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* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the names of Forschungszentrum Jilich GmbH or the University of Ten-
nessee, Knoxville, nor the names of their contributors may be used to endorse or
promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.
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Chapter 1. Introduction

1 Introduction

Supercomputing is a key technology of modern science and engineering, indispensable
to solve critical problems of high complexity. As a prerequisite for the productive use of
today’s large-scale computing systems, the HPC community needs powerful and robust
performance analysis tools that make the optimization of parallel applications both more
effective and more efficient.

Developed at the Jiilich Supercomputing Centre, Scalasca is a performance analysis
toolset that has been specifically designed for use on large-scale systems including IBM
Blue Gene and Cray XT, but also suitable for smaller HPC platforms using MPI and/or
OpenMP. Scalasca supports an incremental performance analysis process that integrates
runtime summaries with in-depth studies of concurrent behavior via event tracing, adopt-
ing a strategy of successively refined measurement configurations. A distinctive feature
of Scalasca is the ability to identify wait states that occur, for example, as a result of un-
evenly distributed workloads. Especially when trying to scale communication intensive
applications to large processor counts, such wait states can present severe challenges to
achieving good performance. Compared to its predecessor KOJAK [Y], Scalasca can de-
tect such wait states even in very large configurations of processes using a novel parallel
trace-analysis scheme [4].

1.1 How to read this document
This user guide is structured into three parts:

* This introductory chapter gives a short introduction into performance analysis in
general and the components of the Scalasca toolset in particular. If you are already
familiar with performance analysis of parallel scientific applications you might
skip the following section and continue reading directly with Section 1.3.

* The next part in Chapter 2 introduces the basic steps and commands required for
initial performance analyses of parallel applications. It also includes a full example
describing the Scalasca performance analysis workflow.

* The remainder of this user guide in Chapters 3 to 5 provide a more in-depth discus-
sion of the individual steps in evaluating the performance of a parallel application.
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1.2 Performance optimization cycle

Regardless of whether an application should be optimized for single-core performance
or for scalability, the basic approach is very similar. First, the behavior of the application
needs to be monitored, and afterwards the recorded behavior can be evaluated to draw
conclusions for further improvement. This is an iterative process that can be described by
a cycle, the so-called performance optimization cycle. When broken down into phases,
it is comprised of:

* Instrumentation
* Measurement

* Analysis

* Presentation

* Evaluation

* Optimization of the code

i ed Instrumentation
unoptimize
prim Measurement
application

Optimization @ Analysis

optimized ™ .
application Presentation

Evaluation

Figure 1.1: Performance optimization cycle

As shown in Figure 1.1, the user starts with the original (i.e., unoptimized) applica-
tion, which enters the optimization cycle in the instrumentation phase. Instrumentation
describes the process of modifying the application code to enable measurement of per-
formance relevant data during the application run. In the context of Scalasca, this can
be achieved by different mechanisms, such as source-code instrumentation, automatic
compiler-based instrumentation or linking with pre-instrumented libraries. Instrumenta-
tion on the source-code level can be done by introducing additional instructions into the
source code prior to compilation. On most systems, this process can be automated by
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using special features of the compiler. However, this approach typically does not allow
a fine-grained control of the instrumention. The third method is to use pre-instrumented
libraries, which contain instrumented versions of the relevant library functions. The
Message-Passing Interface standard MPI [7] provides a special interface for this kind of
instrumentation, the so-called PMPI interface. As this interface is defined in the MPI
standard, its API is portable and creates an opportunity for tool developers to provide a
single portable measurement library for multiple different MPI implementations.

When the instrumented code is executed during the measurement phase, performance
data is collected. This can be stored as a profile or an event trace, depending on the
desired level of information needed. The additional instructions inserted during instru-
mentation and associated measurement storage require resources (memory as well as
CPU time). Therefore the application execution is affected to a certain degree. Pertur-
bation by the additional measurement instructions may be small enough to get a fairly
accurate view of the application behavior. However, certain application properties like
frequently executed regions with extremely small temporal extent, will always lead to a
high perturbation. Thus the measurement of those regions must be avoided.

The measurement data can then be analyzed after application execution. If a detailed
event trace has been collected, more sophisticated dependencies between events occur-
ing on different provesses can be investigated, resulting in a more detailed analysis re-
port. Especially inter-process event correlations can usually only be analyzed by a post-
mortem analysis. The information which is needed to analyze these correlations are
usually distributed over the processes. Transferring the data during normal application
runtime would lead to a significant perturbation during measurement, as it would require
application resources on the network for this.

After analyzing the collected data, the result needs to be presented in an analysis report.
This leads to the next phase in the performance optimization cycle, namely the presen-
tation phase. At this stage, it is important to reduce the complexity of the collected
performance data to ease evaluation by the user. If the presented data is too abstract, per-
formance critical event patterns might not be recognized by the user. If it is too detailed,
the user might drown in too much data. User guidance is therefore the key to productive
application optimization.

In the evaluation phase, conclusions are drawn from the presented information, leading to
optimization hypotheses. The user proposes optimization strategies for the application,
which are then implemented in the following optimization phase. Afterwards, the effec-
tiveness of the optimization has to be verified by another pass through the performance
optimization cycle. When the user is satisfied with the application performance during
evaluation, and no further optimization is needed, the instrumentation can be disabled,
and the performance of the uninstrumented application execution can be assessed.
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1.3 Scalasca overview

Scalasca supports measurement and analysis of the MPI, OpenMP and hybrid
MPI/OpenMP programming constructs most widely used in highly scalable HPC ap-
plications written in C, C++ and Fortran on a wide range of current HPC platforms.
Usage is primarily via the scalasca command with appropriate action flags. Figure
1.2 shows the basic analysis workflow supported by Scalasca. Before any performance
data can be collected, the target application needs to be instrumented. Instrumentation
means, that the code must be modified to record performance-relevant events whenever
they occur. On most systems, this can be done completely automatically using compiler
support. On other systems, a mix of manual and automatic instrumentation mechanisms
is offered. When executing the instrumented code on a parallel machine, the user can
generate a summary report (also known as profile) with aggregate performance metrics
for individual function call paths. Furthermore, event traces can be generated by record-
ing individual runtime events from which a profile or a time-line visualization can later
be produced. The runtime summarization capability is useful to obtain an overview of
the performance behaviour and also to optimize the instrumentation for later trace gen-
eration. Since traces tend to become very large, and inappropriate instrumentation and
measurement configuration will compromise the resulting analysis, this step is highly
recommended.

Optimized measurement configuration

A4
Measurement Summary
Iibrary report
Instr.
target Local event Parallel Pattern Report
application traces pattern search report browser
Merge
l \
Global Sequential Pattern
event trace pattern search report

y

!

Pattern
trace

Conversion

Exported
trace

—

Third-party
trace
browser

Figure 1.2: Scalasca’s performance analysis workflow

When tracing is enabled, each process generates a trace file containing records for all
its process-local events. After program termination, Scalasca reloads the trace files back
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into main memory and analyzes them in parallel using as many CPUs as have been used
for the target application itself. During the analysis, Scalasca searches for characteris-
tic patterns indicating wait states and related performance properties, classifies detected
instances by category and quantifies their significance. The result is a pattern-analysis
report similar in structure to the summary report but enriched with higher-level com-
munication and synchronization inefficiency metrics. Both summary and pattern reports
contain performance metrics for every function call path and system resource which can
be interactively explored in a graphical report explorer (see Figure 2.1 for an example).
As an alternative to the automatic analysis, the event traces can be converted and inves-
tigated using third-party trace browsers such as Paraver [0, 3] or Vampir [8, 5], taking
advantage of their powerful time-line visualizations and rich statistical functionality.
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Chapter 2. Getting Started

2 Getting Started

This chapter will provide a hands-on introduction to the use of the Scalasca toolset on
the basis of the analysis of an example application. The most prominent features will be
addressed, and at times a reference to later chapters with more in-depth information on
the corresponding topic will be given.

Use of Scalasca involves three phases: program instrumentation, execution measurement
and analysis, and analysis report examination. The scalasca command provides action
options that invoke the corresponding commands skin, scan and square.

These actions are:

1. scalasca -instrument

used to insert calls to the Scalasca measurement system into the application’s code,
either automatically, semi-automatically or by linking with pre-instrumented li-
braries.

2. scalasca -analyze

used to control the measurement environment during the application execution, and
to automatically perform trace analysis after measurement completion if tracing
was enabled.

The Scalasca measurement system supports runtime summarization and/or event
trace collection and analyses, optionally including hardware-counter information.

3. scalasca -examine

used to postprocess the analysis report generated by the measurement runtime sum-
marization and/or post-mortem trace analysis, and to start Scalasca’s analysis re-
port examination browser CUBE3.

To get a brief usage summary, call the scalasca command with no arguments, or use
scalasca -htoopen the Scalasca Quick Reference (only works if a suitable PDF viewer
can be found).

The following three sections provide a quick overview of each of these actions and how
to use them during the corresponding step of the performance analysis, before a full
workflow example is presented in Section 2.4.
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2.1 Instrumentation

To make measurements with the Scalasca measurement system, user application pro-
grams need to be instrumented, i.e., at specific important points (events) during the ap-
plication run, special measurement calls have to be inserted. In addition to an almost au-
tomatic approach using compiler-inserted instrumentation (Section 3.1), semi-automatic
"POMP" (Section 3.3) and manual instrumentation (Section 3.2) approaches are also
supported.

For pure OpenMP or hybrid MPI/OpenMP applications, or when using the semi-
automatic "POMP" directive-based approach, the OPARI source code instrumenter is
used internally. Read the OPARI section in the OPEN_ISSUES file provided as part of
the Scalasca documentation to be aware of its current limitations and how to work around
some of them, including:

* parallel builds (e.g., using gmake -7j)
* multiple applications built within a single directory

* applications with sources spread over multiple directories

All the necessary instrumentation of user and MPI functions is handled by the Scalasca
instrumenter, which is accessed through the scalasca -instrument command. There-
fore, the compile and link commands to build the application that is to be analyzed should
be prefixed with scalasca -instrument (e.g., in a Makefile).

For example, to instrument the application executable myprog generated from the two
source files myprogl.£90 and myprog2.£90, replace the combined compile and link
command

mpif90 myprogl.f90 myprog2.f£90 -o myprog

by the following command using the Scalasca instrumenter:

scalasca -instrument mpif90 myprogl.f90 myprog2.£90 -o myprog

Note:

The instrumenter must be used with the link command. However, not all object
files need to be instrumented, and it is often sufficient to only instrument source
modules containing MPI code.

When using Makefiles, it is often convenient to define a "preparation" placeholder vari-
able (e.g., PREP) which can be prefixed to (selected) compile and link commands:
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MPICC $ (PREP) mpicc
MPICXX $ (PREP) mpicxx
MPIF90 = $(PREP) mpif90

These can make it easier to prepare an instrumented version of the program by building
with

make PREP="scalasca -instrument"

while default builds (without specifying PREP on the command line) remain fully opti-
mized and without instrumentation.

Although generally most convenient, automatic function instrumentation may result in
too many and/or too disruptive measurements, which can be addressed with selective
instrumentation and measurement filtering (see Section 3.4).

2.2 Runtime Measurement Collection & Analysis

The Scalasca measurement collection & analysis nexus accessed through the scalasca
-analyze command integrates the following steps:

* Measurement configuration

Application execution

Collection of measured data

* Automatic post-mortem trace analysis (if configured)

To make a performance measurement using an instrumented executable, the target appli-
cation execution command is prefixed with the scalasca -analyze command:

scalasca -analyze [options] \
SMPIEXEC S$MPI_FLAGS [target [target args]]

For non-MPI (i.e., serial and pure OpenMP) applications, the MPI launch command and
associated flags should be omitted.

A unique directory is used for each measurement experiment, which must not already
exist when measurement starts. Measurement is aborted if the specified directory exists.
A default name for each EPIK measurement archive directory is created from the name
of the target application, the run configuration (e.g., number of processes and OMP_-
NUM_THREADS specified), and the measurement configuration. This archive name has an
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epik_ prefix and its location can be explicitly specified to Scalasca with the e <path>
option or changed via configuration variables.

When the measurement has completed, the measurement archive directory contains vari-
ous log files and one or more analysis reports. By default, runtime summarization is used
to provide a summary report of the number of visits and time spent on each callpath by
each process. For MPI measurements, MPI time and message and file I/O statistics are
included. For OpenMP measurements, OpenMP-specific metrics are calculated. Hybrid
OpenMP/MPI measurements contain both sets of metrics. If hardware counter metrics
were requested, these are also included in the summary report.

Event trace data can also be collected as a part of the measurement, producing an EPI-
LOG trace file for each process. To collect event trace data as part of the measure-
ment, use the scalasca -analyze -t command or set the configuration variable EPK_-
TRACE=1. In this case, experiment trace analysis is automatically initiated by scalasca
-analyze after measurement is complete.

The scalasca -analyze -n preview mode can be used to show (but not actually ex-
ecute) the measurement and analysis launch commands, along with various checks to
determine the possible success. Additional comments (via -v) may also be revealing,
especially if measurement or analysis was unsuccessful.

In case of problems which are not obvious from reported errors or warnings, set the
configuration variable EPK_VERBOSE=1 before executing the instrumented application to
see control messages of the Scalasca measurement system. This might help to track down
the problem or allow a detailed problem report to be given to the Scalasca developers.

When using environment variables in a cluster environment, make sure that they have
the same value for all application processes on all nodes of the cluster. Some cluster
environments do not automatically transfer the environment when executing parts of the
job on remote nodes of the cluster, and may need to be explicitly set and exported in
batch job submission scripts.

2.3 Analysis Report Examination

The results of the automatic analysis are stored in one or more reports in the experiment
archive. These reports can be processed and examined using the scalasca -examine
command on the experiment archive:

scalasca —examine epik_<title>

Post-processing is done the first time that an archive is examined, before launching the
CUBES3 report viewer. If the scalasca -examine command is executed on an already
processed experiment archive, or with a CUBE file specified as argument, the viewer is
launched immediately.

10
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A short textual score report can be obtained without launching the viewer:

scalasca -examine -s epik_<title>

This score report comes from the cube3_score utility and provides a breakdown of
the different types of region included in the measurement and their estimated associated
trace buffer costs, aggregate trace size (total_tbc) and largest process trace size (max_-
tbc), which can be used to specify an appropriate ELG_BUFFER_SIZE for a subsequent
trace measurement.

The CUBE3 viewer can also be used on an experiment archive or CUBE file:

cube3 epik_<title>
cube3 <file>.cube

However, keep in mind that no post-processing is performed in this case, so that only a
subset of Scalasca analyses and metrics may be shown.

2.3.1 Using CUBE3

The following paragraphs provide a very brief introduction of the CUBE3 usage. To
effectively use the GUI, you should also read the CUBE3 manual provided with the
Scalasca distribution.

CUBES3 is a generic user interface for presenting and browsing performance and debug-
ging information from parallel applications. The underlying data model is independent
from particular performance properties to be displayed. The CUBE3 main window con-
sists of three panels containing tree displays or alternate graphical views of analysis
reports. The left panel shows performance properties of the execution, the middle pane
shows the call-tree or a flat profile of the application, and the right tree either shows the
system hierarchy consisting of machines, compute nodes, processes, and threads or a
topological view of the application’s processes and threads. All tree nodes are labeled
with a metric value and a coloured box which can help identify hotspots. The metric
value colour is determined from the proportion of the total (root) value or some other
specified reference value.

A click on a performance property or a call path selects the corresponding node. This
has the effect that the metric value held by this node (such as execution time) will be
further broken down into its constituents. That is, after selecting a performance property,
the middle panel shows its distribution across the call tree. After selecting a call path
(i.e., a node in the call tree), the system tree shows the distribution of the performance
property in that call path across the system locations. A click on the icon left to a node
in each tree expands or collapses that node. By expanding or collapsing nodes in each of
the three trees, the analysis results can be viewed on different levels of granularity.

11
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To obtain the exact definition of a performance property, select "Online Description" in
the context menu associated with each performance property, which is accessible using
the right mouse button. A brief description can be obtained from the menu option "Info".
Further information is also available at the Scalasca website

http://www.scalasca.org/

CUBES3 also provides a number of algebra utilities which are command-line tools that
operate on analysis reports. (The utililties currently only work on the CUBE files within
experiment archive directories, not on the archives themselves.) Multiple analysis re-
ports can be averaged with cube3_mean or merged with cube3_merge. The difference
between two analysis reports can be calculated using cube3_diff. Finally, a new analy-
sis report can be generated after pruning specified call trees and/or specifying a call-tree
node as a new root with cube3_cut. The latter can be particularly useful for eliminating
uninteresting phases (e.g., initialization) and focussing the analysis on a selected part of
the execution. Each of these utilities generates a new CUBE-formated report as output.

The cube3_score utility can be used to estimate trace buffer requirements from sum-
mary or trace analysis reports. If sufficient memory is physically available, this can be
specified in the ELG_BUFFER_SIZE configuration variable for a subsequent trace col-
lection. Detailed region output (cube3_score -r) can also be examined to identify fre-
quently executed regions that may adversely impact measurement and not be considered
valuable as part of the analysis. Such regions without OpenMP and MPI operations may
be appropriate for exclusion from subsequent experiments via selective instrumentation
and measurement (see Section 3.4). Trace buffer capacity can be saved by eliminating
certain functions from the measurement. This could be done by providing a filter file,
which lists the function names of the functions to be excluded. A potential filter file can
be evaluated with the option -f <filter_file>.

2.4 A Full Workflow Example

The previous sections introduced the general usage of Scalasca. This section will guide
through an example analysis of a solver kernel called SOR, solving the Poisson equation
using a red-black successive over-relaxation method. The environment used in the fol-
lowing examples is the IBM Blue Gene/P, present at the Jiilich Supercomputing Centre
of Forschungszentrum Jiilich. The commands and outputs presented in this section might
differ from the commands and outputs of your system.

By default, Scalasca uses the automatic compiler-based instrumentation feature. This
is usually the best first approach, when you don’t have detailed knowledge about the
application and need to identify the hotspots in your code. SOR consists of only a single
source file, which can be compiled and linked using the following two commands:

scalasca -instrument mpixlc -c sor.c

12
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scalasca -instrument mpixlc sor.o -o sSor.x

Now the instrumented binary must be executed on the system. On supercomputing sys-
tems, users usually have to submit their jobs to a batch system and are not allowed to start
parallel jobs directly. Therefore, the call to the scalasca command has to be provided
within a batch script, which will be scheduled for execution when the required resources
are available.

The syntax of the batch script differs between the different scheduling systems. However,
common to every batch script format is a passage where all shell commands can be placed
that will be executed. Here, the call to the Scalasca analyzer has to be placed in front of
the application execution command:

scalasca -analyze mpirun -mode vn -np 128 ./sor.x

Ensure that the scalasca command is accessible when the batch script is executed, e.g.,
by updating the PATH if necessary. The parameters -mode and -np are options of the
mpirun command on the Blue Gene system and other launchers will have different flags
and syntax.

The Scalasca analyzer will take care of certain control variables, which assist in the
measurement of your application. The default behaviour of the Scalasca analyzer is to
create a summary file, and not to create a detailed event trace, as indicated by the initial
messages from the EPIK measurement system.

S=C=A=N: Scalasca 1.2 runtime summarization

S=C=A=N: ./epik_sor_vnl28_sum experiment archive

S=C=A=N: Collect start

mpirun -mode vn -np 128 ./sor.x

[00000]EPIK: Created new measurement archive ./epik_sor_vnl28_sum
[00000]EPIK: Activated ./epik_sor_vnl28_sum [NO TRACE]

[... Application output ...]
[00000]EPIK: Closing experiment ./epik_sor_vnl28_sum

[00000]EPIK: Closed experiment ./epik_sor_vnl28_sum
S=C=A=N: Collect done
S=C=A=N: ./epik_sor_vnl28_sum complete.

After successful execution of the job, a summary report file is created within a new mea-
surement directory. In this example, the automatically generated name of the measure-
ment directory is epik_sor_vnl28_sum, indicating that the job was executed in Blue
Gene’s virtual node mode (-mode vn) with 128 processes (-np 128). The suffix _sum
refers to a runtime summarization experiment. The summary analysis report can then be
postprocessed and examined with the Scalasca report browser:

13
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scalasca -examine epik_sor_vnl28_sum
INFO: Post-processing runtime summarization report
INFO: Displaying ./epik_sor_vnl28_sum/summary.cube

Figure 2.1 shows a screenshot of the Scalasca report browser CUBE3 with the summary
analysis report of SOR opened. The examination of the application performance sum-
mary may indicate several influences of the measurement on your application behaviour.
For example, frequently executed, short functions may lead to significant pertubation and
would be prohibitive to trace: these need to be eliminated before further investigations
using trace analysis are taken into account.

", Cube 3.0GT: eplk_sor_vnl 28 sumisummary. cube
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Figure 2.1: Viewing a runtime summary in CUBE

During trace collection, information about the application’s execution behaviour is
recorded in so-called event streams. The number of events in the streams determines
the size of the buffer required to hold the stream in memory. To minimize the amount of
memory required, and to reduce the time to flush the event buffers to disk, only the most
relevant function calls should be instrumented.

When the complete event stream is larger than the memory buffer, it has to be flushed to
disk during application runtime. This flush impacts application performance, as flushing
is not coordinated between processes, and runtime imbalances are induced into the mea-
surement. The Scalasca measurement system uses a default value of 10 MB per process

14
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or thread for the event trace: when this is not adequate it can be adjusted to minimize or
eliminate flushing of the internal buffers. However, if too large a value is specified for
the buffers, the application may be left with insufficient memory to run, or run adversely
with paging to disk. Larger traces also require more disk space (at least temporarily, un-
til analysis is complete), and are correspondingly slower to write to and read back from
disk. Often it is more appropriate to reduce the size of the trace (e.g., by specifying a
shorter execution, or more selective instrumentation and measurement), than to increase
the buffer size.

To estimate the buffer requirements for a trace measurement, scalasca -examine -s
will generate a brief overview of the estimated maximal number of bytes required.

scalasca -examine -s epik_sor_vnl28_sum

[cube3_score epik_sor_wvnl28_sum/summary.cube]

Reading ./epik_sor_vnl28_sum/summary.cube... done.
Estimated aggregate size of event trace (total_tbc): 25698304 bytes
Estimated size of largest process trace (max_tbc): 215168 bytes

(When tracing set ELG_BUFFER_SIZE > max_tbc to avoid intermediate flushes
or reduce requirements using a file listing USR regions to be filtered.)

flt type max_tbc time % region
ANY 215168 11849.04 100.00 (summary) ALL
MPI 195728 147.47 1.24 (summary) MPI
coM 9696 465.93 3.93 (summary) COM
USR 9744 11235.64 94.82 (summary) USR

The line at the top of the table referring to ALL provides the aggregate information for
all executed functions. In this table, the column max_tbc refers to the maximum of the
trace buffer capacity requirements determined for each process in bytes. If max_tbc
exceeds the buffer size available for the event stream in memory, intermediate flushes
during measurement will occur. To prevent flushing, you can either increase the event
buffer size or exclude a given set of functions from measurement.

To aid in setting up an appropriate filter file, this "scoring" functionality also provides
a breakdown by different categories, determined for each region according to its type
of call path. Type MPI refers to function calls to the MPI library and type OMP either
to OpenMP regions or calls to the OpenMP API. User-program routines on paths that
directly or indirectly call MPI or OpenMP provide valuable context for understanding
the communication and synchronization behaviour of the parallel execution, and are dis-
tinguished with the COM type from other routines that are involved with purely local
computation marked USR.

Routines with type USR are typically good candidates for filtering, which will effectively
make them invisible to measurement and analysis (as if they were "inlined"). COM rou-
tines can also be filtered, however, this is generally undesirable since it eliminates context
information. Since MPT and OMP regions are required by Scalasca analyses, these cannot
be filtered.
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By comparing the trace buffer requirements with the time spent in the routines of a
particular group, the initial scoring report will already indicate what benefits can be ex-
pected from filtering. However, to actually set up the filter, a more detailed examination
is required. This can be achieved by applying the cube3_score utility directly on the
postprocessed summary report using the additional command-line option -r:

cube3_score -r epik_sor_vnl28_sum/summary.cube

Reading summary.cube... done.
Estimated aggregate size of event trace (total_tbc): 25698304 bytes
Estimated size of largest process trace (max_tbc): 215168 bytes

(When tracing set ELG_BUFFER_SIZE > max_tbc to avoid intermediate flushes
or reduce requirements using a file listing USR regions to be filtered.)

flt type max_tbc time % region
ANY 215168 11849.04 100.00 (summary) ALL
MPI 195728 147.47 1.24 (summary) MPI
COM 9696 465.93 3.93 (summary) COM
USR 9744 11235.64 94.82 (summary) USR
MPI 80000 2.14 0.02 MPI_Irsend
MPI 73600 1.07 0.01 MPI_Irecv
MPT 16040 20.77 0.18 MPI_Allreduce
MPI 16000 14.32 0.12 MPI_Barrier
MPI 9600 87.25 0.74 MPI_Waitall
COM 9600 304.28 2.57 get_halo
USR 4800 5432.60 45.85 update_red
USR 4800 5432.87 45.85 update_black
MPI 240 0.54 0.00 MPI_Gather
MPI 200 3.63 0.03 MPI_Bcast
USR 48 368.66 3.11 TRACING
USR 48 0.50 0.00 looplimits
MPI 24 0.52 0.00 MPI_Finalize
USR 24 0.54 0.00 init_boundary
USR 24 0.48 0.00 init_red_black
COM 24 2.88 0.02 sor_iter
COM 24 156.25 1.32 init_field
COM 24 0.82 0.01 setup_grid
MPT 24 17.23 0.15 MPI_Init
COM 24 1.70 0.01 main

(The basic form of this command is reported when running scalasca -examine -s.)
As the maximum trace buffer required on a single process for the SOR example is approx.
215 KB, there is no need for filtering in this case.

Note:

Filtering will not prevent the function from being instrumented. Hence, measure-
ment overhead can currently not be completely eliminated on filtered functions when
automatic compiler-based instrumentation is used.
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Once the configuration of buffer sizes and/or filters have been determined, make sure
they are specified for subsequent (tracing) measurements, via environment variables
or an EPIK.CONF measurement configuration file in the working directory. A filter
file can also be specified with -f filter_file to measurements with scalasca
-analyze.

Before initiating a trace measurement experiment, ensure that the filesystem where
the experiment will be created is appropriate for parallel I/O (typically /scratch or
/work rather than /home) and that there will be sufficient capacity (and/or quota) for
the expected trace.

When all options of the Scalasca measurement system are set in a way that measurement
overhead and space requirements are minimized, a new run of the instrumented applica-
tion can be performed, passing the -t option to scalasca -analyze. This will enable
the tracing mode of the Scalasca measurement system. Additionally, the parallel post-
mortem trace analyzer searching for patterns of inefficient communication behaviour is
automatically started after application completion.

scalasca -analyze -t mpirun -mode vn -np 128 ./sor.x

S=C=A=N: Scalasca 1.2 trace collection and analysis

S=C=A=N: ./epik_sor_vnl28_trace experiment archive

S=C=A=N: Collect start

mpirun -mode vn -np 128 ./sor.x

[00000]EPIK: Created new measurement archive ./epik_sor_vnl28_trace
[00000]EPIK: Activated ./epik_sor_vnl28_trace [10000000 bytes]

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_sor_vnl28_trace
[00000]EPIK: Flushed file ./epik_sor_vnl28_trace/ELG/00000

[00013]EPIK: Flushed file ./epik_sor_vnl28_trace/ELG/00013

[00000]EPIK: Closed experiment ./epik_sor_vnl28_trace

S=C=A=N: Collect done

S=C=A=N: Analysis start

mpirun -mode vn -np 128 scout.mpi ./epik_sor_vnl28_trace
[... SCOUT output ...]

5=C=A=N: Analysis done

S=C=A=N: ./epik_sor_vnl28_trace complete.

This creates an experiment archive directory epik_sor_vnl28_trace, distinguishing it
from the previous summary experiment through the suffix _trace. A separate trace file
per MPI rank is written directly into a subdirectory when measurement is closed, and the
parallel trace analyzer SCOUT is automatically launched to analyze these trace files and
produce an analysis report. This analysis report can then be examined using the same
commands and tools as the summary experiment.
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scalasca -examine epik_sor_vnl28_trace
INFO: Post-processing trace analysis report
INFO: Displaying ./epik_sor_vnl28_trace/trace.cube

The screenshot in Figure 2.2 shows that the trace analysis result at first glance provides
the same information as the summary result. However, the trace analysis report is en-
riched with additional performance metrics which show up as sub-metrics of the sum-
mary properties, such as the fraction of Point-to-point Communication Time potentially
wasted due to Late Sender situations where early receives had to wait for sends to be
initiated. That is, the trace analysis can reveal detail of inefficient execution behaviour.

“. Cube 3.0 QT; epik_sor wnl28 traceftrace.cube
Fle Display Topology Help

Own root percent | 7| |own root parcent = | Absohite A
Matric tree Call tree Flat wew | S)stem tree 'lupulugy-:-
£ 0.00 Time = | £ []0.00 main
[+ B 96.50 Execution 1 [] 0.00 MPI_Init
1] 0.00 MPI 1 [] 0.00 setup_grid
++ [l 0.13 Synchronization 1 [] 0.00 init_field
-+ []10.00 Communication -3 []0.00 sor_iter
C+ [l 0.72 Point-to-point [] 0.00 init_red_black
| | 3 0.05 Late Sender | [10.00 init_boundary
[ [ 0.00 Messages in Wrong C [10.00 get_halo
[7] 0.00 Late Receiver [] 0.00 MPI_lrecv
=} I 0.23 Collective [] 0.00 MPI_Barrier
[]0.00 File IfO [] 0.00 MPI_Irsend
Il 0.16 Init/Exit 100.00 MPI_Waitall

L [ 2.21 Overhead []0.00 update_black
~ M 100.00 Visits []0.00 update_red
=t M 100.00 Synchronizations []0.00 MPI_Alireduce
=} B 100.00 Communications [ [] 0.00 MPI_Finalize

=+ [l 100.00 Bytes transferred
=t M 100.00 Computational imbalance

a0 |

|
o.00 0.05 100.00] |D.c:c: 100,00

Figure 2.2: Determine a Late Sender in CUBES3.

The filesystem requirements for an EPILOG event trace and its analysis are much higher
than for a runtime summary. The runtime of a batch job will also increase due to addi-
tional file I/O at the end of measurement and for analysis. After successful tracing, the
Scalasca measurement has created a directory containing the event trace and its anal-
ysis files. The default behaviour of Scalasca in tracing mode is to create a runtime
summary report (stored in summary.cube) as well as a trace analysis report (stored in
trace.cube).

After successful trace analysis, and before moving the experiment archive, the trace files
can be removed by deleting the ELG subdirectory in the experiment archive.
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3 Application instrumentation

Scalasca provides several possibilities to instrument user application code. Besides the
automatic compiler-based instrumentation (Section 3.1), it provides manual instrumenta-
tion using the EPIK API (Section 3.2) and semi-automatic instrumentation using POMP
directives (Section 3.3). Additionally, Scalasca provides a filtering model for excluding
instrumented functions from measurement (Section 3.4).

Besides the instrumentation of user functions, Scalasca currently supports the following
kinds of events:

e MPI calls:

Instrumentation is accomplished using the standard MPI profiling interface PMPI.
To enable it, the application program has to be linked against the EPIK MPI (or hy-
brid) measurement library plus MPI-specific libraries. Note that the EPIK libraries
must be linked before the MPI library to ensure interposition will be effective.

* OpenMP directives & API calls:

The Scalasca measurement system uses the OPARI tool for instrumentation
of OpenMP constructs. See the OPARI documentation on how to instrument
OpenMP source code. In addition, the application must be linked with the EPIK
OpenMP (or hybrid) measurement library.

The Scalasca instrumenter command scalasca -instrument takes care of correct link-
ing. When compiling without the Scalasca instrumenter, the kconfig command can be
used to simplify determining the appropriate linker flags and libraries:

kconfig [--mpi|--omp|--hybrid] [--otf] [--for] [--32]|--64] --1libs

The --mpi, --omp, or —-hybrid switch selects whether MPI, OpenMP or hybrid
MPI/OpenMP measurement support is desired. By default, kconfig assumes a C or
C++ program is being linked, Fortran applications have to be explicitly flagged with
the ——for switch. The --32 or —-64 switch selects the 32-bit or 64-bit version of the
measurement libraries, if necessary.

Note:

A particular installation of Scalasca may not offer all measurement configurations!
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The kconfig command can also be used to determine the right compiler flags for spec-
ifying the include directory of the epik_user.h or epik_user.inc header files when
compiling without using the Scalasca instrumenter:

kconfig --cflags

The following table gives an overview of the different possible calls of the Scalasca
instrumenter and which API calls or directives are instrumented by each call.

Option MPI OpenMP POMP EPIK API Compiler-
based

none X — — — X

(MPI)

none — X — — X

(OpenMP)

none X X — — X

(hybrid)

-user X — — X X

(MPI)

-user — X — X X

(OpenMP)

-user X X — X X

(hybrid)

—-pomp X X X — —

—-pomp X X X X —

-user

Table 3.1: Scalasca instrumenter option overview

3.1 Automatic function instrumentation

Most current compilers support automatic insertion of instrumentation calls at function
entry and exit(s), and Scalasca can use this capability to determine which functions are
executed in an instrumented measurement.

Note:

Depending on the compiler, and how it performs instrumentation, insertion of in-
strumentation may disable inlining and other significant optimizations, or inlined
functions may not be instrumented at all (and therefore "invisible").
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Automatic compiler-based instrumentation has been tested with a number of different
compilers:

* GCC (UNIX-like operating systems, not tested with Windows)

* IBM xlc, xIC (version 7 or later, IBM Blue Gene and AIX)

* IBM xIf (version 9.1 or later, IBM Blue Gene and AIX)

* PGI (Cray XT and Linux)

* Intel compilers (version 10 or later, Cray XT and Linux, not tested with Windows)

* SUN Studio compilers (Linux and Solaris, Fortran only)

» PathScale compilers (Cray XT and SiCortex)

* CCE/Cray compiler (Cray XT)

* NEC compiler (NEC SX)

In all cases, Scalasca supports automatic instrumentation of C, C++ and Fortran codes,
except for the SUN Studio compilers which only provide appropriate compiler support
for Fortran.

Note:

The automatic compiler instrumentation might create a significant relative measure-
ment overhead on short function calls. This can impact the overall application per-
formance during measurement. C++ applications are especially prone to suffer from
this, depending on application design and whether C++ STL functions are also in-
strumented by the compiler. Currently, it is not possible to prevent the instrumenta-
tion of specific functions on all platforms when using automatic compiler instrumen-
tation. See Section 3.4 on how to manually instrument applications if you encounter
significant overheads.

Names provided for instrumented functions depend on the compiler, which may add un-
derscores and other decorations to Fortran and C++ function names, and whether name
"demangling" has been enabled when Scalasca was installed and could be applied suc-
cessfully.

3.2 Manual region instrumentation

If the automatic compiler-based instrumentation (see Section 2.1) or semi-automatic in-
strumentation (see Section 3.3) procedure fails, instrumentation can be done manually.
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Manual instrumentation can also be used to augment automatic instrumentation with
region or phase annotations, which can improve the structure of analysis reports. Gen-
erally, the main program routine should be instrumented, so that the entire execution is
measured and included in the analyses.

Instrumentation can be performed in the following ways, depending on the programming
language used.

Fortran:

#include "epik_user.inc"

subroutine foo(...)
!declarations
EPIK_FUNC_REG("foo")
EPIK_USER_REG (r_name, "iteration loop")
EPIK_FUNC_START ()

EPIK_USER_START (r_name)
do i= 1, 100

end do
EPIK_USER_END (r_name)

EPIK_FUNC_END ()
end subroutine foo

C/C++:

#include "epik_user.h"

void foo(...)

{
/* declarations */
EPIK_USER_REG (r_name, "iteration loop");
EPIK_FUNC_START () ;

EPIK_USER_START (r_name);
for (1 = 0; 1 < 100; ++1)
{

1
EPIK_USER_END (r_name) ;
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EPIK_FUNC_END () ;

C++ only:

#include "epik_user.h"

void foo(...)

{
EPIK_TRACER("foo");

Region identifiers (r_name) should be registered in each annotated function/subroutine
prologue before use within the associated body, and should not already be declared in
the same program scope. For C and C++, function names are automatically provided by
the EPIK_FUNC_BEGIN and EPIK_FUNC_END macros (so don’t need registering), whereas
annotated Fortran functions and subroutines should call EPIK_FUNC_REG with an appro-
priate name.

The source files instrumented in this way have to be compiled with ~-DEPIK otherwise
EPIK_x calls expand to nothing and are ignored. If the Scalasca instrumenter -user flag
is used, the EPIK symbol will be defined automatically. Also note, that Fortran source
files instrumented this way have to be preprocessed with the C preprocessor (CPP).

Manual function instrumentation in combination with automatic source code instrumen-
tation by the compiler leads to double instrumentation of user functions, i.e., usually only
user region instrumentation is desired in this case.

For examples of how to use the EPIK user API, see the x-epik.x* files in the example
directory of the Scalasca installation.

3.3 Semi-automatic instrumentation

If you manually instrument the desired user functions and regions of your application
source files using the POMP INST directives described below, the Scalasca instrumenter
-pomp flag will generate instrumentation for them. POMP instrumentation directives are
supported for Fortran and C/C++. The main advantages are that

* being directives, the instrumentation is ignored during "normal" compilation and

* this semi-automatic instrumentation procedure can be used when fully automatic
compiler instrumentation is not supported.
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The INST BEGIN/END directives can be used to mark any user-defined sequence of state-
ments. If this block has several exit points (as is often the case for functions), all but the
last have to be instrumented by INST ALTEND.

Fortran:

subroutine foo(...)
!declarations
'POMPS$ INST BEGIN (foo)

if (<condition>) then
!'POMPS$ INST ALTEND (foo)
return

end if

!'POMPS$ INST END (foo)
end subroutine foo

C/C++:

void foo(...)

{
/* declarations */
#pragma pomp inst begin(foo)

if (<condition>)
tpragma pomp inst altend(foo)
return;

#pragma pomp inst end(foo)

At least the main program function has to be instrumented in this way, and additionally,
one of the following should be inserted as the first executable statement of the main
program:

Fortran:
program main
! declarations

'POMPS INST INIT

end program main
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C/C++:

int main(int argc, char** argv)
{

/* declarations */

#pragma pomp inst init

For an example of how to use the POMP directives, see the *-pomp. * files in the example
directory of the Scalasca installation.

3.4 Selective instrumentation and measurement

Scalasca experiments contain by default only summarized metrics for each call path
and process/thread. More detailed analyses, providing additional metrics regarding wait
states and other inter-process inefficiencies, require that event traces are collected in
buffers on each process that must be adequately sized to store events from the entire
execution.

Instrumented functions which are executed frequently, while only performing a small
amount of work each time they are called, have an undesirable impact on measurement.
The measurement overhead for such functions is large in comparison to the execution
time of the uninstrumented function, resulting in measurement dilation. Recording such
events requires significant space and analysis takes longer with relatively little improve-
ment in quality.

Ideally, such functions (or regions) should not be instrumented, to entirely remove their
impact on measurement. Uninstrumented functions are still executed, but become "invis-
ible" in measurement and subsequent analyses (as if inlined). Manual annotations (see
Section 3.2) or POMP directives (see Section 3.3) should be removed or disabled.

Automatic function instrumentation, working at the level of source modules, can be dis-
abled by selectively compiling such sources normally, i.e., without preprocessing with
the Scalasca instrumenter.

Note:

The instrumenter is, however, still required when linking.

If only some functions within a source module should be instrumented and others left
uninstrumented, the module can be split into separate files, or compiled twice with con-
ditional preprocessor directives selecting the separate parts and producing separate object
files.
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Alternatively, a measurement filtering capability is supported for most (but not all) com-
pilers. A file containing the names of functions (one per line) to be excluded from mea-
surement can be specified using the EPIK configuration variable EPK_FILTER or alterna-
tively via the -f <filter_file> option of the scalasca -analyze command (and
will be archived in epik_<title>/epik.filt as part of the experiment). Filter func-
tion names can include wildcards ("*") and, if name demangling is not supported, then
linker names must be used. On the other hand, if C++ name demangling is supported,
"x" characters indicating pointer variables have to be escaped using a backslash.

Whenever a function marked for filtering is executed, the measurement library skips
making a measurement event, thereby substantially reducing the overhead and impact
of such functions. In some cases, even this minimal instrumentation processing may
be undesirable, and the function should be excluded from instrumentation as described
previously.
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4 Measurement Collection & Analysis

The Scalasca measurement collection and analysis nexus manages the configuration and
processing of performance experiments with an instrumented executable. Many different
experiments can typically be performed with a single instrumented executable without
needing to re-instrument, by using different measurement and analysis configurations.
The default runtime summarization mode directly produces an analysis report for exam-
ination, whereas event trace collection and analysis are automatically done in two steps.

The distinctive feature of Scalasca is the automatic analysis of event traces in order to
find performance bottlenecks. Internally, performance problems are specified in terms
of execution patterns that represent standard situations of inefficient behaviour. These
patterns are used during the analysis process to recognize and quantify the inefficient
behaviour in the application.

The analysis of traces from pure MPI or hybrid MPI/OpenMP programs can be per-
formed in parallel (with as many processes and threads as the original application exe-
cution), see section 4.4. Pure OpenMP traces are still analyzed sequentially, see section
45.

Scalasca not only supports the analysis of function calls and user-defined source-code
regions (cf. chapter 3), but also the analysis of hardware performance counter metrics,
see section 4.3.

4.1 Nexus configuration

The Scalasca measurement collection and analysis nexus (SCAN) is a command prefixed
to the command used to launch and run the application executable. Arguments can be
given to specify whether tracing should be enabled (-t), a filter that should be applied
(-f filter_file, and hardware counters that should be included in the measurement
(-m metric_list).

The target executable is examined to determine whether MPI and/or OpenMP instrumen-
tation is present, and the number of MPI processes and OpenMP threads are determined
from the launch environment and command-line specification. These are used to gener-
ate a default name for the experiment, unless a title has been explicitly specified with -e
expt_title (or EPK_TITLE). (Where the number of processes and/or threads are omit-
ted, or were otherwise not determined, the number is replaced with the letter 0’ is used
to indicate this.)
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Note:

Configuration specified on the nexus command-line takes precedence over that spec-
ified as environment variables or in a configuration file.

Environment variables with the SCAN_ prefix may be used to configure the nexus it-
self (which is a serial workflow manager process), as distinct from the instrumented
application process or processes which will be measured, which are also configured via
environment variables discussed in the following section 4.2.

Serial and OpenMP programs are typically executed directly, whereas MPI (and hybrid
OpenMP/MPI) programs usually require a special launcher (such as mpiexec) which
might also specify the number of processes to be created. Many MPI launchers are
automatically recognized, but if not, the MPI launcher name can be specified with the
environment variable SCAN_MPI_LAUNCHER. When the MPI launch command is being
parsed, unrecognized flags might be reported as ignored, and unrecognized options with
required arguments might need to be quoted.

Note:

Launcher-specific configuration files which augment the launch command are cur-
rently not handled by Scalasca.

If the target executable isn’t specified as one of the launcher arguments, it is expected
to be the immediately following part of the command line. It may be necessary to
use a double-dash specification (--) to explicitly separate the target from the preced-
ing launcher specification.

If there is an imposter executable or script, e.g., used to specify placement, that pre-
cedes the instrumented target, it may be necessary to explcitly identify the target with
the environment variable SCAN_TARGET.

If environment variables aren’t automatically forwarded to MPI processes by the
launcher, it may be necessary to specify the syntax that the launcher requires for this
as SCAN_SETENV. For example, if an environment variable VAR and value VAL must
be exported with "--export VAR VAL" use SCAN_SETENV=--export, or use SCAN_-
SETENV=-setenv= for "-setenv VAR=VAL" syntax.

Trace analysis is done with different trace analyzers according to availability and the
type of experiment. An alternate trace analyzer can be specified with SCAN_TRACE_-
ANALYZER. Options to be given to the trace analyzer can be specified with SCAN_-
ANALYZE_OPTS. Trace data can be automatically removed after successful trace analysis
by setting SCAN_CLEAN.
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4.2 Measurement configuration

A number of configuration variables can be used to control the EPIK measurement run-
time configuration: for an annotated list of configuration variables, and their current
settings, run the epik_conf command. Configuration variables can be specified via en-
vironment variables or in a configuration file called EPIK.CONF: by default the current
directory is searched for this file, or an alternative location can be specified with the
EPK_CONF environment variable.

The values for configuration variables can contain (sub)strings of the form $XYZ or
${XYZ} where XYZ is the name of another configuration variable. Evaluation of the
configuration variable is done at runtime when measurement is initiated.

When tracing (large-scale) MPI applications it is recommended to set the EPK_LDIR and
EPK_GDIR variables to the same location, as in such cases intermediate file writing is
avoided and can greatly improve performance. Therefore, this is the default setting.

4.3 Measurement and analysis of hardware counter
metrics

If the Scalasca measurement library EPIK has been built with hardware counter support
enabled (see INSTALL file), it is capable of processing hardware counter information as
part of event handling. (This can be checked by running epik_conf and seeing whether
EPK_METRICS_SPEC is set.)

Counters are processed into counter metrics during runtime summarization, and recorded
as part of event records in collected traces. Note that the number of counters recorded
determines measurement and analysis overheads, as well as the sizes of measurement
storage datastructures, event traces and analysis reports. Counter metrics recorded in
event traces are currently ignored by the Scalasca parallel trace analyzer, and it is gener-
ally recommended that they should only be specified for summarization measurements.

To request the measurement of certain counters, set the variable EPK_METRICS to a colon-
separated list of counter names, or a predefined platform-specific group. Alternatively
specify the desired metrics with -m <metriclist> argument to the Scalasca measure-
ment collection and analysis system (scalasca -analyze). Hardware counter mea-
surement is disabled by default.

Metric names can be chosen from the list contained in file doc/METRICS.SPEC or may
be PAPI preset names or platform-specific "native" counter names. METRICS. SPEC also
contains specifications of groups of (related) counters which may conveniently be mea-
sured simultaneously on various platforms. The installed doc/METRICS. SPEC specifica-
tion is overridden by a file named METRICS. SPEC in the current working directory, or
specified by the EPIK configuration variable EPK_METRICS_SPEC.
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If any of the requested counters are not recognized or the full list of counters cannot be
recorded due to hardware-resource limits, measurement of the program execution will be
aborted with an error message.

Counter metrics appear in the Performance Metrics pane of the CUBE3 browser. Rela-
tionships between counter metrics which define hierarchies are also specified in the file
METRICS.SPEC — those without specified relationships are listed separately.

Experiments with subsets of the counter metrics required for a full hierarchy could previ-
ously be combined into composite experiments using the cube_merge utility. Note that
a replacement for this utility is still under development and not yet available. Generally
several measurement experiments are required, and the groupings of counters provided
in METRICS.SPEC can act as a guide for these.

The default doc/METRICS.SPEC provides generic metric specifications which can be
used for analysis on any platform. Additional platform-specific example metric speci-
fications are provided in the examples directory. If desired, an example METRICS.SPEC
appropriate for the platform where the measurements will be (or have been) recorded
can be used instead of the default doc/METRICS. SPEC via setting the EPK_METRICS_-—
SPEC configuration variable or replacing the installed file.

EXPERT analysis (see Section 4.5) can further be customized using additional environ-
ment variables: EPT_INCOMPLETE_COMPUTATION can be set to accept metric computa-
tions which are missing one or more component measurement (while not generally useful
on its own, it can allow more detailed metric hierarchies to be created when experiments
are combined); EPT_MEASURED_METRICS modifies the handling of unparented measured
metrics, such that they can be ignored (value 0), listed separately (value 1, the default)
or listed together with parented metrics (value 2).

4.4 Automatic parallel event trace analysis

SCOUT 1is Scalasca’s automatic MPI-based analyzer for EPIK event traces. It is
used internally by the Scalasca measurement collection and analysis system (scalasca
-analyze) on MPI and hybrid MPI/OpenMP event traces, or can be explicitly executed
on event traces in EPIK measurement archives. Depending on the build configuration
and the capabilities of the target platform, SCOUT may be available in two forms:

scout.mpi is built whenever Scalasca is configured with MPI support. It is used to
analyze event traces generated by pure MPI applications. It can also be used on
traces from hybrid MPI/OpenMP applications, however, it will then only provide
information about the master thread of each process and its MPI activities.

scout.hyb is built in addition to scout.mpi if Scalasca is configured with hybrid
MPI/OpenMP support. It is used to analyze event traces generated by hybrid
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MPI/OpenMP applications, providing information about all OpenMP threads of
each MPI process.

The appropriate SCOUT variant can be explicitly executed on event traces in EPIK mea-
surement archives using

SMPIEXEC S$MPIEXEC_FLAGS <scout.type> [-s] epik_<title>

which produces an (intermediate) analysis report epik_<title>/scout.cube.

Event traces collected on clusters without a synchronized clock may contain logical clock
condition violations [2] (such as a receive completing before the corresponding send is
initiated). When SCOUT detects this, it reports a warning that the analysis may be
inconsistent and recommends (re-)running trace analysis with its integrated timestamp
synchronization algorithm (based on the controlled logical clock [1]) activated: this aux-
illiary trace processing is specified with the optional -s flag to SCOUT.

Alternatively, event trace analysis can be (re-)initiated using the scalasca -analyze
command, e.g.,

scalasca -analyze -a -e epik_<title> SMPIEXEC SMPIEXEC_FLAGS

where MPIEXEC is the command used to configure and launch MPI applications, and is
typically identical to that used to launch the user MPI application. In the second case,
the scalasca -analyze command will automatically figure out which SCOUT variant
should be used and/or is available. To activate the integrated timestamp synchroniza-
tion algorithm when using the scalasca -analyze command, the environment variable
SCAN_ANALYZE OPTS needs to be set to -s.

Note:

The number of MPI processes for SCOUT must be identical to the number of MPI
processes for the original application! Furthermore, if SCOUT is executed on hybrid
MPI/OpenMP traces, the OMP_NUM_THREADS environment variable must be set to the
value used for the original application.

Warning:

The scout . hyb analyzer requires hybrid OpenMP/MPI applications to use the same
number of threads during all parallel regions. A dynamically changing number of
threads is not supported, and typically will result in deadlock!

When running the SCOUT analyzer on (back-end) compute nodes with a different ar-
chitecture to their system front-end, remember to specify the path to the appropriate
(back-end) version (e.g., $SCALASCA_RTS/<scout.type>).
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If your MPI library doesn’t automatically support passing command-line arguments to all
MPI processes, the name of the experiment to analyze may need to be passed in a special
form (e.g., —args "epik_<title>") or can be specified via the EPK_TITLE configura-
tion variable (in a EPIK.CONF file or set in the environment for each MPI process, e.g.,
-env "EPK_TITLE=<title>").

Note:

SCOUT processes may require three times the memory of the largest MPI-rank trace
file to complete analysis without paging to disk. Hardware counters recorded in
event traces are currently ignored by SCOUT, however, hardware counter metrics
can be found in the runtime summarization analysis report (summary.cube) which is
also produced by default when tracing is enabled.

4.5 Automatic sequential event trace analysis

EXPERT is an automatic serial analyzer for merged EPILOG event traces. It is used
internally by the Scalasca collection and analysis system (scalasca -analyze) on
pure OpenMP event traces, and it can also be manually applied to MPI and hybrid
MPI/OpenMP traces in EPIK experiment archives after they have been merged via

elg_merge epik_<title>

to produce epik_<title>/epik.elgq.

Note:

It may take quite a long time to merge large event traces, and the resulting epik.elg
will typically be more than three times as large as the unmerged process traces!

Explicit execution of EXPERT on a merged EPILOG event trace in an EPIK experiment
archive via

expert epik_<title>
produces an analysis report epik_<title>/expert.cube.

Note:

Bear in mind, that both merging of MPI rank traces and EXPERT analysis are se-
quential operations that might take a long time for large experiments!
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Warning:

The EXPERT analyzer requires the event trace to represent a call tree with a single
root. Therefore you should instrument the entry and exit of the application’s "main"
function if necessary. Also note that EXPERT requires OpenMP applications to use
the same number of threads during all parallel regions. A dynamically changing
number of threads is not supported!

Integrated merged trace analysis and results presentation is provided by the KOJAK anal-
ysis command:

kanal epik_<title>

or

kanal <file>[.elg]|.cube]

The command takes as argument either an EPIK experiment archive (contain-
ing a merged trace), a merged trace <file>.elg or a generated analysis report
<file>.cube. If <file>.cube already exists (and is newer than <file>.elq),
CUBES3 is used to present it and browse the analysis. If the trace <file>.elg is newer
(or no analysis file exists), then EXPERT is run to generate <file>.cube before it is
presented with CUBE3. Where generation of a new <file>.cube would overwrite an
existing (older) file with the same name, a prompt will confirm whether to continue or
not.

The EXPERT event trace analysis and CUBE analysis visualization can also be executed
separately, which is particularly appropriate when the CUBE viewer is installed on a
separate system (e.g., desktop) from the measurement system (e.g., a remote HPC system
or cluster).

EXPERT analysis performance for particular trace files can be tuned via EARL environ-
ment variables which trade efficiency and memory requirements.

In order to analyze a trace file, EXPERT reads the trace file once from the beginning to
the end. After accessing a particular event, EXPERT might request other events usually
from the recent past of the event or ask for state information related to one of those
events. Random access to events as well as the calculation of state information is done
inside the EARL event accessor library, a component used by EXPERT.

During the analysis process, EARL dynamically builds up a sparse index structure on
the trace file. At fixed intervals the state information is stored in so-called bookmarks
to speed up random access to events. If a particular event is requested, EARL usually
needs not start reading from the beginning of the trace file in order to find it. Instead,
the interpreter looks for the nearest bookmark and takes the state information from there
which is required to correctly interpret the subsequent events from the file. Then it starts
reading the trace from there until it reaches the desired event. The distance of bookmarks
can be set using the following environment variable:
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EARL_BOOKMARK_DISTANCE (default 10000)

To gain further efficiency, EARL automatically caches the most recently processed
events in a history buffer. The history buffer always contains a contiguous subsequence
of the event trace and the state information referring to the beginning of this subsequence.
So all information related to events in the history buffer can be completely generated
from the buffer including state information. The size of the history buffer can be set
using another environment variable:

EARL_HISTORY_SIZE (default 1000 * number of processes or threads)

Note:

Choosing the right buffer parameters is usually a trade-off decision between access
efficiency and memory requirements. In particular, for very long traces with many
events or very wide traces with many processes or threads, adjustment of these pa-
rameters might be recommended.
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5 Additional Utilities

5.1 Additional EPILOG event trace utilities

Process-local EPILOG traces in EPIK experiment archives can be merged by executing
elg_merge epik_<title>
in order to produce a single merged trace file epik_<title>/epik.elq.

Note:
It may take quite a long time to merge large event traces, and the resulting epik.elg

will typically be more than three times as large as the unmerged process traces!

Two utility programs are provided to check the correctness and to summarize the contents
of EPILOG trace files:

elg_print <file>.elg

Prints the contents of the EPILOG trace file <file>.elg to the standard output stream.
elg_print creates a readable representation of the EPILOG low-level record format.
This is mainly provided for debugging purposes to check the correct structure and content
of the EPILOG trace records.

elg_stat <file>.elg

By default, e1g_stat calculates and reports some very simple event statistics to standard
output. In addition, options -d (definition records) and -e (event records) enable the
printing of a human-readable representation of the trace contents on the event level.

5.2 Trace converters

The following utility programs can be used to convert merged EPILOG trace file into
other formats.
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If support for the trace formats OTF and/or VTF3 were included during configuration
and installation, merged EPILOG event traces can be converted for visual analysis with
the VAMPIR trace visualizer from TU Dresden ZIH [5].

To convert a merged trace to the VampirTrace Open Trace Format (OTF) use

elg2otf epik_<title>

and to convert to the older VAMPIR version 3 format (VTF3) use

elg2vtf3 epik_<title>/<file>.elg

which stores the resulting trace in <file>.vpt.

Experimental support is provided to convert merged EPILOG traces to the format used
by the PARAVER trace visualizer from the Barcelona Supercomputing Center [3] via

elg2prv epik_<title>

5.3 Recording user-specified virtual topologies

A virtual topology defines the mapping of processes and threads onto the application do-
main, such as a weather model simulation area. In general, a virtual topology is specified
as a graph (e.g., aring) or a Cartesian topology such as two- or higher-dimensional grids.
Virtual topologies can include processes, threads or a combination of both, depending on
the programming model.

Virtual topologies can be useful to identify performance problems. Mapping perfor-
mance data onto the topology can help uncover inefficient interactions between neigh-
bors and suggest algorithmic improvements. EPIK supports the recording of 3D Carte-
sian grids as the most common case. To do this, the user has two options:

1. Using MPI Cartesian-topology functions

2. Manual recording using the EPILOG topology API

If an application uses MPI topology functions to set up a Cartesian grid, EPIK automat-
ically includes this information in the measurement experiment.

In addition, EPIK provides users who do not use MPI topologies with an API to define a
one-, two- or three- dimensional Cartesian topology. These functions are available in C
and Fortran. To use the C API, include elg_topol.h. Whereas in C all functions start
with the prefix elg_, they start with elgf_ in Fortran. Here are the signatures of these
two functions:
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1. elg(f)_cart_create(size_0, size_1, size_2,
period_0, period_1l, period 2);

defines a Cartesian grid topology of up to 3 dimensions where

* size_X1is an integer describing the number of locations in dimension X and

* period_X is an integer describing the periodicity in dimension X. It should
be

— zero if dimension is not periodic, and

— non-zero if dimension is periodic.

To specify a grid with less than three dimensions, set size_X to zero for the di-
mensions not being used. At least one process/thread must call this function. Re-
dundant calls done by other processes/threads will be ignored.

2. elg(f)_cart_coords(coord_0, coord_1, coord_2);
defines the coordinates of the calling process or thread (i.e., location) in the previ-
ously defined grid where

* coord_Xis an integer describing the coordinate of a location in dimension X
with X € [0,size_X — 1]

This function must be called exactly once by every process/thread that is part of
the Cartesian topology.

Note:

Presently, the user can define only one topology per measurement, and this topology
is ignored if a physical machine topology is defined. This is currently the case for
IBM Blue Gene systems.
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