
DOLFIN User Manual

December 17, 2009

Logg, Wells, et al.

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to dolfin-dev@fenics.org.

Contents

About this manual 5

1 Quickstart 7

1.1 Downloading and installing DOLFIN 7

1.2 Solving Poisson’s equation with DOLFIN 8

1.2.1 Setting up the variational formulation 9

1.2.2 Writing the solver . 9

1.2.3 Compiling the program 15

1.2.4 Running the program 15

1.2.5 Visualizing the solution 16

2 Linear algebra 17

2.1 Matrices and vectors . 17

2.1.1 Sparse matrices . 19

2.1.2 Dense matrices . 20

3

2.1.3 The common interface 20

2.2 Solving linear systems . 20

2.2.1 Iterative methods . 21

2.2.2 Direct methods . 22

2.3 Eigenvalue problems . 23

2.4 Linear algebra backends . 24

2.4.1 uBLAS . 24

2.4.2 PETSc . 24

2.4.3 Trilinos . 25

2.4.4 Matrix Template Library (MTL4) 25

2.4.5 User provided linear algebra backends 25

3 The mesh 27

3.1 Basic concepts . 27

3.1.1 Mesh . 27

3.1.2 Mesh entities . 27

3.2 Mesh iterators . 28

3.3 Mesh functions . 29

3.4 Mesh refinement . 29

3.5 Working with meshes . 29

3.5.1 Reading a mesh from file 29

3.5.2 Extracting a boundary mesh 30

3.5.3 Built-in meshes . 31

3.5.4 Creating meshes . 31

4 Functions 33

4.1 Basic properties . 33

4.1.1 Representation . 34

4.1.2 Assignment . 34

4.1.3 Components and subfunctions 34

4.1.4 Output . 35

4.2 Discrete functions . 35

4.3 User-defined functions . 36

4.3.1 Cell-dependent functions 36

4.3.2 Simple definition of functions in Python 37

5 Ordinary differential equations 41

6 Partial differential equations 43

7 Nonlinear solver 45

7.1 Nonlinear functions . 45

7.2 Newton solver . 46

7.2.1 Linear solver . 47

7.2.2 Application of Dirichlet boundary conditions 48

7.3 Incremental Newton solver . 49

8 Input/output 51

8.1 Files and objects . 51

8.2 File formats . 53

8.2.1 DOLFIN XML . 53

8.2.2 VTK . 54

8.2.3 GNU Octave . 55

8.2.4 MATLAB . 56

8.3 Converting between file formats 56

8.4 A note on new file formats . 57

9 The log system 59

9.1 Generating log messages . 59

9.2 Warnings and errors . 60

9.3 Debug messages and assertions 61

9.4 Task notification . 62

9.5 Progress bars . 63

9.6 Controlling the destination of output 64

10 Parameters 65

10.1 Retrieving the value of a parameter 65

10.2 Modifying the value of a parameter 66

10.3 Adding a new parameter . 67

10.4 Saving parameters to file . 68

10.5 Loading parameters from file 68

11 PyDOLFIN 69

A Reference cells 71

A.1 The reference interval . 72

A.2 The reference triangle . 72

A.3 The reference quadrilateral . 73

A.4 The reference tetrahedron . 74

A.5 The reference hexahedron . 75

B Numbering of mesh entities 77

B.1 Basic concepts . 77

B.2 Numbering of vertices . 78

B.3 Numbering of other mesh entities 79

B.3.1 Relative ordering . 81

B.3.2 Limitations . 83

B.4 Numbering schemes for reference cells 84

B.4.1 Numbering of mesh entities on intervals 84

B.4.2 Numbering of mesh entities on triangular cells 84

B.4.3 Numbering of mesh entities on quadrilateral cells . . . 85

B.4.4 Numbering of mesh entities on tetrahedral cells 85

B.4.5 Numbering of mesh entities on hexahedral cells 86

C Design 87

C.1 Linear algebra . 87

D Installation 89

D.1 Installing from source . 89

D.1.1 Dependencies and requirements 89

D.1.2 Downloading the source code 93

D.1.3 Compiling the source code 93

D.1.4 Compiling the demo programs 95

D.1.5 Compiling a program against DOLFIN 95

D.2 Debian package . 96

D.3 Installing from source under Windows 96

E Contributing code 99

E.1 Creating bundles/patches . 99

E.1.1 Creating a Mercurial (hg) bundle 99

E.1.2 Creating a standard (diff) patch file 101

E.2 Sending bundles/patches . 102

E.3 Applying changes . 103

E.3.1 Applying a Mercurial bundle 103

E.3.2 Applying a standard patch file 103

E.4 License agreement . 104

F Contributors 107

G Coding style 109

G.1 Naming conventions . 109

G.1.1 Class names . 109

G.1.2 Function names . 110

G.1.3 Variable names . 111

G.1.4 Enum variables and constants 111

G.1.5 File names . 111

G.2 Miscellaneous . 112

G.2.1 Comments . 112

G.2.2 Integers and reals . 112

G.2.3 Placement of brackets 113

G.2.4 Indentation . 113

G.2.5 Header file layout . 113

G.2.6 Implementation file layout 114

G.2.7 Including header files 115

G.2.8 Forward declarations 115

G.2.9 Explicit constructors 116

H License 117

About this manual

This manual is currently being written. As a consequence, some sections may
be incomplete or inaccurate. In particular, only the C++ interface (not the
Python interface) of DOLFIN is documented, and only to a certain extent.
Care has been taken that the quickstart chapter is accurate, but other than
that, inconsistencies and inaccuracies can be expected.

We apologize for any inconvenience, but take comfort in the fact that (i)
with the release of DOLFIN 0.7.0, the interface is starting to mature and
will undergo less dramatic changes in the future (which will actually make
it possible to write documentation) and (ii) most of the code is pretty well
documented through the demos. If you have some writing skills and are
willing to contribute, please consider writing a section or two and submit to
the mailing list!

Intended audience

This manual is written both for the beginning and the advanced user. There
is also some useful information for developers. More advanced topics are
treated at the end of the manual or in the appendix.

11

DOLFIN User Manual Logg, Wells, et al.

Typographic conventions

• Code is written in monospace (typewriter) like this.

• Commands that should be entered in a Unix shell are displayed as
follows:

./configure

make

Commands are written in the dialect of the bash shell. For other shells,
such as tcsh, appropriate translations may be needed.

Enumeration and list indices

Throughout this manual, elements xi of sets {xi} of size n are enumerated
from i = 0 to i = n − 1. Derivatives in R

n are enumerated similarly:
∂

∂x0

, ∂

∂x1

, . . . , ∂

∂xn−1

.

Contact

Comments, corrections and contributions to this manual are most welcome
and should be sent to

dolfin-dev@fenics.org

12

Chapter 1

Quickstart

This chapter demonstrates how to get started with DOLFIN, including down-
loading and installing the latest version of DOLFIN, and solving Poisson’s
equation. These topics are discussed in more detail elsewhere in this manual.
In particular, see Appendix D for detailed installation instructions and Chap-
ter 6 for a detailed discussion of how to solve partial differential equations
with DOLFIN.

1.1 Downloading and installing DOLFIN

The latest version of DOLFIN can be found on the FEniCS web page:

http://www.fenics.org/

The following commands illustrate the installation process, assuming that
you have downloaded release x.y.z of DOLFIN:

tar zxfv dolfin-x.y.z.tar.gz

cd dolfin-x.y.z

13

DOLFIN User Manual Logg, Wells, et al.

sudo scons install

Since DOLFIN depends on a number of other packages, you may also need to
download and install those packages before you can compile DOLFIN. (See
Appendix D for detailed instructions.)

1.2 Solving Poisson’s equation with DOLFIN

Let’s say that we want to solve Poisson’s equation on the unit square Ω =
(0, 1)×(0, 1) with homogeneous Dirichlet boundary conditions on the bound-
ary Γ = {(x, y) ∈ ∂Ω : x = 0 or x = 1}, homogeneous Neumann boundary
conditions ∂nu = 0 on the remaining part of the boundary, and right-hand
side given by f(x, y) = 500 exp(−((x − 0.5)2 + (y − 0.5)2)/0.02):

− ∆u(x, y) = f(x, y), x ∈ Ω = (0, 1) × (0, 1), (1.1)

u(x, y) = 0, (x, y) ∈ Γ = {(x, y) ∈ ∂Ω : x = 0 or x = 1}, (1.2)

∂nu(x, y) = 0, (x, y) ∈ ∂Ω \ Γ. (1.3)

To solve a partial differential equation with DOLFIN, it must first be writ-
ten in variational form. The (discrete) variational formulation of Poisson’s
equation reads: Find uh ∈ Vh such that

a(v, uh) = L(v) ∀v ∈ V̂h, (1.4)

with (V̂h, Vh) a pair of suitable discrete function spaces (the test and trial
spaces). The bilinear form a : V̂h × Vh → R is given by

a(v, uh) =

∫
Ω

∇v · ∇uh dx (1.5)

and the linear form L : V̂h → R is given by

L(v) =

∫
Ω

vf dx. (1.6)

14

DOLFIN User Manual Logg, Wells, et al.

1.2.1 Setting up the variational formulation

The variational formulation (1.4) must be given to DOLFIN as a pair of
bilinear and linear forms (a, L) using a form compiler like FFC. This is done
by entering the definition of the forms in a text file with extension .form,
e.g., Poisson.form, as follows:

element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

The example is given here for piecewise linear finite elements in two dimen-
sions, but other choices are available, including arbitrary order Lagrange
elements in two and three dimensions.

To compile the pair of forms (a, L), now call the form compiler on the
command-line as follows:

ffc -l dolfin Poisson.form

This generates the file Poisson.h which implements the forms in C++ for
inclusion in your DOLFIN program.

1.2.2 Writing the solver

Having compiled the variational formulation (1.4) with FFC, it is now easy
to implement a solver for Poisson’s equation. We first discuss the implemen-
tation line by line and then present the complete program. The source code

15

DOLFIN User Manual Logg, Wells, et al.

for this example is available in the directory demo/pde/poisson/cpp/ of the
DOLFIN source tree.1

At the beginning of our C++ program, which we write in a text file named
main.cpp, we must first include the header file dolfin.h, which gives our
program access to the DOLFIN class library. In addition, we include the
header file Poisson.h generated by the form compiler. Since all classes in
the DOLFIN class library are defined within the namespace dolfin, we also
specify that we want to work within this namespace:

#include <dolfin.h>

#include "Poisson.h"

using namespace dolfin;

Since we are writing a C++ program, we need to create a main function.
You are free to organize your program any way you like, but in this simple
example we just write our program inside the main function:

// Include headers and define classes here

int main()

{

// Write your program here

return 0;

}

We now proceed to specify the right-hand side f of (1.1). This is done by
defining a new subclass of Function (which we here name Source) and by
overloading the eval() function to return the value f(x, y) = 500 exp(−((x−
0.5)2 + (y − 0.5)2)/0.02):

class Source : public Function

{

1A corresponding Python demo is available in demo/pde/poisson/python/

16

DOLFIN User Manual Logg, Wells, et al.

void eval(double* values, const double* x) const

{

double dx = x[0] - 0.5;

double dy = x[1] - 0.5;

values[0] = 500.0*exp(-(dx*dx + dy*dy) / 0.02);

}

};

To define the Dirichlet boundary condition, we define a SubDomain for the
Dirichlet boundary:

class DirichletBoundary : public SubDomain

{

bool inside(const double* x, bool on_boundary) const

{

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS;

}

};

Next, we need to create a mesh. DOLFIN relies on external programs for
mesh generation, and imports meshes in DOLFIN XML format. Meshes in
other formats can be converted to the DOLFIN XML format using the script
dolfin-convert. However, for simple domains like the unit square or unit
cube, DOLFIN provides a built-in mesh generator. To generate a uniform
mesh of the unit square with mesh size 1/32 (with a total of 2 · 322 = 2048
triangles), we can just type

UnitSquare mesh(32, 32);

Next, we instantiate a finite element function space on the mesh as follows:

PoissonFunctionSpace V(mesh);

17

DOLFIN User Manual Logg, Wells, et al.

Here, we make use of the code generated by the form compiler (the class
PoissonFunctionSpace).

Next, we define the Dirichlet boundary condition by specifying the value that
the solution should take and the subset of the boundary where it should be
applied:

Constant u0(0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary);

Note the difference in how Dirichlet and Neumann boundary conditions are
applied. Dirichlet conditions are here applied strongly (but may also be ap-
plied weakly) using the DirichletBC class, while Neumann boundary condi-
tions are defined as part of the variational problem. (It is a natural boundary
condition for this variational formulation of Poisson’s equation.)

Next, we initialize the pair of bilinear and linear forms that we have previ-
ously compiled with FFC. We also instantiate the right-hand side function
and attach it to the linear form:

PoissonBilinearForm a(V, V);

PoissonLinearForm L(V);

Source f;

L.f = f;

To solve the variational problem, we use the class VariationalProblem,
which automatically assembles and solves the corresponding linear system:

VariationalProblem problem(a, L, bc);

Function u;

problem.solve(u);

To plot the solution, one may simply type

18

DOLFIN User Manual Logg, Wells, et al.

plot(u);

This requires the installation of PyDOLFIN and Viper. (A warning will be
issued if plotting is not available.)

Finally, we export the solution u to a file for visualization. Here, we choose
to save the solution in VTK format for visualization in ParaView or MayaVi,
which we do by specifying a file name with extension .pvd:

File file("poisson.pvd");

file << u;

The complete program for Poisson’s equation now looks as follows:

#include <dolfin.h>

#include "Poisson.h"

using namespace dolfin;

// Source term

class Source : public Function

{

void eval(double* values, const double* x) const

{

double dx = x[0] - 0.5;

double dy = x[1] - 0.5;

values[0] = 500.0*exp(-(dx*dx + dy*dy) / 0.02);

}

};

// Sub domain for Dirichlet boundary condition

class DirichletBoundary : public SubDomain

{

bool inside(const double* x, bool on_boundary) const

{

19

DOLFIN User Manual Logg, Wells, et al.

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS;

}

};

int main()

{

// Create mesh and function space

UnitSquare mesh(32, 32);

PoissonFunctionSpace V(mesh);

// Define boundary condition

Constant u0(0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary);

// Define variational problem

PoissonBilinearForm a(V, V);

PoissonLinearForm L(V);

Source f;

L.f = f;

// Compute solution

VariationalProblem problem(a, L, bc);

Function u;

problem.solve(u);

// Plot solution

plot(u);

// Save solution in VTK format

File file("poisson.pvd");

file << u;

return 0;

}

20

DOLFIN User Manual Logg, Wells, et al.

1.2.3 Compiling the program

The easiest way to compile the program is to create a SConstruct file that
tells scons how to build the program. The following example shows how to
write a SConstruct file for the above example:

import os, commands

Get compiler from pkg-config

compiler = commands.getoutput(’pkg-config --variable=compiler dolfin’)

Create a SCons Environment based on the main os environment

env = Environment(ENV=os.environ, CXX=compiler)

Get compiler flags from pkg-config

env.ParseConfig(’pkg-config --cflags --libs dolfin’)

Program name

env.Program(’demo’, ’main.cpp’)

With this file in place, we just need to type scons to compile the pro-
gram, generating the executable as the file demo. Note that this requires
pkg-config to be able to find the file dolfin.pc. That file is generated by
the configure script during the configuration of DOLFIN. If pkg-config

fails to find it, you need to add the directory containing it to the environment
variable PKG CONFIG PATH.

1.2.4 Running the program

To run the program, simply type the name of the executable:

./demo

21

DOLFIN User Manual Logg, Wells, et al.

1.2.5 Visualizing the solution

The solution may be visualized either by the built-in plot() command or
by calling an external application. The built-in plotting requires the instal-
lation of both PyDOLFIN and Viper. In this example, we chose to save the
solution in VTK format, which can be imported into for example ParaView
or MayaVi.

Figure 1.1: The solution of Poisson’s equation (1.1) visualized using the plot()

command (Viper).

22

Chapter 2

Linear algebra

◮ Developer’s note: Since this chapter was written, the DOLFIN linear alge-
bra interface has undergone some changes that are not documented here. As
a result, some of the information in this chapter may be outdated, incomplete
or simply wrong.

DOLFIN provides a high-performance linear algebra library, including ma-
trices and vectors, a set of linear solvers, preconditioners, and an eigenvalue
solver. The core part of the functionality is provided through wrappers that
provide a common interface to the functionality of the linear algebra libraries
uBLAS [?], PETSc [?] and Trilinos [?].

2.1 Matrices and vectors

The two basic linear algebra data structures are the classes Matrix and
Vector, representing a sparse M × N matrix and a vector of length N re-
spectively.

The following code demonstrates how to create a matrix and a vector:

Matrix A(M, N);

23

DOLFIN User Manual Logg, Wells, et al.

Vector x(N);

Alternatively, the matrix and the vector may be created by

Matrix A;

Vector x;

A.init(M, N);

x.init(N);

The following code demonstrates how to access the size and the elements of
a matrix and a vector:

A(5, 5) = 1.0;

double a = A(4, 3);

x(3) = 2.0;

double b = x(5);

unsigned int M = A.size(0);

unsigned int N = A.size(1);

N = x.size();

In addition, DOLFIN provides optimized functions for setting the values of
a set of entries in a matrix or vector:

double block[] = {2, 4, 6};

int rows[] = {0, 1, 2};

int cols[] = {0, 1, 2};

A.set(block, rows, cols, 3);

24

DOLFIN User Manual Logg, Wells, et al.

Alternatively, the set of values given by the array block can be added to the
entries given by the arrays rows and cols:

double block[] = {2, 4, 6};

int rows[] = {0, 1, 2};

int cols[] = {0, 1, 2};

A.add(block, rows, cols, 3);

These functions are particularly useful for efficient assembly of a (sparse)
matrix from a bilinear form.

2.1.1 Sparse matrices

The default DOLFIN class Matrix is a sparse matrix, which efficiently rep-
resents the discretization of a partial differential equation where most entries
in the matrix are zero. Alternatively, the class SparseMatrix may be used
which is identical with the class Matrix1.

If DOLFIN has been compiled with support for PETSc, then the sparse
matrix is represented as a sparse PETSc matrix2. Alternatively, the class
PETScMatrixmay be used, together with the corresponding class PETScVector.

If DOLFIN has been compiled without support for PETSc, then the sparse
matrix is represented as a uBLAS sparse matrix. Alternatively, the class
uBLASSparseMatrix may be used, together with the corresponding class
uBLASVector.

1The class Matrix is a typedef for the class SparseMatrix.
2By default, the sparse matrix is represented as a PETSc MATSEQAIJ matrix, but other

PETSc representations are also available.

25

DOLFIN User Manual Logg, Wells, et al.

2.1.2 Dense matrices

DOLFIN provides the class DenseMatrix for representation of dense ma-
trices. A dense matrix representation is often preferable when computing
with matrices of small to moderate size. In particular, accessing individual
elements is more efficient with a dense matrix representation.

A DenseMatrix is represented as uBLAS dense matrix and alternatively the
class uBLASDenseMatrix may be used, together with the corresponding class
uBLASVector.

2.1.3 The common interface

Although DOLFIN differentiates between sparse and dense data structures,
the two classes GenericMatrix and GenericVector define a common in-
terface to all matrices and vectors. Refer to the DOLFIN programmer’s

reference for the exact specification of these interfaces.

The following points should be noted:

1. If you want a specific backend like PETSc, then use PETScVector/PETScMatrix.

2. If you don’t care about the backend, then use Vector/Matrix.

3. If you write a function that should be able to accept vectors and matri-
ces from any backend as input, then use GenericVector/GenericMatrix.

2.2 Solving linear systems

DOLFIN provides a set of efficient solvers for linear systems of the form

Ax = b, (2.1)

where A is an N×N matrix and where x and b are vectors of length N . Both
iterative (Krylov subspace) solvers and direct (LU) solvers are provided.

26

DOLFIN User Manual Logg, Wells, et al.

2.2.1 Iterative methods

A linear system may be solved by the GMRES Krylov method as follows:

Matrix A;

Vector x, b:

GMRES::solve(A, x, b);

Alternatively, the linear system may be solved by first creating an object
of the class KrylovSolver, which is more efficient for repeated solution of
linear systems and also allows the specification of both the Krylov method
and the preconditioner:

KrylovSolver solver(gmres, ilu);

solver.solve(A, x, b);

For uBLAS matrices and vectors, the class uBLASKrylovSolver may be used
and for PETSc matrices and vectors, the class PETScKrylovSolver may be
used.

Krylov methods

DOLFIN provides the following set of Krylov methods:

cg The conjugate gradient method
gmres The GMRES method
bicgstab The stabilized biconjugate gradient squared method
default method Default choice of Krylov method

27

DOLFIN User Manual Logg, Wells, et al.

Preconditioners

DOLFIN provides the following set of preconditioners:

none No preconditioning
jacobi Simple Jacobi preconditioning
sor SOR, successive over-relaxation
ilu Incomplete LU factorization
icc Incomplete Cholesky factorization
amg Algebraic multigrid (through Hypre when available)
default pc Default choice of preconditioner

Matrix-free solvers

The DOLFIN Krylov solvers may be used without direct access to a matrix
representation. All that is needed is to provide the size of the linear system,
the right-hand side, and a method implementing the multiplication of the
matrix with any given vector.

Such a “virtual matrix” may be defined by implementing the interface de-
fined by either the class uBLASKrylovMatrix of PETScKrylovMatrix. The
matrix may then be used together with either the class uBLASKrylovSolver
or PETScKrylovSolver.

2.2.2 Direct methods

A linear system may be solved by a direct LU factorization as follows:

Matrix A;

Vector x, b;

LU::solve(A, x, b);

28

DOLFIN User Manual Logg, Wells, et al.

Alternatively, the linear system may be solved by first creating an object
of the class LUSolver, which may be more efficient for repeated solution of
linear systems:

LUSolver solver;

solver.solve(A, x, b);

For uBLAS matrices and vectors, the class uBLASLUSolver may be used and
for PETSc matrices and vectors, the class PETScLUSolver may be used.

2.3 Eigenvalue problems

DOLFIN also provides a solver for eigenvalue problems. The solver is only
available when DOLFIN has been compiled with support for PETSc and
SLEPc [?].

For the basic eigenvalue problem

Ax = λx, (2.2)

the following code demonstrates how to compute the first eigenpair:

SLEPcEigenvalueSolver esolver;

esolver.solve(A);

double lr, lc;

PETScVector xr, xc;

esolver.getEigenpair(lr, lc, xr, xc, 0);

The double and complex components of the eigenvalue are returned in lr

and lc, respectively, and the double and complex parts of the eigenvector
are returned in xr and xc, respectively.

29

DOLFIN User Manual Logg, Wells, et al.

For the generalized eigenvalue problem

Ax = λBx, (2.3)

the following code demonstrates how to compute the third eigenpair:

PETScEigenvalueSolver esolver;

esolver.solve(A, B);

double lr, lc;

PETScVector xr, xc;

esolver.getEigenpair(lr, lc, xr, xc, 2);

2.4 Linear algebra backends

2.4.1 uBLAS

uBLAS is a C++ template library that provides BLAS level 1, 2 and 3
functionality (and more) for dense, packed and sparse matrices. The design
and implementation unify mathematical notation via operator overloading
and efficient code generation via expression templates.

DOLFIN wrappers for uBLAS linear algebra is provided through the classes
uBLASSparseMatrix, uBLASDenseMatrix and uBLASVector. These classes
are implemented by subclassing the corresponding uBLAS classes, which
means that all standard uBLAS operations are supported for these classes.
For advanced usage not covered by the common DOLFIN interface speci-
fied by the classes GenericMatrix and GenericVector, refer directly to the
documentation of uBLAS.

2.4.2 PETSc

PETSc is a suite of data structures and routines for the scalable (parallel)
solution of scientific applications modeled by partial differential equations.

30

DOLFIN User Manual Logg, Wells, et al.

It employs the MPI standard for all message-passing communication.

DOLFIN wrappers for PETSc linear algebra is provided through the classes
PETScMatrix and PETScVector. Direct access to the PETSc data structures
is available through the member functions mat() and vec(), which return the
PETSc Mat and Vec pointers respectively. For advanced usage not covered
by the common DOLFIN interface specified by the classes GenericMatrix

and GenericVector, refer directly to the documentation of PETSc.

2.4.3 Trilinos

Trilinos

2.4.4 Matrix Template Library (MTL4)

MTL4

2.4.5 User provided linear algebra backends

◮ Developer’s note: This section will explain how a user-provided linear
alegra backend can be used with DOLFIN.

31

Chapter 3

The mesh

◮ Developer’s note: This chapter is just a quick write-up of the most basic
functionality of the mesh library and will be expanded.

3.1 Basic concepts

3.1.1 Mesh

A mesh consists of mesh topology and mesh geometry. These concepts are
implemented by the classes Mesh, MeshTopology and MeshGeometry.

3.1.2 Mesh entities

A mesh entity is a pair (d, i), where d is the topological dimension of the
mesh entity and i is a unique index of the mesh entity. Mesh entities are
numbered within each topological dimension from 0 to nd − 1, where nd is
the number of mesh entities of topological dimension d.

For convenience, mesh entities of topological dimension 0 are referred to as

33

DOLFIN User Manual Logg, Wells, et al.

vertices, entities of dimension 1 edges, entities of dimension 2 faces, entities
of codimension 1 facets and entities of codimension 0 cells. These concepts
are summarized in Table 3.1.

Entity Dimension Codimension
Vertex 0 –
Edge 1 –
Face 2 –

Facet – 1
Cell – 0

Table 3.1: Named mesh entities.

These concepts are implemented by the classes MeshEntity, Vertex, Edge,
Face, Facet, Cell.

3.2 Mesh iterators

Algorithms operating on a mesh can often be expressed in terms of itera-

tors. The mesh library provides the general iterator MeshEntityIterator

for iteration over mesh entities, as well as the specialized mesh iterators
VertexIterator, EdgeIterator, FaceIterator, FacetIterator and Cell-

Iterator.

The following code illustrates how to iterate over all incident (connected)
vertices of all vertices of all cells of a given mesh:

for (CellIterator c(mesh); !c.end(); ++c)

for (VertexIterator v0(*c); !v0.end(); ++v0)

for (VertexIterator v1(*v0); !v1.end(); ++v1)

cout << *v1 << endl;

This may alternatively be implemented using the general iterator MeshEntity-
Iterator as follows:

34

DOLFIN User Manual Logg, Wells, et al.

unsigned int dim = mesh.topology().dim();

for (MeshEntityIterator c(mesh, dim); !c.end(); ++c)

for (MeshEntityIterator v0(*c, 0); !v0.end(); ++v0)

for (MeshEntityIterator v1(*v0, 0); !v1.end(); ++v1)

cout << *v1 << endl;

3.3 Mesh functions

A MeshFunction represents a discrete function that takes a value on each
mesh entity of a given topological dimension. A MeshFunction may for exam-
ple be used to store a global numbering scheme for the entities of a (parallel)
mesh, marking sub domains or boolean markers for mesh refinement.

3.4 Mesh refinement

A mesh may be refined uniformly as follows:

mesh.refine();

A mesh may also be refined locally by supplying a MeshFunction with
boolean markers for the cells that should be refined.

3.5 Working with meshes

3.5.1 Reading a mesh from file

A mesh may be loaded from a file, either by specifying the file name to the
constructor of the class Mesh:

35

DOLFIN User Manual Logg, Wells, et al.

Mesh mesh("mesh.xml");

or by creating a File object and streaming to a Mesh:

File file("mesh.xml");

Mesh mesh;

file >> mesh;

A mesh may be stored to file as follows:

File file("mesh.xml");

Mesh mesh;

file << mesh;

The DOLFIN mesh XML format has changed in DOLFIN version 0.6.3.
Meshes in the old XML format may be converted to the new XML format
using the script dolfin-convert included in the distribution of DOLFIN.
For instructions, type dolfin-convert --help.

3.5.2 Extracting a boundary mesh

For any given mesh, a mesh of the boundary of the mesh (if any) may be
created as follows:

BoundaryMesh boundary(mesh);

A BoundaryMesh is itself a Mesh of the same geometrical dimension and has
the topological dimension of the mesh minus one.

The computation of a boundary mesh may also provide mappings from the
vertices of the boundary mesh to the corresponding vertices in the original

36

DOLFIN User Manual Logg, Wells, et al.

mesh, and from the cells of the boundary mesh to the corresponding facets
of the original mesh:

MeshFunction<unsigned int> vertex_map,

MeshFunction<unsigned int> cell_map;

BoundaryMesh boundary(mesh, vertex_map, cell_map);

3.5.3 Built-in meshes

DOLFIN provides functionality for creating simple meshes, such as the mesh
of the unit square and the unit cube. The following code demonstrates how to
create a 16×16 triangular mesh of the unit square (consisting of 2×16×16 =
512 triangles) and a 16×16×16 tetrahedral mesh of the unit cube (consisting
of 6 × 16 × 16 × 16 = 24576 tetrahedra):

UnitInterval mesh1D(16);

UnitSquare mesh2D(16, 16);

UnitCube mesh3D(16, 16, 16);

◮ Developer’s note: We could easily add other built-in meshes, like the unit
disc, the unit sphere, rectangles, blocks etc. Any contributions are welcome.

3.5.4 Creating meshes

Simplicial meshes (meshes consisting of intervals, triangles or tetrahedra)
may be constructed explicitly by specifying the cells and vertices of the mesh.
A specialized interface for creating simplicial meshes is provided by the class
MeshEditor. The following code demonstrates how to create a very simple
mesh consisting of two triangles covering the unit square:

Mesh mesh;

MeshEditor editor(mesh, CellType::triangle, 2, 2);

37

DOLFIN User Manual Logg, Wells, et al.

editor.initVertices(4);

editor.initCells(2);

editor.addVertex(0, 0.0, 0.0);

editor.addVertex(1, 1.0, 0.0);

editor.addVertex(2, 1.0, 1.0);

editor.addVertex(3, 0.0, 1.0);

editor.addCell(0, 0, 1, 2);

editor.addCell(1, 0, 2, 3);

editor.close();

Note that the DOLFIN mesh library is not specialized to simplicial meshes,
but supports general collections of mesh entities. However, tools like mesh re-
finement and mesh editors are currently only available for simplicial meshes.

38

Chapter 4

Functions

◮ Developer’s note: Since this chapter was written, the Function class has
seen a number of improvements which are not covered here. Chapter needs
to be updated.

The central concept of a function on a domain Ω ⊂ R
d is modeled by the class

Function, which is used in DOLFIN to represent coefficients or solutions of
partial differential equations.

4.1 Basic properties

The following basic properties hold for all Functions:

• A Function can be scalar or vector-valued;

• A Function can be restricted (interpolated) to each local Cell of a
Mesh;

• The underlying representation of a Function may vary.

Depending on the actual underlying representation of a Function, it may
also be possible to evaluate a Function at any given Point.

39

DOLFIN User Manual Logg, Wells, et al.

4.1.1 Representation

Currently supported representations of Functions include discrete Functions,
user-defined Functions and constant Functions. These are discussed in de-
tail below.

4.1.2 Assignment

One Function may be assigned to another Function:

Function v;

Function u = v;

4.1.3 Components and subfunctions

If a Function is vector-valued, or in general nested (mixed), a new Function

may be created to represent any given subsystem (component) of the original
Function, as illustrated by the following example:

Function u; // Function with two components

Function u0 = u[0]; // First subsystem (component) of u

Function u1 = u[1]; // First subsystem (component) of u

If a Function represents a nested function (one defined in terms of a mixed
finite element, see below), then indexing has the effect of picking out sub-
functions. With w a Function representing the solution w = (u, p) of a
Stokes or Navier-Stokes system (with u the vector-valued velocity and p the
scalar pressure), the following example illustrates how to pick subfunctions
and components of w:

Function w; // Mixed Function (u, p)

u = w[0]; // First subfunction (velocity)

40

DOLFIN User Manual Logg, Wells, et al.

p = w[1]; // Second subfunction (pressure)

u0 = u[0]; // First component of the velocity

u1 = u[1]; // Second component of the velocity

u2 = u[2]; // Third component of the velocity

4.1.4 Output

A Function can be written to a file in various file formats. To write a
Function u to file in VTK format, suitable for viewing in ParaView or
MayaVi, create a file with extension .pvd:

File file("solution.pvd");

file << u;

For further details on available file formats, see Chapter 8.

4.2 Discrete functions

A discrete Function is defined in terms of a Vector of degrees of freedom, a
Mesh, a local-to-global mapping (DofMap) and a finite element. In particular,
a discrete Function is given by a linear combinations of basis functions:

v =
N∑

i=1

viφi, (4.1)

where {φi}
N
i=1

is the global basis of the finite element space defined by the
Mesh and the finite element, and the nodal values {vi}

N
i=1

are given by the
values of a Vector.

41

DOLFIN User Manual Logg, Wells, et al.

4.3 User-defined functions

In the simplest case, a user-defined Function is just an expression in terms
of the coordinates and is typically used for defining source terms and initial
conditions. For example, a source term could be given by

f = f(x, y, z) = xy sin(z/π). (4.2)

A user-defined Function may be defined by creating a sub class of Function
and overloading the eval() function. The following example illustrates how
to create a Function representing the function in (4.2):

class Source : public Function

{

public:

Source(Mesh& mesh) : Function(mesh) {}

double eval(const double* x) const

{

return x[0]*x[1]*sin(x[2] / DOLFIN_PI);

}

};

Source f;

◮ Developer’s note: Write about how to define vector-valued functions.

4.3.1 Cell-dependent functions

In some cases, it may be convenient to define a Function in terms of proper-
ties of the current Cell. One such example is a Function that at any given
point takes the value of the mesh size at that point.

42

DOLFIN User Manual Logg, Wells, et al.

The following example illustrates how to create such as Function by over-
loading the eval() function:

class MeshSize : public Function

{

public:

MeshSize(Mesh& mesh) : Function(mesh) {}

double eval(const double* x) const

{

return cell().diameter();

}

};

MeshSize h;

Note that the current Cell is only available during assembly and has no
meaning otherwise. For example, it is not possible to write the Function h

to file.

◮ Developer’s note: Write about predefined special functions like MeshSize

and FacetNormal.

4.3.2 Simple definition of functions in Python

◮ Developer’s note: This is a verbatim copy from the mailing list. It should
be edited for the manual.

On Wed, Jun 04, 2008 at 12:44:17PM +0200, Martin Sandve Alnaes wrote:

2008/6/3 Anders Logg <logg@simula.no>:

On Tue, Jun 03, 2008 at 11:23:41PM +0200, Martin Sandve Alnaes wrote:

>> It’s easy with some helper functions I have, I can show you tomorrow.

>> It only depends on dolfin::Function (i.e. dolfin.cpp_Function) and Instant.

43

DOLFIN User Manual Logg, Wells, et al.

>

> ok, nice. Maybe we can add the helper functions to assemble.py.

Now you can do things like this:

A = assemble(..., coefficients=[myfunction, 1.23, "sin(x[0])"])

1.23 is wrapped in a cpp_Function (i.e. a constant Function), and

the string is compiled as a C++ dolfin::Function like "v[0] = ...;".

If you want more control over the implementation

(i.e. temporary variables in eval for efficiency, if-checks, etc.)

you can also do this:

code = """

class F: dolfin::Function {

...

};

class G: dolfin::Function {

...

};

"""

f, g = compile_functions(code, mesh)

Or, if you just want to precompile but don’t need anything too fancy:

expressions = ["sin(x[0])",

("a*x[1]", "b*x[0]")]

f, g = compile_functions(expressions, mesh)

assert f.rank() == 0

assert g.rank() == 1

g.a = 1.23

g.b = 3.21

Note that:

- a tuple is interpreted as a vector expression

- a tuple of tuples is interpreted as a matrix expression

- variables like a and b in the strings above are detected

automatically, but this requires all builtin names to be

registered in the variable dolfin.compile_functions._builtins,

which currently contains some common mathematical

44

DOLFIN User Manual Logg, Wells, et al.

functions like sqrt, pow, exp, sin, pi etc.

- variables are initialized to 0.0, so use compile_functions if

you need control over variable values.

- assemble also accepts tuples like in compile_functions

- assemble only calls on instant once independently of

the number of string expressions, to reduce compilation time

- Error checks are not extensive!

45

Chapter 5

Ordinary differential equations

◮ Developer’s note: This chapter needs to be written. In the meantime, look
at the demos in src/demo/ode/ and the base class ODE.

47

Chapter 6

Partial differential equations

◮ Developer’s note: This chapter needs to be written. In the meantime, look
at the demos in src/demo/pde/.

49

Chapter 7

Nonlinear solver

DOLFIN provides tools for solving nonlinear equations of the form

F (u) = 0, (7.1)

where F : R
n → R

n. To use the nonlinear solver, a nonlinear function must
be defined. The nonlinear solver is then initialised with this function and
a solution computed. The source code for examples of solving nonlinear
problems can be found in src/demo/nls.

7.1 Nonlinear functions

To solve a nonlinear problem, the user must defined a class which represents
the nonlinear function F (u). The class should be derived from the DOLFIN
class NonlinearFunction. It contains the necessary functions to form the
function F (u) and the Jacobian matrix J = ∂F/∂u. The precise form of the
user defined class will depend on the problem being solved. The structure of
a user defined class MyNonlinearFunction is shown below.

class MyNonlinearFunction : public NonlinearFunction

{

public:

51

DOLFIN User Manual Logg, Wells, et al.

// Constructor

MyNonlinearFunction() : NonlinearFunction() {}

// Compute F(u) and J

void form(GenericMatrix& A, GenericVector& b,

const GenericVector& u)

{

// Insert F(u) into the vector b and J into the matrix A

}

private:

// Functions and pointers to objects with which F(u) is defined

};

The above class computes the function F (u) and its Jacobian J concurrently.
In the future, it will be possible to compute F (u) and J either concurrently
or separately.

7.2 Newton solver

DOLFIN provides tools to solve nonlinear systems using Newton’s method
and variants of it. The following code solves a nonlinear problem, defined by
MyNonlinearFunction using Newton’s method.

Vector u;

MyNonlinearFunction F;

NewtonSolver newton_solver;

nonlinear_solver.solve(F, x);

The maximum number of iterations before the Newton procedure is exited
can be set through the DOLFIN parameter system, along with the relative
and absolute tolerances the residual. This is illustrated below.

52

DOLFIN User Manual Logg, Wells, et al.

NewtonSolver nonlinear_solver;

nonlinear_solver.set("Newton maximum iterations", 50);

nonlinear_solver.set("Newton relative tolerance", 1e-10);

nonlinear_solver.set("Newton absolute tolerance", 1e-10);

The Newton procedure is considered to have converged when the residual rn

at iteration n is less than the absolute tolerance or the relative residual rn/r0

is less than the relative tolerance. By default, the residual at iteration n is
given by

rn = ‖F (un)‖. (7.2)

Computation of the residual in this way can be set by

NewtonSolver newton_solver;

newton_solver.set("Newton convergence criterion", "residual");

For some problems, it is more appropriate to consider changes in the solu-
tion u in testing for convergence. At iteration n, the solution is updated via

un = un−1 + dun (7.3)

where dun is the increment. When using an incremental criterion for conver-
gence, the ‘residual’ is defined as

rn = ‖dun‖. (7.4)

Computation of the incremental residual can be set by

NewtonSolver newton_solver;

newton_solver.set("Newton convergence criterion", "incremental");

7.2.1 Linear solver

The solution to the nonlinear problems is returned in the vector x. By
default, the NewtonSolver uses a direct solver to solve systems of linear

53

DOLFIN User Manual Logg, Wells, et al.

equations. It is possible to set the type linear solver to be used when creating
a NewtonSolver. For example,

NewtonSolver newton_solver(gmres);

creates a solver which will use GMRES to solve linear systems. For iterative
solvers, the preconditioner can also be selected,

NewtonSolver newton_solver(gmres, ilu);

The above Newton solver will use GMRES in combination with incomplete
LU factorisation.

7.2.2 Application of Dirichlet boundary conditions

The application of Dirichlet boundary conditions to finite element problems
in the context of a Newton solver requires particular attention. The ‘residual’
F (u) at nodes where Dirichlet boundary conditions are applied is the equal
to difference between the imposed boundary condition value and the current
solution u. The function

DirichletBC bc;

bc.apply(Matrix& A, Matrix& b, const Matrix& x, const Form& form);

applies Dirichlet boundary conditions correctly. For a nonlinear finite ele-
ment problem, the below code assembles the function F (u) and its Jacobian,
and applied Dirichlet boundary conditions in the appropriate manner.

class MyNonlinearFunction : public NonlinearFunction

{

public:

54

DOLFIN User Manual Logg, Wells, et al.

// Constructor

MyNonlinearFunction(. . .) : NonlinearFunction(. . .) {}

// Compute F(u) and J

void form(GenericMatrix& A, GenericVector& b,

const GenericVector& u)

{

// Insert F(u) into the vector b and J into the matrix A

Assembler assembler;

assembler.assemble(A, a, mesh);

assembler.assemble(b, L, mesh);

bc.apply(A, b, x, a);

}

private:

// Functions and pointers to objects with which F(u) is defined

};

7.3 Incremental Newton solver

Newton solvers are commonly used to solve nonlinear equations in a series of
steps. This can be done by building a simple loop around a Newton solver,
and is shown in the following code.

Function u;

Vector x;

MyNonlinearProblem F(u,x); // Initialise u with the vector x

NewtonSolver nonlinear_solver;

// Solve nonlinear problem in a series of steps

double dt = 1.0; double t = 0.0; double T = 3.0;

while(t < T)

{

t += dt;

nonlinear_solver.solve(F, x);

55

DOLFIN User Manual Logg, Wells, et al.

}

Typically, the boundary conditions and/or source terms will be dependent
on t.

56

Chapter 8

Input/output

DOLFIN relies on external programs for pre- and post-processing, which
means that computational meshes must be imported from file (pre-processing)
and computed solutions must be exported to file and then imported into an-
other program for visualization (post-processing). To simplify this process,
DOLFIN provides support for easy interaction with files and includes output
formats for a number of visualization programs.

8.1 Files and objects

A file in DOLFIN is represented by the class File and reading/writing data
is done using the standard C++ operators >> (read) and << (write).

Thus, if file is a File and object is an object of some class that can be
written to file, then the object can be written to file as follows:

file << object;

Similarly, if object is an object of a class that can be read from file, then
data can be read from file (overwriting any previous data held by the object)

57

DOLFIN User Manual Logg, Wells, et al.

as follows:

file >> object;

The format (type) of a file is determined by its filename suffix, if not otherwise
specified. Thus, the following code creates a File for reading/writing data
in DOLFIN XML format:

File file("data.xml");

A complete list of file formats and corresponding file name suffixes is given
in Table 8.1.

Alternatively, the format of a file may be explicitly defined. One may thus
create a file named data.xml for reading/writing data in GNU Octave for-
mat:

File file("data.xml", File::octave);

Suffix Format Description

.xml/.xml.gz File::xml DOLFIN XML

.pvd File::vtk VTK

.m File::octave GNU Octave
(.m) File::matlab MATLAB

Table 8.1: File formats and corresponding file name suffixes.

Although many of the classes in DOLFIN support file input/output, it is not
supported by all classes and the support varies with the choice of file format.
A summary of supported classes/formats is given in Table 8.2.

◮ Developer’s note: Some of the file formats are partly broken after changing
the linear algebra backend to PETSc. (Do grep FIXME in src/kernel/io/.)

58

DOLFIN User Manual Logg, Wells, et al.

Format Vector Matrix Mesh Function Sample

File::xml in/out in/out in/out — —
File::vtk — — out out —
File::octave out out out out out
File::matlab out out out out out

Table 8.2: Matrix of supported combinations of classes and file formats for in-
put/output in DOLFIN.

8.2 File formats

In this section, we give some pointers to each of the file formats supported by
DOLFIN. For detailed information, we refer to the respective user manual
of each format/program.

◮ Developer’s note: This section needs to be improved and expanded. Any
contributions are welcome.

8.2.1 DOLFIN XML

DOLFIN XML is the native format of DOLFIN. As the name says, data
is stored in XML ASCII format. This has the advantage of being a robust
and human-readable format, and if the files are compressed there is little
overhead in terms of file size compared to a binary format.

DOLFIN automatically handles gzipped XML files, as illustrated by the fol-
lowing example which reads a Mesh from a compressed DOLFIN XML file
and saves the mesh to an uncompressed DOLFIN XML file:

Mesh mesh;

File in("mesh.xml.gz");

in >> mesh;

59

DOLFIN User Manual Logg, Wells, et al.

File out("mesh.xml");

out << mesh;

The same thing can of course be accomplished by

gunzip -c mesh.xml.gz > mesh.xml

on the command-line.

8.2.2 VTK

Data saved in VTK format [?] can be visualized using various packages. The
powerful and freely available ParaView [?] is recommended. Alternatively,
VTK data can be visualized in MayaVi [?], which is recommended for quality
vector PostScript output. Time-dependent data is handled automatically in
the VTK format.

The below code illustrates how to export a function in VTK format:

Function u;

File out("data.pvd");

out << u;

The sample code produces the file data.pvd, which can be read by Par-
aView. The file data.pvd contains a list of files which contain the results
computed by DOLFIN. For the above example, these files would be named
dataXXX.vtu, where XXX is a counter which is incremented each time the
function is saved. If the function u was to be saved three times, the files

data000000.vtu

data000001.vtu

data000002.vtu

60

DOLFIN User Manual Logg, Wells, et al.

would be produced. Individual snapshots can be visualized by opening the
desired file with the extension .vtu using ParaView.

ParaView can produce on-screen animations. High quality animations in
various formats can be produced using a combination of ParaView and MEn-
coder [?].

◮ Developer’s note: Add MEncoder example to create animation.

8.2.3 GNU Octave

GNU Octave [?] is a free clone of MATLAB that can be used to visualize
solutions computed in DOLFIN, using the commands pdemesh, pdesurf

and pdeplot. These commands are normally not part of GNU Octave but
are provided by DOLFIN in the subdirectory src/utils/octave/ of the
DOLFIN source tree. These commands require the external program ivview

included in the open source distribution of Open Inventor [?]. (Debian users
install the package inventor-clients.)

To visualize a solution computed with DOLFIN and exported in GNU Octave
format, first load the solution into GNU Octave by just typing the name of
the file without the .m suffix. If the solution has been saved to the file
poisson.m, then just type

octave:1> poisson

The solution can now be visualized using the command

octave:2> pdesurf(points, cells, u)

or to visualize just the mesh, type

octave:3> pdesurf(points, edges, cells)

61

DOLFIN User Manual Logg, Wells, et al.

8.2.4 MATLAB

Since MATLAB [?] is not free, users are encouraged to use GNU Octave
whenever possible. That said, data is visualized in much the same way
in MATLAB as in GNU Octave, using the MATLAB commands pdemesh,
pdesurf and pdeplot.

8.3 Converting between file formats

DOLFIN supplies a script for easy conversion between different file formats.
The script is named dolfin-convert and can be found in the directory
src/utils/convert/ of the DOLFIN source tree. The only supported file
formats are currently the Medit .mesh format, the Gmsh .msh version 2.0
format and the DOLFIN XML (.xml) mesh format.

To convert a mesh in Medit .mesh format generated by TetGen with the -g
option, type

dolfin-convert mesh.mesh mesh.xml

To convert a mesh in Gmsh .msh format type

dolfin-convert mesh.msh mesh.xml

In generating a Gmsh mesh, make sure to define a physical surface/volume.
It is also possible to convert a mesh from the old DOLFIN XML (.xml) mesh
format to the current one by typing

dolfin-convert -i xml-old old_mesh.xml new_mesh.xml

Example meshes can be found in the directory src/utils/convert/ of the
DOLFIN source tree.

62

DOLFIN User Manual Logg, Wells, et al.

8.4 A note on new file formats

With some effort, DOLFIN can be expanded with new file formats. Any con-
tributions are welcome. If you wish to contribute to DOLFIN, then adding
a new file format (or improving upon an existing file format) is a good place
to start. Take a look at one of the current formats in the subdirectory
src/kernel/io/ of the DOLFIN source tree to get a feeling for how to de-
sign the file format, or ask at dolfin-dev@fenics.org for directions.

Also consider contributing to the dolfin-convert script by adding a con-
version routine for your favorite format. The script is written in Python and
should be easy to extend with new formats.g

63

Chapter 9

The log system

DOLFIN provides provides a simple interface for uniform handling of log
messages, including warnings and errors. All messages are collected to a
single stream, which allows the destination and formatting of the output
from an entire program, including the DOLFIN library, to be controlled by
the user.

9.1 Generating log messages

Log messages can be generated using the function info() available in the
dolfin namespace:

void info(std::string format, ...);

which works similarly to the standard C library function printf. The fol-
lowing examples illustrate the usage of info():

info("Solving linear system.");

info("Size of vector: \%d.", x.size());

info("R = \%.3e (TOL = \%.3e)", R, TOL);

65

DOLFIN User Manual Logg, Wells, et al.

As an alternative to info(), DOLFIN provides a C++ style interface to
generating log messages. Thus, the above examples can also be implemented
as follows:

cout << "Solving linear system." << endl;

cout << "Size of vector: " << x.size() << "." << endl;

cout << "R = " << R << " (TOL = " << TOL << ")" << endl;

Note the use of dolfin::cout and dolfin::endl from the dolfin names-
pace, corresponding to the standard standard std::cout and std::endl in
namespace std. If log messages are directed to standard output (see below),
then dolfin::cout and std::cout may be mixed freely.

Most classes provided by DOLFIN can be used together with dolfin::cout

and dolfin::endl to display short informative messages about objects:

Matrix A(10, 10);

cout << A << endl;

To display detailed information for an object, use the member function
disp():

Matrix A(10, 10);

A.disp();

Use with caution for large objects. For a Matrix, calling disp() displays all
matrix entries.

9.2 Warnings and errors

Warnings and error messages can be generated using the functions

66

DOLFIN User Manual Logg, Wells, et al.

warning(std::string format, ...);

error(std::string format, ...);

Once an error is encountered, the program throws an exception.

9.3 Debug messages and assertions

The macro dolfin debug() works similarly to info():

dolfin_debug(message);

but in addition to displaying the given message, information is printed about
the location of the code that generated the debug message (file, function
name and line number).

Note that in order to pass formatting strings and additional arguments with
debug messages, the variations dolfin debug1(), dolfin debug2() and so
on, depending on the number of arguments, must be used.

Assertions can often be a helpful programming tool. Use assertions whenever
you assume something about about a variable in your code, such as assum-
ing that given input to a function is valid. DOLFIN provides the macro
dolfin assert() for creating assertions:

assert(check);

This macro accepts a boolean expression and if the expression evaluates to
false, an error message is displayed, including the file, function name and
line number of the assertion, and a segmentation fault is raised (to enable
easy attachment to a debugger). The following examples illustrate the use
of dolfin assert():

67

DOLFIN User Manual Logg, Wells, et al.

assert(i >= 0);

assert(i < n);

assert(cell.type() == Cell::triangle);

assert(cell.type() == Cell::tetrahedron);

Note that assertions are only active when compiling DOLFIN and your
program with DEBUG defined (configure option --enable-debug or compiler
flag -DDEBUG). Otherwise, the macro dolfin assert() expands to nothing,
meaning that liberal use of assertions does not affect performance, since as-
sertions are only present during development and debugging.

9.4 Task notification

The two functions dolfin begin() and dolfin end() available in the dolfin
name space can be used to notify the DOLFIN log system about the begin-
ning and end of a task:

void begin();

void end();

Alternatively, a string message (or a formatting string with optional argu-
ments) can be supplied:

void begin(std::string format, ...);

void end();

These functions enable the DOLFIN log system to display messages, warn-
ings and errors hierarchically, by automatically indenting the output pro-
duced between calls to begin() and end(). A program may contain an
arbitrary number of nested tasks.

68

DOLFIN User Manual Logg, Wells, et al.

9.5 Progress bars

The DOLFIN log system provides the class Progress for simple creation of
progress sessions. A progress session automatically displays the progress of
a computation using a progress bar.

If the number of steps of a computation is known, a progress session should
be defined in terms of the number of steps and updated in each step of the
computation as illustrated by the following example:

Progress p("Assembling", mesh.noCells());

for (CellIterator c(mesh); !c.end(); ++c)

{

...

p++;

}

It is also possible to specify the step number explicitly by assigning an integer
to the progress session:

Progress p("Iterating over vector", x.size())

for (uint i = 0; i < x.size(); i++)

{

...

p = i;

}

Alternatively, if the number of steps is unknown, the progress session needs
to be updated with the current percentage of the progress:

Progress p("Time-stepping");

while (t < T)

{

...

69

DOLFIN User Manual Logg, Wells, et al.

p = t / T;

}

The progress bar created by the progress session will only be updated if the
progress has changed significantly since the last update (by default at least
10%). The amount of change needed for an update can be controlled using
the parameter "progress step":

dolfin_set("progress step", 0.01);

Note that several progress sessions may be created simultaneously, or nested
within tasks.

9.6 Controlling the destination of output

By default, the DOLFIN log system directs messages to standard output
(the terminal). Messages may also be turned off completely. To specify the
destination, set the value of the parameter ”output destination”:

dolfin_set("output destination", "terminal");

dolfin_set("output destination", "silent");

One may also set the debug level for the DOLFIN log system so that only
messages with a debug level higher than or equal to the current debug level
are printed:

dolfin_set("debug level", "1");

70

Chapter 10

Parameters

◮ Developer’s note: Since this chapter was written, the DOLFIN parame-
ter system has been completely redesigned and now supports localization of
parameters to objects or hierarchies of objects. Chapter needs to be updated.

DOLFIN keeps a global database of parameters that control the behavior of
the various components of DOLFIN. Parameters are controlled using a uni-
form type-independent interface that allows retrieving the values of existing
parameters, modifying existing parameters and adding new parameters to
the database.

10.1 Retrieving the value of a parameter

To retrieve the value of a parameter, use the function dolfin get() available
in the dolfin namespace:

Parameter dolfin_get(std::string key);

This function accepts as argument a string key and returns the value of the
parameter matching the given key. An error message is printed through the

71

DOLFIN User Manual Logg, Wells, et al.

log system if there is no parameter with the given key in the database.

The value of the parameter is automatically cast to the correct type when
assigning the value of dolfin get() to a variable, as illustrated by the fol-
lowing examples:

double TOL = dolfin_get("tolerance");

int num_samples = dolfin_get("number of samples");

bool solve_dual = dolfin_get("solve dual problem");

std::string filename = dolfin_get("file name");

Note that there is a small cost associated with accessing the value of a pa-
rameter, so if the value of a parameter is to be used multiple times, then it
should be retrieved once and stored in a local variable as illustrated by the
following example:

int num_samples = dolfin_get("number of samples");

for (int i = 0; i < num_samples; i++)

{

...

}

10.2 Modifying the value of a parameter

To modify the value of a parameter, use the function dolfin set() available
in the dolfin namespace:

void dolfin_set(std::string key, Parameter value);

This function accepts as arguments a string key together with the corre-
sponding value. The value type should match the type of parameter that is

72

DOLFIN User Manual Logg, Wells, et al.

being modified. An error message is printed through the log system if there
is no parameter with the given key in the database.

The following examples illustrate the use of dolfin set():

dolfin_set("tolerance", 0.01);

dolfin_set("number of samples", 10);

dolfin_set("solve dual problem", true);

dolfin_set("file name", "solution.xml");

Note that changing the values of parameters using dolfin set() does not
change the values of already retrieved parameters; it only changes the values
of parameters in the database. Thus, the value of a parameter must be
changed before using a component that is controlled by the parameter in
question.

10.3 Adding a new parameter

To add a parameter to the database, use the function add() available in the
dolfin namespace:

void add(std::string key, Parameter value);

This function accepts two arguments: a unique key identifying the new pa-
rameter and the value of the new parameter.

The following examples illustrate the use of add():

add("tolerance", 0.01);

add("number of samples", 10);

add("solve dual problem", true);

add("file name", "solution.xml");

73

DOLFIN User Manual Logg, Wells, et al.

10.4 Saving parameters to file

The following code illustrates how to save the current database of parameters
to a file in DOLFIN XML format:

File file("parameters.xml");

file << ParameterSystem::parameters;

When running a simulation in DOLFIN, saving the parameter database to a
file is an easy way to document the set of parameters used in the simulation.

10.5 Loading parameters from file

The following code illustrates how to load a set of parameters into the current
database of parameters from a file in DOLFIN XML format:

File file("parameters.xml");

file >> ParameterSystem::parameters;

The following example illustrates how to specify a list of parameters in the
DOLFIN XML format

<?xml version="1.0" encoding="UTF-8"?>

<dolfin xmlns:dolfin="http://www.fenics.org/dolfin/">

<parameters>

<parameter name="tolerance" type="real" value="0.01"/>

<parameter name="number of samples" type="int" value="10"/>

<parameter name="solve dual problem" type="bool" value="false"/>

<parameter name="file name" type="string" value="solution.xml"/>

</parameters>

</dolfin>

74

Chapter 11

PyDOLFIN

◮ Developer’s note: Describe Python interface, especially in areas where it
differs from the C++ interface,

75

Appendix A

Reference cells

The definition of reference cells used in DOLFIN follows the UFC specifica-
tion. [?]

The following five reference cells are covered by the UFC specification: the
reference interval, the reference triangle, the reference quadrilateral, the ref-
erence tetrahedron and the reference hexahedron (see Table A.1).

The UFC specification assumes that each cell in a finite element mesh is
always isomorphic to one of the reference cells.

Reference cell Dimension #Vertices #Facets

The reference interval 1 2 2

The reference triangle 2 3 3

The reference quadrilateral 2 4 4

The reference tetrahedron 3 4 4

The reference hexahedron 3 8 6

Table A.1: Reference cells covered by the UFC specification.

77

DOLFIN User Manual Logg, Wells, et al.

0 1

Figure A.1: The reference interval.

Vertex Coordinate

v0 x = 0

v1 x = 1

Table A.2: Vertex coordinates of the reference interval.

A.1 The reference interval

The reference interval is shown in Figure A.1 and is defined by its two vertices
with coordinates as specified in Table A.2.

A.2 The reference triangle

The reference triangle is shown in Figure A.2 and is defined by its three
vertices with coordinates as specified in Table A.3.

Vertex Coordinate

v0 x = (0, 0)

v1 x = (1, 0)

v2 x = (0, 1)

Table A.3: Vertex coordinates of the reference triangle.

78

DOLFIN User Manual Logg, Wells, et al.

(0, 0) (1, 0)

(0, 1)

Figure A.2: The reference triangle.

A.3 The reference quadrilateral

The reference quadrilateral is shown in Figure A.3 and is defined by its four
vertices with coordinates as specified in Table A.4.

Vertex Coordinate

v0 x = (0, 0)

v1 x = (1, 0)

v2 x = (1, 1)

v3 x = (0, 1)

Table A.4: Vertex coordinates of the reference quadrilateral.

79

DOLFIN User Manual Logg, Wells, et al.

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure A.3: The reference quadrilateral.

A.4 The reference tetrahedron

The reference tetrahedron is shown in Figure A.4 and is defined by its four
vertices with coordinates as specified in Table A.5.

Vertex Coordinate

v0 x = (0, 0, 0)

v1 x = (1, 0, 0)

v2 x = (0, 1, 0)

v3 x = (0, 0, 1)

Table A.5: Vertex coordinates of the reference tetrahedron.

80

DOLFIN User Manual Logg, Wells, et al.

(0, 0, 0)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure A.4: The reference tetrahedron.

Vertex Coordinate

v0 x = (0, 0, 0)

v1 x = (1, 0, 0)

v2 x = (1, 1, 0)

v3 x = (0, 1, 0)

Vertex Coordinate

v4 x = (0, 0, 1)

v5 x = (1, 0, 1)

v6 x = (1, 1, 1)

v7 x = (0, 1, 1)

Table A.6: Vertex coordinates of the reference hexahedron.

A.5 The reference hexahedron

The reference hexahedron is shown in Figure A.5 and is defined by its eight
vertices with coordinates as specified in Table A.6.

81

DOLFIN User Manual Logg, Wells, et al.

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(0, 0, 1) (1, 1, 1)
(0, 1, 1)

Figure A.5: The reference hexahedron.

82

Appendix B

Numbering of mesh entities

The numbering of mesh entities used in DOLFIN follows the UFC specifica-
tion [?] for each mesh that has been ordered.1

The UFC specification dictates a certain numbering of the vertices, edges etc.
of the cells of a finite element mesh. First, an ad hoc numbering is picked
for the vertices of each cell. Then, the remaining entities are ordered based
on a simple rule, as described in detail below.

B.1 Basic concepts

The topological entities of a cell (or mesh) are referred to as mesh entities.
A mesh entity can be identified by a pair (d, i), where d is the topological
dimension of the mesh entity and i is a unique index of the mesh entity. Mesh
entities are numbered within each topological dimension from 0 to nd − 1,
where nd is the number of mesh entities of topological dimension d.

For convenience, mesh entities of topological dimension 0 are referred to as
vertices, entities of dimension 1 as edges, entities of dimension 2 as faces,
entities of codimension 1 as facets and entities of codimension 0 as cells.

1To order a mesh, call the order() function: mesh.order().

83

DOLFIN User Manual Logg, Wells, et al.

Entity Dimension Codimension

Vertex 0 –

Edge 1 –

Face 2 –

Facet – 1

Cell – 0

Table B.1: Named mesh entities.

These concepts are summarized in Table B.1.

Thus, the vertices of a tetrahedron are identified as v0 = (0, 0), v1 = (0, 1)
and v2 = (0, 2), the edges are e0 = (1, 0), e1 = (1, 1), e2 = (1, 2), e3 = (1, 3),
e4 = (1, 4) and e5 = (1, 5), the faces (facets) are f0 = (2, 0), f1 = (2, 1),
f2 = (2, 2) and f3 = (2, 3), and the cell itself is c0 = (3, 0).

B.2 Numbering of vertices

For simplicial cells (intervals, triangles and tetrahedra) of a finite element
mesh, the vertices are numbered locally based on the corresponding global
vertex numbers. In particular, a tuple of increasing local vertex numbers
corresponds to a tuple of increasing global vertex numbers. This is illustrated
in Figure B.1 for a mesh consisting of two triangles.

For non-simplicial cells (quadrilaterals and hexahedra), the numbering is
arbitrary, as long as each cell is isomorphic to the corresponding reference cell
by matching each vertex with the corresponding vertex in the reference cell.
This is illustrated in Figure B.2 for a mesh consisting of two quadrilaterals.

84

DOLFIN User Manual Logg, Wells, et al.

v0

v0 v1

v1

v2v2

0

1

2

3

Figure B.1: The vertices of a simplicial mesh are numbered locally based on the
corresponding global vertex numbers.

B.3 Numbering of other mesh entities

When the vertices have been numbered, the remaining mesh entities are num-
bered within each topological dimension based on a lexicographical ordering

of the corresponding ordered tuples of non-incident vertices.

As an illustration, consider the numbering of edges (the mesh entities of
topological dimension one) on the reference triangle in Figure B.3. To number
the edges of the reference triangle, we identify for each edge the corresponding
non-incident vertices. For each edge, there is only one such vertex (the vertex
opposite to the edge). We thus identify the three edges in the reference
triangle with the tuples (v0), (v1) and (v2). The first of these is edge e0

between vertices v1 and v2 opposite to vertex v0, the second is edge e1 between
vertices v0 and v2 opposite to vertex v1, and the third is edge e2 between
vertices v0 and v1 opposite to vertex v2.

Similarly, we identify the six edges of the reference tetrahedron with the
corresponding non-incident tuples (v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3)
and (v2, v3). The first of these is edge e0 between vertices v2 and v3 opposite

85

DOLFIN User Manual Logg, Wells, et al.

v0v0

v1

v1

v2v2

v3

v3

0 1 2

345

Figure B.2: The local numbering of vertices of a non-simplicial mesh is arbitrary,
as long as each cell is isomorphic to the reference cell by matching each vertex to
the corresponding vertex of the reference cell.

86

DOLFIN User Manual Logg, Wells, et al.

to vertices v0 and v1 as shown in Figure B.4.

v0 v1

v2

e0

Figure B.3: Mesh entities are ordered based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices. The first edge e0 is non-
incident to vertex v0.

B.3.1 Relative ordering

The relative ordering of mesh entities with respect to other incident mesh
entities follows by sorting the entities by their (global) indices. Thus, the
pair of vertices incident to the first edge e0 of a triangular cell is (v1, v2), not
(v2, v1). Similarly, the first face f0 of a tetrahedral cell is incident to vertices
(v1, v2, v3).

For simplicial cells, the relative ordering in combination with the convention
of numbering the vertices locally based on global vertex indices means that
two incident cells will always agree on the orientation of incident subsimplices.
Thus, two incident triangles will agree on the orientation of the common edge
and two incident tetrahedra will agree on the orientation of the common
edge(s) and the orientation of the common face (if any). This is illustrated
in Figure B.5 for two incident triangles sharing a common edge.

87

DOLFIN User Manual Logg, Wells, et al.

v0

v1

v2

v3

e0

Figure B.4: Mesh entities are ordered based on a lexicographical ordering of the
corresponding ordered tuples of non-incident vertices. The first edge e0 is non-
incident to vertices v0 and v1.

v0

v0 v1

v1

v2v2

Figure B.5: Two incident triangles will always agree on the orientation of the
common edge.

88

DOLFIN User Manual Logg, Wells, et al.

B.3.2 Limitations

The UFC specification is only concerned with the ordering of mesh entities
with respect to entities of larger topological dimension. In other words, the
UFC specification is only concerned with the ordering of incidence relations
of the class d − d′ where d > d′. For example, the UFC specification is not
concerned with the ordering of incidence relations of the class 0− 1, that is,
the ordering of edges incident to vertices.

89

DOLFIN User Manual Logg, Wells, et al.

B.4 Numbering schemes for reference cells

The numbering scheme is demonstrated below for cells isomorphic to each of
the five reference cells.

B.4.1 Numbering of mesh entities on intervals

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1)

v1 = (0, 1) (v1) (v0)

c0 = (1, 0) (v0, v1) ∅

B.4.2 Numbering of mesh entities on triangular cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2)

v1 = (0, 1) (v1) (v0, v2)

v2 = (0, 2) (v2) (v0, v1)

e0 = (1, 0) (v1, v2) (v0)

e1 = (1, 1) (v0, v2) (v1)

e2 = (1, 2) (v0, v1) (v2)

c0 = (2, 0) (v0, v1, v2) ∅

90

DOLFIN User Manual Logg, Wells, et al.

B.4.3 Numbering of mesh entities on quadrilateral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3)

v1 = (0, 1) (v1) (v0, v2, v3)

v2 = (0, 2) (v2) (v0, v1, v3)

v3 = (0, 3) (v3) (v0, v1, v2)

e0 = (1, 0) (v2, v3) (v0, v1)

e1 = (1, 1) (v1, v2) (v0, v3)

e2 = (1, 2) (v0, v3) (v1, v2)

e3 = (1, 3) (v0, v1) (v2, v3)

c0 = (2, 0) (v0, v1, v2, v3) ∅

B.4.4 Numbering of mesh entities on tetrahedral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3)

v1 = (0, 1) (v1) (v0, v2, v3)

v2 = (0, 2) (v2) (v0, v1, v3)

v3 = (0, 3) (v3) (v0, v1, v2)

e0 = (1, 0) (v2, v3) (v0, v1)

e1 = (1, 1) (v1, v3) (v0, v2)

e2 = (1, 2) (v1, v2) (v0, v3)

e3 = (1, 3) (v0, v3) (v1, v2)

e4 = (1, 4) (v0, v2) (v1, v3)

e5 = (1, 5) (v0, v1) (v2, v3)

f0 = (2, 0) (v1, v2, v3) (v0)

f1 = (2, 1) (v0, v2, v3) (v1)

f2 = (2, 2) (v0, v1, v3) (v2)

f3 = (2, 3) (v0, v1, v2) (v3)

c0 = (3, 0) (v0, v1, v2, v3) ∅

91

DOLFIN User Manual Logg, Wells, et al.

B.4.5 Numbering of mesh entities on hexahedral cells

Entity Incident vertices Non-incident vertices

v0 = (0, 0) (v0) (v1, v2, v3, v4, v5, v6, v7)

v1 = (0, 1) (v1) (v0, v2, v3, v4, v5, v6, v7)

v2 = (0, 2) (v2) (v0, v1, v3, v4, v5, v6, v7)

v3 = (0, 3) (v3) (v0, v1, v2, v4, v5, v6, v7)

v4 = (0, 4) (v4) (v0, v1, v2, v3, v5, v6, v7)

v5 = (0, 5) (v5) (v0, v1, v2, v3, v4, v6, v7)

v6 = (0, 6) (v6) (v0, v1, v2, v3, v4, v5, v7)

v7 = (0, 7) (v7) (v0, v1, v2, v3, v4, v5, v6)

e0 = (1, 0) (v6, v7) (v0, v1, v2, v3, v4, v5)

e1 = (1, 1) (v5, v6) (v0, v1, v2, v3, v4, v7)

e2 = (1, 2) (v4, v7) (v0, v1, v2, v3, v5, v6)

e3 = (1, 3) (v4, v5) (v0, v1, v2, v3, v6, v7)

e4 = (1, 4) (v3, v7) (v0, v1, v2, v4, v5, v6)

e5 = (1, 5) (v2, v6) (v0, v1, v3, v4, v5, v7)

e6 = (1, 6) (v2, v3) (v0, v1, v4, v5, v6, v7)

e7 = (1, 7) (v1, v5) (v0, v2, v3, v4, v6, v7)

e8 = (1, 8) (v1, v2) (v0, v3, v4, v5, v6, v7)

e9 = (1, 9) (v0, v4) (v1, v2, v3, v5, v6, v7)

e10 = (1, 10) (v0, v3) (v1, v2, v4, v5, v6, v7)

e11 = (1, 11) (v0, v1) (v2, v3, v4, v5, v6, v7)

f0 = (2, 0) (v4, v5, v6, v7) (v0, v1, v2, v3)

f1 = (2, 1) (v2, v3, v6, v7) (v0, v1, v4, v5)

f2 = (2, 2) (v1, v2, v5, v6) (v0, v3, v4, v7)

f3 = (2, 3) (v0, v3, v4, v7) (v1, v2, v5, v6)

f4 = (2, 4) (v0, v1, v4, v5) (v2, v3, v6, v7)

f5 = (2, 5) (v0, v1, v2, v3) (v4, v5, v6, v7)

c0 = (3, 0) (v0, v1, v2, v3, v4, v5, v6, v7) ∅

92

Appendix C

Design

This chapter discusses details of the design of DOLFIN and is intended
mainly for developers of DOLFIN.

C.1 Linear algebra

The linear algebra library provides a uniform interface to uBLAS and PETSc
linear algebra through a set of wrappers for basic data structures (matrices
and vectors) and solvers, such as Krylov subspace solvers with precondition-
ers.

For both sets of wrappers, a common interface is defined by the classes
GenericMatrix and GenericVector. DOLFIN provides a number of al-
gorithms, most notably the assembly algorithms, that work only through the
common interface, which means that these algorithms work for any given
representation that implements the interface specified by GenericMatrix or
GenericVector. A class diagram for the DOLFIN linear algebra implemen-
tation is given in Figure C.1.

93

DOLFIN User Manual Logg, Wells, et al.

Figure C.1: Class diagram of the linear algebra classes in DOLFIN.

94

Appendix D

Installation

The source code of DOLFIN is portable and should compile on any Unix
system, although it is developed mainly under GNU/Linux (in particular
Debian GNU/Linux). DOLFIN can be compiled under Windows through
Cygwin [?]. Questions, bug reports and patches concerning the installation
should be directed to the DOLFIN mailing list at the address

dolfin-dev@fenics.org

DOLFIN must currently be compiled directly from source, but an effort is
underway to provide precompiled Debian packages of DOLFIN and other
FEniCS components.

D.1 Installing from source

D.1.1 Dependencies and requirements

DOLFIN depends on a number of libraries that need to be installed on your
system. These libraries include Boost, Libxml2 and optionally PETSc and

95

DOLFIN User Manual Logg, Wells, et al.

UMFPACK. If you wish to use the Python interface PyDOLFIN, the libraries
SWIG and NumPy are required. In addition to these libraries, you need to
install FIAT and FFC if you want to define your own variational forms.

Installing Boost

Boost is a collection of C++ source libraries. Boost can be obtained from

http://www.boost.org/

Packages are available for most Linux distributions. For Ubuntu/Debian
users, the package to install is boost-dev.

Installing Libxml2

Libxml2 is a library used by DOLFIN to parse XML data files. Libxml2 can
be obtained from

http://xmlsoft.org/

Packages are available for most Linux distributions. For Ubuntu/Debian
users, the package to install is libxml2-dev.

Installing NumPy

NumPy is required for generating the Python interface PyDOLFIN. It can
be obtained from

http://numpy.scipy.org/

Packages are available for most Linux distributions. For Ubuntu/Debian
users, the packages python-numpy python-numpy-ext should be installed.

96

DOLFIN User Manual Logg, Wells, et al.

Installing SWIG

SWIG is also required for generating the Python interface PyDOLFIN. It
can be obtained from

http://www.swig.org/

Packages are available for most Linux distributions. For Ubuntu/Debian
users, the package swig should be installed.

Installing UMFPACK

UMFAPCK is part of the SuiteSparse collection and is a library for the
direct solution of linear systems. It is highly recommended if PESTSc is not
installed. If PETSc is not installed, UMFPACK is the default direct linear
solver. The SuiteSparse collection can be downloaded from

http://www.cise.ufl.edu/research/sparse/SuiteSparse/

UMFPACK is available as a package for many Linux distributions. For
Ubuntu/Debian users, the packages libumfpack4 and libumfpack4-dev should
be installed. For other distributions, the package may be called libufsparse.

Installing PETSc

Optionally, DOLFIN may be compiled with support for PETSc. To com-
pile DOLFIN with PETSc, add the flag --enable-petsc during the initial
configuration of DOLFIN.

PETSc is a library for the solution of linear and nonlinear systems, function-
ing as the backend for the DOLFIN linear algebra classes. DOLFIN depends
on PETSc version 2.3.1, which can be obtained from

97

DOLFIN User Manual Logg, Wells, et al.

http://www-unix.mcs.anl.gov/petsc/petsc-2/

Follow the installation instructions on the PETSc web page. Normally, you
should only have to perform the following simple steps in the PETSc source
directory:

export PETSC_DIR=‘pwd‘

./config/configure.py --with-clanguage=cxx --with-shared=1

make all

Add --download-hypre=yes to configure.py if you want to install Hypre
which provides a collection of preconditioners, including algebraic multigrid
(AMG), and --download-umfpack=yes to configure.py if you want to install
UMFPACK which provided as fast direct linear solver. Both packages are
highly recommended.

DOLFIN assumes that PETSC DIR is /usr/local/lib/petsc/ but this can
be controlled using the flag --with-petsc-dir=<path> when configuring
DOLFIN (see below).

Installing FFC

DOLFIN uses the FEniCS Form Compiler FFC to process variational forms.
FFC can be obtained from

http://www.fenics.org/

Follow the installation instructions given in the FFC manual. FFC follows
the standard for Python packages, which means that normally you should
only have to perform the following simple step in the FFC source directory:

python setup.py install

98

DOLFIN User Manual Logg, Wells, et al.

Note that FFC depends on FIAT , which in turn depends on the Python pack-
ages NumPy [?] (Debian package python-numpy) and LinearAlgebra (Debian
package python-numpy-ext). Refer to the FFC manual for further details.

D.1.2 Downloading the source code

The latest release of DOLFIN can be obtained as a tar.gz archive in the
download section at

http://www.fenics.org/

Download the latest release of DOLFIN, for example dolfin-x.y.z.tar.gz,
and unpack using the command

tar zxfv dolfin-x.y.z.tar.gz

This creates a directory dolfin-x.y.z containing the DOLFIN source code.

If you want the very latest version of DOLFIN, it can be accessed directly
from the development repository through hg (Mercurial):

hg clone http://www.fenics.org/hg/dolfin

This version may contain features not yet present in the latest release, but
may also be less stable and even not work at all.

D.1.3 Compiling the source code

DOLFIN is built using the standard GNU Autotools (Automake, Autoconf)
and libtool, which means that the installation procedure is simple:

99

DOLFIN User Manual Logg, Wells, et al.

./configure

make

followed by an optional

make install

to install DOLFIN on your system.

The configure script will check for a number of libraries and try to figure out
how compile DOLFIN against these libraries. The configure script accepts a
collection of optional arguments that can be used to control the compilation
process. A few of these are listed below. Use the command

./configure --help

for a complete list of arguments.

• Use the option --prefix=<path> to specify an alternative directory for
installation of DOLFIN. The default directory is /usr/local/, which
means that header files will be installed under /usr/local/include/

and libraries will be installed under /usr/local/lib/. This option
can be useful if you don’t have root access but want to install DOLFIN
locally on a user account as follows:

mkdir ~/local

./configure --prefix=~/local

make

make install

• Use the option --enable-debug to compile DOLFIN with debugging
symbols and assertions.

100

DOLFIN User Manual Logg, Wells, et al.

• Use the option --enable-optimization to compile an optimized ver-
sion of DOLFIN without debugging symbols and assertions.

• Use the option --disable-curses to compile DOLFIN without the
curses interface (a text-mode graphical user interface).

• Use the option --enable-petsc to compile DOLFIN with support for
PETSc.

• Use the option --disable-pydolfin to compile without support for
PyDOLFIN.

• Use the option --disable-mpi to compile DOLFIN without support
for MPI (Message Passing Interface), assuming PETSc has been com-
piled without support for MPI.

• Use the option --with-petsc-dir=<path> to specify the location of
the PETSc directory. By default, DOLFIN assumes that PETSc has
been installed in /usr/local/lib/petsc/.

D.1.4 Compiling the demo programs

After compiling the DOLFIN library according to the instructions above, you
may want to try one of the demo programs in the subdirectory src/demo/

of the DOLFIN source tree. Just enter the directory containing the demo
program you want to compile and type make. You may also compile all demo
programs at once using the command

make demo

D.1.5 Compiling a program against DOLFIN

Whether you are writing your own Makefiles or using an automated build
system such as GNU Autotools or BuildSystem, it is straightforward to com-
pile a program against DOLFIN. The necessary include and library paths

101

DOLFIN User Manual Logg, Wells, et al.

can be obtained through the script dolfin-config which is automatically
generated during the compilation of DOLFIN and installed in the bin sub-
directory of the <path> specified with --prefix. Assuming this directory is
in your executable path (environment variable PATH), the include path for
building DOLFIN can be obtained from the command

dolfin-config --cflags

and the path to DOLFIN libraries can be obtained from the command

dolfin-config --libs

If dolfin-config is not in your executable path, you need to provide the
full path to dolfin-config.

Examples of how to write a proper Makefile are provided with each of the
example programs in the subdirectory src/demo/ in the DOLFIN source
tree.

D.2 Debian package

In preparation.

D.3 Installing from source under Windows

DOLFIN can be used under Windows using Cygwin, which provides a Linux-
like environment. The installation process is the same as under GNU/Linux.
To use DOLFIN under Cygwin, the Cygwin development tools must be in-
stalled. Instructions for installing PETSc under Cygwin can be found on
the PETSc web page. Installation of FFC and FIAT is the same as un-
der GNU/Linux. The Python package NumPy is not available as a Cygwin

102

DOLFIN User Manual Logg, Wells, et al.

package and must be installed manually. To compile DOLFIN, the Cyg-
win package libxml2-devel must be installed. For PyDOLFIN the package
swig must be installed. NumPy is not available as a package for Cygwin,
therefore it must be installed manually if you wish to use PyDOLFIN. The
compilation procedure is then the same as under GNU/Linux. If MPI has
not been installed:

./configure --disable-mpi

make

followed by an optional

make install

will compile DOLFIN on your system.

103

Appendix E

Contributing code

If you have created a new module, fixed a bug somewhere, or have made a
small change which you want to contribute to DOLFIN, then the best way
to do so is to send us your contribution in the form of a patch. A patch
is a file which describes how to transform a file or directory structure into
another. The patch is built by comparing a version which both parties have
against the modified version which only you have. Patches can be created
with Mercurial or diff.

E.1 Creating bundles/patches

E.1.1 Creating a Mercurial (hg) bundle

Creating bundles is the preferred way of submitting patches. It has several
advantages over plain diffs. If you are a frequent contributor, consider pub-
lishing your source tree so that the FFC maintainers (and other users) may
pull your changes directly from your tree.

A bundle contains your contribution to DOLFIN in the form of a binary
patch file generated by Mercurial [?], the revision control system used by
DOLFIN. Follow the procedure described below to create your bundle.

105

DOLFIN User Manual Logg, Wells, et al.

1. Clone the DOLFIN repository:

hg clone http://www.fenics.org/hg/dolfin

2. If your contribution consists of new files, add them to the correct loca-
tion in the DOLFIN directory tree. Enter the DOLFIN directory and
add these files to the local repository by typing:

hg add <files>

where <files> is the list of new files. You do not have to take any
action for previously existing files which have been modified. Do not
add temporary or binary files.

3. Enter the DOLFIN directory and commit your contribution:

hg commit -m "<description>"

where <description> is a short description of what your patch accom-
plishes.

4. Create the bundle:

hg bundle dolfin-<identifier>-<date>.hg

http://www.fenics.org/hg/dolfin

written as one line, where <identifier> is a keyword that can be used
to identify the bundle as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format
yyyy-mm-dd.
The bundle now exists as dolfin-<identifier>-<date>.hg.

When you add your contribution at point 2, make sure that only the files
that you want to share are present by typing:

hg status

106

DOLFIN User Manual Logg, Wells, et al.

This will produce a list of files. Those marked with a question mark are not
tracked by Mercurial. You can track them by using the add command as
shown above. Once you have added these files, their status changes form ?

to A.

E.1.2 Creating a standard (diff) patch file

The tool used to create a patch is called diff and the tool used to apply the
patch is called patch.

Here’s an example of how it works. Start from the latest release of DOLFIN,
which we here assume is release x.y.z. You then have a directory structure
under dolfin-x.y.z where you have made modifications to some files which
you think could be useful to other users.

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

make clean

2. From the parent directory, rename the DOLFIN directory to something
else:

mv dolfin-x.y.z dolfin-x.y.z-mod

3. Unpack the version of DOLFIN that you started from:

tar zxfv dolfin-x.y.z.tar.gz

4. You should now have two DOLFIN directory structures in your current
directory:

ls

dolfin-x.y.z

dolfin-x.y.z-mod

107

DOLFIN User Manual Logg, Wells, et al.

5. Now use the diff tool to create the patch:

diff -u --new-file --recursive dolfin-x.y.z

dolfin-x.y.z-mod > dolfin-<identifier>-<date>.patch

written as one line, where <identifier> is a keyword that can be used
to identify the patch as coming from you (your username, last name,
first name, a nickname etc) and <date> is today’s date in the format
yyyy-mm-dd.

6. The patch now exists as dolfin-<identifier>-<date>.patch and
can be distributed to other people who already have dolfin-x.y.z to
easily create your modified version. If the patch is large, compressing
it with for example gzip is advisable:

gzip dolfin-<identifier>-<date>.patch

E.2 Sending bundles/patches

Patch and bundle files should be sent to the DOLFIN mailing list at the
address

dolfin-dev@fenics.org

Include a short description of what your patch/bundle accomplishes. Small
patches/bundles have a better chance of being accepted, so if you are making
a major contribution, please consider breaking your changes up into several
small self-contained patches/bundles if possible.

108

DOLFIN User Manual Logg, Wells, et al.

E.3 Applying changes

E.3.1 Applying a Mercurial bundle

You have received a patch in the form of a Mercurial bundle. The following
procedure shows how to apply the patch to your version of DOLFIN.

1. Before applying the patch, you can check its content by entering the
DOLFIN directory and typing:

hg incoming -p

bundle://<path>/dolfin-<identifier>-<date>.hg

written as one line, where <path> is the path to the bundle. <path>

can be omitted if the bundle is in the DOLFIN directory. The option
-p can be omitted if you are only interested in a short summary of the
changesets found in the bundle.

2. To apply the patch to your version of DOLFIN type:

hg unbundle <path>/dolfin-<identifier>-<date>.hg

followed by:

hg update

E.3.2 Applying a standard patch file

Let’s say that a patch has been built relative to DOLFIN release x.y.z. The
following description then shows how to apply the patch to a clean version
of release x.y.z.

1. Unpack the version of DOLFIN which the patch is built relative to:

109

DOLFIN User Manual Logg, Wells, et al.

tar zxfv dolfin-x.y.z.tar.gz

2. Check that you have the patch dolfin-<identifier>-<date>.patch

and the DOLFIN directory structure in the current directory:

ls

dolfin-x.y.z

dolfin-<identifier>-<date>.patch

Unpack the patch file using gunzip if necessary.

3. Enter the DOLFIN directory structure:

cd dolfin-x.y.z

4. Apply the patch:

patch -p1 < ../dolfin-<identifier>-<date>.patch

The option -p1 strips the leading directory from the filename references
in the patch, to match the fact that we are applying the patch from
inside the directory. Another useful option to patch is --dry-run

which can be used to test the patch without actually applying it.

5. The modified version now exists as dolfin-x.y.z.

E.4 License agreement

By contributing a patch to DOLFIN, you agree to license your contributed
code under the GNU Lesser General Public License (a condition also built
into the LGPL license of the code you have modified). Before creating the
patch, please update the author and date information of the file(s) you have
modified according to the following example:

110

DOLFIN User Manual Logg, Wells, et al.

// Copyright (C) 2004-2005 Johan Hoffman and Anders Logg.

// Licensed under the GNU LGPL Version 2.1.

//

// Modified by Johan Jansson 2005.

// Modified by Garth N. Wells 2005.

//

// First added: 2004-06-22

// Last changed: 2005-09-01

As a rule of thumb, the original author of a file holds the copyright.

111

Appendix F

Contributors

◮ Developer’s note: List all contributors here.

113

Appendix G

Coding style

To streamline the DOLFIN source code and ease the job for maintainers that
need to read and edit large amounts of code, developers should try to follow
the below coding style when submitting patches to DOLFIN.

The guideline below is for C++ but may in some cases be extrapolated to
Python.

G.1 Naming conventions

G.1.1 Class names

Use camel caps for class names:

class FooBar

{

...

};

115

DOLFIN User Manual Logg, Wells, et al.

G.1.2 Function names

Use lower-case for function names and underscore to separate words:

void foo();

void bar();

void foo_bar(...);

Functions returning a value should be given the name of that value, for
example:

class Array:

{

public:

/// Return size of array (number of entries)

uint size() const;

};

In the above example, the function should be named size rather than
get size. On the other hand, a function not returning a value but rather
taking a variable (by reference) and assigning a value to it, should use the
get foo naming scheme, for example:

class Parameters:

{

public:

/// Retrieve all parameter keys

void get_parameter_keys(std::vector<std::string>& parameter_keys) const;

};

116

DOLFIN User Manual Logg, Wells, et al.

G.1.3 Variable names

Use lower-case for variable names and underscore to separate words:

Foo foo;

Bar bar;

FooBar foo_bar;

G.1.4 Enum variables and constants

Enum variables should be lower-case with underscore to separate words:

enum Type {foo, bar, foo_bar};

We try to avoid using #define to define constants, but when necessary con-
stants should be capitalized:

#define FOO 3.14159265358979

G.1.5 File names

Use camel caps for file names if they contain the declaration/definition of a
class. Header files should have the suffix .h and implementation files should
have the suffix .cpp:

FooBar.h

FooBar.cpp

Use lower-case for file names that contain utilities/functions (not classes).

117

DOLFIN User Manual Logg, Wells, et al.

G.2 Miscellaneous

G.2.1 Comments

Comment your code, and do it often. Capitalize the first letter and don’t
use punctuation (unless the comment runs over several sentences). Here’s a
good example from TopologyComputation.cpp:

// Check if connectivity has already been computed

if (connectivity.size() > 0)

return;

// Invalidate ordering

mesh._ordered = false;

// Compute entities if they don’t exist

if (topology.size(d0) == 0)

computeEntities(mesh, d0);

if (topology.size(d1) == 0)

computeEntities(mesh, d1);

// Check if connectivity still needs to be computed

if (connectivity.size() > 0)

return;

...

G.2.2 Integers and reals

Use dolfin::uint instead of int (unless you really want to use negative
integers which is rare) and dolfin::real instead of double:

118

DOLFIN User Manual Logg, Wells, et al.

uint i = 0;

double x = 0.0;

These are typedefs for the standard C++ types unsigned int and double

(defined in dolfin/common/types.h).

G.2.3 Placement of brackets

Curly brackets following a control statement should appear in the next line
and not be indented:

for (uint i = 0; i < 10; i++)

{

...

}

G.2.4 Indentation

Indentation should be two spaces and it should be spaces, not tab(s).

G.2.5 Header file layout

Header files should follow the below template:

// Copyright (C) 2008 Foo Bar.

// Licensed under the GNU LGPL Version 2.1.

//

// Modified by Bar Foo, 2008.

//

// First added: 2008-01-01

// Last changed: 2008-02-01

119

DOLFIN User Manual Logg, Wells, et al.

#ifndef __FOO_H

#define __FOO_H

namespace dolfin

{

class Bar; // Forward declarations here

/// Documentation of class

class Foo

{

public:

...

private:

...

};

}

#endif

G.2.6 Implementation file layout

Implementation files should follow the below template:

// Copyright (C) 2008 Foo Bar.

// Licensed under the GNU LGPL Version 2.1.

//

// Modified by Bar Foo, 2008.

120

DOLFIN User Manual Logg, Wells, et al.

//

// First added: 2008-01-01

// Last changed: 2008-02-01

#include <dolfin/Foo.h>

using namespace dolfin;

//---

Foo::Foo() : // variable initialization here

{

...

}

//---

Foo::~Foo()

{

// Do nothing

}

//---

The horizontal lines above should be exactly 79 characters wide but have
been shortened here to fit the page.

G.2.7 Including header files

Don’t use #include <dolfin.h> or #include <dolfin/dolfin foo.h> in-
side the DOLFIN kernel. Only include the portions of DOLFIN you are
actually using.

G.2.8 Forward declarations

Actually, try to include as little as possible and use forward declarations
whenever possible (in header files). Put the #include in the implementation
file.

121

DOLFIN User Manual Logg, Wells, et al.

G.2.9 Explicit constructors

Make all constructors (except copy constructors) explicit if there is no par-
ticular reason not to do so:

class Foo

{

explicit Foo(uint i);

};

122

Appendix H

License

DOLFIN is licensed under the GNU Lesser General Public License (LGPL)
version 2.1, included verbatim below.

GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

123

DOLFIN User Manual Logg, Wells, et al.

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author’s reputation will not be affected by problems that might be

introduced by others.

Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

124

DOLFIN User Manual Logg, Wells, et al.

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

We call this license the "Lesser" General Public License because it

does Less to protect the user’s freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

Although the Lesser General Public License is Less protective of the

users’ freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

125

DOLFIN User Manual Logg, Wells, et al.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy,

126

DOLFIN User Manual Logg, Wells, et al.

and you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices

stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no

charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses

the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or

table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has

a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this function must

be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

127

DOLFIN User Manual Logg, Wells, et al.

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

128

DOLFIN User Manual Logg, Wells, et al.

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse

engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

a) Accompany the work with the complete corresponding

machine-readable source code for the Library including whatever

changes were used in the work (which must be distributed under

Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable "work that

uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified

executable containing the modified Library. (It is understood

129

DOLFIN User Manual Logg, Wells, et al.

that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application

to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (1) uses at run time a

copy of the library already present on the user’s computer system,

rather than copying library functions into the executable, and (2)

will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is

interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at

least three years, to give the same user the materials

specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy

from a designated place, offer equivalent access to copy the above

specified materials from the same place.

e) Verify that the user has already received a copy of these

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

130

DOLFIN User Manual Logg, Wells, et al.

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library

facilities. This must be distributed under the terms of the

Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

131

DOLFIN User Manual Logg, Wells, et al.

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

132

DOLFIN User Manual Logg, Wells, et al.

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest

possible use to the public, we recommend making it free software that

everyone can redistribute and change. You can do so by permitting

redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the library. It is

safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the

"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>

133

DOLFIN User Manual Logg, Wells, et al.

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

134

	About this manual
	Quickstart
	Downloading and installing DOLFIN
	Solving Poisson's equation with DOLFIN
	Setting up the variational formulation
	Writing the solver
	Compiling the program
	Running the program
	Visualizing the solution

	Linear algebra
	Matrices and vectors
	Sparse matrices
	Dense matrices
	The common interface

	Solving linear systems
	Iterative methods
	Direct methods

	Eigenvalue problems
	Linear algebra backends
	uBLAS
	PETSc
	Trilinos
	Matrix Template Library (MTL4)
	User provided linear algebra backends

	The mesh
	Basic concepts
	Mesh
	Mesh entities

	Mesh iterators
	Mesh functions
	Mesh refinement
	Working with meshes
	Reading a mesh from file
	Extracting a boundary mesh
	Built-in meshes
	Creating meshes

	Functions
	Basic properties
	Representation
	Assignment
	Components and subfunctions
	Output

	Discrete functions
	User-defined functions
	Cell-dependent functions
	Simple definition of functions in Python

	Ordinary differential equations
	Partial differential equations
	Nonlinear solver
	Nonlinear functions
	Newton solver
	Linear solver
	Application of Dirichlet boundary conditions

	Incremental Newton solver

	Input/output
	Files and objects
	File formats
	DOLFIN XML
	VTK
	GNU Octave
	MATLAB

	Converting between file formats
	A note on new file formats

	The log system
	Generating log messages
	Warnings and errors
	Debug messages and assertions
	Task notification
	Progress bars
	Controlling the destination of output

	Parameters
	Retrieving the value of a parameter
	Modifying the value of a parameter
	Adding a new parameter
	Saving parameters to file
	Loading parameters from file

	PyDOLFIN
	Reference cells
	The reference interval
	The reference triangle
	The reference quadrilateral
	The reference tetrahedron
	The reference hexahedron

	Numbering of mesh entities
	Basic concepts
	Numbering of vertices
	Numbering of other mesh entities
	Relative ordering
	Limitations

	Numbering schemes for reference cells
	Numbering of mesh entities on intervals
	Numbering of mesh entities on triangular cells
	Numbering of mesh entities on quadrilateral cells
	Numbering of mesh entities on tetrahedral cells
	Numbering of mesh entities on hexahedral cells

	Design
	Linear algebra

	Installation
	Installing from source
	Dependencies and requirements
	Downloading the source code
	Compiling the source code
	Compiling the demo programs
	Compiling a program against DOLFIN

	Debian package
	Installing from source under Windows

	Contributing code
	Creating bundles/patches
	Creating a Mercurial (hg) bundle
	Creating a standard (diff) patch file

	Sending bundles/patches
	Applying changes
	Applying a Mercurial bundle
	Applying a standard patch file

	License agreement

	Contributors
	Coding style
	Naming conventions
	Class names
	Function names
	Variable names
	Enum variables and constants
	File names

	Miscellaneous
	Comments
	Integers and reals
	Placement of brackets
	Indentation
	Header file layout
	Implementation file layout
	Including header files
	Forward declarations
	Explicit constructors

	License

