟨y-scale⟩}

Scales the ⟨coffin⟩ by a factors ⟨x-scale⟩ and ⟨y-scale⟩ in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

\coffin_scale:Nnn
\coffin_scale:cnn
\coffin_gscale:Nnn
\coffin_gscale:cnn

Updated: 2019-01-23

317

36.4 Joining and using coffins

\coffin_attach:NnnNnnnn
⟨coffin1⟩ {⟨coffin1-pole1⟩} {⟨coffin1-pole2⟩}
⟨coffin2⟩ {⟨coffin2-pole1⟩} {⟨coffin2-pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

\coffin_attach:NnnNnnnn
\coffin_attach:(cnnNnnnn|Nnncnnnn|cnncnnnn)
\coffin_gattach:NnnNnnnn
\coffin_gattach:(cnnNnnnn|Nnncnnnn|cnncnnnn)

Updated: 2019-01-22

This function attaches ⟨coffin2⟩ to ⟨coffin1⟩ such that the bounding box of ⟨coffin1⟩
is not altered, i.e. ⟨coffin2⟩ can protrude outside of the bounding box of the coffin.
The alignment is carried out by first calculating ⟨handle1⟩, the point of intersection
of ⟨coffin1-pole1⟩ and ⟨coffin1-pole2⟩, and ⟨handle2⟩, the point of intersection of
⟨coffin2-pole1⟩ and ⟨coffin2-pole2⟩. ⟨coffin2⟩ is then attached to ⟨coffin1⟩ such
that the relationship between ⟨handle1⟩ and ⟨handle2⟩ is described by the ⟨x-offset⟩
and ⟨y-offset⟩. The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn
⟨coffin1⟩ {⟨coffin1-pole1⟩} {⟨coffin1-pole2⟩}
⟨coffin2⟩ {⟨coffin2-pole1⟩} {⟨coffin2-pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

\coffin_join:NnnNnnnn
\coffin_join:(cnnNnnnn|Nnncnnnn|cnncnnnn)
\coffin_gjoin:NnnNnnnn
\coffin_gjoin:(cnnNnnnn|Nnncnnnn|cnncnnnn)

Updated: 2019-01-22

This function joins ⟨coffin2⟩ to ⟨coffin1⟩ such that the bounding box of ⟨coffin1⟩
may expand. The new bounding box covers the area containing the bounding boxes of
the two original coffins. The alignment is carried out by first calculating ⟨handle1⟩, the
point of intersection of ⟨coffin1-pole1⟩ and ⟨coffin1-pole2⟩, and ⟨handle2⟩, the point
of intersection of ⟨coffin2-pole1⟩ and ⟨coffin2-pole2⟩. ⟨coffin2⟩ is then attached to
⟨coffin1⟩ such that the relationship between ⟨handle1⟩ and ⟨handle2⟩ is described by the
⟨x-offset⟩ and ⟨y-offset⟩. The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn ⟨coffin⟩ {⟨pole1⟩} {⟨pole2⟩}
{⟨x-offset⟩} {⟨y-offset⟩}

Typesetting is carried out by first calculating ⟨handle⟩, the point of intersection of
⟨pole1⟩ and ⟨pole2⟩. The coffin is then typeset in horizontal mode such that the re-
lationship between the current reference point in the document and the ⟨handle⟩ is
described by the ⟨x-offset⟩ and ⟨y-offset⟩. The two offsets should be given as dimen-
sion expressions. Typesetting a coffin is therefore analogous to carrying out an alignment
where the “parent” coffin is the current insertion point.

\coffin_typeset:Nnnnn
\coffin_typeset:cnnnn

Updated: 2012-07-20

36.5 Measuring coffins

\coffin_dp:N ⟨coffin⟩

Calculates the depth (below the baseline) of the ⟨coffin⟩ in a form suitable for use in a
⟨dim expr⟩.

\coffin_dp:N
\coffin_dp:c

318

\coffin_ht:N ⟨coffin⟩

Calculates the height (above the baseline) of the ⟨coffin⟩ in a form suitable for use in
a ⟨dim expr⟩.

\coffin_ht:N
\coffin_ht:c

\coffin_wd:N ⟨coffin⟩

Calculates the width of the ⟨coffin⟩ in a form suitable for use in a ⟨dim expr⟩.
\coffin_wd:N
\coffin_wd:c

36.6 Coffin diagnostics

\coffin_display_handles:Nn ⟨coffin⟩ {⟨color⟩}

This function first calculates the intersections between all of the ⟨poles⟩ of the ⟨coffin⟩
to give a set of ⟨handles⟩. It then prints the ⟨coffin⟩ at the current location in the
source, with the position of the ⟨handles⟩ marked on the coffin. The ⟨handles⟩ are
labelled as part of this process: the locations of the ⟨handles⟩ and the labels are both
printed in the ⟨color⟩ specified.

\coffin_display_handles:Nn
\coffin_display_handles:cn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn ⟨coffin⟩ {⟨pole1⟩} {⟨pole2⟩} {⟨color⟩}

This function first calculates the ⟨handle⟩ for the ⟨coffin⟩ as defined by the intersection
of ⟨pole1⟩ and ⟨pole2⟩. It then marks the position of the ⟨handle⟩ on the ⟨coffin⟩.
The ⟨handle⟩ are labelled as part of this process: the location of the ⟨handle⟩ and the
label are both printed in the ⟨color⟩ specified.

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cnnn

Updated: 2011-09-02

\coffin_show_structure:N ⟨coffin⟩

This function shows the structural information about the ⟨coffin⟩ in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y coordinates
of a point that the pole passes through and the x- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

\coffin_show_structure:N
\coffin_show_structure:c

Updated: 2015-08-01

\coffin_log_structure:N ⟨coffin⟩

This function writes the structural information about the ⟨coffin⟩ in the log file. See
also \coffin_show_structure:N which displays the result in the terminal.

\coffin_log_structure:N
\coffin_log_structure:c

New: 2014-08-22

Updated: 2015-08-01

\coffin_show:N ⟨coffin⟩
\coffin_log:N ⟨coffin⟩

Shows full details of poles and contents of the ⟨coffin⟩ in the terminal or log file. See
\coffin_show_structure:N and \box_show:N to show separately the pole structure and
the contents.

\coffin_show:N
\coffin_show:c
\coffin_log:N
\coffin_log:c

New: 2021-05-11

319

\coffin_show:Nnn ⟨coffin⟩ {⟨int expr1⟩} {⟨int expr2⟩}
\coffin_log:Nnn ⟨coffin⟩ {⟨int expr1⟩} {⟨int expr2⟩}

Shows poles and contents of the ⟨coffin⟩ in the terminal or log file, showing the first ⟨int
expr1⟩ items in the coffin, and descending into ⟨int expr2⟩ group levels. See \coffin_-
show_structure:N and \box_show:Nnn to show separately the pole structure and the
contents.

\coffin_show:Nnn
\coffin_show:cnn
\coffin_log:Nnn
\coffin_log:cnn

New: 2021-05-11

36.7 Constants and variables

A permanently empty coffin.\c_empty_coffin

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\l_tmpa_coffin
\l_tmpb_coffin

New: 2012-06-19

Scratch coffins for global assignment. These are never used by the kernel code, and so
are safe for use with any LATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_coffin
\g_tmpb_coffin

New: 2019-01-24

320

Chapter 37

The l3color module
Color support

37.1 Color in boxes
Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:
...
\color_group_end:

Creates a color group: one used to “trap” color settings. This grouping is built in to for
example \hbox_set:Nn.

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

Ensures that material inside a box uses the foreground color at the point where the box
is set, rather than that in force when the box is used. This function should usually be
used within a \color_group_begin: . . . \color_group_end: group.

\color_ensure_current:

New: 2011-09-03

37.2 Color models
A color model is a way to represent sets of colors. Different models are particularly
suitable for different output methods, e.g. screen or print. Parameter-based models can
describe a very large number of unique colors, and have a varying number of axes which
define a color space. In contrast, various proprietary models are available which define
spot colors (more formally separations).

Core models are used to pass color information to output; these are “native” to
l3color. Core models use real numbers in the range [0, 1] to represent values. The core
models supported here are

• gray Grayscale color, with a single axis running from 0 (fully black) to 1 (fully
white)

• rgb Red-green-blue color, with three axes, one for each of the components

321

• cmyk Cyan-magenta-yellow-black color, with four axes, one for each of the compo-
nents

There are also interface models: these are convenient for users but have to be manipu-
lated before storing/passing to the backend. Interface models are primarily integer-based:
see below for more detail. The supported interface models are

• Gray Grayscale color, with a single axis running from 0 (fully black) to 15 (fully
white)

• hsb Hue-saturation-brightness color, with three axes,all real values in the range
[0, 1] for hue saturation and brightness

• Hsb Hue-saturation-brightness color, with three axes, integer in the range [0, 360]
for hue, real values in the range [0, 1] for saturation and brightness

• HSB Hue-saturation-brightness color, with three axes, integers in the range [0, 240]
for hue, saturation and brightness

• HTML HTML format representation of RGB color given as a single six-digit hexadec-
imal number

• RGB Red-green-blue color, with three axes, one for each of the components, values
as integers from 0 to 255

• wave Light wavelength, a real number in the range 380 to 780 (nanometres)

All interface models are internally stored as rgb.
Finally, there are a small number of models which are parsed to allow data transfer

from xcolor but which should not be used by end-users. These are

• cmy Cyan-magenta-yellow color with three axes, one for each of the components;
converted to cmyk

• tHsb “Tuned” hue-saturation-brightness color with three axes, integer in the range
[0, 360] for hue, real values in the range [0, 1] for saturation and brightness; converted
to rgb using the standard tuning map defined by xcolor

• &spot Spot color tint with one value; treated as a gray tint as spot color data is
not available for extraction

To allow parsing of data from xcolor, any leading model up the first : will be
discarded; the approach of selecting an internal form for data is not used in l3color.

Additional models may be created to allow mixing of separation colors with each
other or with those from other models. See Section 37.9 for more detail of color support
for additional models.

When color is selected by model, the ⟨values⟩ given are specified as a comma-
separated list. The length of the list will therefore be determined by the detail of the
model involved.

Color models (and interconversion) are complex, and more details are given in the
manual to the LATEX 2ε xcolor package and in the PostScript Language Reference Manual,
published by Addison–Wesley.

322

37.3 Color expressions
In addition to allowing specification of color by model and values, l3color also supports
color expressions. These are created by combining one or more color names, with the
amount of each specified as a value in the range 0–100. The value should be given between
! symbols in the expression. Thus for example

red!50!green

is a mixture of 50 % red and 50 % green. A trailing value is interpreted as implicitly
followed by !white, and so

red!25

specifies 25 % red mixed with 75 % white.
Where the models for the mixed colors are different, the model of the first color is

used. Thus

red!50!cyan

will result in a color specification using the rgb model, made up of 50 % red and 50 %
of cyan expressed in rgb. This may be important as color model interconversion is not
exact.

The one exception to the above is where the first model in an expression is gray. In
this case, the order of mixing is “swapped” internally, so that for example

black!50!red

has the same result as

red!50!black

(the predefined colors black and white use the gray model).
Where more than two colors are mixed in an expression, evaluation takes place in a

stepwise fashion. Thus in

cyan!50!magenta!10!yellow

the sub-expression

cyan!50!magenta

is first evaluated to give an intermediate color specification, before the second step

<intermediate>!10!yellow

where <intermediate> represents this transitory calculated value.
Within a color expression, . may be used to represent the color active for typesetting

(the current color). This allows for example

.!50

to mean a mixture of 50 % of current color with white.
(Color expressions supported here are a subset of those provided by the LATEX 2ε

xcolor package. At present, only such features as are clearly useful have been added
here.)

323

37.4 Named colors
Color names are stored in a single namespace, which makes them accessible as part of
color expressions. Whilst they are not reserved in a technical sense, the names black,
white, red, green, blue, cyan, magenta and yellow have special meaning and should
not be redefined. Color names should be made up of letters, numbers and spaces only:
other characters are reserved for use in color expressions. In particular, . represents the
current color at the start of a color expression.

\color_set:nn {⟨name⟩} {⟨color expression⟩}

Evaluates the ⟨color expression⟩ and stores the resulting color specification as the
⟨name⟩.

\color_set:nn

\color_set:nnn {⟨name⟩} {⟨model(s)⟩} {⟨value(s)⟩}

Stores the color specification equivalent to the ⟨model(s)⟩ and ⟨values⟩ as the ⟨name⟩.
\color_set:nnn

\color_set_eq:nn {⟨name1⟩} {⟨name2⟩}

Copies the color specification in ⟨name2⟩ to ⟨name1⟩. The special name . may be used
to represent the current color, allowing it to be saved to a name.

\color_set_eq:nn

\color_if_exist_p:n {⟨name⟩}
\color_if_exist:nTF {⟨name⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether ⟨name⟩ is currently defined to provide a color specification.

\color_if_exist_p:n ⋆
\color_if_exist:nTF ⋆

New: 2022-08-12

\color_show:n {⟨name⟩}
\color_log:n {⟨name⟩}

Displays the color specification stored in the ⟨name⟩ on the terminal or log file.

\color_show:n
\color_log:n

New: 2021-05-11

37.5 Selecting colors
General selection of color is safe when split across pages: a stack is used to ensure that
the correct color is re-selected on the new page.

These commands set the current color (.): other more specialised functions such as
fill and stroke selectors do not adjust this value.

\color_select:n {⟨color expression⟩}

Parses the ⟨color expression⟩ and then activates the resulting color specification for
typeset material.

\color_select:n

\color_select:nn {⟨model(s)⟩} {⟨value(s)⟩}

Activates the color specification equivalent to the ⟨model(s)⟩ and ⟨value(s)⟩ for typeset
material.

\color_select:nn

When this is set to a non-empty value, colors will be converted to the specified model
when they are selected. Note that included images and similar are not influenced by this
setting.

\l_color_fixed_model_tl

324

37.6 Colors for fills and strokes
Colors for drawing operations and so forth are split into strokes and fills (the latter may
also be referred to as non-stroke color). The fill color is used for text under normal
circumstances. Depending on the backend, stroke color may use a stack, in which case
it exhibits the same page breaking behavior as general color. However, dvips/dvisvgm
do not support this, and so color will need to be contained within a scope, such as
\draw_begin:/\draw_end:.

\color_fill:n {⟨color expression⟩}

Parses the ⟨color expression⟩ and then activates the resulting color specification for
filling or stroking.

\color_fill:n
\color_stroke:n

\color_fill:nn {⟨model(s)⟩} {⟨value(s)⟩}

Activates the color specification equivalent to the ⟨model(s)⟩ and ⟨value(s)⟩ for filling
or stroking.

\color_fill:nn
\color_stroke:nn

When using dvips, this PostScript variables hold the stroke color.color.sc

37.6.1 Coloring math mode material
Coloring math mode material using \color_select:nn(n) has some restrictions and
often leads to spacing issues and/or poor input syntax. Avoiding generating \mathord
atoms whilst coloring only those parts of the input which are required needs careful
handling. The functionality here covers this important use case.

\color_math:nn {⟨color expression⟩}{⟨content⟩}
\color_math:nnn {⟨model(s)⟩} {⟨value(s)⟩} {⟨content⟩}

Works as for \color_select:n(n) but applies color only to the math mode ⟨content⟩.
The function does not generate a group and the ⟨content⟩ therefore retains its math
atom states. Sub/superscripts are also properly handled.

\color_math:nn
\color_math:nnn

New: 2022-01-26

This list controls which tokens are considered as math active and should therefore be
replaced by their definition during searching for sub/superscripts.

\l_color_math_active_tl

New: 2022-01-26

37.7 Multiple color models
When selecting or setting a color with an explicit model, it is possible to give values for
more than one model at one time. This is particularly useful where automated conversion
between models does not give the desired outcome. To do this, the list of models and list
of values are both subdivided using / characters (as for the similar function in xcolor).
For example, to save a color with explicit cmyk and rgb values, one could use

\color_set:nnn { foo } { cmyk / rgb }
{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

325

The manually-specified conversion will be used in preference to automated calculation
whenever the model(s) listed are used: both in expressions and when a fixed model is
active.

Similarly, the same syntax can be applied to directly selecting a color.

\color_select:nn { cmyk / rgb }
{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2 , 0.3 }

Again, this list is used when a fixed model is active: the first entry is used unless there
is a fixed model matching one of the other entries.

37.8 Exporting color specifications
The major use of color expressions is in setting typesetting output, but there are other
places in which some form of color information is required. These may need data in a
different format or using a different model to the internal representation. Thus a set of
functions are available to export colors in different formats.

Valid export targets are

• backend Two brace groups: the first containing the model, the second containing
space-separated values appropriate for the model; this is the format required by
backend functions of expl3

• comma-sep-cmyk Comma-separated cyan-magenta-yellow-black values

• comma-sep-rgb Comma-separated red-green-blue values suitable for use as a PDF
annotation color

• HTML Uppercase two-digit hexadecimal values, expressing a red-green-blue color;
the digits are not separated

• space-sep-cmyk Space-separated cyan-magenta-yellow-black values

• space-sep-rgb Space-separated red-green-blue values suitable for use as a PDF
annotation color

\color_export:nnN {⟨color expression⟩} {⟨format⟩} {⟨tl⟩}

Parses the ⟨color expression⟩ as described earlier, then converts to the ⟨format⟩ spec-
ified and assigns the data to the ⟨tl⟩.

\color_export:nnN

\color_export:nnnN {⟨model⟩} {⟨value(s)⟩} {⟨format⟩} {⟨tl⟩}

Expresses the combination of ⟨model⟩ and ⟨value(s)⟩ in an internal representation, then
converts to the ⟨format⟩ specified and assigns the data to the ⟨tl⟩.

\color_export:nnnN

326

37.9 Creating new color models
Additional color models are required to support specialist workflows, for example those in-
volving separations (see https://helpx.adobe.com/indesign/using/spot-process-colors.
html for details of the use of separations in print). Color models may be split into fami-
lies; for the standard device-based color models (DeviceCMYK, DeviceRGB, DeviceGray),
these are synonymous. This is not generally the case: see the PDF reference for more
details. (Note that l3color uses the shorter names cmyk, etc.)

\color_model_new:nnn {⟨model⟩} {⟨family⟩} {⟨params⟩}

Creates a new ⟨model⟩ which is derived from the color model ⟨family⟩. The latter should
be one of

• DeviceN

• ICCBased

• Separation

(The ⟨family⟩ may be given in mixed case as-in the PDF reference: internally, case of
these strings is folded.) Depending on the ⟨family⟩, one or more ⟨params⟩ are mandatory
or optional.

\color_model_new:nnn

For a Separation space, there are three compulsory keys.

• name The name of the Separation, for example the formal name of a spot color ink.
Such a ⟨name⟩ may contain spaces, etc., which are not permitted in the ⟨model⟩.

• alternative-model An alternative device colorspace, one of cmyk, rgb, gray or
CIELAB. The three parameter-based models work as described above; see below for
details of CIELAB colors.

• alternative-values A comma-separated list of values appropriate to the alternative-model.
This information is used by the PDF application if the Separation is not available.

CIELAB color separations are created using the alternative-model = CIELAB set-
ting. These colors must also have an illuminant key, one of a, c, e, d50, d55, d65 or
d75. The alternative-values in this case are the three parameters L∗, a∗ and b∗ of
the CIELAB model. Full details of this device-independent color approach are given in
the documentation to the colorspace package.

CIELAB colors cannot be converted into other device-dependent color spaces, and
as such, mixing can only occur if colors set up using the CIELAB model are also given
with an alternative parameter-based model. If that is not the case, l3color will fallback
to using black as the colorant in any mixing.

For a DeviceN space, there is one compulsory key.

• names The names of the components of the DeviceN space. Each should be either
the ⟨name⟩ of a Separation model, a process color name (cyan, etc.) or the special
name none.

For a ICCBased space, there is one compulsory key.

• file The name of the file containing the profile.

327

https://helpx.adobe.com/indesign/using/spot-process-colors.html

https://helpx.adobe.com/indesign/using/spot-process-colors.html

37.9.1 Color profiles
Color profiles are used to ensure color accuracy by linking to collaboration. Applying a
profile can be used to standardise color which is otherwise device-dependence.

\color_profile_apply:nn {⟨profile⟩} {⟨model⟩}

This function applies a ⟨profile⟩ to one of the device ⟨models⟩. The profile will then
apply to all color of the selected ⟨model⟩. The ⟨profile⟩ should specify an ICC profile
file. The ⟨model⟩ has to be one the standard device models: cmyk, gray or rgb.

\color_profile_apply:nn

New: 2021-02-23

328

Chapter 38

The l3pdf module
Core PDF support

38.1 Objects
38.1.1 Named objects
An ⟨object⟩ name should fully expand to tokens suitable for use in a label-like context.

\pdf_object_new:n {⟨object⟩}

Declares ⟨object⟩ as a PDF object. The object may be referenced from this point on,
and written later using \pdf_object_write:nnn.

\pdf_object_new:n

New: 2022-08-23

\pdf_object_write:nnn {⟨object⟩} {⟨type⟩} {⟨content⟩}

Writes the ⟨content⟩ as content of the ⟨object⟩. Depending on the ⟨type⟩ declared for
the object, the format required for the ⟨data⟩ will vary

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨file name⟩ and ⟨file content⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

\pdf_object_write:nnn
\pdf_object_write:nne

New: 2022-08-23

\pdf_object_ref:n {⟨object⟩}

Inserts the appropriate information to reference the ⟨object⟩ in for example page re-
source allocation. If the ⟨object⟩ does not exist then the function expands to a reference
to object zero; no PDF indirect object ever has this number, so this is a marker for error.

\pdf_object_ref:n ⋆

New: 2021-02-10

\pdf_object_if_exist_p:n {⟨object⟩}
\pdf_object_if_exist:nTF {⟨object⟩} {⟨true code⟩} {⟨false code⟩}

Tests whether an object with name {⟨object⟩} has been defined.

\pdf_object_if_exist_p:n ⋆
\pdf_object_if_exist:nTF ⋆

New: 2020-05-15

329

38.1.2 Indexed objects
Objects can also be created using a pair of ⟨class⟩ and index; the ⟨class⟩ argument
should expand to character tokens, whilst the ⟨index⟩ is an ⟨int expr⟩ and starts at 1.
For large families of objects, this approach is more efficient than using individual names.

\pdf_object_new_indexed:nn {⟨class⟩} {⟨index⟩}

Declares a PDF object of ⟨class⟩ and ⟨index⟩. The object may be referenced from this
point on, and written later using \pdf_object_write_indexed:nnnn.

\pdf_object_new_indexed:nn

New: 2024-04-01

\pdf_object_write_indexed:nnnn {⟨class⟩} {⟨index⟩} {⟨type⟩} {⟨content⟩}\pdf_object_write_indexed:nnnn
\pdf_object_write_indexed:nnne

New: 2024-04-01

Writes the ⟨content⟩ as content of the object of ⟨class⟩ and ⟨index⟩. Depending on
the ⟨type⟩ declared for the object, the format required for the ⟨content⟩ will vary

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨file name⟩ and ⟨file content⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

\pdf_object_ref_indexed:nn {⟨class⟩} {⟨index⟩}\pdf_object_ref_indexed:nn ⋆

New: 2024-04-01

Inserts the appropriate information to reference the object of ⟨class⟩ and ⟨index⟩ in
for example page resource allocation. If the ⟨class⟩/⟨index⟩ combination does not exist
then the function expands to a reference to object zero; no PDF indirect object ever has
this number, so this is a marker for error.

38.1.3 General functions

\pdf_object_unnamed_write:nn {⟨type⟩} {⟨content⟩}\pdf_object_unnamed_write:nn
\pdf_object_unnamed_write:ne

New: 2021-02-10

Writes the ⟨content⟩ as content of an anonymous object. Depending on the ⟨type⟩, the
format required for the ⟨data⟩ will vary

array A space-separated list of values

dict Key–value pairs in the form /⟨key⟩ ⟨value⟩

fstream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨file name⟩

stream Two brace groups: ⟨attributes (dictionary)⟩ and ⟨stream contents⟩

330

\pdf_object_ref_last:

Inserts the appropriate information to reference the last ⟨object⟩ created. This is par-
ticularly useful for anonymous objects.

\pdf_object_ref_last: ⋆

New: 2021-02-10

\pdf_pageobject_ref:n {⟨abspage⟩}

Inserts the appropriate information to reference the ⟨abspage⟩; the latter is expanded
fully before further processing.

\pdf_pageobject_ref:n ⋆

New: 2021-02-10

Updated: 2024-04-22

38.2 Version

\pdf_version_compare_p:Nn ⟨comparator⟩ {⟨version⟩}
\pdf_version_compare:NnTF ⟨comparator⟩ {⟨version⟩} {⟨true code⟩} {⟨false
code⟩}

\pdf_version_compare_p:Nn ⋆
\pdf_version_compare:NnTF ⋆

New: 2021-02-10

Compares the version of the PDF being created with the ⟨version⟩ string specified,
using the ⟨comparator⟩. Either the ⟨true code⟩ or ⟨false code⟩ will be left in the
output stream.

\pdf_version_gset:n {⟨version⟩}

Sets the ⟨version⟩ of the PDF being created. The min version will not alter the output
version unless it is currently lower than the ⟨version⟩ requested.

This function may only be used up to the point where the PDF file is initialised. With
dvips it sets \pdf_version_major: and \pdf_version_minor: and allows to compare
the values with \pdf_version_compare:Nn, but the PDF version itself still has to be set
with the command line option -dCompatibilityLevel of ps2pdf.

\pdf_version_gset:n
\pdf_version_min_gset:n

New: 2021-02-10

\pdf_version:

Expands to the currently-active PDF version.
\pdf_version: ⋆
\pdf_version_major: ⋆
\pdf_version_minor: ⋆

New: 2021-02-10

38.3 Page (media) size

\pdf_pagesize_gset:nn {⟨width⟩} {⟨height⟩}

Sets the page size (mediabox) of the PDF being created to the ⟨width⟩ and ⟨height⟩,
both of which are ⟨dimexpr⟩. The page size can only be set at the start of the output
with dvips; with other backends, this can be adjusted on a per-page basis.

\pdf_pagesize_gset:nn

New: 2023-01-14

38.4 Compression

\pdf_uncompress:

Disables any compression of the PDF, where possible.
This function may only be used up to the point where the PDF file is initialised.

\pdf_uncompress:

New: 2021-02-10

331

38.5 Destinations
Destinations are the places a link jumped too. Unlike the name may suggest they don’t
described an exact location in the PDF. Instead a destination contains a reference to a
page along with an instruction how to display this page. The normally used “XYZ top
left zoom” for example instructs the viewer to show the page with the given zoom and the
top left corner at the top left coordinates—which then gives the impression that there is
an anchor at this position.

If an instruction takes a coordinate, it is calculated by the following commands
relative to the location the command is issued. So to get a specific coordinate one has to
move the command to the right place.

\pdf_destination:nn {⟨name⟩} {⟨type or integer⟩}

This creates a destination. {⟨type or integer⟩} can be one of fit, fith, fitv, fitb,
fitbh, fitbv, fitr, xyz or an integer representing a scale factor in percent. fitr here
gives only a lightweight version of /FitR: The backend code defines fitr so that it will
with pdfLATEX and LuaLATEX use the coordinates of the surrounding box, with dvips
and dvipdfmx it falls back to fit. For full control use \pdf_destination:nnnn.

The keywords match to the PDF names as described in the following tabular.

Keyword PDF Remarks
fit /Fit Fits the page to the window
fith /FitH top Fits the width of the page to the

window
fitv /FitV left Fits the height of the page to the

window
fitb /FitB Fits the page bounding box to the

window
fitbh /FitBH top Fits the width of the page bounding

box to the window.
fitbv /FitBV left Fits the height of the page bounding

box to the window.
fitr /FitR left bottom right top Fits the rectangle specified by the four

coordinates to the window (see above
for the restrictions)

xyz /XYZ left top null Sets a coordinate but doesn’t change
the zoom.

{⟨integer⟩} /XYZ left top zoom Sets a coordinate and a zoom meaning
{⟨integer⟩}%.

\pdf_destination:nn

New: 2021-01-03

\pdf_destination:nnnn {⟨name⟩} {⟨width⟩} {⟨height⟩} {⟨depth⟩}

This creates a destination with /FitR type with the given dimensions relative to the cur-
rent location. The destination is in a box of size zero, but it doesn’t switch to horizontal
mode.

\pdf_destination:nnnn

New: 2021-01-17

332

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
! . 274
&& . 273
* . 274
** . 274
+ . 274
- . 274
/ . 274
\::: . 43
\::N . 43
\::V . 43
\::V_unbraced 43
\::c . 43
\::e . 43
\::e_unbraced 43
\::f . 43
\::f_unbraced 43
\::n . 43
\::o . 43
\::o_unbraced 43
\::p . 43
\::v . 43
\::v_unbraced 43
\::x . 43
\::x_unbraced 43
< . 274
= . 274
> . 274
? . 274
?: . 273
\??? . 88
^ . 274
|| . 273

A
abs . 274
acos . 277
acosd . 277
acot . 278
acotd . 278
acsc . 277
acscd . 277
asec . 277
asecd . 277
asin . 277
asind . 277

atan . 278
atand . 278

B
bitset commands:

\bitset_addto_named_index:Nn . . 286
\bitset_clear:N 287
\bitset_gclear:N 287
\bitset_gset_false:Nn 287
\bitset_gset_true:Nn 287
\bitset_if_exist:NTF 287
\bitset_if_exist_p:N 287
\bitset_item:Nn 287
\bitset_log:N 288
\bitset_log_named_index:N 288
\bitset_new:N 286
\bitset_new:Nn 286
\bitset_set_false:Nn 287
\bitset_set_true:Nn 287
\bitset_show:N 287, 288
\bitset_show_named_index:N 288
\bitset_to_arabic:N 285, 288
\bitset_to_bin:N 286, 288

bool commands:
\bool_case:n 71
\bool_case:nTF 71
\bool_const:Nn 66
\bool_do_until:Nn 70
\bool_do_until:nn 70
\bool_do_while:Nn 70
\bool_do_while:nn 70
.bool_gset:N 241
\bool_gset:Nn 66
\bool_gset_eq:NN 66
\bool_gset_false:N 66
.bool_gset_inverse:N 241
\bool_gset_inverse:N 66
\bool_gset_true:N 66
\bool_if:NTF 67
\bool_if:nTF 66, 69–71
\bool_if_exist:NTF 67
\bool_if_exist_p:N 67
\bool_if_p:N 67
\bool_if_p:n 69
\bool_lazy_all:nTF 68, 69
\bool_lazy_all_p:n 69

333

\bool_lazy_and:nnTF 68, 69
\bool_lazy_and_p:nn 69
\bool_lazy_any:nTF 68, 69
\bool_lazy_any_p:n 69
\bool_lazy_or:nnTF 68, 69
\bool_lazy_or_p:nn 69
\bool_log:N 67
\bool_log:n 67
\bool_new:N 66
\bool_not_p:n 69
.bool_set:N 241
\bool_set:Nn 66
\bool_set_eq:NN 66
\bool_set_false:N 66
.bool_set_inverse:N 241
\bool_set_inverse:N 66
\bool_set_true:N 66
\bool_show:N 67
\bool_show:n 67
\bool_to_str:N 67
\bool_to_str:n 67
\bool_until_do:Nn 70
\bool_until_do:nn 70
\bool_while_do:Nn 70
\bool_while_do:nn 71
\bool_xor:nnTF 70
\bool_xor_p:nn 70
\c_false_bool 66, 67
\g_tmpa_bool 68
\l_tmpa_bool 67
\g_tmpb_bool 68
\l_tmpb_bool 67
\c_true_bool 66, 67

box commands:
\box_autosize_to_wd_and_ht:Nnn . 311
\box_autosize_to_wd_and_ht_plus_-

dp:Nnn 311
\box_clear:N 302, 303
\box_clear_new:N 303
\box_dp:N 304
\box_gautosize_to_wd_and_ht:Nnn 311
\box_gautosize_to_wd_and_ht_-

plus_dp:Nnn 311
\box_gclear:N 302
\box_gclear_new:N 303
\box_gresize_to_ht:Nn 311
\box_gresize_to_ht_plus_dp:Nn . . 312
\box_gresize_to_wd:Nn 312
\box_gresize_to_wd_and_ht:Nnn . . 312
\box_gresize_to_wd_and_ht_plus_-

dp:Nnn 312
\box_grotate:Nn 313
\box_gscale:Nnn 313
\box_gset_clipped:N 313

\box_gset_dp:Nn 304
\box_gset_eq:NN 303
\box_gset_eq_drop:NN 310
\box_gset_ht:Nn 304
\box_gset_to_last:N 305
\box_gset_trim:Nnnnn 313
\box_gset_viewport:Nnnnn 313
\box_gset_wd:Nn 304
\box_ht:N 304
\box_ht_plus_dp:N 304
\box_if_empty:NTF 305
\box_if_empty_p:N 305
\box_if_exist:NTF 303
\box_if_exist_p:N 303
\box_if_horizontal:NTF 305
\box_if_horizontal_p:N 305
\box_if_vertical:NTF 305
\box_if_vertical_p:N 305
\box_log:N 306
\box_log:Nnn 306
\box_move_down:nn 303
\box_move_left:nn 303
\box_move_right:nn 303
\box_move_up:nn 303
\box_new:N 302, 303
\box_resize_to_ht:Nn 311
\box_resize_to_ht_plus_dp:Nn . . 312
\box_resize_to_wd:Nn 312
\box_resize_to_wd_and_ht:Nnn . . 312
\box_resize_to_wd_and_ht_plus_-

dp:Nnn 312
\box_rotate:Nn 313
\box_scale:Nnn 313
\box_set_clipped:N 313
\box_set_dp:Nn 304
\box_set_eq:NN 303
\box_set_eq_drop:NN 310
\box_set_ht:Nn 304
\box_set_to_last:N 305
\box_set_trim:Nnnnn 313
\box_set_viewport:Nnnnn 313
\box_set_wd:Nn 304
\box_show:N 306, 309, 319
\box_show:Nnn 306, 320
\box_use:N 303
\box_use_drop:N 310
\box_wd:N 304
\c_empty_box 302, 305
\g_tmpa_box 305
\l_tmpa_box 305
\g_tmpb_box 305
\l_tmpb_box 305

bp . 280

334

C
cc . 280
cctab commands:

\cctab_begin:N 290
\cctab_const:Nn 289, 290
\cctab_end: 290
\cctab_gsave_current:N 289
\cctab_gset:Nn 289, 290
\cctab_if_exist:NTF 290
\cctab_if_exist_p:N 290
\cctab_item:Nn 290
\cctab_new:N 289
\cctab_select:N 125, 289, 290
\c_code_cctab 290
\c_document_cctab 290
\c_initex_cctab 291
\c_other_cctab 291
\g_tmpa_cctab 291
\g_tmpb_cctab 291

ceil . 276
char commands:

\l_char_active_seq 90, 200
\char_generate:nn 124, 196
\char_gset_active_eq:NN 196
\char_gset_active_eq:nN 196
\char_set_active_eq:NN 196
\char_set_active_eq:nN 196
\char_set_catcode:nn 198
\char_set_catcode_active:N 197
\char_set_catcode_active:n 198
\char_set_catcode_alignment:N . . 197
\char_set_catcode_alignment:n . . 198
\char_set_catcode_comment:N . . . 197
\char_set_catcode_comment:n . . . 198
\char_set_catcode_end_line:N . . 197
\char_set_catcode_end_line:n . . 198
\char_set_catcode_escape:N 197
\char_set_catcode_escape:n 198
\char_set_catcode_group_begin:N 197
\char_set_catcode_group_begin:n 198
\char_set_catcode_group_end:N . . 197
\char_set_catcode_group_end:n . . 198
\char_set_catcode_ignore:N 197
\char_set_catcode_ignore:n 198
\char_set_catcode_invalid:N . . . 197
\char_set_catcode_invalid:n . . . 198
\char_set_catcode_letter:N 197
\char_set_catcode_letter:n 198
\char_set_catcode_math_subscript:N

. 197
\char_set_catcode_math_subscript:n

. 198
\char_set_catcode_math_superscript:N

. 197

\char_set_catcode_math_superscript:n
. 198

\char_set_catcode_math_toggle:N 197
\char_set_catcode_math_toggle:n 198
\char_set_catcode_other:N 197
\char_set_catcode_other:n 198
\char_set_catcode_parameter:N . . 197
\char_set_catcode_parameter:n . . 198
\char_set_catcode_space:N 197
\char_set_catcode_space:n 198
\char_set_lccode:nn 198
\char_set_mathcode:nn 199
\char_set_sfcode:nn 199
\char_set_uccode:nn 199
\char_show_value_catcode:n 198
\char_show_value_lccode:n 199
\char_show_value_mathcode:n . . . 199
\char_show_value_sfcode:n 200
\char_show_value_uccode:n 199
\l_char_special_seq 200
\char_value_catcode:n 198
\char_value_lccode:n 199
\char_value_mathcode:n 199
\char_value_sfcode:n 200
\char_value_uccode:n 199

choice commands:
.choice: 241

choices commands:
.choices:nn 241

clist commands:
\clist_clear:N 185
\clist_clear_new:N 185
\clist_concat:NNN 186
\clist_const:Nn 185
\clist_count:N 190, 193
\clist_count:n 190
\clist_gclear:N 185
\clist_gclear_new:N 185
\clist_gconcat:NNN 186
\clist_get:NN 192
\clist_get:NNTF 192
\clist_gpop:NN 192
\clist_gpop:NNTF 193
\clist_gpush:Nn 193
\clist_gput_left:Nn 186
\clist_gput_right:Nn 186
\clist_gremove_all:Nn 187
\clist_gremove_duplicates:N . . . 187
\clist_greverse:N 187
.clist_gset:N 241
\clist_gset:Nn 186
\clist_gset_eq:NN 185
\clist_gset_from_seq:NN 185
\clist_gsort:Nn 188

335

\clist_if_empty:NTF 188
\clist_if_empty:nTF 188
\clist_if_empty_p:N 188
\clist_if_empty_p:n 188
\clist_if_exist:NTF 186
\clist_if_exist_p:N 186
\clist_if_in:NnTF 185, 188
\clist_if_in:nnTF 188
\clist_item:Nn 193
\clist_item:nn 193
\clist_log:N 194
\clist_log:n 194
\clist_map_break: 189
\clist_map_break:n 190
\clist_map_function:NN 189
\clist_map_function:nN 189
\clist_map_inline:Nn 189
\clist_map_inline:nn 189
\clist_map_tokens:Nn 189
\clist_map_tokens:nn 189
\clist_map_variable:NNn 189
\clist_map_variable:nNn 189
\clist_new:N 185
\clist_pop:NN 192
\clist_pop:NNTF 192
\clist_push:Nn 193
\clist_put_left:Nn 186
\clist_put_right:Nn 186
\clist_rand_item:N 193
\clist_rand_item:n 77, 193
\clist_remove_all:Nn 187
\clist_remove_duplicates:N . 185, 187
\clist_reverse:N 187
\clist_reverse:n 187
.clist_set:N 241
\clist_set:Nn 186, 192
\clist_set_eq:NN 185
\clist_set_from_seq:NN 185
\clist_show:N 193, 194
\clist_show:n 194
\clist_sort:Nn 188
\clist_use:Nn 191, 192
\clist_use:nn 192
\clist_use:Nnnn 191, 192
\clist_use:nnnn 192
\c_empty_clist 194
\g_tmpa_clist 194
\l_tmpa_clist 194
\g_tmpb_clist 194
\l_tmpb_clist 194

cm . 280
code commands:

.code:n . 242

codepoint commands:
\codepoint_generate:nn 294
\codepoint_str_generate:n 294
\codepoint_to_category:n 295
\codepoint_to_nfd:n 295

coffin commands:
\coffin_attach:NnnNnnnn 318
\coffin_clear:N 315
\coffin_display_handles:Nn 319
\coffin_dp:N 318
\coffin_gattach:NnnNnnnn 318
\coffin_gclear:N 315
\coffin_gjoin:NnnNnnnn 318
\coffin_greset_poles:N 317
\coffin_gresize:Nnn 317
\coffin_grotate:Nn 317
\coffin_gscale:Nnn 317
\coffin_gset_eq:NN 315
\coffin_gset_horizontal_pole:Nnn 316
\coffin_gset_vertical_pole:Nnn . 317
\coffin_ht:N 319
\coffin_if_exist:NTF 315
\coffin_if_exist_p:N 315
\coffin_join:NnnNnnnn 318
\coffin_log:N 319
\coffin_log:Nnn 320
\coffin_log_structure:N 319
\coffin_mark_handle:Nnnn 319
\coffin_new:N 315
\coffin_reset_poles:N 317
\coffin_resize:Nnn 317
\coffin_rotate:Nn 317
\coffin_scale:Nnn 317
\coffin_set_eq:NN 315
\coffin_set_horizontal_pole:Nnn 316
\coffin_set_vertical_pole:Nnn . . 317
\coffin_show:N 319
\coffin_show:Nnn 320
\coffin_show_structure:N . . . 319, 320
\coffin_typeset:Nnnnn 318
\coffin_wd:N 319
\c_empty_coffin 320
\g_tmpa_coffin 320
\l_tmpa_coffin 320
\g_tmpb_coffin 320
\l_tmpb_coffin 320

color commands:
color.sc 325
\color_ensure_current: 321
\color_export:nnN 326
\color_export:nnnN 326
\color_fill:n 325
\color_fill:nn 325
\l_color_fixed_model_tl 324

336

\color_group_begin: 321
\color_group_end: 321
\color_if_exist:nTF 324
\color_if_exist_p:n 324
\color_log:n 324
\color_math:nn 325
\color_math:nnn 325
\l_color_math_active_tl 325
\color_model_new:nnn 327
\color_profile_apply:nn 328
\color_select:n 324
\color_select:nn 324
\color_set:nn 324
\color_set:nnn 324
\color_set_eq:nn 324
\color_show:n 324
\color_stroke:n 325
\color_stroke:nn 325

cos . 276
cosd . 277
cot . 276
cotd . 277
cs commands:

\cs:w . 21, 22
\cs_end: . 21
\cs_generate_from_arg_count:NNnn 19
\cs_generate_variant:Nn 15, 32–34, 65
\cs_gset:Nn 19
.cs_gset:Np 242
\cs_gset:Npe 17
\cs_gset:Npn 14, 17
\cs_gset:Npx 17
\cs_gset_eq:NN 20
\cs_gset_nopar:Nn 19
\cs_gset_nopar:Npe 17
\cs_gset_nopar:Npn 17
\cs_gset_nopar:Npx 17
\cs_gset_protected:Nn 19
.cs_gset_protected:Np 242
\cs_gset_protected:Npe 17
\cs_gset_protected:Npn 17
\cs_gset_protected:Npx 17
\cs_gset_protected_nopar:Nn 19
\cs_gset_protected_nopar:Npe . . . 17
\cs_gset_protected_nopar:Npn . . . 17
\cs_gset_protected_nopar:Npx . . . 17
\cs_if_eq:NNTF 28
\cs_if_eq_p:NN 28
\cs_if_exist:NTF 21, 28
\cs_if_exist_p:N 28
\cs_if_exist_use:N 21
\cs_if_exist_use:NTF 21
\cs_if_free:NTF 28, 63
\cs_if_free_p:N 27, 28, 63

\cs_log:N . 21
\cs_meaning:N 20
\cs_new:Nn 17, 64
\cs_new:Npe 15, 40
\cs_new:Npn 14, 15, 19, 63, 64
\cs_new:Npx 15
\cs_new_eq:NN 20, 65
\cs_new_nopar:Nn 17
\cs_new_nopar:Npe 15
\cs_new_nopar:Npn 15
\cs_new_nopar:Npx 15
\cs_new_protected:Nn 18
\cs_new_protected:Npe 15
\cs_new_protected:Npn 15
\cs_new_protected:Npx 15
\cs_new_protected_nopar:Nn 18
\cs_new_protected_nopar:Npe 16
\cs_new_protected_nopar:Npn 16
\cs_new_protected_nopar:Npx 16
\cs_parameter_spec:N 23
\cs_prefix_spec:N 22
\cs_replacement_spec:N 23
\cs_set:Nn 18
.cs_set:Np 242
\cs_set:Npe 16
\cs_set:Npn 14, 16, 63, 64
\cs_set:Npx 16
\cs_set_eq:NN 20, 65
\cs_set_nopar:Nn 18
\cs_set_nopar:Npe 16
\cs_set_nopar:Npn 15, 16, 201
\cs_set_nopar:Npx 16
\cs_set_protected:Nn 18
.cs_set_protected:Np 242
\cs_set_protected:Npe 16
\cs_set_protected:Npn 15, 16
\cs_set_protected:Npx 16
\cs_set_protected_nopar:Nn 18
\cs_set_protected_nopar:Npe 16
\cs_set_protected_nopar:Npn 16
\cs_set_protected_nopar:Npx 16
\cs_show:N 20, 21, 28
\cs_split_function:N 22
\cs_to_str:N 6, 22, 115, 129
\cs_undefine:N 20

csc . 276
cscd . 277

D
dd . 280
debug commands:

\debug_off:n 30
\debug_on:n 30
\debug_resume: 30

337

\debug_suspend: 30
default commands:

.default:n 242
deg . 279
dim commands:

\dim_abs:n 224
\dim_add:Nn 224
\dim_case:nn 227
\dim_case:nnTF 227
\dim_compare:nNnTF 225–228, 263
\dim_compare:nTF 225, 226, 228
\dim_compare_p:n 226
\dim_compare_p:nNn 225
\dim_const:Nn 223
\dim_do_until:nn 228
\dim_do_until:nNnn 227
\dim_do_while:nn 228
\dim_do_while:nNnn 227
\dim_eval:n 225, 226, 229
\dim_gadd:Nn 224
.dim_gset:N 242
\dim_gset:Nn 224
\dim_gset_eq:NN 224
\dim_gsub:Nn 224
\dim_gzero:N 223
\dim_gzero_new:N 223
\dim_if_exist:NTF 224
\dim_if_exist_p:N 224
\dim_log:N 231
\dim_log:n 232
\dim_max:nn 224
\dim_min:nn 224
\dim_new:N 223
\dim_ratio:nn 225
.dim_set:N 242
\dim_set:Nn 224
\dim_set_eq:NN 224
\dim_show:N 231
\dim_show:n 231
\dim_sign:n 229
\dim_step_function:nnnN 228
\dim_step_inline:nnnn 228
\dim_step_variable:nnnNn 229
\dim_sub:Nn 224
\dim_to_decimal:n 229
\dim_to_decimal_in_bp:n 230
\dim_to_decimal_in_cc:n 230
\dim_to_decimal_in_cm:n 230
\dim_to_decimal_in_dd:n 230
\dim_to_decimal_in_in:n 230
\dim_to_decimal_in_mm:n 230
\dim_to_decimal_in_pc:n 230
\dim_to_decimal_in_sp:n 231
\dim_to_decimal_in_unit:nn 231

\dim_to_fp:n 231
\dim_until_do:nn 228
\dim_until_do:nNnn 227
\dim_use:N 229
\dim_while_do:nn 228
\dim_while_do:nNnn 228
\dim_zero:N 223
\dim_zero_new:N 223
\c_max_dim 230, 232, 235
\g_tmpa_dim 232
\l_tmpa_dim 232
\g_tmpb_dim 232
\l_tmpb_dim 232
\c_zero_dim 232

draw commands:
\draw_begin: 325
\draw_end: 325

E
else commands:

\else: 28, 65, 72, 99, 179, 180, 238, 314
em . 280
ex . 280
exp . 275
exp commands:

\exp:w 42, 43
\exp_after:wN 39, 41, 42, 208
\exp_args:cc 36
\exp_args:Nc 33, 36
\exp_args:Ncc 37
\exp_args:Nccc 37
\exp_args:Ncco 37
\exp_args:Nccx 38
\exp_args:Ncf 37
\exp_args:NcNc 37
\exp_args:NcNo 37
\exp_args:Ncno 38
\exp_args:NcnV 38
\exp_args:Ncnx 38
\exp_args:Nco 37
\exp_args:Ncoo 38
\exp_args:NcV 37
\exp_args:Ncv 37
\exp_args:NcVV 38
\exp_args:Ncx 37
\exp_args:Ne 36
\exp_args:Nee 37
\exp_args:Neee 38
\exp_args:Nf 36
\exp_args:Nff 37
\exp_args:Nffo 38
\exp_args:Nfo 37
\exp_args:NNc 37
\exp_args:Nnc 37

338

\exp_args:NNcf 38
\exp_args:NNe 37
\exp_args:Nne 37
\exp_args:NNf 37
\exp_args:Nnf 37
\exp_args:Nnff 38
\exp_args:Nnnc 38
\exp_args:NNNe 37
\exp_args:Nnnf 38
\exp_args:NNNo 37
\exp_args:NNno 38
\exp_args:Nnno 38
\exp_args:NNNV 37
\exp_args:NNNv 37
\exp_args:NNnV 38
\exp_args:NNNx 38
\exp_args:NNnx 38
\exp_args:Nnnx 38
\exp_args:NNo 31, 37
\exp_args:Nno 37
\exp_args:NNoo 38
\exp_args:NNox 38
\exp_args:Nnox 38
\exp_args:NNV 37
\exp_args:NNv 37
\exp_args:NnV 37
\exp_args:Nnv 37
\exp_args:NNVV 38
\exp_args:NNx 37
\exp_args:Nnx 37
\exp_args:No 33, 36, 113
\exp_args:Noc 37
\exp_args:Nof 37
\exp_args:Noo 37
\exp_args:Noof 38
\exp_args:Nooo 38
\exp_args:Noox 38
\exp_args:Nox 37
\exp_args:NV 36
\exp_args:Nv 36
\exp_args:NVo 37
\exp_args:NVV 37
\exp_args:Nx 36
\exp_args:Nxo 37
\exp_args:Nxx 37
\exp_args_generate:n 34
\exp_end: . 42
\exp_end_continue_f:nw 43
\exp_end_continue_f:w 42, 43
\exp_last_two_unbraced:Nnn 39
\exp_last_unbraced:Nco 39
\exp_last_unbraced:NcV 39
\exp_last_unbraced:Ne 39
\exp_last_unbraced:Nf 39

\exp_last_unbraced:Nfo 39
\exp_last_unbraced:NNf 39
\exp_last_unbraced:Nnf 39
\exp_last_unbraced:NNNf 39
\exp_last_unbraced:NNNNf 39
\exp_last_unbraced:NNNNo 39
\exp_last_unbraced:NNNo 39
\exp_last_unbraced:NnNo 39
\exp_last_unbraced:NNNV 39
\exp_last_unbraced:NNo 39
\exp_last_unbraced:Nno 39
\exp_last_unbraced:NNV 39
\exp_last_unbraced:No 39
\exp_last_unbraced:Noo 39
\exp_last_unbraced:NV 39
\exp_last_unbraced:Nv 39
\exp_last_unbraced:Nx 39
\exp_not:N 40, 98, 166, 167, 280
\exp_not:n 40, 41, 52, 98, 120–

123, 154, 155, 160, 161, 166, 167,
191–193, 208, 218, 253, 254, 294, 296

\exp_stop_f: 41, 42, 179
\ExplFileDate 10
\ExplFileDescription 10
\ExplFileName 10
\ExplFileVersion 10
\ExplSyntaxOff 5, 9, 184
\ExplSyntaxOn 5, 9, 184, 289

F
fact . 275
false . 280
fi commands:

\fi: 28, 65, 72, 99, 179, 180, 208, 238, 314
file commands:

\file_compare_timestamp:nNnTF . . 102
\file_compare_timestamp_p:nNn . . 102
\g_file_curr_dir_str 99
\g_file_curr_ext_str 99
\g_file_curr_name_str 99
\file_full_name:n 102
\file_get:nnN 103
\file_get:nnNTF 103
\file_get_full_name:nN 102
\file_get_full_name:nNTF 102
\file_get_hex_dump:nN 100
\file_get_hex_dump:nnnN 100
\file_get_hex_dump:nnnNTF 100
\file_get_hex_dump:nNTF 100
\file_get_mdfive_hash:nN 101
\file_get_mdfive_hash:nNTF 101
\file_get_size:nN 101
\file_get_size:nNTF 101
\file_get_timestamp:nN 101

339

\file_get_timestamp:nNTF 101
\file_hex_dump:n 100
\file_hex_dump:nnn 100
\file_if_exist:nTF 100, 102, 103
\file_if_exist_input:n 103
\file_if_exist_input:nTF 103
\file_if_exist_p:n 100
\file_input:n 103, 104
\file_input_raw:n 103
\file_input_stop: 104
\file_log_list: 104
\file_mdfive_hash:n 101
\file_parse_full_name:n 103
\file_parse_full_name:nNNN . 102, 103
\file_parse_full_name_apply:nN . 103
\l_file_search_path_seq 100, 101, 103
\file_show_list: 104
\file_size:n 101
\file_timestamp:n 74, 101

flag commands:
\flag_clear:N 182
\flag_clear_new:N 182
\flag_ensure_raised:N 182
\flag_height:N 182
\flag_if_exist:NTF 182
\flag_if_exist_p:N 182
\flag_if_raised:NTF 182
\flag_if_raised_p:N 182
\flag_log:N 182
\flag_new:N 181, 182
\flag_raise:N 182
\flag_show:N 182
\l_tmpa_flag 183
\l_tmpb_flag 183

floor . 276
fp commands:

\c_e_fp 269, 272
\fp_abs:n 274, 280
\fp_add:Nn 260
\fp_clear_function:n 268
\fp_clear_variable:n 268
\fp_compare:nNnTF 263–265
\fp_compare:nTF 263–265, 274
\fp_compare_p:n 264
\fp_compare_p:nNn 263
\fp_const:Nn 260
\l_fp_division_by_zero_flag . . . 270
\fp_do_until:nn 265
\fp_do_until:nNnn 264
\fp_do_while:nn 265
\fp_do_while:nNnn 265
\fp_eval:n . 261, 264, 268, 273–280, 288
\fp_format:nn 281
\fp_gadd:Nn 260

.fp_gset:N 242
\fp_gset:Nn 260
\fp_gset_eq:NN 260
\fp_gsub:Nn 261
\fp_gzero:N 260
\fp_gzero_new:N 260
\fp_if_exist:NTF 262
\fp_if_exist_p:N 262
\fp_if_nan:nTF 264, 281
\fp_if_nan_p:n 264
\l_fp_invalid_operation_flag . . 270
\fp_log:N 271
\fp_log:n 271
\fp_max:nn 280
\fp_min:nn 280
\fp_new:N 260
\fp_new_function:n 268
\fp_new_variable:n 266–268
\l_fp_overflow_flag 270
.fp_set:N 242
\fp_set:Nn 260, 266
\fp_set_eq:NN 260
\fp_set_function:nnn 268
\fp_set_variable:nn 266–268
\fp_show:N 266, 267, 271
\fp_show:n 266–268, 271
\fp_sign:n 261
\fp_step_function:nnnN 266
\fp_step_inline:nnnn 266
\fp_step_variable:nnnNn 266
\fp_sub:Nn 261
\fp_to_decimal:N 261, 262
\fp_to_decimal:n 261, 262
\fp_to_dim:N 261
\fp_to_dim:n 261, 270
\fp_to_int:N 261
\fp_to_int:n 261
\fp_to_scientific:N 262
\fp_to_scientific:n 262
\fp_to_tl:N 262, 284
\fp_to_tl:n 262
\fp_trap:nn 270
\l_fp_underflow_flag 270
\fp_until_do:nn 265
\fp_until_do:nNnn 265
\fp_use:N 262, 284
\fp_while_do:nn 265
\fp_while_do:nNnn 265
\fp_zero:N 260
\fp_zero_new:N 260
\c_inf_fp 269, 279
\c_minus_inf_fp 269, 279
\c_minus_zero_fp 269
\c_nan_fp 269, 279

340

\c_one_degree_fp 269, 279
\c_one_fp 269
\c_pi_fp 269, 279
\g_tmpa_fp 269
\l_tmpa_fp 269
\g_tmpb_fp 269
\l_tmpb_fp 266, 267, 269
\c_zero_fp 269

fparray commands:
\fparray_count:N 283, 284
\fparray_gset:Nnn 283
\fparray_gzero:N 283
\fparray_if_exist:NTF 284
\fparray_if_exist_p:N 284
\fparray_item:Nn 284
\fparray_item_to_tl:Nn 284
\fparray_new:Nn 283

G
\GetIdInfo . 10
group commands:

\group_align_safe_begin: 73
\group_align_safe_end: 73
\group_begin: 13
\c_group_begin_token . . 114, 200, 208
\group_end: 13, 14
\c_group_end_token 200
\group_insert_after:N 14
\group_log_list: 14
\group_show_list: 14

groups commands:
.groups:n 243

H
hbox commands:

\hbox:n 302, 306
\hbox_gset:Nn 306
\hbox_gset:Nw 307
\hbox_gset_end: 307
\hbox_gset_to_wd:Nnn 307
\hbox_gset_to_wd:Nnw 307
\hbox_overlap_center:n 307
\hbox_overlap_left:n 307
\hbox_overlap_right:n 307
\hbox_set:Nn 302, 306, 307, 321
\hbox_set:Nw 307
\hbox_set_end: 307
\hbox_set_to_wd:Nnn 307
\hbox_set_to_wd:Nnw 307
\hbox_to_wd:nn 306
\hbox_to_zero:n 306
\hbox_unpack:N 307
\hbox_unpack_drop:N 310

hcoffin commands:
\hcoffin_gset:Nn 316
\hcoffin_gset:Nw 316
\hcoffin_gset_end: 316
\hcoffin_set:Nn 316, 317
\hcoffin_set:Nw 316
\hcoffin_set_end: 316

I
if commands:

\if:w 28, 29, 195
\if_bool:N 72
\if_box_empty:N 314
\if_case:w 179
\if_catcode:w 29
\if_charcode:w 29, 195
\if_cs_exist:N 29
\if_cs_exist:w 29
\if_dim:w 238
\if_eof:w . 99
\if_false: 28, 65, 208
\if_hbox:N 314
\if_int_compare:w 28, 179
\if_int_odd:w 180
\if_meaning:w 29
\if_mode_horizontal: 29
\if_mode_inner: 29
\if_mode_math: 29
\if_mode_vertical: 29
\if_predicate:w 63, 65, 72
\if_true: 28, 66
\if_vbox:N 314

in . 280
inf . 279
inherit commands:

.inherit:n 243
initial commands:

.initial:n 243
int commands:

\int_abs:n 168
\int_add:Nn 169
\int_case:nn 172
\int_case:nnTF 172
\int_compare:nNnTF 170–173, 263
\int_compare:nTF . . 170, 171, 173, 264
\int_compare_p:n 171
\int_compare_p:nNn 28, 170
\int_const:Nn 168
\int_decr:N 169
\int_div_round:nn 168
\int_div_truncate:nn 168
\int_do_until:nn 173
\int_do_until:nNnn 172
\int_do_while:nn 173

341

\int_do_while:nNnn 173
\int_eval:n 19, 34, 166–172, 179
\int_eval:w 167
\int_from_alph:n 176
\int_from_base:nn 177
\int_from_bin:n 176, 288
\int_from_hex:n 177
\int_from_oct:n 177
\int_from_roman:n 177
\int_gadd:Nn 169
\int_gdecr:N 169
\int_gincr:N 169
.int_gset:N 243
\int_gset:Nn 169
\int_gset_eq:NN 169
\int_gsub:Nn 170
\int_gzero:N 169
\int_gzero_new:N 169
\int_if_even:nTF 172
\int_if_even_p:n 172
\int_if_exist:NTF 169
\int_if_exist_p:N 169
\int_if_odd:nTF 172
\int_if_odd_p:n 172
\int_if_zero:nTF 172
\int_if_zero_p:n 172
\int_incr:N 169
\int_log:N 178
\int_log:n 178
\int_max:nn 168
\int_min:nn 168
\int_mod:nn 168
\int_new:N 168, 169
\int_rand:n 177
\int_rand:nn 77, 177
.int_set:N 243
\int_set:Nn 169
\int_set_eq:NN 169
\int_show:N 177
\int_show:n 178
\int_sign:n 168
\int_step_function:nN 174
\int_step_function:nnN 174
\int_step_function:nnnN 73, 174
\int_step_inline:nn 174
\int_step_inline:nnn 174
\int_step_inline:nnnn 174
\int_step_variable:nNn 174
\int_step_variable:nnNn 174
\int_step_variable:nnnNn 174
\int_sub:Nn 170
\int_to_Alph:n 175, 176
\int_to_alph:n 175, 176
\int_to_arabic:n 175

\int_to_Base:n 176
\int_to_base:n 176
\int_to_Base:nn 176, 177
\int_to_base:nn 176, 177
\int_to_bin:n 176
\int_to_Hex:n 176, 177
\int_to_hex:n 176, 177
\int_to_oct:n 176, 177
\int_to_Roman:n 176, 177
\int_to_roman:n 176, 177
\int_to_symbols:nnn 175
\int_until_do:nn 173
\int_until_do:nNnn 173
\int_use:N 165, 167, 170
\int_value:w 166, 179
\int_while_do:nn 173
\int_while_do:nNnn 173
\int_zero:N 169
\int_zero_new:N 169
\c_max_char_int 178
\c_max_int 178, 255
\c_max_register_int 178
\c_one_int 178
\g_tmpa_int 178
\l_tmpa_int 4, 53, 178
\g_tmpb_int 178
\l_tmpb_int 4, 178
\c_zero_int 178

intarray commands:
\intarray_const_from_clist:Nn . . 255
\intarray_count:N 256
\intarray_gset:Nnn 256
\intarray_gzero:N 255
\intarray_if_exist:NTF 256
\intarray_if_exist_p:N 256
\intarray_item:Nn 256
\intarray_log:N 256
\intarray_new:Nn 255
\intarray_rand_item:N 256
\intarray_show:N 256

ior commands:
\ior_close:N 91, 92
\ior_get:NN 92–94, 96
\ior_get:NNTF 93
\ior_get_term:nN 96
\ior_if_eof:NTF 95
\ior_if_eof_p:N 95
\ior_log:N 92
\ior_log_list: 92
\ior_map_break: 95
\ior_map_break:n 95
\ior_map_inline:Nn 94
\ior_map_variable:NNn 94
\ior_new:N 91

342

\ior_open:Nn 91
\ior_open:NnTF 91
\ior_shell_open:Nn 91
\ior_show:N 92
\ior_show_list: 92
\ior_str_get:NN 92, 93, 96
\ior_str_get:NNTF 93
\ior_str_get_term:nN 96
\ior_str_map_inline:Nn 94
\ior_str_map_variable:NNn 94
\g_tmpa_ior 99
\g_tmpb_ior 99

iow commands:
\iow_char:N 83, 97
\iow_close:N 91, 92
\iow_indent:n 98
\l_iow_line_count_int 98, 99
\iow_log:N 92
\iow_log:n 96
\iow_log_list: 92
\iow_new:N 91
\iow_newline: 83, 96–98
\iow_now:Nn 96, 97
\iow_open:Nn 91
\iow_shell_open:Nn 91
\iow_shipout:Nn 96, 97
\iow_shipout_e:Nn 96, 97
\iow_show:N 92
\iow_show_list: 92
\iow_term:n 96
\iow_wrap:nnnN 96–99
\iow_wrap_allow_break: 98
\c_log_iow 99
\c_term_iow 99
\g_tmpa_iow 99
\g_tmpb_iow 99

K
keys commands:

\l_keys_choice_int 241, 244, 246, 248
\l_keys_choice_tl . 241, 244, 246, 248
\keys_define:nn 240
\keys_if_choice_exist:nnnTF . . . 251
\keys_if_choice_exist_p:nnn . . . 251
\keys_if_exist:nnTF 251
\keys_if_exist_p:nn 251
\l_keys_key_str 249
\keys_log:nn 251
\l_keys_path_str 249
\keys_precompile:nnN 251
\keys_set:nn . . 240, 242, 243, 248–251
\keys_set_exclude_groups:nnn . . 250
\keys_set_exclude_groups:nnnN . . 250
\keys_set_exclude_groups:nnnnN . 250

\keys_set_groups:nnn 251
\keys_set_groups:nnnN 251
\keys_set_groups:nnnnN 251
\keys_set_known:nn 249
\keys_set_known:nnN 249
\keys_set_known:nnnN 249
\keys_show:nn 251
\l_keys_usage_load_prop 248
\l_keys_usage_preamble_prop . . . 248
\l_keys_value_tl 249

keyval commands:
\keyval_parse:NNn 254
\keyval_parse:nnn 253, 254

L
legacy commands:

\legacy_if:nTF 108
.legacy_if_gset:n 243
\legacy_if_gset:nn 108
\legacy_if_gset_false:n 108
.legacy_if_gset_inverse:n 243
\legacy_if_gset_true:n 108
\legacy_if_p:n 108
.legacy_if_set:n 243
\legacy_if_set:nn 108
\legacy_if_set_false:n 108
.legacy_if_set_inverse:n 243
\legacy_if_set_true:n 108

ln . 275
logb . 275
ltx.utils . 106
ltx.utils.filedump 106
ltx.utils.filemd5sum 106
ltx.utils.filemoddate 106
ltx.utils.filesize 107
lua commands:

\lua_escape:n 106
\lua_load_module:n 106
\lua_now:n 105, 106
\lua_shipout:n 105
\lua_shipout_e:n 105

M
max . 275
meta commands:

.meta:n . 243

.meta:nn 244
min . 275
mm . 280
mode commands:

\mode_if_horizontal:TF 71
\mode_if_horizontal_p: 71
\mode_if_inner:TF 72
\mode_if_inner_p: 72

343

\mode_if_math:TF 72
\mode_if_math_p: 72
\mode_if_vertical:TF 72
\mode_if_vertical_p: 72
\mode_leave_vertical: 30

msg commands:
\msg_critical:nn 84, 104
\msg_critical:nnn 84
\msg_critical:nnnn 84
\msg_critical:nnnnn 84
\msg_critical:nnnnnn 84
\msg_critical_text:n 82
\msg_error:nn 84
\msg_error:nnn 84
\msg_error:nnnn 84
\msg_error:nnnnn 84
\msg_error:nnnnnn 84, 87
\msg_error_text:n 82
\msg_expandable_error:nn 88
\msg_expandable_error:nnn 88
\msg_expandable_error:nnnn 88
\msg_expandable_error:nnnnn 88
\msg_expandable_error:nnnnnn . . . 88
\msg_fatal:nn 84
\msg_fatal:nnn 84
\msg_fatal:nnnn 84
\msg_fatal:nnnnn 84
\msg_fatal:nnnnnn 84
\msg_fatal_text:n 82
\msg_if_exist:nnTF 81
\msg_if_exist_p:nn 81
\msg_info:nn 85
\msg_info:nnn 85
\msg_info:nnnn 85
\msg_info:nnnnn 85
\msg_info:nnnnnn 85, 86
\msg_info_text:n 83
\msg_line_context: 82
\msg_line_number: 82
\msg_log:nn 86
\msg_log:nnn 86
\msg_log:nnnn 86
\msg_log:nnnnn 86
\msg_log:nnnnnn 86
\msg_module_name:n 81, 83
\g_msg_module_name_prop 81
\msg_module_type:n 81–83
\g_msg_module_type_prop 81
\msg_new:nnn 81
\msg_new:nnnn 81
\msg_none:nn 86
\msg_none:nnn 86
\msg_none:nnnn 86
\msg_none:nnnnn 86

\msg_none:nnnnnn 86
\msg_note:nn 85
\msg_note:nnn 85
\msg_note:nnnn 85
\msg_note:nnnnn 85
\msg_note:nnnnnn 85
\msg_redirect_class:nn 89
\msg_redirect_module:nnn 89
\msg_redirect_name:nnn 89
\msg_see_documentation_text:n . . . 83
\msg_set:nnn 81
\msg_set:nnnn 81
\msg_show:nn 87
\msg_show:nnn 87
\msg_show:nnnn 87
\msg_show:nnnnn 87
\msg_show:nnnnnn 87
\msg_show_item:n 87
\msg_show_item:nn 87
\msg_show_item_unbraced:n 87
\msg_show_item_unbraced:nn 87
\msg_term:nn 86
\msg_term:nnn 86
\msg_term:nnnn 86
\msg_term:nnnnn 86
\msg_term:nnnnnn 86
\msg_warning:nn 85
\msg_warning:nnn 85
\msg_warning:nnnn 85
\msg_warning:nnnnn 85
\msg_warning:nnnnnn 85
\msg_warning_text:n 82

multichoice commands:
.multichoice: 244

multichoices commands:
.multichoices:nn 244

muskip commands:
\c_max_muskip 238
\muskip_add:Nn 236
\muskip_const:Nn 236
\muskip_eval:n 237
\muskip_gadd:Nn 236
.muskip_gset:N 244
\muskip_gset:Nn 237
\muskip_gset_eq:NN 237
\muskip_gsub:Nn 237
\muskip_gzero:N 236
\muskip_gzero_new:N 236
\muskip_if_exist:NTF 236
\muskip_if_exist_p:N 236
\muskip_log:N 238
\muskip_log:n 238
\muskip_new:N 236
.muskip_set:N 244

344

\muskip_set:Nn 237
\muskip_set_eq:NN 237
\muskip_show:N 237
\muskip_show:n 238
\muskip_sub:Nn 237
\muskip_use:N 237
\muskip_zero:N 236
\muskip_zero_new:N 236
\g_tmpa_muskip 238
\l_tmpa_muskip 238
\g_tmpb_muskip 238
\l_tmpb_muskip 238
\c_zero_muskip 238

N
nan . 279
nc . 280
nd . 280
\notexpanded: ⟨token⟩ 210
\num . 259

O
or commands:

\or: . 179

P
\par . 15–19, 93
pc . 280
pdf commands:

\pdf_destination:nn 332
\pdf_destination:nnnn 332
\pdf_object_if_exist:nTF 329
\pdf_object_if_exist_p:n 329
\pdf_object_new:n 329
\pdf_object_new_indexed:nn 330
\pdf_object_ref:n 329
\pdf_object_ref_indexed:nn 330
\pdf_object_ref_last: 331
\pdf_object_unnamed_write:nn . . 330
\pdf_object_write:nnn 329
\pdf_object_write_indexed:nnnn . 330
\pdf_pageobject_ref:n 331
\pdf_pagesize_gset:nn 331
\pdf_uncompress: 331
\pdf_version: 331
\pdf_version_compare:Nn 331
\pdf_version_compare:NnTF 331
\pdf_version_compare_p:Nn 331
\pdf_version_gset:n 331
\pdf_version_major: 331
\pdf_version_min_gset:n 331
\pdf_version_minor: 331

\pdfstrcmp . 133
peek commands:

\peek_after:Nw 73, 205

\peek_analysis_map_break: 208
\peek_analysis_map_break:n 208
\peek_analysis_map_inline:n

. 46, 205, 208
\peek_catcode:NTF 206
\peek_catcode_remove:NTF 206
\peek_charcode:NTF 206, 209, 210
\peek_charcode_remove:NTF . . 206, 209
\peek_gafter:Nw 205
\peek_meaning:NTF 206
\peek_meaning_remove:NTF 206
\peek_N_type:TF 207
\peek_regex:NTF 209
\peek_regex:nTF 209
\peek_regex_remove_once:NTF . . . 209
\peek_regex_remove_once:nTF . . . 209
\peek_regex_replace_once:Nn . . . 210
\peek_regex_replace_once:nn . . . 210
\peek_regex_replace_once:NnTF . . 210
\peek_regex_replace_once:nnTF . . 210
\peek_remove_filler:n 207
\peek_remove_spaces:n 205, 206
\g_peek_token 205
\l_peek_token 205, 208

pi . 279
prg commands:

\prg_break: 73
\prg_break:n 73
\prg_break_point: 73
\prg_break_point:Nn 72, 73, 149
\prg_do_nothing: 13, 73
\prg_generate_conditional_-

variant:Nnn 33, 65
\prg_gset_conditional:Nnn 63
\prg_gset_conditional:Npnn 63
\prg_gset_eq_conditional:NNn . . . 65
\prg_gset_protected_conditional:Nnn

. 64
\prg_gset_protected_conditional:Npnn

. 64
\prg_map_break:Nn 72, 73
\prg_new_conditional:Nnn 63
\prg_new_conditional:Npnn . . . 63–65
\prg_new_eq_conditional:NNn 65
\prg_new_protected_conditional:Nnn

. 64
\prg_new_protected_conditional:Npnn

. 64
\prg_replicate:nn 71, 118, 158
\prg_return_false: 64, 65
\prg_return_true: 64, 65
\prg_set_conditional:Nnn 63
\prg_set_conditional:Npnn . . . 63–65
\prg_set_eq_conditional:NNn 65

345

\prg_set_protected_conditional:Nnn
. 64

\prg_set_protected_conditional:Npnn
. 64

prop commands:
\c_empty_prop 222
\prop_clear:N 213, 214
\prop_clear_new:N 214
\prop_clear_new_linked:N 214
\prop_concat:NNN 213, 216, 217
\prop_const_from_keyval:Nn 215
\prop_const_linked_from_keyval:Nn

. 215
\prop_count:N 218
\prop_gclear:N 214
\prop_gclear_new:N 214
\prop_gclear_new_linked:N 214
\prop_gconcat:NNN 216
\prop_get:NnN . 146, 147, 213, 217, 218
\prop_get:NnNTF 217, 219
\prop_gpop:NnN 217
\prop_gpop:NnNTF 217, 220
.prop_gput:N 244
\prop_gput:Nnn 216
\prop_gput_from_keyval:Nn 217
\prop_gput_if_not_in:Nnn 216
\prop_gremove:Nn 218
\prop_gset_eq:NN 214
\prop_gset_from_keyval:Nn 215
\prop_if_empty:NTF 219
\prop_if_empty_p:N 219
\prop_if_exist:NTF 218
\prop_if_exist_p:N 218
\prop_if_in:Nn 213
\prop_if_in:NnTF 219
\prop_if_in_p:Nn 219
\prop_item:Nn 213, 218, 220
\prop_log:N 222
\prop_make_flat:N 213, 215
\prop_make_linked:N 213, 215
\prop_map_break: 221
\prop_map_break:n 221
\prop_map_function:NN 87, 220
\prop_map_inline:Nn 220
\prop_map_tokens:Nn 220
\prop_new:N 213–215
\prop_new_linked:N 213–215
\prop_pop:NnN 213, 217
\prop_pop:NnNTF 217, 219
.prop_put:N 244
\prop_put:Nnn 213, 216, 217
\prop_put_from_keyval:Nn 217
\prop_put_if_not_in:Nnn 216
\prop_remove:Nn 213, 218

\prop_set_eq:NN 213, 214
\prop_set_from_keyval:Nn . . . 215, 217
\prop_show:N 221
\prop_to_keyval:N 218
\g_tmpa_prop 222
\l_tmpa_prop 222
\g_tmpb_prop 222
\l_tmpb_prop 222

\ProvidesExplClass 9
\ProvidesExplFile 9
\ProvidesExplPackage 9
pt . 280

Q
quark commands:

\q_mark . 147
\q_nil 26, 27, 126, 147
\q_no_value 77, 93, 100–

103, 146, 147, 153, 154, 161, 192, 217
\quark_if_nil:NTF 147
\quark_if_nil:nTF 147
\quark_if_nil_p:N 147
\quark_if_nil_p:n 147
\quark_if_no_value:NTF 147
\quark_if_no_value:nTF 147
\quark_if_no_value_p:N 147
\quark_if_no_value_p:n 147
\quark_if_recursion_tail_-

break:NN 149
\quark_if_recursion_tail_-

break:nN 149
\quark_if_recursion_tail_stop:N 148
\quark_if_recursion_tail_stop:n 148
\quark_if_recursion_tail_stop_-

do:Nn . 148
\quark_if_recursion_tail_stop_-

do:nn . 148
\quark_new:N 147
\q_recursion_stop . . . 26, 27, 148, 149
\q_recursion_tail 148, 149
\q_stop 26, 27, 39, 120, 146, 147

R
rand . 279
randint . 279
regex commands:

\regex_const:Nn 55
\regex_count:NnN 56
\regex_count:nnN 56
\regex_extract_all:NnN 57
\regex_extract_all:nnN 48, 57
\regex_extract_all:NnNTF 57
\regex_extract_all:nnNTF 57
\regex_extract_once:NnN 57

346

\regex_extract_once:nnN 57
\regex_extract_once:NnNTF 57
\regex_extract_once:nnNTF . . . 51, 57
\regex_gset:Nn 55
\regex_log:N 55
\regex_log:n 55
\regex_match:NnTF 56
\regex_match:nnTF 56
\regex_match_case:nn 56, 59
\regex_match_case:nnTF 56
\regex_new:N 55
\regex_replace:nnN 196
\regex_replace_all:NnN 58
\regex_replace_all:nnN 48, 58
\regex_replace_all:NnNTF 58
\regex_replace_all:nnNTF 58
\regex_replace_case_all:nN 59
\regex_replace_case_all:nNTF . . . 59
\regex_replace_case_once:nN 59
\regex_replace_case_once:nNTF . . . 59
\regex_replace_once:NnN 58
\regex_replace_once:nnN . . 57–59, 210
\regex_replace_once:NnNTF 58
\regex_replace_once:nnNTF 58
\regex_set:Nn 47, 55, 56
\regex_show:N 55
\regex_show:n 48, 53, 55
\regex_split:NnN 58
\regex_split:nnN 58
\regex_split:NnNTF 58
\regex_split:nnNTF 58
\g_tmpa_regex 60
\l_tmpa_regex 60
\g_tmpb_regex 60
\l_tmpb_regex 60

reverse commands:
\reverse_if:N 28

round . 276

S
scan commands:

\scan_new:N 150
\scan_stop: . . 13, 22, 23, 150, 167, 207
\s_stop . 150

sec . 276
secd . 277
seq commands:

\c_empty_seq 163
\seq_clear:N 151, 163
\seq_clear_new:N 151
\seq_concat:NNN 153, 163
\seq_const_from_clist:Nn 152
\seq_count:N 154, 160, 162, 256
\seq_gclear:N 151

\seq_gclear_new:N 151
\seq_gconcat:NNN 153
\seq_get:NN 161
\seq_get:NNTF 161
\seq_get_left:NN 153
\seq_get_left:NNTF 155
\seq_get_right:NN 154
\seq_get_right:NNTF 155
\seq_gpop:NN 161
\seq_gpop:NNTF 162
\seq_gpop_left:NN 154
\seq_gpop_left:NNTF 155
\seq_gpop_right:NN 154
\seq_gpop_right:NNTF 156
\seq_gpush:Nn 31, 162
\seq_gput_left:Nn 153
\seq_gput_right:Nn 153
\seq_gremove_all:Nn 156
\seq_gremove_duplicates:N 156
\seq_greverse:N 157
\seq_gset_eq:NN 151
\seq_gset_filter:NNn 153
\seq_gset_from_clist:NN 152
\seq_gset_from_clist:Nn 152
\seq_gset_item:Nnn 156
\seq_gset_item:NnnTF 156
\seq_gset_map:NNn 159
\seq_gset_map_e:NNn 160
\seq_gset_split:Nnn 152
\seq_gset_split_keep_spaces:Nnn 152
\seq_gshuffle:N 157
\seq_gsort:Nn 157
\seq_if_empty:NTF 157
\seq_if_empty_p:N 157
\seq_if_exist:NTF 153
\seq_if_exist_p:N 153
\seq_if_in:NnTF 157, 162, 163
\seq_item:Nn 57, 154
\seq_log:N 164
\seq_map_break: 153, 159, 160
\seq_map_break:n 159
\seq_map_function:NN . 6, 87, 157, 158
\seq_map_indexed_function:NN . . 158
\seq_map_indexed_inline:Nn 158
\seq_map_inline:Nn 157, 158, 163
\seq_map_pairwise_function:NNN . 158
\seq_map_tokens:Nn 157, 158
\seq_map_variable:NNn 158
\seq_new:N 6, 151
\seq_pop:NN 161
\seq_pop:NNTF 162
\seq_pop_left:NN 154
\seq_pop_left:NNTF 155
\seq_pop_right:NN 154

347

\seq_pop_right:NNTF 156
\seq_push:Nn 162
\seq_put_left:Nn 153
\seq_put_right:Nn 153, 162, 163
\seq_rand_item:N 155
\seq_remove_all:Nn 152, 156, 162, 163
\seq_remove_duplicates:N 156, 162, 163
\seq_reverse:N 157
\seq_set_eq:NN 151, 163
\seq_set_filter:NNn 153
\seq_set_from_clist:NN 152
\seq_set_from_clist:Nn 152, 185
\seq_set_item:Nnn 156
\seq_set_item:NnnTF 156
\seq_set_map:NNn 159
\seq_set_map_e:NNn 160
\seq_set_split:Nnn 152
\seq_set_split_keep_spaces:Nnn . 152
\seq_show:N 164
\seq_shuffle:N 157
\seq_sort:Nn 45, 157
\seq_use:Nn 161
\seq_use:Nnnn 160
\g_tmpa_seq 164
\l_tmpa_seq 164
\g_tmpb_seq 164
\l_tmpb_seq 164

sign . 276
sin . 276
sind . 277
skip commands:

\c_max_skip 235
\skip_add:Nn 233
\skip_const:Nn 232
\skip_eval:n 234
\skip_gadd:Nn 233
.skip_gset:N 244
\skip_gset:Nn 233
\skip_gset_eq:NN 233
\skip_gsub:Nn 233
\skip_gzero:N 232
\skip_gzero_new:N 233
\skip_horizontal:N 235
\skip_horizontal:n 235
\skip_if_eq:nnTF 234
\skip_if_eq_p:nn 234
\skip_if_exist:NTF 233
\skip_if_exist_p:N 233
\skip_if_finite:nTF 234
\skip_if_finite_p:n 234
\skip_log:N 235
\skip_log:n 235
\skip_new:N 232, 233
.skip_set:N 244

\skip_set:Nn 233
\skip_set_eq:NN 233
\skip_show:N 234
\skip_show:n 234
\skip_sub:Nn 233
\skip_use:N 234
\skip_vertical:N 236
\skip_vertical:n 236
\skip_zero:N 232, 233, 236
\skip_zero_new:N 233
\g_tmpa_skip 235
\l_tmpa_skip 235
\g_tmpb_skip 235
\l_tmpb_skip 235
\c_zero_skip 235

sort commands:
\sort_return_same: 44, 45
\sort_return_swapped: 44, 45

sp . 280
sqrt . 278
str commands:

\c_ampersand_str 141
\c_atsign_str 141
\c_backslash_str 141
\c_circumflex_str 141
\c_colon_str 141
\c_dollar_str 141
\c_empty_str 141
\c_hash_str 141
\c_left_brace_str 141
\c_percent_str 141
\c_right_brace_str 141
\str_case:Nn 132
\str_case:nn 132
\str_case:NnTF 132
\str_case:nnTF 132
\str_case_e:nn 133
\str_case_e:nnTF 133
\str_casefold:n 139, 140, 297
\c_str_cctab 291
\str_clear:N 130
\str_clear_new:N 130
\str_compare:nNnTF 133
\str_compare_p:nNn 133
\str_concat:NNN 130
\str_const:Nn 130
\str_convert_pdfname:n 144
\str_count:N 135
\str_count:n 135
\str_count_ignore_spaces:n 135
\str_count_spaces:N 135
\str_count_spaces:n 135
\str_gclear:N 130
\str_gclear_new:N 130

348

\str_gconcat:NNN 130
\str_gput_left:Nn 131
\str_gput_right:Nn 131
\str_gremove_all:Nn 138
\str_gremove_once:Nn 138
\str_greplace_all:Nnn 138
\str_greplace_once:Nnn 138
.str_gset:N 244
\str_gset:Nn 131
\str_gset_convert:Nnnn 144
\str_gset_convert:NnnnTF 144
.str_gset_e:N 244
\str_gset_eq:NN 130
\str_head:N 136
\str_head:n 136
\str_head_ignore_spaces:n 136
\str_if_empty:NTF 131
\str_if_empty:nTF 131
\str_if_empty_p:N 131
\str_if_empty_p:n 131
\str_if_eq:NNTF 131
\str_if_eq:nnTF

100, 112, 113, 132, 133, 213, 219, 220
\str_if_eq_p:NN 131
\str_if_eq_p:nn 132
\str_if_exist:NTF 130
\str_if_exist_p:N 130
\str_if_in:NnTF 132
\str_if_in:nnTF 132
\str_item:Nn 136
\str_item:nn 136
\str_item_ignore_spaces:nn 136
\str_log:N 140
\str_log:n 140
\str_lowercase:n 139, 297
\str_map_break: 134
\str_map_break:n 134, 135
\str_map_function:NN 133
\str_map_function:nN 133, 134
\str_map_inline:Nn 134
\str_map_inline:nn 134
\str_map_tokens:Nn 134
\str_map_tokens:nn 134
\str_map_variable:NNn 134
\str_map_variable:nNn 134
\str_mdfive_hash:n 140
\str_new:N 130
\str_put_left:Nn 131
\str_put_right:Nn 131
\str_range:Nnn 137
\str_range:nnn 100, 137
\str_range_ignore_spaces:nnn . . 137
\str_remove_all:Nn 138
\str_remove_once:Nn 138

\str_replace_all:Nnn 138
\str_replace_once:Nnn 138
.str_set:N 244
\str_set:Nn 131, 138, 244
\str_set_convert:Nnnn 144, 145
\str_set_convert:NnnnTF 144
.str_set_e:N 244
\str_set_eq:NN 130
\str_show:N 140
\str_show:n 140
\str_tail:N 136
\str_tail:n 136
\str_tail_ignore_spaces:n 136
\str_uppercase:n 139, 297
\str_use:N 135
\c_tilde_str 141
\g_tmpa_str 141
\l_tmpa_str 138, 141
\g_tmpb_str 141
\l_tmpb_str 141
\c_underscore_str 141
\c_zero_str 141

sys commands:
\c_sys_backend_str 79
\c_sys_day_int 74
\c_sys_engine_exec_str 75
\c_sys_engine_format_str 75
\c_sys_engine_str 75
\c_sys_engine_version_str 75
\sys_ensure_backend: 79
\sys_finalise: 79
\sys_get_query:nN 78
\sys_get_query:nnN 78
\sys_get_query:nnnN 78
\sys_get_shell:nnN 77
\sys_get_shell:nnNTF 77, 91
\sys_gset_rand_seed:n 77, 279
\c_sys_hour_int 74
\sys_if_engine_luatex:TF . . . 75, 105
\sys_if_engine_luatex_p: 75
\sys_if_engine_pdftex:TF 75
\sys_if_engine_pdftex_p: 75
\sys_if_engine_ptex:TF 75
\sys_if_engine_ptex_p: 75
\sys_if_engine_uptex:TF 75
\sys_if_engine_uptex_p: 75
\sys_if_engine_xetex:TF 6, 75
\sys_if_engine_xetex_p: 75
\sys_if_output_dvi:TF 76
\sys_if_output_dvi_p: 76
\sys_if_output_pdf:TF 76
\sys_if_output_pdf_p: 76
\sys_if_platform_unix:TF 76
\sys_if_platform_unix_p: 76

349

\sys_if_platform_windows:TF 76
\sys_if_platform_windows_p: 76
\sys_if_shell:TF 77, 78
\sys_if_shell_p: 77
\sys_if_shell_restricted:TF 78
\sys_if_shell_restricted_p: 78
\sys_if_shell_unrestricted:TF . . . 77
\sys_if_shell_unrestricted_p: . . . 77
\sys_if_timer_exist:TF 76
\sys_if_timer_exist_p: 76
\c_sys_jobname_str 74, 99
\sys_load_backend:n 79
\sys_load_debug: 79
\c_sys_minute_int 74
\c_sys_month_int 74
\c_sys_output_str 76
\c_sys_platform_str 76
\sys_rand_seed: 76, 157, 279
\c_sys_shell_escape_int 77
\sys_shell_now:n 78
\sys_shell_shipout:n 78
\sys_split_query:nN 79
\sys_split_query:nnN 79
\sys_split_query:nnnN 78, 79
\sys_timer: 75
\c_sys_timestamp_str 74
\c_sys_year_int 74

T
tan . 276
tand . 277
TEX and LATEX 2ε commands:

\@filelist 104
\@firstofone 24
\@gobble . 26
\@gobbletwo 26
\@sptoken 200
\aftergroup 14
\begingroup 13
\bgroup . 200
\box . 310
\char . 212
\chardef 203, 204
\copy . 303
\count . 211
\csname . 21
\day . 74
\def . 211
\detokenize 115
\directlua 105
\dp . 304
\edef . 3, 6
\egroup . 200
\else . 28

\endcsname 21
\endgroup . 13
\endinput . 84
\endlinechar 93, 125, 289–291
\endtemplate 73
\escapechar 115
\everypar 30, 207
\expandafter 39, 41
\expanded 3, 6, 26, 34
\fi . 28, 210
\fmtname . 75
\font . 210
\fontdimen 61, 257
\halign 73, 103
\hskip . 235
\ht . 304
\if . 29
\ifcase . 179
\ifcat . 29
\ifcsname . 29
\ifdefined 29
\ifdim . 238
\ifeof . 99
\iffalse 28, 66
\ifhbox . 314
\ifhmode . 29
\ifinner . 29
\ifmmode . 29
\ifnum . 179
\ifodd . 180
\iftrue 28, 66
\ifvbox . 314
\ifvmode . 29
\ifvoid . 314
\ifx . 29
\infty . 272
\input@path 100
\jobname . 74
\kcatcode 294
\leavevmode 30
\long . 5, 212
\luaescapestring 106
\makeatletter 9
\mathchar 212
\mathchardef 204
\mathord 325
\maxdimen 230
\meaning 20, 201, 211, 212
\message . 34
\month . 74
\newif 66, 108
\newlinechar 125
\newtoks . 44
\noexpand 40, 210

350

\number . 179
\or . 179
\outer 7, 212
\parindent 30
\pdfescapename 143
\pdfescapestring 143
\pdfuniformdeviate 279
\pi . 272
\protected 212
\ProvidesClass 9
\ProvidesFile 9
\ProvidesPackage 9
\read . 93
\readline . 93
\relax 28, 210
\RequirePackage 10
\romannumeral 42
\scantokens 125, 145
\show 20, 117
\showgroups 14
\showtokens 117
\sin . 272
\string . 201
\tenrm . 210
\the 170, 210, 229, 234, 237
\time . 74
\toks 44, 157, 179
\topmark 211
\unexpanded 40, 116, 117, 121, 122,

154, 155, 160, 161, 187, 191–193, 218
\unhbox . 310
\unhcopy 307
\uniformdeviate 279
\unless . 28
\unvbox . 310
\unvcopy 309
\value . 166
\verb . 125
\vskip . 236
\wd . 304
\write . 97
\year . 74

text commands:
\l_text_case_exclude_arg_tl

. 296, 297, 299
\text_case_switch:nnnn 298
\text_declare_case_equivalent:Nn 298
\text_declare_expand_equivalent:Nn

. 296
\text_declare_lowercase_mapping:nn

. 298
\text_declare_lowercase_mapping:nnn

. 298

\text_declare_purify_equivalent:Nn
. 299

\text_declare_titlecase_mapping:nn
. 298

\text_declare_titlecase_mapping:nnn
. 298

\text_declare_uppercase_mapping:nn
. 298

\text_declare_uppercase_mapping:nnn
. 298

\text_expand:n . . . 296, 297, 299, 300
\l_text_expand_exclude_tl . . 296, 299
\text_lowercase:n 139, 198, 297
\text_lowercase:nn 297
\text_map_break: 300
\text_map_break:n 300
\text_map_function:nN 300
\text_map_inline:nn 300
\l_text_math_arg_tl 296, 299
\l_text_math_delims_tl 296, 299
\text_purify:n 299
\text_titlecase_all:n 139, 297
\text_titlecase_all:nn 297
\l_text_titlecase_check_letter_-

bool 298, 299
\text_titlecase_first:n 297
\text_titlecase_first:nn 297
\text_uppercase:n 139, 199, 297
\text_uppercase:nn 297

tl commands:
\c_catcode_active_space_tl 196
\c_catcode_active_tl 200
\c_catcode_other_space_tl 197
\c_empty_tl 125
\c_novalue_tl 113, 126
\c_space_tl 126
\tl_analysis_log:N 46
\tl_analysis_log:n 46
\tl_analysis_map_inline:Nn 46
\tl_analysis_map_inline:nn . 46, 208
\tl_analysis_show:N 46
\tl_analysis_show:n 46
\tl_build_begin:N 127, 128
\tl_build_end:N 127, 128
\tl_build_gbegin:N 127, 128
\tl_build_gend:N 127, 128
\tl_build_get_intermediate:NN . . 128
\tl_build_gput_left:Nn 127
\tl_build_gput_right:Nn 127
\tl_build_put_left:Nn 127
\tl_build_put_right:Nn 127
\tl_clear:N 111
\tl_clear_new:N 111
\tl_concat:NNN 111

351

\tl_const:Nn 111
\tl_count:N 33, 113, 116
\tl_count:n 33, 113, 116
\tl_count_tokens:n 116
\tl_gclear:N 111
\tl_gclear_new:N 111
\tl_gconcat:NNN 111
\tl_gput_left:Nn 111
\tl_gput_right:Nn 112
\tl_gremove_all:Nn 124
\tl_gremove_once:Nn 124
\tl_greplace_all:Nnn 124
\tl_greplace_once:Nnn 123
\tl_greverse:N 116
.tl_gset:N 245
\tl_gset:Nn 111, 128, 153
.tl_gset_e:N 245
\tl_gset_eq:NN 111
\tl_gset_rescan:Nnn 125
\tl_gsort:Nn 123
\tl_gtrim_spaces:N 117
\tl_head:N 120
\tl_head:n 120
\tl_head:w 120
\tl_if_blank:nTF 112, 120
\tl_if_blank_p:n 112
\tl_if_empty:NTF 112
\tl_if_empty:nTF 112
\tl_if_empty_p:N 112
\tl_if_empty_p:n 112
\tl_if_eq:NNTF . . . 112, 113, 131, 146
\tl_if_eq:NnTF 112
\tl_if_eq:nnTF 100, 113, 132, 156, 187
\tl_if_eq_p:NN 112
\tl_if_exist:NTF 111
\tl_if_exist_p:N 111
\tl_if_head_eq_catcode:nNTF . . . 114
\tl_if_head_eq_catcode_p:nN . . . 114
\tl_if_head_eq_charcode:nNTF . . 114
\tl_if_head_eq_charcode_p:nN . . 114
\tl_if_head_eq_meaning:nNTF . . . 114
\tl_if_head_eq_meaning_p:nN . . . 114
\tl_if_head_is_group:nTF 114
\tl_if_head_is_group_p:n 114
\tl_if_head_is_N_type:nTF 114
\tl_if_head_is_N_type_p:n 114
\tl_if_head_is_space:nTF . . . 115, 121
\tl_if_head_is_space_p:n 115
\tl_if_in:NnTF 113
\tl_if_in:nnTF 113
\tl_if_novalue:nTF 113
\tl_if_novalue_p:n 113
\tl_if_single:NTF 113
\tl_if_single:nTF 113

\tl_if_single_p:N 113
\tl_if_single_p:n 113
\tl_if_single_token:nTF 113
\tl_if_single_token_p:n 113
\tl_item:Nn 121
\tl_item:nn 121
\tl_log:N 117
\tl_log:n 117
\tl_map_break: 61, 119
\tl_map_break:n 119
\tl_map_function:NN 118
\tl_map_function:nN 118
\tl_map_inline:Nn 118
\tl_map_inline:nn 118, 119, 149
\tl_map_tokens:Nn 118
\tl_map_tokens:nn 118
\tl_map_variable:NNn 118
\tl_map_variable:nNn 119
\tl_new:N 110, 111, 201
\tl_put_left:Nn 111
\tl_put_right:Nn 112, 127
\tl_rand_item:N 121
\tl_rand_item:n 121
\tl_range:Nnn 122
\tl_range:nnn 122, 137
\tl_remove_all:Nn 124
\tl_remove_once:Nn 124
\tl_replace_all:Nnn 124
\tl_replace_once:Nnn 123
\tl_rescan:nn 125, 290
\tl_reverse:N 116
\tl_reverse:n 116
\tl_reverse_items:n 116
.tl_set:N 245
\tl_set:Nn

. . . 111, 124, 125, 127, 128, 153, 245
.tl_set_e:N 245
\tl_set_eq:NN 111, 185
\tl_set_rescan:Nnn 125, 290
\tl_show:N 117, 185
\tl_show:n 87, 117
\tl_sort:Nn 123
\tl_sort:nN 123
\tl_tail:N 120
\tl_tail:n 120
\tl_to_str:N 98, 115, 129
\tl_to_str:n . . 52, 54, 77, 98, 115,

125, 129, 139, 140, 213, 215, 216, 240
\tl_trim_spaces:N 117
\tl_trim_spaces:n 117
\tl_trim_spaces_apply:nN 117
\tl_use:N 115, 229, 234, 237
\g_tmpa_tl 126
\l_tmpa_tl 6, 59, 124, 126

352

\g_tmpb_tl 126
\l_tmpb_tl 126

token commands:
\c_alignment_token 200
\c_catcode_letter_token 200
\c_catcode_other_token 200
\c_group_begin_token 200
\c_group_end_token 200
\c_math_subscript_token 200
\c_math_superscript_token 200
\c_math_toggle_token 200
\c_parameter_token 200
\c_space_token . 40, 115, 126, 200, 207
\token_case_catcode:Nn 205
\token_case_catcode:NnTF 205
\token_case_charcode:Nn 205
\token_case_charcode:NnTF 205
\token_case_meaning:Nn 205
\token_case_meaning:NnTF 205
\token_if_active:NTF 202
\token_if_active_p:N 202
\token_if_alignment:NTF 202
\token_if_alignment_p:N 202
\token_if_chardef:NTF 203
\token_if_chardef_p:N 203
\token_if_cs:NTF 203
\token_if_cs_p:N 203
\token_if_dim_register:NTF 204
\token_if_dim_register_p:N 204
\token_if_eq_catcode:NNTF

. 202, 205, 206
\token_if_eq_catcode_p:NN 202
\token_if_eq_charcode:NNTF

. 203, 205, 206
\token_if_eq_charcode_p:NN 203
\token_if_eq_meaning:NNTF

. 203, 205, 206
\token_if_eq_meaning_p:NN 203
\token_if_expandable:NTF 203
\token_if_expandable_p:N 203
\token_if_font_selection:NTF . . 204
\token_if_font_selection_p:N . . 204
\token_if_group_begin:NTF 201
\token_if_group_begin_p:N 201
\token_if_group_end:NTF 201
\token_if_group_end_p:N 201
\token_if_int_register:NTF 204
\token_if_int_register_p:N 204
\token_if_letter:NTF 202
\token_if_letter_p:N 202
\token_if_long_macro:NTF 203
\token_if_long_macro_p:N 203
\token_if_macro:NTF 203
\token_if_macro_p:N 203

\token_if_math_subscript:NTF . . 202
\token_if_math_subscript_p:N . . 202
\token_if_math_superscript:NTF . 202
\token_if_math_superscript_p:N . 202
\token_if_math_toggle:NTF 202
\token_if_math_toggle_p:N 202
\token_if_mathchardef:NTF 204
\token_if_mathchardef_p:N 204
\token_if_muskip_register:NTF . . 204
\token_if_muskip_register_p:N . . 204
\token_if_other:NTF 202
\token_if_other_p:N 202
\token_if_parameter:NTF 202
\token_if_parameter_p:N 202
\token_if_primitive:NTF 204
\token_if_primitive_p:N 204
\token_if_protected_long_-

macro:NTF 203
\token_if_protected_long_macro_-

p:N . 203
\token_if_protected_macro:NTF . . 203
\token_if_protected_macro_p:N . . 203
\token_if_skip_register:NTF . . . 204
\token_if_skip_register_p:N . . . 204
\token_if_space:NTF 202
\token_if_space_p:N 202
\token_if_toks_register:NTF . . . 204
\token_if_toks_register_p:N . . . 204
\token_to_catcode:N 201
\token_to_meaning:N 20, 201, 211
\token_to_str:N 7, 22, 98, 129, 201, 211

true . 280
trunc . 276

U
undefine commands:

.undefine: 245
usage commands:

.usage:n 248
use commands:

\use:N 21, 181
\use:n 24, 26, 110, 210
\use:nn . 24
\use:nnn . 24
\use:nnnn . 24
\use_i:nn . 25
\use_i:nnn 25
\use_i:nnnn 25
\use_i:nnnnn 25
\use_i:nnnnnn 25
\use_i:nnnnnnn 25
\use_i:nnnnnnnn 25
\use_i:nnnnnnnnn 25
\use_i_delimit_by_q_nil:nw 27

353

\use_i_delimit_by_q_recursion_-
stop:nw 27

\use_i_delimit_by_q_recursion_-
stop:w 148

\use_i_delimit_by_q_stop:nw 27
\use_i_ii:nnn 26
\use_ii:nn 25, 72
\use_ii:nnn 25
\use_ii:nnnn 25
\use_ii:nnnnn 25
\use_ii:nnnnnn 25
\use_ii:nnnnnnn 25
\use_ii:nnnnnnnn 25
\use_ii:nnnnnnnnn 25
\use_ii_i:nn 26
\use_iii:nnn 25
\use_iii:nnnn 25
\use_iii:nnnnn 25
\use_iii:nnnnnn 25
\use_iii:nnnnnnn 25
\use_iii:nnnnnnnn 25
\use_iii:nnnnnnnnn 25
\use_iv:nnnn 25
\use_iv:nnnnn 25
\use_iv:nnnnnn 25
\use_iv:nnnnnnn 25
\use_iv:nnnnnnnn 25
\use_iv:nnnnnnnnn 25
\use_ix:nnnnnnnnn 25
\use_none:n 26
\use_none:nn 26
\use_none:nnn 26
\use_none:nnnn 26
\use_none:nnnnn 26
\use_none:nnnnnn 26
\use_none:nnnnnnn 26
\use_none:nnnnnnnn 26
\use_none:nnnnnnnnn 26
\use_none_delimit_by_q_nil:w . . . 26
\use_none_delimit_by_q_recursion_-

stop:w 26, 148
\use_none_delimit_by_q_stop:w . . . 26
\use_none_delimit_by_s_stop:w . . 150
\use_v:nnnnn 25
\use_v:nnnnnn 25

\use_v:nnnnnnn 25
\use_v:nnnnnnnn 25
\use_v:nnnnnnnnn 25
\use_vi:nnnnnn 25
\use_vi:nnnnnnn 25
\use_vi:nnnnnnnn 25
\use_vi:nnnnnnnnn 25
\use_vii:nnnnnnn 25
\use_vii:nnnnnnnn 25
\use_vii:nnnnnnnnn 25
\use_viii:nnnnnnnn 25
\use_viii:nnnnnnnnn 25

V
value commands:

.value_forbidden:n 245

.value_required:n 245
vbox commands:

\vbox:n 303, 308
\vbox_gset:Nn 308
\vbox_gset:Nw 308
\vbox_gset_end: 308
\vbox_gset_split_to_ht:NNn 309
\vbox_gset_to_ht:Nnn 308
\vbox_gset_to_ht:Nnw 309
\vbox_gset_top:Nn 308
\vbox_set:Nn 308
\vbox_set:Nw 308
\vbox_set_end: 308, 309
\vbox_set_split_to_ht:NNn 309
\vbox_set_to_ht:Nnn 308, 309
\vbox_set_to_ht:Nnw 309
\vbox_set_top:Nn 308
\vbox_to_ht:nn 308
\vbox_to_zero:n 308
\vbox_top:n 308
\vbox_unpack:N 309
\vbox_unpack_drop:N 310

vcoffin commands:
\vcoffin_gset:Nnn 316
\vcoffin_gset:Nnw 316
\vcoffin_gset_end: 316
\vcoffin_set:Nnn 316
\vcoffin_set:Nnw 316
\vcoffin_set_end: 316

354

		Contents

		I Introduction

		1 Introduction to expl3 and this document

		1.1 Naming functions and variables

		1.1.1 Scratch variables

		1.1.2 Terminological inexactitude

		1.2 Documentation conventions

		1.3 Formal language conventions which apply generally

		1.4 TeX concepts not supported by LaTeX3

		II Bootstrapping

		2 The l3bootstrap module: Bootstrap code

		2.1 Using the LaTeX3 modules

		3 The l3names module: Namespace for primitives

		3.1 Setting up the LaTeX3 programming language

		III Programming Flow

		4 The l3basics module: Basic definitions

		4.1 No operation functions

		4.2 Grouping material

		4.3 Control sequences and functions

		4.3.1 Defining functions

		4.3.2 Defining new functions using parameter text

		4.3.3 Defining new functions using the signature

		4.3.4 Copying control sequences

		4.3.5 Deleting control sequences

		4.3.6 Showing control sequences

		4.3.7 Converting to and from control sequences

		4.4 Analysing control sequences

		4.5 Using or removing tokens and arguments

		4.5.1 Selecting tokens from delimited arguments

		4.6 Predicates and conditionals

		4.6.1 Tests on control sequences

		4.6.2 Primitive conditionals

		4.7 Starting a paragraph

		4.8 Debugging support

		5 The l3expan module: Argument expansion

		5.1 Defining new variants

		5.2 Methods for defining variants

		5.3 Introducing the variants

		5.4 Manipulating the first argument

		5.5 Manipulating two arguments

		5.6 Manipulating three arguments

		5.7 Unbraced expansion

		5.8 Preventing expansion

		5.9 Controlled expansion

		5.10 Internal functions

		6 The l3sort module: Sorting functions

		6.1 Controlling sorting

		7 The l3tl-analysis module: Analysing token lists

		8 The l3regex module: Regular expressions in TeX

		8.1 Syntax of regular expressions

		8.1.1 Regular expression examples

		8.1.2 Characters in regular expressions

		8.1.3 Characters classes

		8.1.4 Structure: alternatives, groups, repetitions

		8.1.5 Matching exact tokens

		8.1.6 Miscellaneous

		8.2 Syntax of the replacement text

		8.3 Pre-compiling regular expressions

		8.4 Matching

		8.5 Submatch extraction

		8.6 Replacement

		8.7 Scratch regular expressions

		8.8 Bugs, misfeatures, future work, and other possibilities

		9 The l3prg module: Control structures

		9.1 Defining a set of conditional functions

		9.2 The boolean data type

		9.2.1 Constant and scratch booleans

		9.3 Boolean expressions

		9.4 Logical loops

		9.5 Producing multiple copies

		9.6 Detecting TeX's mode

		9.7 Primitive conditionals

		9.8 Nestable recursions and mappings

		9.8.1 Simple mappings

		9.9 Internal programming functions

		10 The l3sys module: System/runtime functions

		10.1 The name of the job

		10.2 Date and time

		10.3 Engine

		10.4 Output format

		10.5 Platform

		10.6 Random numbers

		10.7 Access to the shell

		10.8 System queries

		10.9 Loading configuration data

		10.9.1 Final settings

		11 The l3msg module: Messages

		11.1 Creating new messages

		11.2 Customizable information for message modules

		11.3 Contextual information for messages

		11.4 Issuing messages

		11.4.1 Messages for showing material

		11.4.2 Expandable error messages

		11.5 Redirecting messages

		12 The l3file module: File and I/O operations

		12.1 Input–output stream management

		12.1.1 Reading from files

		12.1.2 Reading from the terminal

		12.1.3 Writing to files

		12.1.4 Wrapping lines in output

		12.1.5 Constant input–output streams, and variables

		12.1.6 Primitive conditionals

		12.2 File operations

		12.2.1 Basic file operations

		12.2.2 Information about files and file contents

		12.2.3 Accessing file contents

		13 The l3luatex module: LuaTeX-specific functions

		13.1 Breaking out to Lua

		13.2 Lua interfaces

		14 The l3legacy module: Interfaces to legacy concepts

		IV Data types

		15 The l3tl module: Token lists

		15.1 Creating and initialising token list variables

		15.2 Adding data to token list variables

		15.3 Token list conditionals

		15.3.1 Testing the first token

		15.4 Working with token lists as a whole

		15.4.1 Using token lists

		15.4.2 Counting and reversing token lists

		15.4.3 Viewing token lists

		15.5 Manipulating items in token lists

		15.5.1 Mapping over token lists

		15.5.2 Head and tail of token lists

		15.5.3 Items and ranges in token lists

		15.5.4 Sorting token lists

		15.6 Manipulating tokens in token lists

		15.6.1 Replacing tokens

		15.6.2 Reassigning category codes

		15.7 Constant token lists

		15.8 Scratch token lists

		16 The l3tl-build module: Piecewise tl constructions

		16.1 Constructing <tl~var> by accumulation

		17 The l3str module: Strings

		17.1 Creating and initialising string variables

		17.2 Adding data to string variables

		17.3 String conditionals

		17.4 Mapping over strings

		17.5 Working with the content of strings

		17.6 Modifying string variables

		17.7 String manipulation

		17.8 Viewing strings

		17.9 Constant strings

		17.10 Scratch strings

		18 The l3str-convert module: String encoding conversions

		18.1 Encoding and escaping schemes

		18.2 Conversion functions

		18.3 Conversion by expansion (for PDF contexts)

		18.4 Possibilities, and things to do

		19 The l3quark module: Quarks and scan marks

		19.1 Quarks

		19.2 Defining quarks

		19.3 Quark tests

		19.4 Recursion

		19.4.1 An example of recursion with quarks

		19.5 Scan marks

		20 The l3seq module: Sequences and stacks

		20.1 Creating and initialising sequences

		20.2 Appending data to sequences

		20.3 Recovering items from sequences

		20.4 Recovering values from sequences with branching

		20.5 Modifying sequences

		20.6 Sequence conditionals

		20.7 Mapping over sequences

		20.8 Using the content of sequences directly

		20.9 Sequences as stacks

		20.10 Sequences as sets

		20.11 Constant and scratch sequences

		20.12 Viewing sequences

		21 The l3int module: Integers

		21.1 Integer expressions

		21.2 Creating and initialising integers

		21.3 Setting and incrementing integers

		21.4 Using integers

		21.5 Integer expression conditionals

		21.6 Integer expression loops

		21.7 Integer step functions

		21.8 Formatting integers

		21.9 Converting from other formats to integers

		21.10 Random integers

		21.11 Viewing integers

		21.12 Constant integers

		21.13 Scratch integers

		21.14 Direct number expansion

		21.15 Primitive conditionals

		22 The l3flag module: Expandable flags

		22.1 Setting up flags

		22.2 Expandable flag commands

		23 The l3clist module: Comma separated lists

		23.1 Creating and initialising comma lists

		23.2 Adding data to comma lists

		23.3 Modifying comma lists

		23.4 Comma list conditionals

		23.5 Mapping over comma lists

		23.6 Using the content of comma lists directly

		23.7 Comma lists as stacks

		23.8 Using a single item

		23.9 Viewing comma lists

		23.10 Constant and scratch comma lists

		24 The l3token module: Token manipulation

		24.1 Creating character tokens

		24.2 Manipulating and interrogating character tokens

		24.3 Generic tokens

		24.4 Converting tokens

		24.5 Token conditionals

		24.6 Peeking ahead at the next token

		24.7 Description of all possible tokens

		25 The l3prop module: Property lists

		25.1 Creating and initialising property lists

		25.2 Adding and updating property list entries

		25.3 Recovering values from property lists

		25.4 Modifying property lists

		25.5 Property list conditionals

		25.6 Recovering values from property lists with branching

		25.7 Mapping over property lists

		25.8 Viewing property lists

		25.9 Scratch property lists

		25.10 Constants

		26 The l3skip module: Dimensions and skips

		26.1 Creating and initialising dim variables

		26.2 Setting dim variables

		26.3 Utilities for dimension calculations

		26.4 Dimension expression conditionals

		26.5 Dimension expression loops

		26.6 Dimension step functions

		26.7 Using dim expressions and variables

		26.8 Viewing dim variables

		26.9 Constant dimensions

		26.10 Scratch dimensions

		26.11 Creating and initialising skip variables

		26.12 Setting skip variables

		26.13 Skip expression conditionals

		26.14 Using skip expressions and variables

		26.15 Viewing skip variables

		26.16 Constant skips

		26.17 Scratch skips

		26.18 Inserting skips into the output

		26.19 Creating and initialising muskip variables

		26.20 Setting muskip variables

		26.21 Using muskip expressions and variables

		26.22 Viewing muskip variables

		26.23 Constant muskips

		26.24 Scratch muskips

		26.25 Primitive conditional

		27 The l3keys module: Key–value interfaces

		27.1 Creating keys

		27.2 Sub-dividing keys

		27.3 Choice and multiple choice keys

		27.4 Key usage scope

		27.5 Setting keys

		27.6 Handling of unknown keys

		27.7 Selective key setting

		27.8 Digesting keys

		27.9 Utility functions for keys

		27.10 Low-level interface for parsing key–val lists

		28 The l3intarray module: Fast global integer arrays

		28.1 Creating and initialising integer array variables

		28.2 Adding data to integer arrays

		28.3 Counting entries in integer arrays

		28.4 Using a single entry

		28.5 Integer array conditional

		28.6 Viewing integer arrays

		28.7 Implementation notes

		29 The l3fp module: Floating points

		29.1 Creating and initialising floating point variables

		29.2 Setting floating point variables

		29.3 Using floating points

		29.4 Floating point conditionals

		29.5 Floating point expression loops

		29.6 Symbolic expressions

		29.7 User-defined functions

		29.8 Some useful constants, and scratch variables

		29.9 Scratch variables

		29.10 Floating point exceptions

		29.11 Viewing floating points

		29.12 Floating point expressions

		29.12.1 Input of floating point numbers

		29.12.2 Precedence of operators

		29.12.3 Operations

		29.13 Disclaimer and roadmap

		30 The l3fparray module: Fast global floating point arrays

		30.1 Creating and initialising floating point array variables

		30.2 Adding data to floating point arrays

		30.3 Counting entries in floating point arrays

		30.4 Using a single entry

		30.5 Floating point array conditional

		31 The l3bitset module: Bitsets

		31.1 Creating bitsets

		31.2 Setting and unsetting bits

		31.3 Using bitsets

		32 The l3cctab module: Category code tables

		32.1 Creating and initialising category code tables

		32.2 Using category code tables

		32.3 Category code table conditionals

		32.4 Constant and scratch category code tables

		V Text manipulation

		33 The l3unicode module: Unicode support functions

		34 The l3text module: Text processing

		34.1 Expanding text

		34.2 Case changing

		34.3 Removing formatting from text

		34.4 Control variables

		34.5 Mapping to graphemes

		VI Typesetting

		35 The l3box module: Boxes

		35.1 Creating and initialising boxes

		35.2 Using boxes

		35.3 Measuring and setting box dimensions

		35.4 Box conditionals

		35.5 The last box inserted

		35.6 Constant boxes

		35.7 Scratch boxes

		35.8 Viewing box contents

		35.9 Boxes and color

		35.10 Horizontal mode boxes

		35.11 Vertical mode boxes

		35.12 Using boxes efficiently

		35.13 Affine transformations

		35.14 Viewing part of a box

		35.15 Primitive box conditionals

		36 The l3coffins module: Coffin code layer

		36.1 Creating and initialising coffins

		36.2 Setting coffin content and poles

		36.3 Coffin affine transformations

		36.4 Joining and using coffins

		36.5 Measuring coffins

		36.6 Coffin diagnostics

		36.7 Constants and variables

		37 The l3color module: Color support

		37.1 Color in boxes

		37.2 Color models

		37.3 Color expressions

		37.4 Named colors

		37.5 Selecting colors

		37.6 Colors for fills and strokes

		37.6.1 Coloring math mode material

		37.7 Multiple color models

		37.8 Exporting color specifications

		37.9 Creating new color models

		37.9.1 Color profiles

		38 The l3pdf module: Core PDF support

		38.1 Objects

		38.1.1 Named objects

		38.1.2 Indexed objects

		38.1.3 General functions

		38.2 Version

		38.3 Page (media) size

		38.4 Compression

		38.5 Destinations

		Index

		Symbols

		A

		B

		C

		D

		E

		F

		G

		H

		I

		K

		L

		M

		N

		O

		P

		Q

		R

		S

		T

		U

		V

The LATEX3 kernel: style guide for code authors
The LATEX Project∗

Released 2024-05-08

Contents
1 Introduction 1

2 Documentation style 1

3 Format of the code itself 2

4 Code conventions 3

5 Private and internal functions 3
5.1 Access from other modules . 4
5.2 Access to primitives . 4

6 Auxiliary functions 4

7 Functions with ‘weird’ arguments 5

1 Introduction
This document is intended as a style guide for authors of code and documentation for
the LATEX3 kernel. It covers both aspects of coding style and the formatting of the
sources. The aim of providing these guidelines is help ensure consistency of the code
and sources from different authors. Experience suggests that in the long-term this helps
with maintenance. There will of course be places where there are exceptions to these
guidelines: common sense should always be applied!

2 Documentation style
LATEX3 source and documentation should be written using the document class l3doc in
dtx format. This class provides a number of logical mark up elements, which should be
used where possible. In the main, this is standard LATEX practice, but there are a few
points to highlight:

• Where possible, use \cs to mark up control sequences rather than using a verbatim
environment.

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

• Arguments which are given in braces should be marked using \Arg when code-level
functions are discussed, but using \marg for document functions.

• The names TEX, LATEX, etc. use the normal logical mark up followed by an empty
group ({}), with the exception of \LaTeX3, where the number should follow directly.

• Where in line verbatim text is used, it should be marked up using the |...|
construct (i.e. vertical bars delimit the verbatim text).

• In line quotes should be marked up using the \enquote function.

• Where numbers in the source have a mathematical meaning, they should be in-
cluded in math mode. Such in-line math mode material should be marked up using
$...$ and not \(...\).

Line length in the source files should be under 80 characters where possible, as this
helps keep everything on the screen when editing files. In the dtx format, documentation
lines start with a %, which is usually followed by a space to leave a “comment margin” at
the start of each line.

As with code indenting (see later), nested environments and arguments should be
indented by (at least) two spaces to make the nature of the nesting clear. Thus for
example a typical arrangement for the function environment might be

\begin{function}{\seq_gclear:N,␣\seq_gclear:c}
␣␣\begin{syntax}
␣␣␣␣\cs{seq_gclear:N}␣\meta{sequence}
␣␣\end{syntax}
␣␣Clears␣all␣entries␣from␣the␣\meta{sequence}␣globally.
\end{function}

The “outer” %␣\begin{function} should have the customary space after the % character
at the start of the line.

In general, a single function or macro environment should be used for a group of
closely-related functions, for example argument specification variants. In such cases, a
comma-separated list should be used, as shown in the preceding example.

3 Format of the code itself
The requirement for fewer than 80 characters per line applies to the code itself as well
as the surrounding documentation. A number of the general style principles for LATEX3
code apply: these are described in the following paragraph and an example is then given.

With the exception of simple runs of parameter ({#1}, #1#2, etc.), everything should
be divided up using spaces to make the code more readable. In general, these will be single
spaces, but in some places it makes more sense to align parts of the code to emphasise
similarity. (Tabs should not be used for introducing white space.)

Each conceptually-separate step in a function should be on a separate line, to make
the meaning clearer. Hence the false branch in the example uses two lines for the two
auxiliary function uses.

Within the definition, a two-space indent should be used to show each “level” of
code. Thus in the example \tl_if_empty:nTF is indented by two spaces, but the two
branches are indented by four spaces. Within the false branch, the need for multiple

2

lines means that an additional two-space indent should be used to show that these lines
are all part of the brace group.

The result of these lay-out conventions is code which in general looks like the exam-
ple:

\cs_new:Npn␣\module_foo:nn␣#1#2
␣␣{
␣␣␣␣\tl_if_empty:nTF␣{#1}
␣␣␣␣␣␣{␣\module_foo_aux:n␣{␣X␣#2␣}␣}
␣␣␣␣␣␣{
␣␣␣␣␣␣␣␣\module_foo_aux:nn␣{#1}␣{#2}
␣␣␣␣␣␣␣␣\module_foo_aux:n␣{␣#1␣#2␣}
␣␣␣␣␣␣}
␣␣}

4 Code conventions
All code-level functions should be “long” if they accept any arguments, even if it seems
“very unlikely” that a \par token will be passed. Thus \cs_new_nopar:Npn and so forth
should only be used to create interfaces at the document level (where trapping \par
tokens may be appropriate) or where comparison to other code known not to be “long”
is required (e.g. when working with mixed LATEX 2ε/expl3 situations).

The expandability of each function should be well-defined. Functions which cannot
be fully expanded must be protected. This means that expandable functions must
themselves only contain expandable material. Functions which use any non-expandable
material must be defined using \cs_new_protected:Npn or similar.

When using \cs_generate_variant:Nn, group related variants together to make
the pattern clearer. A common example is variants of a function which has an N-type
first argument:

\cs_generate_variant:Nn \foo:Nn { NV , No }
\cs_generate_variant:Nn \foo:Nn { c , cV , co }

There may be cases where omitting braces from o-type arguments is desirable for
performance reasons. This should only be done if the argument is a single token, thus
for example

\tl_set:No \l_some_tl \l_some_other_tl

remains clear and can be used where appropriate.

5 Private and internal functions
Private functions (those starting __) should not be used between modules. The only ex-
ception is where a “family” of modules share some “internal” methods: this happens most
obviously in the kernel itself. Any internal functions or variables must be documented in
the same way as public ones.

The DocStrip method should be used for internal functions in a module. This requires
a line

%<@@=⟨module⟩>

3

at the start of the source (.dtx) file, with internal functions then written in the form

\cs_new_protected:Npn \@@_function:nn #1#2
...

5.1 Access from other modules
There may be cases where it is useful to use an internal function from a third-party
module (this includes cases where you are the author of both but they are not part of the
same “family”). In these cases, you should copy the definition of the internal function
to your code: this avoids relying on non-documented interfaces. At the same time, it
is strongly encouraged that you discuss your requirements with the author of the code
you need to access. The best long-term solution to these cases is for new documented
interfaces to be added to the parent module.

5.2 Access to primitives
As expl3 is still a developing system, there are places where direct access to engine
primitives is required. These are all marked as “do not use” in the code and so require
special handling. Where a programmer is sure that they need to use a primitive (for
example where the team have not yet covered access to an area) then a local copy of the
primitive should be made, for example

\cs_new_eq:NN __module_message:w \tex_message:D
% ...
\cs_new_protected:Npn __module_fancy_msg:n #1
{ __module_message:w { *** #1 *** } }

This approach makes it possible for the team and others to find such usage (by searching
for the :D argument type) but avoids multiple uses in general code.

At the same time, the team ask that these use cases are raised on the LaTeX-L
mailing list. The team are keen to collect use cases for areas that have not yet been
addressed and to provide new code where the required interfaces become clear.

Programmers using primitives should be ready to make updates to their code as the
team develop additional interfaces.

6 Auxiliary functions
In general, the team encourages the use of descriptive names in LATEX3 code. Thus many
helper functions would have names which describe briefly what they do, rather than
simply indicating that they are auxiliary to some higher-level function. However, there
are places where one or more aux functions are required. Where possible, these should
be differentiated by signature

\cs_new_protected:Npn \@@_function:nn #1#2
{
...

}
\cs_new_protected:Npn \@@_function_aux:nn #1#2
{
...

4

}
\cs_new_protected:Npn \@@_function_aux:w #1#2 \q_stop
{
...

}

Where more than one auxiliary shares the same signature, the recommended naming
scheme is auxi, auxii and so on.

\cs_new_protected:Npn \@@_function_auxi:nn #1#2
{
...

}
\cs_new_protected:Npn \@@_function_auxii:nn #1#2
{
...

}

The use of aux_i, aux_ii, etc. is discouraged as this conflicts with the convention used
by \use_i:nn and related functions.

7 Functions with ‘weird’ arguments
When defining commands that do not follow the usual convention of accepting arguments
as single-tokens or braced-text, the w argument specifier is used to denote that the func-
tion signature cannot fully describe the syntax. Two examples from the LATEX3 kernel
are:

\use_none_delimit_by_q_stop:w ⟨ text ⟩ \q_stop
\use_i_delimit_by_q_stop:nw {⟨ arg ⟩} ⟨ text ⟩ \q_stop

More complex definitions are possible if commands are to parse tokens, such as the
internal kernel command

\cs_new_protected:Npn __clist_get:wN #1 , #2 \q_stop #3
{ \tl_set:Nn #3 {#1} }

When the w specifier is being used, it is encouraged not to try and complicate the rest
of the signature too much—for example, it would be considered poor style to have a
function with a signature like \foo_bar:wnw unless there were very clear reasons of code
clarity. A signature such as :ww would certainly be discouraged.

Examining the examples above, it can be seen that there are scenarios in which it
may make logical sense for having a signature such as :wN or :nw, but when in doubt the
recommended approach is to simply use :w as a catch-all.

5

		Contents

		1 Introduction

		2 Documentation style

		3 Format of the code itself

		4 Code conventions

		5 Private and internal functions

		5.1 Access from other modules

		5.2 Access to primitives

		6 Auxiliary functions

		7 Functions with `weird' arguments

The expl3 package and LATEX3 programming
The LATEX Project∗

Released 2024-05-08

Abstract
This document gives an introduction to a new set of programming conventions

that have been designed to meet the requirements of implementing large scale TEX
macro programming projects such as LATEX. These programming conventions are
the base layer of LATEX3.
The main features of the system described are:

• classification of the macros (or, in LATEX terminology, commands) into LATEX
functions and LATEX parameters, and also into modules containing related
commands;

• a systematic naming scheme based on these classifications;
• a simple mechanism for controlling the expansion of a function’s arguments.

This system is being used as the basis for TEX programming within The LATEX
Project. Note that the language is not intended for either document mark-up or
style specification. Instead, it is intended that such features will be built on top of
the conventions described here.
This document is an introduction to the ideas behind the expl3 programming inter-
face. For the complete documentation of the programming layer provided by The
LATEX Project, see the accompanying interface3 document.

1 Introduction
The first step to develop a LATEX kernel beyond LATEX 2ε is to address how the underlying
system is programmed. Rather than the current mix of LATEX and TEX macros, the
LATEX3 system provides its own consistent interface to all of the functions needed to
control TEX. A key part of this work is to ensure that everything is documented, so that
LATEX programmers and users can work efficiently without needing to be familiar with
the internal nature of the kernel or with plain TEX.

The expl3 bundle provides this new programming interface for LATEX. To make
programming systematic, LATEX3 uses some very different conventions to LATEX 2ε or
plain TEX. As a result, programmers starting with LATEX3 need to become familiar with
the syntax of the new language.

The next section shows where this language fits into a complete TEX-based document
processing system. We then describe the major features of the syntactic structure of
command names, including the argument specification syntax used in function names.

The practical ideas behind this argument syntax will be explained, together with the
expansion control mechanism and the interface used to define variant forms of functions.

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

As we shall demonstrate, the use of a structured naming scheme and of variant forms
for functions greatly improves the readability of the code and hence also its reliability.
Moreover, experience has shown that the longer command names which result from the
new syntax do not make the process of writing code significantly harder.

2 Languages and interfaces
It is possible to identify several distinct languages related to the various interfaces that
are needed in a TEX-based document processing system. This section looks at those we
consider most important for the LATEX3 system.

Document mark-up This comprises those commands (often called tags) that are to
embedded in the document (the .tex file).
It is generally accepted that such mark-up should be essentially declarative. It may
be traditional TEX-based mark-up such as LATEX 2ε, as described in [3] and [2], or
a mark-up language defined via html or xml.
One problem with more traditional TEX coding conventions (as described in [1])
is that the names and syntax of TEX’s primitive formatting commands are inge-
niously designed to be “natural” when used directly by the author as document
mark-up or in macros. Ironically, the ubiquity (and widely recognised superiority)
of logical mark-up has meant that such explicit formatting commands are almost
never needed in documents or in author-defined macros. Thus they are used al-
most exclusively by TEX programmers to define higher-level commands, and their
idiosyncratic syntax is not at all popular with this community. Moreover, many of
them have names that could be very useful as document mark-up tags were they
not pre-empted as primitives (e.g. \box or \special).

Designer interface This relates a (human) typographic designer’s specification for a
document to a program that “formats the document”. It should ideally use a
declarative language that facilitates expression of the relationship and spacing rules
specified for the layout of the various document elements.
This language is not embedded in document text and it will be very different in form
to the document mark-up language. For LATEX, this level was almost completely
missing from LATEX2.09; LATEX 2ε made some improvements in this area but it is
still the case that implementing a design specification in LATEX requires far more
“low-level” coding than is acceptable.

Programmer interface This language is the implementation language within which
the basic typesetting functionality is implemented, building upon the primitives of
TEX (or a successor program). It may also be used to implement the previous two
languages “within” TEX, as in the current LATEX system.

The last layer is covered by the conventions described in this document, which de-
scribes a system aimed at providing a suitable basis for coding LATEX3. Its main distin-
guishing features are summarised here:

• A consistent naming scheme for all commands, including TEX primitives.

• The classification of commands as LATEX functions or LATEX parameters, and also
their division into modules according to their functionality.

2

• A simple mechanism for controlling argument expansion.

• Provision of a set of core LATEX functions that is sufficient for handling programming
constructs such as queues, sets, stacks, property lists.

• A TEX programming environment in which, for example, all white space is ignored.

3 The naming scheme
LATEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols
_ and : are used in internal macro names to provide structure. In contrast to the plain
TEX format and the LATEX 2ε kernel, these extra letters are used only between parts of a
macro name (no strange vowel replacement).

While TEX is actually a macro processor, by convention for the expl3 programming
language we distinguish between functions and variables. Functions can have arguments
and they are either expanded or executed. Variables can be assigned values and they
are used in arguments to functions; they are not used directly but are manipulated
by functions (including getting and setting functions). Functions and variables with a
related functionality (for example accessing counters, or manipulating token lists, etc.)
are collected together into a module.

3.1 Examples
Before giving the details of the naming scheme, here are a few typical examples to indicate
the flavour of the scheme; first some variable names.

\l_tmpa_box is a local variable (hence the l_ prefix) corresponding to a box
register.
\g_tmpa_int is a global variable (hence the g_ prefix) corresponding to an
integer register (i.e. a TEX count register).
\c_empty_tl is the constant (c_) token list variable that is always empty.

Now here is an example of a typical function name.
\seq_push:Nn is the function which puts the token list specified by its second ar-

gument onto the stack specified by its first argument. The different natures of the two
arguments are indicated by the :Nn suffix. The first argument must be a single token
which “names” the stack parameter: such single-token arguments are denoted N. The
second argument is a normal TEX “undelimited argument”, which may either be a single
token or a balanced, brace-delimited token list (which we shall here call a braced token
list): the n denotes such a “normal” argument form. The name of the function indicates
it belongs to the seq module.

3.2 Formal naming syntax
We shall now look in more detail at the syntax of these names. A function name in
LATEX3 has a name consisting of three parts:

\⟨module⟩_⟨description⟩:⟨arg-spec⟩

while a variable has (up to) four distinct parts to its name:

\⟨scope⟩_⟨module⟩_⟨description⟩_⟨type⟩

3

The syntax of all names contains

⟨module⟩ and ⟨description⟩

these both give information about the command.
A module is a collection of closely related functions and variables. Typical module

names include int for integer parameters and related functions, seq for sequences and box
for boxes.

Packages providing new programming functionality will add new modules as needed;
the programmer can choose any unused name, consisting of letters only, for a module.
In general, the module name and module prefix should be related: for example, the
kernel module containing box functions is called l3box. Module names and programmers’
contact details are listed in l3prefixes.csv.

The description gives more detailed information about the function or parameter,
and provides a unique name for it. It should consist of letters and, possibly, _ characters.
In general, the description should use _ to divide up “words” or other easy to follow parts
of the name. For example, the LATEX3 kernel provides \if_cs_exist:N which, as might
be expected, tests if a command name exists.

Where functions for variable manipulation can perform assignments either locally
or globally, the latter case is indicated by the inclusion of a g in the second part of
the function name. Thus \tl_set:Nn is a local function but \tl_gset:Nn acts globally.
Functions of this type are always documented together, and the scope of action may
therefore be inferred from the presence or absence of a g. See the next subsection for
more detail on variable scope.

3.2.1 Separating private and public material

One of the issues with the TEX language is that it doesn’t support name spaces and
encapsulation other than by convention. As a result nearly every internal command in
the LATEX 2ε kernel has eventually be used by extension packages as an entry point for
modifications or extensions. The consequences of this is that nowadays it is next to
impossible to change anything in the LATEX 2ε kernel (even if it is clearly just an internal
command) without breaking something.

In expl3 we hope to improve this situation drastically by clearly separating pub-
lic interfaces (that extension packages can use and rely on) and private functions and
variables (that should not appear outside of their module). There is (nearly) no way
to enforce this without severe computing overhead, so we implement it only through a
naming convention, and some support mechanisms. However, we think that this naming
convention is easy to understand and to follow, so that we are confident that this will
adopted and provides the desired results.

Functions created by a module may either be “public” (documented with a defined
interface) or “private” (to be used only within that module, and thus not formally doc-
umented). It is important that only documented interfaces are used; at the same time,
it is necessary to show within the name of a function or variable whether it is public or
private.

To allow clear separation of these two cases, the following convention is used. To
denote a private function or a private variable (of the module), two _ characters are used
in front of the module name, e.g.

\module_foo:nnn

is a public function which should be documented while

4

__module_foo:nnn

is private to the module, and should not be used outside of that module.
For variables, to avoid three _ in a row, the separator for the variable scope and any

leading _ for a private interface in the module part are combined. Thus

\l_module_foo_tl

is a public variable and

\l__module_foo_tl

is private.

3.2.2 Using @@ and DocStrip to mark private code

The formal syntax for internal functions allows clear separation of public and private
code, but includes redundant information (every internal function or variable includes
__⟨module⟩). To aid programmers, the DocStrip program introduces the syntax

%<@@=⟨module⟩>

which then allows @@ (and _@@ in case of variables) to be used as a place holder for
__⟨module⟩ in code. Thus for example

%<@@=foo>
% \begin{macrocode}
\cs_new:Npn \@@_function:n #1

...
\tl_new:N \l_@@_my_tl
% \end{macrocode}

is converted by DocStrip to

\cs_new:Npn __foo_function:n #1
...

\tl_new:N \l__foo_my_tl

on extraction. As you can see both _@@ and @@ are mapped to __⟨module⟩, because we
think that this helps to distinguish variables from functions in the source when the @@
convention is used.

3.2.3 Variables: declaration

In well-formed expl3 code, variables should always be declared before assignment is at-
tempted. This is true even for variable types where the underlying TEX implementation
will allow direct assignment. This applies both to setting directly (\tl_set:Nn, etc.)
and to setting equal (\tl_set_eq:NN, etc.).

To help programmers to adhere to this approach, the debugging option check-declarations
may be given

\debug_on:n { check-declarations }

and will issue an error whenever an assignment is made to a non-declared variable. There
is a performance implication, so this option should only be used for testing.

5

3.2.4 Variables: scope and type

The ⟨scope⟩ part of the name describes how the variable can be accessed. Variables are
classified as local, global or constant. This scope type appears as a code at the beginning
of the name; the codes used are:

c constants (global variables whose value should not be changed);

g variables whose value should only be set globally;

l variables whose value should only be set locally.

Separate functions are provided to assign data to local and global variables; for
example, \tl_set:Nn and \tl_gset:Nn respectively set the value of a local or global
“token list” variable. Note that it is a poor TEX practice to intermix local and global
assignments to a variable; otherwise you risk exhausting the save stack.1

The ⟨type⟩ is in the list of available data-types;2 these include the primitive TEX
data-types, such as the various registers, but to these are added data-types built within
the LATEX programming system.

The data types in LATEX3 are:

bitset a string of bits (0 and 1 tokens) that are accessed by position or by name;

bool either true or false (the LATEX3 implementation does not use \iftrue or \iffalse);

box box register;

cctab category code table;

clist comma separated list;

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations;

dim “rigid” lengths;

fp floating-point values;

fparray fixed-size vector of floating-point values;

int integer-valued count register;

intarray fixed-size vector of integer values;

ior an input stream (for reading from a file);

iow an output stream (for writing to a file);

muskip math mode “rubber” lengths;

prop property list;

regex regular expression;

seq sequence: a data-type used to implement lists (with access at both ends) and stacks;
1See The TEXbook, p. 301, for further information.
2Of course, if a totally new data type is needed then this will not be the case. However, it is hoped

that only the kernel team will need to create new data types.

6

skip “rubber” lengths;

str TEX strings: a special case of tl in which all characters have category “other”
(catcode 12), other than spaces which are category “space” (catcode 10);

token equal to a single arbitrary token;

tl “token list variables”: placeholders for token lists.

When the ⟨type⟩ and ⟨module⟩ are identical (as often happens in the more basic modules)
the ⟨module⟩ part is often omitted for aesthetic reasons.

The name “token list” may cause confusion, and so some background is useful. TEX
works with tokens and lists of tokens, rather than characters. It provides two ways to
store these token lists: within macros and as token registers (toks). The implementation
in LATEX3 means that toks are not required, and that all operations for storing tokens
can use the tl variable type.

Experienced TEX programmers will notice that some of the variable types listed are
native TEX registers whilst others are not. In general, the underlying TEX implementation
for a data structure may vary but the documented interface will be stable. For example,
the prop data type was originally implemented as a toks, but is currently built on top
of the tl data structure.

3.2.5 Variables: guidance

Both comma lists and sequences have similar characteristics. They both use special
delimiters to mark out one entry from the next, and are both accessible at both ends. In
general, it is easier to create comma lists ‘by hand’ as they can be typed in directly. User
input often takes the form of a comma separated list and so there are many cases where
this is the obvious data type to use. On the other hand, sequences use special internal
tokens to separate entries. This means that they can be used to contain material that
comma lists cannot (such as items that may themselves contain commas!). In general,
comma lists should be preferred for creating fixed lists inside programs and for handling
user input where commas will not occur. On the other hand, sequences should be used
to store arbitrary lists of data.

expl3 implements stacks using the sequence data structure. Thus creating stacks
involves first creating a sequence, and then using the sequence functions which work in
a stack manner (\seq_push:Nn, etc.).

Due to the nature of the underlying TEX implementation, it is possible to assign
values to token list variables and comma lists without first declaring them. However, this
is not supported behavior. The LATEX3 coding convention is that all variables must be
declared before use.

The expl3 package can be loaded with the check-declarations option to verify that
all variables are declared before use. This has a performance implication and is therefore
intended for testing during development and not for use in production documents.

3.2.6 Functions: argument specifications

Function names end with an ⟨arg-spec⟩ after a colon. This gives an indication of the
types of argument that a function takes, and provides a convenient method of nam-
ing similar functions that differ only in their argument forms (see the next section for
examples).

7

The ⟨arg-spec⟩ consists of a (possibly empty) list of letters, each denoting one
argument of the function. The letter, including its case, conveys information about the
type of argument required.

All functions have a base form with arguments using one of the following argument
specifiers:

n Unexpanded token or braced token list.
This is a standard TEX undelimited macro argument.

N Single token (unlike n, the argument must not be surrounded by braces).
A typical example of a command taking an N argument is \cs_set, in which the
command being defined must be unbraced.

p Primitive TEX parameter specification.
This can be something simple like #1#2#3, but may use arbitrary delimited argu-
ment syntax such as: #1,#2\q_stop#3. This is used when defining functions.

T,F These are special cases of n arguments, used for the true and false code in conditional
commands.

There are two other specifiers with more general meanings:

D Stands for Do not use. This special case is used for TEX primitives. These
functions have no standardized syntax, they are engine dependent and their name
can change without warning, thus their use is strongly discouraged in package code:
programmers should instead use the interfaces documented in interface3.pdf3.

w This means that the argument syntax is “weird” in that it does not follow any
standard rule. It is used for functions with arguments that take non standard
forms: examples are TEX-level delimited arguments and the boolean tests needed
after certain primitive \if. . . commands.

In case of n arguments that consist of a single token the surrounding braces can be
omitted in nearly all situations—functions that force the use of braces even for single
token arguments are explicitly mentioned. However, programmers are encouraged to
always use braces around n arguments, as this makes the relationship between function
and argument clearer.

Further argument specifiers are available as part of the expansion control system.
These are discussed in the next section.

4 Expansion control
Let’s take a look at some typical operations one might want to perform. Suppose we
maintain a stack of open files and we use the stack \g_ior_file_name_seq to keep track
of them (ior is the prefix used for the file reading module). The basic operation here is
to push a name onto this stack which could be done by the operation

\seq_gpush:Nn \g_ior_file_name_seq {#1}

3If a primitive offers a functionality not yet in the kernel, programmers and users are encouraged
to write to the LaTeX-L mailing list (mailto:LATEX-L@listserv.uni-heidelberg.de) describing their
use-case and intended behaviour, so that a possible interface can be discussed. Temporarily, while an
interface is not provided, programmers may use the procedure described in the l3styleguide.pdf.

8

mailto:LATEX-L@listserv.uni-heidelberg.de

where #1 is the filename. In other words, this operation would push the file name as is
onto the stack.

However, we might face a situation where the filename is stored in a variable of
some sort, say \l_ior_curr_file_tl. In this case we want to retrieve the value of the
variable. If we simply use

\seq_gpush:Nn \g_ior_file_name_seq \l_ior_curr_file_tl

we do not get the value of the variable pushed onto the stack, only the variable name
itself. Instead a suitable number of \exp_after:wN would be necessary (together with
extra braces) to change the order of expansion,4 i.e.

\exp_after:wN
\seq_gpush:Nn

\exp_after:wN
\g_ior_file_name_seq

\exp_after:wN
{ \l_ior_curr_file_tl }

The above example is probably the simplest case but already shows how the code
changes to something difficult to understand. Furthermore there is an assumption in
this: that the storage bin reveals its contents after exactly one expansion. Relying on
this means that you cannot do proper checking plus you have to know exactly how a
storage bin acts in order to get the correct number of expansions. Therefore LATEX3
provides the programmer with a general scheme that keeps the code compact and easy
to understand.

To denote that some argument to a function needs special treatment one just uses
different letters in the arg-spec part of the function to mark the desired behavior. In the
above example one would write

\seq_gpush:NV \g_ior_file_name_seq \l_ior_curr_file_tl

to achieve the desired effect. Here the V (the second argument) is for “retrieve the value
of the variable” before passing it to the base function.

The following letters can be used to denote special treatment of arguments before
passing it to the base function:

c Character string used as a command name.
The argument (a token or braced token list) is fully expanded; the result must
be a sequence of characters which is then used to construct a command name
(via \csname . . . \endcsname). This command name is a single token that is passed
to the function as the argument. Hence

\seq_gpush:cV { g_file_name_seq } \l_tmpa_tl

is equivalent to

\seq_gpush:NV \g_file_name_seq \l_tmpa_tl.

Full expansion means that (a) the entire argument must be expandable and (b)
any variables are converted to their content. So the preceding examples are also
equivalent to

4\exp_after:wN is the LATEX3 name for the TEX \expandafter primitive.

9

\tl_new:N \g_file_seq_name_tl
\tl_gset:Nn \g_file_seq_name_tl { g_file_name_seq }
\seq_gpush:cV { \tl_use:N \g_file_seq_name_tl } \l_tmpa_tl.

(Token list variables are expandable and we could omit the accessor function \tl_-
use:N. Other variable types require the appropriate \⟨var⟩_use:N functions to be
used in this context.)

V Value of a variable.
This means that the contents of the register in question is used as the argument,
be it an integer, a length-type register, a token list variable or similar. The value
is passed to the function as a braced token list. Can be applied to variables which
have a \⟨var⟩_use:N function (other than boxes), and which therefore deliver a
single “value”.

v Value of a register, constructed from a character string used as a command name.
This is a combination of c and V which first constructs a control sequence from the
argument and then passes the value of the resulting register to the function. Can
be applied to variables which have a \⟨var⟩_use:N function (other than boxes),
and which therefore deliver a single “value”.

e Fully-expanded token or braced token list.
This means that the argument is expanded as in the replacement text of a \message,
and the expansion is passed to the function as a braced token list.

o One-level-expanded token or braced token list.
This means that the argument is expanded one level, as by \expandafter, and the
expansion is passed to the function as a braced token list. Note that if the original
argument is a braced token list then only the first token in that list is expanded.
In general, using V should be preferred to using o for simple variable retrieval.

f Expanding the first token recursively in a braced token list.
Almost the same as the e type except here the token list is expanded fully until the
first unexpandable token is found and the rest is left unchanged. Note that if this
function finds a space at the beginning of the argument it gobbles it and does not
expand the next token.

x Fully-expanded token or braced token list.
This expansion is very similar to e-type but is not nestable, can only be used to
create non-expandable functions, and requires that # tokens are doubled in the
argument. In almost all cases, e-type should be preferred: retained largely for
historical reasons, and should where possible be replaced by the e-type equivalent.

4.1 Simpler means better
Anyone who programs in TEX is frustratingly familiar with the problem of arranging that
arguments to functions are suitably expanded before the function is called. To illustrate
how expansion control can bring instant relief to this problem we shall consider two
examples copied from latex.ltx.

\global\expandafter\let
\csname\cf@encoding \string#1\expandafter\endcsname
\csname ?\string#1\endcsname

10

This first piece of code is in essence simply a global \let whose two arguments firstly
have to be constructed before \let is executed. The #1 is a control sequence name such
as \textcurrency. The token to be defined is obtained by concatenating the characters
of the current font encoding stored in \cf@encoding, which has to be fully expanded,
and the name of the symbol. The second token is the same except it uses the default
encoding ?. The result is a mess of interwoven \expandafter and \csname beloved of
all TEX programmers, and the code is essentially unreadable.

Using the conventions and functionality outlined here, the task would be achieved
with code such as this:

\cs_gset_eq:cc
{ \cf@encoding \token_to_str:N #1 } { ? \token_to_str:N #1 }

The command \cs_gset_eq:cc is a global \let that generates command names out of
both of its arguments before making the definition. This produces code that is far more
readable and more likely to be correct first time. (\token_to_str:N is the LATEX3 name
for \string.)

Here is the second example.

\expandafter
\in@

\csname sym#3%
\expandafter

\endcsname
\expandafter

{%
\group@list}%

This piece of code is part of the definition of another function. It first produces two
things: a token list, by expanding \group@list once; and a token whose name comes
from ‘sym#3’. Then the function \in@ is called and this tests if its first argument occurs
in the token list of its second argument.

Again we can improve enormously on the code. First we shall rename the func-
tion \in@, which tests if its first argument appears within its second argument, according
to our conventions. Such a function takes two normal “n” arguments and operates on
token lists: it might reasonably be named \tl_test_in:nn. Thus the variant function
we need would be defined with the appropriate argument types and its name would be
\tl_test_in:cV. Now this code fragment would be simply:

\tl_test_in:cV { sym #3 } \group@list

This code could be improved further by using a sequence \l_group_seq rather than the
bare token list \group@list. Note that, in addition to the lack of \expandafter, the
space after the } is silently ignored since all white space is ignored in this programming
environment.

4.2 New functions from old
For many common functions the LATEX3 kernel provides variants with a range of argument
forms, and similarly it is expected that extension packages providing new functions will
make them available in all the commonly needed forms.

11

However, there will be occasions where it is necessary to construct a new such vari-
ant form; therefore the expansion module provides a straightforward mechanism for the
creation of functions with any required argument type, starting from a function that
takes “normal” TEX undelimited arguments.

To illustrate this let us suppose you have a “base function” \demo_cmd:Nnn that takes
three normal arguments, and that you need to construct the variant \demo_cmd:cne, for
which the first argument is used to construct the name of a command, whilst the third
argument must be fully expanded before being passed to \demo_cmd:Nnn. To produce
the variant form from the base form, simply use this:

\cs_generate_variant:Nn \demo_cmd:Nnn { cne }

This defines the variant form so that you can then write, for example:

\demo_cmd:cne { abc } { pq } { \rst \xyz }

rather than . . . well, something like this!

\def \tempa {{pq}}%
\edef \tempb {\rst \xyz}%
\expandafter

\demo@cmd:nnn
\csname abc%

\expandafter
\expandafter

\expandafter
\endcsname

\expandafter
\tempa

\expandafter
{%

\tempb
}%

Another example: you may wish to declare a function \demo_cmd_b:enene, a variant
of an existing function \demo_cmd_b:nnnnn, that fully expands arguments 1, 3 and 5,
and produces commands to pass as arguments 2 and 4 using \csname. The definition
you need is simply

\cs_generate_variant:Nn \demo_cmd_b:nnnnn { enene }

This extension mechanism is written so that if the same new form of some existing
command is implemented by two extension packages then the two definitions are identical
and thus no conflict occurs.

5 The distribution
The expl3 modules are designed to be loaded on top of LATEX 2ε.

The core expl3 language is broadly stable, and thus the syntax conventions
and functions provided are now ready for wider use. There may still be
changes to some functions, but these will be minor when compared to the
scope of expl3. A robust mechanism is in place for such deprecations.

12

The distribution of expl3 is split up into three packages on CTAN: l3kernel, l3packages
and l3experimental. The core programming layer provided by l3kernel has been loaded as
part of the LATEX since 2020-02-02. For historical reasons, in older kernel releases

\RequirePackage{expl3}

loads the code distributed as l3kernel. This monolithic package contains all of the modules
regarded by the team as stable, and any changes in this code are very limited. This ma-
terial is therefore suitable for use in third-party packages without concern about changes
in support. All of this code is documented in interface3.pdf.

The material in l3packages is also stable; this bundle provides user-level commands,
some of which have been integrated in the LATEX kernel.

Finally, l3experimental contains modules ready for public use but not yet integrated
into l3kernel. These modules have to be loaded explicitly. The team anticipate that all
of these modules will move to stable status over time, but they may be more flexible
in terms of interface and functionality detail. Feedback on these modules is extremely
valuable.

6 Moving from LATEX 2ε to expl3
To help programmers to use expl3 code in existing LATEX 2ε package, some short notes on
making the change are probably desirable. Suggestions for inclusion here are welcome!
Some of the following is concerned with code, and some with coding style.

• expl3 is mainly focused on programming. This means that some areas still re-
quire the use of LATEX 2ε internal macros. For example, you may well need
\IfPackageLoadedTF, as there is currently no native expl3 package loading module.

• User level macros should be generated using the mechanism available in the ltcmd
module, which is part of the the LATEX kernel since 2020-10-01.

• At an internal level, most functions should be generated \long (using \cs_new:Npn)
rather than “short” (using \cs_new_nopar:Npn).

• Where possible, declare all variables and functions (using \cs_new:Npn, \tl_new:N,
etc.) before use.

• Prefer “higher-level” functions over “lower-level”, where possible. So for example
use \cs_if_exist:NTF and not \if_cs_exist:N.

• Use space to make code readable. In general, we recommend a layout such as:

\cs_new:Npn \foo_bar:Nn #1#2
{

\cs_if_exist:NTF #1
{ __foo_bar:n {#2} }
{ __foo_bar:nn {#2} { literal } }

}

where spaces are used around { and } except for isolated #1, #2, etc.

• Put different code items on separate lines: readability is much more useful than
compactness.

13

• Use long, descriptive names for functions and variables, and for auxiliary functions
use the parent function name plus aux, auxi, auxii and so on.

• If in doubt, ask the team via the LaTeX-L list: someone will soon get back to you!

7 Load-time options for expl3
To support code authors, the expl3 package for LATEX 2ε includes a small number of load-
time options. These all work in a key–value sense, recognising the true and false values.
Giving the option name alone is equivalent to using the option with the true value.

All variables used in expl3 code should be declared. This is enforced by TEX for vari-check-declarations
able types based on TEX registers, but not for those which are constructed using macros
as the underlying storage system. The check-declarations option enables checking
for all variable assignments, issuing an error if any variables are assigned without being
initialised. See also \debug_on:n {check-declarations} in interface3 for finer control.

The log-functions option is used to enable recording of every new function name inlog-functions
the .log file. This is useful for debugging purposes, as it means that there is a complete
list of all functions created by each module loaded (with the exceptions of a very small
number required by the bootstrap code). See also \debug_on:n {log-functions} in
interface3 for finer control.

Selects the backend to be used for color, graphics and related operations that arebackend
backend-dependent. Options available are

dvips Use the dvips driver.

dvipdfmx Use the dvipdfmx driver.

dvisvgm Use the dvisvgm driver.

luatex Use the direct PDF output mode of LuaTEX

pdftex Use the direct PDF output mode of pdfTEX

xetex Use the X ETEX version of the dvipdfmx driver.

For historical reasons, there is also pdfmode as an equivalent of luatex or pdftex, and
xdvipdfmx as an equivalent to xetex, but these are deprecated

The suppress-backend-headers option suppresses loading of backend-specificsuppress-backend-headers
header files; currently this only affects dvips. This option is available to support DVI-
based routes that do not support the header line used by dvips.

The debugging options may also be given using \keys_set:nn { sys } { ... };
the backend option can be given in this way only if a backend has not already been loaded.
This method of setting options is useful where expl3 is pre-loaded by the LATEX 2ε format.

8 Using expl3 with formats other than LATEX 2ε

As well as the LATEX 2ε package expl3, there is also a “generic” loader for the code,
expl3-generic.tex. This may be loaded using the plain TEX syntax

\input expl3-generic %

14

This enables the programming layer to work with the other formats. As no options are
available loading in this way, the “native” drivers are automatically used. If this “generic”
loader is used with LATEX 2ε the code automatically switches to the appropriate package
route.

After loading the programming layer using the generic interface, the commands
\ExplSyntaxOn and \ExplSyntaxOff and the code-level functions and variables detailed
in interface3 are available. Note that other LATEX 2ε packages using expl3 are not loadable:
package loading is dependent on the LATEX 2ε package-management mechanism.

9 Getting the version of expl3

Once the programming layer is loaded by one of the loaders, you can access its version
in the ISO date format ⟨year⟩-⟨month⟩-⟨day⟩, through \ExplLoaderFileDate.

The current version of expl3 is 2024-05-08.

\ExplLoaderFileDate

10 Engine/primitive requirements
To use expl3 and the higher level packages provided by the team, the minimal set of
primitive requirements is currently described in README.md.

Practically, these requirements are met by the engines

• pdfTEX v1.40.20 or later.

• X ETEX v0.999991 or later.

• LuaTEX v1.10 or later.

• e-(u)pTEX v3.8.2 or later.

• Prote (2021) or later.

Additional modules beyond the core of expl3 may require additional primitives. In
particular, third-party authors may significantly extend the primitive coverage require-
ments.

11 The LATEX Project
Development of LATEX3 is carried out by The LATEX Project: https://www.latex-project.
org/latex3/.

References
[1] Donald E Knuth The TEXbook. Addison-Wesley, Reading, Massachusetts, 1984.

[2] Goossens, Mittelbach and Samarin. The LATEX Companion. Addison-Wesley, Read-
ing, Massachusetts, 1994.

15

README.md

https://www.latex-project.org/latex3/

https://www.latex-project.org/latex3/

[3] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[4] Frank Mittelbach and Chris Rowley. “The LATEX Project”. TUGboat, Vol. 18, No. 3,
pp. 195–198, 1997.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
⟨var⟩ commands:

\⟨var⟩_use:N 10

B
backend (option) 14
box commands:

\l_tmpa_box 3

C
check-declarations (option) 14
cs commands:

\cs_gset_eq:NN 11
\cs_if_exist:NTF 13
\cs_new:Npn 13
\cs_new_nopar:Npn 13

D
debug commands:

\debug_on:n 14

E
exp commands:

\exp_after:wN 9
\ExplLoaderFileDate 15
\ExplSyntaxOff 15
\ExplSyntaxOn 15

I
if commands:

\if_cs_exist:N 4, 13
int commands:

\g_tmpa_int 3

L
log-functions (option) 14

O
options:

backend . 14
check-declarations 14
log-functions 14
suppress-backend-headers 14

S
seq commands:

\seq_gpush:Nn 8–10
\seq_push:Nn 3, 7

suppress-backend-headers (option) . . . 14

T
TEX and LATEX 2ε commands:

\box . 2
\csname 9, 11, 12
\endcsname . 9
\expandafter 9–11
\iffalse . 6
\IfPackageLoadedTF 13
\iftrue . 6
\in@ . 11
\let . 11
\long . 13
\message . 10
\special . 2
\string . 11

tl commands:
\c_empty_tl 3
\tl_gset:Nn 4, 6, 10
\tl_new:N 10, 13
\tl_set:Nn 4–6
\tl_set_eq:NN 5
\tl_use:N . 10
\l_tmpa_tl 9, 10

token commands:
\token_to_str:N 11

16

		1 Introduction

		2 Languages and interfaces

		3 The naming scheme

		3.1 Examples

		3.2 Formal naming syntax

		3.2.1 Separating private and public material

		3.2.2 Using @@ and DocStrip to mark private code

		3.2.3 Variables: declaration

		3.2.4 Variables: scope and type

		3.2.5 Variables: guidance

		3.2.6 Functions: argument specifications

		4 Expansion control

		4.1 Simpler means better

		4.2 New functions from old

		5 The distribution

		6 Moving from LaTeX2ε to expl3

		7 Load-time options for expl3

		8 Using expl3 with formats other than LaTeX2ε

		9 Getting the version of expl3

		10 Engine/primitive requirements

		11 The LaTeX Project

		References

		Index

		Symbols

		B

		C

		D

		E

		I

		L

		O

		S

		T

