OJB Queries

by Jakob Braeuchi
Table of contents

I 1 L1 0o 1T i o o OSSPSR 2
O 8 Y o)V O] [= TSRS 2
O U< VA O) (= £ = TSP 2
2% I A T 1 2) T T PP 3

2 N 110 I o ST P PSPPSR 3
2.1.3 NEGALING the CIITEITAL.....eivereieieeee ettt 3
2.2 0rdering aNd QrOUDING.eeveeereeruerterieeseeeessessessessessessesseeseesesseseessesbesseeseeseeneesenseseessessessesnes 4
2.3 SUBQUEITES.....ceeeee ettt et h et e et e s bt e be e neesaeenae et e e be e b e nneenrs 4
20 o TSRS 5
2.5 USEN AEFINEA BlIS......cueieieeieiieiee ettt ae st e sbenre s 6
A o = 5o g 11 ST 8
2.7 prefetChed relalioNSNIPS.......oooi bbb sne e 8
2.8 QUENYING TOr ODJECES......eeieieiieieee ettt e e nr e e e 9
2.9 REPOI QUENTES.......eeiueetieiteeie ittt sttt be e e sbeeee s eesbeebeeseesbeentesaeesseenteeseesbeentesneenseensans 9
2.9.1 Limitations Of REPOI QUENTES........cccieiiiiiieiie it see ettt e et sneeereesneeans 9
KO 1Y L @ [PP 11

1@ o 1= 4 1 - 11

OJB Queries

1. Introduction

Thistutorial describes the use of the different queries mechanisms. The sample code shown hereis
taken mainly from JUnit test classes. The junit test source can be found under
[db- 0j b] / src/ t est inthe source distribution.

2. Query by Criteria

In this section you will learn how to use the query by criteria. The classes are located in the
package or g. apache. oj b. br oker . query. Using query by criteriayou can either query for
whole objects (ie. person) or you can use report queries returning row data.

A query consists mainly of the following parts:

1. theclassof the objectsto be retrieved

2. alist of criteria

3. aDISTINCT flag

4. additional ORDER BY and GROUP BY

OJB offers a QueryFactory to create a new Query. Although the constructors of the query classes
are public using the QueryFactory isthe preferred way to create a new query.

To create aDISTINCT-Query, simply add true as third parameter.

Each criterion stands for a column in the SQL-WHERE-clause.

This query will generate an SQL statement like this:

OJB supports functionsin field criteriaie. upper(firstname). When converting afield nameto a
database column name, the function is added to the generated sgl. OJB does not and can not verify
the correctness of the specified function, an illegal function will produce an SglException.

2.1. Query Criteria

OJB provides selection criteriafor almost any SQL-comparator. In most cases you do not have to
deal directly with the implementing classes like Equal ToCriteria. The Criteria class provides
factory methods for the appropriate classes. There are four kinds of factory methods:

create criteriato compare afield to avalue: ie. addEqual To("firstname”, "tom");
create criteriato compare afield to another field: ie. addEqual ToField("firstname”,
"other_field");

create criteriato check null value: ie. addisNull("firstname");

create araw sql criteria: ie: addSqgl("REV ERSE(name) like 're%o™);

The following list shows some of the factory methods to compare afield to avalue:
e addequaTo

addLike
« addGreaterOrEqual Than

N

OJB Queries

addGreaterThan

addLike

addBetween , this methods has two value parameters
addin , this method uses a Collection as value parameter
and of course there negative forms

This list shows some factory methods to compare afield to another field, all those methods end on
field:

» addEquaToField
addGreater ThanField
and of course there negative forms

21.1.in/notin

Some databases limit the number of parametersin an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit is set to
3 for the following sample:

The IN-limit for prefetch can be defined in OJB.properties:

2.1.2.and/ or

All selection criteriaadded to a criteria set using the above factory methods will be ANDed in the
WHERE-clause. To get an OR combination two criteria sets are needed. These sets are combined
using addOrCriteria:

This query will generate an SQL statement like this:

2.1.3. negating the criteria
A criteria can be negated to obtain NOT in the WHERE-clause:

w

OJB Queries

This query will generate an SQL statement like this:

2.2. ordering and grouping

The following methods of QueryByCriteria are used for ordering and grouping:

addOrderByA scending(String anAttributeName);
addOrderByDescending(String anAttributeName);
addGroupBy(String anAttributeName); this method is used for report queries

Y ou can of course have multiple order by and group by clauses, smply repeat the addOrderBy.

The code snippet will query all Persons and order them by attribute "id" descending and
"lastname” ascending. The query will produce the following SQL-statement using column numbers
inthe ORDER BY clause:

When you use the column name "LASTNAME" instead of the attribute name "lasthame”
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without alias
will be added.

If there are multiple tables with a column "LASTNAME" the SQL -Statement will produce an error,
S0 it's better to always use attribute names.

2.3. subqueries

Subqueries can be used instead of values in selection criteria. The subquery should thus be a
ReportQuery.

The following example queries al articles having a price greator or equal than the average price of
articles named 'A%'".

It's also possible to build a subquery with attributes referencing the enclosing query. These
attributes have to use a special prefix Criteria PARENT_QUERY_PREFIX.
The following example queries all product groups having more than 10 articles:

4

OJB Queries

Subgueries are not extent aware. Thusiit's not possible to use an abstract class or an interface as search class of a subquery.

24.joins

Joins resulting from path expressions (“relationship.attribute”) in criteria are automatically
handled by OJB. Path expressions are supported for al relationships 1:1, 1:n and m:n (decomposed
and non-decomposed) and can be nested.

The following sample looks for al articles belonging to the product group "Liquors'. Article and
product group are linked by the relationship "productGroup™ in class Article:

The path expression includes the 1:1 relationship "productGroup” and the attribute "groupName":

If path expressions refer to a class having extents, the tables of the extent classes participate in the
JOIN and the criteriais ORed. The shown sample queries all ProductGroups having an Article
named 'F%'. The path expression 'alArticlesinGroup' refers to the class Articles which has two

[¢)]

OJB Queries

extents: Books and CDs.

This sample produces the following SQL.:

OJB triesto doit's best to automatically use outer joins where needed. Thisis currently the case for
classes having extents and ORed criteria. But you can force the SQL Generator to use outer joins
where you find it useful.

Thisis done by the method QueryByCriteria#setPathOuter Join(String).

The first query will use aninner join for relationship "konti", the second an outer join.

The whole path is evaluated, thus for amulti segment path (ie. owner.address) you'll have to set an
outer join path for each segment that needs an outer join.

Given 'Account’ - 'Owner’ - 'Adress and a query looking for 'Account’. To force an outer join from
'‘Owner’ to 'Adress setPathOuterJoin(‘owner.address) does the trick. In case you also need an outer
join between 'Account’ and 'Owner' an additional setPathOuterJoin(‘owner') is needed.

2.5. user defined alias

This feature allows to have multiple aiases for the same table. The standard behaviour of OJB isto
build one alias for one relationship.

Suppose you have two classes Issue and Keyword and thereisa 1:N relationship between them.
Now you want to retrieve Issues by querying on Keywords. Suppose you want to retrieve all 1ssues
with keywords 'JOIN' and 'ALIAS. If these values are stored in the attribute 'value' of Keyword,
OJB generates a query that contains " Al.value="JOIN' AND Al.value="ALIAS " inthe
where-clause. Obviously, thiswill not work, no hits will occur because A1.value can not have more
then 1 value at thetime !

For the examples below, suppose you have the following classes (pseudo-code):

OJB Queries

0OJB maps these classes to separate tables where it maps all AbstractAttributes using a
collectiondescriptor to AbstractAttribute using ref _id as inverse foreignkey on Container for the
collection descriptor.

For demo purposes : AbstractAttribute also has a collection of abstract attributes.

The generated query will be as follows. Note that the alias name ‘company' does not show up in the

SOL.

The next example uses areport query.

OJB Queries

The generated query will be:

When you define an alias for acriteria, you have to make sure that all attributes used in this criteria belong to the same class. If you
break this rule OJB will probably use awrong ClassDescriptor to resolve your attributes !

2.6. class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The
standard behaviour of OJB isto use the base class of an extent when it resolves a path-segment.

In the following sample the path all ArticlesInGroup pointsto class Article, thisis defined in the
repository.xml. Assume we are only interested in ProductGroups containing CdArticles performed
by Eric Clapton or Books authored by Eric Clapton, a class hint can be defined for the path. This
hint is defined by:

CriteriattaddPathClass("all ArticlesinGroup”, CdArticle.class);

Thisfeatureis aso available in class QueryByCriteria but using it on Criteria-level provides additional flexibility.
QueryByCiriteriattaddPathClass is only useful for ReportQueries to limit the class of the selected columns.

2.7. prefetched relationships

This feature can help to minimize the number of queries when reading objects with relationships. In
our Testcases we have ProductGroups with a one to many relationship to Articles. When reading
the ProductGroups one query is executed to get the ProductGroups and for each ProductGroup
another query is executed to retrieve the Articles.

With prefetched relationships OJB triesto read all Articles belonging to the ProductGroupsin one
query. See further down why one query is not always possible.

OJB Queries

The first query reads al matching ProductGroups.

The second query retrieves Articles belonging to the ProductGroups read by the first query:

After reading all Articlesthey are associated with their ProductGroup.

Thisfunction is not yet supported for relationships using Arrays.

Some databases limit the number of parametersin an IN-statement. If the limit is reached OJB will
split up the second query into multiple queries, the limit is set to 3 for the following sample:

The IN-limit for prefetch can be defined in OJB.properties SgllnLimit.

2.8. querying for objects

OJB queries return complete objects, that means all instance variables are filled and all
‘auto-retrieve' relationships are loaded. Currently there's no way to retrieve partially loaded objects
(ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

2.9. Report Queries

Report queries are used to retrieve row data, not 'real’ business objects. A row is an array of Object.
With these queries you can define what attributes of an object you want to have in the row. The
attribute names may also contain path expressions like ‘owner.address.street’. To define the
attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article etc.
for al Articles named like "C%":

The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String,
Double]).

2.9.1. Limitations of Report Queries

©

../../docu/guides/metadata.html

OJB Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we want
to select al ProductGroups and summarize the amount and prize of items in stock per group. The
class Article referenced by all ArticleslnGroup has the extents Books and CDs.

The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

This SQL will select the columns "Lagerbestand” and "Einzelpreis’ from one extent only, and for
ProductGroups having Articles, Books and CDs the result is wrong!

As aworkaround the query can be "reversed”. Instead of selection the ProductGroup we go for the
Articles:

This ReportQuery executes the following three selects (one for each concrete extent) and produces
better results.

Of course there's also a drawback here: the same ProductGroup may be selected several times, so to
get the correct sum, the results of the ProductGroup has to be added. In our sample the
ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired result. This
isamanually created SQL, not generated by OJB. Unfortunately it's not fully supported by some
DBMS because of "union” and sub-selects.

10

OJB Queries

3.ODMG OQL

4.JDO queries

11

	1 Introduction
	2 Query by Criteria
	2.1 Query Criteria
	2.1.1 in / not in
	2.1.2 and / or
	2.1.3 negating the criteria

	2.2 ordering and grouping
	2.3 subqueries
	2.4 joins
	2.5 user defined alias
	2.6 class hints
	2.7 prefetched relationships
	2.8 querying for objects
	2.9 Report Queries
	2.9.1 Limitations of Report Queries

	3 ODMG OQL
	4 JDO queries

