Recording and cross-referencing document properties™

The IWIEX Project!
January 25, 2026

Abstract

This code implements command to record and (expandably) reference document
properties. It extends the standard \label/\ref/\pageref commands.

Contents

1 Introduction 1
2 Design discussion 2
3 Handling unknown labels and properties 2
4 Rerun messages 3
5 Open points 3
6 Code interfaces 3
7 Auxiliary file interfaces 5
8 I TEX 2¢ interface 5
9 Pre-declared properties 6

1 Introduction

The module allows to record the “current state” of various document properties (typically
the content of macros and values of counters) and to access them in other places through
a label. The list of properties that can be recorded and retrieved are not fix and can be
extended by the user. The values of the properties are recorded in the .aux file and can
be retrieved at the second compilation.

The module uses the ideas of properties and labels. A label is a document reference
point: a name for the user. An property is something that I¥TEX can track, such as
a page number, section number or name. The names of labels and properties may be
arbitrary. Note that there is a single namespace for each.

*This module has version v1.0l dated 2026-01-16, © The I#TEX Project.

TE-mail: latex-team@latex-project.org


mailto:latex-team@latex-project.org

2 Design discussion

The design here largely follows ideas from zref. In particular, there are two independent
concepts: properties that can be recorded between runs, and labels which consist of lists
of these properties. The reason for the split is that individual labels will want to record
some but not all properties. For examples, a label concerned with position would track
the z and y coordinates of the current point, but not for example the page number.

In the current implementation, properties share a single namespace. This allows
multiple lists to re-use the same properties, for example page number, absolute page
number, etc. This does mean that changing a standard property is an issue. However,
some properties have complex definitions (again, see zref at present): having them in a
single shared space avoids the need to copy code.

Labels could be implemented as prop data. That is not done at present as there is
no obvious need to map to or copy the data. As such, faster performance is available
using a hash table approach as in a “classical” set up. Data written to the .aux file uses
simple paired balanced text not keyvals: this avoids any restrictions on names and again
offers increased performance.

The expl3 versions of the label command do not use \@bsphack/\@esphack to avoid
double spaces, but the BTEX 2 command does as it lives at the document command
level.

The reference commands are expandable.

Currently the code has nearly no impact on the main \label and \ref commands as
too many external packages rely on the concrete implementation. There is one exception:
the label names share the same namespace. That means that if both \1abel{ABC} and
\RecordProperties{ABC}{page} are used there is a warning Label ‘ABC’ multiply
defined.

3 Handling unknown labels and properties

With the standard \label/\ref commands the requested label is either in the .aux-file
(and so known) or not. In the first case the stored value can be used, in the second case
the reference commands print two question marks.

With flexible property lists a reference commands asks for the value of a specific
property stored under a label name and we have to consider more variants:

o If the requested property is unknown (not declared) the system is not correctly set
up and an error is issued.

o If the label is unknown, the default of the property is used.

o If the label is known, but doesn’t provide a value for the property then again the
default of the property is used.

e The command \property_ref:nnn allows to give a local default which is used
instead of the property default in the two cases before.



\property_new:nnnn
\property_gset:nnnn

\property_record:nN
\property_record:nn
\property_record:(nV|ee)

\property_ref:nn =%
\property_ref:ee %

\property_item:nn x
\property_item:ee *

New: 2025-11-20

4 Rerun messages

As the reference commands are expandable they can neither issue a message that the label
or the label-property combination is unknown, nor can they trigger the rerun message at
the end of the BTEX run.

Where needed such messages must therefore be triggered manually. For this
two commands are provided: \property_ref_undefined_warn: and \property_ref -
undefined_warn:nn. See below for a description.

5 Open points

e The xpos and ypos properties require that the position is stored first but there is
no (public) engine independent interface yet. Code must use \tex_savepos:D.

6 Code interfaces

\property_new:nnnn {(property)} {(setpoint)} {(default)} {{code)}
\property_gset:nnnn {(property)} {(setpoint)} {(default)} {(code)’}
TEX 2¢-interface: see \NewProperty, \SetProperty.
Sets the (property) to have the (default) specified, and at the (setpoint) (either now
or shipout) to write the result of the (code) as part of a label. The {code) should be
expandable. The expansion of (code) (the value of the property) is written to the .aux
file and read back from there at the next compilation. Values should assume that the
standard IXTEX catcode régime with @ a letter is active then.

If the property is declared within a package it is suggested that its name is build
from letters, hyphens and slashes, and is always structured as follows:
(package-name)/(property-name).

\property_record:nN {(label)} (clist var)

\property_record:nn {(label)} {(clist)}

TEX 2¢-interface: see \RecordProperties.

Writes the list of properties given by the (clist) to the .aux file with the (Iabel)
specified.

\property_ref:nn {(label)} {(property)}

¥TEX 2¢-interface: see \RefProperty.

Expands to the value of the (property) for the (label), if available, and the de-
fault value of the property otherwise. If (property) has not been declared with
\property_new:nnnn an error is issued. The command raises an internal, expandable,
local flag if the reference can not be resolved.

\property_item:nn {(label)} {(property)}

Retrieves the value of the (property) for the (1abel) like \property_ref:nn but
the result is returned within the \unexpanded primitive (\exp_not:n), which means that
the (value) does not expand further when appearing in an e-type or x-type argument
expansion. This allows for example to handle values containing user commands which
are not safe in an expansion context.



\property_ref :nnn
\property_ref:een

* \property_ref:nnn {(label)} {(property)} {(local default)}
* XTEX 2¢-interface: see \RefProperty.

Expands to the value of the (property) for the (label), if available, and to (Iocal
default) otherwise. If (property) has not been declared with \property_new:nnnn an
error is issued. The command raises an internal, expandable local flag if the reference
can not be resolved.

\property_ref_undefined_warn: \property_ref_undefined_warn:

ITEX 2¢-interface: not provided.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if there was a recent \property_ref:nn or \property_-
ref :nnn which couldn’t be resolved and so raised the flag. “Recent” means in the same
group or in some outer group!

\property_ref_undefined_warn:n \property_ref_undefined_warn:n {(label)}
\property_ref_undefined_warn:e

ITEX 2¢-interface: not provided.
Triggers the standard warning
LaTeX Warning: There were undefined references.
at the end of the document if (I1abel) is not known. At the point where it is called it
also issues the warning
Reference ‘(label)’ on page (page) undefined.

\property_ref_undefined_warn:nn \property_ref_undefined_warn:nn {(label)} {(property)}
\property_ref_undefined_warn:ee

TEX 2¢-interface: see \RefUndefinedWarn.
Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if the reference can not be resolved. At the point where it is
called it also issues the warning

Reference ‘(label)’ on page (page) undefined
if the label is unknown, or the more specific

Property ‘(property)’ undefined for reference ‘(label)’ on page (page)
if the label is known but doesn’t provide a value for the requested property.

\property_if_exist_p:n
\property_if_exist_p:e
\property_if_exist:nTF
\property_if_exist:eIF

* \property_if_exist_p:n {(property)?}

* \property_if_exist:nTF {(property)} {(true code)} {(false code)}
* IMTREX 2¢-interface: \IfPropertyExistsTF.

* Tests if the (property) has been declared.

\property_if_recorded_p:n
\property_if_recorded_p:e
\property_if_recorded:nTF
\property_if_recorded:eTF

* \property_if_recorded_p:n {(label)}

* \property_if_recorded:nTF {(label)} {(true code)} {(false code)}
*

*

TEX 2¢-interface: \IfLabelExistsTF

Tests if the (1abel) is known. This is also true if the label has been set with the standard
\label command.



\property_if_recorded_p:nn
\property_if_recorded_p:ee
\property_if_recorded:nnTF
\property_if_recorded:eeTF

* \property_if_recorded_p:nn {(label)} {(property)}

* \property_if_recorded:nnTF {(label)} {(property)} {(true code)} {(false code)}
*
*

\new@label@record

\NewProperty
\SetProperty

\RecordProperties

\RefProperty x*

\IfPropertyExistsTF
\IfPropertyExistsT
\IfPropertyExistsF

\IfLabelExistsTF
\IfLabelExistsT
\IfLabelExistsF

IXTEX 2¢-interface: \IfPropertyRecordedTF.
Tests if the label (1abel) is known and if it provides a value of the (property).

7 Auxiliary file interfaces

\new@label@record {(label)} {(data)}

This is a command only for use in the .aux file. It loads the key—value list of (data) to
be available for the (label).

8 HKTEX 2¢ interface

The LaTeXe interfaces always expand label and property arguments. This means that
one must be careful when using active chars or commands in the names. UTF8-chars are
protected and should be safe, similar most babel shorthands.

\NewProperty {(property)} {(setpoint)} {(default)} {(code)}
\SetProperty {(property)} {(setpoint)} {(default)} {(code)}

Sets the (property) to have the (default) specified, and at the (setpoint) (either now
or shipout) to write the result of the (code) as part of a label. The (code) should
be expandable. The expansion of (code) (the value of the property) is written to the
.aux file and read back from there at the next compilation (at which point normally the
standard TEX catcode régime with @ a letter is active).

\RecordProperties {(label)} {(clist)}

Writes the list of properties given by the (clist) to the .aux file with the (label)
specified. Similar to the standard \label command the arguments are expanded. So
(clist) can be a macro containing a list of properties. Also similar to the standard
\label command, the command is surrounded by an \@bsphack/\@esphack pair to
preserve spacing.

\RefProperty [(local default)] {(label)} {(property)}

Expands to the value of the (property) for the (label), if available, and the default
value of the property or — if given — to (Iocal default) otherwise. If {(property)} has
not been declared an error is issued.

\IfPropertyExistsTF {(property)} {(true code)} {(false code)}

Tests if the (property) has been declared.

\IfLabelExistsTF {(label)} {(true code)} {(false code)}

Tests if the (1abel) has been recorded. This is also true if a label has been set with the
standard \label command.



\IfPropertyRecordedTF \IfPropertyRecordedTF {(label)} {(property)} {(true code)} {(false code)}
\IfPropertyRecordedT

\TfPropertyRecordedF Tests if the label and a value of the (property) for the (1abel) are both known.

\RefUndefinedWarn \RefUndefinedWarn {(label)} {(property)}

Triggers the standard warning

LaTeX Warning: There were undefined references.
at the end of the document if the reference for (label) and (property) can not be
resolved. At the point where it is called it also issues the warning

Reference ‘(label)’ on page (page) undefined
if the label is unknown, or the more specific

Property ‘(property)’ undefined for reference ‘(label)’ on page (page) if
the label is known but doesn’t provide a value for the requested property.

9 Pre-declared properties

abspage (shipout) The absolute value of the current page: starts at 1 and increases monotonically
at each shipout.

page (shipout) The current page as given by \thepage: this may or may not be a numerical
value, depending on the current style. Contrast with \abspage. You get this value also
with the standard \label/\pageref.

pagenun (shipout) The current page as arabic number. This is suitable for integer operations and
comparisons.

label (now) The content of \@currentlabel. This is the value that you get also with the
standard \label/\ref.

title (now) The content of \@currentlabelname. This command is filled beside others by the
nameref package and some classes (e.g. memoir).

target (now) The content of \@currentHref. This command is normally filled by for example
hyperref and gives the name of the last destination it created.

pagetarget (shipout) The content of \@currentHpage. This command is filled for example by a
recent version of hyperref and then gives the name of the last page destination it created.

counter (now) The content of \@currentcounter. This command contains after a \refstepcounter
the name of the counter.



xpos (shipout) This stores the z and y coordinates of a point previously stored with
YPos \pdfsavepos/\savepos. E.g. (if bidi is used it can be necessary to save the position
before and after the label):

\tex_savepos:D
\property_record:nn{myposition}{xpos,ypos}
\tex_savepos:D



	Contents
	1 Introduction
	2 Design discussion
	3 Handling unknown labels and properties
	4 Rerun messages
	5 Open points
	6 Code interfaces
	7 Auxiliary file interfaces
	8 LaTeX2ε interface
	9 Pre-declared properties

