Getting Started

by Brian McCallister
Table of contents

LACQUITING O] D-DIANK. ... 2
2 ContentS Of OJD-DIANK........ooeieee e 2
p = 1010 [o] (0] = o F SRS 3
R I 0TC T o0 TH o] S SOTTR 3
3.1 Configuration Via build.prOPErti€S..........ceeeieieeie e 3
32 BUIlding VI BUIHTA. XML ... e 5
3.3 SAMPIE PIOJECT. ...ttt bbbt b e bbbt st st e b e b e bbbt b ene e 6
4 The runtime coNfigUIation FIlES.......oc.ei i 8
4.1 Configuring the OJB FUNLIME.........ccuiiiie et esre e re e sneesnreens 8
4.2 Configuring the database CONNECTION..........c.ecci e 8
4.3 CONfiguIiNg the FEPOSITONYccueeieeeerieeieeee st ete et e e e et e e e e e te et e sreesseesaesseenseeneesreenes 8
S 0T o 1 o] (0] =t SO P PR URPRR 9

5 LEAMING IMOTE.......oiiiietesieet ettt e ettt b e bt bt et e e e s e e e b e s be b et e naeene e e e s 10

Getting Started

This document will guide you through the very first steps of setting up a project with OJB. To
make this easier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. Y ou can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for asimple
application that handles products and uses MySQL. Thisis continued later on in the next tutorial

parts.

1. Acquiring ojb-blank

First off, OJB uses Ant to build, so pleaseinstall it prior to using OJB. In addition, please make
sure that the environment variables ANT _HOVE and JAVA HOVE are correctly set to the top-level
folders of your Ant distribution and your JDK installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. Y ou can also start with the source
distribution rather than the binary as the unit tests provide excellent sample code and you can build
the ojb-blank project on your own with it.

The ojb-blank project contains al libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See here for alist of
additional libraries.

Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use
the embedded Hsgldb database for which the ojb-blank project is pre-configured (including al
necessary jars).

2. Contents of ojb-blank

Copy the 0] b- bl ank. j ar fileto your project directory and unpack it via the command

Thiswill unpack it into the o] b- bl ank directory under wherever you unpacked it from. Y ou can
move things out of that directory into your project directory, or, more simply, rename the

0j b- bl ank directory to be whatever you want your project directory to be named.

After you unpacked the jar, you'll get the following directory layout:

Here's aquick rundown on what the individual directories and files are:

.classpath, .project

An Eclipse project for your convenience. You can simply import it into Eclipse via File
-> Import... -> Existing Project into Workspace.

build.xml, build.properties

The Ant build script and the build properties. These are described in more detail below.
lib

Contains the libraries necessary to compile and run your project. If you want to use a
different database than Hsqgldb, then put the jars of your jdbc driver in here.

src/java

N

http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/tutorials/summary.html
../docu/tutorials/summary.html
http://ant.apache.org/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
http://www.apache.org/dyn/closer.cgi/db/ojb/
../docu/guides/deployment.html#additional-jars
http://hsqldb.sourceforge.net/
http://www.eclipse.org/

Getting Started

Put your java source code here.

src/resources

Contains the runtime configuration files for OJB. For more detail see below.
src/schema

Here you will find a schema containing tables that are required by certain components
of OJB such as clustered locking and OJB managed sequences. More information on
these tables is available in the platform documentation. The schema is in a
database-independent format that can be used by Torgue or commons-sql to create
the database.

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build
target that can be invoked on your schema (see below for details). Therefore, this
directory also contains the build script of Torque, but you won't need to invoke it
directly.

src/java

Place your unit tests in here.

2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
pr oduct manager .

Also, since we're using MySQL., we put the MySQL jar of the jdbc driver, whichis called
something likemysqgl - connect or - j ava- [ver si on] - st abl e-bi n. jar,intothel i b
subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing
with, we will silently assume that it is already present inthe sr ¢/ j ava subdirectory.

If you don't want to write the code yourself, you can use the code from one of the tutorials which
you can download here.

Notethat if you do not intent to use JDO, then you should delete thefilesin the oj b. apache. oj b. t ut ori al 5, otherwise you'll
get compilation errors.

3. Thebuild files

3.1. Configuration via build.properties

The next step isto adapt the build files, especially the bui | d. properti es fileto your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably need to
be adapted to suit your needs:

jcdAlias The name of the connection. You should leave
the default value, which is def aul t .

databaseName This is the name of the database, per default
oj b_bl ank.
databaseUser The user name for accessing the database

(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.

../docu/guides/platforms.html
http://db.apache.org/torque/
http://jakarta.apache.org/commons/sandbox/sql/
http://dev.mysql.com/downloads/connector/j/
../docu/tutorials/summary.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

dbmsName

jdbcRuntimeDriver

jdbcLevel

urlProtocol

urlSubprotocol

urlDbalias

torque.database

torque.database.createUrl

Getting Started

The type of database, which is one of the
following:

Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.

Please note that this setting is case-sensitive.
Per default, Hsgldb is used, which is an
embedded database. All files required for this
database come with the ojb-blank project.

The fully-qualified classname of the jdbc driver.
For Hsqldb this is or g. hsql db. j dbcDri ver.

The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.

For the Hsgldb jdbc driver this is 2.0.

The protocol of the database url (see below),
usually j dbc.

The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsql db.

This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbnsNane which defines the database for OJB.
Currently, these values are defined:

axion, cloudscape, db2, db2400, hypersonic
(which is Hsgldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.

Default value is hyper soni c for use with
Hsqldb.

This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database looks like, then you can derive the
settings dat abaseNane, dat abaseNane, dat abaseNane and dat abaseNane easily:

Assume thisurl isgiven as.

then these properties are

databaseName

urlProtocol

nmyDat abase
j dbc

http://hsqldb.sourceforge.net/

Getting Started

urlSubprotocol nysql

urlDbalias /1l ocal host/ nyDat abase

3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the actions that
you can perform using the Ant build file bui | d. xn :

clean Cleans up all files from the previous build.

compile Compiles your java source files to
bui | d/ cl asses. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the bui | d. properti es file, most
notably the r eposi t ory_dat abase. xni
which will be located in the bui | d/ r esour ces
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torgue homepage.

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Pr oduct
class from the JDO tutorial (tutorial 5).

So, atypical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source code that
describe the repository, then you would call Ant thisway:

ant build setup-ab
Thiswill perform in that order the actionsbui | d, xdocl et (invoked automatically from the next
action) and set up- db.

Of course, you do not need to use Torgue to setup your database, but it is a convenient way to do
0.

[¢)]

../repository_database.xml.txt
../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html
../docu/guides/xdoclet-module.html
http://db.apache.org/torque/
http://java.sun.com/products/jdo/
http://java.sun.com/products/jdo/
../docu/tutorials/jdo-tutorial.html

Getting Started

3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to setup
the database):

jcdAlias We leave the default value of def aul t .

databaseName Since the application manages products, we call
the database pr oduct manager .

databaseUser This depends on your setup. For the purposes of
this guide, let's call him st eve.

databasePassword Again depending on your setup. How about
secr et (you know that you should not use this
password in reality ?!).

dbmsName My SQL

jdbcRuntimeDriver Its called com nysql . j dbc. Dri ver.
jdbcLevel For the newer Mysql drivers this is 3.0.
urlProtocol The default of j dbc will do.

urlSubprotocol For MySQL, we're using nysql .

urlDbalias Assuming that the database runs locally on the

default port, we have
/ /1 ocal host/ ${dat abaseNane}.

torque.database We want to use Torque, so we put nmysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${url Protocol }: ${url SubProtocol }://1ocal host/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. Thebui | d. pr operti es file now looks
like this (the comments have been removed for brevity):

Getting Started

Looks like we're ready for building. Again, we're assuming that the source code is already present.
So we're invoking Ant now in the top-level folder pr oduct nanager :

which should (assuming five java classes) produce an output like this

eration

Getting Started

That wasiit. You now have your database setup properly. Go on, have alook:

There, all tables for your project, aswell as the tables required for some OJB functionality which
we also used in the above process (you can recognize them by their names which start with oj b).

4. The runtime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files
used by OJB. There are basically three sets of configuration that need to be provided: configuration
of the OJB runtime, description of the database connection, and description of the repository.

4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logaing.properties (both located insr ¢/ r esour ces), you
configure and finetune the runtime aspects of OJB. For a simple application you'll probably won't
have to change anything in them, though.

4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors. These are usually defined in afilecalled r eposi t ory_dat abase. xm (located in
src/ resour ces). In the ojb-blank project, the build file will setup thisfile for you and place it
inthebui | d/ r esour ces directory.

4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java classes
are mapped in what way to which database tables, and it is typically contained in the

o4}

../docu/guides/ojb-properties.html
../docu/guides/logging.html
../docu/guides/repository.html#jdbc-connection-descriptor
../docu/guides/repository.html#jdbc-connection-descriptor

Getting Started

repository_user. xml file. Thisisthe most complicated configuration part which will be
explained in much more detail in the rest of the tutorials.

An convenient way of creating the repository metadata isto use the XDoclet OJB module.
Basically, you put specific Javadoc comments into your source code, which are then processed by
the build file (xdocl et and set up- db targets) and the repository metadata and the database
schema are generated.

4.4. Sample project

Actualy, there is not much to do here. For our simple sample application the default properties of
OJB work just fine, so we leave QJB. pr operti es and QJB- | oggi ng. properties
untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB
module and Torque to generate the repository metadata and database for us. For instance, the
processed connection descriptor (filebui | d/ r esour ces/ reposi t ory_dat abase. xni)
looks like this:

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (file bui | d/ r esour ces/ repository_user. xm) startslike:

©

../docu/tutorials/summary.html
../docu/guides/xdoclet-module.html
../docu/guides/repository.html#jdbc-connection-descriptor

Getting Started

Now you should be able to run your application:

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add
al jarsfromthel i b folder except the onesfor Torque (t or que-[versi on] . j ar,

vel ocity-[version].jar andconmons-col | ecti ons-[version].jar)andforthe
XDoclet OJB module (xdocl et -[versi on] . ar,Xxj avadoc-[version].jar and
xdocl et - o] b- nodul e-[version].jar).

It isimportant to note that OJB per default assumesthe QIB. pr operti es and

QJIB- | oggi ng. properti es filesin the directory where you're starting the application. Hence,
we changed to the bui | d/ r esour ces directory before running the application. This of course
requires the compiled classes to be on the classpath, aswell (directory bui | d/ cl asses).

Per default, the same applies to the other configuration files (r eposi t or y*. xm) but you can
changethisinthe QJB. properti es file.

5.LearningMore

After you've have learned about building and configuring projects that use OJB, you should check
out the tutorials to learn how to specify your persistent classes and how to use OJB's APIsto
perform database operations. The Mapping Tutorial in particular shows you how to map your
classesto tablesin an RDBMS.

../docu/tutorials/summary.html
../docu/tutorials/mapping-tutorial.html

	1 Acquiring ojb-blank
	2 Contents of ojb-blank
	2.1 Sample project

	3 The build files
	3.1 Configuration via build.properties
	3.2 Building via build.xml
	3.3 Sample project

	4 The runtime configuration files
	4.1 Configuring the OJB runtime
	4.2 Configuring the database connection
	4.3 Configuring the repository
	4.4 Sample project

	5 Learning More

