DiscreteSystemModel Class Reference

Class for discrete System Models. More...

#include <discretesystemmodel.h>

Inheritance diagram for DiscreteSystemModel:

SystemModel< int >

List of all members.

Public Member Functions

 DiscreteSystemModel (DiscreteConditionalPdf *systempdf=NULL)
 Constructor.
virtual ~DiscreteSystemModel ()
 Destructor.
 DiscreteSystemModel (const DiscreteSystemModel &)
 Copy constructor.
unsigned int NumStatesGet () const
 Get the number of discrete states.
int StateSizeGet () const
 Get State Size.
bool SystemWithoutInputs () const
 Has the system inputs or not.
ConditionalPdf< int, int > * SystemPdfGet ()
 Get the SystemPDF.
void SystemPdfSet (ConditionalPdf< int, int > *pdf)
 Set the SystemPDF.
int Simulate (const int &x, const int &u, int sampling_method=DEFAULT, void *sampling_args=NULL)
 Simulate the system.
int Simulate (const int &x, int sampling_method=DEFAULT, void *sampling_args=NULL)
 Simulate the system (no input system).
Probability ProbabilityGet (const int &x_k, const int &x_kminusone, const int &u)
 Get the probability of arriving in a next state.
Probability ProbabilityGet (const int &x_k, const int &x_kminusone)
 Get the probability of arriving in a next state.

Protected Attributes

ConditionalPdf< int, int > * _SystemPdf
 ConditionalPdf representing $ P(X_k | X_{k-1}, U_{k}) $.
bool _systemWithoutInputs
 System with no inputs?


Detailed Description

Class for discrete System Models.

Class representing discrete System Models, ie. System Models for which _BOTH_ states and inputs are discrete variables!

Definition at line 30 of file discretesystemmodel.h.


Constructor & Destructor Documentation

DiscreteSystemModel ( DiscreteConditionalPdf systempdf = NULL  ) 

Constructor.

Parameters:
systempdf ConditionalPdf<int> representing P(X_k | X_{k-1}, U_{k})
See also:
SystemPdf


Member Function Documentation

int StateSizeGet (  )  const [inherited]

Get State Size.

Copy constructor SystemModel(const SystemModel<T>& model);

Returns:
the statesize of the system

ConditionalPdf<int ,int >* SystemPdfGet (  )  [inherited]

Get the SystemPDF.

Returns:
a reference to the ConditionalPdf describing the system

void SystemPdfSet ( ConditionalPdf< int , int > *  pdf  )  [inherited]

Set the SystemPDF.

Parameters:
pdf a reference to the ConditionalPdf describing the system

int Simulate ( const int &  x,
const int &  u,
int  sampling_method = DEFAULT,
void *  sampling_args = NULL 
) [inherited]

Simulate the system.

Parameters:
x current state of the system
u input to the system
Returns:
State where we arrive by simulating the system model for 1 step
Parameters:
sampling_method the sampling method to be used while sampling from the Conditional Pdf describing the system (if not specified = DEFAULT)
sampling_args Sometimes a sampling method can have some extra parameters (eg mcmc sampling)
Note:
Maybe the return value would better be a Sample<T> instead of a T

int Simulate ( const int &  x,
int  sampling_method = DEFAULT,
void *  sampling_args = NULL 
) [inherited]

Simulate the system (no input system).

Parameters:
x current state of the system
Returns:
State where we arrive by simulating the system model for 1 step
Note:
Maybe the return value would better be a Sample<T> instead of a T
Parameters:
sampling_method the sampling method to be used while sampling from the Conditional Pdf describing the system (if not specified = DEFAULT)
sampling_args Sometimes a sampling method can have some extra parameters (eg mcmc sampling)

Probability ProbabilityGet ( const int &  x_k,
const int &  x_kminusone,
const int &  u 
) [inherited]

Get the probability of arriving in a next state.

Parameters:
x_k the next state (at time k)
x_kminusone the current state (at time k-1)
u the input
Returns:
the probability value

Probability ProbabilityGet ( const int &  x_k,
const int &  x_kminusone 
) [inherited]

Get the probability of arriving in a next state.

(no-input-system)

Parameters:
x_k the next state (at time k)
x_kminusone the current state (at time k-1)
Returns:
the probability value


The documentation for this class was generated from the following file:

Generated on Mon Mar 30 05:43:59 2009 for Bayesian Filtering Library by  doxygen 1.5.5