OJB

Table of contents

O N SRS 8
1.1 Apache ObJectRelational Bridge - OJB..........cccvviiirierieeie e eee e sie e see e esaesee e esesneesns 8
12,1 SUIMIMIBIY ..ttt sttt b et she et e e e e e s e bt et e ehe e b e e s e e Re e R e e e e nRe e et e anesneeneennenreenes 8
I 1 1T o /2SS 8
I o = o] 2SS 8
T e 3 1 0 = 2 SRR 8

L2 INBIVS.. .ottt he e b e e R e e s e e s R e e oA R e e R et oA e e eRe e SRR e e Re e e R e e eRe e naReeaReeenreeaneenane e 8
25 TR 9
R O N = o U =TSR URTR 9
O 2 T o = 1 10
1.5 OJB - References and TESHMONIAIS........couiiiiiieriireee et 11
1.5.1 References and TeStIMONIAIS.........coiiriirieieni e e 11
1.5.1.1 ProjeCLSUSING OJB.....cueeieieiiiieiteeieeie st et e e e e ae s e e teeseesae e tesaesneesseensesseesseensesneens 11
1.5.1.2 USES TESHIMONIAIS ...ttt sttt bbb sr e 12

1.6 OB - MaAIHING LISES.....eiiiieiiiiieitisiesieeeee ettt bbbt nn b nre s 13
1.6 L MAIHTNG LISES. ..ttt b e e ae e 13
1.7 OB - Mailing LIStS ATCRIVES.......ccuoiiieei e 13
1.7.1 MailiNg LISES ATCRIVES......cccuiiiiieiiie ettt st e b s e e e neeenneereeenes 13
1.8 OB - Links and further reatings..........cccvevueeieiieieeie s se ettt ae e teene e sne e 13
181 SUMIMIBIY .. uveeeiutieeeiteeesitee ettt e ettt e st e e st e e st e e s abe e e s st e e e sab e e e asbe e e sneesaseeesabeeesaneeesabeeenaneeennnee s 13
1.8.2 OJB - TULONalS @A HOWLO........ccoueeeieieeeie et enaeeneas 14
1.8.2.1 OJB @NA SPITNG....cuveteterieeteeieeiiee et st st sse et s e ssess et e sbesbesseese e e e e e e e ssesbeseearenneas 14
I 1= T o RS PRRPR 14
1.8.4 Further readingS 0N O/R MaPPING.......veeiieiieeiieiieesiesieesreesreesessreesseesreesseesaeesseesneeenns 15
185 PAILEIMIS. ...ttt ettt e s e s s e e b e e ne e e R e e eRn e R e e e e ne e nnn e ne s 15
1.8.6 BOOKS COVEITNG OJB........oiiiieiieieeieeste e st et te st steeae s te e seesaeenaesreesseensesneenseensesneenes 15

21 0./ 07 o 15
3 DEVEIOPIMENT. ...ttt bttt b e bbb e bt bt se e e e e nnenne e 16
KO0 1010 IS = g0 7= o TP 16
o L= RSP RRPRPRRN 17
S (= IR 0] 0o PSSR 17
4.1.1 TaDIE OF CONLENES.......oitiieiriiriieiee ettt b ettt b bbb bbb e 17

5 DOCUMIBIEALI ON....cceeeeeeeeeeee ettt ettt et et et e e e eeeeeeeeeeaeeeeeeeeetereeeeeeeeeeeeeeerereeeeeeeeeeeeeeeereereereereeereraeeees 20

0JB

5.1 Documentation - INIFOAUCTION...........eieriiieiererie et 20
5.2 Frequently Asked QUESLIONS...........coirieieieiesie sttt neeas 20
S O 1= 1 o 1SR 20
S B T €T - PSRRI 20
5.2.1.2 2. GELING SLAMEA.......ccveeieciee et pe e 22
5.2.1.3 3. OB APIS ..ottt bbbt bbb 24
5.2 0.4 A HOWIEO. ...ttt et b et e bt e e e ne e bt e n e ne e b 25
5.3 GELLING SLAME........e et b bbb 34
5.3.1 AcquIring OJD-DIANK........cc.ooie s 34
5.3.2 Contents Of OJD-DIANK..........cciiiiiiicce e s 35
5.3.2.1 SAMPIE PrOJECL.....cteeie ettt ettt et st et e s ae et e enaesreenreeneaneeneas 36
5.3.3 TNE DU FIIES.....coueieeee e e 36
5.3.3.1 Configuration via build.properties...........cceceieeieecesece e 36
5.3.3.2 Building Via build.Xml...........ccooiii e 37
5.3.3.3 SAMPIE PrOJECL.....c.eeeeieieeeieee ettt n b e b e se e ne e 38
5.3.4 The runtime configuration fIlES..........cooiiiii e e 41
5.3.4.1 Configuring the OJB FUNLIME..........cceeiiiiieiece et 41
5.3.4.2 Configuring the database CONNECLION..............ooveieiierece e 41
5.3.4.3 Configuring the rEPOSITONYccueiieiceesi et nne e 41
5.3.4.4 SAMPIE PrOJECE.....c.ee ittt e b bbb nne e e 41
5.3.5 LEAMING MOTE......oiiitiiiieiiee ettt b bbb e e e e e e e nnenne s 43
3 U 10 = PRSPPI 43
5.4.1 TULOMTEl SUMIMIBIYoeeiueiieiteeiie e ste et eeste et e se e re e e s e e besseesaeesseensesneenseensesseesseensesneensens 43
5.4.2 MapPPING TULOMAL.......ccouiiiiiieie ettt e et e e e sreeteeneesneenneennens 44
5.4.2.1 What is the Object-Relational Mapping Metadata?.............cccceeeeveeieeveneeneseeseeeens 44
5.4.2.2 A0VANCED TOPICS....c.viitiiuirieeiieieieste sttt sttt e ettt be st sesse s e e e s e nnesseabesbeeneeneennas 47
5.4.3 Persistence BroKer TULOII@l.........coveiiierieiiesieie ettt st 47
5.4.3.1 The PersistenCeBroKer APot 47
5.4.3.2 EXCEPtION HANAIING.......coiiiiiecee ettt sttt 52
5,44 TNEODMG APttt ettt bbbt et e e et e b 53
5441 INETOOUCTION. ...ttt r e nr e nn e nn e nr s 53
5442 INItIAlIZING ODMG.......coiiiiiiieriesie ettt sb e 54
5.4.4.3 Persisting NeW ODJECES........ocviiiiiieee e s 54
5.4.4.4 Querying Persistent ODJECES........ccouiiiiiiie ettt 55
5.4.4.5 Updating Persistent ODJECES.........ccveiiiiieiieie e steese ettt nne e 55
5.4.4.6 Deleting Persistent ODJECES.........coviiiiieiicie et 55
5.4.5 IDO TULOTTBIceeeieeeeiesiee ettt r e n e e nr e nn e 56
5.4.5.1 Using the ObJectRelational Bridge JDO APlcociiiiieriiereseseeeeee e 56

0oJB

5.4.5.2 Using the JDO APl in the UseCase Implementations............cccooveeereeiesieesiesseeseennnns 57
5.4.5.3 CONCIUSION......utiieiiiieeie ettt ettt sre e te e s e sseeteeseesreeeeeneenseeneas 61
5.4.6 Object Transaction Manager TULOMTA..........cceiiriririeeeee e 61
3 I L= @ I I A TSP 61
5.4.6.2 Notes on the Object TransaCtion Managercccccveeeieerieeieeseesie e e eee e 66
5.5 REFEIENCE GUITES......ccueiuieiiie ittt et e b bbbt e et e e saenbe e 67
5.5.1 Reference GUITES SUMIMEIYc.ciueiiereereeeeeeseesieseesseesesseesseesesseessesssssseessesnsssseensenns 67
5.5.2 PB-8P1 GUITE......c.eeitiiieiiieieie ettt eb et e et b e e 67
32 I 1 1 L8 o {0 o 1RSSR 68
5.5.2.2 HOW t0 8CCESS the PB-8DI ...ttt st 68
5.5.2.3 Notes on Using the PersistenceBroker APloovoi oo 68
5.5.2.4 QUESLIONS.......ccvieitieiteeetee et e iteeeteesteesaeeebeesasesbeesaeesaseesseesabeessessnseessessnbeesssssnseensensnranns 69
5.5.3 ODMG-8PI GUITE........cecueeieiiesiieieeeesieeteeee e see e teeae e e se et e s seesseeneesreesseeseesneenseeneennes 70
ST 2 1 11 L1 o o o ST 70
5.5.3.2 SPECITIC Metadata SEttiNGS.......c.oovereriereeeeeeeere e 70
5.5.3.3 HOW 10 8CCESS ODM G-Icccuviiiieeiieeitiesieeiteesteesteeste et esae et esaeenbeessaeenneesaneenneeenns 71
5.5.3.4 CoNfiguration PrOPEITI€S.........ciuiiieeiiecee et s ettt sre e neeneens 71
5.5.3.5 OJB EXIENSIONS Of ODMG.....ccueiuiiiiiinie ettt sttt st s 73
5.5.3.6 Notes 0N USING the ODMG APoocueeieee et ae et nne s 74
5.5.3.7 ODMG NaME ODJECES........ceeiiiieieite sttt 75
5.5.3.8 ODMG'S DCOIHECLIONS........coiiieiiiieiiiesiee ettt nre s 78
5.5.3.9 Foreign Keys Constraints and ODM G-ai.........c.ccvveiirieiieiiieeiee e esiee e essee e essee e 78
5.5.3.10 QUESHIONS QN0 TIPS . eecueeieeiieiiiesieeie st esteeee e ste e s et eeeesre e ae s e e s reenteeneesreenneenneeneennas 78
T o T 1 1] 0SSP 80
5.5.4.1 How to use OJB with a specific relational database.............ccccceveeevievvvceeneeie e, 80
5.5.4.2 BASIC CONCEPLS.eiuiiueeuieuieiestesieste st sttt ettt ettt be st se e e e e e aeseesnesbesneeneeneas 80
5.5.4.3 THE SEIUP PrOCESS........eiitiieieiitirieee ettt renne e 83
5.5.5 OJB.properties Configuration File...........ccueiiiiiie e 85
5.5.5.1 OJB CONFIQUIBLION.ccueeiiieieiieeitecie et e ste ettt ee et e e sre e se s e e s reense e e e sreenneenneeneennas 85
5.5.5.2 OJB.PrOPEItIES FIl.....c.ue ittt r e e e e r e e 85
X I BT O I o= SRRSO 85
5.5.6.1 Mapping of IDBC TYPEST0 JAVA TYPES.....ccueruererieierieriesie sttt sse e 85
5.5.6.2 Type and Vaue Conversions - The FieldConversion Interface...........cccoceveevveinnnenne 86
5.5.7 REPOSITONY FIlE.....ceeecieeeie ettt e e b e e s ne e e reenreeennas 89
5.5.7.1 Introduction - rePOSItONY SYNEAX........ccueieerieiierieeieeseesteeieeseesreeseesree e eeesreesreeeesneeneens 89
XA (=S o] 010 i = 00 1S | (0] Y 89
5.5.7.3 JADC-CONNECH ON-UESCIIPLON.......eeveeeiesteeieeieseesieeee st esteeee e e saeeee s e e sseeseesreenseeneesneennens 90
5.5.7.4 CONNECT ON-POONceiviitiriieiieie ettt r e b e 92

0JB

5.5.7.5 SEQUENCE-MANAOESveeiuteeteeesreestessseeesseesseeesseesseeaseesssesssessssessesssssansesssessnsesssessnsesssens 96
5.5.7.6 ODJECT-CACKNE. ...t b e bbbttt e e e e e nas 97
5.5.7.7 CUSEOM GLITIULE. ..ottt st e 98
5.5.7.8 ClaSS-UESCIIPIONeeciee ettt ettt et e et e e et esae e e e e e aaeenteesnneereeanees 99
5.5.7.9 EXEENE-CIASS.....ccve ittt a bbbt 100
A L0 L= Lo B[S o o (o O S 101
5.5.7.11 FEf €rENCE-UESCIIPLON e ieeeseeeie et erte et e et e st e e e seeeesreesseeneesneennens 102
5.5.7.12 FOTBIGNKEY ..ottt ettt sttt e e e st b b nreens 104
5.5.7.13 COlECHION-AESCIIPLON ...ttt e 104
A0 N 0 (0 = el o 2P 106
5.5.7.15 INVEIrSE-TOrQIgNKEYcovieeee ettt st e e nne s 106
5.5.7.16 TK-POINtING-TO-thiS-ClaSS.......c.ceiiieiicece e 106
5.5.7.17 fK-poiNtiNg-t0-6l @MENT-CIBSS........ccoieieciee e 107
5.5.7.18 QUENY=CUSLOIMIZENcoeiiertetinteeieeseeeeee sttt be e e e s s e se e b sbesse s s e e e e e s e nneneenne e 107
5.5.7.19 INUEX-OESCITLON ...ttt n bbb b nae e e e 107
5.5.7.20 TNAEX-COIUMN.......ouiitiiiesieesieeieetee sttt e st e b e be e e s ae e besseesbeesesseesaeesesneesbeeneesneans 107
5.5.7.21 Stored ProCedUre SUPPOIT.......cc.eciiiierie e steesieeee et sre et sreenne e sneenes 107
5.5.8 Basic O/R Mapping TECNNIQUE..........ccceieeiieiecee ettt sreenne e 110
5.5.8.1 MaPPING 1:1 @SSOCIBLIONS.......cccueeueerreeiesreesteeeesseessesseesseesseeeesseesseseesseessessesssenssessenns 110
5.5.8.2 MapPINg 1:N GSSOCIBLIONS........ccueruerieeiieieiestesie sttt se st seesse e e e e e e e e 112
5.5.8.3 MapPING M:N GSSOCIBLIONS........ccuerrerrerierienteeieeseeeee st sbe e ee e e s ssesresaesbesneenis 115
5.5.8.4 Setting Load, Update, and Delete Cascading..........ccoovevveeiieevieevie e 120
5.5.8.5 USING PrOXY ClaSSES.......ccieiiiiieiiieiiicieseesteetesee st ete s e steeae e e s e nesneesreenesneesneenneans 122
5.5.8.6 Type and Value CONVEISIONS.........cccuiieerieeiieiiesteesieaeesseesseseesseessesseesseessessessseessesenns 128
5.5.9 Advanced O/R Mapping TECANIQUE..........cccueriereeieeeesieeieseesie e se e sreesaeeaesneeneeas 128
5.5.9.1 Extents and PolYMOrPhiSML......ccoiiiiiiieseeieeeee et 128
5.5.9.2 Mapping Inheritance HierarChis..........ooviieieiierene e 131
5.5.9.3 UsiNg interfaceSWith OJB........ccooiiiiiie et 140
5.5.9.4 Change PersitentField Class..........ccceiieieiie i 143
5.5.9.5 HOW d0 @anonymMOUS KEYS WOIK?.........cuecuieieiieieerie e seeseseesieesse e sae e sneennesnnens 144
5.5.9.6 USING ROWIEAEYocviieeeie ettt s a e enae e nneenne e 145
5.5.9.7 NESIEA ODJECES......coviiirieiiieieeieee ettt bbb sne b 147
5.5.9.8 INStANCE CallDACKS.........eoiiieieiie e e 149
5.5.9.9 Manageable COllECHION...........ocoiiiiee et e 150
5.5.9.10 Customizing COIECHION QUENIES.......ccueeeeiieeiee ettt 152
5.5.9.11 Metadata runtime ChaNQgES..........c.eiierieeiie e ee e sre ettt esreeneeneennen 153
5.5.10 OJB QUETTES.......ueeiieeeiriecieeiteecteeiteesteesteesateesbeesaseesseesasesabesasseeaseesaseessessnseeaseesnresssensnnes 153
o330 01 1 11 0o [T 1 oo P 153

0oJB

5.5.10.2 QUENY DY CHITEITAL . ccueeiteeeeiieesieeieeeesie e e s e saeeae e teete e e sseeaeeseesreesesseesseenseeneensens 153
5.5.10.3 ODMG OQL ...c.viiiiitiitietieieiesies ettt te e sesre e e e e e aesaessesresaenreeseeneens 162
5.5.10.4 IDO QUENTES.....c.ueeueeeeeestesieate ettt st be bt esesse e e e et e bess e e b e sbeebeeseens e s e nnenbesneanenneas 162
5.5.11 Metadata handling..........ceoiir e e 162
3= B I g 0T [0k o o SRR 162
5.5.11.2 When does OJB read Metadatal............coovvrereririeenieniesie s 163
5.5.11.3 CONNECION MELBOELAL.........cveveeeiirieeeeeie et 163
5.5.11.4 Persistent ObjeCt MELAdELA...........ccorerrerierireeeeeee e 164
5.5.11.5 QUESHIONS......eueeiteeieeiiestee e eee st et esbe e eesseeste e eesseesbesseesseeneeeneesseenbesneesseeteeneenneeneas 167
5.5.12 DEPIOYMIENL.......oiiiiciie ettt s ee et sae e et e e sae e et e e sae e e b e e eareenaeeanneereeas 168
5.5.12.1 INEFOAUCTION.cetiieiiisiisiieeeie ettt bbbt e e e b et e sbe b e nne s ene e 168
5.5.12.2 Things needed for deploying OJB...........ccccevieieeeerieeie e e snes 168
5.5.12.3 Deployment in standalone appliCatioNsS...........cccvveereeieereeneeeeseese e 170
5.5.12.4 Deployment in serviet based appliCations............ccoeeieerenerinineseeeeee e 170
5.5.12.5 Deployment in managed environment (e.g. EJB based)..........ccccoveiiiiiiiininiee, 170
5.5.13 CoNNECLION HaNAIING.......c.ooiiiiiieiie st 181
5.5.13.1 INEFOAUCTION.ceutiieriistisiieiee ettt sttt ne e b e bbb e s s e e enens 181
5.5.13.2 CONNECHIONFACLONYeeieceiectece ettt e e e neeneeneees 181
5.5.13.3 CONNECHIONM@NAGETeeieeieeereeeesieeieeeestee e eeeseestesseesseesseeseesseesseenessseeseeneessennees 182
5.5.13.4 QUESHIONS @NU ANSWES.......eoiiieiieitieieeeesieesieeeesteeseesseesseessesseesseessesseesseensesseessesnsesnes 183
5.5.14 ThE ODJECE CACNE.......c.eiiiiiiit e nesnenne 184
ST % R 1 11 0o (U o1 oo TSR 184
5.5.14.2 Why acache and hOW it WOrKS?.............coeeiiieiece e 185
5.5.14.3 How to declare and change the used ObjectCache implementation......................... 185
5.5.14.4 Shipped cache IMPlemMENtaLiONS:.........cccciviieereeeseere e 187
5.5.14.5 Distributed ObJECtCACNE?...........ooieee e 194
5.5.14.6 IMplement YOUr OWN CBCHE...........oouiiiiiieee et 194
5.5.14.7 FULUINE PIrOSPECLS.eeiiiiieiiitieciteeeitte e st e st e st e st e e st e s st e e e ss e e enteesbaeeenneeesnneeeennes 194
5.5.15 SEOUENCE MBNAGETc.veiiiitieiitieesiiesesiteessiee e sree s b e sbe e e ssse e s ssae s s nbse s sbaeesbeessabeessaseeennes 194
5.5.15.1 The OJB SeqUENCE MaNAQETccceieerieeieeiesieeieseesteetesaesseesseeseesseessesseesseensesneens 194
5.5.16 OJB 10gging CONfIQUIALiON........cccveiiieiieeieseeie e seestesee s et eee e ae e e sseenaesneesreensennaens 206
5.5.16.1 LOGGING IN OJB.......eiiiiitiiiiiiiiieiee ettt b et e e e sne e 206
5.5.16.2 Logging configuration Within OJB............ccceieiiiiieiineneeeeeeee e 207
5.5.16.3 Logging configuration via configuration files.............cccoveieviieeie e 208
5.5.16.4 Logging configuration at FUNLIME...........ccveiueieeieee e 210
5.5.16.5 DEfiNING YOUr OWN IOQUENccvieieiiecie ettt ene e 210
3T A 0 o (] o SRS 210
3328 1 11 0o [T 1 T USSP 210

0JB

5.5.17.2 OPtiMIStIC LOCKING. .. .cveieieiiieieciesieeie et ee s e e et e et esneeaesneesreeeesnnens 211
5.5.17.3 PESSIMISLIC-LOCKING.coueieiiiieiieeeie et 212
5.5.17.4 ODMG-8PI LOCKING.verveeueeieeieieniestesieetesieee ettt snesresne b 216
5.5.17.5 Locking in distributed environment............ccceoieeieecee e 217
5.5.17.6 Pluggin own [0CKING CIaSSES........cceoiiieeiice e 217
5.5.18 XDoclet OJB module dOCUMENTALION..........ocueruireriieresieeeie e 218
5.5.18.1 Acquiring and BUIHAING..........cooveiieeee e 218
55182 USATE.eiueiitee it e eiee sttt et n e et n e re s 219
5.5.18.3 TAY FEFEIEINCE.ee ettt b bbbt e e e b sn e b nreene e 221
5.5.18.4 INtErfaceS aNd ClaSSES........ccoiieriirieiierie ettt re e 221
5.5.18.5 Fields and BEan PrOPEri€S.........cceeiieieeiieie e sttt ettt s ens 230
5.5.18.6 REFEIENCES......couiiiiie ettt b e 235
5.5.18.7 COlBCIIONS......ueitiiieiieiete ettt sttt bbbt et b et naas 237
5.5.18.8 NESIEU ODJECES.......eviierieeieeieeiei ettt bbbt e et e b b 240
5.5.19 OB PEITOMANCE........oiieieeieiiie sttt st sseesbeeeesreesseeneesneensens 243
ST e 1 11 0o (U Tox 1 o o TR SORPR 243
5.5.19.2 The Performance TESt SUITE.........covirireririnieie et s 243
5.5.19.3 How OJB compares to other O/R mapping tOOIS?...........cccvveevieieviesecce e 247
5.5.19.4 What are the best settings for maximal performance?..........ccccccecevvevieecenceere e 248
5.8 HOWLO'S. ...ttt e et e e e b e e e s abe e e st e e e san e e e nnn e e e neeennnes 248
5.6.1 HOWLO'S SUMIMIYcoutiiiiiiiie ittt nn e 248
562 HOWTO - Build O/R Mapping FilES......c.ccouiiiieeeee ettt 248
5.6.2.1 How to build O/R mapping filE€S.........ccveieiieieeeeees e 249
5.6.2.2 classification of O/R related transformations.............cveveveneninieeresese e 249
5.6.2.3 Forward engineering from XMcooi e 249
5.6.2.4 Forward engineering from TOIQUE...........crererierierienie e 251
5.6.2.5 Forward engineering from repository. Xml...........cocoeeeieienenenineseeeeee e 252
5.6.2.6 XDoclet transformation from Java COUE...........ooeriiriiiirii i 252
5.6.2.7 Reverse engineering from database............cccoevveieiecie e 252
56.3 HOWTO - USe ANONYMOUS KEYS.....ccciuiiiiiiiiiiiiesiie sttt 253
5.6.3.1 Why Do We Need ANONYMOUS KEYS?.........ccieiieieeeesieeie e sieesaesee e esaessee e ensesneens 253
5.6.3.2 HOW 1T WOTKS......eiieeeiiieiesie ettt sttt tesne et naesse e seeneesreenseenee e 254
5.6.3.3 USING ANONYMOUS KEYS.......oouiiiiiiieiiesiisie sttt sn e 254
5.6.3.4 Benefits and DrawhaCks............ooiiiiiiieii e e 258
564 HOWTO - USE DB SEQUENCES......cuviiiiiii it siee s siee e sies st s s ssres s s sssaesssaessseessnneessnnes 258
3 L L0 L8 1 o o SO RPRPR 258
5.6.4.2 The SAMPIE Dal@D8SE..........cccveieeieeieriee et sneeaeeneenres 258
5.6.4.3 USING OJB.......oiuiiieieieitisie sttt e et bbb bt n e b e nne e 259

0oJB

5.6.5 HOWTO - Work with LOB Dal@a TYPES......civeieieerieeieseesieeeeseesiesaesseessessessseensesneesns 261
5.6.5.1 Using Oracle LOB Data TYpes With OJB..........cccoerireiinininineeeeseesee e 261
5.6.5.2 Backgrounder: Large objects in databases............cooeveierineiieieieese e 261
5653 Large ODJECISIN OJB.......cociieie et sree b e e e eree s 263

5.6.6 HOWTO - Use OJB in clustered envVirONMENES...........ccceeeeeieieeseeieeseeseesie e sreenne s 263
5.6.6.1 How to use OJB in clustered enVirONMENES..........ccceevveeeieerieseeseesie e seesee e 263
5.6.6.2 Three steps to clustering your OJB appliCalion...........cccvereeeereeiesieeseesee e seeee e 264
5.8.6.3 INOLES.....ceeeeeeee ettt e st e e s e e e e e ne e e e ne e nne e nnn e e e nneeeas 265

5.6.7 HOWTO - Stored ProCedure SUPPOIT.........ccoiirerirerieieieeesee et es e s nnens 266
S0 B (o [ot o o VPSSRSO 266
5.6.7.2 REPOSITONY ENEIIES......c.eeceiecieeie ettt et et et te e s e e te e e sreesnesnaesneenteenaesreeseennens 266
5.6.7.3 COMMON SLITDULES........eeieieciece e e s 267
5.6.7.4 INSEIT-PIrOCEAUIE.cveieeeiteeieeeeesieete st e seeste e e te e eeeeesseeteeseesseesessaesseesesneesseesesnenns 267
5.6.7.5 UPUBLE-PIOCEUUNE. ..ottt sttt b ettt n e e b e enis 267
5.6.7.6 Ul ELE-PIOCEAUNE. ..ottt e bbb 268
5.6.7.7 ATQUMENE QESCIIPLONS......viicieeeiee et estee et ste e e te et e et s e e te e ste e e beesse e et e e sreeeseesnneenneens 268
5.6.7.8 A SIMPIE EXAMPIE......oiceeeieee ettt sreene e 269
5.6.7.9 A COMPIEX EXAMPIE.....ceeeeiee et e e reeneens 273

5.6.8 HOWTO - SPring With OJB.......cc.ccoeiieiieii e et see e e e sae e eae e nse s 275
5.6.8.1 SPING WIth OJBi......ccueiiiiiiiiieiiieieee ettt s e e e e e 275

S = 11 o R U RUSS PSP UPTPPTPRPRORO 275

5.7.1 TESHNG SUMIMAIYueeiuieiitieiiecitee et erte e ste et e s ee e te e s aeeebeesseeeseesaeeebeesaeeeseesnaeeseesneeenrens 276

B.7.2 JUNIE TESE SUITE....cvieieiieiieeeie ettt sttt bbb b s e enes 276
37250 I 1 11 [{0 o U 276
5.7.2.2 HOW 1O FUN the TESE SUITE.......ciuiiieieiesie e 276
5.7.2.3 What aDOUL KNOWN ISSUES?........ocueeieeiecieesie ettt 277
5.7.2.4 Donate own teStSfor OJB TSt SUITE.......cceeiuereeiieie e 277

I AR R LY L (ST = £ S SR 277
Tk T 1 11 L1 (o o P 277
5.7.3.2 HOW O WIHEE A NEW TESL......eeeieceeeeieie ettt e e ens 278

0JB

1.0JB
1.1. Apache ObJectRelationalBridge - OJB

1.1.1. Summary

Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that allows transparent
persistence for Java Objects against relational databases.

1.1.1.1. flexibility

OJB supports multiple persistence APIs to provide users with their API of choice:

» A PersistenceBroker APl which serves as the OJB persistence kernel. The OTM-, ODMG-
and JDO-implementations are built on top of this kernel.
This API can aso be used directly by applications that don't need full fledged object level
transactions. (See the Persistence Broker Tutorial for details.)

o A full featured ODM G 3.0 compliant API. (Seethe ODMG Tutorial for an introduction.)

« A JDO compliant API. We currently provide a plugin to the JDO Reference Implementation
(RI). Combining the JDO RI and our plugin provides a JDO 1.0 compliant o/r solution.
A full IDO implementation is scheduled for OJB 2.0. (See the JDO tutorial for an introduction
to the JIDO programming model.)

» An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG
have in common. (See the OTM tutorial for details).

See the FAQ for adetailed view of the OJB layering. Get the latest information on each API's
status.

1.1.1.2. scalability

OJB has been designed for alarge range of applications, from embedded systems to rich client
application to multi-tier J2EE based architectures.

OJB integrates smoothly into J2EE Application servers. It supports INDI lookup of datasources. It
ships with full JTA and JCA integration. OJB can be used within JSPs, Servlets and SessionBeans.
OJB provides special support for Bean Managed EntityBeans (BMP).

1.1.1.3. functionality

OJB uses an XML based Object/Relational mapping. The mapping resides in a dynamic MetaData
layer, which can be manipulated at runtime through a simple Meta-Object-Protocol (MOP) to
change the behaviour of the persistence kernel.

OJB provides several advanced O/R features like Object Caching, lazy materialization through
virtual proxies and distributed |ock-management with configurable Transaction-Isolation levels.
Optimistic and pessimistic locking is supported.

OJB provides aflexible configuration and plugin mechanism that allows to select from set of
predefined components or to implement your own extensions and plugins.

A more complete featurelist can be found here.

Learn more about the OJB design principles in this document.

1.2. News

0oJB

12.1.

12/2005 - OJB 1.0.4.rc1 released

Contains bug fixes and new features. For more details see rel ease-notes.
11/2005 - Work for OJB 1.x started

The 1.x release of OJB will be abig step forward in usability and integration in existing
frameworks (like Spring).

08/2005 - Linguine Maps supports OJB

Linguine Mapsis an open-source (LGPL, Java 1.4+) utility that will automatically produce easy to
read UML-style entity-relation diagrams from OJB mapping files.

1.3. OJB - Features

» Supports both standard- and non-standard APIs:
* PB API (non-standard)
« ODMG API (standard)
* OTM API (non-standard)
* JDO API (standard)

» The PersistenceBroker kernel APl and all top-level APIs(ODMG, OTM, JDO) alows Java
Programmers to store and retrieve Java Objects in/from (any) JDBC-compliant RDBM S

» Transparent persistence: classes does not have to inherit from any OJB base class nor
implement a specia interface. OJB delivers pure transparent persistence for POJOs.

» Scalable architecture that allows to build massively distributed and clustered systems.

« Configurable persistence by reachability: All Objects associated to a persistent object by
references can made persitent too.

« Extremly flexible design with pluggable implementation of most service classes like
PersistenceBroker, ObjectCache, SequenceManager, RowReader, ConnectionFactory,
ConnectionManager, IndirectionHandler, SQLGenerator, JdbcAccess, ... and so on.

» Quality assurance taken seriously: More than 800 JUnit Test Cases for regression tests. JUnit

tests are integrated into the build scripts and used as quality assurance for daily development.

Mapping support for 1:1, 1:n and m:n associations.

Configurable collection queries to control loading of relationships. See QueryCustomizer.

Automatic and manual assignment of foreign key values.

The Object / Relational mapping is defined in an XML Repository. The mapping is completely

dynamic and can be manipulated at runtime for maximum flexibility

» Easy use of multiple databases.

« Configurable Lazy Materialization through Proxy support in the PersistenceBroker. The user
can implement specific Proxy classes or let OJB generate dynamic Proxies.

» Support for Polymorphism and Extents. Y ou can use Interface-types and abstract classes as
attribute types in your persistent classes. Queries are al'so aware of extents: A query against a
baseclass or interface will return matches from derived classes, even if they are mapped to
different DB-tables

« Support for Java Array- and Collection-attributes in persistent classes. The attribute-types can
be Arrays, java.util.Collection or may be user defined collections that implement the interface
oj b. br oker . Manageabl eCol | ecti on.

» Sequence-Managing . The SequenceManager is aware of "extents' and maintains uniqueness of
ids accross any number of tables. Sequence Numbering can be declared in the mappping
repository.

Native Database based Sequence Numbering is aso supported.
» Reusing Prepared Statements, internal connection pooling.
» Integrates smoothly in controlled environments like EJB containers

0oJB

Full JTA and JCA (in progress) Integration.

Support for prefetched relationships to minimize the number of queries.

ODMG compliant API, a Tutorial, and TestCases are included.

JDO 1.0.1 compliant API (based on jdori, native implementation in progress), a Tutorial, and
TestCases are included.

The Lockmanagement supporting four pessimistic Transaction Isolation Levels (uncommited or
"dirty" reads, commited reads, repeatabl e reads, serializable transactions) - distributed locking
ispossible.

Optimistic locking support. Users may declarei nt or | ong fields as version attributes or

j ava. sql . Ti mest anp fields as timestamp attributes.

Support for persistent object caching. Different caching strategies and distributed caches.
Comes along with fully functional demo applications running against HSQLDB.

Provides Commons-L ogaing and Log4J logging facilities.

100%: pure Java, Open Source, Apache License

- OQL is currently not fully implemented (Aggregations and Method Invocations)
- ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe
transaction isolation client applications must use explicit lock acquisition.

1.4. OJB - API Status
Status reports for the different APIsin Apache OJB.

Any known issues, including for the parts of OJB that are stable, can be found in release-notes.ixt.

PB API

The PB (Persistence Broker) APl implementation is stable.
ODMG

The ODMG API implementation is stable.

OQL iscurrently not fully implemented (Aggregations and Method Invocations). Workaround is to use the PB-API within the ODMG
implementation.

JDO

By providing a plugin to the SUN JDO Reference Implementation we provide a complete JDO
1.0.1 prototype O/R mapping tool.

Integration in managed environments (in particular JTA integration) is not supported for the
JDO 1.0 prototype.

A complete Apache licensed JDO 2.0 implementation is scheduled for OJB 2.0.
OTM

The OTM (Object Transaction Manager) APl implementation isin early beta.

The active development on the OTM APl implementation is currently stopped due to lack of developer resourcesin that area. The future
of the OTM layer will be discussed on the OJB developer mailing list.

SODA
Thelegacy S.O.D.A. (Simple Object Database Access) API should be considered deprecated

10

0oJB

and might be removed in afuture release.

For more information about S.O.D.A. Query API, see the project's SourceForge Website.

1.5. OJB - References and Testimonials
1.5.1. References and Testimonials

1.5.1.1. projectsusing OJB

Jakarta JetSpeed

Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java and
XML.

OJB will be the default persistence model within Jetspeed 2.

BIT

The swiss federal office for information technology and telecommunications (BIT) uses OJB 1.0.1
as data access layer in their framework for webbased applications.

The BIT extended OJB with acomplex history-mechanism by simply replacing the

JdbcA ccessimpl their own class.

The Tammi project

Tammi is a JM X-based Java application development framework and run-time environment
providing a service architecture for J2EE server side Internet applications that are accessible from
any device that supports HTTP including mobile (wireless) handsets.

Future plansinclude integration of Apache OJB based persistence servicesto the framework.

The Object Console project

The Object Console is an open web based application meant for the administration of objects via
the web. Any object that is persistable by the ObJectRel ational Bridge (OJB) framework can be
managed through this tool. In addition, this tool provides administration functionality for the
ObJectRelational Bridge (OJB) framework itself.

Object Console uses Struts and OJB. It ships with full sourcecode and is thus a great source for
learning Struts + OJB techniques.

ThelntAct project

The IntAct project establishes a knowledgebase for protein-protein interaction data. It's hosted at
EBI - European Bioinformatics Institute, Cambridge.

IntAct uses OJB asits persistence layer.

Network for Earthquake Engineering Simulation

The NEES program will provide an unprecedented infrastructure for research and education,
consisting of networked and geographically distributed resources for experimentation, computation,
model-based simulation, data management, and communication.

OJB is used as the O/R mapping layer.

The OJB.NET project

OJB.NET is an object-to-relational persistence tool for the .NET platform. It enables applicationsto
transparently store and retrieve .NET objects using relational databases.

OJB.NET isaport ojb Apache OJB to the .NET platform

The OpenEMed project

OpenEMed is a set of distributed healthcare information service components built around the OMG
distributed object specifications and the HL7 (and other) data standards and is written in Java for
platform portability.

11

http://www.bit.admin.ch

0JB

OpenEMed uses ODMG asits persistence API. OJB is used as ODMG compliant O/R tool.

1.5.1.2. user testimonials

"At the BIT some stress-test were performed simulating 3000 parallel users accessing tables
containing more than 1.8 million rows per table. These test were run on Websphere 4.1 and DB2 on
IBM z/OS (Host). The PB-API of OJB 1.RC1 was used without problems. The ODMG-API of this
release then had too many bugs (deadlocks, parallel threads, etc.).”

"We're using OJB in two production applications at the Northwest Alliance for Computational
Science and Engineering (NACSE). One is a data mining toolset, and the other isa massive
National Science Foundation project that involves huge amounts of data, and about 20 or 25
universities and research groups like mine.

In fact, I've begun making OJB sort of a de-facto standard for NACSE java/database devel opment.
I've thrown out EJB's for the most part and I've tried JDO from Castor, but I'm sticking with OJB.
Maybe we'll reconsider JDO when the OJB implementation is more complete.”

"We are planning a November 2003 production deployment with OJB and WE LOVE IT!! We
have been in development on a very data-centric application in the power industry for about 5
months now and OJB has undoubtedly saved us countless hours of development time. We have
received benefits in the following areas.

-> Easily adapts to any data model that we've thrown at it. No problems mapping tables with
compound keys, tables mapping polymorphic relationships, identity columns, etc.

-> Seemledly switches between target DB platforms. We develop and unit test on our local
workstations with HSQL DB and PostgreSQL, and deploy to DB2 using the Type 4 JDBC driver
from IBM. Works great!

-> Makes querying a breeze with the PersistenceBroker API

Overall we have found OJB to be very stable (and we've really tested it out quite a bit). The only
issues we've got outstanding at the moment is support for connections to multiple databases, but
I've noticed in CV S that the OJB guys are already fixing thisfor OJB 0.9.9."

"We've been using it in "production” for along time now, from about version 0.9.4, | believe. It has
been very robust. We don't use al of its features. We've only see to failures of our persistent store
in about 9 months, and I'm not sure they were due to OJB."

"So yes, we have made a quite useful mediumsized production website based on OJB (with JBoss,
Jakarta Jetspeed, Jakarta Turbine and Jakarta Jelly, three Tomcats, OpenSymhony OSCache and for
the database MSSQL server, al running on Win2000.) It is attracting between 600 and 9000 (peak)
users aday, and runs smoothly for extended periods of time. And no, | can not actually show you
the wonders of the editorial interface of the content management system, because it is hidden
behind afirewal.

| feel OJIB is quite useful in production, but you certainly have to know what you are doing and
what you are trying to achieve with it. And there have been some tricky aspects, but these could be
solved by simple workarounds and small hacks.

The main thing about OJB isthat AFAIK it has an overall clean design, and it far beats making
your own database abstraction layer and object/relational mapper. We certainly do not use all of it,
only the Persistence Broker parts, so there was less to learn. We love the virtual proxy and
collection proxy concepts, the criteria objects for building queries, and the nice little hidden
features that you find when you start to learn the system.”

"My Company is building medium to large scale, mission critical applications (100 - 5.000
concurrent users) for our customers. Our largest customer is KarstadtQuelle, Europes largest retail
company. The next big system that will go in production (in June) is the new logistics system for
the stationary logistics of Karstadt.

Of course we are using OJB in those Systems! We have several OJB based systems now in

12

http://www.bit.admin.ch

0oJB

production for over ayear. We never had any OJB related problems in production.
Most problems we faced during development were related to the learning curve developers had to
face who were new to O/R mapping.”

"I've ad'so worked with OJB on high-load situations in J2EE environments. We're using JRun and/or
Orion with OJB in a clustered/distributed environment. Thisis aNational Science Foundation
project called the Network for Earthquake Engineering Simulation (NEES).

The only mgjor problem that we ran into was the cache. JCSjust isn't good, and hasn't seemed to
get much better over the last year. We ended up plugging in Tangosol's Coherence Clustered Cache
into the system. We can also do write-behinds, and buffered data caching that is queued for
transaction. That's important to us because we're dealing with very expensive scientific data that
_can't_get lost if adb goes down. Some of these Tsunami experiments can get pretty expensive.
Otherwise, we use mostly the PersistenceBroker, and alittle of the ODMG. Performance seems
better on PB, but less functional. It's not really that much of a problem anyway, because we can
cheaply and quickly add app-serversto the cluster.”

1.6. OJB - Mailing Lists

1.6.1. Mailing Lists

These are the mailing lists that have been established for this project. For each list, thereisa
subscribe, unsubscribe, and an archive link.

The user and dev list are subscriber only lists, this means you have to subscribe before you can post
to thelist.

OJB User List Subscribe Unsubscribe Archive

0JB Developer List Subscribe Unsubscribe Archive

1.7. OJB - Mailing Lists Archives

1.7.1. Mailing Lists Archives

Follow the links below to browse through or search in the mailing list archives, through a number
of different providers and interfaces.

Archive Provider = OJB User List OJB Developer Searchable? Remarks
List

The Mail Archive | ojb-user ojb-dev yes --

GMANE gmane.comp.jakart gmane.comp.jakart yes Latest 600

postings available
via web access.
Unlimited access
through NNTP
(news reader)

Apache ojb-user@db.apacl ojb-dev@db.apach(yes --
MARC ojb-user ojb-dev yes --

1.8. OJB - Linksand further readings

1.8.1. Summary

13

0JB

This page contains interesting Links and recommended readings that will help to learn more about
OJB concepts, related projects, didactic material, research reports, integration in frameworks etc.

1.8.2. OJB - Tutorialsand Howto

The famous Beer4All Struts/OJB tutorial by Chuck Cavaness

A presentation on OJB held at the Atlanta Java Users Group by Chuck Cavaness
An extensive tutorial on OJB by John Carnell

Roberto Ghizzioli's tutorial on Struts, OJB. and nested tags

An introductory tutoria on the O'Reilly site.

1.8.2.1. OJB and Spring

» Spring, OJB, and Struts, getting started (June 23, 2005)

e Spring, OJB, and Struts. Version 2 with DAO (June 23, 2005)

» Spring, OJB, and Struts. Version 3: INDI Datasources and Caching (June 27, 2005)
« Springframework and OJB (Nov 21, 2004)

1.8.3. Design

OJB is based on avariety of conceptual sources. In this section I'll give a summary about the most
prominent influences.

Craig Larmans Applying UML and Patterns

The Siemens Guys " Patter n-Oriented Softwar e Ar chitecture”
Scott Amblersclassic paperson O/R mapping

The" Crossing Chasms' paper from Brown et. al.

. The GOF Design Patterns

(sorted by relevance)

abkwbdpE

1. The most important input came from Applying UML and Petterns. It contains a chapter
describing the design of a PersistenceBroker based approach persistence layer. His presentation
contains alot of other good ideas (e.g. usage of Proxies, caching etc.) | implemented alot of his
things 1:1. Thisbook isamust have for all OJB developers!

2. Larman does not cover the dynamic metadata concept. He mentiones that such a thing would be
possible, but does not go into details. As| had been afan of Metalevel architectures for quite a
while | wanted to have such athing in OJB too !!!

mop-qif
| took the concepts from the book Pattern-Oriented Software Architecture. They have a chapter on

the Reflection pattern (aka Open Implementation, Meta-L evel Architecture).

They even provide an example how to apply this pattern to a persistence layer.

There is another Architectural pattern from this book that | am using: The Microkernel pattern.
My ideawas to have akernel (the PersistenceBroker) that does all the hard work (O/R mapping,
JDBC access, €tc.)

High Level object transaction frameworks like a ODMG or JDO implementations are clients to the
PersistenceBroker kernel in this concept!

14

http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/struts-ojb.zip?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/cavaness-ajug-slides.pdf?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/ojb-dataccess.pdf?rev=HEAD
http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html
http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html
http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://hillside.net/patterns/books/Siemens/book.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html

0oJB

3. | read Scott Amblers papers before starting OJB. Sure! There are several thingsin OJB that are
from his classic The design of arobust persistence layer and from his Mapping Objects To
Relational Databases. Most prominent: The Per sistenceBroker concept.

| incorporated the Query API from the OpenSource project COBRA that applies Amblers
PersistentCriteria concept.

Reading Amblerspaper on thesetopicsisa must.

But IMO these are the only aspects of Amblers presentation that map directly to OJB. Here are the
concepts that differ:

Amblers concept relies on a persistent base class.

caching is not covered by his design

his concept of OID does not fit for legacy databases with compound PKs.

The OJB proxy concept is quite different (Ambler has proxy functionality in his
PersistentObject base class.)

e OJB does not use Insert- and UpdateCriteria

« OJB usesadifferent mapping approach (A full metadata layer)

4. For severa detail questions (like mapping inheritance hierarchies) | consulted crossing chasms.
Thisisalso avery good source for al O/R implementors.

5. For dl the "small things" I'm using the common GOF patterns like Factory, Observer, Singleton,
Proxy, Adaptor, State, Command, etc.

Here is athesis describing concepts very similar to OJB.
As| read this paper | saw alot of thing inspired by OJB. It's giving a nice introduction into the
PersistenceBroker pattern and related topics.

The PARC software design area pioneering in Metalevel computation, aspect oriented
programming etc.

1.8.4. Further readings on O/R mapping

ObjectArchitects O/R pattern page

JavaSkyL ine page on database integration

Barry and Associates page on O/R mapping

Portland Pattern Repository page on O/R

Martin Fowlers book "Pattern of Enterprise Application Architecture’ covers many O/R
patterns that can be found in OJB. Here you will find an online catalog of these patterns.

1.8.5. Patterns

e The Hillside Pattern page
e The Portland Pattern Repository

1.8.6. Books covering OJB

» The O'Reilly book on Struts programming by Chuck Cavaness has a whole chapter about how
to build an applications model layers based on OJB. A must reading for everyone intending to
use Struts and OJB. All source code from the book can be found here:; Struts Programming
SOUrces.

e There'salso aWROX book on Struts + OJB All source code from the book can be found here:
Professiona Struts and OJB sources.

» Enterprise Java Development on a Budget

2. Download

15

http://www.ambysoft.com/
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/mappingObjects.html
http://www.ambysoft.com/mappingObjects.html
http://www.kimble.easynet.co.uk/cobra/index.htm
http://members.aol.com/kgb1001001/Chasms.htm
http://hillside.net/patterns/books/DPBook/DPBook.html
http://www2.parc.com/csl/groups/sda/projects.shtml
http://www.objectarchitects.de/ObjectArchitects/orpatterns/
http://www.javaskyline.com/database.html
http://www.service-architecture.com/object-relational-mapping/articles/
http://c2.com/cgi/wiki?ObjectRelationalMapping
http://www.martinfowler.com/eaaCatalog/
http://www.martinfowler.com/eaaCatalog/
http://hillside.net/patterns/
http://c2.com/cgi/wiki?CategoryPattern
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://examples.oreilly.com/jakarta/
http://examples.oreilly.com/jakarta/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8-1/ref=sr_8_1/103-9325116-6675068?v=glance&s=books&n=507846
http://web.wrox.com/download/code/professional/7817.zip
http://www.amazon.com/exec/obidos/ASIN/1590591259/qid%3D1082279566/sr%3D11-1/ref%3Dsr%5F11%5F1/103-0814434-1236616

3. Development

3.1. Coding Standards

This document describes alist of coding conventions that are required for code submissions to the
project. By default, the coding conventions for most Open Source Projects should follow the
existing coding conventions in the code that you are working on. For example, if the bracket ison
the same line as the if statement, then you should write al your code to have that convention.

If you commit code that does not follow these conventions, you ar e responsible for also fixing
your own code.

Below isalist of coding conventions that are specific to OJB, everything else not specificially
mentioned here should follow the official Sun Java Coding Conventions.

1. Brackets should begin and end on a new line and should exist even for one line statements.
Examples:

2. Though it's considered okay to include spaces inside parens, the preference is to not include
them. Both of the following are okay:

3. Use 4 space indent. NO tabs. Period. We understand that many devel operslike to use tabs, but
the fact of the matter isthat in a distributed development environment where diffs are sent to the
mailing lists by both devel opers and the version control system (which sends commit log
messages), the use tabs makes it impossible to preserve legibility.

In Emacs-speak, this trandates to the following command:

4. Unix linefeeds for al .java source code files. Other platform specific files should have the

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

0oJB

platform specific linefeeds.

5. JavaDoc MUST exist on all methods. If your code modifications use an existing
class’'method/variable which lacks JavaDoc, it is required that you add it. Thiswill improve the
project as awhole.

6. The ASF license MUST be placed at the top of each and every file.
7. All javafiles should have a @version tag with CV S Id keyword expansion, like the one below.

Note:

To add the keyword to anew file, either use $1 d: code- st andards. xm 365208 2005-12-14 01:19:23Z arnminw $
or copy an existing expanded id-string from another file (all the parameters will be replaced by CV'S). Just watch out not to type $1 d $,
since that extra space will signal to CV S that keyword expansion aready took place.

8. Import statements must be fully qualified for clarity.

Emacs/X Emacs users might appreciate the following in their .emacsfile.

Thanks for your cooperation.

4. Index

4.1. Site Linkmap

4.1.1. Table of Contents

0oJB

0oJB site
+ OB ojb
* Home index
* News news
» Features features
e Status status
* Release Notes release-notes
* References references
e Wiki wiki
* Maliling Lists mail-lists
» List Archives mail-archives
* Issue Tracking bugs
* Links links
» Download download
* Binaries binaries
* Source source
* Development devel opment
« OJBCVS todo
* ApacheCVS todo
* License license
* Coding Standards coding
* Index all
e Sitemap linkmap
» SiteasPDF whole_site pdf
» Documentation documentation
e Summary index
* FAQ's faq
» JavaDocs javadoc
» Getting Started getting-started
» Tutorids tutorials
e Summary summary
e Mapping Tutorial mapping-tutorial
« ThePBAPI pb-tutorial
« TheODMG API odmg-tutorial
* TheJDO API jdo-tutorial
» TheOTM API otm-tutorial

18

0oJB

* Reference Guides guides

e Summary summary
 PB API guide pb-guide
« ODMG API guide odmg-guide
» Platform settings platform
* OJB propertyfile ojb-properties
 JDBC Types jdbc-types
* Repository file repository
* Basic mapping basi c-technique
* Advanced
mapping advanced-technique
* OJB queries query
* Metadata handling metadata
* Deployment deployment
» Connection handling connection
» Caching object-cache
* Sequence manager sequence-manager
* Logging logging
* Locking lock-manager
» XDoclet module xdoclet-module
» Performance performance
* Howto's howto
e Summary summary
* Build large Metadata
Mappings large-metadata
* Anonymous Keys anonymous-keys
» Using database
sequences db-sequences
* UseOracleLOB's use-lobs
* Work in clustered
environment clustering
* Work with Stored
Procedures stored-procedures
» Using Spring with OJB use-spring
e Testing testing
e Summary summary
» Test Suite test-suite

e Write Tests test-write

19

0JB

5. Documentation

5.1. Documentation - I ntroduction
This section contains the Apache OJB documentation.
Some additional information exists on our WiKi.

If you are new to OJB, we recommend that you start with reading the Getting Started section and
the FAQ.

There are tools for building the metadata mapping files used by OJB. Information about them can
be found here.

o Tutorias

Tutorials for the API's supported by OJB.
» Reference Guides

OJB reference guides.

e Howto's
Practical hands-on HOWTO documents provided by both OJB users and committers.
o Testing

Info about OJB's quality assurance and test writing.

5.2. Frequently Asked Questions
5.2.1. Questions

5.2.1.1. 1. General

1.1. Why OJB? Why do we need another O/R mapping tool?

here are some outstanding OJB features:

It'sfully ODMG 3.0 compliant

It will have afull JDO implementation

It's higly scalable (L oadbalanced Multiserver scenario)

It provides multiple APIs:

* Thefull fledged ODMG-API,

* TheJDO API (planned)

» and the PersistenceBroker API. This API provides a O/R persistence kernel which can be
used to build higher level APIs (likethe ODMG and JDO Implementations)

» It'sableto handle multiple RDBMS simultaneously.

« ithasasdglick MetaLevel Architecture: By changing the MetaData at runtime you can change the
O/R mapping behaviour. (E.G. turning on/off usage of Proxies.)

» It hasasimple CacheMechanismsthat is fully garbage collectable by usage of weak references.

» It hasasimple and clean pattern based design.

» |t usesaconfigurable plugin concept. This allows to replace components (e.g. the ObjectCache)
by user defined Replacements.

» It hasamodular architecture (you can quite easily reuse some components in your own
applicationsif you don't want to use the whole thing:

The PersistenceBroker (e.g. to build your own PersistenceM anager)

The Query Interface as an abstract query syntax

The OQL Parser

The MetaData L ayer

20

0oJB

 TheJDBC Accesslayer
« It hasavery sharp focus: It's concerned with O/R mapping and nothing else.

Before making OJB an OpenSource project | had alook around at the emerging OpenSource O/R
scene and was asking myself if thereisreally aneed for yet another O/R tool. | came to the
conclusion that there was a need for OJB because:

e Therewas no ODMG/JDO compliant opensource tool available

» There was no scalable opensource O/R tool available

» therewas no tool available with the idea of a PersistenceBroker Kernel that could be easiliy
extended

» Thetools available had no dynamic MetaData architectures.

« Thetools available were not as clearly designed as | hoped, thus extending one of them would
have been very difficult.

1.2. How isOJB related to ODM G and JDO?

ODMG isastandard API for Object Persistence specified by the ODMG consortium
(www.odmg.org). JDO is Sun's API specification for Object Persistence. ODMG may well be
regarded as a Precursor to JDO. In fact IDO incorporates many ideas from ODMG and several
people who have been involved in the ODMG spec are now in the JDO team.

| assume JDO will have tremendous influence on OODBMS-, RDBMS-, J2EE-server and
O/R-tool-vendors to provide compliant products.

OJB wants to provide first class support for JIDO and ODMG APIs.

OJB currently contains of four main layers, each with itsown API:

1. A low-level PersistenceBroker API which serves asthe OJB persistence kernel. The
PersistenceBroker also provides a scalable multi-server architecture that allowsto used it in
heavy-duty app-server scenarios.

This API can also be used directly by applications that don't need full fledged object level
transactions (see PB tutorial for details).

2. An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG
have in common as Object level transactions, lock-management, instance lifecyle etc. (See
OTM tutoria for details.) The OTM iswork in progress.

3. A full featured ODM G 3.0 compliant API. (See ODMG tutoria for an introduction.)
Currently this API isimplemented on top the PersistenceBroker. Once the OTM layer is
finished ODMG will be implemented on top of OTM.

4. A JDO compliant API. Thisiswork in progress. (See JDO tutorial for an introduction.)
Currently this API isimplemented on top the PersistenceBroker. Once the OTM layer is
finished JDO will be implemented on top of OTM.

The following graphics shows the layering of these APIs. Please note that the layers coloured in
yellow are not yet implemented.

OJB Layer

1.3. What arethe OJB design principals?
OJB has a"pattern driven" design. Please refer to this document for more details

1.4. Wherecan | learn more about Object/Relational mapping in general?
We have alink list pointing to further readings.

1.5. How OJB performance compar esto native JDBC programming?

21

0JB

See page Performance.

1.6. How OJB performance comparesto other O/R mapping tools?
See page Performance.

1.7.1sOJB ready for production environments?

Depends on your production environment. If you want to program an aeroplane autopilot system
you should not use Java at all. (according to the official disclaimer).

But | assume we are talking about enterprise business applications, aren't we? And for such
applicationsit'saclear yes. OJB is used in production application since version 0.5. We have about
6.000 downloads each month (and growing) and alarge user base using it in a wide spectrum of
production scenarios.

We provide aregression test suite for Quality Assurance. Y ou can use this testsuite to check if OJB
works smoothly in your target environment. (see supported platforms documentation)

We also provide a performance testsuite that compares OJB performance against native JDBC. This
test will give you an impression of the performance impact OJB will have in your target
environment. (see Performance testsuite documentation)

OJB is aso the persistence layer of choice in several books on programming J2EE based enterprise
business systems. (see our links and references section)

Reference projects and user testimonials are listed here.

1.8. Does OJB supports caching?
Short answer isyes. To get a detailed answer, please read the caching guide.

5.2.1.2. 2. Getting Started

2.1. Help! I'm having problemsinstalling and using OJB!

Please read the Getting Started document. OJB is a powerful and complex system - installing and
configuring OJB is not atrivial task. Be sureto follow all the steps mentioned in that document -
don't skip any steps when first installing OJB on your systems.

If you are having problems running OJB against your target database, read the respective platform
documentation. Before you try to deploy OJB to your environment, read the deployment quide.

2.2. Help! | till have serious problemsinstalling OJB!

The following answer is quoted from the OJB user-list. It isfrom areply to a user who had serious
problems getting started with OJB.

| would say it was stupid not to understand OJB. How can you know what another programmer
wrote. |'ve been a Java programmer for quite some time and | could show you stuff | wrote that |
know you wouldn't understand. I'll just break it down the best | can on what, where and why.

OJB is adata persistence layer for Java. I'll just use an example of how | useit. | have an RDMS. |
would like to save Java object states to this database and | would like to be able to search this
information as well. If you serialize objectsiit's hard to search and if you use SQL it won't work
with any different database. Plusit's a mess having to work with all that SQL in your code. And by
using SQL you don't get to work with just Java objects. But, with OJB your separated from having
to work outside the object world and unlike serialization you can preform SQL like searches on
your data. Also, there's things like caching and connection pooling in OJB that help with
performance. After setting up OJB you will use either PB-API or ODMG or JDO to access your

22

0oJB

information in a object centric manner. PB API is a non-standard O/R mapping APl with many
features and great flexibility. All top-level API'slike ODMG or JDO build on top of the PB-api.
ODMG is astandard for the api for accessing your data. That means you can use any ODMG
compliant api if you don't want to use OJB. The JDO part is like ODMG except it's the SUN JDO
standard. | use ODMG because the JDO interface is not ready yet.

OJB iseasy to use. I'll just break it down into two sides. There's the side your writing your code for
your application and there's the side that you configure to make OJB connect to your database.
Starting with your application side, all that is needed is to use the interface you wish. | use ODMG
because JDO is not complete yet. Here's alink to the ODM G part with some code for examples.
That's all you need on the application side. Next there's the configuration side. Thisis the one your
fighting with. Here you need to setup the core tables for OJB and you will define the classes you
wish to store in your database.

First thing to do isto build the cvs's with the default database HSQL , because you know it will
work. If you get past this point you should have aworking OJB compiled. Now if your using JDK
1.4 you will need to set in build.properties JDBC=+JDBC30 and do a ant preprocess first. Next
you will do aant junit and thiswill build OJB and test everything for you. If you get a build
successful then your in business. Then you will want to run ant jar to create the OJB jar to put in
your /lib. You will need a couple other jarsin you /lib directory to make it all work. See this page
for those. http://jakarta.apache.org/ojb/deployment.html

Next you will need some xml and configuration filesin your class path for OJB. Y ou will find
those files under {$OJB_base dir} /target/test/ojb. All the repository.xml's and OJB.properties for
sure. With all these filesin place with your application you should be ready to use OJB and start
writing your application.

Finally you will want to setup your connection to your database and define your classes you will be
storing in your database. In the repository.xml file you can configure your JDBC parameters so
OJB can connect to your database. Y ou will also need your JDBC jar somewhere in your class
path. Then you will define your classesin the repository _user.xml file. Look here for examples.
http://jakarta.apache.org/ojb/tutorial 1.html Note you will want to comment out the junit part in
repository.xml because it's just for testing.

Thefinal thing to do isto make sure the OJB core tables are in your database. Look on this page for
the core tables. These core tables are used by OJB to store internal data while it's running. It needs
these. Then there's the tables you define. The ones you mapped in the repository _user.xml file.

Sorry if any of thisis off. OJB isgrowing so fast that it's hard to keep up with al changes. The
order | gavethe stepsin isjust how | would think it's understood better. Y ou can go in any order
you want. The steps I've shown are mostly for deployment. Hope this helps you understand OJB a
little better. I'm not sure if thisis what your wanting or not.

2.3. OJB does not start?

If you carefully attended the installing hints there may be something wrong with your metadata
mapping defined in the repository file or one the included sub files.

« Areyouincluded all configuration filesin classpath?
« Onupdate to anew release, make sure you replaced all configuration files
» Check your metadata mapping - typos,... ?

If something going wrong while OJB read the metadata files you can enable debug log level for
or g. apache. oj b. br oker . met adat a. Reposi t or yXnm Handl er and

or g. apache. oj b. br oker . met adat a. Connect i onDescri pt or Xm Handl er to get
more detailed information.

23

0JB

} If OJB default logging was used, change entries for these classes in OJB.properties file (this may change in future). (

2.4. Does OJB support my RDBM S?

please refer to this document.

2.5. What arethe OJB inter nal tablesfor?

Please refer to this document.

2.6. What does the exception Could not borrow connection from pool mean?

There can be several reasons

2.7. Any tools help to generate the metadata files?

Please refer to this document.

52.1.3.3.0JB APIs

3.1. What arethe differences between the different OJB APIs? Which one should | usein my applications?

The PersistenceBroker (PB) provides aminimal API for transparent persistence:
O/R mapping

Retrieval of objects with asimple query interface from RDBMS

storing (insert, update) of objectsto RDBMS

deleting of objectsfrom RDBMS

Thisisall you need for simple applications asin tutorial 1.

The OJB ODMG implementation uses the PB as its persistence kernel. But it provides much more
functionality to the application developer. ODMG is afull fledged API for Object Persistence,
including:

OQL Query interface

real Object Transactions

A Locking Mechanism for management of concurrent threads (apps) accessing the same objects
predefined persistent capable Collections and Hashtables

Some examples explaining the implications of these functional differences:

1. Say you usethe PB to query an object O that has a collection attribute col with five elements
a,b,c,d,e. Next you delete Objects d and e from col and store O again with
PersistenceBroker.store(O);
PB will store the remaining objects a,b,c. But it will not delete d and e! If you then requery
object O it will again contain a,b,c,d,e!!!
The PB keeps no transactional state of the persistent Objects, thusit does not know that d and e
have to be deleted. (as a side note: deletion of d and e could also be an error, as there might be
references to them from other objects!!!)
Using ODMG for the above scenario will eliminate all trouble: Objects are registered to a
transaction so that on commit of the transaction it knows that d and e do not longer belong to
the collection. the ODMG collection will not delete the objects d and e but only the
REFERENCES from the collection to those objects!

2. Say you have two threads (applications) that try to access and modify the same object O. The

24

0oJB

PB has no means to check whether objects are used by concurrent threads. Thus it has no
locking facilities. You can get all kind of trouble by this situation. The ODMG implementation
has a L ockmanager that is capable of synchronizing concurrent threads. Y ou can even use four
transaction isolation levels:

read-uncommitted, read-committed, repeatable-read, serializable.

In my eyesthe PB is a persistence kernel that can be used to build high-level PersistenceManagers
like an ODMG or JDO implementation. It can also be used to write simple applications, but you
have to do all management things (locking, tracking objects state, object transactions) on your own.
3.2.1 don't like OQL, can | usethe PersistenceBroker Querieswithin ODMG?

Please refer to the ODM G-quide.

3.3. The OJB JDO implementation isnot finished, how can | start using OJB?
| recommend to not use JDO now, but to use the existing ODMG api for the time being.

Migrating to JDO later will be smooth if you follow the following steps. | recommend to first
divide your model layer into Activity- (or Process-) classes and Entity classes.

Entity classes represent classes that must be made persistent at some point intime, say a
"Customer" or a"Order" object. These persistent classes and the repsective O/R mapping in
repository.xml will remain unchanged.

Activities are classes that perform business tasks and work upon entities, e.g. "edit a Customer
entry”, "enter anew Order"... They implement (parts of) use cases.

Activities are driving transactions against the persistent storage.

| recommend to have a Transaction interface that your Activities can use. This Transaction
interface can be implemented by ODMG or by JDO Transactions (which are quite similar). The
implementation should be made configurable to allow to switch from ODMG to JDO later.

The most obvious difference between ODMG and JDO are the query languages. ODMG uses OQL,
JDO define IDOQL. Asan OO developer you won't like both of them. | recommend to use the ojb
Query objects that allow an abstract syntax representation of queries. It is possible to use these
gueries within ODMG transactions and it will also be possible to use them within JDO
Transactions. (thisis contained in the FAQ too).

Using your own Transaction interface in conjunction with the OJB query api will provide asimple
but powerful abstraction of the underlying persistence layer.

We are using this concept to provide an abstract layer above OJB-ODMG, TopLink and LDAP
serversin my company. Making it work with OJB-JDO will be easy!

5.2.1.4. 4. Howto

4.1. How to use OJB with my RDBM S?
please refer to this document.

4.2. How to use OJB in an web app?

If you follow these rules, then OJB works fine in web apps:

o Don't put OJB'sjarsinto one of the servers directories but rather put them into the
VAEB- | NF/ | i b folder of your web app.
e OJB searchesfor its configuration files (QJB. properti es,repository. xm)inthe

25

0JB

classpath. Therefore, it iseasiest if you put them in the \EB- | NF/ cl asses folder whichis
automatically in the classpath of the web app

« Don't hold onto the Per si st enceBr oker instances, rather get one whenever you want to do
something, and close it once you're done.

See deployment doc for more information.

4.3. What arethe best settings for maximal performance?

See performance section.

4.4. How to page and sort?

Sorting can be configured by
or g. apache. oj b. broker. query. Criteria::orderBy(col um_nane).

There is no paging support in OJB. OJB is concerned with Object/Relational mapping and not with
application specific presentation details like presenting a scrollable page of items.

OJB returns query results as Collections or Iterators.

Y ou can easily implement your partial display of result data by using an Iterator as returned by
0j b. br oker. Persi stenceBroker::getlteratorByQuery(...).

4.5. What about performance and memory usage if thousands of objects matching a query arereturned asa
Collection?

Y ou can do two things to enhance performance if you have to process queries that produce
thousands of result objects:

1. Use getlteratorByQuery() rather than getCollectionByQuery(). The returned Iterator islazy and
does not materialize Objects in advance. Objects are only materialized if you call the Iterators
next() method. Thus you have total control about when and how many Objects get materialized!
Please see here for proper handling.

2. You can define Proxy Objects as placeholder for your persistent business objects. Proxys are
lighweight objects that contain only primary key information. Thus their materialization is not
asexpensive as afull object materialization. In your case thiswould result in a collection
containing 1000 lighweight proxies. Materialization of the full objects does only occur if the
objects are accessed directly. Thus you can build similar lazy paging as with the Iterator. Y ou
will find examplesin the OJB test suite (src-distribution only: [db-ojb]/src/test). More info
about Proxy object here.

The Perfomance of 1. will be better than 2. This approach will also work for VERY large resultsets,
as there are no references to result objects that would prevent their garbage collectability.

4.6. When isit helpful to use Proxy Classes?

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can
help you in reducing unneccessary db lookups. Example:

Say you load a ProductGroup object from the db which contains a collection of 15 Article objects.

Without proxies all 15 Article objects are immediately loaded from the db, even if you are not
interested in them but just want to lookup the description-attribute of the ProductGroup object.

With a proxy class, the collection isfilled with 15 proxy objects, that implement the same interface
asthe "real objects" but contain only an OID and avoid reference.

Once you access such a proxy object it loadsits "real subject" by OID and delegates the method

26

cal to it.
have alook at section proxy usage of page basic technique.

4.7. How can | convert data between RDBM S and OJB?

For Example | have aDB column of type INTEGER but a class atribute of type boolean. How can |
provide an automatic mapping with OJB?

OJB provides a concept of ConversionStrategies that can be used for such conversion tasks. Have a
look at the respective document.

4.8. How can | trace and/or profile SQL statements executed by OJB?

OJB ships with out of the box support for P6Spy. P6Spy isa JDBC proxy which delegates all
JDBC callsto thereal JDBC driver and traces al callsto alog file.

P6Spy is contained in the p6spy.jar, which you'll find inthel i b folder of your OJB distribution.
Add this to the classpath of your app (if you're using the ojb-blank project, then simply copy the jar
intothel i b folder of the project and if you're using Eclipse then also add it to the project build
path).

Now the only other thing left is to configure OJB to use P6Spy, and P6Spy to use your database's
driver. To achieve this, change the database driver in your j dbc- connect i on- descri pt or
(in'your repository file) to

In oj b- bl ank this setting ischanged inthe bui | d. properti es instead.

Also copy thefilespy. pr operti es which can be found in the

src/test/org/ apache/ oj b folder into your classpath (e.g. in the same place where your
QIB. properti es fileis). Inthisfileyou'll find aline starting withr eal dri ver whereyou
should put the name of the jdbc driver of your database, e.g.

realdriver=org. hsql db.jdbcDriver ...
Also, here you can influence to where P6Spy will output the SQL statements. The appender defines
how the logging is performed, e.g. to the console or to afile. Thel ogf i | e setting definesinto
which file the statements will be printed (when afile appender is used). For instance, these settings
will writeto afilespy. | 0g:

That's all thereisto it, no recompile or other change of your app is necessary. Btw, P6Spy also
measures the time needed to execute each statement!

4.9. How does OJB manage foreign keys?

Automatically! you just define 1:1, 1:n or m:n associations in the repository_user.xml file. OJB
does therest!

Please refer to basic technigue and xml-metadata repository for details.

0JB

4.10. How does OJB manage 'null’ for primitive primary key?

Primitive values (int, long, ...) can't benul | , so OJB interpret '0' asnul | for primitive PK/FK
fieldsin persistent objects. Thus primitive PK fields of persistent objects should never be
represented by a'0' value in DB and never used as a sequence key value.

Thisisonly true for primitive PK/FK fields (e.g. | nt eger (0) isallowed). All other fields have
'normal’ behavior.

4.11. How to lookup object by primary key?
Please see PB tutorial section.

4.12. Differ ence between getlterator ByQuery() and getCollectionByQuery()?

Thefirst onereturnsan or g. apache. oj b. br oker. QJBI t er at or instance. The returned
Iterator instance is lazy and does not materialize Objects in advance. Objects are only materialized
from the underlying query result set if you call the Iterators next() method. If al objects
materialized or the calling or g. apache. oj b. br oker . Per si st enceBr oker instance was
closed or transaction demarcations ends the Iterator instance release al used resources (e.g. used
Statement and ResultSet instances).

Method get Col | ecti onByQuer y() usean Iterator to materialize al objectsfirst and then
return the materialized objectswithinthej ava. uti | . Col | ecti on instance.

If method get | t er at or ByQuer y() was used keep in mind that the used Iterator instanceis only valid aslong as the used
or g. apache. oj b. br oker. Per si st enceBr oker instance ends transaction or be closed. So it isNOT possible to get an
Iterator, close the PersistenceBroker and pass the Iterator instance to a servlet or client. In that case use

get Col | ecti onByQuery().

4.13. How can Collections of primitive typed elements be mapped?

Thefirst thing to ask is: How are these primitive typed elements (Strings are also treated as
primitive types here) stored in the database.

1) are they treated as ordinary domain objects and stored in a separate table?

2) are they serialized into aVarchar field?

3) are they stored as a comma separated varchar field?

4) is each element of the vector or array stored in a separate column? (this solution does only work
for afixed number of elements!)

Follow these steps for solution 3):

a) simply define ordinary collection-descriptors as for every other collection of domain objects.
b) use the Object2ByteArrFieldConversion. See jdbc-types.html for details on conversion
strategies.

¢) use the StringV ector2V archarFieldConversion. See jdbc-types.html for details on conversion
strategies.

d) provide afield-descriptor for each element.

4.14. How could class'myClass represent a collection of 'myClass objects

OJB can handle such recursive associations without problems.

« add acollection attribute 'myClasses' to the classmyCl ass this collection will hold the
associated ny Cl ass objects.

« you haveto decide wether this assosciation is 1:n or m:n.
for 1:n you just need an additional foreignkey attributeinthe MY _CLASS table. Of course

28

you'll also need a matching attribute in the classnyCl ass.

For am:n association you'll have to define aintermediary table to hold the mapping entries.
defineacol | ecti on-descri ptor taginthecl ass-descri ptor of nyCd ass in
repository.xml. Follow the steps in basic technique on 1:n and m:n.

4.15. How to lookup PersistenceBroker instances?

Please refer to PB-guide.

4.16. How to access ODM G?
Please refer to ODM G-quide.

4.17. Needed to put user/password of database connection in repository file?

There is no need to put user/password in the repository file (more exact in the
j dbc- connecti on-descri ptor). You can passthisinformation at runtime. See Many
different database user - How do they login?.

Only if you want to use convenience Per si st enceBr oker lookup method of

Per si st enceBr oker Fact or y, OJB needs all database connection information in the
configuration files. More details see repository file doc - section jdbc-connection-descriptor
def aul t - connect i on attribute

See [ookup PB api.
See lookup ODMG api.

4.18. Many different database user - How do they login?

There are two waysto do that. Define for each user aj dbc- connecti on- descri pt or
(unattractive way, because we have to add each new user to repository file), or let OJB handle this
for you.

For it defineonej dbc- connecti on- descri pt or, now you can usethesamej cdAl i as
name with different User / Passwor d. OJB copy the defined

j dbc- connecti on-descri pt or andreplacetheuser nane and passwor d with the given
User / Passwor d.

PersistenceBroker-api example:

ODMG-api example:

Keep in mind, whentheconnect i on- pool element enables connection pooling, every user get
its separate pool. See How does OJB handle connection pooling?.

0oJB

4.19. How do | use multiple databases within OJB?

Define for each database aj dbc- connecti on- descri pt or, usethedifferentj cdAl i as
names in the repositry file to match the according database.

Specific notes related to the PB-api_here.
Specific notes related to the ODM G-api_here.

OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

4.20. How does OJB handle connection pooling?

Please have alook in section Connection Handling.

4.21. Can | directly obtain a java.sgl.Connection within OJB?

Please have alook in section Connection Handling.

4.22. |sit possible to perform my own sql-queriesin OJB?

There are serveral waysin OJB to do that.

If you completely want to bypass the OJBquery-api see Can | directly obtain ajava.sgl.Connection
within OJB?.

A more elegant way isto use a Quer yBy SQL object:

4.23. When does OJB open/close a connection?

Please see Connection handling guide.

4.24. Start OJB without arepository file?
See section Metadata Handling.

4.25. Connect to database at runtime?

30

See section M etadata Handling.

4.26. Hook into OJB - How to add Listener, callback interface?
See Listener/Callback section in PB-Guide.

4.27. Add new persistent objects metadata (class-descriptor) at runtime?
See section Metadata Handling.

4.28. Global metadata changes at runtime?

Please see section M etadata Handling.

4.29. Per thread metadata changes at runtime?
Please see section Metadata Handling.

4.30. Isit possible to use OJB within EJB'S?

Y es, see deployment instructions in the docs. Additional you can find some EJB example beansin
packageor g. apache. oj b. ej bunder [j akart a-oj b]/src/ ej b.

4.31. Can OJB handleternary (or higher) associations?

Yes, that's possible. Here is an example. With aternary relationship there are three (or more)
entities 'related’ to each other. An example would be Devel oper , Language and Pr oj ect .

Each entity is mapped to one table (DEVEL OPER, LANGUAGE and PRQJECT). To represent the
combinations of these entities we need an additional bridge table (

PRQJECTRELATI ONSHI P)with three columns holding the foreign keys to the other three tables
(just like an m:n association is represented by an intermediary table with 2 columns).

To handle this table with OJB we have to define aclass that is mapped on it. This Relationship
class can then be used to perform queries/updates as with any other persistent class. Hereisthe
layout of this class:

Here is the respective extract from the repository :

Here is some sample code for storing arelationship :

In the next code sample we are looking up all Projects that Developer "Bob" has donein "Java'.

Y ou could aso have on the Project class-descriptor acol | ect i on-descri pt or that returns
all relationships associated with the Project. If it was call "projectRelationships’ the following
would give you all projects that have a relationship with "bob" and the language "java’.

0oJB

Thisisthe layout of the Project class:

Thisisthe class-descriptor of the Project class:

4.32. How to map alist of Strings

Y ou can not map alist of Strings with a collection descriptor. A collection descriptor can only be
used if the element class is a persistent class too. But element-class-ref="java.lang.String" won't
work, because it's no persistent entity class!

Follow these steps to provide a mapping for an attribute holding alist of Strings. Let's assume your
persistent class has an attribute | i st OF St ri ngs holding alist of Strings:

The database table mapped to the persistent class hasacolum LI ST_OF _STRI NGS of type
VARCHAR that is used to hold all strings.

4.33. How to set up Optimistic L ocking

Please see |ocking section.

4.34. How to use OJB in a cluster

Q: I'm running aweb site in aload-balanced/cluster environment. Multiple serviet engines
(different VMS/HTTP sessions), each running an OJB instance, against a single shared database.
How should OJB be configured to get the concurrent servlet engines synchronized properly?

0JB

transactional isolation and locking

If you are using the PersistenceBroker API use optimistic locking (OL) to let OJB handle write
conflicts. To use OL definea TIMESTAMP or INTEGER column and the respective Java attribute
for it. In the field-descriptor of this attribute set the attribute locking="true".

If you are working with the ODMG API distributed pessemistic |ocking should be used, by setting
the respective flag in OJB.properties.

sequence numbers
Use a SequenceM anager that is safe across multiple VMs. The NextVal based SequenceManagers
or any other SequenceManager based on database mechanisms will be fine.

caching

Y ou could use different caching implementations

1. Usethe EmptyCachelmpl to avoid any dirty reads. (But: The EmptyCache cannot handle cyclic
structures on load!)

2. Usethe PerBrokerCache Implementation to avoid dirty reads.
3. Usethe OSCache cache implementation as distributed object cache.

Thereis aso acomplete howto document available that covers these topics.

4.35. How to turn of caching?

Declare an no-op implementation of the Cbj ect Cache interface as cache. See detailed
description here.

4.36. JDO - Why must my persisten classimplement javax.jdo.spi.Per sistenceCapable?

As specified by JDO all persistent classe must implement the interface

j avax. j do. spi . Per si st enceCapabl e. If aclass does not implement thisinterface a JDO
implementation does not know how to handle it.

On the other hand the JDO spec claims to provide transaparent persistence. That is no persistence
classisrequired to implement a specific interface or to be derived from a special base class.
Sounds like a contradiction? It is! The JDO spec resolves this contradiction by stating that a JDO
implemention is responsible to add the methods required by

j avax. j do. spi . Per si st enceCapabl e to the the user classes. This"injection” could be
achieved by Pre- or Post-processing. The strategy most implementations useis called
"bytecode-enhancement”. Thisis a postprocesing step that adds the required methods to the .class
files of the persistent user classes.

The JDO Reference implementation also uses bytecode-enhancement. In order to enhance the
Product classto implement thej avax. j do. spi . Per si st enceCapabl e interface use the
ant target "enhance-jdori" before launching the tutorial5 application. Thisis documentated in the
first section of tutorial4.html.

5.3. Getting Started

This document will guide you through the very first steps of setting up a project with OJB. To
make this easier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. You can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for asimple
application that handles products and uses MySQL. Thisis continued later on in the next tutorial

parts.

5.3.1. Acquiring oj b-blank

34

First off, OJB uses Ant to build, so pleaseinstall it prior to using OJB. In addition, please make
sure that the environment variables ANT__HOVE and JAVA _HOVE are correctly set to the top-level
folders of your Ant distribution and your JDK installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. Y ou can also start with the source
distribution rather than the binary as the unit tests provide excellent sample code and you can build
the ojb-blank project on your own with it.

The ojb-blank project contains all libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See here for alist of
additional libraries.

Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use
the embedded Hsgldb database for which the ojb-blank project is pre-configured (including all
necessary jars).

5.3.2. Contents of ojb-blank

Copy the o) b- bl ank. j ar fileto your project directory and unpack it viathe command

Thiswill unpack it into the o] b- bl ank directory under wherever you unpacked it from. Y ou can
move things out of that directory into your project directory, or, more simply, rename the

oj b- bl ank directory to be whatever you want your project directory to be named.

After you unpacked the jar, you'll get the following directory layout:

Here's aquick rundown on what the individual directories and files are:

.classpath, .project

An Eclipse project for your convenience. You can simply import it into Eclipse via File
-> Import... -> Existing Project into Workspace.

build.xml, build.properties

The Ant build script and the build properties. These are described in more detail below.
lib

Contains the libraries necessary to compile and run your project. If you want to use a
different database than Hsqgldb, then put the jars of your jdbc driver in here.

src/java

Put your java source code here.

src/resources

Contains the runtime configuration files for OJB. For more detail see below.
src/schema

Here you will find a schema containing tables that are required by certain components
of OJB such as clustered locking and OJB managed sequences. More information on
these tables is available in the platform documentation. The schema is in a
database-independent format that can be used by Torque or commons-sql to create
the database.

0JB

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build
target that can be invoked on your schema (see below for details). Therefore, this
directory also contains the build script of Torque, but you won't need to invoke it
directly.

src/java

Place your unit tests in here.

5.3.2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
pr oduct manager .

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver, whichis called
something likemysqgl - connect or - j ava- [ver si on] - st abl e-bi n.jar,intothel i b
subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing
with, we will silently assume that it is already present inthe sr ¢/ j ava subdirectory.

If you don't want to write the code yourself, you can use the code from one of the tutorials which
you can download here.

Note that if you do not intent to use JDO, then you should delete thefilesinthe oj b. apache. oj b. t ut ori al 5, otherwise you'll
get compilation errors.

5.3.3. Thebuild files

5.3.3.1. Configuration via build.properties

The next step isto adapt the build files, especially thebui | d. properti es fileto your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably need to
be adapted to suit your needs:

jcdAlias The name of the connection. You should leave
the default value, which is def aul t .

databaseName This is the name of the database, per default
oj b_bl ank.
databaseUser The user name for accessing the database

(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.
dbmsName The type of database, which is one of the
following:

Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL ,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.

Please note that this setting is case-sensitive.
Per default, Hsgldb is used, which is an

36

0oJB

embedded database. All files required for this
database come with the ojb-blank project.

jdbcRuntimeDriver The fully-qualified classname of the jdbc driver.
For Hsqldb this is or g. hsql db. j dbcDri ver.

jdbcLevel The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.
For the Hsqldb jdbc driver this is 2.0.

urlProtocol The protocol of the database url (see below),
usually j dbc.

urlSubprotocol The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsql db.

urlDbalias This is the address that points the jdbc driver to

the database. For Hsqldb this is per default the
database name.

torque.database If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbmsNane which defines the database for OJB.
Currently, these values are defined:
axion, cloudscape, db2, db2400, hypersonic
(which is Hsgldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.
Default value is hyper soni c for use with
Hsqldb.

torque.database.createUrl This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database looks like, then you can derive the
settingsdat abaseNane, dat abaseNane, dat abaseNane and dat abaseNane easily:
Assumethisurl isgiven as.

then these properties are

databaseName nmyDat abase

urlProtocol j dbc

urlSubprotocol nmysql

urlDbalias /1l ocal host/ nmyDat abase

5.3.3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the actions that
you can perform using the Ant build filebui | d. xm :

37

clean Cleans up all files from the previous build.

compile Compiles your java source files to
bui | d/ cl asses. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the bui | d. properti es file, most
notably the r eposi t ory_dat abase. xni
which will be located in the bui | d/ r esour ces
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torque homepage.

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Pr oduct
class from the JDO tutorial (tutorial 5).

So, atypical build would be achieved with this Ant call:
ant buitd

If you want to create the database as well, and you have javadoc comments in your source code that
describe the repository, then you would call Ant thisway:

ant build setup-¢gb
Thiswill perform in that order the actionsbui | d, xdocl et (invoked automatically from the next
action) and set up- db.

Of course, you do not need to use Torque to setup your database, but it is a convenient way to do
0.

5.3.3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to setup
the database):

jcdAlias We leave the default value of def aul t .

databaseName Since the application manages products, we call

0oJB

the database pr oduct manager .

databaseUser This depends on your setup. For the purposes of
this guide, let's call him st eve.

databasePassword Again depending on your setup. How about
secr et (you know that you should not use this
password in reality ?!).

dbmsName My SQL

jdbcRuntimeDriver Its called com nysql . j dbc. Dri ver.
jdbcLevel For the newer Mysql drivers this is 3.0.
urlProtocol The default of j dbc will do.

urlSubprotocol For MySQL, we're using nysql .

urlDbalias Assuming that the database runs locally on the

default port, we have
/11 ocal host/ ${ dat abaseNane} .

torque.database We want to use Torque, so we put mysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${url Protocol }: ${url SubProtocol }://I ocal host/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. Thebui | d. properti es file now looks
like this (the comments have been removed for brevity):

Looks like we're ready for building. Again, we're assuming that the source code is already present.
So we're invoking Ant now in the top-level folder pr oduct manager :

39

0oJB

which should (assuming five java classes) produce an output like this

eration

That wasiit. You now have your database setup properly. Go on, have alook:

There, all tables for your project, aswell as the tables required for some OJB functionality which
we also used in the above process (you can recognize them by their names which start with oj b).

5.3.4. The runtime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files
used by OJB. There are basically three sets of configuration that need to be provided: configuration
of the OJB runtime, description of the database connection, and description of the repository.

5.3.4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logaing.properties (both located insr ¢/ r esour ces), you
configure and finetune the runtime aspects of OJB. For a simple application you'll probably won't
have to change anything in them, though.

5.3.4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors. These are usually defined in afilecalled r eposi t ory_dat abase. xm (located in
src/ resour ces). In the ojb-blank project, the build file will setup thisfile for you and place it
inthebui | d/ r esour ces directory.

5.3.4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java classes
are mapped in what way to which database tables, and it istypically contained in the

reposi tory_user. xm file. Thisisthe most complicated configuration part which will be
explained in much more detail in the rest of the tutorials.

An convenient way of creating the repository metadatais to use the XDoclet OJB module.
Basically, you put specific Javadoc comments into your source code, which are then processed by
the build file (xdocl et and set up- db targets) and the repository metadata and the database
schema are generated.

5.3.4.4. Sample project

Actualy, there is not much to do here. For our simple sample application the default properties of

OJB work just fine, so we leave QJB. pr operti es and QJB- | oggi ng. properties
untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB
module and Torque to generate the repository metadata and database for us. For instance, the
processed connection descriptor (filebui | d/ r esour ces/ reposi t ory_dat abase. xni)
looks like this:

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (filebui | d/ r esour ces/ reposi tory_user. xm) startslike:

Now you should be able to run your application:

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add
al jarsfromthel i b folder except the onesfor Torque (t or que-[versi on] . j ar,

vel ocity-[version].jar andconmons-col | ecti ons-[version].jar)andforthe
XDoclet OJB module (xdocl et -[versi on] .| ar,Xxj avadoc-[version].jar and
xdocl et - o] b- nodul e-[version].jar).

It isimportant to note that OJB per default assumesthe QIB. pr operti es and

QJB- 1 oggi ng. properti es filesin the directory where you're starting the application. Hence,
we changed to the bui | d/ r esour ces directory before running the application. This of course
requires the compiled classes to be on the classpath, as well (directory bui | d/ cl asses).

Per default, the same applies to the other configuration files (r eposi t or y*. xm) but you can
changethisinthe QJB. pr operti es file.

5.3.5.Learning More

After you've have learned about building and configuring projects that use OJB, you should check
out the tutorials to learn how to specify your persistent classes and how to use OJB's APIsto
perform database operations. The Mapping Tutorial in particular shows you how to map your
classesto tablesin an RDBMS.

5.4. Tutorials

5.4.1. Tutorial Summary

Summary of all OJB tutorials.

» Object-Relational Mapping
The Object-Relational Mapping tutorial walks though a basic metadata mapping for an object to
arelational database.
The Persistence Broker API
The PB tutorial demonstrates how to use the Per si st enceBr oker API which formsan
object persistence kernel for OJB. Whileit isthe lowest level API provided by OJB itisaso
exceptionally easy to use.
e TheODMG API
The ODMG API tutorial steps though using the ODMG 3.0 API provided by OJB. Thisisan
industry standard API designed for Object Databases.
« TheJDO API
JDO isastandard API for accessing persistent objectsin Java. Thistutorial steps through how
to use OJB's IDO plugin.
e The Object Transaction Manager
The OTM is OJB's implementation of object level transactions. These are transactions
independent of the underlying relational database providing more efficient resource utilisation

and extremely flexible locking semantics.

Further strongly recommended documentation for all beginners:

e OJB Queries

This document explains the usage of the query syntax.

Basic O/R Technique

Thistutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n
relations, the auto-xxx settings for references and proxy objects/collections.

Toolsto build large metadata mappings

Explains how to build large metadata mapping and present useful tools.

5.4.2. Mapping Tutorial

5.4.2.1. What isthe Object-Relational Mapping M etadata?

The O/R mapping metadata is the specific configuration information that specifies how to map
classesto relational tables. In OJB thisis primarily accomplished through an xml document, the
repository. xm file, which containsall of theinitial mapping information.

The Product Class

Thistutorial looks at mapping a simple class with no relations:

Thisclass hasthreefields, pri ce, stock, and nane, that need to be mapped to the database.
Additionally, we will introduce one artificial field used by the database that has no real meaning to
the class, an artificial key primary id:

Including the primary-key attribute in the class definition is mandatory, but under certain
conditions anonymous keys can also be used to keep this database artifact hidden in the database.

However, as access to an artifical unique identifier for a particular object instance can be useful,
particularly in web-based applications, this tutorial will expose it

The Database

OJB isvery flexible in terms of how it can map classes to database tables, however the simplest
technique for mapping asingle classto arelational database isto map the classto asingle table,
and each attribute on the class to a single column. Each row will then represent a unique instance of
that class.

The DDL for such atable, for the Pr oduct class might look like:

The individual field namesin the database and class definition match here, but thisis no
requirement. They may vary independently of each other as the metadata will specify what maps to
what.

The Metadata

Ther eposi tory. xm document is split into several physical documents. The
repository_user. xm xmlfileisused to contain user-defined mappings. OJB uses the other
ones for managing other metadata, such as database information.

In general each class will be defined withinacl ass- descri pt or element with

fiel d-descri pt oy child elementsfor each field. In addition the mapping of references and
collections is described in the basic technique section. Thistutorial sticks to mapping asingle,
simplistic, class.

The complete mapping for the Pr oduct classisasfollows:

Examinethecl ass- descri pt or element. It has two attributes:

« class- Thisattribute is used to specify the fully-qualified Java class name for this mapping.
« table - Thisattribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified in the
repository.xml documentation.

Examine now thefirstfi el d- descri pt or element. Thisisused to describethei d field of the
Pr oduct class. Two required attributes are specified:

« name - This specifies the name of the instance variable in the Java class.
« column - This specifies the column in the table specified for this class used to store the value.

In addition to those required attributes, notice that the first element specifies two optional

0oJB

attributes:

» primary-key - This attribute specifies that thisfield is the primary key for this class.

e autoincrement - Theaut oi ncr enent attribute specifies that the value will be automatically
assigned by OJB sequence manager. This might use a database supplied sequence, or, by
default, an OJB generated value.

Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the
corresponding table schema easier. An XDoclet module basically processes custom JavaDoc tagsin
the source code, and generates files from them. In the case of OJB, two types of files can be
generated: the repository descriptor (r eposi t ory_user . xm) and a Torque schemawhich can
be used to create the tables in the database. This provides one important benefit: the descriptor and
the database schema are much more likely in sync with the code thus avoiding errors that are
usually hard to find. Furthermore, the XDoclet module contains some checks that find common
mapping errors.

In the above example, the source code for Product class with JavaDoc tags would look like:

Asyou can see, much of the stuff that is present in the descriptor (and the DDL) is generated
automatically by the XDoclet module, e.g. the table/column names and the jdbc-types. Of course,
you can also specify them in the JavaDoc tags, e.g. if they differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see the
0OJB XDaoclet Module documentation.

46

0oJB

5.4.2.2. Advanced Topics

Relations

As most object models have relationships between objects, mapping specific types of relationships
(2:1, 2:Many, Many:Many) isimportant in mapping objects into arelational database. The basic
technique tutorial discussesthisin great detail.

It isimportant to note that this metadata mapping can be modified at runtime through the
org. apache. oj b. net adat a. Met adat aManager class.

Inheritence

OJB can map inheritence hierarchies using avariety of techniques discussed in the Extents and
Polymorphism section of the Advanced O/R Documentation

Anonymous Keys

Thistutorial uses explicit keys mapped into the Java class. It is also possible to keep artificial keys
completely hidden within the database. The Anonymous Keys HOWTO explains how thisis
accomplished.

Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many projects
can have hundreds, or even thousands, of distinct classes which must be mapped. In these
circumstances managing the class-database mapping by hand is not viable. The How To Build

M appings HOWTO explores different tools which can be used for managing large-scale mapping.

Custom JDBC Mapping

0OJB maps Java typesto JDBC types according to the JDBC Typestable. Y ou can, however, define
custom JDBC -> Java type mappings via custom field conversions.

5.4.3. Persistence Broker Tutorial
5.4.3.1. The PersistenceBroker API

Introduction

The PersistenceBroker API provides the lowest level access to OJB's persistence engine. Whileit is
alow-level API compared to the OTM, ODMG, or JDO API'sit is till very straightforward to use.

The core classin the PersistenceBroker APl isthe
or g. apache. oj b. br oker . Per si st enceBr oker class. This class provides the point of
access for all persistence operationsin this API.

More detailed information can be found in the PB-guide and in the other reference guides.

Thistutorial operates on a simple example class:

a7

The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for all tutorialsis available in the seperatet ut or i al s- src. j ar whichyou
can download here. If you're eager to try them out, you can use them with the ojb-blank project
which can be downloaded from the same place. It is described in the Getting started section.

Further information about the OJB PB-api implementation can be found in the PB guide.

A First Look - Persisting New Objects

The most basic operation is to persist an object. Thisis handled very easily by just

obtaining aPer si st enceBr oker

begin the PB-transaction

storing the object viathe Per si st enceBr oker
commit transaction

. closing the Per si st enceBr oker

For example, the following function stores a single object of type Pr oduct .

abrwbdE

Two OJB classes are used here, the Per si st enceBr oker Fact ory and the

Per si st enceBr oker . ThePer si st enceBr oker Fact or y class manages the lifecycles of
Per si st enceBr oker instances: it creates them, pools them, and destroys them as needed. The
exact behavior is very configurable.

In this case we used the static

Per si st enceBr oker Fact ory. def aul t Per si st enceBr oker () method to obtain an
instance of aPer si st enceBr oker to the default data source. Thisis most often how it is used
if thereis only one database for an application. If there are multiple data sources, a broker may be
obtained by name (using a PBKey instance as argument in

Per si st enceBr oker Fact ory. cr eat ePer si st enceBr oker (pbKey)).

It isworth noting that the br oker . cl ose() call ismadewithinafinally {...} block.
This ensures that the broker will be closed, and returned to the broker pool, even if the function
throws an exception.

To use this function, we just create a Pr oduct and passit to the function:

OnceaPer si st enceBr oker has been obtained, its
Per si st enceBr oker . st or e(Obj ect) method is used to make an object persistent.

Maybe you have noticed that there has not been an assignment to pr oduct . i d, the primary-key
attribute. Upon storing pr oduct OJB detects that the attribute is not properly set and assigns a
unique id. This automatic assignment of unique Idsfor the attribute i d has been explicitly declared
in the XML repository file, as we discussed in the .

If several objects need to be stored, this can be done within atransaction, as follows.

This contrived example stores all of the passed Product instances within a single transaction via the
Per si st enceBr oker . begi nTransacti on() and

Per si st enceBr oker. comm t Transacti on() . These are database level transactions, not
object level transactions.

Querying Persistent Objects

Once objects have been stored to the database, it isimportant to be able to get them back. The
PersistenceBroker API provides two mechanisms for building queries, by using a template object,
or by using specific criteria.

Thisfunction findsaPr oduct by building a query against atemplate Pr oduct . The template
should have any properties set which should be matched by the query. Building on the previous
example where a product was stored, we can now query for that same product:

In the above code snippet, pr oduct and samePr oduct will reference the same object
(assuming there are no additional products in the database with the name " Sprocket™).

The template Pr oduct has only one of its properties set, the nane property. The others are all
null. Properties with null values are not used to match.

An alternate, and more flexible, way to have specified a query viathe PersistenceBroker APl is by
constructing the criteria on the query by hand. The following function does this.

Thisfunction buildsaCri t er i a object and usesit to set more complex query parameters - in this
case greater-than and less-than contraints. Looking at the first constraint put on the criteria,
criteria.addLessO Equal Than("stock", new I nteger(10)); noticethe
arguments. The first is the property name on the object being queried for. The second is an

| nt eger instance to be used for the comparison.

AftertheCri t eri a hasbeen built, the Quer yByCri t er i a constructor used is also different
from the previous example. In this case the criteria does not know the type of the object it is being
used against, so the Cl ass must be specified to the query.

Finally, notice that this example uses the

0oJB

Per si st enceBr oker . get Col | ecti onByQuery(...) method instead of the

Per si st enceBr oker . get Obj ect ByQuery(...) method used previously. Thisis used
because we want all of the results. Either form can be used with either method of constructing
gueries. In the case of the Per si st enceBr oker . get Obj ect ByQuery(...) stylequery,
the first matching object is returned, even if there are multiple matching objects.

Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent
objects. The same Per si st enceBr oker . st or e(Obj ect) method is used to store a
modified object as to insert a new one - the difference between new and modified objectsis
irrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of
SQL inserts and updates. Basically, OJB will insert a new object into the relationa storeif the
primary key, as specified in the O/R metadatais not in use. If itisin use, it will update the existing
object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has
been newly created and made persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the object, so
the typical update cycle, unless the application caches objects, isto query for the object to modify,
modify the object, and then store the object. The following function demonstrates this behavior by
"selling" a Product.

This function uses the same query-by-template and Per si st enceBr oker . store() APl's
examined previously, but it uses the store method to store changes to the object it retrieved. It is
worth noting that the entire operation took place within atransaction.

51

Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished viathe
Per si st enceBr oker . del et e() method. Thisremoves the persistent object from the
repository, but does not affect any change on the object itself. For example:

This method simply deletes an object from the database.

Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary keys) of
an object are known. In OJB you have several ways to request the whole object. It is possible to
build a query as shown above, but the smarter solution isto use

Per si st enceBr oker #get Qbj ect Byl dentity(ldentity oid).An]ldentity objectisa
unique representation of a persistence capable object based on the object primary key values and
the top-level class (abstract class, interface or the class itself, depending on the extent metadata

mapping).
For example, to find an Product with an single primary key of '23' do

5.4.3.2. Exception Handling

Most Per si st enceBr oker operationsthrow a

or g. apache. oj b. br oker . Per si st enceBr oker Except i on, which isderived from

j ava. | ang. Runt i meExcept i on if an error occurs. This means that no try/catch block is
required but does not mean that it should not be used. This tutorial specifically does not catch
exceptions all in order to focus more tightly on the specifics of the API, however, best usage would
be to include atry/catch/finally block around persistence operations using the PeristenceBroker
API.

Additionally, the closing of Per si st enceBr oker instancesisbest handledinfi nal | y blocks
in order to guarantee that it isrun, even if an exception occurs. If the

Per si st enceBr oker . cl ose() isnot caled then the application will leak broker instances.
The best way to ensure that it is always called is to always retrieve and use

Per si st enceBr oker instanceswithinatry {...} block, and always close the broker in a
finally {...} block attachedtothetry {...} block.

A better designed get Expensi veLowSt ockPr oduct s() method is presented here.

Noticefirst that the Per si st enceBr oker isretrieved and used within the confinesof at ry
{...} block. Assuming nothing goes wrong the entire operation will execute there, all the way to
thereturn results; line. Javaguaranteesthatfinally {...} blockswill becaled
before a method returns, so the br oker . cl ose() method isonly included once, in the

final | y block. Asan exception may have occured while attempting to retrieve the broker, a
not-null test isfirst performed before closing the broker.

5.4.4. The ODMG API

5.4.4.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level APl and query language based interface over the PersistenceBroker API.

More detailed information can be found in the ODM G-guide and in the other reference guides.

Thistutorial operates on a simple example class:

The metadata descriptor for mapping this classis described in the mapping tutorial

When using 1:1, 1:n and m:n references (the example doesn't use it) the ODM G-api need specific
metadata settings on relationship definition, the mandatory settings are listed in the ODM G-Guide -
additional info see auto-xxx settings and repository file settings.

Aswith the other tutorials, the source code for this tutorial is contained in the

tutorial s-src.jar whichcan bedownloaded here. The source files are contained in the

or g/ apache/ oj b/ tutori al 2/ directory.

You can try it out with the ojb-blank project which can be downloaded from the same place and is
described in the Getting started section.

Further information about the OJB odmg-api implementation can be found in the ODM G guide.

5.4.4.2. Initializing ODM G

The ODMG implementation needs to have a database opened for it to access. Thisis accomplished
viathe following code:

With method call QJB. get | nst ance() awaysanew org.odmg.lmplementation instance will

be created and odny. newDat abase() returnsanew Dat abase instance.

Cal db. open(...) opensan ODMG Dat abase using the name specified in metadata for the
database -- "default" in this case. Notice the Dat abase isopened in read/write mode. It is possible
to open it in read-only or write-only modes as well.

Onceal npl enment at i on instance is created and a Dat abase has been opened it isavailable
for use. Unlike Per si st enceBr oker instances, ODMG | npl enent at i on and Dat abase
instances are threadsafe and can typically be used for the entire lifecycle of an application. Thereis
no need to call the Dat abase. cl ose() method until the database is truly no longer needed.

TheQJB. get | nst ance() function providesthe ODMG | npl enent at i on instance required
for using the ODMG API. From here on out it is straight ODMG code that should work against any
compliant ODMG implementation.

5.4.4.3. Persisting New Objects

Persisting an object viathe ODMG API is handled by writing it to the peristence store within the
context of atransaction:

Once the ODM G implementation has been obtained it is used to begin atransaction, obtain awrite
lock on the Pr oduct , and commit the transaction. It is very important to note that all changes

need to be made within transactions in the ODMG API. When the transaction is committed the
changes are made to the database. Until the transaction is committed the database is unaware of any
changes -- they exist solely in the object model.

5.4.4.4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL
isvery similar to SQL, and using it is very similar to use JDBC. The ODMG implementation is
used to create a query, the query is specifed, executed, and alist fo resultsis returned:

5.4.4.5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

The sample code obtains a write lock on the object (befor e the changes are made), binding it to the
transaction, changes the object, and commits the transaction. The newly modified Pr oduct now
hasanew st ock value.

5.4.4.6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Dat abase which contains the
persistent object. This can be obtained from the ODMG | npl enent at i on by asking for it. Once
retrieved, just ask the Dat abase to delete the object. Once again, thisis all done in the context of
atransaction.

It isimportant to note that the Dat abase. del et ePer sti ent () call does not delete the object
itself, just the persistent representation of it. The transient object still exists and can be used
however desired -- it issimply no longer persistent.

5.4.5. JDO Tutorial
5.4.5.1. Using the ObJectRelationalBridge JDO API

Introduction

This document demonstrates how to use ObjectRelational Bridge and the JDO API in asimple
application scenario. The tutorial application implements a product catalog database with some
basic use cases. The source code for the tutorial application is shipped in the

tutorial s-src.jar which can be downloaded here. The source for thistutorial isfound in the
directory or g/ apache/ oj b/ tutori al 5.

This document is not meant as a complete introduction to JDO. For more information see: Sun's
JDO site.

OJB does not provideit's own JDO implementation yet. A full IDO implementation is in the scope of the 2.0 release.
For the time being we provide a plugin to the JIDO reference implementation called G bSt or e. The G bSt or e plugin residesin the
package or g. apache. oj b. j dori . sql .

Running the Tutorial Application

To install and run the demo application with the oj b- bl ank sample project (which is described
in more detail here) please follow the following steps:

1. Extractthetutori al -src.jar that you downloaded from hereinto thesr c/ j ava
subdirectory of the oj b- bl ank project.
The JDO tutorial source files are contained inthe or g/ apache/ oj b/ tutorial 5
subdirectory, and you can safely erase the subdirectories of the other tutorials.
2. Download the JDO Reference Implementation from Sun's JDO site.
Extract the archiv to alocal directory and copy thefiles:
e jdori.jar
e jdo.jar
intothel i b directory of the project.

3. Now you can run the test application with these commands:
from t!e top‘ ev! project !lrectory. T!e 'atter of t!ese comman!s WI” en!ance t!e j!o tutorl!
classes. Note that due to some limitations in the JDO reference implementation, the ant target
will only work for the JDO tutorial, so if you want to create you own JDO application using the
ojb-blank project, you have to adapt the build file accordingly.
To setup the test database you can issue this command

4. Now you can start the tutorial application by executing

> ﬁ
[e2]

0oJB

from the project toplevel directory.

5.4.5.2. Using the JDO API in the UseCase | mplementations

As shown here OJB supports four different API's. The PersistenceBroker, the OTM layer, the
ODMG implementation, and the JDO implementation.

The PB tutoria implemented the sample application's use cases with the PersistenceBroker API.
Thistutorial will show how the same use cases can be implemented using the JDO API.

Y ou can get more information about the JDO API at JDO javadocs.

Obtaining the JDO PersistenceM anager Object

In order to access the functionalities of the JDO API you have to deal with a specia facade object
that serves as the main entry point to all JDO operations. This facade is specified by the Interface
j avax. j do. Per si st enceManager .

A Vendor of aJDO compliant product must provide a specific implementation of the

j avax. j do. Per si st enceManager interface. JDO also specifies that a JIDO implementation
must provideaj avax. j do. Per si st enceManager Fact or y implementation that is
responsible for generating j avax. j do. Per si st enceManager instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB specific
PersistenceM anagerFactory object. Ideally thiswill be the only vendor specific operation.

In our tutorial application the Per si st enceManager Fact or y object isaobtained in the
constructor of the Application class and reached to the use case implementations for further usage:

Theclassor g. apache. oj b. j dori. sqgl . g bSt or ePMF isthe OJB specific
j avax. j do. Per si st enceManager Fact or y implementation.

AR TODO: Put information about the .jdo fil es #HHHHHHHHHHH

ThePer si st enceManager Fact or y object is reached to the constructors of the UseCases.
These constructors store it in a protected attribute f act or y for further usage.

Retrieving collections

57

0oJB

The next thing we need to know is how this Implementation instance integrates into our persistence
operations.

In the use case UCLi st Al | Product s we haveto retrieve a collection containing all product
entries from the persistent store. To retrieve a collection containing objects matching some criteria
we can use the JIDOQL query language as specified by the JDO spec. In our use case we want to
select all persistent instances of the class Products. In this case the query is quite smple asit does
not need any limiting search criteria.

We use the factory to create a PersistenceManager instance in step one. In the second step we ask
the PersistenceManager to create a query returning all Product instances.

In the third step we perform the query and collect the resultsin a collection.

In the fourth step we iterate through the collection to print out each product matching our query.

Storing objects

Now we will have alook at the use case UCEnt er NewPr oduct . It works as follows: first create
anew object, then ask the user for the new product's data (productname, price and available stock).
These data is stored in the new object's attributes. This part is no different from the PB tutorial
implementation. (Steps 1. and 2.)

58

Now we will store the newly created object in the persistent store by means of the JDO API. With
JDO, al persistence operations must happen within a transaction. So the third step isto ask the
PersistenceManager object for afreshj avax. j do. Tr ansact i on object to work with. The
begi n() method starts the transaction.

We then have to ask the PersistenceManager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction are
now made persistent. Asyou will have noticed there is no need to explicitly store objects as with
the PersistenceBroker API. The Transaction object is responsible for tracking which objects have
been modified and to choose the appropriate persistence operation on commit.

Updating Objects

The UseCase UCEdi t Pr oduct alowsthe user to select one of the existing products and to edit
it.

The user enters the products unique id. The object to be edited islooked up by thisid. (Steps 1., 2.
and 3.) Thislookup is necessary as our application does not hold alist of all product objects.

The product is then edited (Step 4.).

In step five the transaction is commited. All changes to objects touched by the transaction are now
made persistent. Because we modified an existing object an update operation is performed against
the backend database.

Deleting Objects

The UseCase UCDel et ePr oduct alowsthe user to select one of the existing products and to
delete it from the persistent storage.

The user enters the products unique id. The object to be deleted islooked up by thisid. (Steps 1., 2.
and 3.) Thislookup is necessary as our application does not hold alist of al product objects.

In the fourth step we check if a Product matching to the id could be found. If no entry is found we
print a message and quit the work.

If a Product entry was found we deleteit in step 5 by calling the PersistenceManager to del ete the
persistent object. On transaction commit all changes to objects touched by the transaction are made

0oJB

persistent. Because we marked the Product entry for deletion, a delete operation is performed
against the backend database.

5.4.5.3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system within
asimple application scenario. | hope you found this tutorial helpful. Any comments are welcome.
5.4.6. Object Transaction Manager Tutorial

5.4.6.1. TheOTM API

Introduction

The Object Transaction Manager (OTM) iswritten as atool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's similar to
the ODMG and PersistenceBroker API'sin OJB. Several of itsidioms are designed around the fact
that it is meant to have additional, client-oriented, API's built on top of it, however.

61

The OTMKi t istheinitial access point to the OTM interfaces. The kit provides basic configuration
information to the OTM components used in your system. This tutorial will usethe Si npl eKi t
which will work well under most circumstances for local transaction implementations.

This tutorial operates on a simple example class:

The metadata descriptor for mapping this classis described in the mapping tutorial.

As aways the source code for thistutorial can befound inthet ut ori al s-src. j ar available
from here, more specifically intheor g/ apache/ oj b/ t ut ori al s/ directory.

Persisting New Objects

The starting point for using the OTM directly isto look at making a transient object persistent. This
code will use three things, an OTMWKi t , an OTMConnect i on,andaTr ansacti on. The
connection and transaction objects are obtained from the kit.

Initial accessto the OTM client API'sisthrough the OTMKi t interface. Welll usethe Si npl eKi t
an implementation of the OTMKi t suitable for most circumstances using local transactions.

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD alias. In
this case we use the default, but a named datasource could al so be used, as configured in the
metadata repository. A transaction is obtained from the kit for the specific connection. Because

0oJB

multiple connections can be bound to the same transaction in the OTM, the transaction needs to be
acquired from the kit instead of the connection itself. The Si npl eKi t uses the commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM -- transactions
must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn. makePer si stent (..) cal obtainsawritelock on pr oduct and will commit (insert)
the object when the transaction is committed.

TheLocki ngExcept i on will be thrown if the object cannot be write-locked in this transaction.
Asitisatransient object to begin with, thiswill probably only ever happen if it has been
write-locked in another transaction already -- but this depends on the transaction semantics
configured in the repository metadata.

Finally, connections maintain resources so it isimportant to make sure they are closed when no
longer needed.

Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is almost
identical to making it persistent -- the differenceisjust in the

conn. del et ePer si st ent (product) call instead of the

conn. nakePer si st ent (product) call. The same notes about transactions and resources

apply here.

Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of
guery at present -- an PersistenceBroker like query-by-criteria style querying system, and an
ODMG OQL query system.

Information on constructing these types of queriesis available in the PersistenceBroker and ODMG
tutorials respectively. Using those queries with the OTM is examined here.

63

A PB style query can be handled as follows:

Where, by default, aread lock is obtained on the returned objects. If adifferent lock isrequired it
may be specified specifically:

Theint | ock argument isone of the integer constants on
or g. apache. oj b. ot m | ock. LockType:

OQL queries are also supported, as this somewhat more complex example demonstrates:

Thisfunction is, at its core, doing the same thing as the PB style queries, except that it constructs
the OQL query, which supports binding valuesin a manner similar to JDBC prepared statements.

The OQL style queries aso support specifying the lock level the same way:

M or e Sophisticated Transaction Handling

These examples are abit simplistic as they begin and commit their transactions all in one go -- they
are only good for retrieving data. More often datawill need to be retrieved, used, and committed
back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an aready established
transaction, datawill be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applicationsisto start a transaction and then
let any downstream code be executed within the bounds of the transaction automatically. Thisis
straightforward to do with the OTM using the Si npl eKi t ! Take alook at avery dightly
modified version of the query by criteria function:

0oJB

In this case the function looks to seeif atransaction is already in progress and sets a boolean flag if
itis, aut o. It then handles transactions itself, or allows the already opened transaction to maintain
control.

Because connections can be attached to existing transactions the Si npl eKi t can attach the new
connection to the already established transaction, allowing this function to work as expected
whether there is atransaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and
commit the changes back. For example:

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder
Widget" and stores them back. It must makes the changes within the context of the transaction it
obtained for those changes to be stored back to the database. If the same iterator were obtained
outside of atransaction, and the changes made, the changes would be made on the objectsin
memory, but not in the database. Y ou can think of non-transaction objects as free immutable
transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameW dget Exanpl e(. . .) function obtains a connection, and the

nor eReal i sticQueryByCriteria(...) functionobtainsan additional connection to the
same transaction!

5.4.6.2. Notes on the Object Transaction M anager

Transactions

The Object Transaction Manager (OTM) is atransaction management layer for Java objects. It
typically maps 1:1 to database transactions behind the scenes, but thisis not actually required for
the OTM to work correctly.

The OTM supports awide range of transactional options, delimited in the LockM anager

0oJB

documentation. While the lock manager is writte to the ODMG API, the same locking rules apply
at the OTM layer.

5.5. Reference Guides

5.5.1. Reference Guides Summary

Summary and explanation of the OJB reference guides.

PB guide
This document explains specific usage of the PB API.

ODMG guide
This document explains specific usage of the ODMG API.

OJB Queries

This document explains the usage of the query syntax.

Basic O/R Technique

Thistutorial explains basic object-relational mapping technique in OJB like 1:1, 1:nand m:n
relations, the auto-xxx settings for references and proxy objects/collections.

Platforms

What OJB requires from relational databases, and how to let it know which database to use.
L ogging configuration

Detailed information about configuring the logging within OJB.

OJB.properties configuration

The details on how to modify OJB's behaviour. This includes changing pluggable components.
JDBC Types

This document explains the standard mapping of JDBC types to Java classes.

Repository Metadata

The specific details of OJB metadata.

Advanced O/R Technigue

This document explains some advanced O/R techniques like Polymorphism and "OJB Extents’,
Mapping Inheritance Hierarchies, Nested Objects and so on.

M etadata Handling

This document explains how the metadata xml file work and how the metadata information can
be modified at runtime.

Deployment

Specifics on what is required to deploy OJB, including deployment to EJB containers.
Connection Handling

This document explains how OJB handlesthe Connect i on instances and how this can be
user-configured.

Caching

Documentation on the different object caching implementations and strategies included with
OJB.

The Seguence Manager

How to use different sequence management strategies with OJB.

L ocking

The optimistic and pessimistic locking capabilities of OJB.

OJB XDaoclet Module

Documentation for the OJB XDoclet module. The module can build mappings and schema.
OJB Performance

A look at how OJB performs and how to use OJB's performance tests.

5.5.2. PB-api Guide

67

5.5.2.1. Introduction

The PersistenceBroker API (PB-api) provides the lowest level accessto OJB's persistence engine.
Whileitisalow-level APl compared to the standardised ODMG or JDO API'sit isstill very
straightforward to use.

The core class in the PersistenceBroker API isthe
org. apache. o] b. br oker . Per si st enceBr oker class. Thisclass provides the point of
access for all persistence operationsin this API.

This document is not a PB tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the PB-api.

If you don't find an answer for a specific question, please have alook at the FAQ and the other
reference guides.

5.5.2.2. How to access the PB-api?

Theor g. apache. oj b. br oker . Per si st enceBr oker Fact or y make several methods
available:

Method def aul t Per si st enceBr oker () can beused if the attribute defaul t-connection is set
true in jdbc-connection-descriptor. It's a convenience method, useful when only one database is
used.

The standard way to lookup a broker instanceisviaor g. apache. oj b. br oker . PBKey by
specify jcdAlias (defined in the jdbc-connection-descriptor of the repository file or sub file), user
and passwd. If the user and password is already set in jdbc-connection-descriptor it is possible to
lookup the broker instance only be specify the jcdAliasin PBKey:

See further in FAQ "Needed to put user/password of database connection in repository file?".

5.5.2.3. Notes on Using the Per sistenceBroker API

Exception Handling

The exception handling is described in the PB-tutorial exception handling section.

Management of PersistenceBroker instances

There is no need to cache or pool the used PersistenceBroker instances, because OJB itself use a
PB-pool. The configuration of the PB-pool is adjustable in the OJB.propertiesfile.

Using the Per si st enceBr oker . cl ose() method releases the broker back to the pool under

0oJB

the default implementation. For this reason the examplesin the PB tutorial all retrieve, use, and
close a new broker for each logical transaction.

Apart from the pooling management Per si st enceBr oker . cl ose() forcetheinternal
cleanup of the used broker instance - e.g. removing of temporary PersistenceBrokerListener
instances, release of used connection if needed, internal used object registration lists, ...
Therefore it's not recommended always refer to the same PB instance without closing it.

Transactions

Transactions in the PeristenceBroker APl are database level transactions. This differs from object
level transactions used by e.g. the odmg-api. The broker does not maintain a collection of
modified, created, or deleted objects until acommit is called -- it operates on the database using the
databases transaction mechanism. If object level transactions are required, one of the higher level
API's (ODMG, JDO, or OTM) should be used.

5.5.2.4. Questions

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now each database will be accessible viathe Per si st enceBr oker Fact or y using a PBKey
matching the defined jcdAliase name as shown in section How to access the PB-api?.

Hook into OJB - PB-Listener and I nstance Callbacks

All Listener and instance callback interfaces supported by the PB-api can be used in the top-level
API (like ODMG-api) as well.

The OJB Kernel supports three types of "hook" into OJB:
 PersistenceBroker Anare

A callback interface used by persistence capable objects (the object class is declared in OJB
metadata mapping) to be aware of Per si st enceBr oker operations on itself.
More detailed information can be found in the Advanced-Technigue Guide.

« PBStatelistener

The listener interface for receiving Per si st enceBr oker state changes.
« PBLifeCyclelistener

The listener interface for receiving persistent object life cycle information. Thisinterfaceis
intended for non persistent objects which want to track persistent object life cycle. Persistence
capabl e objects can implement Per si st enceBr oker Awar e - see above.

To add a PBListener use one of the following Per si st enceBr oker methods:

Thefirst method adds atemporary or g. apache. oj b. br oker . PBLi st ener to the current
Per si st enceBr oker instance- on Per si st enceBr oker . cl ose() cal thelistener was
removed.

The second one allows to add permanent or g. apache. oj b. br oker . PBLi st ener when
the method argument is set true. If set false the listener only be temporary added.

69

0oJB

Be carefully when adding per manent listener, keep in mind you don't know which instance was returned next time from the pool, with
a permanent listener or without!

To guarantee that any pooled broker instance use the permanent listener, best way is to extend the used

or g. apache. oj b. broker. cor e. Per si st enceBr oker Fact or yl F implementation and add the listener at creation of the
Per si st enceBr oker instances.

Or add each time you lookup aPer si st enceBr oker instance the listener as atemporary listener.

5.5.3. ODM G-api Guide

5.5.3.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level APl and OQL query language based interface over the PersistenceBroker
API.

This document is not a ODMG tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the ODMG-api and the proprietary
extensions by OJB.

If you don't find an answer for a specific question, please have alook at the FAQ and the other
reference quides.

Additionaly the OJB's ODMG implementation has several extensions described below.

5.5.3.2. Specific Metadata Settings

To make OJB's ODMG-api implementation proper work, some specific metadata settings needed in
the repository mapping files.

All defined reference-descriptor and collection-descriptor need specific auto-xxx settings:

e auto-retrieve="true"
e auto_update="none"
« auto-delete="none" or auto-delete="object" (to enable cascading delete, since OJB 1.0.4!)

} These settings are mandatory for proper work of the odmg-api! ‘

So an exampl e object mapping class-descriptor look like:

70

0oJB

A lot of mapping samples can be found in mappings for the OJB test suite. All mappings for the
ODMG unittest areinr eposi tory_juni t _odng. xm file, which can be found under the
src/test directory.

5.5.3.3. How to access ODM G-api

Obtainaor g. odng. | npl enent at i on instance first, then create a new
or g. odng. Dat abase instance and open this instance by setting the used jcd-alias name:

The user and password separated by # hash only needed, when the user/passwd is not specified in
the connection metadata (jdbc-connection-descriptor).

The jdbc-connection-descriptor may look like:

With method call QJB. get | nst ance() alwaysanew org.odmg.lmplementation instance will
be created and odngy. newDat abase() returnsanew Dat abase instance.

For best performance it's recommended to share the | npl enent at i on instance across the
application. To get the current open database from the | npl enent at i on instance, use method
| mpl enent at i on. get Dat abase(nul |)

Or share the open Dat abase instance as well.

See further in FAQ "Needed to put user/password of database connection in repository file?".

5.5.3.4. Configuration Properties

The OJB ODMG-api implementation has some adjustable properties and pluggable components.
All configuration properties can be set in the OJB.propertiesfile.

Here are all properties used by OJB's ODMG-api implementation:

OqglCollectionClass This entry defines the collection type returned
from OQL gqueries. By default this value is set to
a List implementation. This will be suffice in

ImplementationClass

0OJBTxManagerClass

ImplicitLocking

LockAssociations

Ordering

0JB

most situations.

If you want to use the additional features of the
DList interface (DList itself is persistable,
support of predicates) directly on query results,
change setting to the DList implementation (See
also property 'DListClass' entry).

But this will affect the performance - especially
for large result sets. So recommended way is
create DCol | ect i on instances only when
needed (e.g. by converting a List result set to a
DList).

Important note: The collection class to be used
MUST implement the interface

org. apache. oj b. br oker . Manageabl eCol | ect i on.
More info about implementing OJB collection

types here.

Specifies the used base class for the ODMG API
implementation. In managed environments a
specific class is needed to potentiate JTA
integration of OJB's ODMG implementation.

Specifies the class for transaction management.
In managed environments a specific class is
needed to potentiate JTA integration of OJB's
ODMG implementation.

This property defines the implicit locking
behavior. If set to true OJB implicitely locks
objects to ODMG transactions after performing
OQL queries or when do a single lock on an
object using Tr ansact i on#l ock(. ..)
method.

If implicit locking is used locking objects is
recursive, that is associated objects are also
locked.

If ImplicitLocking is set to false, no locks are
obtained in OQL queries and there is also no
recursive locking when do single lock on an
object.

This property was only used when
ImplicitLocking is enabled. It defines the
behaviour for the OJB implicit locking feature. If
set to true acquiring a write-lock on a given
object x implies write locks on all objects
associated to x.

If set to false, in any case implicit read-locks are
acquired. Acquiring a read- or write lock on x
thus allways results in implicit read-locks on all
associated objects.

Enable/Disable OJB's persistent object ordering
algorithm on commit of a transaction. If enabled
OJB try to calculate a valid order for all
new/modified objects (and referenced objects).

If the used databases support ‘deferred checks'
it's recommended to use this feature and to
disable OJB's object ordering.

72

0oJB

This setting can be changed at runtime using OJB's
ODMG extensions.

ImplicitLockingBackward A @deprecated property only for backward
compatibility with older versions (before 1.0.4).
If set true the behavior of method
Implementationimpl#setimplicitLocking(...) will
be the same as in OJB in 1.0.3 or earlier (set the
implicit locking behavior of the current used
transaction) and disable the new possibility of
global 'implicit locking' setting at runtime with
ImplementationExt#setimplicitLocking. This is
only for backward compatibility and will be
removed at a later date.

DListClass The used or g. odng. DLi st implementation
class.

DArrayClass The used or g. odng. DAr r ay implementation
class.

DMapClass The used or g. odng. DMap implementation
class.

DBagClass The used or g. odng. DBag implementation
class.

DSetClass The used or g. odng. DSet implementation
class.

5.5.3.5. OJB Extensions of ODM G
This section describes the propietary extension of the ODMG-api provided by OJB.

The ImplementationExt I nterface

The OJB extension of the odmg Implementation interface is called |mplementationExt and provide
additional methods missed in the standard class definition.

» get/setOqglCollectionClass
Use this methods to change the used OQL query result class at runtime. Description can be
found in Configuration Properties section and in javadoc of I mplementati onExt.

e ig/setimpliciteWriteLocks
Use this methods to global change the associated locking type at runtime when implicit locking
is used. Description can be found in Configuration Properties section and in javadoc of
| mplementati onEXxt.

e ig/setOrdering
Use this methods to global enable/disable OJB's object ordering algorithm. Description can be
found in Configuration Properties section and in javadoc of Implementati onExt.

The TransactionExt | nterface

The OJB extension of the odmg Transaction interface is called TransactionExt and provide
additional methods missed in the standard class definition.

 markDelete
Description can be found in javadoc of TransactionExt.

73

0oJB

e markDirty
Description can be found in javadoc of TransactionExt.
« flush

Description can be found in javadoc of TransactionExt.
« ig/setimplicitLocking
Description can be found in javadoc of TransactionExt.
e ig/setOrdering
Description can be found in javadoc of TransactionExt.
» setCascadingDelete
Description can be found in javadoc of TransactionExt.
« getBroker()
Returns the current used broker instance. Usage exampleis here.

The EnhancedOQL Query Interface

The OJB extension of the odmg OQL Query interface is called EnhancedOQL Query and provide
additional methods missed in the standard class definition.

« create(String queryString, int startAtindex, int endAtindex)
Description can be found in javadoc of EnhancedOQL Query.

Access the PB-api within ODM G

Asthe PB-api was used by OJB's ODMG-api implementation, thusit is possible to get access of
the used Per si st enceBr oker instance using the extended Transaction interface class
TransactionExt:

It's mandatory that the used PersistenceBroker instance never be closed with a

Per si st enceBr oker . cl ose() call or be committed with

Per si st enceBr oker. comm t Transact i on(), thiswill be doneinternally by the ODMG
implementation.

5.5.3.6. Notes on Using the ODM G API

Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level
transactions. An ODMG Tr ansact i on instance contains all of the changes made to the object
model within the context of that transaction, and will not commit them to the database until the
ODMG Tr ansact i on iscommitted. At that point it will use a database transaction (the
underlying PB-api) to ensure atomicity of its changes.

L ocks

The ODMG specification includes several levels of locks and isolation. These are explained in
much more detail in the Locking documentation.

In the ODMG AP, locks obtained on objects are locked within the context of atransaction. Any
object modified within the context of atransaction will be stored with the transaction, other

74

changes made to the same object instance by other threads, ignoring the lock state of the object,
will also be stored - so take care of locking conventions.

The ODMG locking conventions (obtain awrite lock before do any modifications on an object)
ensure that an object can only be modified within the transaction.

It's possible to configure OJB's ODMG implementation to support implicit locking with WRITE
locks. Then awrite lock on an object forces OJB to obtain implicit write locks on al referenced
objects. See configuration properties.

Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data
access object in aweb application. In those cases a persistent object can till be modified, but not
directly through the OMG ODMG specification. OJB provides an extension to the ODMG
specification for instances such as this. Examine this code:

In this function the product is modified outside the context of the transaction, and is then the
changes are persisted within atransaction. The Tr ansact i onExt . mar kDi rt y() method
indicates to the Transaction that the passed object has been modified, even if the Transaction itself
sees no changes to the object.

5.5.3.7. ODM G Named Objects

Using named objects allows to persist all serializable objects under a specified name. The methods
to handle named objects are:

0oJB

To use this feature ainternal table and metadata mapping is madatory (by default these settings are
enabled in OJB). More information about the needed internal tables seein Platform Guide.

If the object to bi nd is a persistence capable object (the object classis declared in OJB metadata
mapping), then the object will be persisted (if needed) dependent on the declared metadata mapping
and the named object will be alink to the real persisted object.

Onunbi nd of the named object only the link of the persistent object will be removed, the
persistent object itself will be untouched.

If the object to bi nd is a serializable non-persistence cacpabl e object, the object will be serialized
and persisted under the specified name.

On unbi nd the serialized object will be removed.

Examples

In OJB test-suite is atest case called or g. apache. oj b. odng. NanedRoot sTest which
shown similar examples as below, but more detailed.

1. Persist a serializable object asnamed object

We want to persist anamellist of all planets:

The specified Li st with all planet names will be serialized and persisted as VARBINARY object.
To lookup the persisted list of the solar system planets:

To remove the persistent list do:

2. Persist a persistence capable object as named obj ect

We want to create a named object representing a persistence capable Art i cl e object (Arti cl e
classis declared in OJB metadata mapping):

OJB first checksiif the specified Ar t i cl e object is already persisted - if not it will be persisted.

76

0oJB

Then basedontheArti cl e object | dent i t y the named object will be persisted. So the
persistent named object isalink to the persistent real Art i cl e object.

On lookup of the named object thereal Arti cl e instance will be returned:

On unbind of the named object only the link to thereal Art i cl e object will be removed, the
Arti cl e itself will not be touched.
Toremovethenaned obj ect andtheArti cl e instance do:

3. Persist a collection of persistence capable object as named object

We want to persist alist of thelast shown Art i cl e objects. The Arti cl e classisapersistence
capable object (declared in OJB metadata mapping). Thus we don't want to persist aserialized List
of Arti cl e objects (becausethereal Arti cl e object may change), as shown in example 1,
rather we want to persist aList that linksto the real persistent Art i cl e objects.

Thisis possible when the ODMG DCol | ect i ons are used:

In this case OJB first checksfor transient Art i cl e objects and make these new objects persistent,
then based onthe Arti cl e object] dent i t v the named object will be persisted. So the
persistent named object isin thiscase alist of linksto persistent Art i cl e objects.

Ondat abase. | ookup("I ast - shown") theDLi st will be returned and when access the
list entriesthe Art i cl e objectswill be materialized.

To remove the named object some more attention is needed:

After this the named object will be completely removed, but all Arti cl e object will be
untouched.

0oJB

5.5.3.8. ODMG's DCollections

The ODMG api declare some specific extensions of thej ava. uti | . Col | ecti on interface:

or g. odnyg. DLi st
or g. odng. DSet
or g. odng. DBag
or g. odng. DVap
org. odnyg. DArr ay

The ODMG | npl enent at i on class provide methods to get new instances of these classes.

In OJB all associations between persistence capable classes are declared in the mapping files and
1:nand m:n relations can use any collection type class which implement the specific interface
Manageabl eCol | ecti on.

So there is no need to use the ODMG specific collection classes in object relations or when
oqgl-queries are performed (more detailed info see 'ogl collection class setting’).

One difference to normal collection classesisthat DCol | ect i on implementation classes are
persistence capabl e classes itself. This means that they can be persisted - e.g. see named objects
example. Mandatory isthat all containing objects are persistence capable itself.

When persistingaDCol | ect i on object OJB first lock the collection entries, then the collection
itself was locked. On commit the collection entries will be handled in a normal way and for each
entry alink object (containing the | dent i t y of the persistence capable object) is persisted.

When lookup the persisted DCol | ect i on object the link objects are materialized and on access
the collection entry will be materialized by the identity.
5.5.3.9. Foreign Keys Constraints and ODM G-api

If cross-referenced database tables are used it's recommended to set foreign key constraints to
guarantee database consistency. The consequence of using foreign key constraintsis that the order
of the persistence capable objects on insert and delete operations will become cruical.

Some databases support deferred constraint checks, this can help to avoid foreign key issues.

On transaction commit (using standard settings) OJB try to order the objects by itself. If this doesn't
sufficeit's possible to determine the object order "by hand".

If foreign key constraint violations arise when using 1:1 references and circular/bidirectional 1:1

references it's possible to use a workaround introduced in version 1.0.4 to specify the database FK
constraint in OJB using a custom attribute named 'constraint':

5.5.3.10. Questions and Tips

Disable OJB's object ordering, deter mine object order " by hand"

78

By default OJB try to order all persistent objects on transaction commit call to avoid ordering
problems. If thisis not needed or helpful it can be disabled in two ways.

In most cases it's needed to disable implicite locking too, because it will lock/register dependend
objects (e.g. 1:n references) automatically. First in OJB.propertiesfile:

Second at runtime, using OJB's ODMG extension classes |mplementationExt (global setting) and
TransactionExt (per tx setting).

Circular- and Bidirectional References

The good news, OJB can handle bidirectional- and circular- references. When using foreign key
constraints for referential integrety in these cases you have to pay attention.

In OJB test-suite aunit test called or g. apache. oj b. odng. G r cul ar Test can befound.
The tests show the handling of circular/bidirectional references and the possibilities how to handle
object insert/update/del ete ordering on transaction commit.

| don't like OQL, can | usethe PersistenceBroker Querieswithin ODM G

Yesyou can! The ODMG implementation relies on PB Queriesinternally! Several users (including
myself) are doing this.

If you have alook at the simple example below you will see how OJB Query objects can be used
withing ODMG transactions.

The most important thing isto lock all objects returned by a query to the current transaction before
starting mani pulating these objects.

Further on do not commit or close the obtained PB-instance, this will be done by the ODMG
transactionont x. comm t () / tx.roll back().

H o
[
w

Note: Don't close or commit the used broker instance, this will be done by the odmg-api.

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now it ispossible to

» access the databases one after another, by closing the current used Dat abase instance and by
open anew one.

The Dat abase. cl ose() cal closethe current used Dat abase instance, after thisitis
possible to open a new database instance.

« usemultiple databases in parallel, by creating aseparate | npl enent at i on and Dat abase
instance for each jdbc-connection-descriptor defined in the mapping metadata.

Now it's possible to use both databases in parallel.

0JB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

5.5.4. Platforms

5.5.4.1. How to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides JDBC
support. OJB can be configured to use only JDBC 1.0 API callsto avoid problems with restrictions
of several JDBC drivers.

It uses alimited SQL subset to avoid problems with restrictions of certain RDBMS. This design
allows to keep the OJB code generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against a
specific RDBMS.

If you not already have done so, then you aso might want to have alook at the Getting Started
section which presents a sample skeleton project.

5.5.4.2. Basic Concepts

80

0oJB

OJB internal tables

For certain features OJB relies on several internal tables that must be present in the target RDBM S
to allow a proper functioning. The associated internal object metadata mapping of these internal
used tables can be found in repository_internal.xmil file.

If those features are not needed/used OJB can be safely run without any internal tables and
metadata mapping.

The following table lists all tables and their specific purpose.

QB _HL_SEQ Table for the high/low sequence manager. The
column TABLENAME was used to persist the
sequence name (may be re-named in further
versions of OJB).

If the built-in OJB sequence manager is not
used, this table is not needed.

QIB_NRM The "Named Roots Map". ODMG allows to bind
persistent objects to an user defined name - called
named objects.

The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of a persistent
object or an arbitrary serialized object in thefield
OID (String of arbitrary length).

If Dat abase. bind(...) and

Dat abase. | ookup(...) arenotusedin client
apps, thistableis not needed.

QIB_DLI ST The table used for the ODMG persistent DList
collections.

If ODMG DLists are not used, thistableis not
needed.

QIB_DLI ST_ENTRI ES stores the entries of DLists (awrapper to objects

stored in the DList)
If ODMG DLists are not used, thistableis not
needed.

0oJB

QJB_DSET The table used to store ODMG persistent DSET
collections

If ODMG DSets are not used, thistableis not
needed.

QJB_DSET_ENTRI ES This table stores the entries of DSets.
If ODMG DSets are not used, thistableis not
needed.

QJB_DVAP The table use to store the ODMG persistent DMap
tables

If ODMG DMaps are not used, thistableis not
needed.

QJB_DVAP_ENTRI ES The table containing the DMap entries. The Keys and
Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, thistableis not
needed.

OJB uses Torque to create all required tables and data. Thusthereisno SQL DDL file, but an XML
file describing the tables in format readable by Torque. The Torque DDL information for the
internal tablesresidesin thefilesr ¢/ schema/ oj bcor e- schema. xm .

The o/r mappings for these tables are contained in thefiler eposi t ory_i nternal . xm .

If you want to have alook at how these files could be used, have alook at the the ojb-blank sample
project which is already prepared to use thesefiles.

Tablesfor theregression testbed

It is recommended to run the OJB test-suite against your target database. Thus you will have to
provide several more tables, filled with the proper testdata.

The DDL information for these tables resides in the file

82

0oJB

The testdatais defined inthefilesr ¢/ schena/ o] bt est -dat a. xm .

The o/r mappings for these tables are contained in the filer eposi tory_j uni t. xm .

Tablesfor thetutorial applications

If you intend to run the OJB tutorial applications against your target database you will have to
provide one extratable.

The DDL information for thistable also resides in the file
src/ schema/ oj bt est - schema. xni .

Thetestdatais also defined inthefilesr ¢/ schenma/ oj bt est - dat a. xml .

The o/r mappings for thistable is contained in thefiler eposi t ory_user. xm .

5.5.4.3. The setup process

OJB provides a setup routine to generate the target database and to fill it with the required testdata.
Thisroutine is based on Torque scripts and is driven from the build.xml file. This section describes
how to useit.

Selecting a platform profile

OJB ships with support for several popular database platforms. The target platform is selected by
the switch pr of i | e inthefile build.properties. Y ou can choose one out of the predefined profiles:

The profile switch activated in bui | d. properti es isused to select aprofile file from the
profi | e directory.

If youset profil e=db2,thenthefileprofil e/ db2. profil e isseected.

Thisfileis used by the Torque scripts to set platform specific properties and to perform platform
specific SQL operations.

editing the profileto point to your target db

The platform specific filepr of i | e/ xxx. profi | e contains lots of information used by Torque.
Y ou can ignore most of it. The only important part in thisfile is the section where the url to the

83

0oJB

target db is assembled, here is an snip of the DB2 profile:

These settings result in adatabase URL j dbc: db2: QIB. If your production database is registered
with the name MY_PRODUCTI| ON_DB you haveto edit the entry ur | DBal i as to:
url Dbal i as = My_PRODUCTI ON_DB.

In this section you can also set application user name and password. Y ou can also enter a different
jdbc driver class, to activate a different driver.

Before progressing, please check that the jdbc driver class, named in the dat abaseDr i ver entry
islocated on the classpath! Y ou can either edit the global environment variable CLASSPATH or
place the jdbc driver jar fileinto thej akart a- oj b- xxx/ | i b directory.

Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked by
callingant prepare-testdb.

If you are prompted with aBUI LD SUCCESSFUL message after some time, everything is OK.

If you are prompted with aBUI LD FAI LED message after some time, something went wrong.
This may have several reasons:

» You entered some incorrect settings. Please check the log messages to see what went wrong.

» Torque does not work properly against your target database. Torqueis very flexible and should
be able to work against awide range of databases. But the code templates for each database
may not be accurate. Please check the ojb-user mailinglist archive if there are any failure
reports for your specific database. Please also check if some contributed afix aready. If you
don't find anything please post your problem to the ojb user-list.

Asalast resort you can try the following: Switch back to the default hsgldb profile and execute
ant prepare-testdb Thiswill setup the default hsgldb database. And it will also generate
SQL scripts that you may use to generate your database manually.

The SQL scripts are generated to j akar t a- o] b- xxx/ t arget/ src/ sql . You can touch
these scripts to match your database specifics and execute them manually against your platform.

Verifying theinstallation

84

Now everything is setup to run the junit regression tests against your target database.

Execute

to seeif everything works as expected. more information about the OJB Test Suite here. If you did
not manage to set up the target database withtheant pr epar e-t est db you can use

ant junit-no-conpil e-no-prepar e torun the testsuite without generation of the test
database.

5.5.5. OJB.properties Configuration File

5.5.5.1. OJB Configuration

OJB provides two different configuration mechanisms:

1. AnXML basedr eposi tory. xm isused to define the Object/Relational Mapping. This
Mapping istransated into a metadata dictionary at runtime. The metadata layer may also be
manipulated at runtime through OJB API calls. Follow thislink to learn more about the XML
repository.

A propertiesfile QJB. pr operti es that isresponsible for the configuration of the OJB
runtime environment. It contains information that does not change at runtime and does not
contain O/R mapping related information.

Therest of this document details on this propertiesfile.

no

5.5.5.2. OJB.properties File

By default thisfileisnamed QJB. pr operti es andisloaded from the classpath by a 2EE
compliant resource lookup:

The filename of the properties file can be changed by setting a Java system property. This can be
done programmatically:

or by setting a-D option to the IVM:

All things that can be configured by OJB.properties are commented in the file itself. Have alook at
the default version of thisfile.

5.5.6. IDBC Types

5.5.6.1. Mapping of JDBC Typesto Java Types

OJB implements the mapping conversions for JDBC and Java types as specified by the JIDBC 3.0
specification (see JDBC 3.0 specification Appendix B, Data Type Conversion Tables). See the table
below for details.

If a sgl-javatype mapping is needed, that doesn't match the java types defined by the specification,
e.g. afield in the persistent object classis of typeint[] and the DB typeis VARCHAR or a List field
have to be mapped to VARCHAR a field-conversion class can be used.

CHAR
VARCHAR
LONGVARCHAR
NUMERIC
DECIMAL
BIT
BOOLEAN
TINYINT
SMALLINT
INTEGER
BIGINT
REAL
FLOAT
DOUBLE
BINARY
VARBINARY

LONGVARBINARY

DATE

TIME
TIMESTAMP
CLOB

BLOB
ARRAY
DISTINCT
STRUCT
REF
DATALINK
JAVA_OBJECT

String

String

String
java.math.BigDecimal
java.math.BigDecimal
boolean

boolean

byte

short

int

long

float

double

double

byte(]

byte[]

byte|]

java.sgl.Date
java.sql.Time
java.sql.Timestamp
Clob

Blob

Array

mapping of underlying type
Struct

Ref

java.net.URL

underlying Java class

5.5.6.2. Type and Value Conversions - The FieldConversion | nterface

Introduction

0JB

A typical problem with O/R toolsis mismatching datatypes. a class from the domain model has an

attribute of type boolean but the corresponding database table stores this attribute in a column of

type BIT or int.

This example explains how OJB alows you to define FieldConver sions that do the proper
trandation of types and values.

86

The source code of this example isincluded in the OJB source distribution and resides in the test
package or g. apache. oj b. br oker.

The problem

Thetest classor g. apache. oj b. broker . Arti cl e contains an attribute
i sSel | out Arti cl e of type boolean:

The coresponding table uses an int column (Ausl auf art i kel) to store this attribute:

The Solution

OJB alowsto use predefined (or self-written) FieldConversions that do the appropiate mapping.
TheFi el dConver si on interface declares two methods: j avaToSql (...) and
sql ToJava(...):

The method Fi el dConver si on. sql ToJava() isacalback that is called within the OJB

broker when Object attributes are read in from JDBC result sets. If OJB detectsthat a
FieldConversion is declared for a persistent classes attributes, it uses the FieldConversion to do the
marshalling of this attribute.

For the above mentioned problem of mapping an int column to a bool ean attribute we can use the
predefined FieldConversion Bool ean2l nt Fi el dConver si on. Have alook at the code to see
how it works:

There are other helpful standard conversions defined in the package

or g. apache. oj b. br oker . accessl ayer. conver si ons: Of courseit is possible to map
betweenj ava. sql . dat e andj ava. uti | . dat e by using aConversion. A very interesting
Conversion isthe Cbj ect 2Byt eAr r Fi el dConver si on it allowsto store inlined objectsin
varchar columns!

0oJB

Coming back to our example, thereis only one thing left to do: we must tell OJB to use the proper
FieldConversion for the Article class. Thisis done in the XML repository file. The field-descriptor

allows to define a conversion attribute declaring the fully qualified FieldConversion class:

i on"

5.5.7. Repository File

5.5.7.1. Introduction - repository syntax

The syntax of the OJB repository xml filesis defined by the repository.dtd.
An overview of al repository.dtd-elements can be found here. The repository.dtd can be found
here.

The actual repository metadta declaration is split up into several separate files, hereis an excerpt of
the most important files:

1. therepository.xml. Main file for metadata declaration. Thisfileis split into severa sub files
using xml-Entity references.

2. therepository_database.xml. Thisfile contains the mapping information for
database/connection handling.

3. therepository_internal.xml. Thisfile contains the mapping information for the OJB internal
tables. These tables are used for implementing SequenceM anagers and persistent collections.

4. therepository user.xml. Thisfile contains mappings for the tutorial applications and may be
used to hold further user defined class mappings.

5. therepository_junit.xml. This file contains mapping information for common OJB JUnit
regression test suite. In production environments these tables are not needed.

6. other repository_junit_XYZ.xml
More specific junit test mapping. In production environments these tables are not needed.

7. There are some more files, for more information see comment in appropriate xml-file.

5.5.7.2. descriptor-repository

The descriptor-repository is the root element of arepository.xml file. It consists of one or more
jdbc-connection-descriptor and at least one class-descriptor element. But it's also possible to
startup OJB without any of these elements and add them at runtime.

Elements

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

89

The jdbc-connection-descriptor element specifies ajdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

Attributes

The version attribute is used to bind arepository.xml file to agiven version of thisdtd. A given
OJB release will work properly only with the repository version shipped with that relase. This
strictness maybe inconvenient but it does help to avoid the most common version conflicts.

The isolation-level attribute defines the default locking isolation level used by OJB's pessimistic
locking api. All jdbc-connection-descriptor or class-descriptor that do not define a specific isolation
level will usethis.

Note: Thisdoes NOT touch the jdbc-level of the connection.

The proxy-prefetching-limit attribute specifies a default value to be applied to all proxy instances. If
none is specified a default value of 50 is used. Proxy prefetching specifies how many instances of a
proxied class should be loaded in a single query when the proxy isfirst accessed.

5.5.7.3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies ajdbc connection for the repository. It is allowed
to define more than one jdbc-connection-descriptor. All class-descriptor elements are independent
from the jdbc-connection-descriptors. More info about connection handling here.

Elements

The object-cache element specifies the object-cache implementation class associated with this
class.

A connection-pool element may be used to define connection pool properties for the specified
JDBC connection.

Further a sequence-manager element may be used to define which sequence manager
implementation should be used within the defined connection.

Use the custom-attribute element to pass implementation specific properties.

Attributes
The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd
alias as key for the defined connections.

0oJB

The default-connection attribute used to defineif this connection should used as default connection
with OJB. Y ou could define only one connection as default connection. It is aso possible to set the
default connection at runtime using Per sistenceBroker Factor y#setDefaul tkey(...) method. If set
true you can use a PB-api shortcut-method of the PersistenceBroker Factory to lookup
PersistenceBroker instances.

If default-connection is not set at runtime, it is mandatory that username and password is set in repository file.

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to
a org.apache.ojb.broker.platforms.PlatformXXXImpl class. Supported databases see here. Default
isHsgldb.

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver.
Allowed values are: 1.0, 2.0, 3.0. Default is 1.0.

DEPRECATED!. The eager-release attribute is used to solve a problem that occurs when using
OJB within JBoss (3.0 <= version < 3.2.2, seems to be fixed in jboss 3.2.2 and higher). Only use
within JBoss. DEPRECATED attribute.

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used
database), 'true’ value allows to enable per-session batch mode, whereas 'false’ prohibitsit.
PB.serviceConnectionManager .setBatchMode(...) method can be used to switch on/off batch
modus, if batch-mode is enabled. On PB.close() OJB switches off batch modus, thus you have to do
"...setBatchM ode(true)' on each obtained PB instance again.

0OJB 1.0.4 and earlier:

When using database identity columnsit's not allowed to enable batch mode for insert operations.

When using optimistic locking the version check will always succeed for update operations when batch-mode is enabled - take carel!.
Thiswill be fixed and automatically handled by OJB till next major release.

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used
connections. The default mode is 1. When using mode 0 or 2 with the PB-api, you must use PB
transaction demarcation.

e 0- OJB ignores the autoCommit setting of the connection and does not try to changeit. This
mode could be helpful if the connection won't let you set the autoCommit state (e.g. using
datasources within an application server).

o 1 - [default mode] set the connection's autoCommit state temporary to 'false’ if needed (when
using transaction demarcation in non-managed environment) and restore the 'old' state after use.
In versions before OJB 1.0.4 the autoCommit state was explicit set ‘true’ when connection was
created, now OJB expect that thisis done by the jdbc-driver/DataSource configuration. To
enable the old behavior set a custom attribute initializationCheck to 'true'.

T!en OJB set t!e autoCommit state exp‘ |C|t‘y to 'true’ W!en t!e connection Is creat! !y t!e

ConnectionFactory.
» 2 - Set the connection's autoCommit explicitly to false when a connection is created.

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting
autocommit state, will be ignored. Default mode is false.

If ajndi-datasource-name for INDI based lookup of Jdbc connections is specified, the following
four attributes driver, protocol, subprotocol, and dbalias used for Jdbc DriverManager based

91

construction of Jdbc Connections must not be declared.

If ajndi-datasource-name is specified, OJB always assume that a INDI based datasource
connection lookup was expected (so take care that this attribute is empty or absent on driver based
connection handling).

The username and password attributes are used as credentials for obtaining ajdbc connections.
If users don't want to keep user/password information in the repository.xml file, they can pass
user/password using a PBKey to obtain a PersistenceBroker. More info see FAQ.

Custom attributes

The JdbcConnectionDescriptor supports specific configuration properties via custom-attributes.

Attribute initializationCheck is an attribute to support backward compatibility with OJB versions
before 1.0.4.

In older versions OJB change the 'autoCommit’ state dependent of the used 'useAutoCommit'
attribute setting at connection initialization. This doesn't work in all situations/environments, thus
for useAutoCommit="1" the ConnectionFactory does no longer set autoCommit to true on
connection creation.

To use the old behavior (OJB version 1.0.3 or earlier) set this property to true, then OJB change the
‘autoCommit’ state (if needed) of new obtained connections at connection initialization.

If false or this property isremoved, OJB dosen't try to change connection 'autoCommit' state at
connection initialization.

Usage example of supported custom attributes:

5.5.7.4. connection-pool

The connection-pool element specifies the connection pooling and low-level JIDBC driver
parameters. Read more about OJB connection handling.

0oJB

Elements
The documentation element can be used to store arbitrary information.

Use the attribute element to set JDBC-level properties or to enable DBCP PreparedStatement
pooling if your JDBC driver does not have a PreparedStatement cache already.

See section custom attributes below for more information.

} When using an external DataSource, OJB cannot configure any JDBC-properties. ‘

Attributes

maxActive (default=21) The maximum number of active connections that can be allocated from this
pool at the sametime, or zero for no limit.

maxldle (default=-1) The maximum number of active connections that can remain idle in the pool,
without extra ones being released, or zero for no limit.

minldle (Since OJB 1.0.4, default=0) The minimum number of active connections that can remain
idle in the pool, without extra ones being created, or zero to create none.

maxWait (default=5000) The maximum number of milliseconds that the pool will wait (when there
are no available connections) for a connection to be returned before throwing an exception, or -1 to
wait indefinitely.

Must be > 0 for timeout to actually happen in DBCP PoolingDataSource.

whenExhaustedAction (default=0)

e 0O- fail when pool is exhausted
e 1- block when pool is exhausted
2 - grow when pool is exhausted

validationQuery (default=not specified) The SQL query that will be used to validate connections
from this pool according to testOnBorrow/testOnReturn/testWhileldle. If specified, this query must
be an SQL SELECT statement that returns at |east one row.

If not specified, only connection.isClosed() checks will be performed according to
testOnBorrow/testOnReturn/testWhileldle.

Many database servers will discard idle connections after some time of inactivity. This timespan is usually configurable by the DBA and
can range from anything between one hour and severa days.
Consider specifying a vaidation query that fits your database server and set at least testOnBorrow=true.

Example validation queries:

testOnBorrow (default=true) The indication of whether connections will be validated before being
borrowed from the pool. If the connection fails to validate, it will be dropped from the pool, and
OJB will attempt to borrow another.

testOnReturn (default=false) The indication of whether connections will be validated before being

93

0oJB

returned to the pool.

testWhileldle (default=false) The indication of whether connections will be validated by theidle
object evictor (if any). If aconnection failsto validate, it will be dropped from the pooal.

timeBetweenEvictionRunsMillis (default=-1) The number of milliseconds to sleep between runs of
the idle object evictor thread. When non-positive, no idle object evictor thread will be run.

numTestsPer EvictionRun (default=10) The number of objects to examine during each run of the
idle object evictor thread (if any).
Has no meaning if timeBetweenEvictionRunsMillisis non-positive.

minEvictableldleTimeMillis (default=1800000) The minimum amount of time a connection may sit
idle in the pool beforeit is eligable for eviction by the idle object evictor (if any).

When non-positive, no connection will be dropped from the pool dueto idle time alone.

Has no meaning if timeBetweenEvictionRunsMillisis non-positive.

removeAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to remove abandoned
connectionsif they exceed the removeAbandonedTimout. If set to true a connection is considered
abandoned and €ligible for removal if it has been idle longer than the removeAbandonedTimeoui.
Setting this to true can recover db connections from poorly written applications which fail to close
aconnection.

If you have enabled "removeAbandoned"” then it is possible that a connection is reclaimed by the
pool because it is considered to be abandoned. This mechanism is triggered on borrowObject (iein
OJB when a PersistenceBroker gets a Connection) when:

(numdle < 2) and (numActive > maxActive - 3)

For example maxActive=20, 18 active connections and 1 idle connection would trigger the
"removeAbandoned”. But only the active connections that aren't used for more then
removeAbandonedTimeout seconds are removed. Traversing aresultset doesn't count as being used.
The abandoned object eviction takes place before normal borrowObject logic (there is no asynch
evictor thread like for testWhileldle).

removeAbandonedTimeout [ConnectionFactoryDBCPImpl] (default=300) Timeout in seconds
before an abandoned connection can be removed.
Has no meaning if removeAbandoned is false.

logAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to log stack traces for
application code which abandoned a Statement or Connection.

Logging of abandoned Statements and Connections adds overhead for every Connection open or new Statement because a stack trace
has to be generated.

94

‘ O
<
@

Custom attributes

OJB itself and the ConnectionFactory implementation classes support specific connection
configuration properties, these properties can be set by using custom-attributes.

Usage example of supported custom attributes:

jdbc.*

Since OJB 1.0.4, custom attributes with names starting with "jdbc." will be passed (without the
"jdbc." prefix) to the IDBC DriverManager when creating new Connection objects.

Use this attribute to set driver-specific customized tuning options. For example, to set
Oracle-batching to 5 statements:

fetchSize

(defaul t =0, unspecified) Setsahintinthe JDBC driver not to fetch more than specified
number of rows per server roundtrip for any ResultSet.

Setttings different than the default (0) are especially useful to reduce memory footprint when using
drivers that default to not using server-side cursors and retrieves all rows to the JDBC client-side
driver buffer. PostgreSQL JDBC driver isawell-known example of this.

Note:

0oJB

* Many JDBC driverswill silently ignore the fetchSze hint.
* Also note that fetchS ze has nothing to do with max rows returned by a ResultSet, only number of rows retrieved per JDBC- driver
network roundtrip to the database server (if the driver cares about the hint at all, that is).

dbcp.pool Prepar edStatements

Only valid for ConnectionFactoryDBCPImpl (def aul t =f al se) Enable prepared statement
pooling.

PreparedStatement pooling with Commons DBCP is programmatically disabled when using pl at f or m=Or acl €9i in OJB, since the
platform implementation activates Oracle-specific statement caching that conflicts with DBCP ObjectPool-based caching. le, for a
descriptor with platform="Oracle9i" there is no effect in setting:

dbcp.maxOpenPr epar edStatements

Only valid for ConnectionFactoryDBCPImpl (def aul t =0, unl i m t ed) The maximum
number of open statements that can be allocated from the statement pool at the same time, or zero
for no limit.

dbcp.accessT oUnder lyingConnectionAllowed

Only valid for ConnectionFactoryDBCPImpl (def aul t =f al se) Controlsif the DBCP
"Pool Guard" connection wrapper allows access to the underlying Connection instance from the
JDBC-driver.

Only use when you need direct access to driver-specific extentions. It is generally not needed to
change this setting in OJB.

* Do not close the underlying connection, only the original one.
* |f using P6Spy, the underlying connection in DBCP will still be wrapped by P6Spy and you will have to continue unwrapping to the
innermost delegate and Connection of JDBC-driver specific class.

5.5.7.5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key
generation. All sequence manager implementations shipped with OJB can be found in the
org.apache.ojb.broker.util.sequence package. If no sequence manager is defined, OJB uses the
default one. More info about sequence key generation here.

Elements

Use the custom+-attribute element to pass implementation specific properties.

Attributes

The className attribute represents the full qualified class name of the desired sequence manager
implementation - it is mandatory when using the sequence-manager element. All sequence manager
implementations you find will under org.apache.ojb.broker.util.sequence package named as

96

SequenceManager XXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

Custom Attributes

The SequenceManager implementation classes support specific configuration properties, these
properties can be set by using custom-attributes.

The description of the properties can be found in sequence manager docs.
Usage example of supported custom attributes:

5.5.7.6. object-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB.
There are three levels of declaration:

« in OJB.propertiesfile, to declare the standard (default) ObjectCache implementation

« on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per
connection/user level

» on class-descriptor level, to declare ObjectCache implementation on a per class level

The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.g. if you declare ObjectCache implementation ‘'my.cacheDef' as standard, set ObjectCache
implementation 'my.cacheA' in class-descriptor for class A and class B does not declare an
object-cache element. Then OJB use 'my.cacheA' as ObjectCache for class A and 'my.cacheDef' for
classB.

Elements

0oJB

Use the custom-attribute element to pass implementation specific properties.

Attributes
Attribute ‘class specifies the full qualified class name of the used ObjectCache implementation.

Custom Attributes

Many ObjectCache implementation classes support specific configuration properties, these
properties can be set by using custom-attributes.

The description of the properties can be found in object cache docs.
Usage example of supported custom attributes:

I npl "/ >

5.5.7.7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the
repository.dtd for details on which elements support it (e.g. class-descriptor, object-cache, ...).

The attribute-name identifies the name of the attribute.
The attribute-value identifies the value of the attribute.

To get access of the definied attribute use methods of
or g. apache. oj b. br oker . met adat a. At t ri but eCont ai ner . All classes supporting
custom attributes have to implement this interface.

Here you can see an example how to define an custom attribute within the class-descriptor element:

98

To access the attribute you have to know the associated At t r i but eCont ai ner class. Hereit
was ClassDescriptor. To read the attribute at runtime do:

5.5.7.8. class-descriptor

A class-descriptor and the associated java class ClassDescriptor encapsul ate metadata information
of an interface, abstract or concrete class.

Elements

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements
which specify the types extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables.
References to other persistent entity classes are specified by reference-descriptor elements.
Collections or arrays attributes that contain other persistent entity classes are specified by
collection-descriptor elements

A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

Attributes

The class attribute contains the full qualified name of the specified class. Asthis attribute is of the
XML type ID there can only be one class-descriptor per class.

The isolation-level attribute defines the locking isolation level of the specified class (used by OJB's
pessimistic locking api).

\[o]{=3

The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting
and only important when pessimistic locking was used.

If the proxy attribute is set, proxies are used for al loading operations of instances of this class. If
set to dynamic, dynamic proxies are used. If set to another value this value is interpreted as the
full-qualified name of the proxy classto use. More info about using of proxies here.

The proxy-prefetching-limit attribute specifies alimit to the number of elementsloaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.
The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain afull qualified class name. This class will be used as the
RowReader implementation used to materialize instances of the persistent class.

The extends attribute is deprecated and will be removed or reintroduced with changed
funcitonality in future. DON'T USE IT!

The accept-1ocks attribute specifies whether implicit locking should propagate to this class.
Currently relevant for the ODMG layer only.

The optional initialization-method specifies a no-argument instance method that is invoked after
reading an instance from a database row. It can be used to do initialization and validations.

The optional factory-class specifies afactory class that that isto be used instead of a no argument
constructor when new objects are created. If the factory class is specified, then the factory-method
also must be defined. It refers to a static no-argument method of the factory class that returns a new
instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache.
Means all field values (except references) will be replaced by values retrieved from the database.
It's set to false by default.

5.5.7.9. extent-class

An extent-class element is used to specify an implementing class or a derived class that belongs to
the extent of all instances of the interface or base class.

The class-ref attribute must contain a fully qualified classname and the repository file must contain
a class-descriptor for this class.

100

0oJB

5.5.7.10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom+-attribute element to pass implementation specific properties.

Theid attribute is optional. If not specified, OJB internally sorts field-descriptors according to
their order of appearance in the repository file.

If adifferent sort order isintended the id attribute may be used to hold a unique number identifying
the decriptors position in the sequence of field-descriptors.

} The order of the numbers for the field-descriptors must correspond to the order of columns in the mapped table. {

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The table attribute may specify atable different from the mapped table for the persistent class.
(currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify
the JDBC type by inspecting the Java attribute by reflection - OJB use the javal/jdbc mapping
desribed here.

The primarykey specifies if the column is a primary key column, default value isfalse. It's possible
to auto assign primary key fields, more info see autoincrement section

The nullable attribute specifiesif the column may contain null values.
The indexed attribute specifiesif there is an index on this column

The autoincrement attribute specifiesif the values for the persistent attribute should be
automatically generated by OJB. More info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence
manager implementations. Check the javadocs of the used sequence manager implementation to get
information if thisis a mandatory attribute. OJB standard sequence manager implementations build
a seguence name by its own, if the attribute is not set. More info about sequence key generation
here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More
about optimistic locking. The default value is false.

The updatel ock attribute is set to false if the persistent attribute is used for optimistic locking AND
the dbms should update the lock column itself. The default is true which means that when locking
istrue then OJB will update the locking fields. Can only be set for TIMESTAMP and INTEGER
columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default
fetch group.

The conversion attribute contains afully qualified class name. This class must implement the

interface or g. apache. oj b. accessl ayer. conver si ons. Fi el dConver si on. A
FieldConversion can be used to implement conversions between Java- attributes and database
columns. More about field conversion.

The length attribute can be used to specify alength setting if required by the jdbc-type of the
underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the
underlying database column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the
underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to
modified. readwrite marks fields that may be read and written to. anonymous marks anonymous
fields.

An anonymous field has a database representation (column) but no corresponding Java attribute.
Hence the name of such afield does not refer to a Java attribute of the class, but is used as a unique
identifier only. More info about anonymous keys here.

5.5.7.11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not
primitive but references another persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association
on the database level.

The name attribute holds the name of the persistent classes attribute. Depending on the used
PersistendField implementation, there must be e.g. an attribute in the persistent class with this name
or a JavaBeans compliant property of this name.

The class-ref attribute contains afully qualified class name. This classis the Object type of the
persistent reference attribute. Asthisis an IDREF there must be a class-descriptor for this classin
the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for

102

0oJB

this attribute.

The proxy-prefetch-limit attribute specifies alimit to the number of elements |oaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
isloaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).

This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fields itself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
isresponsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred
object or deletes it if the reference field is set to null. Also otm-dependent references behave as if
auto-update and auto-del ete were set to true, but the auto-update and auto-del ete attributes themsel f
must be always set to false for use with OTM layer.

103

0oJB

5.5.7.12. foreignkey

A foreignkey element contains information on a foreign-key persistent attribute that implement the
association on the database level.

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor
used as aforeign key.

Exactly one of these attributes must be specified.

Fﬁ_

5.5.7.13. collection-descriptor

A collection-descriptor contains mapping info for a Collection- or Array-attribute of a persistent
class that contains persistent entity Objects. See more about 1:n and m:n references.

The orderby element(s) allow to specify the order the collection objects. It's allowed to specify
multiple order fields.

The inver se-foreignkey elements contains information on foreign-key attributes that implement the
association on the database level.

The fk-pointing-to-this-class and fk-pointing-to-el ement-class elements are only needed if the
Collection or array implements a m:n association. In this case they contain information on the
foreign-key columns of the intermediary table.

Use the custom-attribute element to pass implementation specific properties.

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The collection-class may hold afully qualified class name. This class must be the Javatype of the
Collection attribute. This attribute must only specified if the attribute typeis not a

java.util. Col | ecti on (or subclass) or Array type. It is also possible to use non Collection
or Array type user defined "collection” classes. More info see section manageable collection.

The element-class-ref attribute contains afully qualified class name. This classis the Object type of
the elements of persistent collection or Array attribute. Asthisisan IDREF there must be a
class-descriptor for this class in the repository too.

DEPRECATED, please use the 'orderby’-element. The orderby attribute may specify afield of the
element class. The Collection or Array will be sorted according to the specified attribute. The sort
attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection

104

0oJB

attribute implements a m:n association.

The proxy attribute can be set to true to specify that proxy based lazy |oading should be used for
this attribute. More about using proxy here.

The proxy-prefetch-limit attribute specifies alimit to the number of elements |oaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
isloaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).

This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fieldsitself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
isresponsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api hone is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates collection
elements that were included into the collection, and deletes collection elements that were removed
from the collection. Also otm-dependent references behave as if auto-update and auto-delete were
set to true, but the auto-update and auto-del ete attributes themself must be always set to false for
use with OTM layer.

105

0J

os}

5.5.7.14. order-by
A order-by element contains an attribute name and a sort order.

The name attribute specifies the field or the column (full qualified column name) the order based
on. The sort attribute specifies the order direction.

Hereis an examples of how to use ordering for one side of am:n reference:

5.5.7.15. inver se-foreignkey

A inverse-foreignkey element contains information on a foreign-key persistent attribute that
implement the association on the database level.

Thefield-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor
used as aforeign key. Exactly one of these attributes must be specified.

5.5.7.16. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an
intermediary table in a m:n scenario.

10

»

o

JB

The column attribute specifies the foreign-key column in the intermediary table that points to the
class holding the collection.

5.5.7.17. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an
intermediary table in a m:n scenario.

The column attribute specifies the foreign-key column in the intermediary table that points to the
class of the collection elements.

5.5.7.18. query-customizer

A guery enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query.
More info about customizing collection queries.

Use the custom+-attribute element to pass implementation specific properties.

5.5.7.19. index-descriptor
An index-descriptor describes an index by listing its columns. It may be unique or not.

5.5.7.20. index-column

An index-column isjust the name of a column in an index.

5.5.7.21. Stored Procedure Support

OJB supports stored procedures for insert, update and del ete operations. How to use stored
procedures within OJB can be found here.

insert-procedure

107

0oJB

| dentifies the procedure/function that should be used to handle insertions for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the
source for each argument.

Use the custom+-attribute element to pass implementation specific properties.

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fieldsis 'true’, any nested '‘argument’
elementswill beignored. In this case, values for all field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then
values will be passed to the procedure/function based on the information in the nested 'argument'
elements.

update-procedure

| dentifies the procedure/function that should be used to handle updates for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the
source for each argument.

Use the custom-attribute element to pass implementation specific properties.

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include areturn value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fieldsis 'true', any nested ‘argument’
elements will be ignored. In this case, values for all field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fieldsis false, then
values will be passed to the procedure/function based on the information in the nested 'argument’

@
|

3

(7))

108

0oJB

delete-procedure

| dentifies the procedure/function that should be used to handle deletions for a specific
class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the
procedure/function as well as the source for each argument.

Use the custom+-attribute element to pass implementation specific properties.

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor
that are identified as being part of the primary key are to be passed to the procedure/function. If
include-pk-only is'true, any nested ‘argument' elements will be ignored. In this case, values for all
field-descriptors that are identified as being part of the primary key will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-pk-only isfalse, then
values will be passed to the procedure/ function based on the information in the nested ‘argument’
elements.

runtime-ar gument

Defines an argument that is passed to a procedure/function. Each argument will be set to avalue
from a field-descriptor or null.

Use the custom+-attribute element to pass implementation specific properties.

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that
provides the value for this argument. If this attribute is unspecified, then this argument will be set

constant-ar gument

Defines a constant value that is passed to a procedure/function.

Use the custom-attribute element to pass implementation specific properties.

109

The value attribute identifies the value that is passed to the procedure/ function.

5.5.8. Basic O/R M apping Technique

5.5.8.1. Mapping 1:1 associations

As asample for asimple association we take the reference from an article to its productgroup.

This association is navigable only from the article to its productgroup. Both classes are modelled in
the following class diagram. This diagram does not show methods, as only attributes are relevant
for the O/R mapping process.

ProductG roup Article
private Yector allArticleslnGroup protected int article d
private String description protected String article Mame
private int groupld protected boolean isSellouthrticle
private String grouphame protected int minimumsStock

protected int orde redUnits

protected double price

protected Inte face ProductS roup productC roup
protected int products roupld

protected int stock

protected int supplie rid

protected String unit

1:1 association

The association isimplemented by the attribute pr oduct G- oup. To automatically maintain this
reference OJB relies on foreignkey attributes. The foreign key containing the gr oupl d of the
referenced pr oduct gr oup isstored in the attribute pr oduct G- oupl d. To avoid FK attribute
in persistent object class see section about anonymous keys.

Thisisthe DDL of the underlying tables:

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

110

0oJB

« The attribute implementing the association (name=" pr oduct G oup") is productGroup.
« Thereferenced object is of type (
cl ass-ref ="org. apache. oj b. br oker. Product G oup")
or g. apache. oj b. br oker. Product G oup.
« A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

contains t!e name of t!e fl!!-!escrl ptor !eSCI’I !I ng t!e forel gn!ey fl!!s. T!e FI!!DGSCI‘I ptor

with the name "productGroupld" describes the foreignkey attribute productGroupl d:

See the following extract from the repository.xml file containing the Article ClassDescriptor:

This example provides unidirectional navigation only. Bidirectional navigation may be added by
including areference from a ProductGroup to asingle Article (for example, a sample article for the
productgroup). To accomplish this we need to perform the following steps:

1. Addaprivate Article attribute named sanpl eArti cl e totheclass Pr oduct G oup.
2. Addaprivateint attribute named sanpl eArti cl el d to the ProductGroup class representing
the foreign key. To avoid FK attribute in persistent object class see section about anonymous

keys.

111

0oJB

3. Addacolumn SAMPLE_ARTI CLE_| D | NT to thetable Kat egori en.
4. Add aFieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class
ProductGroup:

1. Add aReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

} When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK (

1:1 auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with

Per si st enceBr oker. store(...),thereferenced object will NOT be updated by
default. The reference will not be inserted or updated, the link to the reference (foreign key
value to the reference) on the main object will not be assigned automatically. The user has to
link the main object and to store the reference before the main object to avoid violation of
referential integrity.

link On updating or inserting of the main object with

Per si st enceBr oker. store(...),theFK assignment on the main object was done
automatic. OJB reads the PK from the referenced object and sets these values as FK in main
object. But the referenced object remains untouched. If no referenced object is found, the FK
will be nullified. (Oninsert it is allowed to set the FK without populating the referenced object)
« 0bject On updating or inserting of the main object with

Per si st enceBr oker. store(...),thereferenced object will be stored first, then OJB
doesthe same asin link.

false Is equivalent to link.

true Is equivalent to object.

auto-delete

« none On deleting an object with Per si st enceBr oker . del et e(...) thereferenced
object will NOT be touched.

link Is equivalent to none.

object On deleting an object with Per si st enceBr oker . del et e(...) thereferenced
object will be deleted too.

false Is equivalent to none.

true Is equivalent to object.

5.5.8.2. Mapping 1:n associations

112

0oJB

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only from the
ProductGroup to its Article instances. Both classes are modelled in the following class diagram.
This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

Products roup q = Article
private Yector allArticlesinG roup "w._ |protected int articleId
private 5tring de scription protected String article Name
private int groupld protected boolean isSelloutArticle
private String grouphame protected int minimumsStock

protected int orde redUnits

protected double price

protected Inte rface ProductG roup productC roup
protected int productG roupld

protected int stock

protected int supplie rid

protected String unit

1:n association

The association isimplemented by the Vect or attributeal | Arti cl esl nG oup onthe
ProductGroup class. Asin the previous example, the Article class contains aforeignkey attribute
named productGroupld that identifies an Article's ProductGroup. The Database table are the same
as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor contains the
following information:

1. The attribute implementing the association (nane="al | Arti cl esl nG oup")

2. Theclass of the elementsin the collection (
el enent - cl ass-ref ="org. apache. oj b. broker. Article")

3. Thename of field-descriptor of the element class used as foreign key attributes are defined in
inverse-foreignkey elements:

T!lSlsagaln pointing to t!efl!!-!escrlptor for t!e attn!ute pr o!uct Goupl ! in c‘ass

Article.
4. optiona attributes to define the sort order of the retrieved collection:
orderby="articleld" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

113

0oJB

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1. loading al Articles of the ProductGroup immediately after loading the ProductGroup. Thisis
done with two SQL -calls: one for the ProductGroup and one for all Articles.
2. if Articleisaproxy (using proxy classes), OJB will only load the keys of the Articles after the

ProductGroup. When accessing an Article-proxy OJB will have to materialize it with another
SQL-Call. Loading the ProductGroup and all it's Articles will thus produce n+2 SQL-calls: one
for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

« A.issuitablefor asmall number of related objects that are easily instantiated. It's efficient
regarding DB-calls. The major drawback is the amount of data loaded. For example to show a
list of ProductGroups the Articles may not be needed.

» B.isbest used for alarge number of related heavy objects. This solution loads the objects when
they are needed ("lazy loading"). The priceto pay isaDB-call for each object.

Further down athird solution using a single proxy for a whole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. But in some cases the
default behaviour of OJB is undesired. Please read here for more information.

} When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK (

1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user has
to link and to store the referenced objects after storing the main object to avoid violation of
referential integrity.

e link On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

» object On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objects will be linked and stored

114

automatically.
« falselsequivaenttolink.
« truelsequivalent to object.

auto-delete

« none On deleting an object with Per si st enceBr oker . del et e(...) thereferenced
objects are NOT touched. This may lead to violation of referential integrity if the referenced
objects are childs of the main object. In this case the referenced objects have to be deleted
manually first.

link Is equivalent to none.

object On deleting an object with Per si st enceBr oker . del ete(...) thereferenced
objects will be deleted too.

false I's equivalent to none.

true Is equivalent to object.

5.5.8.3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated support
for non decomposed m:n associations.

Manual decomposition into two 1:n associations

Have alook at the following class diagram:

Perzon Project

-id :int
-title : 5tring

-id : int
-firstname : 5tring

-lastname : 5tring
-projects : Collection
-roles : Collection

—-de=cription @ 5tring
-p=rzons ; Collection
-roles : Collection

m:N association

We see atwo classes with am:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.

Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

Thisintermediary table allows to decompose the m:n association into two 1:n associations. The
intermediary table may also hold additional information. For example, the role a certain person
plays for a project:

The decomposition is mandatory on the ER model level. On the object model level it is not
mandatory, but may be avalid solution. It is mandatory on the object level if the association is
qualified (asin our example with arolename). Thiswill result in the introduction of a association
class. A class-diagram reflecting this decomposition looks like:

Perzan Role Froject
-id : int 0% | -person_id :int o.* -id :int
-firstname : String -project_id : int ~title : String
-lastname : 5tring -perzon : Persan -de =cription @ 5tring
-prajects : Collection —-project : Project -perzons : Collection
-roles : Collection -rale Hame : 5tring —roles : Collaction

m:N association

A Per son object has a Collection attribute r ol es containing Rol e entries. A Pr oj ect hasa
Collection attribute r ol es containing Rol e entries. A Rol e hasreference attributes to its

Per son andtoitsPr oj ect .

Handling of 1:n mapping has been explained above. Thus we will finish this section with a short
look at the repository entries for the classesor g. apache. oj b. br oker . Per son,

or g. apache. oj b. br oker. Proj ect andor g. apache. oj b. br oker. Rol e:

116

Support for Non-Decomposed m:n M appings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a Person
does not have a collection of Rol e objects but only a Collection of Pr o] ect objects (held in the
attribute pr oj ect s). Projects also are expected to contain a collection of Per son objects (hold
in attribute per sons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes pr oj ect s andr ol es need additional information on the intermediary table and the

foreign key columns pointing to the PERSON table and the foreign key columns pointing to the
PRQJECT table:

OJB supports amultiplicity of collection implementations, inter alia
org. apache. oj b. broker. util.collections. Renoval Awar eCol | ecti on and

org. apache. oj b. broker. util.coll ecti ons. Renoval Awar eLi st . By default the removal aware collections were used.
This cause problems in m:n relations when aut o- updat e="true" or "object" andaut o-del ete="fal se" or "none"
is set, because objects deleted in the collection will be deleted on update of main object. Thusit is recommended to use aNOT removal
aware collection class in m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

An full example for a non-decomposed m:n relation looks like:

0oJB

That isal that needs to be configured! See the codein class
or g. apache. oj b. br oker. M oNVappi ng for JUnit testmethods using the classes Per son,
Proj ect andRol e.

} When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK (

m:n auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectsare NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entriesin the indirection table) automatically. The user has to store the main
object, the referenced objects and to link the m:n relation after storing of all objects.
establishing the m:n relationship before storing main and referenced objects may violate
referential integrity.

« link On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entriesin the indirection table).

Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of
referential integrity.

« 0bject On updating or inserting of the main object with
Per si st enceBr oker.store(...),thereferenced objectswill be linked and stored
automatically.

« falselsequivaenttolink.

« truelsequivalent to object.

auto-delete
« none On deleting an object with Per si st enceBr oker . del ete(...) thereferenced

119

0JB

objects are NOT touched. The corresponding entries of the main object in the indirection table
will not be removed. This may lead to violation of referential integrity depending on the
definition of the indirection table.

« link On deleting an object with Per si st enceBr oker . del et e(...) them:nrelation
will be unlinked (all entries of the main object in the indirection table will be removed).

» 0bject On deleting an object with Per si st enceBr oker . del ete(...) al referenced
objects will be deleted too.

« falselsequivaenttolink.

« truelsequivalent to object.

5.5.8.4. Setting L oad, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Javaterminology) by declaring special Reference and Collection Descriptors. These
Descriptor may contain some additional information that modifies OJB's behaviour on object
materialization, updating and deletion.

The behaviour depends on specific attributes

» auto-retrieve - possible settings are false, true. If not specified in the descriptor the default
valueistrue

» auto-update - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

» auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

When using atop-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.

For OTM- and JDO-api the settings are:

- auto-retrieve="true"

- auto-update="false"

- auto-retrieve="false"

This are at the same time the default auto-XX X settings (so don't specify any of this attributes will have the same effect).
For the ODM G-api the mandatory settings are (since OJB 1.0.2):

- auto-retrieve="true"

- auto-update="none"

- auto-retrieve="none"

The attribute auto-update and auto-del ete are described in detail in the corresponding sections for
1:1, 1:n and m:n references. The auto-retrieve setting is described below:

auto-retrieve setting

Theaut o-retri eve attributeusedinr ef er ence- descri pt or or
col | ecti on-descri pt or elements handlesthe loading behaviour of references (1:1, 1:n and
m:n):

» falself set false the referenced objects will not be materialized on object materiaization. The
user hasto materialize the n-side objects (or single object for 1:1) by hand using one of the
following service methods of the Per si st enceBr oker class:

Thefirst method load only the specifi
for the given object.

reference, the second one |oads

Be careful when using "opposite” settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or
"true" or "link").

120

Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an
nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference was
removed.

« truelf set true the referenced objects (single reference or al n-side objects) will be automatic
loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but
lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to
use cascading retrieval (aut o-retri eve="true"), cascading insert/update (

aut o- updat e="obj ect " or aut o- updat e="t r ue") and cascading delete (

aut o- del et e="obj ect " oraut o-del et e="t rue") operations:

Link references

Ifinref erence-descriptor orcol | ecti on-descri ptor the auto-update or

auto-del ete attributes are set to none, OJB does not touch the referenced objects on insert, update or
delete operations of the main object. The user has to take care of the correct handling of referenced
objects. When using referential integrity (who does not ?) it's essential that insert and delete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK valuesis transcribed with
link referencesin OJB. In 1:1 references the main object has a FK to the referenced object, in 1:n
references the referenced objects have FK pointing to the main object and in non-decomposed m:n
relations a indirection table containing FK values from both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK) in
org. apache. oj b. broker . uti | . Broker Hel per class.

These methods are accessibleviaor g. apache. oj b. br oker . Per si st enceBr oker :

Note:

The link/unlink methods are only useful if you set auto-update/-delete to none. In all other cases OJB handles the link/unlink of
referencesinternaly. It is also possible to set all FK values by hand without using the link/unlink service methods.

Examples

Now we prepared for some example. Say class Mbvi e has an m:n reference with class Act or and
we want to store an Movie object with alist of Actor objects. The auto-update setting of
collection-descriptor for Movie is none:

First store the main object and the references, then use

br oker. servi ceBroker Hel per().link(nmovie, "actors", true) tolinkthe
main object with the references. In case of am:n relation linking create all FK entriesin the
indirection table.

In the next examples we want to manually delete aPr o] ect object with a 1:n relation to class
SubPr oj ect . Inthe example, the Project object has load all SubProject objects and we want to
delete the Project but don't want to delete the referenced SubProjects too (don't ask if this make
sense ;-)). SubProject has an FK to Project, so we first have to unlink the reference from the main
object to the references to avoid integrity constraint violation. Then we can delete the main object:

5.5.8.5. Using Proxy Classes

Proxy classes can be used for "lazy loading” aka "lazy materialization”. Using Proxy classes can

help you in reducing unneccessary database |ookups.

There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switchesin
repository.xml. Thisis the solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy implementations.

122

As it isimportant to understand the mechanics of the proxy mechanism | highly recommend to read
this section before turning to the next sections "using dynamic proxies', "using a single proxy for a
whole collection" and "using a proxy for areference", covering dynamic proxies.

As a simple example we take a ProductGroup object pg which contains a collection of fifteen
Article objects. Now we examine what happens when the ProductGroup is loaded from the
database:

Without using proxies all fifteen associated Article objects are immediately |oaded from the db,
even if you are not interested in them and just want to lookup the description-attribute of the
ProductGroup object.

If proxies are used, the collection isfilled with fifteen proxy objects, that implement the same
interface as the "real objects" but contain only an OID and avoid reference. The fifteen article
objects are not instantiated when the ProductGroup is initially materialized. Only when amethod is
invoked on such a proxy object will it load its "real subject” and delegate the method call toit.
Using this dynamic delegation mechanism instantiation of persistent objects and database |ookups
can be minimized.

To use proxies, the persistent classin question (in our case the Article class) must implement an
interface (for example InterfaceArticle). Thisinterface is needed to allow replacement of the proper
Article object with a proxy implementing the same interface. Have alook at the code:

0oJB

The proxy is constructed from the identity of the real subject. All method calls are delegated to the
object returned by r eal Subj ect ().
This method uses getReal Subject() from the base class Virtual Proxy:

The proxy delegates the the materialization work to its| ndi r ect i onHandl er . If thereal
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the
following section to the XML repository file:

The following class diagram shows the rel ationships between all above mentioned classes.

124

0oJB

VirtualPraxy = = |nte face = = ProductG roup
Inte face Article -
+addTastocklin diff:int . -g!*:c“r:;'tel; InG i Vector
" +getArticleld :int .. = 'n .
+WirtualPrazyd +get.-9«rticle Mame i : String = -groupld :int
+¥irtualProxyioid:) +getPraductG raup) -groupMame : String
+WirtualPrososihandle r) +Qetstockyalue § : double +getldd :int
+alreadyMate rializedd : baolean))) +setArticle Idiin newA rticle Id:int) +taStringd : String
+create Prnx‘gflipmxyc I;:::C lazs, realSubjectside ntity:) : Object +setArticle Mame (newA rticle Name String) +getNamef ; String
+getRealsubjectd : Object +tostringd : String +3etName lin groupName :String)
‘{"_\ +gatAllArticlesd : List
| +zetldlin new\alue:int)

----------------------- 1
| |
| |
1 1
Article Prosxy Article
HarticleId : int
#article Mame : String
+Article Prozoy #izSe|loutArticle : boolean
+Article Prozoyiunique 1d:) #minimumstock : int
+Article Prozoyihandle r) #arderedUnits : int
+addToStockiin diff:int) #price : double
+getArticle | :int #productGroupld : int
+gethrticle Mame § : String #stock it
+getProductG roupd #supplierld : int
+getStockyalue § double #unit : String
-realSubject] : Inte face Article : . -
+setArticle Idiin newArticlz |d:int) :;E?jt{g%gc'kscf:g?ﬂ.inﬂ
+zetArtiche Name (newArticle Mame String) +getArticle 140 ; int :

+getArticle Mame 0 String

+get5itockalue) : double

+zetArticle Idlin newArticle Id:int)

+zetArticle Name inewArticle Mame Stringd
+getlsSelloutArticle § ; boolean
+getMinimumStock(: int

+getlrde redUnitsf : int

+getPrice § : double

+getProductC roupl

+getProductC roupld] @ int

+getStock(:int

+getSupplierld] : int

+getUnitd : String

+zetlzhe [loutArticle (in newlsSe lloutArticle :boalean)
+setMinimumStockiin newMinimumstock:int)
+zetlrde redUnitsiin newQrde redUnits:int)
+setPrice{in newPrice :double)

+setProductG roupinewProductG roup:

+ zetProductG roupldiin newProductG roupld:int)
+setStockiin newStock:int)

+zetSupplie ridiin newSupplierid:int)
+=zetUnit{newlnit:5tring)

proxy image

Using Dynamic Proxies

The implementation of a proxy classis aboring task that repeats the same delegation scheme for
each new class. To liberate the devel oper from this unproductive job OJB provides a dynamic
proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK 1.2 we ship areplacement
for therequired j ava. | ang. r ef | ect classes. Creditsfor this solution to ObjectMentor.) The
basic idea of the dynamic proxy concept isto catch all method invocations on the not-yet
materialized (loaded from database) object. When amethod is called on the object, Java directs this
call to the invocation handler registered for it (in OJB's case a class implementing the

or g. apache. oj b. broker. core. proxy. I ndi recti onHandl er interface). This
handler then materializes the object from the database and replaces the proxy with the real object.
By default OJB uses the class

or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er Def aul t | npl . If
you are interested in the mechanics have alook at this class.

To use adynamic proxy for lazy materialization of Article objects we have to declareit in the
repository.xml file.

Just as with normal proxies, the persistent classin question (in our case the Article class) must

125

0oJB

implement an interface (for example InterfaceArticle) to be able to benefit from dynamic proxies.

Asof OJB 1.0.4, afacility is now present to allow the generation of dynamic proxies that do not require the persistent classto
implement an interface. Previous versions generated Proxies using the JDK proxy pattern. That has been extracted into a new
configuration setting named 'ProxyFactoryClass..

Two implementations of this ProxyClass have been provided: the previous JDK-based version (default), and a new CGLIB-based
implementation. Since the CGLIB version does byte-code manipulation to generate the proxy, your classis not required to implement
any interface. All generated Proxies will automatically be sub-classes of your persistent class.

See below in the section "Customizing the proxy mechanism" for how to enable the new CGLIB Proxy generation.

Using a Single Proxy for a Whole Collection

A collection proxy represents awhole collection of objects, where as a proxy class represents a
single object.

The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A
collection proxy only needs asingle db-call to materialize all it's objects. This happens the first
time its content is accessed (ie: by calling iterator();). An additional db-call is used to calculate the
size of the collection if size() is called before loading the data. So collection proxy is mainly used
as a deferred execution of aquery.

OJB uses three specific proxy classes for collections:

1. List proxiesare specificj ava. uti | . Li st implementations that are used by OJB to replace
lists. The default set proxy classis
or g. apache. oj b. broker. core. proxy. Li st ProxyDef aul t | npl

2. Set proxiesare specificj ava. uti | . Set implementations that are used by OJB to replace
sets. The default set proxy classis
or g. apache. oj b. br oker. core. proxy. Set ProxyDef aul t | npl

3. Collection proxies are collection classes implementing the more generic
java. util. Coll ecti on interface and are used if the collection is neither alist nor a set.
The default collection proxy classis
or g. apache. oj b. broker. core. proxy. Col | ecti onProxyDef aul t 1 npl

Which of these proxy classis actually used, is determined by thecol | ect i on- cl ass setting of
this collection. If noneis specified in the repository descriptor, or if the specified class does not
implementj ava. uti | . Li st norjava. util . Set, thenthe generic collection proxy is used.

The following mapping shows how to use a collection proxy for a relationship:

126

The classes participating in this relationship do not need to implement a special interface to be used
in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not
recommended because it increases the number of database calls.

Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that the
ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.

In the following mapping the class ProductGroup is not defined to be a proxy classin its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

Because a proxy reference is only about the location of the definition, the referenced class must
implement a special interface (see using proxy classes).

Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies, you can select a ProxyFactory, as well as provide your own indirection
handler. Two default indirection handler implementations have been provided that coorespond to
the apporpriate ProxyFactory (IndirectionHandlerJDKImpl and IndirectionHandlerCGLIBImpl).

Note: All indirection handlers must implement the appropriate base indirection handler class,
depending on what ProxyFactory is being used. For example: when using ProxyFactoryJDKImpl,
the specified indirection handler must implement the IndirectionHandlerJDK interface.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(ava.util.Collection,java.util.List,orjava.util.Set)aswell asthe
or g. apache. oj b. br oker. Manageabl eCol | ect i on interface.

Proxy implementations are configured in the ojb propertiesfile. These are the relevant settings:

5.5.8.6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your
Domain objects. Y ou need atype and value mapping described by a FieldConversion!

5.5.9. Advanced O/R Mapping Technique

5.5.9.1. Extents and Polymor phism

0oJB

Working with inheritance hierarchiesis acommon task in object oriented design and programming.
Of course, any serious Java O/R tool must support inheritance and interfaces for persistent classes.
There are many example classes for polymorphism in OJB's JUnit TestSuite.

To demonstrate/explain Extents and Polymor phism we will look at a simple class hierarchy:
Thereisaprimary interfacel nt er f aceArti cl e. Thisinterfaceisimplemented by Arti cl e
and CdArti cl e. Thereisalso aclassBookArti cl e derived fromArti cl e. (Seethe
following class diagram for details)

<=Interfacex>i
Inte face Article
public woid addToStockiint diff)
public int getArticlzld
public String getArticle Mame
public Inte face ProductC roup getProductS roupld
public double getStockWalus
public wvoid setArticle [diint newd rticle 1d)
public woid setArticle Mame String newArticle Mame)
public String toStringd

£y FAN

Article CdArticle
protected int article Id private int articlzId
protected String article Mame private String article Name
protacted boclean isSe lloutArticle private int is3elloutArticls
protected int minimumStock private int mlnlmumSt_ock
protected int orde redUnits private int orde redUnits
protected double price private double price
protected Inte face Products roup products roup private Interface FroductGroup productGroup
protacted int productG roupld private int products roupld
protected int stock private int stock
protected int suppliarld private int supplie rid
protacted String unit private Str!ng unit
private String labe Iname
private String musicians

BookArticle

private int articlzd

private String article Name
private int is%elloutArticle
private int minimumStock
private int orde redUnits
private double price
private Interface ProductGroup productGroup
private int productCroupld
private int stock

private int supplierlid
private String unit

private String author
private String isbn

polymorphism.gif

Polymor phism

OJB alows usto use interfaces, abstract or concrete base classes in queries, or in type definitions
of reference attributes. A Query against theinterfacel nt er f aceAr ti cl e must not only return

objectsof type Arti cl e but also of CdArti cl e and BookArti cl e!

The following example method searches for all objectsimplementing | nt er f aceArti cl e with
an articleName equal to Hamlet (provided that the object mapping is correct, details will described
later). The Collection is e.g filled with one matching BookAr t i cl e object.

129

0oJB

Of courseit is also possible to define reference attributes of an interface or baseclass type. The
exampleclassArt i cl e hasareference attribute (1:1 reference) of type Pr oduct G- oup and this
can be a concrete/abstract class or interface.

Extents

The query in the last example returned just one object. Now, imagine a query against the

I nt erfaceArti cl e interface with no selecting criteria. OJB returns al the objects
implementing | nt erfaceArticle.Eg.alArticl e, BookArticleandCdArticles
objects.

In the following example the method prints out the collection of all | nt er f aceArti cl e
objects:

The set of all instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG and JDO
terminology.

0JB extends this notion slightly, as all objects which are subclasses of a concrete/abstract base class or implementing a given interface
can be regarded as members of the base class or interface extent.

In our class diagram we find:

1. two simple one-class-only extents, BookArticle and CdArticle.
2. A compound extent Article containing al Article and BookAvrticle instances.
3. Aninterface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the metadata
mapping file. The classes from the above exampl e require the following declarations:

1. one-class-only extents require no declaration
2. A declaration for the base classAr t i cl e, defining which classes are subclasses of Article:

3. A declarationfor | nt erf aceArti cl e, defining which classes implement this interface:

No need to declare BookAr t i cl e here, becauseit'sadeclared sub classof Arti cl e, soit's
implicit declared by Art i cl e extent.

130

0oJB

Why isit necessary to explicitely declare which classes implement an interface and which classes
are derived from a base class?

Of courseit is quite simple in Javato check whether a class implements a given interface or
extends some other class. But sometimes it may not be appropiate to treat special implementors
(e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but isonly allowed
to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as
derived from a base even if they are not (we don't recommend to use this feature it's bad design, but
if you don't have an alternative...).

As an example, you will find that the ClassDescriptor of abstract test class

or g. apache. oj b. br oker. Col | ecti onTest $BookShel f 1t eminthe OJB's Test Suite

contains an entry declaring classor g. apache. oj b. broker. Col | ecti onTest $Candi e
asaderived class:

Performance Tip

When using extents OJB will produce some overhead for each declared extent (e.g. execute a
separate select-query for each extent or using complex table joins).

Thusit'simportant to avoid unnecessary extent declarations. If in the above example class

| nt erfaceArti cl e isnever used in queries, don't declare the extents for the implementing
classes(Articl e, CdArti cl e). It'saways possible to add additional extents in mapping files.

5.5.9.2. Mapping I nheritance Hierar chies

In the literature on object/relational mapping the problem of mapping inheritance hierarchiesto
RDBMS has been widely covered. In the following sections we will use asimple inheritance
example to show the different inheritance mapping strategies.

Assume we have a base class Enpl oyee and class Execut i ve extends Enpl oyee. Further on
classManager extendsExecuti ve.

mapping-inheritance.png
If we have to define database tables that have to contain these classes we have to choose one of the
following solutions:

1. Map each class of ahierarchy to adistinct table and have all attributes from the base class in the
derived class.

2. Map class hierarchy onto one table.

3. Map subclassfields of ahierarchy to adistinct table, but do not map super classfieldsto
derived classes. Use joinsto materialize over al tablesto materialize objects.

OJB provides direct support for all three approaches.

} But it's currently not recommended to mix mapping strategies within the same hierarchy ! ‘

131

In the following we demonstrate how these mapping approaches can be implemented by using
OJB.
Mapping Each Class of a Hierarchy to a Distinct Table (table per class)

Thisisthe most simple solution. Just write a complete ClassDescriptor with FieldDescriptors for al
of the attributes, including inherited attributes.

The classes of our mapping example would look like:

The ClassDescriptorsinclude all fields of the representing java-class and each descriptor pointsto a
different table:

The extent-class element is needed to declare the inheritance between the classes.
The DDL for the tables would look like:

Mapping Class Hierar chy on the Same Table (table per hierarchy)

Mapping several classes on one table works well under OJB. Thereis only one special situation

0oJB

that needs some attention:

Storing Enpl oyee, Executi ve and Manager objectsto thistable works fine. But now
consider a Query against the baseclass Enpl oyee. How can the correct type of the stored objects
be determined?

OJB needs adiscriminator column of type CHAR or VARCHAR that contains the class name to be
used for instantiation. This column must be mapped on a special attribute oj bConcr et eCl ass.
On loading objects from the table, OJB checks this attribute and instantiates objects of thistype.

The criterion for oj bConcr et ed ass is statically added to the query in class Quer yFact or y and it therefore appearsin the
sel ect-statement for each extent. This means that mixing mapping strategies should be avoided.

The classes of our mapping example would look like:

Getter/setter for attribute oj bConcr et eCl ass in base class Enpl oyee are only needed if OJB isforced to use getter/setter for field
' access. ‘

Here are the metadata mappings of our mapping example:

134

The column CLASS _NANME is used to store the concrete type of each object.
The extent-class element is needed to declare the inheritance between the classes.
The DDL for the table would look like:

Implement your own Discriminator Handling

If you cannot provide such an additional column, but need to use some other means of indicating
the type of each object you will require some additional programming:

Y ou haveto derive a Class from

or g. apache. oj b. br oker . accessl ayer. RowReader Def aul t | npl and override the
method RowReader Def aul t I npl . sel ect G assDescri ptor () toimplement your
specific type selection mechanism. The code of the default implementation looks like follows:

After implementing your own RowReader you must edit the ClassDescriptor for the respective
classin the XML repository to specify the usage of your RowReader Implementation:

136

Y ou will learn more about RowReaders in this section.

M apping Each Subclassto a Distinct Table (table per subclass)

This mapping strategy maps all subclass fields of a hierarchy to a distinct table (but do not map
super classfields to derived classtables - except the primary key fields) and use joins to materialize
over all tablesto materialize the objects.

The classes of the inheritance hierarchy don't need any specific fields or settings, thus our mapping
example java-classes ook would look like the classes for the table-per-class mapping.

The next code block contains the class-descriptors of our mapping example.

0oJB

The mapping for base class Enpl oyee isordinary and we using a autoincrement primary key
field.

In the subclasses Execut i ve and Manager it's not allowed to use autoincrement primary keys,
because OJB will automatically copy the primary keys of the base classto all subclasses.

As you can see this mapping needs a special reference-descriptor in the subclasses Execut i ve
and Manager that advises OJB to load the values for the inherited attributes from the super-class
by a JOIN using the foreign key reference.

Thenanme="super " attributeis not used to address an actual attribute of the super-class but as a
marker keyword defining the JOIN to the super-class.

1. The auto-xxx attributes and the proxy attribute will be ignored when using the super keyword.
2. Beaware that this sample does not declare Execut i ve or Manager to be an extent of Enpl oyee. Using extents here will lead to
problems (instatiating the wrong class) because the primary key is not unique within the hierarchy defined in the repository.

The DDL for the tables would look like:

Attributes from the base- or superclasses can be used the same way as attributes of the target class
when querying - e.g. for Execut i ve or Manager . No path-expression is needed in this case. The
following examplesreturnsal Execut i ve and Manager matching the criteria:

138

0oJB

Table Per Subclassvia Foreign Key

The above example is based on the assumption that the primary key attribute Enpl oyee. i d and
its underlying column EMPLOYEE. | Dis also used asthe foreign key attribute in the the
subclasses.

Now let us consider a case where thisis not possible, then it's possible to use an additional foreign
key field/column in the subclass referencing the base-/superclass.

In this case the layout for class Execut i ve would need an additional field enpl oyeeFk to store
the foreign key reference to Enpl oyee.

To avoid the additional field in the subclass (if desired) we can use OJB's anonymousfield feature
to get everything working without the enpl oyeeFk attribute in subclass Enpl oyee (thusthe
java classes of our mapping example). We keep the field-descriptor for enpl oyeeFk, but declare

it as an anonymous field. We just have to add an attribute access="anonynous" to the new
field-descriptor enpl oyeeFk:.

139

Now it's possible to use autoincrement primary key fieldsin all classes of the hierarchy (because
they are decoupled from the inheritance references).
The foreignkey-element have to refer the new (anomymous) foreign-key field.

The used primary keys (compound or single) have to unique over the mapped class hierarchy to avoid object identity conflicts. Else it
could happen e.g. when searching for a Enpl oyee with id="42" OJB maybe find aEnpl oyee and aExecut i ve object with
id="42"1.

Thusit's problematic to use a database idenity columns based sequence-manager. In this case it's mandatory to use a different value
scope (start index of identity column) for each classin hierarchy (e.g. 1 for Employee, 1000000000 for Executive, ...).

5.5.9.3. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes.
With OJB thisis no problem, but there are a couple of thingsto be aware of, which are detailed in
this section.

Consider this example hierarchy :

140

Here, class C references the interface A rather than B. In order to make this work with OJB, four
things must be done:

« All features common to all implementations of A are declared in the class descriptor of A. This
includes references (with their foreignkeys) and collections.
« Sinceinterfaces cannot have instance fields, it is necessary to use bean propertiesinstead. This
means that for every field (including collection fields), there must be accessors (a get method
and, if the field isnot marked asaccess="r eadonl y", aset method) declared in the
interface.
Since we're using bean properties, the appropriate
or g. apache. oj b. br oker . net adat a. fi el daccess. Persi stent Fi el d
implementation must be used (see below). This classis used by OJB to access the fields when
storing/loading objects. Per default, OJB uses a direct access implementation
(or g. apache. oj b. br oker. net adat a. fi el daccess. Persi stentFi el dDi rectl npl)
which requires actual fields to be present.
In our case, we need an implementation that rather uses the accessor methods. Since the
Per si st ent Fi el d setting is (currently) global, you have to check whether there are
accessors defined for every field in the metadata. If yes, then you can use the
or g. apache. oj b. br oker . net adat a. fi el daccess. Persi stent Fi el dl ntrospectorln
otherwise you'll have to resort to the
or g. apache. oj b. br oker. net adat a. fi el daccess. Per si st ent Fi el dAut oPr oxyl npl ,
which determines for every field what type of field it is and then uses the appropriate strategy.
« |If at some place OJB hasto create an object of the interface, say as the result type of a query,
then you have to specify f act ory- cl ass and f act or y- net hod for the interface. OJB
then uses the specified class and (static) method to create an uninitialized instance of the
interface.

In our example, thiswould result in:

The class descriptors would look like:

One scenario where you might run into problemsis the use of interfaces for nested objects. In the
above example, we could construct such a scenario if we remove the descriptorsfor A and B, as
well asthe foreign key field al d from class C and change its class descriptor to:

The accessto desc will work because of the usage of bean properties, but you will get into trouble
when using dynamic proxies for C. Upon materializing an object of type C, OJB will try to create
theinstance for the field obj whichisof type A. Of course, thisis an interface but OJB won't
check whether there is class descriptor for the type of obj (in fact there does not have to be one,
and usually there isn't) because obj isnot defined as areference. Asaresult, OJB triesto
instantiate an interface, which of course fails.

Currently, the only way to handle thisis to write a custom invocation handler that knows how to
create an object of type A.

5.5.9.4. Change PersistentField Class

0oJB

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence capable
classes. All strategy implementation classes have to implement the interface

or g. apache. oj b. br oker . net adat a. fi el daccess. Persi stent Fi el d. OJB
provide a few implementation classes which can be set in OJB.propertiesfile:

i rect | npl
rivil egec
| nt r ospect

naBeanl r
ut oPr oxyl

E.g. if the PersistentFieldDirectimpl is used there must be an attribute in the persistent class with
this name, if the PersistentFieldlntrospectorimpl is used there must be a JavaBeans compliant
property of this name. More info about the individual implementation can be found in javadoc.

5.5.9.5. How do anonymous keys work?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys.

All involved classes can befound in or g. apache. oj b. br oker . net adat a. fi el daccess
package. The classes used for anonymous keys start with a Anonynous XYZ. j ava prefix.

Main class used for provide anonymous keysis

or g. apache. oj b. br oker . nmet adat a. fi el daccess. AnonynousPer si st ent Fi el d.
Current implementation use an object identity based weak HashMap. The persistent object identity
isused as key for the anonymous key value. The (Anonymous)PersistentField instance is associated
with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change, e.g.
the persistent object will be de-/serialized or copied. In conjuction with 1:1 references this will be
no problem, because OJB can use the referenced object to re-create the anonymous key information
(FK to referenced object).

144

0oJB

The use of anonymous keysin 1:n references (FK to main object) or for PK fieldsis only valid when object identity does not change,
e.g. useinsingle VM without persistent object serialization and without persistent object copying.

5.5.9.6. Using Rowr eader

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism.
All implementation classes have to implement interface RowReader .

Y ou can specify the RowReader implementationin
« theQJB. properti es fileto set the standard used RowReader implementation

e within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
QIB. properti es file If neither a RowReader was set in OJB.propertiesfile nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To
materialize objects from ardbms OJB uses Rslterators, that are essentially wrappersto JDBC
ResultSets. Rslterators are constructed from queries against the Database.

Themethod Rsl t er at or . next () isused to materialize the next object from the underlying
ResultSet. This method first checks if the underlying ResultSet is not yet exhausted and then
delegates the construction of an Object from the current ResultSet row to the method

get Obj ect FronResul t Set () :

145

This method first uses a RowReader to instantiate a new object array and to fill it with primitive
attributes from the current ResultSet row.

The RowReader to be used for a Class can be configured in the XML repository with the attribute
r ow r eader . If no RowReader is specified, the standard RowReader isused. The method
readoj ect ArrayFron{...) of thisclasslookslike follows:

In the second step OJB checksif there is already a cached version of the object to materialize. If so
the cached instance is returned. If not, the object is fully materialized by first reading in primary
attributes with the RowReader method r eadObj ect Fron{ Map row, C assDescri ptor
descri pt or) andinasecond step by retrieving reference- and collection-attributes. The fully

materilized Object is then returned.

By implementing your own RowReader you can hook into the OJB materialization process and
provide additional features.

Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with aforeign key
relationship to a different database table but read the associated object 'inline' from some columns
of the master object's table. This approach is also called 'nested objects. The section nested objects
contains a different and much simpler approach to implement nested fields.

Theclassor g. apache. oj b. broker. Articl eWthSt ockDet ai | hasast ockDet ai |
attribute, holding areferenceto aSt ockDet ai | object. The class StockDetail is not declared in
the XML repository. Thus OJB is not able to fill this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
or g. apache. oj b. br oker. RowReader Test | npl extends the RowReaderDefaultimpl and
overridesther eadObj ect Fron{ . . .) method asfollows:

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the
following entry:

5.5.9.7. Nested Objects

In the last section we discussed the usage of a user written RowReader to implement nested objects.
This approach has several disadvantages.

1. Itisnecessary to write code and to have some understanding of OJB internals.

2. Theuser must take care that all nested fields are written back to the database on store.
This section shows that nested objects can be implemented without writing code, and without any
further trouble just by afew settings in the repository.xml file.

Theclassor g. apache. oj b. broker. Articl eWt hNest edSt ockDet ai | hasa
st ockDet ai | attribute, holding areferenceto aSt ockDet ai | object. The class StockDetail is
not declared in the XML repository as afirst class entity class.

The StockDetail class has the following layout:

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

That's al! Just add nested fields by using : : to specify attributes of the nested object. All aspects
of storing and retrieving the nested object are managed by OJB.

5.5.9.8. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an
interface or extent a persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. Thisis
supported by a simple instance callback mechanism.

Theinterfaceor g. apache. o] b. Per si st enceBr oker Awar e provides a set of methods that
are invoked from the PersistenceBroker during operations on persistent instances:

Example

If you want that all persistent objects take care of CRUD operations performed by the
PersistenceBroker you have to do the following steps:

1. let your persistent entity classimplement the interface Per si st enceBr oker Awar e.
2. provide empty implementations for all required mthods.
3. implement the method af t er Updat e(Per si st enceBr oker broker),
afterlnsert (PersistenceBroker broker) and
aft er Del et e(Per si st enceBr oker broker) to perform your intended logic.

In the following "for demonstration only code" you see aclass Basebj ect (all persistent objects
extend this class) that does send a notification using a messenger object after object state change.

5.5.9.9. Manageable Collection

In 1:n or m:n relations, OJB can handlej ava. uti | . Col | ecti on aswell asuser defined
collection classes as collection attributes in persistent classes. See
collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by this interface
or g. apache. oj b. br oker . Manageabl eCol | ecti on.

The methods have a prefix "ojb" that indicates that these methods are "technical” methods, required
by OJB and not to be used in business code.

In package or g. apache. oj b. broker. util . col | ecti ons canbefound abunch of
pre-defined implementations of or g. apache. oj b. br oker. Manageabl eCol | ecti on.

More info about which collection class to used here.

Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. There is also no
additional programming required. The following types are supported:

1. java. util.Collection, java.util.List, java.util.Vector asinthe
example above. Internally OJB usesj ava. uti | . Vect or toimplement collections.

Arrays (seethefile Pr oduct G oupW t hAr r ay).

User-defined collections (see thefile Pr oduct G oupW t hTypedCol | ect i on). A typical
application for this approach are typed Collections.

Here is some sample code from the Collection classAr ti cl eCol | ect i on. This Collection
istyped, i.e. it accepts only InterfaceArticle objects for adding and will return InterfaceArticle
objectswithget (i nt i ndex). Tolet OJB handle such a user-defined Collection it must
implement the callback interface Manageabl eCol | ect i on and the typed collection class
must be declared in the collection-descriptor using the collection-class attribute.

Manageabl eCol | ect i on provides hooks that are called by OJB during object
materialization, updating and deletion.

wn

And the collection-descriptor have to declare this class:

Which collection-class type should be used?

Earlier in this section the or g. apache. oj b. br oker . Manageabl eCol | ecti on was
introduced. Now we talk about which type to use.

By default OJB use aremoval-aware collection implementation. These implementations (classes
prefixed with Removal...) track removal and addition of elements.

Thistracking alow the PersistenceBroker to delete elements from the database that have been
removed from the collection before a PB.store() operation occurs.

This default behaviour isundesired in some cases;

e Inm:nrelations, e.g. between Movie and Actor class. If an Actor was removed from the Actor

collection of aMovie object expected behaviour was that the Actor be removed from the

indirection table, but not the Actor itself. Using aremoval aware collection will remove the

Actor too. In that case a simple manageable collection is recommended by set e.g.

col | ection-cl ass="org. apache. oj b. broker. util.col |l ections. Manageabl eArray
in collection-descriptor.

In 1:n relations when the n-side objects be removed from the collection of the main object, but

we don't want to remove them itself (be careful with this, because the FK entry of the main

object still exists - more info about linking here).

5.5.9.10. Customizing collection queries

Customizing the query used for collection retrieval allows adeveloper to take full control of
collection mechanism. For example only children having a certain attribute should be loaded. This
is achieved by a QueryCustomizer defined in the collection-descriptor of arelationship:

152

The query customizer must implement the interface

or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer . Thisinterface defines
the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

Theclassor g. apache. o] b. broker . accessl ayer. Quer yCust om zer Def aul t | npl
provides a default implentation without any functionality, it Ssimply returns the query.

5.5.9.11. Metadata runtime changes

This was described in metadata section.

5.5.10. OJB Queries

5.5.10.1. Introduction

This tutorial describes the use of the different queries mechanisms. The sample code shown hereis
taken mainly from JUnit test classes. The junit test source can be found under
[db- 0j b] / src/t est inthe source distribution.

5.5.10.2. Query by Criteria

In this section you will learn how to use the query by criteria. The classes are located in the
package or g. apache. oj b. br oker . query. Using query by criteriayou can either query for
whole objects (ie. person) or you can use report queries returning row data.

A guery consists mainly of the following parts:

the class of the objectsto be retrieved
alist of criteria

aDISTINCT flag

additional ORDER BY and GROUP BY

PonbE

0oJB

OJB offers a QueryFactory to create a new Query. Although the constructors of the query classes
are public using the QueryFactory isthe preferred way to create a new query.

To create a DISTINCT-Query, ssimply add true as third parameter.

Each criterion stands for a column in the SQL-WHERE-clause.

This query will generate an SQL statement like this:

OJB supports functionsin field criteriaie. upper(firsthame). When converting afield nameto a
database column name, the function is added to the generated sgl. OJB does not and can not verify
the correctness of the specified function, an illegal function will produce an SglException.

Query Criteria

OJB provides selection criteriafor almost any SQL-comparator. In most cases you do not have to
deal directly with the implementing classes like Equal ToCriteria. The Criteria class provides
factory methods for the appropriate classes. There are four kinds of factory methods:

create criteriato compare afield to avalue: ie. addEqual To("firstname”, "tom");
create criteriato compare afield to another field: ie. addEqual ToField("firstname”,
"other_field");

create criteriato check null value: ie. addisNull("firstname");

create araw sql criteria: ie: addSqgl("REV ERSE(name) like 're%™);

The following list shows some of the factory methods to compare afield to avalue:

addEqualTo

addLike

addGreaterOrEqual Than

addGreaterThan

addLike

addBetween , this methods has two value parameters
addin , this method uses a Collection as value parameter
and of course there negative forms

Thislist shows some factory methods to compare afield to another field, all those methods end on
field:

e addEquaToField
addGreater ThanField
and of course there negative forms

in/not in

Some databases limit the number of parametersin an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit is set to
3 for the following sample:

154

o}

JB

The IN-limit for prefetch can be defined in OJB.properties:

and / or

All selection criteriaadded to a criteria set using the above factory methods will be ANDed in the
WHERE-clause. To get an OR combination two criteria sets are needed. These sets are combined
using addOrCriteria:

This query will generate an SQL statement like this:

negating the criteria
A criteria can be negated to obtain NOT in the WHERE-clause:

This query will generate an SQL statement like this:

ordering and grouping

The following methods of QueryByCriteria are used for ordering and grouping:

addOrderByA scending(String anAttributeName);
addOrderByDescending(String anAttributeName);
addGroupBy(String anAttributeName); this method is used for report queries

Y ou can of course have multiple order by and group by clauses, simply repeat the addOrderBy.

The code snippet will query all Persons and order them by attribute "id" descending and
"lastname" ascending. The query will produce the following SQL -statement using column numbers

155

0oJB

inthe ORDER BY clause:

When you use the column name"LASTNAME" instead of the attribute name "lastname”
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without alias
will be added.

If there are multiple tables with acolumn "LASTNAME" the SQL -Statement will produce an error,
S0 it's better to always use attribute names.

subqueries

Subqueries can be used instead of values in selection criteria. The subquery should thus be a
ReportQuery.

The following example queries al articles having a price greator or equal than the average price of
articles named 'A%'".

It's also possible to build a subquery with attributes referencing the enclosing query. These
attributes have to use a special prefix Criteria PARENT_QUERY_PREFIX.
The following example queries all product groups having more than 10 articles:

Subgueries are not extent aware. Thusiit's not possible to use an abstract class or an interface as search class of a subquery.

Fﬁ_

joins
Joins resulting from path expressions ("relationship.attribute") in criteria are automatically

handled by OJB. Path expressions are supported for all relationships 1:1, 1:n and m:n (decomposed
and non-decomposed) and can be nested.

156

The following sample looks for al articles belonging to the product group "Liquors'. Article and
product group are linked by the relationship "productGroup™ in class Article:

The path expression includes the 1:1 relationship "productGroup” and the attribute "groupName":

If path expressions refer to a class having extents, the tables of the extent classes participate in the
JOIN and the criteriais ORed. The shown sample queries all ProductGroups having an Article
named 'F%'. The path expression 'alArticlesinGroup' refers to the class Articles which has two
extents: Books and CDs.

This sample produces the following SQL :

OJB triesto do it's best to automatically use outer joins where needed. Thisis currently the case for
classes having extents and ORed criteria. But you can force the SQL Generator to use outer joins
where you find it useful.

Thisis done by the method QueryByCriteria#setPathOuter Join(String).

The first query will use an inner join for relationship "konti", the second an outer join.

The whole path is evaluated, thus for a multi segment path (ie. owner.address) you'll have to set an
outer join path for each segment that needs an outer join.

Given 'Account' - 'Owner’ - 'Adress and a query looking for 'Account'’. To force an outer join from
'‘Owner’ to 'Adress setPathOuterJoin(‘owner.address) does the trick. In case you also need an outer
join between 'Account’ and '‘Owner' an additiona setPathOuterJoin(‘owner') is needed.

user defined alias

This feature allows to have multiple aiases for the same table. The standard behaviour of OJB isto
build one alias for one relationship.

Suppose you have two classes Issue and Keyword and thereisa 1:N relationship between them.
Now you want to retrieve Issues by querying on Keywords. Suppose you want to retrieve all 1ssues
with keywords 'JOIN' and 'ALIAS. If these values are stored in the attribute 'value' of Keyword,
OJB generates a query that contains " Al.value="JOIN' AND Al.value="ALIAS " inthe
where-clause. Obviously, thiswill not work, no hits will occur because A1.value can not have more
then 1 value at the time !

For the examples below, suppose you have the following classes (pseudo-code):

0OJB maps these classes to separate tables where it maps all AbstractAttributes using a
collectiondescriptor to AbstractAttribute using ref _id as inverse foreignkey on Container for the
collection descriptor.

For demo purposes : AbstractAttribute also has a collection of abstract attributes.

158

0oJB

The generated query will be as follows. Note that the alias name 'company’ does not show up in the

SQL.

The next example uses areport query.

The generated query will be:

When you define an alias for acriteria, you have to make sure that all attributes used in this criteria belong to the same class. If you
break this rule OJB will probably use awrong ClassDescriptor to resolve your attributes !

class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The
standard behaviour of OJB isto use the base class of an extent when it resolves a path-segment.

In the following sample the path all ArticlesInGroup pointsto class Article, thisis defined in the
repository.xml. Assume we are only interested in ProductGroups containing CdArticles performed

159

0oJB

by Eric Clapton or Books authored by Eric Clapton, a class hint can be defined for the path. This
hint is defined by:
CriteriattaddPathClass("alArticlesinGroup”, CdArticle.class);

Thisfeatureis aso available in class QueryByCriteria but using it on Criteria-level provides additional flexibility.
QueryByCriteriattaddPathClass is only useful for ReportQueries to limit the class of the selected columns.

prefetched relationships

This feature can help to minimize the number of queries when reading objects with relationships. In
our Testcases we have ProductGroups with a one to many relationship to Articles. When reading
the ProductGroups one query is executed to get the ProductGroups and for each ProductGroup
another query is executed to retrieve the Articles.

With prefetched relationships OJB triesto read all Articles belonging to the ProductGroupsin one
query. See further down why one query is not always possible.

The first query reads al matching ProductGroups:

The second query retrieves Articles belonging to the ProductGroups read by the first query:

After reading al Articlesthey are associated with their ProductGroup.

This function is not yet supported for relationships using Arrays.

Some databases limit the number of parametersin an IN-statement. If the limit is reached OJB will
split up the second query into multiple queries, the limit is set to 3 for the following sample:

160

0oJB

The IN-limit for prefetch can be defined in OJB.properties SgllnLimit.

querying for objects

OJB queries return complete objects, that means all instance variables are filled and all
‘auto-retrieve' relationships are loaded. Currently there's no way to retrieve partially loaded objects
(ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

Report Queries

Report queries are used to retrieve row data, not 'real’ business objects. A row is an array of Object.
With these queries you can define what attributes of an object you want to have in the row. The
attribute names may also contain path expressions like 'owner.address.street'. To define the
attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article etc.
for al Articles named like "C%":

The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String,
Double]).

Limitations of Report Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we want
to select all ProductGroups and summarize the amount and prize of itemsin stock per group. The
class Article referenced by allArticleslnGroup has the extents Books and CDs.

The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

This SQL will select the columns "Lagerbestand" and "Einzelpreis’ from one extent only, and for
ProductGroups having Articles, Books and CDs the result is wrong!

As aworkaround the query can be "reversed". Instead of selection the ProductGroup we go for the

161

Articles:

This ReportQuery executes the following three selects (one for each concrete extent) and produces
better results.

Of course there's also a drawback here: the same ProductGroup may be selected several times, so to
get the correct sum, the results of the ProductGroup has to be added. In our sample the
ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired result. This
isamanually created SQL, not generated by OJB. Unfortunately it's not fully supported by some
DBMS because of "union” and sub-selects.

5.5.10.3. ODMG OQL

5.5.10.4. JDO queries
5.5.11. Metadata handling

5.5.11.1. Introduction

162

0oJB

To make OJB proper work information about the used databases (more info see connection
handling) and seguence managers is needed. Henceforth these metadata information is called
connection metadata.

Further on OJB needs information about the persistent objects and object relations, henceforth this
information is called (per sistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata. Thusitis
possible to use the same object metadata on different databases.
But it isalso possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

« using xml configuration files parsed at start up by OJB
» set metadata instances at runtime by building metadata class instances at runtime
« parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under

or g. apache. oj b. br oker . net adat a. * -package.

The main class for metadata handling and entry point for metadata manipulation at runtime is
or g. apache. o] b. br oker . net adat a. Met adat aManager .

5.5.11.2. When does OJB read metadata

By default all metadataisread at startup of OJB, when thefirst call to
Per si st enceBr oker Fact or y (directly or by atop-level api) or Met adat aManager class
was done.

OJB expects arepository file at startup, but it is aso possible to start OJB without an repository file
or only |oad connection metadata and object metadata at runtime or what ever combination fit your
requirements.

5.5.11.3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be
declared in OJB repository file.

For each database a jdbc-connection-descriptor must be declared. This element encapusaltes the
connection specific metadata information.

The JdbcConnectionDescriptor instances are managed by
or g. apache. o] b. br oker . net adat a. Connect i onReposi tory

L oad and mer ge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing one.
The used repository files have to be valid against the repository.dtd:

163

In the above additional repository file two new jdbc-connection-descriptor (new databases) runtime
and minimal are declared, to load and merge the additional connection metadata the
MetadataManager was used:

After the merge the access to the new databases is ready for use.

5.5.11.4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java objects and
the associated tables in database. Object metadata must be declared in OJB repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by

org. apache. o] b. br oker . net adat a. Descri pt or Reposi t ory . Per default OJB use
only one global instance of this class - it'sthe repository file read at startup of OJB. But it is
possible to change the global use repository:

0oJB

L oad and merge object metadata

It is possible to load additional object metadata at runtime and merge it with the existing one. The
used repository files have to be valid against the repository.dtd:

When using the dynamic mapping technique described below, all objects in the structure must implementet
java.io. Serializabl e for OJB to be able to created cloned copies. OJB currently uses SerializationUtils from Commons Lang
Core Language Utilities for all deep-cloning operations.

An additional repository file may look like:

To load and merge the object metadata of the additional repository filesfirst read the metadata
using the MetadataManager .

It is also possible to keep the different object metadata for the same classes parallel by using
metadata profiles .

Global object metadata changes
The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use aglobal instance of class Descriptor Repository to manage all object metadata.
This means that all PersistenceBroker instances (kernel component used by all top-level api) use
the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a

ClassDescriptor) will be seen immediately by all PersistenceBroker instances. Thisisin most cases
not the favoured behaviour and OJB supports per thread changes of object metadata.

Per thread metadata changes

Per default the manager handle one global Descriptor Repository for all calling threads (keep in
mind PB-api is not threadsafe, thus each thread use it's own PersistenceBroker instance), but it is
ditto possible to use different metadata profilesin a per thread manner - profiles means different
instances of DescriptorRepository objects. Each thread/PersistenceBroker instance can be
associated with a specific Descriptor Repository instance. All made object metadata changes only
will be seen by the PersistenceBroker instances using the same DescriptorRepository instance. In
theory each PersistenceBroker instance could be associated with a separate instance of object
metadata, but the recommended way is to use metadata profiles.

To enable the use of different Descriptor Repository instances for each thread do:

This can be done e.g. at start up or at runtime when it's needed. If method
set Enabl ePer Thr eadChanges is set false only the global Descriptor Repository was used.
Now it's possible to use dedicated DescriptorRepository instances per thread:

Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread, because the
metadata was bound to the PersistenceBroker instance at |ookup.

Object metadata profiles

M etadataM anager was shipped with a simple mechanism to add, remove and load different
persistent objects metadata profiles (different DescriptorRepository instances) in a per thread
manner. Use method addProfile to add different persistent object metadata profiles, method
removeProfile to remove profiles and loadProfile load a profile for the calling thread.

166

0oJB

After the loadProfile call all PersistenceBroker instances will be associated with the admin profile.

} Method loadProfile only proper work if the per thread mode is enabled. (

Reference runtime changes on per query basis

FIXME (arminw):

| Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

Pitfalls

OJB's flexibility of metadata handling demanded specific attention on object caching. If a global
cache (shared permanent cache) was used, be aware of side-effects caused by runtime metadata
changes.

For example, using two metadata profiles A and B. In profile A al fields of a class are showed, in
profile B only the 'namefiled' is showed. Thread 1 use profile A, thread 2 use profile B. It is
obvious that a global shared cache will cause trouble.

5.5.11.5. Questions

Start OJB without arepository file?

It is possible to start OJB without any repository file. In this case you have to declare the

j dbc-connecti on-descri ptor andcl ass-descri ptor at runtime. See Connect to
database at runtime? and Add new persistent objects (class-descriptors) at runtime? for more
information.

Connect to database at runtime?

There are two possibilities to connect your database at runtime:
» load connection metadata by parsing additional repository files
« create the JdbcConnectionDescriptor at runtime

Thefirst oneis described in section |oad and merge connection metadata. For the second one a new
instance of classor g. apache. oj b. br oker . net adat a. JdbcConnecti onDescri pt or

is needed. The prepared instance will be passed to class ConnectionRepository:

167

Please read this section from beginning for further information.

Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

load object metadata by parsing additional repository files
create new metadata objects at runtime

Thefirst oneis described in section |oad object metadata.

To create and add new metadata objects at runtime we create new
org. apache. o] b. broker . net adat a. Gl assDescr i pt or instances at runtime and using
the Met adat aManager to add them to OJB:

Please read this section from beginning for further information.

5.5.12. Deployment

5.5.12.1. Introduction

This section enumerates all things needed to deploy OJB in standalone or servlet based applications
and j2ee-container.

5.5.12.2. Things needed for deploying OJB

1. The OJB binary jar archive

You need adb- 0oj b- <ver si on>. j ar file containing the compiled OJB library.

Thisjar files contains all OJB code neccessary in production level environments. It does not
contain any test code. It al'so does not contain any configuration data. You'll find thisfilein thelib
directory of the binary distribution. If you are working with the source distribution you can
assemble the binary jar archive By calling

This ant task generates the binary jar to the dist directory.

2. Configuration data
OJB needs two kinds of configuration data:

168

0oJB

1. Configuration of the OJB runtime environment. Thisdatais stored in afile named
QJB. properties .Lean more about thisfile here.

2. Configuration of the MetaData layer. Thisdatais stored in filenamedr eposi t ory. xm
(and several included files). Learn more about thisfile here.

} These configuration files are read in through ClassL oader resource lookup and must therefore be placed on the classpath. (

3. External dependenciesthat do not come with OJB

Some components of OJB depend on external libraries and components that cannot be shipped with
OJB. You'l also need these if you want to compile OJB from source. Hereisalist of these
dependencies:

| 2ee.j ar

This is the main archive of the J2EE SDK.

jdo.jar, jdori*.jar

The JDO Reference implementation is required if you plan to use the JDO Api.

4. Optional jar archivesthat come with OJB

Some of jar filesinthel i b folder are only used during build-time or are only required by certain
components of OJB, and so they might need not to be needed in runtime environments.

Apart from wasting disk space they do no harm. If you don't care about disk space you just take all
jarsfromthel i b folder.

If you do care, hereisthe list of jars you might omit during runtime:

ant-*.jar

These are the Apache Ant 1.6 jars.

antlr-[version].jar

ANTLR is a parser generator which is used in the ODMG component of OJB. If you
only use the PB Api, then you don't need this.

junit.jar

Junit for running the unit tests. You'll need this only if you're also writing unit tests for
you app.

xerces.jar, xm-apis.jar

The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely
that you do not need these files.

xal an. j ar

Xalan is used to generate the unit test report, so you'll probably don't need this.

j akart a-regexp-[version].jar

The Jakarta Regular Expression library is only used when building OJB from source.
t orque- xxx.jar, velocity-xxx.jar

Torgue is used to generate concrete databases from database-independent schema
files. OJB uses it internally to setup databases for the unit tests.

xdocl et-[version].jar, Xxjavadoc-[version].jar,

xdocl et - oj b- nodul e-[version].jar,

commons-col | ections-[version].jar

The XDoclet OJB module can be used to generate the repository metadata and
Torque schema files from Javadoc comments in the Java source files. It is however not
required at runtime, so you can safely ignore these files then.

5. Don't forget the JDBC driver
The repository.xml defines JDBC Connections to your runtime databases. To use the declared

169

0JB

JDBC drivers the respective jar archives must also be present in the classpath. Refer to the
documentation of your databases.

In the following sections | will describe how to deploy these items for specific runtime
environments.

5.5.12.3. Deployment in standalone applications

Deploying OJB for standalone applications is most smple. If you follow these four steps your
application will be up in afew minutes.

1. Adddb- oj b-<versi on>. j ar to the classpath

2. placeQIB. properties andrepository.xnl fileson the classpath
3. Add the additional runtime jar archives to the classpath.

4. Addyour JDBC driversjar archive to the classpath.

5.5.12.4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed aso in
Servlet / JSP based environments.
The exact details may differ for your specific Servlet container, but the general concepts should be
quite similar.
1. Deploy db- 0j b- <ver si on>. j ar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in a directory
VEEB- | NF/ | i b. Placedb- oj b- <ver si on>. j ar tothisdirectory.
2. Deploy QJB. properties andrepository. xm withyour servlet applications WAR file.
The WAR format specifiesthat Servlet classes are to be placed in a directory
VEEB- | NF/ cl asses. The OJB configuration files have to bein this directory.
3. Add the additional runtime jar archivesto V\EB- | NF/ | i b too.
4. Addyour IDBC driversjar archiveto WEB- | NF/ | i b.

By executing ant war you can generate a sample servlet application assembled to avalid WAR
file. Theresulting o) b- ser vl et . war fileiswritten to the dist directory. Y ou can deploy this
WAR fileto your servlet engine or unzip it to have alook at its directory structure.

you can also use the target war as a starting point for your own deployment scripts.

5.5.12.5. Deployment in managed environment (e.g. EJB based)

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the
repository.xml are valid for managed/EJB environments as well.

But apart from these basic steps you'll have to perform some additional configurationsto integrate
OJB into a managed environment.

Managed environment: Using of OJB in a managed environment means primarily the cooperation
of OJB with the application server JTA service (via JCA or by using JTA classes).

The instructions to make OJB running within your application server should be similar for all
server. So the following instructions for JBoss should be useful for al user. E.g. most
QJB. properti es filesettings are the same for all application server.

There are some topics you should examine very carefully:

e Connection handling: Lookup DataSource from your AppServer, only these connections can
be enlisted in running transactions (JTA)

« Caching: Do you need caching? Do you need distributed caching?

« Locking: Do you need distributed locking (when using odmg-api in clustered environments)?

170

0oJB

Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on agb
conform Application Server on the basis of the shipped e b-examples. In managed environments
OJB needs some specific properties:

1. Adapt OJB.propertiesfile

If the PB-api isthe only persistence APl being used (no ODMG nor JDO) and it is only being used
in amanaged environment, it is strongly recommended to use a special

Per si st enceBr oker Fact or y class, which enables Per si st enceBr oker instancesto
participate in the running JTA transaction - e.g. thismakes PBSt at eLi st ener proper work in
managed environments and enables OJB to synchronize the persistent caches (e.g. the two-level
cache):

Por si st enceB oker FactoryCl ass=org. apache. o b. br oker . cor . ersi st enceB oker Fact o5 1

Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).
If no permanent caching (only the "empty" cache implementation or the "per broker cache") isused and the PBSt at eLi st ener is

not used to detect tx demarcation, it's possible to use the default Per si st enceBr oker Fact or y implementation, because OJB
doesn't need to synchronize anything.

Your QJB. properti es fileneed the following additional settings to work within managed
environments (apply to all used api):

A specific ConnectionFactory implementation is used in version before 1.0.4 to by-pass all
forbidden method calls in managed environments. Since OJB 1.0.4 datasources from managed
environments are detected automatically by checking the JTA-TxManager.

The JTATransactionManager Class property specify the used implementation class to lookup the
transaction manager used by the application server. The

j avax. transaction. Transacti onManager isneeded to make it possible for OJB to
participate in running JTA transaction viaj avax. t ransacti on. Synchroni zati on
interface.

The ODMG-api needs some additional settings for use in managed environments (only needed
when odmg-api was used):

The ImplementationClass specify the ODMG base class implementation. In managed environments
a specific implementation is used, able to participate in JTA transactions.

0oJB

The OJBTxManager Class specify the used OJBTxManager implementation to manage the
transaction synchronization in managed enviroments.

Currently OJB integrate in managed environmentsviaj avax. t ransact i on. Synchroni zat i on interface. When the JCA
adapter isfinished (work in progress) integration will be more smooth.

2. Declare datasourcein the repository (repository_database) file and do additional configuration

Do only use Dat aSour ce from the application server to connect to your database (Local used
connections can not participate in JTA transaction).

We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got
Statement/Connection resource problems when running some gjb stress tests. As workaround we introduce a jboss specific attribute
eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this problem seemsto be fixed in
3.22.

Define OJB to use a DataSource:

In OJB versions before 1.0.4 the attribute use Aut oConmi t =" 0" is mandatory in managed
environments, because it's in most cases not allowed to change the connection's autoCommit state.

In managed environments you can't use the default sequence manager implementation (SequenceM anagerHighLowlmpl) of OJB. For
alternative sequence manager implemetation see here.

[2b. How to deploy ojb test hsgldb database to jboss]

If you use hsgl database for testing you can easy setup the DB on jboss. After creating the database
in OJB test directory withant pr epar e-t est db, take the generated

.../ltarget/test/ QIB. scri pt fileandrenameittodef aul t. scri pt . Then replacethe
jboss default.script filein. . . /j boss- 3. x. y/ server/ def aul t/ db/ hyper soni ¢ with
thisfile.

172

0oJB

3. Include all OJB configuration filesin classpath
Include the all needed OJB configuration files in your classpath:

- OJB.properties

- repository.dtd

- repository.xml

- repository_internal.xml

- repository_database.xml,

- repository_gjb.xml (if you want to run the gjb examples)

To deploy the g/b-examples beans we include all configuration filesin agb jar file - more info
about this see below.

The repository.xml for the g/b-example beans look like:

4. Enclose all libraries OJB depend on

In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar
or gb .jar file to make OJB run and (re-)deployable. Here are the libraries needed to make the ojb
sample session beans run on JBoss:

» Thejakartacommons librariesfiles (al commons-xxx.jar) from OJB /lib directory

e Theantlr jar file (antlr-xxx.jar) from OJB /lib directory

o jakartarregexp-xxx.jar from OJB /lib directory

» [jakartaturbinejcsjar from OJB /lib directory, only if ObjectCacheJCSImpl was used]
(This was tested with jboss 3.2.2)

5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODM G-api or
PB-api (with special PBF (see 1.) setting) it's possible to use all Cbj ect Cache implementations
aslong as OJB doesn't run in a clustered mode. When the Obj ect CacheDef aul t | npl cache
implementation was used it's recommended to enable the autoSync mode.

173

0oJB

In clustered environments (OJB run on different AppServer nodes) you need a distributed
ObjectCache or you should use alocal/empty cache like

“
=

The cacheis pluggable, so you can write your own ObjectCache implementation to accomplish
your expectations,

More info you can find in clustering and ObjectCache topic.

6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered
environments (OJB run on different AppServer nodes) a distributed |ock management is
mandatory.

7. Put all together

Now put all filestogether. We keep the examples as simple as possible, thus we deploy only agb
Jar file. Below you can find a short instruction how to pack an gb application .ear file including
OJB.

Generate the gb-examples described below or build your own gb .jar fileincluding all beans,

gjb-jar.xml and appServer dependend files. Then add all OJB configuration files, the db-ojb jar file
and all libraries OJB depends on into thisgb jar file.
The structure of the gb .jar file should now look like this:

7b. Example: Deployablejar

For example the jar-file used to test the g b-examples shipped with OJB, base on the
db-ojb-XY-beansjar file. Thisjar was created when the g b-examples target was called.

The generated jar contains only the gb-classes and the deployment-descriptor. We have to add
additional jars (all libraries used by OJB) and files (all configuration files) to make it deployable.
The deployable db-ojb-XY-beans.jar should look like this:

174

0oJB

Please pay attention on the configuration settings to make OJB work in managed environments
(especialy the OJB.properties settings).

This exampleisn't areal world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle

one or more complete J2EE (web) applications. More about how to build an J2EE application using OJB see here.

The described example should be re-depl oyable/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions are welcome!
8. How to access OJB API?

In managed environmentsit is possible to access OJB in same way used in non-managed
environments:

But it is recommended to bind OJB api access classes to JINDI and |ookup the the api entry classes
viaJNDI.

9. OJB logging within JBoss

Jooss use |0g4] as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

Thereis no need for a separate log4j.properties file of OIB-specific log4j settings (in fact the
OJB.properties setting LoggerConfigFile isignored). Instead, the jBoss log4j configuration file
must be used:

2) in JBOSS HOME/server/default/conf/logdj.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the
numerous examplesin that file. For example,

0oJB

Example Session Beans

Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes
for testing. Please recognize that we don't say that these examples show "best practices’ of using
OJB within enterprise java beans - it's only one way to make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static |ookup
or helper classes on each gbCreate() call. But we recommend to bind the OJB main classesin
JNDI instead of direct use in the session beans.

Gener ate the sample session beans

The source code of the sample beansis stored in directory
[db- 0j b] / src/ ej b/ org/ apache/ oj b/ ej b
To generate the sample beans call

This ant target copies the bean sourcesto [db- o] b] / t ar get/ sr cej b generates all needed
bean classes and deployment descriptor (by using xdoclet) to the same directory, compiles the
sources and build an gjb .jar filecalled [db- o] b] / di st/ db- 0] b- XXX- beans. j ar. Test
clients for the generated beansincluded inthe[db- oj b] / di st/ db- 0j b- XXX-client.jar.

To run xdoclet properly the following xdoclet jar filesneeded in [db- oj b] / | i b directory
(xdoclet version 1.2xx or higher):

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db- 0j b] / bui | d- ej b- exanpl es. xm to force xdoclet to generate the appServer specific
files. See xdoclet documentation for further information.

How to run test clientsfor PB/ ODMG - api

If the "extended gjb .jar" file was successfully deployed we need atest client to invoke the
gjb-examples. As said above, the gb-examples target generates atest client jar too. It's called

[db- 0j b] / di st/ db-0j b- XXX-cl i ent.j ar and containsjunit based test clients for the
PB-/ODMG-api.

The main test classes are:

« org.apache.ojb.efb.AIIODMGTests

« org.apache.ojb.gb.AlIPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer librariesin
[db-o0j b] /11 b (eg. for IBossjbossall-client.jar do the job, beside the "j2ee jars'). To run the
PB-api test clients (access running JBoss server with default settings) call

176

To run the test clients on an arbitrary appServer pass the INDI properties for naming context
initalisation too, e.g.

« -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
« -Djava.naming.provider.url="jnp://localhost:1099"
» -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces’

Then the target call may looks like

Packing an .ear file

Hereis an example of the .ear package structure. It is redeployable without having to restart JBoss.

The Package Structure

The package structure of the .ear file should look like:

Make OJB APl Resources available
There are two approaches to use OJB api in the gb.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by
OJB (Very important to include al required jar). The sample below works fine (replace [version]
with distributed JAR versions):

Note:

0oJB

If you to include the jar file under a directory of the ear file, says/ | i b/ db- oj b-[ver si on] . j ar and etc. At the classpath attribute
it will be something like: Cl ass- Path: ./1ib/db-oj b-[version].jar and etc (The"." infrontisimportant)

2. To add the required jar fileasa"java" element in the application.xml file:

} To use this approach, al the library had to be in the root of the ear. ‘

(This was tested on Jboss 3.2.3)

Make OJB accessible via JNDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB

accessible via JNDI and use a INDI-lookup to access OJB api's in your beans.

To make the OJB api's accessible via INDI, bind main/access classes to JINDI. How to do this

depends on the used environment. The main classesymethods to bind are:

o PB-api:
Method
or g. apache. oj b. br oker . core. Per si st enceBr oker Fact or yFact or y#i nst ance()
returns the used
or g. apache. oj b. br oker . core. Per si st enceBr oker Fact or yl F. Makethis
instance accessible via JNDI.

« ODMG-api:
Method or g. apache. oj b. odng. QJB#get | nst ance() returnsanew instance of the
or g. odng. | npl enent at i on instance. Open anew Dat abaseand make this instance and
the Dat abase instance accessible via JNDI.

JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the

Webl ogic example below.
Let JBoss know about the new mbeans, so declaretheminaj boss- servi ce. xnl file. Please
see JBoss documentation how to write mbeans and bind objects to INDI.

178

Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For
example in Weblogic you can use startup class implementation to bind OJB main/access classesto
JINDI (see below).

Instructions for Weblogic

1. Add the OJB jar files and depedenciesinto the Weblogic classpath

2. Asusual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

4. Modify the connection information in the repository.xml (specify the datasource name).
SequenceManager implementation depends on the used DB, more info see here:

} The following step is only neccessary if you want to bind OJB main api classes to JNDI. {

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic
classpath. This alowsto access the PB-api via INDI lookup. Register via the weblogic console the
startup class (see 9 bPbSt ar t up class below). The INDI name and the OJB.propertiesfile path
can be specified as parameters in this startup class.

To use the ODMG-api you have to write asimilar startup class. This shouldn't be too complicated.
Takealook inor g. apache. oj b. j boss package (dir sr ¢/ connect or / mai n). Here you
could find the jboss mbeans. All you have to do is bound asimilar classto JNDI in weblogic.
Implement ODMEJ 2EEFact or y Interface in your class bound this class to JNDI (in the
gjb-examples the beans try to lookup the | npl enent at i on instancevia

"java:/ oj b/ def aul t ODMG"). Y our ODMGFactory class should implement this method

Write a session bean similar to those provided for the JBOSS samples. It is also possible to use the
€jb-exampl e beans (doing minor modifications when the INDI lookup should be used).

Webolgic startup class
Write an OJB startup class to make OJB accessible via JNDI can look like (I couldn't test this
sample class, so don't know if it will work ;-)):

0oJB

The used OjbPbFactory interface:

5.5.13. Connection Handling

5.5.13.1. Introduction
In this section the connection handling within OJB is described. The connection management is
implemented through two OJB interfaces:

« org.apache. oj b. broker. accessl ayer. Connecti onFact ory
« org.apache. oj b. broker. accessl ayer. Connecti onManager | F

5.5.13.2. ConnectionFactory

Theor g. apache. oj b. br oker . accessl ayer. Connect i onFact ory interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for creation/lookup and release of connections.

To enable a specific ConnectionFactory implementation class in the OJB.propertiesfile, set
property ConnectionFactoryClass. Default:

OJB is shipped with several different implementation classes for use in different situations. The
default implementation for example, will pool created Connection instances for increased
performance (since instance creation normally makes a database server roundtrip and thusis

| npl

181

0JB

costly).

To make it more easier to implement your own ConnectionFactory class, an abstract base class
caled

or g. apache. oj b. br oker . accessl ayer. Connecti onFact or yAbst r act | npl
exists, most shipped implementation classes inherit from this class.

All shipped implementations of ConnectionFactory with support for connection pooling will only use object pools for connections
obtained directly from the JDBC DriverManager. If you are using a DataSource configuration, the INDI DataSource is responsible for

pooling.

ConnectionFactoryPooledl mpl

A ConnectionFactory implementation using commons-pool to pool the Connection instances. On
lookupConnection a Connection instance is borrowed from the object pool, and returned on the
releaseConnection call. Thisimplementation is used as default setting in the OJB.propertiesfile.

This implementation alows awide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

ConnectionFactoryNotPooledl mpl

Implementation that creates a new Connection instance on each lookupConnection call and closes
(destroys) it on releaseConnection. All connection-pool settings are ignored by this
implementation.

ConnectionFactoryM anagedl mpl

[@deprecated since OJB 1.0.4, now OJB automatic detect the running JTA-transaction and
suppress critical method calls on the used connection]

Implementation specifically for use in managed environments like J2EE conformant application
servers. In managed environmentsit is mandatory to use DataSource configuration, with
Connection objects provided by the application server. OJB will not control Connection properties
or transaction handling when using this implementation.

All connection-pool settings are ignored by this implementation.

ConnectionFactoryDBCPImpl

Implementation using commons-dbcp to pool the Connection instances. Since DBCP isusing
commons-pool internaly, thisimplementation is very similar to ConnectionFactoryPooledlmpl,
but permits additional configuration for logging abandoned Connection instances (usable under
development for detecting bad programming patterns).

This implementation alows awide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

5.5.13.3. ConnectionM anager

Theor g. apache. oj b. br oker . accessl ayer. Connect i onManager | F interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for managing the connection usage lifecycle and connection
status (commit/rollback of connections).

182

The ConnectionManager is used by the PersistenceBroker to handle connection usage lifecycle.
5.5.13.4. Questions and Answers

How does OJB handle connection pooling?

OJB does connection pooling per default, except for datasources that are never pooled internally by
OJB. Pooling of Connection instances when configuring OJB with DataSource lookup must be
configured and performed in the DataSource provider.

The implementations of the

or g. apache. oj b. br oker. accessl ayer. Connecti onFact ory. j ava interface are
responsible for managing the connectionsin OJB. There are several implementations shipped with
OJB called

or g. apache. oj b. br oker. accessl ayer. Connecti onFact oryl npl . j ava. Thereis,
among others, a non-pooling implementation and an implementation using Commons DBCP API.

Configuration of the connection pooling is specified using the connection-pool element for each
jdbc-connection-descriptor. The connection-pool element can be configured with properties for the
specific ConnectionFactory implementation or JDBC driver used. For general information about
the configuration, see the repository section or read the commentsin repository.dtd.

Can | directly obtain ajava.sgl.Connection within OJB?

It is possible to obtain a Connection using the PB APl and aPer si st enceBr oker instance.
Example:

0oJB

After obtaining a Connection with

br oker . servi ceConnect i onManager () . get Connecti on() , the connection can be
used for any JDBC operations (except for transaction handling, more on this below). The user is
responsible for cleanup of created Statement and ResultSet instances, so be sure to guard your call
with afinally clause and close resources after use.

For read-only operations there is no need to start a PB transaction as in the example.

Note:

Do not commit any transactions on the Connection level, this should be |eft to OJB's PB API and will be performed automatically by
calling PersistenceBroker commit-/abortTransaction methods.

Note:

Do not call Connect i on. cl ose() on the obtained Connection, this should be left to OJB's ConnectionFactory and will be
performed automatically when calling br oker . cl ose() .

If no transaction is running, it is possible to release a connection "by hand" after use by calling:

This call performs cleanup operations on the used connection and pass the instance to the release
method of ConnectionFactory (thiswill e.g. return the connection to pool or closeit).

If you do not do any connection cleanup, the connection will at the latest be released when calling
br oker. cl ose().

Users who are interested in this section might also be interested in 'Is it possible to perform my own
sgl-queriesin OJB?.

When does OJB open/close a connection

Thisis dependent on the used OJB api. Generally OJB try to obtain a connection as late as possible
and close (if a connection pool was used, OJB return the connection to the pool) the connection as
soon as possible.

Using the PB-api the connection is obtained when

Per si st enceBr oker . begi nTransacti on() wascaled or aquery is executed.

On Per si st enceBroker. comm t Transacti on() or

Per si st enceBr oker . abort Transact i on() call the connection was released. If no PB-tx
is running, the connection will be released on Per si st enceBr oker . cl ose() call.

Using the ODM G-api the connection is obtained when a query is executed or when the transaction
commit. On leaving the commit method, the connection will be released.
All other top-level API should behave similar.

5.5.14. The Object Cache

5.5.14.1. Introduction

OJB supports several caching strategies and allow to pluggin own caching solutions by
implementing the ObjectCache interface. All implementations shipped with OJB can be found in
package or g. apache. oj b. br oker . cache. The naming convention of the implementation
classesis Obj ect CacheXXXI npl .

184

0oJB

To classify the different implementations we differ local/session cache and
shared/global/application cache implementations (we use the different terms synonymous). The
ObjectCacheTwoL evelImpl use both characteristics.

» Local cache implementation mean that each instance use its own map to manage cached
objects.

» Shared/global cache implementations share one (in most cases static) map to manage cached
objects.

A distributed object cache implementation supports caching of objects across different VM.

5.5.14.2. Why a cache and how it works?
OJB provides a pluggable object cache provided by the ObjectCache interface:

Each PersistenceBroker instance (PersistenceBroker is a standalone api and the basic layer for all

top-level api'slike ODMG) useit'sown Obj ect Cache instance. The Cbj ect Cache instances
are created by the Qbj ect CacheFact ory classon Per si st enceBr oker instantiation.

Each cache implementation holds objects previously loaded or stored by the
Per si st enceBr oker - dependend on the implementation.
Using a Cache has several advantages:

« Itincreases performance as it reduces database |ookups or/and object materialization. If an
object islooked up by Identity the associated PersistenceBroker instance does not perform a
SELECT against the database immediately but first looks up the cache if the requested object is
already loaded. If the object is cached it is returned as the lookup result. If it isnot cached a
SELECT is performed.

Other queries were performed against the database, but before an object from the ResultSet was
materialized the object identity was looked up in cache. If not found the whole object was
materialized.

« Italowsto perform circular lookups (as by crossreferenced objects) that would result in
non-terminating loops without such a cache (Note: Since OJB 1.0.2 thisis handled internally by
OJB and does not depend on the used cache implementation).

5.5.14.3. How to declare and change the used ObjectCache implementation
Theobj ect - cache element can be used to specify the ObjectCache implementation used by

185

OJB. If no object-cache is declared in configuration files (see below), OJB use by default a
noop-implementation of the Gbj ect Cache interface.
There are two levels of declaration:

» jdbc-connection-descriptor level
o class-descriptor level

and the possibility to exclude all persistent objects of specified package names.

Use ajdbc-connection-descriptor |level declaration to declare ObjectCache implementation on a

per connection/user level. Additional configuration properties can be passed by using custom
attributes entries:

Set an object-cache tag on class-descriptor level , to declare ObjectCache implementation on a per
classleve:

Additional configuration properties can be passed by using custom attributes entries.

If polymorphism was used it's only possible to declare the object-cache element in the class-descriptor of the top-level class/interface
(root class), all object-cache declarations in the sub-classes will be ignored by OJB.

Priority of Cache L evel

Sinceit is possible to mix the different levels of object-cache element declaration a ordering of
priority is needed:

The order of priority of declared object-cache elements in metadata are:
per class > excluded packages > per jdbc-connection-descriptor

E.qg. if you declare ObjectCache 'OC1' on connection level and set ObjectCache 'OC2' in
class-descriptor of class A. Then OJB use 'OC2' as ObjectCache for class A instances and 'OC1' for
all other classes.

Exclude classes from being cached

If it's undesirable to cache an persistent object (e.g. persistent objects with BLOB fields or large
binary fields) declare an obj ect - cache descriptor with the noop-cache implementation called
ObjectCacheEmptylmpl.

186

Note:

If polymorphism was used and the class to exclude is part of an inheritance hierarchy and it's declared in in OJB metadata, it's not
possible to exclude it. Only for the top-level class/interface (root class) it's allowed to specify the object-cache element in metadata. So
it'sonly possible to exclude all sub-classes of the top-level class/interface (root class). More info see here.

Exclude packages from being cached

To exclude all persistent objects of awhole package from being cached use the custom attribute
cacheExcludes on connection level within the object-cache declaration. To declare several
packages use a comma seperated list.

To include a persistent class of a excluded package, smply declare an object-cache descriptor on
class-descriptor level of the classto include, object cache declarations on class-descriptor level
have a higher priority as the excluded packages - see more.

Turn off caching

If you don't declare a object-cache element in configuration files (see here), OJB doesn't cache
persistent objects by default.

To explicitly turn off caching declare a no-op implementation of the ObjectCache interface as
caching implementation. OJB was shipped with such a class called ObjectCacheEmptylmpl. To
explicitly turn off caching for a used database look like this:

To get more detailed info about the different level of cache declaration, please see here.

5.5.14.4. Shipped cache implementations:

Obj ectCacheDefaultl mpl

Per default OJB use a shared reference based ObjectCache implementation -
ObjectCacheDefaultimpl. It's areally fast cache but there are a few drawbacks:

« Thereisno transaction isolation, when thread one modify an object, thread two will see the
maodification when lookup the same object or use areference of the same object, so
"dirty-reads" can happen.

« If you rollback/abort atransaction the modified/corrupted objects will not be removed from the

cache by default(when using PB-api, top-level api may support automatic cache
synchronization). Y ou have to do this by your own using a service method to remove cached
objects or enable the autoSync property.

This implementation cache full object graphs (the object with all referenced objects) and does
not synchronize the references. So if cached object ProductGroup has a 1:n reference to
Article, e.g. articlel, article2, article3 and another thread delete article2, the ProductGroup still
has areference to article2. To avoid such a behavior you can use the collection-descriptor
'refresh’ attribute to force OJB to query the referenced objects when the main object isloaded
from cache or use another Cbj ect Cache implementation supporting synchronization of
references (e.g. ObjectCacheTwol evellmpl).

This implementation use by default Sof t Ref er ence to wrap all cached objects. If the cached
object was not longer referenced by your application but only by the cache, it can be reclaimed by
the garbage collector.

Aswe don't know when the garbage collector reclaims the freed objects, it is possible to set a

t i meout property. So an cached object was only returned from cache if it was not garbage
collected and was not timed out.

To enable this Obj ect Cache implementation declare

Implementation configuration properties:
Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object never expire.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads" by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.

E.g. if OJB read 1000 objects from the database
within atransaction, one object was modified and the
transaction will be aborted, then 1000 objects will be
passed to the cache on lookup, 1000 objects will be
traced and all 1000 objects will be removed from
cache on abort.

Read these objects without running tx or in aformer
tx and then modify one object in atx and abort the tx,
only one object was traced/removed. Keep in mind

188

0oJB

that this property counteract the useSoftReferences
property as long as the PB-transaction is running,
because all traced objects will have strong references.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor),
because different databases should use
separated caches (persistent object instances).
2 - Identity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there
was no synchronization between cached objects
with same Identity but different metadata model.
E.g. when the same database use different
metadata versions of the same persistent object
class.
3 - all together (Idenity + jcdAlias + model)
If possible '0' is recommended, because it will be
the best performing setting.

useSoftReferences If set true this class use {@link
java.lang.ref.SoftReference} to cache objects.
Default value is true. If set true and the cached
object was not longer referenced by your
application but only by the cache, it can be
reclaimed by the garbage collector. If set false
it's strongly recommended to the timeout
property to prevent memory problems of the
JVM.

Recommendation:
If you take care of cache synchronization (or use autoSync property) and be aware of dirty reads,
this implementation is useful for read-only or less update centric classes.

ObjectCacheTwoL evellmpl

ObjectCacheTwoL evellmpl is atwo level ObjectCache implementation with a transactional
session- and a shared application-cache part.

Thefirst level isatransactional session cache that cache objects till PersistenceBroker#close() or if
aPB-tx isrunning till #abort Tr ansacti on() or#comm t Transacti on() wascalled.
On commit all objects reside in the session cache will be pushed to the application cache.

If objects be new materialized from the database (e.g. when achieve a query), the full materialized
objects will be pushed immediately to the application cache (more precisely, if the application
cache doesn't contain the "new materialized" objects).

The second level cache can be specified with the applicationCache property. Properties of the
specified application cache are allowed too. Here is an example how to use the two level cache with
bj ect CacheDef aul t | npl assecond level cache.

189

0oJB

I npl "/ >

The most important characteristic of the two-level cache isthat all objects put to or read from the
application cache are copies of the target object, so the cached objects never could be corrupted by
the user when changing fields, because all operations done on copies of objects cached in the
application cache (in contrast to ObjectCacheDefaultimpl).

The strategy to make copies of the persistent objectsis pluggable and can be specified by the
copyStrategy property which expects an implementation of the
(bj ect CacheTwoLevel | npl . CopySt r at egy interface.

The default Qbj ect CacheTwoLevel | npl . Copy St r at egy implementation make copies
based on the field-descriptors of the cached object and set these valuesin a new instance of the
cached object. If you lookup a cached object with 1:n or m:n relation a query is needed to get the
ID's of the referenced objects, because in application cache only "flat" objects without
references/reference-info will be cached.

Thistwo-level cache implementation does not guarantee that cache and persistent storage (e.g. database) are always consistent, because
the session cache push the persistent objects to application cache after the PB-tx was commited.

Let us assume that thread 1 (using broker 1) update objects A1, A2, ... within atransaction and does commit the tx. Now before OJB
could execute the after commit call on thread 1 to force session cache to push the objects to the application cache, thread 2 (using broker
2) lookup and update object A2 too (improbably but could happen, because thread 1 has already commited the objects A1, A2,... to the
persistent storage) and push A2 to application cache. After this thread 1 was able to perform the after commit call and the "outdated"
version of A2 was pushed to the application cache overwriting the actual version of A2 in cache - cache and persistent storage are out of
synchronization.

To avoid writing of outdated data to the persistence storage optimistic locking can be used. OL will not prevent the above scenario, but
if it happens and e.g. broker 3 read the outdated object A1 from the cache and try to perform an update of A1, an optimistic locking
exception will be thrown. So it is guaranteed that the persistent storage is always consistent.

A possibility to completely prevent synchronization problems of cache and persistent storage is the usage of pessimistic locking (if the
used api supportsit) with an adequate locking isolation level. If only one thread/broker could modify an object at the same time and the
lock will be released after all work is done, the above scenario can't happen.

To avoid corrupted data, all objects cached by users (using the methods of the ObjectCache
interface) will never be pushed to the application cache, they will be buffered in the session cache
till it was cleared.

Implementation configuration properties:

Property Key Property Values
applicationCache Specifies the ObjectCache implementation used

as application cache (second level cache). By
default ObjectCacheDefaultimpl was used. It's
recommended to use a shared cache
implementation (all used PB instances should
access the same pool of objects - e.g. by using
a static Map in cache implementation).

copyStrategy Specifies the implementation class of the
hj ect CacheTwoLevel | npl . CopyStr at egy

190

0oJB

interface, which was used to copy objects on

read and write operations to application cache. If

not set, a default implementation was used

(Cbj ect CacheTwoLevel | npl . Copy St r at egyl npl
make field-descriptor based copies of the

cached objects).

forceProxies If true on materialization of cached objects, all
referenced objects will be represented by proxy
objects (independent from the proxy settings in

reference- or collection-descriptor).

Note: To use this feature all persistence capable
objects have to be interface based or the
ProxyFact ory and | ndi rect i onHandl er
implementation classes supporting dynamic
proxy enhancement for all classes (see
OJB.properties, find more information about
proxy settings here).

ObjectCachePer Broker I mpl

ObjectCachePerBrokerlmpl is alocal/session cache implementation allows to have dedicated
caches per PersistenceBroker instance.

Note: When the used broker instance was closed (returned to pool) the cache was cleared.

This cache implementation is not synchronized with the other Cbj ect Cache instances, there will
be no automatic refresh of objects modified/updated by other threads (PersistenceBroker
instances).

So, objects modified by other threads will not influence the cached objects, because for each broker
instance the objects will be cached separately and each thread should useit's own
PersistenceBroker instance.

ObjectCacheEmptyl mpl

Thisis an no-op ObjectCache implementation. Useful when caching was not desired.

Thisimplementaion supports circular references as well (since OJB 1.0.2, materialization of object graphs with circular references will
be handled internally by OJB).

ObjectCacheJCSImpl

A shared Obj ect Cache implementation using a JCS region for each classname. More info see
turbine-JCS.

ObjectCacheOSCachel mpl

You're basically in good shape at this point. Now you've just got to set up OSCache to work with
OJB. Here are the steps for that:

» Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that itisin
your classpath (for Servlet/J2EE users place in your WEB-INF/lib directory).

« Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath (for
Servlet/J2EE users place in your WEB-INF/lib directory).

» Add oscache.properties from your OSCache distribution to your project so that it isin the
classpath (for Servlet/J2EE users place in your WEB-INF/classes directory). Open the file and

191

make the following changes:
1. Addthefollowing lineto the CACHE LISTENERS section of your oscache.propertiesfile:

cache.event.listener s=com.opensymphony.oscache. plugins.cluster support.JavaGroupsBroadcastingLi st
2. Addthefollowing line at the end of the oscache.properties file (your network must support
multicast):
cache. cluster.nulticast.ip=231.12.21. 132
Add the following class to your project (feel free to change package name, but make sure that
you specify the full qualified class name in configuration files). Y ou can find source of this
classunder db- o] b/ contri b/ src/ Qbj ect CacheOSCachel npl or copy this source:

To allow usage of thisimplementation as application cache level in the two-level cache implement
the internal object cache interface instead of the standard one.

Now OSCache can be used by OJB as standal one cache (by declaring the implementation class on

0oJB

connection- or class-level) or as application cache in the two-level cache.

More implementations ...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

5.5.14.5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects
across different VM. OJB does not support distributed caching "out of the box", to do thisa
external caching library is needed, e.g. the OSCache implementation supports distributed caching.
More information how to setup OJB in clustered enviroments see clustering howto.

5.5.14.6. Implement your own cache

The OJB cache implementations are quite simple but should do a good job for most scenarios. If
you need a more sophisticated cache or need to pluggin a proprietary caching library you'll write
your own implementation of the ObjectCache interface.

Integration of your implementation in OJB is easy since the object cache is a pluggable component.
All you have to do, isto declare it on connection- or class-level. Here an example howto declare the
new implementation on connection level:

If interested to get more detailed information about the "type" of the objects to cache (objects
written to DB, new materialized objects,...) implement the ObjectCachelnternal interface (For an

implementation example see source for ObjectCacheTwol evellmpl).

} Of course we interested in your solutions! If you have implemented something interesting, just contact us. (

5.5.14.7. Futur e prospects

In OJB 1.1 the caching part will be rewritten to get rid of static classes, factories and member
variables.

5.5.15. Sequence M anager

5.5.15.1. The OJB Sequence M anager

All sequence manager implementations shipped with OJB you can find under the
or g. apache. oj b. br oker. uti | . sequence package using the following naming
convention SequenceManager XXXI npl .

Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique values for
primary key attributes. Y ou just have to enable the autoincrement attribute in the respective
field-descriptor of the XML repository file as follows:

194

This definitions contains the following information:

The attributear t i cl el d ismapped on the table's column ARTI CLE_| D. The JDBC Type of this
columnis| NTEGER. Thisisaprimary key column and OJB shall automatically assign unique
values to this attribute.

This mechanism works for al whole-numbered column types like BIGINT, INTEGER,
SMALLINT,... and for CHAR, VARCHAR columns. This mechanism helps you to keep your
business logic free from code that computes unique ID's for primary key attributes.

For ce computation of unique values

By default OJB triggers the computation of unique ids during calls to PersistenceBroker.store(...).
Sometimes it will be necessary to have the ids computed in advance, before a new persistent object
was written to database. This can be done by simply obtaining the Identity of the respective object
asfollows:

This creates an |dentity object for the new persistent object and set all primary key values of the
new persistent object - But it only worksif aut oi ncr enent isenabled for the primary key

fields.

Force computation of unique valuesis not allowed when using database based Identity columns for primary key generation (e.g via
Identity column supporting sequence manager), because the real PK valueis at the earliest available after database insert operation. If
you nevertheless force PK computing, OJB will use an temporary dummy PK value in the Identity object and this may lead to unexpeted
behavior.

Info about lookup persistent objects by primary key fields see here.

How to change the sequence manager ?

To enable a specific SequenceManager implementation declare an sequence-manager attribute
within the jdbc-connection-descriptor element in the repository file.

If no sequence-manager was specified in the jdbc-connection-descriptor, OJB use a default
sequence manager implementation (default was SequenceManager HighLowlmpl).

Further information you could find in the repository.dtd section sequence-manager € ement.

Example jdbc-connection-descriptor using a sequence-manager tag:

The mandatory className attribute needs the full-qualified class name of the desired
sequence-manager implementation. If aimplementation needs configuration properties you pass
them using custom attribute tags with attribute-name represents the property name and

attribute-value the property value. Each sequence manager implementation shows all properties on
the according javadoc page.

SequenceM anager implementations

Source code of all SequenceM anager implementations can be found in

or g. apache. oj b. broker. util. sequence package.

If you still think something is missing, you can just write your own sequence manager
implementation.

High/L ow sequence manager

The sequence manager implementation class

oj b. broker. util.sequence. SequenceManager H ghLow npl andisableto generate
ID's unique to a given object and all extent objects declarated in the objects class descriptor.

If you ask for an ID using an interface with several implementor classes, or a baseclass with several
subclasses the returned ID have to be unique accross all tables representing objects of the interface
or base class (more see here).

It's also possible to use this implementation in a global mode, generate global uniqueid's.

Thisimplementation needs an internal database table and object mapping declar ation to persist
the used sequences. The table structure can be found in in platform guide the object metadata
mapping can be found in OJB internal mapping file (called repository_internal . xml).

To declare this sequence manager implementation specify asequence- manager element
within the jdbc-connection-descriptor:

The property seq. st art (or deprecated sequenceSt ar t) define the start value of theid

196

0oJB

generation (default was'1"). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

With property gr abSi ze you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of ID's (default grabSzeis 20).

If OJB was shutdown/redeployed al unused assigned ID's are lost.

If property gl obal Sequencel d wassett r ue you will get global unique ID's over all persistent
objects. Default wasf al se.

NOTE: If the database is already populated or the global sequence namein OJB_HL SEQ database
table was removed (by accident), the seg.start value must be greater than the biggest PK valuein
database.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names here.

The attribute aut oNam ng can be used to enable auto-generation of sequence-names, default
valueistrue.

More info about attribute autoNaming here.

Limitations:

- do not use in managed environments when connections were enlisted in running transactions,
e.g. when using DataSources of an application server

- if set connection-pool attribute 'whenExhaustedAction' to 'block’ (wait for connection if
connection-pool is exhausted), under heavy load this sequence manager implementation can block
application.

- superfluously to mention, do not use if other non-OJB applications insert objects too

In-Memory sequence manager

Another sequence manager implementation is aln-Memory version called

oj b. broker. util.sequence. SequenceManager | nMenor yl npl .

Only thefirst time an UID was requested for a object, the manager query the database for the max
value of the target column - all following request were performed in memory. This implementation
ditto generate unique ID's across all extents, using the same mechanism as the High/L ow sequence
manager implementation.

To declare this sequence manager implementation specify asequence- nanager element
within the jdbc-connection-descriptor:

The property seq. st art (or deprecated sequenceSt ar t) define the start value of theid
generation (default was'1"). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names.

The attribute aut oNam ng can be used to enable auto-generation of sequence-names, default
valueistrue.

More info about autoNaming.

The specified sequences will only be used in memory. First time a sequence was used OJB does a
sel ect max-query to find the latest/greatest value for the autoincrement field and use this as

197

starting point for further in-memory key generation.

Thisisthe fastest standard sequence manager implementation and should work with all databases
without any specific preparation, but has some Limitations.

Limitations:

- do not use in clustered environments

- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too

- only declare "number” fields as autoincrement fields (because e.g. "select max ... does not work
with CHAR columns in the used manner)

Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL, ...) you can
use the SequenceManager Next Val | npl implementation to force generation of the sequence
keys by your database.

Database based sequences (sequence objects, sequence generators) are specia (single-row) tables
in the database created with an specific statement, e.g. CREATE SEQUENCE sequenceNane.
This implementation use database based sequencesto assign ID's in autoincrement fields.

The sequences can be managed by hand, by a database tool or by OJB. If the autoNaming attribute
is enabled OJB creates sequencesif needed. Also it's possible to declare sequence namesin the
field-descriptor

To declare this sequence manager implementation specify asequence- nanager element
within the jdbc-connection-descriptor:

Attribute aut oNam ng, default setting istrue. If set true OJB will try to auto-generate a sequence
name if none was found in field-descriptor's sequence-name attribute and create a database

sequence if needed - more details see autoNaming section.

198

0oJB

The auto-generated name will be set as sequence-name in the field-descriptor.

If set false OJB throws an exception if none sequence-name was found in field-descriptor, also OJB

does NOT try to create a database sequence when for a given sequence name (specified in
field-descriptor) no database sequence can be found.

The table below show additional sequence properties. To specifiy the properties use
custom-attributes within the sequence-manager element.

The database sequence specific properties are generally speaking, see database user guide for

detailed description.

seg.as

seq.start

seq.incrementBy

seq.maxValue

seq.minValue

seq.cycle

database specific, e.g.
INTEGER

1...max INTEGER

>=1

1 ... max INTEGER

min INTEGER

true/false

Database sequence
specific property.
Specifies the datatype
of the sequence, the
allowed datatypes
depend on the used
database
implementation.

Database sequence
specific property.
Specifies the first
sequence number to

be generated. Allowed:

1 or greater.

Database sequence
specific property.
Specifies the interval
between sequence
numbers. This value
can be any positive or
negative integer, but it
cannot be 0.
Decrement sequences
are currently not
supported

Database sequence
specific property.
Set max value for
sequence numbers.

Database sequence
specific property.
Set min value for
sequence numbers.
Negative sequences
are not tested as yet.

Database sequence
specific property.

If true, specifies that
the sequence
continues to generate
values after reaching
either its maximum or
minimum value.

If false, specifies that
the sequence cannot
generate more values

DB2

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

199

0oJB

after reaching its
maximum or minimum

value.
seq.cache >=2 Database sequence Oracle, PostgreSQL,
specific property. MaxDB/SapDB, DB2

Specifies how many
values of the sequence
Oracle preallocates
and keeps in memory
for faster access.
Allowed values: 2 or
greater. If set 0, an
explicite nocache
expression will be set.

seq.order true/false Database sequence Oracle,
specific property. MaxDB/SapDB, DB2
If set true, guarantees
that sequence
numbers are
generated in order of
request.
If false, a no order
expression will be set.

Limitations:
- none known
Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low algorithm to
avoid database access.

With property gr abSi ze you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of 1D's using the next database sequence (default grabSze is 20).

If OJB was shutdown/redeployed all unused assigned ID's are lost.

i Keep in mind that the database sequence value does not correspond with the used value in the autoincrement-field (table column value). |

Attribute autoNaming is the same as for SequenceM anagerNextVallmpl.

This sequence manager implementation supports user defined sequence-names to manage the
sequences (see more) or if not setinf i el d- descri pt or itisdone automatic when autoNaming
is enabled.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too

Database | dentity-column based sequence manager

200

This sequence manager implementation supports database | dentity columns (supported by MySQL,
MsSQL, HSQL, ...). When using identity columns we have to do atrick to make the sequence
manager work.

OJB identify each persistence capable object by a unique ojb-Identity object. These ojb-Identity
objects were created using the sequence manager instance to get UID's. Often these ojb-Identity
objects were created before the persistence capable object was written to database.

When using Identity columnsit is not possible to retrieve the next valid UID before the object was
written to database. As recently asthe real object was written to database, you can ask the DB for
the last generated UID. Thus in SequenceManagerNativelmpl we have to do atrick and use a
‘temporary' UID till the object was written to database.

So for best compatibility try to avoid using Identity columns in your database model. If thisis not
possible, use this sequence manager implementation to work with database Identity columns.

To enable this sequence manager implementation set in your
j dbc- connecti on-descri ptor:

To declare the identity column in the persistent class mapping class-descriptor, add the following
attributes to the primary key/identity key field-descriptor:

pri marykey="true",autoi ncrenent ="true" andaccess="r eadonl y"

The first and second attributes are the same as all sequence manager implementations use to
support autoincrement PK fields, the third one is mandatory for database Identity columns only.

Limitations:

- The Identity columns have to start with value greater than '0" and should never be negative.
- Use of Identity columnsis not extent awar e (This may change in further versions). More info
here.

Stored Procedures based (Oracle-style) sequencing

(By Ryan Vanderwerf et al.)

"This solution will give those seeking an oracle-style sequence generator afinal answer (Identity
columnsreally suck). If you are using multiple application serversin your environment, and your
database does not support read locking like Microsoft SQL Server, thisisthe only safe way to
guarantee unique keys (HighL owSequenceManager WILL give out duplicate keys, and corrupt
your data)".

The SequenceManager St or edPr ocedur el npl implementation enabled database sequence
key generation in a Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).

To declare this sequence manager implementation specify asequence- manager element
within the jdbc-connection-descriptor:

0oJB

For attribute autoNaming see.

This sequence manager implementation supports user defined sequence-names to manage the

sequencesor if not setinfi el d-descri pt or it isdone automatic when autoNaming is
enabled.

e Addanew table QJB_NEXTVAL_SEQto your database.
e Youwill aso need astored procedure called oj b_next val _pr oc that will take care of
giving you a guaranteed unique sequence number.

Below you can find the stored procedures you need to use sequencing for MSSQL server and
Informix.

Y ou have to adapt the scripts for other databases (We are interested in scripts for other databases).

Here you can find the currently supported databases and the statements to create the sgl functions:

| . I

Informix . .

Oracle

Limitations:

202

- currently none known

Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced, and
allowsfor your rows Primary Keys to be GUID's that are guaranteed to be unique in time and
Space.

However, thistype is different than the Identity field type, whereas thereis no way to
programmatically retrieve the inserted value. Most implementations when using the u.i. field type
set a default value of "newid()". The SequenceManagerM SSQL Guidimpl class manages this
process for you asif it was any normal generated sequence/identity field.

Assuming that your PK on your table is set to ‘'uniqueidentifier’, your field-description would be the
same as using any other SequenceM anager:

Note that the jdbc-typeisaVARCHAR, and thus the attribute (in this case 'guid’) on your class
should be a String (SQL Server does the conversion from the String representation to the binary
representation when retrieved/set).

Y ou aso need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

Limitations:

-Thiswill only work with SQL Server 7.0 and higher as the uniqueidentifier type was not
introduced until then.

Thisworks well in situations where other applications might be updated the database as well,
because it guarantees (well, as much as Microsoft can guarantee) that there will be no collisions
between the Guids generated.

The sequence-name attribute

Several SequenceM anager implementations using sequences (Synonyms: sequence objects,
sequence generators) to manage the ID generation. Sequences are entities which generate unique
ID's using e.g. database table per sequence, database row per sequence or an in-memory
java-object.

To address the sequences, each sequence has an unique sequence-name.

In OJB the sequence-name of an autoincrement field is declared in a sequence-name attribute
within the field-descriptor.

0oJB

The sequence-name attribute in the field-descriptor is only needed if the used sequence manager
supports sequences, the field should be autoincremented and the auto-assign of a sequence-nameis
not desired.

Each sequence-name has be extent-aware.

If you don't specify a sequence name in the field-descriptor it is possible to auto-assign a
sequence-name by OJB if autoNaming is supported by the used sequence manager implementation.

The autoNaming property

All shipped SequenceM anager implementations using sequences for 1D generation support a
property called autoNaming which can be declared as a custom attribute within the
sequence-manager element:

If set true OJB try to build a sequence name by it's own (a simple agorithm was used to
auto-generate the sequence name - more details how it worksin pitfalls section) and set this name

assequence- nane in the field-descriptor of the autoincrement field if no sequence nameis
specified.

If set fal se the sequence manager throw an exception if a sequence name can't be found or was not
declared in the field-descriptor of the autoincrement field. In this case OJB expects avalid
sequence-name in the field-descriptor.

If the attribute aut oNam ng is set fal se the sequence manager never try to auto-generate a
sequence-name (more detailed info here). If set true and a sequence-nameis set in the
field-descriptor, the SequenceManager will use this one and does not override the existing one.

The default setting istrue.

How to write my own sequence manager ?

Very easy to do, just write aimplementation class of the interface
or g. apache. oj b. broker . util. sequence. SequenceManager . OJB use afactory (
SequencelManager Fact or y) to obtain sequence manager instances.

This Factory can be configured to generate instances of your specific implementation by adding a
sequence- manager taginthej dbc- connecti on-descri ptor.

That'sit!

If your sequence manager implementation was derived from
org. apache. oj b. broker. uti |l . sequence. Abstract SequenceManager it'seasy to
pass configuration properties to your implementation using custom attributes.

204

0oJB

With

method get the propertiesin your implementation class.

} Of course weinterested in your solutions! If you have implemented something interesting, just contact us. (

Questions

When using sequence-name attributein field-descriptor ?

Most SequenceManager implementations based on sequence names. If you want retain control

of sequencing use your own sequence- narne attributeinthef i el d- descri pt or. Inthat

case you are reponsible to use the same name across extents, we call it extent-aware (see more info

about extents and polymorphism). Per default the sequence manager build its own extent aware

sequence name with an simple algorithm (see

or g. apache. oj b. broker . util. sequence. SequenceManager Hel per #bui | dSequenceNane
if necessary.

In most cases this should be sufficient. If you have avery complex data model and you will do

many metadata changes in the repository file in future, then it could be better to explicit use

sequence- nanes inthefi el d- descri pt or . See more avoid pitfals.

What to hell does extent aware mean?

Say we have an abstract base class Ani mal and two classes Dog and Cat which extend Ani mal .
For each non-abstract class we create a separate database table and declare the inheritance in OJB.
Now it is possible to do aquery like give me all animals and OJB will return all Cat and Dog
objects. To make thisworking in OJB the ID's of Dog and Cat objects must be unique across the
tables of both classes or else you may not get availd query result (e.g. you can't query for the

Ani mal withid=23, because in both tables such an id can exist).

The reason for this behaviour isthe or g. apache. o] b. broker . I denti ty class
implementation (more details see javadoc/source of this class).

How could | prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID
generation, support by default auto-build (autoNaming) of the sequence name if none was found in
thefi el d- descri ptor.

To prevent this, all relevant SM implementations support aaut oNam ng property - set via
attri but e element. If set f al se OJB doesn't try to build sequence names automatic.

Keep in mind that user defined sequence names have to be extent-aware.

Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each

0JB

j dbc- connecti on-descri ptor. If you don't specify a sequence manager OJB use a default
one (currently oj b. br oker . util.sequence. SequenceManager H ghLow npl).
One sequence manager with multiple databases?

OJB was intended to use a sequence manager per database. But it shouldn't be complicated to
realize aglobal sequence manager solution by writing your own SequenceManager
implementation.

Can | get direct access to the sequence manager ?

That's no problem:

If you useaut oi ncrenent =true inyourfi el d-descri ptor,thereisno reason to obtain
UID directly from the sequence manager or to handle UID in your object model.

Except when using user-defined sequence manager implementations, in this case it could be
needed.

Don't use SequenceM anagerFactory#getSequenceM anager(PersistenceBroker broker), this method returns a new sequence manager
instance for the given broker instance and not the current used SM instance of the given PersistenceBroker instance]

Any known pitfalls?

« When using sequences based sequence manager implementationsit's possible to enable
auto-generation of sequence names - see autoNaming section. To build the sequence name an
simple agorithm was used.

The algorithm try to get the top-level class of the field's (the autoincrement field-descriptor)
enclosing class, if no top-level class was found, the table name of the field's enclosing class was
used. If atop-level class was found, the first found extent class table name was used as
sequence name. The algorithm can be found in

or g. apache. oj b. broker . util. sequence. SequenceManager Hel per #bui | dSequenceN
When using base classes/interfaces with extent classes (declared in the class-descriptor) based
on different database tables and the extent-class entries in repository often change (e.g. add new
top-level class, change top-level class), the algorithm could be corrupted after restart of OJB,
because the first found extent class's table name could be change, hence the used
sequence-name. Now the ID generation start over and could clash with existing ID's.

To avoid this, remove the implementation specific internal sequence name entry (e.g. from table
OJB_HL_SEQ when using the Hi/Lo implementation, or remove the database sequence entry
when using the 'Nextval' implementation) or use custom sequence name attributesin the field
descriptor.

5.5.16. OJB logging configuration

5.5.16.1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component

PoorManslL oggerlmpl, but is also able to use the two most common Javalogging libraries,
commons-logaing (which is actually awrapper around several logging components) and Log4j. In
addition, it is also possible to define your own logging implementation.

206

0oJB

Per default, OJB usesits own PoorMansl oggerlmpl which does not require configuration and
printsto st dout .

5.5.16.2. L ogging configuration within OJB

How and when OJB deter mines what kind of logging to use

Logging isthe first component of OJB that isinitialized. If you access any component of OJB,
logging will beinitialized first before that component is doing anything else. Therefore, you'll have
to provide for the configuration of logging before you access OJB in your program (thisis mostly
relevant if you planto initialize OJB at runtime as is described below). Please note that logging
configuration is independent of the configuration of other parts of OJB, namely the runtime (via
OJB.properties) and the database/repository (viarepository.xml).

These are the individual steps OJB performsin order to initialize the logging component:

1. First, OJB checks whether the system property
or g. apache. oj b. broker. util .| oggi ng. Logger. cl ass isset. If specified, this
property gives the fully qualified class name of the logger class (a class implementing the
L ogger interface). Along with this property, another property is then read which may specify a
propertiesfile for thislogger class,
org. apache. oj b. broker. util .| oggi ng. Logger. confi gFil e.

2. If this property is not set, then OJB triesto read thefile QJB- | oggi ng. properti es. The
name and path of this file can be changed by setting the runtime property of the same name. See
below for the contents of thisfile.

3. For backwards compatibility, OJB next triesto read the logging settings from the file
OJB.properties which is the normal runtime configuration file of OJB. Again, the name and
path of this file can be changed by setting the runtime property of the same name. Thisfile may
contain the same entries asthe QJB- | oggi ng. pr operti es file.

4. If thethe QJB. pr operti es file does not contain logging settings, next it is checked whether
the commons-logging log property or g. apache. commons. | oggi ng. Log or the
commons-logging log factory system property
or g. apache. commons. | oggi ng. LogFact ory isset. If that's the case, OJB will use
commons-logging for its logging purposes.

5. Next, OJB checks for the presence of the Log4j propertiesfilel og4j . properti es.Ifitis
found, the OJB uses Log4j directley (without commons-logging).

6. Finally, OJB triesto find the commons-logging propertiesfile
comons- | oggi ng. properti es which when found directs OJB to use commons-logging
for itslogging.

7. 1f none of the aboveistrue, or if the specified logger class could not be found or initialized,
then OJB defaultsto its Poor MansLogger | npl logger which ssmply logsto st dout .

The only OJB component whose logging is not initialized this way, is the boot logger which is used
by logging component itself and a few other core components. It will (for obvious reasons) aways
use PoorMansL oggerImpl and therefore log to st dout . You can define the log level of the boot
logger viathe QJB. boot LogLevel system property. Per default, WARN is used.

Configuration of logging for theindividual components

Regardless of the logging implementation that is used by OJB, the configuration is generally
similar. The individual logging implementations mainly differ in the syntax and in the
configuration of the format of the output and of the output target (where to log to). See below for
specific details and examples.

In general, you specify adefault log level and for every component (usually a class) that should log
differently, the amount and level of detail that islogged about that component. These are the levels:

207

0oJB

DEBUG

Messages that express what OJB is currently doing. This is the most detailed
debugging level

INFO

Informational messages

WARN

Warnings that may denote potentional problems (this is the default level)
ERROR

As the name says, this level is for errors which means that some action could not be
completed successfully

FATAL

Fatal errors which usually prevent an application from continuing

Thelevels DEBUG and INFO usually result in alot of log messages which will reduce the
performance of the application. Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger isthe logger used by the logging
component itself aswell as afew other core components. It will therefore always use the
PoorMansL oggerlmpl logging implementation. Y ou can configure its logging level viathe

QJB. boot LogLevel system property.

The default logger isdenoted inthe QJB- | oggi ng. pr operti es file by the keyword
DEFAULT instead of the class name. It is used by components that don't require their own logging
configuration (usually because they are rather small components).

5.5.16.3. L ogging configuration via configuration files

OJB-logging.properties

Thisfile usually specifies which logging implementation to use using the

org. apache. oj b. broker. util .| oggi ng. Logger. cl ass property, and which
propertiesfile thislogger has (if any) using the

org. apache. oj b. broker. util .| oggi ng. Logger. confi gFi | e property. You should
also use thisfileto specify log levels for OJB's components if you're not using Log4j or
commons-logging (which have their own configuration files).

A typical QJB- | oggi ng. properti es filelookslikethis:

g. Poor Mar

commons-logging.properties

Thisfileisused by commons-logging. For details on its structure see here.

208

0oJB

An example commons- | oggi ng. properti es filewould be:

Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging
component in the near future.

log4j .properties

The commons-logaing configuration file. Details can be found here.

A samplelog4j configuration is:

Whereto put the configuration files

OJB and the different logging implementations usually look up their configuration filesin the
classpath. So for instance, OJB searches for the QJB- | oggi ng. properti es filedirectly in
any of the entries of the classpath, directories and jar files. If the classpath contains in that order
sone-library.jar,db-ojb.jar,and.,thenitwill first search in the two jars (which
themselves contain a directory structure in which OJB will search only in the root), and lastly in the
current directory (which only happensif . ispart of the classpath) but not in sub directories of it.

For applications, this classpath can easily be set either as an environment variable CLASSPATH or
by using the commandline switch - cl asspat h when invoking the java executable.

For web applications however, the server will define the classpath. There are specific foldersin the
webapp structure that are always part of the webapp's classpath. The one that is normally used to
store configuration files, isthe cl asses folder:

0JB

5.5.16.4. L ogging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to do
that for logging depends on the used logging implementation, but you can usually configure them
via system properties. The only thing to keep in mind isthat logging in OJB isinitialized as soon as
you use one of its components, so you'll have to define the properties prior to using any OJB parts.

With system properties (which are accessibleviaSyst em get Property() fromwithinaJava
program) you can always define the following OJB logging settings:

or g. apache. oj b. broker . util .l oggi ng. Logger. cl ass

Which logger OJB shall use

org. apache. oj b. broker. util .l oggi ng. Logger.configFile

The config file of the logger

QJB- | oggi ng. properties

The path to the logging properties file, default is QJB- | oggi ng. properties

QJB. properties

The path to the OJB properties file (which may contain logging settings), default is

QJB. properties

or g. apache. commons. | oggi ng. Log

Use commons-logging with the specified log implementation

or g. apache. commons. | oggi ng. LogFact ory

Use commons-logging with the specified log factory

| og4j . configuration

When using Log4j directly or via commons-logging, this is the Log4j configuration file

(defaultis | og4j . properti es)
In addition, all Log4j properties (e.g. | og4j . r oot Cat egor y) can be specified as system
properties.

5.5.16.5. Defining your own logger

It israther easy to use your own logger. All you need to do isto provide a class that implements the
interface Logger. Besides the actual log methods (debug, i nfo, warn, error, fatal)
thisinterface definesamethod voi d confi gur e(Confi gurati on) whichisusedto
initialize the logger with the logging properties (as contained in QJB- | oggi ng. pr operti es).

Because commons-logging performs a similar function to the OJB logging component, it islikely that it will be used as such in the near
future. Therefore you're encouraged to also implement the Log interface which is nearly the same as the Logger interface.

5.5.17. Locking

5.5.17.1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple transactions
(possibly in clustered environments).

An example:

Assume there are two transactionst x 1 and t x2 running. The first transactiont x 1 modify object
A and perform an update. At the same time transaction t x2 modify an object A' with the same
identity oi dA, so both objects represent the same row in DB table and both operate on the "same”
row at the same time, thus the state of object with identity oi dA isinconsistent.

210

0oJB

Assume that t x1 was committed, now the modified object A' int x2 based on outdated data (state
before A changed). If now t x2 commits object A' the changes of t x1 will be overwritten with the
"illegal" object A" .

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't dlow t X2 to
read or modify objects with identity oi dA aslong ast x1 commit or rollback (pessimistic locking).
In other words, if in arunning transaction an object in awith identity oi dA hasawrite lock, the
lock manager doesn't allow other transactions to acquire aread or write lock on the same identity
oi dA objects (for the sake of completeness: dependent on the used locking isolation level).

OJB supports two kind of locking strategies:

e optimistic locking
e pessimistic locking

OJB provide an pluggable low-level locking-api (located in
or g. apache. oj b. br oker . | ocki ng) for pessimistic locking, which can be used by the
top-level api'slike ODMG. The PB-api itself does not support pessimistic locking out of the box.

The base classes of the locking-api can be found inor g. apache. oj b. br oker . | ocki ng and
the entry point is class L ockManager.

Object locking helps to guarantee data consistency without the need of database locks. During a
transaction objects can be locked without the use a database connection, e.g the ODM G
implementation lookup a database connection not until the transaction commit was called. If
database locks are used, a connection is needed during the whol e transaction.

5.5.17.2. Optimistic L ocking

To control concurrent access to objects optimistic locking uses aversion field on each persistent
object.

Optimistic locking is supported by al API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long, Integer or
Timestamp) which isincremented each time changes are committed to the object, and is utilizied to
determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,
because it checks dataintegrity only at update time.

1. Inyour table you need a dedicated column of type Bl G NT, | NTEGER or TI MESTAMP. Say
the column istyped as | NTEGER and named VERSI ON_MAI NTAI NED_BY_QJB.

2. Youthen need a(possibly private) attribute in your java class corresponding to the column. Say
the attribute is defined as:

3. 1n repostory.xm‘ you ne\! all!!-!escrlotor lor t!lsattrl!ute. T!IS!I!!-!GSCFID’[OI‘ must

specify attribute| ocki ng="t r ue"
4. The resulting field-descriptor will look as follows:

Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and database
the precision of timestamp values differ (e.g. new value only after 10 ms or 2000 ms). In high concurrency applications this will cause
problems.

211

0oJB

5.5.17.3. Pessimistic-L ocking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks on
persistent object (more precisely, on the identity object of the persistent object).

Pessimistic locking is currently used by the ODM G-api implementation. The PB-api does not
support PL out of the box.

Supported I solation Levels

The OJB locking package supports four different isolation level.

read-uncommitted
read-committed
repeatable-read
serializable

(none)
(optimistic)

The object locking isolation levels can be simply characterized as follows:

Uncommitted Reads

Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read
locksisalowed even if another transaction iswriting to that object (case 13). (Thats why thislevel
isalso called dirty reads, because you can read lock objects with an existing write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locksis
allowed only if there is no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining awrite lock on an object that has been locked for reading
by another transaction is not allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case
6).

The isolation level none and optimistic are self-explanatory:

none - don't lock objects associated with thisisolation level

optimistic - don't lock objects associated with thisisolation level, because optimistic locking was
used instead.

Thus the lock manager will ignore all objects associated with these isolation level.

It's not needed to declare the optimistic isolation level in all persistent objects class-descriptor using thisisolation level, because OJB
will automatically detect an enabled optimistic locking and will bypass pessimistic locking.
Only the proper settings for optimistic locking are mandatory.

The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it, so take
care when comparing database transaction isolation level with object locking isolation level.

The proper behaviour of the different locking isolation level is checked by JUnit TestCases that
implement test methods for each of the 17 cases specified in the above table. (See code for classes
in package or g. apache. oj b. br oker . | ocki ng in OJB test suite).

212

0oJB

The semantics of the strategies are defined by the following table:

Tx1 Tx2 ReadUncor ReadComn Repeatable Serializable

1 SingleRead R True True True True

18 ReadThenF R True True True True
R

2 UpgradeRe R True True True True
U

3 ReadThenV R True True True True
w

4 SingleWrite W True True True True

5 WriteThenk W True True True True
R

6 MultipleReg R R True True True False

7 UpgradeWil R U True True False False

8 WriteWithE: R w True True False False

9 UpgradeWil R R True True False False

10 WriteWithM R R True True False False

W

11 UpgradeWil R R True True False False
w

12 WriteWithM R R True True False False
W

13 ReadWithE: W R True False False False

14 MultipleWrit W W False False False False

15 ReleaseRei R True True True True
Rel W

213

0oJB

16 ReleaseUp(U True True True True
Rel W
17 ReleaseWri W True True True True
Rel W
Acquire R
ReadLock
Acquire W
WriteLock
Upgrade U
Lock

Release Rel
Lock

Thetableisto be read asfollows. The acquisition of asingle read lock on agiven object (case 1) is
allowed (returns True) for all isolationlevels. To upgrade a single read lock (case 2) is aso allowed
for al isolationlevels. If there is already awrite lock on a given object for tx1, it is not allowed
(returns False) to obtain awrite lock from tx2 for all isolationlevels (case 14).

If the low-level locking api was used by hand:

Not all LockManager implementation support the Lock Manager #upgr ade(. . .) method (e.g. upgrade was delegated to write
lock) or behavior of this method is awee bit other than shown above. More detail see javadoc comment of the used LockManager
implementation.

How to specify locking isolation level

The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository element:

The isolation level of aclass can be configured with the following attribute to a class-descriptor:

If no isolation-level was specified a default isolation level was used - see interface | solationL evels.

The semantics of isolation levels are described in isolation level section.

Specify the L ockM anager | mplementation

To specify the used lock manager implementation set the LockManager Class property in
OJB.propertiesfile. By default an in memory lock manager is enabled.

214

The LockManager | mplementations
Below all LockManager implementations shipped with OJB are listed.

The LockManager implementation can optionally support

» lock timeout: The locked objects of an owner will be released after a specified time
» block timeout: The maximal time to wait for acquire alock (e.g. when an object was locked by
another thread). Implementations which do not support this feature are called non-blocking

L ockM anager [nM emorylmpl

A non-blocking, single VM, in-memory LockManager implementation. All
LockManager . upgr adeLock(. . .) calsaredelegated to writelocks. It'sasimple and fast
implementation.

The timeout of locksis supported. The block timeout isignored, because it's non-blocking.

L ockM anager Commons| mpl

This implementation use the locking part of apache's commons-transaction api. The timeout of
locksis currently (OJB 1.0.2) not supported, maybe in further versions. Thisimplementation
supports blocking (with deadlock detection) and non-blocking of acquired locks.

L ockM anager Remotel mpl

Supports locking in distributed environments based on a servlet. The LockManager Remotel mpl
class delegates all locking callsto aremote servlet (LockManager Ser vl et). The URL to
contact the servlet have to be set in OJB.properties file using the LockServietUr| property, e.g.

To make deployment of the LockManager Ser vl et on aservlet container easier an Ant target
lockserviet-war exist, which will build an example .war file containing all needed files (maybe
some useless files) for deployment.

The generated web. xni filelook like:

0oJB

It's possible to use each LockManager implementation as backend of the lock manager servlet -
only adapt the lockManager init-param entry intheweb. xni file.

5.5.17.4. ODM G-api L ocking

The OJB ODMG implementation provides object level transactions as specified by the ODMG.
Thisincludes features like registering objects to transactions, persistence by reachability (atoplevel
object isregistered to atransaction, and also all its associated objects become registered
implicitely) and as avery important aspect: object level locking.

The ODMG locking implementation is located in or g. apache. oj b. odng. | ocki ng and base
on the OJB kernel locking codeinor g. apache. oj b. br oker . | ocki ng. The odmg
implementation use it's own internal locking interface

or g. apache. oj b. odng. | ocki ng. LockManager with specific methods to handle
transactions as owner of alock and persistent object |dentity objects as resources to lock..

What it does

The ODMG-Api allows transactions to lock an object obj asfollows:

where lockM ode defines the locking modes:

A sample session could look as follows:

216

0oJB

tx.commit();
The ODMG specification does not say if locks must be acquired explicitely by client applications
or may be acquired implicitely. OJB provides implicit locking for the application programmers
convenience: On commit of atransaction all read-locked objects are checked for modifications. If a
modification is detected, awrite lock is acquired for the respective object. If automatic acquisition
of read- or write-lock failes, the transaction is aborted.

On locking an object to atransaction, OJB automatically locks all associated objects (as part of the
persistence by reachability feature) with the same locking level. If application use large object nets
which are shared among several transactions acquisition of write-locks may be very difficult. Thus
OJB can be configured to aguire only read-locks for associated objects.

Y ou can change this behaviour by modifying the file OJB.properties and changing the entry
LockAssoci ati ons=WRI TEtoLockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies to be
used. Thusthere are no API callsfor setting isolation levels. OJB provides four different isolation
levels that can be configured global or for each persistent class in the configuration files.

5.5.17.5. Locking in distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) haveto be
consistent over several JVM. The optimistic locking worksin clustered/distributed environments
without any modifications.

Currently OJB was shipped was simple servlet based L ockM anager implementation called
L ockM anagerRemotelmpl.

Hereis adescription how to use it:

1. Change LockManager Class entry in OJB.properties file to the remote implementation:
or g. apache. oj b. broker . | ocki ng. LockManager Renot el npl and the
LockSer vl et Ur | to the servelt engine where the lock-server serviet will be deployed:

2.Runtheant | ockservl et -war target to generate the lock-server servlet . war application
file. The generated file will be found in[db- oj b] / di st .

3. Check that all needed libraries be copied in lockserviet-war file.

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the LockMap
serviet.

A much better solution will be a JMS- or JavaGroups-based L ockM anager implementation (hope
we can start working on such aimplementation some day).

5.5.17.6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.

This may not be viable in some environments. Thus OJB allowsto plug in user defined

L ockManager implementations.

To specify specific implementations change the following entry in the OJB.properties configuration
file:

0oJB

Of course we are interested in your solutions! If you have implemented something interesting, just contact us.

5.5.18. XDoclet OJB module documentation

5.5.18.1. Acquiring and building

The XDoclet OJB module is part of OJB source. As such, the source of the moduleis part of the
OJB source tree and can be found in directory src/xdoclet. Likewise, binary versions of the module
and the required libraries (xjavadoc, xdoclet) are to be found in the lib folder.

In order to build the XDoclet OJB module from source, you'll need a source distribution of XDoclet
version 1.2, either a source distribution from the sourceforge download siteor aCVS
checkout/drop. See the XDoclet website at http://xdoclet.sourceforge.net/install.html for details.

Building with a XDoclet source distribution

Unpack the source distribution of XDoclet which is contained in afile
xdocl et - src- <ver si on>. <ar chi ve- f or mat > somewhere. If you unpacked it
side-by-side of OJB, you'll get adirectory layout similar to:

The XDoclet OJB module isthen build using the bui | d- xdocl et - nodul e. xm ant script:

The build process will take some time, and after successful compilation the three jars

Xj avadoc- <ver si on>. j ar,xdocl et - <versi on>. j ar, and

xdocl et - o] b- nodul e- <ver si on>. j ar are copied to thelibrary directory of OJB.
Building with a XDoclet CV'S checkout

When checking out from CVS (the xdocl et - al | target), you'll get adirectory like:

Building is XDoclet OJB module is performed by calling:

Since thisisthe default structure assumed by the build script, this can be shortend to:
..

218

‘ O
<
@

Other build options

The build script for the XDoclet OJB module uses the OJB build properties so the following line
addedtothebui | d. properti es filein the OJB root directory allowsto omit the
- Dxdocl et . src. di r =<xdocl et src di r>commandline option:

5.5.18.2. Usage

Using the XDoclet OJB moduleis rather easy. Put the module jar along with the xdoclet and
xjavadc jarsin a place where ant will find it, and then invoke it in your build file like:

The XDoclet OJB module has two sub tasks, oj br eposi t ory andt or queschema, which
generate the OJB repository part containing the user descriptors and the torque table schema,
respectively. Please note that the XDoclet OJB module (like all xdoclet tasks) expects the directory
structure of itsinput java source files to match their package structure. In thisregard it issimilar to
thej avac ant task.

Dueto abug in XDoclet, you should not call the oj bdocl et task more than once in the same

t askdef scope. So, each 0j bdocl et call should beinitsown target with aleading t askdef .

Themain oj bdocl et task hastwo attributes:

destdir

The destination directory where generated files will be placed.

checks : none | basic | strict (default)

The amount of the checks performed. Per default, st ri ct checks are performed
which means that for instance classes specified in an attribute (e.g.

col |l ection-cl ass, rowr eader etc.) are loaded from the classpath and checked.
So in this mode it is necessary to have OJB as well as the processed classes on the
classpath (using the cl asspat hr ef attribute of the t askdef ant task above). If this
is for some reason not possible, then use basi ¢ which performs most of the checks
but does not load classes from the classpath. none does not perform any checks so
use it with care and only if really necessary (in this case it would be helpful if you would
post the problem to the ojb-user mailing list).

Theoj br eposi t ory subtask has the following attributes:

destinationFile

Specifies the output file. The defaultis r eposi tory_user. xnml .
verbose : true | false (default)

Whether the task should output some information about its progress.

Thet or queschemna subtask has these attributes:

databaseName
This attribute gives the name of the database for torque (required).
destinationFile

The output file, default is pr oj ect - schenma. xm .

dtdUrl

Allows to specify the url of the torque dtd. This is necessary e.g. for XML parsers that
have problems with the default dtd url
(http://jakarta.apache.org/turbine/dtd/database.dtd), or when using a newer version of
torque.

generateForeignkeys : true (default) | false

Whether foreignkey tags are generated in the torque database schema.

verbose : true | false (default)

Whether the task outputs some progress information.

Thecl asspat hr ef attribute in the taskdef can be used to define the classpath for xdoclet
(containing the xdoclet and ojb module jars), e.g. via

Using the generated torque schemais a bit more tricky. The easiest way isto use the

bui | d-t orque. xm script whichis part of OJB. Include the lib subdirectory of the OJB
distribution which also includestorque (e.g. in bui | d- cl asspat h as shown above). You will
also want to use your OJB settings (if you're using the ojb-blank project, then only

bui | d. properti es), soinclude them at the beginning of the build script if they are not already
there:

Now you can create the database with ant calls similar to these:

220

0oJB

Asyou can see, the major problem of using Torgue is to correctly setup Torque's build properties.

One important thing to note here is that the latter two calls modify the database and in the process
remove any existing data, so use them with care. Similar to the above targets, you can use the
additional targets dat adunyp for storing the data currently in the database in an XML file, and
dat asql for inserting the data from an XML file into the database.

Also, these steps are only valid for the torque that is delivered with OJB, but probably not for
newer or older versions.

5.5.18.3. Tag reference

Interfaces and Classes
ojb.class
ojb.extent-class
ojb.modify-inherited
ojb.object-cache
ojb.index
ojb.delete-procedure
ojb.insert-procedure
ojb.update-procedure
ojb.constant-argument
ojb.runtime-argument
Fields and Bean properties

ojb.field
References

ojb.reference
Collections

ojb.collection
Nested objects

ojb.nested
ojb.modify-nested

5.5.18.4. I nter faces and Classes

ojb.class

The ojb.class tag marks interfaces and classes that shall be present in the repository descriptor.
Thisincludes types that are used as reference targets or as collection elements, but for instance not
abstract base classes not used elsewhere.

221

0JB

Attributes:

attributes

Optionally contains attributes of the class as a comma-separated list of name-value
pairs.

determine-extents : true (default) | false

When set to t r ue, then the XDoclet OJB module will automatically determine all
extents (ojb-relevant sub types) of this type. If set to f al se, then extents need to be
specified via the ojb.extent-class class tag (see below).

documentation

Optionally contains documentation on the class. If no t abl e- docunent ati on
attribute is specified, then the value is also used for the table documentation in the
database schema.

generate-repository-info : true (default) | false

Setting this to f al se prevents the generation of field/reference/collection descriptors
in the repository XML file, and also automatically enforces gener ate-tabl e-i nfo =
fal se.

Note that there is one case where the XDoclet module will still generate field
descriptors. If the type is referenced by a reference or collection, then the
corresponding foreign key fields (if 1:n collection) or primary keys (if reference or m:n
collection) will be automatically included in the class descriptor, even if they are only
defined in subtypes.

generate-table-info : true (default) | false

This attribute controls whether the type has an associated table. If setto t r ue, a
torque table descriptor will be created in the database schema. Otherwise, no table will
be in the database schema for this type.

include-inherited : true (default) | false

Determines whether base type fields/references/collections with the appropriate tags (
ojb.field, ojb.reference, ojb.collection) will be included in the descriptor and table
definition of this class. Note that all base type fields/references/collections with an
appropriate tag are included regardless of whether the base types have the ojb.class
tag or not.

table

The name of the table used for this type. Is only used when table info is generated. If
not specified, then the short name of the type is used.

table-documentation

Optionally contains documentation for the table in the database schema.

Thefollowing cl ass- descri pt or attributes are also supported in the ojb.class tag and will be
written directly to the generated class descriptor (see the repository.dtd for their meaning):

accept-locks
factory-class
factory-method
initialization-method
isolation-level

proxy
proxy-prefetching-limit
refresh

row-reader

Example: (from the unit tests)

222

The Abstract Arti cl e classwill have an class descriptor in the repository file, but no field,
reference or collection descriptors. The Art i cl e class however will not only have descriptors for
its own fields/references/collections but also for those inherited from Abst ract Arti cl e. Also,
its table definition in the torque file will be called "Artikel", not "Article". The resulting class
descriptors look like:

0jb.extent-class

Use the oj b.extent-class to explicitly specify extents (direct persistent sub types) of the current
type. The class-ref attribute contains the fully qualified name of the class. However, these tags are
only evaluated if the deter mine-extents attribute of the gjb.classtagissettof al se.
Attributes:

class-ref

The fully qualified name of the sub-class (required).
Example:

which resultsin:

0jb.modify-inherited

Allows to modify attributes of inherited fields/references/collections (normally, all attributes are
used without modifications) for thisand all sub types. One special caseis the specification of an
empty value which leads to areset of the attribute value. As aresult the default value is used for
this attribute.

Attributes: All of gjb.field, ojb.reference, and ojb.collection (with the exception of the attributes
related to indirection tables (indir ection-table, remote-foreignkey,
indirection-table-primarykeys, indir ection-table-documentation, for eignkey-documentation,
remote-foreignkey-documentation), and also:

ignore : true | false (default)

Specifies that this feature will be ignored in this type (but only in the current type, not in
subtypes).

name

The name of the field/reference/collection to modify (required).

Example:

produces the class descriptor

0j b.obj ect-cache

The oj b.object-cache tag allows to specify the ObjectCache implementation that OJB uses for
objects of this class (instead of the one defined in the jdbc connection descriptor or in the

oj b. properti es file). Classes specified with this tag have to implement the

or g. apache. oj b. br oker . cache. Obj ect Cache interface. Note that object cache

224

specifications are not inherited.

Attributes:

attributes

Optionally contains attributes of the object cache as a comma-separated list of
name-value pairs.

class

The fully qualified name of the object cache class (required).

documentation

Optionally contains documentation on the object cache specification.

Example:

and the class descriptor

ojb.index

The ojb.index tag is used to define possibly unique indices for the class. An index consists of at
least one field of the class (either locally defined or inherited, anonymous or explicit). Thereis an
default index (without a name) that is made up by all fields that have the indexed attribute set to
t r ue. All other indices have to be defined via the ojb.index tag. In contrast to the indexed
attribute, indices defined via the oj b.index tag are not inherited.

Attributes:

documentation

Optionally contains documentation on the index.

fields

The fields that make up the index separated by commas (required).

name

The name of the index (required). If there are multiple indices with the same name,
then only the first one is used (all others are ignored).

unique : true | false (default)

Whether the index is unique or not.

Example:

the class descriptor

and the torque table schema

0jb.delete-procedure
Declares a database procedure that is used for deleting persistent objects.

Attributes:

arguments

A comma-separated list of the names of constant or runtime arguments specified in the
same class.

attributes

Optionally contains attributes of the procedure as a comma-separated list of
name-value pairs.

documentation

Optionally contains documentation on the procedure.

include-pk-only : true | false (default)

Whether all fields of the class that make up the primary key, shall be passed to the
procedure. If setto t r ue then the arguments value is ignored.

name

The name of the procedure (required).

return-field-ref

Identifies a field of the class that will receive the return value of the procedure. Use
only if the procedure has a return value.

Example:

leads to the class descriptor

0oJB

ojb.insert-procedure

| dentifies the database procedure that shall be used for inserting objects into the database.

Attributes:

arguments

Comma-separated list of names of constant or runtime arguments that are specified in
the same class.

attributes

Contains optional attributes of the procedure in a comma-separated list of name-value
pairs.

documentation

Contains optional documentation on the procedure.

include-all-fields : true | false (default)

Specifies whether all persistent fields of the class shall be passed to the procedure. If
so, then the arguments value is ignored.

name

The name of the procedure (required).

return-field-ref

The persistent field that receives the return value of the procedure (should only be
used if the procedure returns a value).

For an example see constant argument.

ojb.update-procedure
The database procedure that will be used for updating persistent objects in the database.

Attributes:

arguments

A comma-separated list of names of constant or runtime arguments in the same class.
attributes

The optional attributes of the procedure in a comma-separated list of name-value
pairs.

documentation

Optional documentation on the procedure.

include-all-fields : true | false (default)

Whether all persistent fields of the class shall be passed to the procedure in which
case the arguments value is ignored.

name

Name of the database procedure (required).

return-field-ref

A persistent field that will receive the return value of the procedure (only to be used if
the procedure returns a value).

228

For an example see runtime argument.

ojb.constant-argument

A constant argument for a database procedure. These arguments are referenced by the procedure
tags in the arguments attribute via their names.

Attributes:

attributes

Optionally contains attributes of the argument.

documentation

Optionally contains documentation on the argument.

value

The constant value.

name

The identifier of the argument to be used the arguments attribute of a procedure tag
(required).

Example:

will result in the class descriptor

0j b.runtime-ar gument

An argument for a database procedure that is backed by a persistent field. Similar to constant
arguments the name isimportant for referencing by the procedure tags in the ar guments attribute.

Attributes:

attributes

Contains optionally attributes of the argument.
documentation

Optionally contains documentation on the argument.
field-ref

The persistent field that delivers the value. If unspecified, then in the procedure call
nul | will be used.

name

Identifier of the argument for using it in the arguments attribute of a procedure tag
(required).

return

If the field receives a value (?).

Example:

will result in the class descriptor

5.5.18.5. Fields and Bean properties

ojb.field

Fields or accessor methods (i.e. get/is and set methods) for properties are marked with the ojb.field
tag to denote a persistent field. When a method is marked, then the corresponding bean property is
used for naming purposes (e.g. "value' for amethod get Val ue()). The XDoclet OJB module
ensures that afield is not present more than once, therefore it is safe to mark both fields and their
accessors. However, in that case these oj b.field tags are required to have the same attributes.

Dueto abug in XDoclet, it is currently not possible to processf i nal ortransi ent fields.

Marked fields are used for descriptor generation in the same type (if it has an gjb.class tag) and all
sub types with the gjb.class tag having the include-inherited attribute settot r ue.

230

0oJB

It isalso possible to use the oj b.field tag at the class level (i.e. in the JavaDoc comment of the
class). In this case, the tag is used to define an anonymous field, e.g. a"field" that has no
counterpart in the class but exists in the database. For anonymous fields, both the name and the
jdbc-type attributes are required, and the access attribute isignored (it defaults to the value
anonynous). Beside these differences, anonymous fields are handled like other fields, e.g. they
result in field-descriptor entriesin the repository descriptor, and in columns in the table schema,
and they are inherited and can be modified viathe ojb.modify-inherited tag.

The XDoclet OJB module orders the fields in the repository descriptor and table schema according
to the following rules:

1. Fields (anonymous and non-anonymous) from base types/nested objects and from the current
file that have an id, sorted by the id value. If fields have the same id, then they are sorted
following the rules for fields without an id.

2. Fields (anonymous and non-anonymous) from base types/nested objects and from the current
filethat have noid, in the order they appear starting with the farthest base type. Per class, the
anonymous fields come first, followed by the non-anonymous fields.

Attributes:

access : readonly | readwrite (default)

Specifies the accessibility of the field. r eadonl y marks fields that are not to modified.
r eadwr i t e marks fields that may be read and written to. Anonymous fields do not
have to be marked (i.e. anonynous value) as the position of the ojb.field tag in the
class JavaDoc comment suffices.

attributes

Optionally contains attributes of the field as a comma-separated list of name-value
pairs.

autoincrement : none (default) | ojb | database

Defines whether this field gets its value automatically. If oj b is specified, then OJB fills
the value using a sequence manager. If the value is dat abase, then the column is
also defined as aut ol ncr enent in the torque schema (i.e. the database fills the
field), and in the repository descriptor, the field is marked as access="'readonl y' (if
it isn't an anonymous field). The dat abase value is intended to be used with the
org. apache. oj b. broker. uti|l.sequence. SequenceManager Nat i vel npl
sequence manager. For details, see the Sequence Manager documentation.

The default value is none which means that the field is not automatically filled.
column

The name of the database column for this field. If not given, then the name of the
attribute is used.

column-documentation

Optionally contains documentation on the column in the database schema.
conversion

The name of the class to be used for conversion between the java type of the field
(e.g.j ava. | ang. Bool ean orj ava. uti | . Dat e) and the java type for the JIDBC
type (e.g.j ava. | ang. | nt eger orj ava. sql . Dat e). Conversion classes must
implement the

or g. apache. oj b. br oker . accessl ayer. conver si ons. Fi el dConver si on
interface. If no explicit JDBC type is defined and the java type has no defined
conversion (see below), then per default the

or g. apache. oj b. br oker. accessl ayer. conver si ons. Qbj ect 2Byt eArr Fi el dConvers
conversion class is used.

Default conversion is also used for the following java types when no jdbc type is given
(default type is used instead), and no conversion is specified:

231

0JB

org. apache. oj b. broker.util .G D or g. apache. oj b. broker. accessl ayer. conver si ons. GUI D2!

documentation

Optionally contains documentation on the field. If no col unmm- docunent ati on
attribute value is specified, then this value is also used for the documentation of the
column in the database schema.

id

An integer specifying the position in the repository descriptor and table schema. For
the placement rules see above.

jdbc-type : BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE | FLOAT |
REAL | NUMERIC | DECIMAL | CHAR | VARCHAR | LONGVARCHAR | DATE |
TIME | TIMESTAMP | BINARY | VARBINARY | LONGVARBINARY | CLOB | BLOB |
STRUCT | ARRAY | REF | BOOLEAN | DATALINK

The JDBC type for the column. The XDoclet OJB module will automatically determine
a jdbc type for the field if none is specified. This means that for anonymous fields, the
jdbc-type attribute is required. The automatic mapping performed by the XDoclet OJB
module from java type to jdbc type is as follows:

bool ean BIT

byt e TI NYI NT
short SMALLI NT
i nt | NTEGER
| ong Bl G NT
char CHAR

f1 oat REAL
doubl e FLOAT

j ava. | ang. Bool ean BIT
java. |l ang. Byt e TI NYI NT
j ava. | ang. Short SMALLI NT
j ava. | ang. I nt eger | NTEGER
j ava. | ang. Long Bl G NT

j ava. |l ang. Char act er CHAR

j ava. | ang. Fl oat REAL

j ava. | ang. Doubl e FLOAT
java.lang. String VARCHAR
java.util.Date DATE
java.sql . Date DATE
java.sqgl.Tine TI ME

j ava. sql . Ti nest anp TI MESTAMP
java.sqgl . Bl ob BLOB

232

0oJB

java.sgl.d ob CLOB

j ava. sql . Ref REF
java.sql . Struct STRUCT

j ava. mat h. Bi gDeci nal DECI MAL
org. apache. oj b. broker.util.GUJ D VARCHAR

For any other type (including array types) the default mapping is to LONGVARBI NARY using the
hj ect 2Byt eArr Fi el dConver si on conversion (see conver sion attribute above).

length

The length of the column which might be required by the jdbc type in some databases.
This is the reason that for some jdbc types, the XDoclet OJB module imposes default
lengths if no length is specified:

CHAR 1

VARCHAR 254

name
The name of the field. This attribute is required for anonymous fields, otherwise it is
ignored.

precision

scale

The precision and scale of the column if required by the jdbc type. They are usually
used in combination with the DECI MAL and NUVERI Ctypes, and then specifiy the
number of digits before (precision) and after (scale) the comma (excluding the
plus/minus sign). Due to restrictions in some databases (e.g. MySQL), the XDoclet
0OJB module imposes default values for some types if none are specified:

DECI VAL 20, 0 (this corresponds to the range of | ong
where the longest number is
-9223372036854775808).

NUMERI C 20,0

For other types, if only the precision is specified, the scale defaults to O. If only scale is specified,
precision defaults to 1.

Other attributes supported in the ojb.field tag that have the same meaning as in the repository
descriptor (and partly in the torque table schema) are:

default-fetch
indexed
locking
nullable
primarykey
sequence-name
update-lock

Examples:

233

will result in the following field descriptor:

The column descriptor looks like:

An anonymous field is declared like this:

In this case an anonymous field is declared and also used as the foreignkey of an anonymous
reference. The corresponding class descriptor looks like:

0oJB

Here the anonymous field and reference (which implicitly refersto super) are used to establish
the super-subtype relationship between E and F on the database level. For details on this see the
advanced technique section.

5.5.18.6. References

ojb.reference

Similar to fields, references (java fields or accessor methods) are marked with the ojb.reference
tag. We have areference when the type of the javafield isitself a persistent class (has an gjb.class
tag) and therefore the java field represents an association. This means that the referenced type of an
association (or the one specified by the class-ref attribute, see below) isrequired to be present in
the repository descriptor (it has the gjb.class tag).

Foreign keys of references are also declared in the torque table schema (see example below).

OJB currently requires that the referenced type has at least one field used to implement the
reference, usually someid of an integer type.

A reference can be stated in the JavaDoc comment of the class (anonymous reference), but in this
caseit silently refer to super (seethe example of gjb.field) which can be used to establish an
inheritance relationship. Note that anonymous references are not inherited (in contrast to
anonymous fields and normal references).

Attributes:

attributes

Optionally contains attributes of the reference as a comma-separated list of
name-value pairs.

class-ref

Allows to explicitly specify the referenced type. Normally the XDoclet OJB module
searches the type of the field and its sub types for the nearest type with the ojb.class
tag. If the type is specified explicitly, then this type is used instead. For anonymous
references, the class-ref has to specified as there is no field to determine the type
from.

Note that the type is required to have the gjb.class tag.

database-foreignkey : true (default) | false

Specifies whether a database foreignkey shall be generated for the reference. Note
that this attribute is only evaluated if the XDoclet module has determined that a
database foreignkey could be generated. You cannot force the generation with this
attribute, and the value of the attribute is not considered when checking if database
foreignkeys can be generated in case the referencing class has subtypes (in which
case database foreignkeys can only be generated if all subtypes map to the same
table or don't map to a table or the inheritance is mapped via a super-reference).
documentation

Optionally contains documentation on the reference.

foreignkey

Contains one or more foreign key fields separated by commas (required). The foreign
key fields are fields with the gjb.field tag in the same class as the reference, which
implement the association, i.e. contains the values of the primarykeys of the
referenced object.

Other supported attributes (see repository.dtd for their meaning) written directly to the repository

235

descriptor file:

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit
refresh

Example:

Herethejavatypeis| nt er f acePr oduct G oup athough the repository reference uses the sub
type Pr oduct Gr oup. The generated reference descriptor looks like:

In the torque table schemafor the Art i cl e class, the foreign key for the product group is
explicitly declared:

236

0oJB

For an example of an anonymous reference, see the examples of gjb.field.
5.5.18.7. Collections

ojb.collection

Persistent collections which implement 1:n or m:n associations are denoted by the ojb.collection
tag. If the collection is an array, then the XDoclet OJB module can determine the element type
automatically (analogous to references). Otherwise the type must be specified using the
element-class-ref attribute. m:n associations are also supported (collections on both sides) viathe
indirection-table, foreignkey and remote-foreignkey attributes.

Attributes:

attributes

Optionally contains attributes of the collection as a comma-separated list of
name-value pairs.

collection-class

Specifies the class that implements the collection. This attribute is usually only
required if the actual type of the collection object shall be different from the variable
type, e.g. if an interface like j ava. uti | . Col | ecti on is used as the declared type.
Collections that use j ava. util . Col | ection,java. util.List or

java. util . Set can be handled by OJB as-is so specifying collection-class is not
necessary. For the types that do not, the XDoclet OJB module checks whether the
declared collection field type implements the

or g. apache. oj b. br oker . Manageabl eCol | ect i on interface, and if so,
generates the collection-class attribute automatically. Otherwise, you have to specify
it.

database-foreignkey : true (default) | false

Specifies whether a database foreignkey shall be generated for the collection. Note
that this attribute is only evaluated if the XDoclet module has determined that a
database foreignkey could be generated. You cannot force the generation with this
attribute, and the value of the attribute is not considered when checking if database
foreignkeys can be generated in the case of subtypes of the element type or the type
having the collection (if m:n collection). For 1:n collections, database foreignkeys can
only be generated if all subtypes of the element type map to the same table or don't
map to a table or the inheritance is mapped via a super-reference. For m:n collections,
the same applies to the class owning the collection.

documentation

Optionally contains documentation on the collection.

element-class-ref

Allows to explicitly specify the type of the collection elements. Note that the type is
required to have the ojb.class tag.

foreignkey

Contains one or more foreign key field or columns separated by commas (required).

If the collection implements an 1:n association, then this attribute specifies the fields in
the element type that implement the association on the element side, i.e. they refer to
the primary keys of the class containing this collection. Note that these fields are
required to have the ojb.field tag.

When the collection is one part of an m:n association (e.g. with an indirection table),
this attribute specifies the columns in the indirection table that point to the type owning
this collection. This attribute is required of both collections. If the other type has no
explicit collection, use the remote-foreignkey attribute to specify the foreign keys for

237

0JB

the other type.

foreignkey-documentation

Optionally contains documentation for the columns in the indirection table in the
database schema that point to this class.

indirection-table

Gives the name of the indirection table used for m:n associations. The XDoclet OJB
module will create an appropriate torque table schema. The specified foreign keys are
taken from the foreignkey attribute in this class and the corresponding collection in the
element class, or if the element class has no collection, from the remote-foreignkey
attribute of this collection. The XDoclet OJB module associates the foreignkeys (in the
order they are stated in the foreignkey/ remote-foreignkey attributes) to the ordered
primarykey fields (for the ordering rules see the ojb.field tag), and use ther jdbc type
(and length setting if necessary) of these primarey keys for the columns.
indirection-table-documentation

Optionally contains documentation for the indirection table in the database schema.
indirection-table-primarykeys : true | false (default)

Specifies that the columns in the indirection table that point to this type, are primary
keys of the table. If the element type has no corresponding collection, then this setting
is also applied to the columns pointing to the element type.

orderby

Contains the fields used for sorting the collection and, optionally, the sorting order
(either ASC or DESC for ascending or descending, respectively) as a comma-separated
list of name-value pairs. For instance, fi el d1=DESC, fi el d2, fi el d3=ASC specifies
three fields after which to sort, the first one in descending order and the other two in
ascending order (which is the default and can be omitted).

guery-customizer

Specifies a query customizer for the collection. The type is required to implement

or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer .
guery-customizer-attributes

Specifies attributes for the query customizer. This attribute is ignored if no query
customizer is specified for this collection.

remote-foreignkey

Contains one or more foreign key columns (separated by commas) in the indirection
table pointing to the elements. Note that this field should only be used if the other type
does not have a collection itself which the XDoclet OJB module can use to retrieve the
foreign keys. This attribute is ignored if used with 1:n collections (no indirection table
specified).

remote-foreignkey-documentation

Optionally contains documentation for the columns in the indirection table in the
database schema that point to the element type. This value can be used when the
element type has no corresponding collection (i.e. remote-foreignkey is specified) or if
the corresponding collection does not specify the f or ei gnkey- docunent ati on
attribute.

The same attributes as for references are written directly to the repository descriptor file (see
repository.dtd) :

auto-delete
auto-retrieve
auto-update
otm-dependent

proxy
proxy-prefetching-limit

238

The corresponding collection descriptor is:

An m:n collection is defined using the indir ection-table attribute:

0JB
e
TheBaseCont ent | npl hasam:n associationto the Qual i f i er interface. for the
BaseCont ent | npl class, this association isimplemented viathe CONTENT _I D column
(specified by the foreignkey) in the indirection table CONTENT_QUALI FI ER. Usually, both ends
of an m:n association have a collection implementing the association, and for both ends the
foreignkey specifies the indirection table column pointing to the class at this end. The
Qual i fi er interface however does not contain a collection which could be used to determine the
indirection table column that implements the association from its side. So, this column is also
specified in the BaseCont ent | npl class using the remote-foreignkey attribute. The class
descriptors are:

As can be seen, the collection definition isinherited in the News class and the two indirection table
columns pointing to the ends of the m:n associaton are correctly specified.

5.5.18.8. Nested objects

0jb.nested

The features of a class can be included in another class by declaring afield of that type and using
thistag. The XDoclet OJB module will then add every tagged feature (i.e. fields/bean properties
with gjb.field, ojb.reference or ojb.collection tag, or even with ojb.nested) from the type of the
field to the current class descriptor. It is not required that the field's type has the gjb.class tag,
though.

All attributes of the features are copied (even primarykey) and modified if necessary (e.g. the
foreignkey of areference is adjusted accordingly). For changing an attribute use the
0jb.modify-nested tag.

For an example of nesting, see the example of ojb.modify-nested.

oj b.modify-nested

240

Similar to ojb.modify-inherited, thistag allows to modify attributes of a nested feature.

Attributes: All of ojb.field, ojb.reference, and ojb.collection with the exception of the attributes
related to indirection tables (indir ection-table, remote-foreignkey,
indirection-table-primarykeys, indir ection-table-documentation, for eignkey-documentation,
remote-foreignkey-documentation), and also:

ignore : true | false (default)

Specifies that this feature will not be nested.

name

The name of the field/reference/collection to modify (required). Use here the name of
the feature in the nested type.

Example:

The two classes;

result in the one class descriptor

and the table descriptor

Note how one ojb.modify-nested tag changes the type of the nested hasVal ue field, add a

0oJB

conver si on and specifies the position for it. The other modification tag removes the
pri mar ykey status of the nested i d field.

5.5.19. OJB Performance

5.5.19.1. Introduction

" Thereisno such thing asafreelunch."
(North American proverb)

Object/relational mapping tools hide the details of relational databases from the application
developer. The developer can concentrate on implementing business logic and is liberated from
caring about RDBM S related coding with JIDBC and SQL.

O/R mapping tools allow to separate business logic from RDBMS access by forming an additional
software layer between business logic and RDBMS. Introducing new software layers always eats
up additional computing resources.

In short: the price for using O/R toolsis performance. But on the other hand the biggest
performance consumption is the database access itself (database performance, network
performance, jdbc driver, driver settings, ...). So the percentage of O/R tool performance
consumption isn't big.

Software architects have to take in account this tradeoff between programming comfort and
performance to decide if it is appropiate to use an O/R tool for a specific software system.

This document describes the OJB Performance Test Suite which was created to lighten the decision
between native JDBC, OJB (the different OJB API's) and other O/R mapper.

5.5.19.2. The Performance Test Suite

The OJB Performance Test Suite allows to compare al supported OJB API's against native
single-threaded JDBC programming against your RDBMS of choice and run OJB API'sin avirtua
multithreaded environment. Further on it is possible to compare OJB against any O/R mapping tool
using a simple performance application.

All tests are integrated in the OJB build script, you only need to perform the according ant target:
ant target

The following 'targets exist:

« perf-test multi-threaded performance/stress test of PB/OTM/ODMG api against native
JDBC

« performance single-threaded test, OJB APl implementations (PB, ODMG) against native
JDBC

By changing the JdbcConnectionDescriptor in the configuration files you can point to your specific
RDBMS. Please refer to this document for details.

Inter preting test results

Interpreting the result of these benchmarks carefully will help to decide whether using OJB is
viable for specific application scenarios or if native JDBC programming should be used for
performance reasons.

Take care of compareable configuration properties when run performance tests with different O/R
tools.

243

0oJB

If the decision made to use an O/R mapping tool the comparison with other tools helpsto find the
best one for the thought scenario. But performance shouldn't be the only reason to take a specific
O/R tool. There are many other points to consider:

- Usability of the supported API's

- Flexibility of the framework

- Scalability of the framework

- Community support

- The different licences of Open Source projects
- etcetera....

How OJB comparesto native JDBC programming - single-threaded

OJB is shipped with tests compares native JDBC with ODMG and PB-API implementation. This
part of the test suite isintegrated into the OJB build mechanism.
A singleclient test you can invokeit by typing ant per f or mance or ant perf or mance.

If running OJB out of the box the tests will be performed against the Hypersonic SQL (in-memory
mode) shipped with OJB. A typical console output looks like follows:

Some notes on these test results:

* You seeaconsistently better performance in the second and third run. thisis caused by
warming up effects of VM and OJB.

« PB and native JDBC need about the same time for the three runs although JDBC performance is
better for most operations. This is caused by the second run of the querying operations. In the
second run OJB can load all objects from the cache, thus the time is much shorter. Hence the

244

interesting result: if you have an application that has alot of lookups, OJB can be faster than a
native JDBC application (without caching extensions)!

ODMG is much slower than PB or JDBC. Thisis due to the complex object level transaction
management it is doing and the fact that ODMG doesn't have a specific method to lookup
objects by it's identity. The second reason is responsible for slow querying results, because in
test always a complex query is done for each object. It is possible to use the PB-api within
ODMG, then the query by identity will be asfast asin PB-api.

Y ou can see that for HSQL DB operations like insert and update are faster with JIDBC than with
PB. This performance difference strongly depends on the used cache implementation and can
rise up to 50% when the cache operate on object copies. Thisratio is so high, because

HSQL DB was running with in memory mode and is much faster than ordinary database servers.
If you work against Oracle or DB2 the percentual OJB overhead is going down alot (10 - 15
%), as the database latency is much longer than the OJB overhead.

It's easy to change target database. Please refer to this document for details.
Also it's possible to change the number of test objects by editing the ant-target in build.xml.

Another test compares PB-api,ODMG-api and native JDBC you can find next section.

0JB performancein multi-threaded environments

This test was created to check the performance and stability of the supported API's (PB-api,
ODMG-api and future API's) in asingle/multithreaded environment and to compare the different
api's against native JDBC calls.

Running this test out of the box (avirgin OJB version against hsgl) shouldn't cause any problems.

Per default OJB use ain-memory hsgl database, by changing the JdbcConnectionDescriptor in the
repository.xml file or modify the build.properties file when running OJB out of the box you can
point to your specific RDBMS. Please refer to this document for details.

To run the multithreaded performance test call

A typical output of thistest, using OJB against in-memory hsgl looks like this

0oJB

This test run shows the overhead caused by the O/R layer compared to handcoded sgl statements.
Most overheads results in popul ate the two-level cache which is useless when using ain-memory
database.

Below you can see the same test against MaxDB running on the same machine

} The performance test output is written to console and in afile called OJB-Performance-Result.txt. ‘

To change the test propertiesgo to target per f - t est inthebui | d. xm file and change the
program parameter.

The test needs five parameter:

- A comma separated list of the test implementation classes (no blanks!)

- The number of test loops

- The number of concurrent threads

- The number of managed objects per thread

- The desired test mode. f al se meansrun in performance mode, t r ue means run in stress mode
(useful only for developer to check stability).

246

0oJB

5.5.19.3. How OJB comparesto other O/R mapping tools?

Many user ask this question and there is more than one answer. But OJB was shipped with asimple
performance application (independend from OJB) which allows a rudimentarily comparision of
OJB with other (java-based) O/R mapping tools.

All involved classes can be found in dirctory [db-ojb]/src/test in package

or g. apache. oj b. perf or mance.

Cdl ant perf-test-jar tobuildthejar filecontain al necessary classesto set up atest with
an arbitrary O/R mapper. After the build, the db- oj b- XXX- per f or mance. j ar can be found
in[db- oj b] / di st directory.

Stepsto set up thetest for other O/R frameworks:

« Implement aclass derived from Per f Test

« |If persistent objects (used within your mapping tool) must be derived from a specific base class
or must be implement a specific interface write your own persistent object class by
implementing Per f Art i cl e interface and override method #newPer f Articl e() in
your Per f Test implementation class.
Otherwise a default implementation of interface Per f Art i cl e was used.
The default implementation classis
or g. apache. oj b. performance. Perf Articl el npl .

That'sit!

Y ou can find a example implementation called or g. apache. oj b. conpar e. QJBPer f Test
in the test-sources directory under [db- oj b] / src/ t est (when using source-distribution).

Thisimplementation class is used to compare the performance of the PB-API, ODMG-API,
OTM-api and native JDBC (to bunch al API's, for each API a static inner implementation class of
Per f Test was used). See more about multi-threaded performance.

Run the test

Y ou have two possibilities to run the test:

a) Integration in the OJB build script

Add the full qualified class name of your PerfTest implementation classto the per f - t est target
of the OJB bui | d. xm file, add all necessary jar filesto [db- 0j b] / | i b. The working
directory of thetestis[db- oj b]/target/test/ oj b.

b) Run PerfMain

It's possible to run the test using or g. apache. oj b. per f or mance. Per f Mai n.

For example:

247

0oJB

Thiswill use A_Per f Test and B_Per f Test and perform three loops each loop run 10 threads
and each thread operate on 2000 objects. The test run in normal mode and log all messages.

Take care of compareable configuration properties when run performance tests with different O/R
tools (caching, locking, sequence key generation, connection pooling, ...).

Please, don't start flame war s by posting performance results to mailing lists made with this simple test. This test was created for OJB
QA and to give a clue how good or bad OJB performs, NOT to start discussion like XY is 12% faster then XZ!!.

5.5.19.4. What arethe best settings for maximal performance?
We don't know, that depends from the environment OJB runs (hardware, database, driver,
application server, ...). But there are some settings which affect the performance:

« TheAPI you use, e.g. PB-api is much faster then the ODM G-api. See which API for more
information.

e The used cache implementation.

« ConnectionFactory implementation / Connection pooling. See connection pooling for more
information.

» The autocommit setting of used connections. For best performance it's recommended to use
autocommit 'false' setting in the jdbc-driver to avoid
Connection. set AutoComm t (...) calsby OJB.

e Persi stentFi el dclassimplementation.See OJB.properties section 'PersistentFieldClass
to change the implementation.

» Used sequence manager implementation. See sequence manager for more information.

e Useof batch mode (when supported by the DB). See jdbc-connection-descriptor batch-mode
attribute for more information.

» PersistenceBroker pool size. See OJB.properties for more information.
e TheJDBC driver settings (e.g. statement caching on/off).

To test the different settings use the tests of the performance test suite.

5.6. Howto's

5.6.1. Howto's Summary

Summary of all HOWTO documentation with pratical hands-on information, submitted both by
OJB users and developers.

How to build large metadata mappings
Using anonymous keys for cleaner objects
Using native database sequences

Using OJB in a clustered environment
Using OJB with stored procedures

Using Oracle LOB's

Using Spring with OJB

5.6.2. HOWTO - Build O/R Mapping Files

248

0oJB

5.6.2.1. How to build O/R mapping files

Writing the repository.xml file for only afew classes can easily be done manually with the text or
xml editor of your choice.

But keeping the repository in sync with the java codebase and the database gets more difficult if
severa hundred classes and large devel oper teams are involved.

This page contains tips how to integrate mapping tools and code-generators into your build process.

5.6.2.2. classification of O/R related transfor mations

Let's start with a classification of the source transformation problems that devel opers have to face
in an O/R environment.

Typical development environments contain some or all of the following artefacts:

« A UML model containing at least class diagrams of the persistent classes. All modern UML
tools can export to the XM standard format.

« Other tools, such as Torque, also use amodel based approach but use different model file
formats (typically XML based)

« Javasource code for the persistent classes. The Java source code can possibly be enhanced with
xdoclet tags.

» The OJB repository.xml file. Thisfile contains all the class-descriptors for the persistent
classes.

« Thedatabase. This could be an online DB or a DDL script representing the database tables. The
database contains all tables used to store instances of the persistent classes.

The technique you will use depends alot on the problem you have to solve, on the methodol ogy
and the tool chain you have in use, which of transformations between those artefacts fit to your
development process.

1. Forward engineering from XMI: A UML model in XMI format with class diagrams of your
persistent classes exists and is used as the master source (model driven approach). Java code,
repository.xml and DDL for the database tables have to be generated from this model.

2. Forward engineering from Torque: A model of the persistent entity classes existsin form of
aTorque. XML file. Java code, repository.xml and DDL for the database tables have to be
generated from this model.

3. Forward engineering from therepository.xml: The OJB repository.xml fileis used a model
format. Java code and DDL for the database tables have to be generated from this model.

4. Xdoclet transformation from Java code: Java code for the persistent classes exists and
contains special comment tags in the Xdoclet ojb-module format. Repository.xml and DDL for
the database tables have to be generated from the java files via Xdoclet transformation.

5. Reverseengineering from database: Thereis a database with existing tables or a DDL script.
Java code and repository.xml have to be generated from the database.

These transformations are depicted in the following graphics. The numbers close to the arrows
correspond to the numbers in the above enumeration. All related transformations have the same
colour.

mapping tools image

In the following sections we will have a closer look at each of these transformations an discuss
tools that provide support each approach.
5.6.2.3. Forward engineering from XM|

This approach is recommended if you start from scratch with anew project and have to deal with a

249

0JB

large number of persistent classes. This approach works best when there are no restrictions
regarding the database, like integration of legacy tables.

Forward engineering from XMI fits perfectly into a model driven architecture (MDA) software
devel opment process.

Tool support

AXGen

AXgen isacode generator using XMl asinput and Velocity templates for transformation.

The power of AXgenisin itssimplicity. You don't have to understand complicated structure of
your XM fileto writean XSLT stylsheet for transformation. AXgen uses nsuml to deal with
the xmi file, which gives access to the Metamodel in an objectoriented way.

Further AXgen makes use of Jakartas Velocity. Velocity is avery sophisticated Java-based
template engine. This means that inside your templates you can call Java methods. Feel freeto
write templates that generate anything you want.

Our motive for AXgen isto generate Java Classes for usein a O/R Mapping tool that allows
transparent persistence for Java Objects against relational databases. Therefore AXgen comes
with abundle of ready to use templates for generating ObJectRel ational Bridge (OJB) specific
stuff like:

* Entity Classes

* XML Repository

* SQL script to build the DB scheme

AndroM DA

AndroMDA is a code generator framework - it takes a Unified Modeling Language (UML)
model from a CASE-tool in XMI format and generates custom components. It comes with a set
of sample templates that generate classes attributed with XDoclet tags. One build step later, the
XDoclet tool generates full-blown components that can readily be deployed in the JBoss
application server (and the other servers that X Doclet can feed).

250

0oJB

CASE tool
(Poseidon, Rose, Together)

l AndroMDA Software components

@ @

T
'
i
'

vk -'@Q ot
@ &

UML Model

Templates

andromeda image
Currently AndroMDA provides no specia support for OJB. But by tagging classes with tags of
the XDoclet OJB module it is possible to useit asafull forward engineering engine.
» Searching the Sourceforge project list for "XMI" returns along list of projects dealing with
code generation. It may be agood ideato check if you find atool that matches your
reguirements.

5.6.2.4. Forward engineering from Torque

Torque
Torque is a persistence layer. Torque includes a generator to generate all the database resources

required by your application and includes a runtime environment to run the generated classes.

Torgue was developed as part of the Turbine Framework. 1t is now decoupled and can be used by
itself. Starting with version 2.2 Turbine uses the decoupled Torque.

Torgue uses asingle XML database schema to generate the SQL for your target database and
Torgue's Peer-based object relation model representing your XML database schema.

Y ou can use devaki-nextobjects to create the model for your application.
OJB uses Torque's generator engine to setup the testbed database and feed it with initial data.

Besides the SQL generation facilities Torque also provides special support for OJB related
transformations. It provides the following two ant targets:

251

0JB

e 0jb-mod€

generates a simple object model for ojb
e 0Ojb-repository

generates the repository for ojb

A complete list of al availableTorque targets can be found at the Torque Generator site.

5.6.2.5. Forward engineering from repository.xml

Thereis currently no tool available that directly supports this model. It is not difficult to implement
an XSLT stylesheet that transforms the OJB repository.xml directly into DDL Statements.

An even simpler approach could be to transform the repository.xml fileinto a Torque xml file.
DDL can then be generated by the Torque engine.
If you write such an XSLT file please tell us about it!

5.6.2.6. XDoclet transfor mation from Java code

XDaoclet

XDoclet is a code generation engine. It enables Attribute-Oriented Programming for java. In short,
this means that you can add more significance to your code by adding meta data (attributes) to your
javasources. Thisisdone in specia JavaDoc tags.

OJB was shipped with its own xdoclet-module.

XDoclet will parse your source files and generate many artifacts such as XML descriptors and/or
source code from it. These files are generated from templates that use the information provided in
the source code and its JavaDoc tags.

XDoclet lets you apply Continuous Integration in component-oriented development. Developers
should concentrate their editing work on only one Java source file per component.

XDoclet originated as atool for creating EJBs, it has evolved into a general-purpose code
generation engine. XDoclet consists of a core and a constantly growing number of modules.

5.6.2.7. Rever se engineering from database

e Druid
Druid isatool that allows users to create databases in agraphical way. The user can add or
import tables, fields, folders to group tables and can modify most of the database options that
follow the SQL-92 standard. In addition to sgl options, the user can document each table and
each field with HTML information. It is distributed with modules for generating Java classes,
OJB metadata, and JDO metadata.

e Impart Eclipse Plugin for OJB
The Impart Eclipse plugin is based on the OJB ReverseDB Tool and provides the same
functionality (and also some additional goodies). It ships as a plugin to the Eclipse IDE. It
provides a very convenient GUI that integrates smoothly into the Eclipse platform.

« RDBS2J
RDBS2Jis a GUI based mapping tool from relational database scheme to persistent java classes
which use JDO as persistence mechanism. The mapping can be modified by the GUI.
The current version is designed to create code for OJB.
The ODMG and the JDO interface are supported. RDBS2J creates the *.jdo files and the
repository _user.xml, which are needed by OJB.

« The OJB ReverseDB tool
OJB ships with asimple reverse engineering tool that allows to connect to aRDBMS viaJDBC
and to take the tables from the database catal og as input.

252

Thistool provides anice GUI to generate Java classes and the matching repository.xmil file.
Y ou can invoke the ReverseDB tool with the ANT target r ever se- db.

} The ReverseDB tool is not up to date - any help is welcome. (

5.6.3. HOWTO - Use Anonymous Keys

5.6.3.1. Why Do We Need Anonymous K eys?

The core difference between referential integrity in Javaand in an RDBMS liesin where the
specific referential information is maintained. Java, and most modern OO languages, maintain
referential integrity information in the runtime environment. Actual object relationships are
maintained by the virtual machine so that the symbolic variable used in the application is
dereferenced it will in fact provide access to the object instance which it is expected to provide
access to. Thereisno need for amanual lookup or search across the heap for the correct object
instance. Entity reference integrity is maintained and handled for the programmer by the
environment.

Relational databases, on the other, purposefully place the referential integrity and lookups into the
problem domain - that is the problem they are designed to solve. An RDBM S presumes you can
design something more efficient for your specific circumstances than the VM does (you trust its
ability to do object lookups in the heap is sufficiently efficient). Asan RDBMS has a much larger
heap equivalent it is designed to not operate under that assumption (mostly). So, in an RDBMS the
concept of specific foreign keys existsto maintain the referential integrity.

In crossing the object to relational entity barrier there is a mismatch between the referential
integrity implementations. Java programmers do not want to have to maintain both object
referential integrity and key referential integrity analogous to

Thisis double the work required - you set up the object relationship, then set up the key
relationship. OJB knows about the relationship of the objects, thusit is only needed to do

OJB can provide transparent key relationship maintenance behind the scenesfor 1:1 relations via
anonymous access fields. As object relationships change, the relationships will be propogated into
the key values without the Java object ever being aware of a relational key being in use. This
means that the java object does not need to specify a FK field for the reference.

Without use of anonymous keys class Foo have to look like:

0oJB

When using anonymous keys the FK field will become obsolete:

Under specific conditionsit's also possible to use anonymous keys for other relations or primary keys. More info in advanced-technique
section.

5.6.3.2. How it works

To play for safety it is mandatory to understand how this feature is working. More information how
it works please see here.

5.6.3.3. Using Anonymous K eys

Now we can start using of the anonymous key feature. In this section the using is detailed described
on the basis of an example.

The Code

Take the following classes designed to model a particular problem domain. They may do it
reasonably well, or may not. Presume they model it perfectly well for the problem being solved.

254

A Desk will typically reference multiple drawers and one finish.

The Database

When we need to store our instances in a database we use afairly typical table per class persistance
model.

At the database level the possible relationships need to be explicitely defined by the foreign key
constraints. These model al the possible object relationships according to the domain model (until

generics enter the Java language for the collections AP, thisis technically untrue for the classes
used here).

The Repository Configuration

When we go to map the classes to the database, it is almost a one-to-one property to field mapping.
The exception hereis the primary key on each entity. Thisis meaningless information in Java, so
we would like to keep it out of the object model. Anonymous access keys allow usto do that.

The repository.xml must know about the database columns used for referential integrity, but OJB
can maintain the foreign key relationships behind the scenes - freeing the devel oper to focus on
more accurate modeling of her objects to the problem, instead of the the persistance mechanism.

Doing thisis also very ssimple - in the repository.xml file mark the field descriptors with a
access="anonynous" attribute.

0oJB

Look first at the class descriptor for the Thing class. Notice the field-descriptor with the name

attribute "drawerld". Thisfield is labeled as anonymous access. Because it iS anonymous access
OJB will not attempt to assign the value here to a "drawerld" field or property on the Thing class.
Normally the name attribute is used as the Java name for the attribute, in this caseit is not. The
nameis still required because it is used as an indicated for references to this anonymous field.

In the field descriptor for Drawer, look at the collection descriptor with the name stuffinDrawer.
This collection descriptor references aforeign key withthef i el d-ref ="drawer 1 d". This
reference is to the anonymous field descriptor in the Thing descriptor. The field-ref matches to the
name in the descriptor whether or not the name also maps to the Java attribute name. This dual use
of name can be confusing - be careful.

The same type mapping that is used for the collection descriptor in the Drawer descriptor is aso
used for the 1:1 reference descriptor in the Desk descriptor.

The primary keys are populated into the objects asit is generally a good practice to not implement
primary keys as anonymous access fields. Primary keys may be anonymous-access but references
will get lost if the cacheis cleared or the persistent object is serialized.

257

0oJB

5.6.3.4. Benefits and Drawbacks

There are both benefits and drawbacks to using anonymous field references for maintaining
referential integrity between Java objects and database relations. The most immediate benefit is
avoiding semantic code duplication. The second major benefit is avoiding cluttering class
definitions with persistance mechanism artifacts. In awell layered application, the persistance
mechanism will not really need to be so obvious in the object model implementation. Anonymous
fields helpt o achieve this - thereby making persi stence mechanisms more flexible. Moving to a
different one becomes easier.

5.6.4. HOWTO - Use DB Sequences

5.6.4.1. Introduction

It is easy to use OJB with with database generated sequences. Typically atable using database
generated sequences will autogenerate a unique id for afield as the default value for that field. This
can be particularly useful if multiple applications access the same database. Not every application
will be using OJB and find it convenient to pull unique values from a high/low table. Using a
database managed sequence can help to enforce unique id's across applications all adding to the
same database. All of that said, care needs to be taken as using database generated sequences
imposes some portability problems.

OJB includes a sequence manager implementation that is aware of database sequences and how to
use them. It is known to work against Oracle, SAP DB, and PostgreSQL. MySQL hasits own
sequence manager implementation because it is special. Thistutoria will build against
PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managersis available in the Sequence Manager
documentation.

5.6.4.2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will
create asimple table that pullsits primary key from a sequence named 'Uniquel dentifier'.

We must also define the sequence from which it is drawing values:

So that we have the following table:

If we manually insert some entries into thistable they will have their i d field set automagically.

258

0oJB

5.6.4.3. Using OJB

The Database Repository Descriptor

The next step isto configure OJB to access our t hi ngi e table. We need to configure the corrct
sequence manager inther eposi t or y- dat abase. xni .

Thedefault r eposi t or y- dat abase. xm usesthe High/Low Sequence manager. We will
delete or comment out that entry, and replace it with the

org. apache. oj b. broker. util.sequence. SequenceManager Next Val | npl
manager. This manager will pull the next value from a named sequence and use it. The entry for
our sequence manager in the repository is.

This needs to be declared within the JIDBC Connection descriptor, so an entire
reposi t ory-dat abase. xm might look like:

Defining a Thingie Class
For the sake of simplicity we will make avery basic Java Thingie:

259

We also need a class descriptor inr eposi t ory- user . xm that appears asfollows:

Look over thei d field descriptor carefully. The aut oi ncr enent and sequence- nane
attributes are important for getting our desired behavior. These tell OJB to use the sequence
manager we defined to auto-increment the the valueini d, and they also tell the sequence manager
which database sequenceto use - in this case Uni quel denti fi er

We could allow OJB to create an extent-aware sequence and use it, however as we are working
against atable that defaults to a specific named sequence, we want to make sure to pull values from
that same sequence. Information on allowing OJB to create its own sequencesis available in the
Sequence Manager documentation.

Using Thingie

Just to demonstrate that this all works, here is a simple application that uses our Thingie.

When it isrun, it will create two Thingie instances, store them in the database, and report on their

260

0oJB

assigned i d values.

5.6.5.HOWTO - Work with LOB Data Types

5.6.5.1. Using Oracle L OB Data Typeswith OJB

Introduction

In alot of applications there is a need to store large text or binary objects into the database. The
definition of large usually means that the object's size is beyond the maximum length of a character
field. In Oracle this means the objects to be stored can grow to > 4 KB each.

Depending on the application you are developing your "large objects’ may either be in the range of
some Kilobytes (for example when storing text-only E-Mails or regular XML documents), but they
may also extend to several Megabytes (thinking of any binary data such aslarger graphics, PDFs,
videos, etc.).

In practice, the interface between your application and the database used for fetching and storing of
your "large objects’ needsto be different depending on the expected size. Whileit is probably
perfectly acceptable to handle XML documents or E-Mailsin memory as a string and aways
completely retrieve or store them in one chunk thiswill hardly be agood ideafor video files for
example.

ThisHOWTO will explain:

1. Why you would want to store large objects in the database
2. Oracle LARGE versus LOB datatypes
3. LOB handling in OJB using JDBC LOB types

This tutorial presumes you are familiar with the basics of OJB.

5.6.5.2. Backgrounder: Large objectsin databases

This section is meant to fill in non-DBA people on some of the topics you need to understand when
discussing large objects in databases.

Your database: The most expensive file system?

Depending on background some people tend to store anything in a database while others are biased
against that. As databases use afile system for physical storage anyway, why would it make sense
to store pictures, videos and the like as a large object in a database rather that just create a set of
folders and store them right into the database.

When listening to Oracle's marketing campaingns one might get the impression that thereis no
need to have plain filesystems anymore and that they all will vanish and be replaced by Oracle
database servers. If that happened this would definitely boast Oracle's revenues, but at the same
time make I T cost in companies explode.

But there are applications where it in fact makes sense to have the database take care of
unstructured data that you would otherwise just store in afile. The most common criteriafor
storing non-relational datain the database instead of storing it directly into the file system is
whenever thereis astrong link between this non-relatinal and some relational data.

261

0JB

Typical examplesfor that would be:

1. Picturesor videos of housesin areal estate agent's offer database
2. E-Mailsrelated to a customer's order

If you are not storing these objects into the database you would need to create alink between the
relational and the non-relational data by saving filenames in the database. This means that you
application is responsible for managing this weak link in any respect. In order to make sure your
application will be robust you need to make sure in your own code that

1. When creating a new record you create a valid and unique filename for storing the object.

2. When deleting arecord you delete the corresponding file as well

3. When accessing the file referred to in the record you double-check the file is there and no
locked

(There might be other, more subtle implications.)

All thisis done for you by the database in case you choose to store your objects there. In addition to
that, when discussing text data, a database might come with an option to automatically index the
stored text documents for easy retrievel. Thiswould allow you to perform an SQL seach such as
"give me all customersthat ever referred to the project foo in an e-mail”. (In Oracle you need to
install the InterMedia option, aka Oracle Text in order to get this extrafunctionality. Several
vendors have also worked on technol ogies that allowed to seach rich content such as PDFsfiles,
pictures or even sound or video stored in a database from SQL..)

Oracle LARGE versus L OB datatypes

Some people are worried about the efficiency of storing large objects in databases and the
implications on performance. They are not necessarily entirely wrong in fearing that storing large
objects in databases might be problematic the best or might require alot of tweaks to parametersin
order to be able to handle the large objects. It all depends on how a database implements storing
large objects.

Oracle comes with two completely different mechanisms for that:

1. LARGE objects
2. LOB objects

When comparing the LARGE datatypes such as (*fixme*) to the LOB datatypes such as CLOB,
BLOB, NCLOB (*fixme*) they don't read that different at first. But there is a huge differencein
how they are handled both internally inside the database as well when storing and retrieving from
the database client.

LARGE fields are embedded directly into the table row. This has some consequences you should
be aware of:

1. If your record is made up of 5 VARCHAR fields with a maximum length of 40 bytes each and
one LONGVARCHAR and you store 10 MB into the LONGVARCHAR column, your
database row will extent to 10.000.200 bytes or roughly 10 MB.

2. The database always reads or writes the entire row. So if you do a SELECT on the VARCHAR
fieldsin order to display their content in a user interface as abasis for the user to decide if he or
she will need the content of the LONGVARCHAR at al the database will already have fetched
all the 10 MB. If you SELECT and display 25 records each with a10 MB object in it thiswill
mean about 250 MB of 1/0.

3. When storing or fetching such arow you need to make sure your fetch buffer is sized
appropriately.

In practice this cannot be efficient. It might work as long as you stay in the KB range, but you will

most likely run into trouble as soon as it gets into the MBs per record. Additionally, there are more

limitations to the concept of LONG datatypes such as limiting the number of them you can havein

262

0oJB

one row and how you can index them. Thisis probably why Oracle decided to deprecate LONG
datatypesin favor of LOB columns.

A lot of non-Oracle-DBA people believe that LOB means "large OBject" because some other
vendors have used the term BLOB for "Binary Large OBject" in their products. Thisis not only
wrong but - even worse - misleading, because people are asking: "What's the difference between
large and long?" (Bear with all non native English speakers here, please!)

Instead, LOB stands for Locator OBject which exactly describeswhat isis. It is a pointer to the
place where the actual dataitself is stored. Thislocator will need only occupy some bytesin the
row thus not harming row size at all. So all the issues discussed above vanish immediatelly. For the
sake of simplicity think of aLOB as a pointer to afile on the databases internal file system that
stores the actual content of that field. (Oracle might use plain files or different mechanismsin their
implementation, we don't have to care.)

But asthereis always a trade-off while LOBs are exstremely handy inside arow, they are more
complex to store and retrieve. As opposed to all other column types their actual content stays where
itiseven if you transfer the row from the database to the client. All that goes over the wire in that
case will be atoken representing the actual LOB column content.

In order to read the content or to write LOB content it needs to open a separate stream connection
over the network that can be read from or written to similar to afile on a network file system.
JDBC (starting at version *fixme*) comes with special objects such as java.sgl.Blob and
java.sgl.Clob to access the content of LOBs that do not represent character arrays or strings but
Streams!

5.6.5.3. Large Objectsin OJB

After having skipped the above Backgrounder (in case you do Oracle administration for aliving) of
having read and understood it (hopefully applies to the rest of us) now that you've most likely
decided to go for LOBs and forget about LONGs how is this handled with OJB?

Strategy 1: Using streamsfor LOB /O

HIHHHEHHHH 10 be written HHHHHHEH

Strategy 2: Embedding OJB content in Java objects
HHHHHHHEHHE 10 be Written HHHHHHHHH

Querying CL OB content
HHHHEHEHHE 10 be Written HHHHHHHHEH

5.6.6. HOWTO - Use OJB in clustered environments

5.6.6.1. How to use OJB in clustered environments

Object/Relational Bridge will work fine in environments that require robustness features such as
load-balancing, failover, and clustering. However, there are some important steps that you need to
take in order for your data to be secure, and to prevent isolation failures. These steps are outlined
below.

| have tested thisin a number of environments, and with Servlet engines and J2EE environments. If
you run into problems, please post questions to the OJB users mail list.

263

0oJB

This outline for clustering is based on an email from the OJB Users Mail List: Thisis that mail.

5.6.6.2. Three stepsto clustering your OJB application

A lot of people keep asking for robust ways to run their OJB enginesin multi-VM or clustered
environments. This email covers how to do that safely and securely using Open Symphony's
OSCache caching product.

OSCache is a high-performance, robust caching product that supports clustering. I've been using it
for awhile in production and it is excellent.

Back to the Topic: There are three main things that you should do in order to make your OJB
application ready for using a cache in amulti-VM or distributed environment.
First: Take care of the sequence manager

that you define within jdbc-connection-descriptor element in your repository.xmil file. If none was
set OJB use per default the SequenceManager Hi ghLowl npl sequence manager
implementation.

As of Release Candidate 5 (rc5), you can use SequenceM anagerHighLowImpl in distributed (non-managed) environments. The
SequenceM anagerHighL owlmpl now supports its own optimistic locking that makes the implementation cluster aware by versioning an
entry inthe OJB_HL_SEQ table.

However, the SequenceM anagerHighL owImpl has not been heavily tested in clustered
environments, so if you want absolute security use an sequence manager implementation which
delegates key generation to database.

If your database supports database based sequence key generation (like PostgreSQL, Oracle, ...) it's
recommended to use SequenceManager Next Val | npl (supports database based sequence
keys). Using this sequence manager will prevent conflicts in multi-vm or clustered environments.
More about sequence manager here.

Handling sequence names

If you are using SequenceManager Next Val | npl you have two possibilities:

e Dot by your own:
» Create a sequence object in your database.
* An Oracle sequence lookslike: "create sequence ackSequence increment by 1 start with
1"
» A Postgres sequence looks like: "CREATE SEQUENCE ackSequence START 1"

» For other databases you're on your own.
» Totell OJB to use that sequence for your table add in your repository.xml the sequence
name to the field-descriptor for your table's primary key field:

e Let OJB do that job for you:
The SequenceManager Next Val | npl implementation create the sequence in database

264

0oJB

automatic if none was found. If you don't want to declare asequence- nane attribute in your
field-descriptor, you can enable an automatic sequence name building by setting a specific
customrattribute , then SequenceManager Next Val | npl build an internal sequence name
if none was found.

More about sequence manager here.

Second: Enable optimistic locking

Y ou need to secure the data at the database. Thomas Mahler (lead OJB developer and considerable
ORM guru) recommended in one email that you use the Optimistic Locking feature that is provided
by OJB when using the PB API in aclustered environment. Sounds good to me. To do this you
need to do three small steps:

When using one of the top-level API in most cases Pessimistic (Object) Locking is supported. In that case it is recommended to use a
distributed lock management instead of optimistic locking. More information about ODMG API and L ocking here.

« Add adatabase column to your table that is either an INTEGER or a TIMESTAMP
« Addthefield to your java class, and getter/setter methods (depends on the used PersistentField
implementation):

the column to your table in your repository:

Now OJB will handle the locking for you. No explicit transactional code necessary!

Do The Cache
The detailed steps to setup the OSCache can be found in caching document

You'reready to go! Now just create two instances of your application and see how they
communicate at the cache level. Very cool.

5.6.6.3. Notes

o For J2EE/Servlet users: | have tested this on a number of different application servers. If you're
having problems with your engine, post an email to the OJB Users mail list.

e OSCache aso supports IMS for clustering here, which | haven't covered. If you either don't
have access to a multicast network, or just plain like IMS, please refer to the OSCache

265

0oJB

documentation for help with that, see OSCache Clustering with IMS).

» | have also tested this with Tangosol Coherence. Please refer to this Blog entry for that setup:
Coherence Setup

« OJB aso has shipswith JCS. Feel freeto try that one out on your own.

5.6.7.HOWTO - Stored Procedure Support

5.6.7.1. Introduction

OJB supports the use of stored procedures to handle the basic DML operations (INSERT,
UPDATE, and DELETE). This document will describe the entries that you'll need to add to your
repository in order to get OJB to utilize stored procedures instead of ‘traditional’ INSERT,
UPDATE or DELETE statements.

Please note that there will be references to 'stored procedures' throughout this document. However,
thisisjust asimplification for the purposes of this document. Any place you see areference to
'stored procedure', you can assume that either a stored procedure or function can be used.

Information presented in this document includes the following:

Basic repository entries

Common attributes for all procedure descriptors

An overview of the insert procedure, update procedure and delete procedure descriptors.
Information about the argument descriptors that are supported for all procedure

A simple example and a more complex example

5.6.7.2. Repository entries

For any persistable class (i.e. "com.myproject.Customer") where you want to utilize stored
procedures to handle persistence operations instead of traditional DML statements (i.e. INSERT,
UPDATE or DELETE), you will need to include one or more of the following descriptors within
the corresponding class-descriptor for the persistable class:

e insert-procedur e -identifiesthe stored procedure that is to be used whenever a class
needs to be inserted into the database.

« updat e- procedur e - identifies the stored procedure that is to be used whenever a class
needs to be updated in the database.

« del et e- procedur e - identifies the stored procedure that is to be used whenever aclass
needs to be removed from the database.

All of these descriptors must be nested within the class-descriptor that they apply to. Hereis an
example of asimple class-descriptor that includes each of the procedure descriptors listed above:

266

5.6.7.3. Common attributes

All three procedure descriptors have the following attributes in common:

e nane - Thisisthe name of the stored procedure that isto be used to handle the specific
persistence operation.

« return-field-ref - Thisidentifiesthefield in the class where the return value from the
stored procedure will be stored. If this attribute is blank or not specified, then OJB will assume
that the stored procedure does not return a value and will format the SQL command
accordingly.

The basic syntax that is used to call a procedure that has areturn value looks something like this:

The basic syntax that is used to call a procedure that does not include areturn value looks
something like this:

When OJB assembles the SQL to call astored procedure, it will use the value of the 'name' attribute
in place of 'procedure-name’ in these two examples.

In addition, if the procedure descriptor includes avalue in the 'return-field-ref' attribute that is
'vaid', then the syntax that OJB builds will include the placeholder for the result parameter.

The previous section referred to the idea of a'valid' valuein the 'return-field-ref' attribute. A value
isconsidered to be 'valid' if it meets the following criteria:

e Thevaueisnot blank
Thereis afield-descriptor with a'name' that matches the value in the 'return-field-ref' attribute.

If the 'return-field-ref' attribute is not 'valid', then the placeholder for the result parameter will not
be included in the SQL that OJB assembles.

5.6.7.4. insert-procedure

The insert-procedure descriptor identifies the stored procedure that should be used whenever aclass
needs to be inserted into the database. In addition to the common attributes listed earlier, the
insert-procedure includes the following attribute:

+ include-all-fields

This attribute provides an efficient mechanism for passing all attributes of a persistable classto a
stored procedure. If this attribute is set to true, then OJB will ignore any nested argument
descriptors. Instead, OJB will assume that the argument list for the stored procedure includes
arguments for al attributes of the persistable class and that those arguments appear in the same
order as the field-descriptors for the persistable class.

The default value for this attribute is 'false'.

If the field-descriptors in your repository do not ‘align’ exactly with the argument list for the stored procedure, or you want to maintain
explicit control over the values that are passed to the stored procedure, then either set the 'include-all-fields attribute to ‘false' or leave it
off the insert-procedure descriptor.

5.6.7.5. update-procedure
The update-procedure descriptor identifies the stored procedure that should be used whenever a

267

0JB

class needs to be updated in the database. In addition to the common attributes listed earlier, the
update-procedure includes the following attribute:

e include-all-fields

This attribute provides the same capabilities and has the same caveats as the include-all-fields
attribute on the insert-procedure descriptor.

5.6.7.6. delete-procedure

The delete-procedure descriptor identifies the stored procedure that should be used whenever a
class needs to be deleted from the database. In addition to the common attributes listed earlier, the
delete-procedure includes the following attribute:

e include-pk-only
This attribute provides an efficient mechanism for passing all of the attributes that make up the
primary key for a persistable class to the specified stored procedure. If this attribute is set to
true, then OJB will ignore any nested argument descriptors. Instead, OJB will assume that the
argument list for the stored procedure includes arguments for all attributes that make up the
primary key for the persistable class (i.e. those field-descriptors where the 'primary-key"
attribute is set to 'true’). OJB will also assume that those arguments appear in the same order as
the corresponding field-descriptors for the persistable class.
The default value for this attribute is 'false’.

If the field-descriptorsin your repository that make up the primary key for a persistable class do not ‘adign' exactly with the argument list
for the stored procedure, or you want to maintain explicit control over the values that are passed to the stored procedure, then either set
the 'include-pk-only' attribute to ‘false’ or leave it off the delete-procedure descriptor.

5.6.7.7. Argument descriptors

Argument descriptors are the mechanism that you will use to tell OJB two things:

1. How many placeholders should be included in the argument list for a stored procedure?
2. What value should be passed for each of those arguments?

There are two types of argument descriptors that can be defined in the repository:

e runtime arguments used to set a stored procedure argument equal to a value that is only known
at runtime.
« constant arguments used to set a stored procedure argument equal to constant value.

Y ou may notice that there is no argument descriptor specifically designed to pass a null value to the
procedure. This capability is provided by the runtime argument descriptor.

The argument descriptors are essentially the 'mappings between stored procedure arguments and
their runtime values. Each procedure descriptor can include O or more argument descriptorsin it's
definition.

After reading that last comment, you may wonder why OJB allows you to configure a procedure
descriptor with no argument descriptors since the primary focus of OJB is to handle object
persistence. How could OJB perform any sort persistence operation using a stored procedure that
did not involve the passage of at least one value to the stored procedure? To be honest, it is
extremely unlikely that you would ever set up a procedure descriptor with no argument descriptors.
However, since there is no minimum number of arguments required for a stored procedure, we did
not want to implement within OJB a requirement on the number of arguments that was more
restrictive than the limits imposed by most/all database systems.

268

0oJB

runtime-argument descriptors

A runtime-argument descriptor is used to set a stored procedure argument equal to avaluethat is
only known at runtime.

Two attributes can be specified for each runtime-argument descriptor:

o field-ref
The 'field-ref" attribute identifies the specific field descriptor that will provide the argument's
value. If this attribute is not specified or does not resolve to a valid field-descriptor, then anull
value will be passed to the stored procedure.

e return
The 'return’ attribute is used to determine if the argument is used by the stored procedure as an
‘output’ argument.
If this attribute is set to true, then the corresponding argument will be registered as an output
parameter. After execution of the stored procedure, the value of the argument will be 'harvested'
from the CallableStatement and stored in the attribute identified by the field-ref attribute.
If this attribute is not specified or set to false, then OJB assumes that the argument is simply an
'input’ argument, and it will do nothing special to the argument.

constant-argument descriptors
A constant-argument descriptor is used to set a stored procedure argument equal to constant value.

There is one attribute that can be specified for the constant-argument descriptor:

« vaue
The 'value' attribute identifies the value for the argument.

5.6.7.8. A simple example

This section provides background information and a simple example that illustrates how OJB's
support for stored procedures can be utilized.

The background information covers the following topics:

» Thebasic requirements

» The database objects including the table that will be manipulated, the sequence that will be used
by the stored procedures to assign primary key falues, the insert and update triggers that
maintain the four 'audit' columns and the package that provides the stored procedures that will
handle the persistence operations.

Click here to skip the background information and go straight to the implementation.

The basic requirements

These are the requirements that must be satisfied by our example
1. All insert, update and delete operations are to be performed by stored procedures.

2. All primary key values are to be by the stored procedure that handles the insert operation. The
value that is assigned should be reflected in the object that ‘triggered' the insert operation.

3. For auditing purposes, all tables will include the following set of columns:
 USER CREATED - Thiswill contain theid of the user who created the record
» DATE_CREATED - The date on which the record was created created
 USER UPDATED - Theid of the user who last modified the record
 USER _UPDATED - The date on which the record was last modified

269

In addition to the inclusion of these columns on each table, the following requirements related
to these columns had to be supported:
1. Thevaues of the two date-related audit columns were to be maintained at the database level
viainsert and update triggers.
* Theinsert trigger will set both DATE_CREATED and DATE_UPDATED to the current
system date.
» Theupdatetrigger will set DATE _UPDATED to the current system date. The update
trigger will also ensure that the original value of DATE_CREATED is never modified.

2. Thevalues of the two user-related audit columns are to be maintained at the database level
viainsert and update triggers.
* Theinsert and update triggers will ensure that USER_CREATED and USER _UPDATED
are appropriately populated.
» Theupdate trigger will ensure that the original value of USER _CREATED is never
modified.

3. Any changes that are made by the insert or update triggers to any of the four 'audit’ columns
had to be reflected in the object that caused the insert or update operation to occur.

The database objects

The database objects that are described in this section utilize Oracle specific syntax. However, you
should not infer from this that the stored procedure support provided by OJB can only be used to
access datathat is stored in an Oracle database. In redlity, stored procedures can be used for
persistence operations in any database that supports stored procedures.

e Thetable that will be manipulated,

» The sequence that will be used by the stored procedures to assign primary key values

« Theinsert and update triggers that maintain the four ‘audit’ columns

« The package that provides the stored procedures that will handle the persistence operations.

Click here to skip the information about the database objects and go straight to the implementation.

The CUSTOMER table

This example will deal exclusively with persistence operations related to the a table named
'CUSTOMER ' that is built using the following DDL:

The sequence
This sequence will be used to assign unique valuesto CUSTOVER. | D.

Theinsert and updatetriggers

These two triggers will implement all of the requirements listed above that are related to the four
audit columns:

270

The package

This Oracle package will handle all INSERT, UPDATE and DELETE operations involving the
CUSTOVER table.

0oJB

Pl ease note the following about the structure of the CUSTOVER _PKG package:

» TheAl Dargument that is passed to the the ADD procedureis defined as| N OUT. This allows
the procedure to return the newly assigned | Dto the caller.

» Inthe ADD and CHANGE procedures, the arguments that correspond to the four ‘audit' columns
aredefined as| N OQUT. This alows the procedure to return the current value of these columns
to the'caller'.

Theimplementation

Getting OJB to utilize the stored procedures described earlier in this document is as simple as
adding afew descriptorsto the repository. Here is a class-descriptor related to the CUSTOVER table
that includes all of the necessary descriptors.

Some things to note about this class-descriptor:

1. Intheinsert-procedure descriptor, the first runtime-argument descriptor correspnds to the
"AID" argument that is passed to the CUSTOMER_PKG.ADD routine. The "return" attribute
on this runtime-argument is set to "true". With this configuration, OJB will 'harvest' the value
that is returned by the CUSTOMER_PKG.ADD stored procedure and store the value in the "id"
attribute on the com.myproject.Customer class.

2. In both the insert-procedure and update-procedure descriptors, the runtime-argument
descriptors that correspond to the four 'audit' columns all have the "return” argument set to
"true”. This allows any updates that are made by the procedure or the insert/update triggersto
be reflected in the "Customer" object that caused the insert/update operation to occur.

5.6.7.9. A complex example

This example builds upon the simple example that was presented earlier by introducing some
additional requirements beyond those that were specified in the smple example. Some of these

273

0oJB

additional requirements may seem alittle contrived. To be honest, they are. The only purpose of
these additional requirementsisto create situations that illustrate how the additional capabilities
provided by OJB's support for stored procedures can be utilized.

The additional requirements for this example include the following:

« All procedures will include two additional arguments. These two new arguments will be added
to the end of the argument list for all existing procedures.

* ASOURCE_SYSTEM- identifies the system that initiated the persistence operation. This
will provide a higher level of audit tracking capability. In our example, thiswill always be
"SAMPLE".

* ACOST_CENTER - identifies the "cost center' that should be charged for the persistence
operation. In our example, this argument will always be null.

« Foral"ADD" and "CHG" stored procedures, the value that was assigned to the
"DATE_UPDATED" column will no longer be returned to the caller viaan "IN OUT"
argument. Instead, it will be returend to the caller via the procedure's return value.

Based on these new requirements, the class-descriptor for the "com.myproject. Customer” class will
look like this. The specific changes are detailed below.

Here are an explanation of each modification:

« Note 1l: Thevaluethat isreturned by the"ADD" and "CHG" stored procedures will now be
stored in the "dateUpdated” attribute on the "com.myproject.Customer” class.

274

0oJB

 Note2: Sincethe ADATE_UPDATED argument is no longer defined asan "IN OUT"
argument, we have removed the "return” attribute from the corresponding runtime-argument
descriptor.

« Note3: Thisisthefirst of two new arguments that were added to the argument list of each
procedure. This argument represents the 'source system’, the system that initiated the
persistence operation. In our example, we will always pass a value of 'SAMPLE'.

« Note4: Thisisthe second of two new arguments that were added to the argument list of each
procedure. This argument represents the ‘cost center' that should be charged for the persistence
operation. In our example, we have no cost center, so we need to passanull value. Thisis
accomplished by including a 'runtime-argument' descriptor that has no ‘field-ref' specified.

5.6.8. HOWTO - Spring with OJB

5.6.8.1. Spring with OJB
This Howto refers to external articles describe the usage of Spring with OJB's PB-api.

Included are three articles that are in-depth How-to's for using Spring Framework's declarative
transaction engine with OJB's Persistence Broker implementation. For each article, | have included
a complete sample application with an embedded database that you can run.

They are ssimple to setup and require minimal configuration.

Spring, OJB, and Struts, getting started

Thefirst article covers abasic configuration and setup for integrating Spring with OJB. It covers:

Connecting to the database using Spring's local datasources (Local OjbConfigurer)
Register the appropriate transactionManager for use with OJB
(PersistenceBrokerTransactionManager)

Creating beans and interfaces for use with the database

Having Spring handle transactions for the beans in declarative fashion

The articlelink is; Spring, OJB, and Struts, getting started

Spring, OJB, and Struts. Version 2 with DAO.

The second article covers more advanced Spring usage, separating out the database implementation
code from your Data Access Objects. Thisis an important abstraction layer for controlling data
access ubiquitoudly.

Thearticlelink is; Spring, OJB, and Struts. Version 2 with DAO.

Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching

The Third article covers using OJB's datasourcing and caching strategies.

Thefirst two articles require local datasources and Per Broker caching because of the way that the
OjbConfigurer works.

Now that we've completed basics of integrating OJB in Spring, thislast entry shows how to use
JNDI datasourcing with OJB and Spring, which in turn allows users to get back to other OJB
caching strategies.

The articlelink is: Spring, OJB, and Struts. Version 3: INDI Datasources and Caching

5.7. Testing

275

0oJB

5.7.1. Testing Summary
Summary of documentation about OJB Unit testing.

0OJB has an extensive JUnit-based test suite with over 800 individual tests.

o TheOJB test suite

Information about how to run the test suite against your RDBMS.

How to write tests

Explains how to add your own tests to the OJB test suite.

The OJB performance tests

Link to the reference guide about OJB performance comparison and the OJB performance
test-suite.

5.7.2. JUnit Test Suite

5.7.2.1. Introduction

Building an Object/Relational mapping tool with support for multiple API'sisreally error prone.
To create a solid and stable software, the most awful thing in programmers life has to be done -
Testing.

Quality assurance taken seriously! OJB and provide specific tests for each supported API.
Currently more than 800 test cases for regression tests exist. As testing framework JUnit was used.

Where can | find the test sources?

Thetest sources of the OJB Test-Quite can be find under

[db- 0j b] / src/test/ org/apache/ oj b.

It's also possible to browse the test sources online using the apache cvs view. The test directory can
befound here: [db- 0] b] / src/test/org/ apache/ oj b.

5.7.2.2. How torun the Test Suite
If the platform depended settings are done, the test suite can be started with the ant target:

If compiling of the sources should be skipped use

If you did not manage to set up the target database with theant pr epar e-t est db you can use

to run the testsuite without generation of the test database (and without compiling).

After running the regression tests you should see a console output similar to this:

276

0oJB

We aim at shipping that releases have no failures and errorsin the regression tests! If the Junit tests
report errors or failures something does not work properly! There may be several reasons:

« You made amistake in configuration (OJB was shipped with settings pass all tests). See
platform, OJB.properties, repository file, .

» Your database doesn't support specific features used by the tests

e Evil hex

e« BuginOJB

JUnit writes alog-file for each tested API. Y ou can find the logs under
[db-oj b]/target/test.Thelogfilesnamedliket est s- XXX. t xt . Thetest logs show in
detail what's going wrong.

In such a case please check again if you followed all the above steps. If you still have problems you
might post a request to the OJB user mailinglist.

How to run the test-suite with a different database than OJB default DB

Basically all you havetodois:

» Get source version of OJB or fetch OJB from CV S (take care of branches, branch
OJB_1 0 RELEASE represents OJB 1.0.x).

» Adapt the profilefile of your database under [db- oj b] / profi | e/ your DB. profi |l e and
Set user, password, ...

e In[db-o0jb]/build. properti es filecomment the "profile=hsgldb" line and uncomment
the "#profile=yourDB" line.

» Dropjdo.jar and your database driver into [db- oj b] / | i b directory.

e Dropjunitjarintoyour. ..ant/ i b folder.

» Make sure that your database allows at least 20 concurrent connections.

Then follow the steps described above.

5.7.2.3. What about known issues?

All major known issues are listed in the rel ease-notes file.

The tests reproduce open bugs will be skipped on released OJB versions. It is possible to enable
these tests to see all failing test cases of the shipped version by changing aflagin

[db- 0j b] / bui | d. properti es file

5.7.2.4. Donate own testsfor OJB Test Suite
Details about donate own test to OJB you can find here.

5.7.3. Write Tests

5.7.3.1. Introduction

277

0oJB

As described in the test suite document, OJB emphasizes on quality assurance and provide a huge
test suite. But of courseit isimpossible to cover al parts of OJB with unit tests and OJB will never
be perfect (although we would like to think it's s nearly perfect ;-)), thusif you are missing a
testcase or think you found an bug -- don't hesitate to write your own test and send it to the
developer list or, if you have an existing issue report, attach it in the issue tracker.

5.7.3.2. How towritea new Test

Before starting to write your own test case, please pay attention to these rules.

TheTest Class

All test classes have to inherit from or g. apache. oj b. j uni t. QJBTest Case and haveto
provide a static main method to start the Junit test:

You will find some test classes for specific scenariosin theor g. apache. oj b. j uni t package:

e o0rg.apache.ojb.junit.PBTest Case - providesa

or g. apache. oj b. br oker . Per si st enceBr oker instance for tests.
e o0rg.apache.ojb.junit. ODMGTest Case - providesor g. odng. | npl enent ati on
and or g. odng. Dat abase instances for tests.
org. apache. oj b. junit.JUni t Ext ensi ons - servers as abase class when writing
multi-threaded test classes.
For more info, see the JavaDoc of the class.

A test case for the PB-API may look like:

} The PersistenceBroker cleanup is done by PBTestCase. (

Persistent Objectsused by Test

We recommend to introduce separate persistent objects for each TestCase class. In the test suite

278

0oJB

two concepts are used:

« Include your persistent objects as public static classesin your test class.
» Separate your test class in an independent package and include the test case and all persistent
object classes in this new package.

Test Class Metadata

Currently al test specific object metadata (class-descriptor used for tests) are shared among several
xml files. The naming conventionisr eposi t ory_j uni t _XXX. xm . Thus metadata for new
tests should be included in one of the existing junit repository (sub) files or writen in an new
separate one and included in the main repository file.

279

	1 OJB
	1.1 Apache ObJectRelationalBridge - OJB
	1.1.1 Summary
	1.1.1.1 flexibility
	1.1.1.2 scalability
	1.1.1.3 functionality

	1.2 News
	1.2.1

	1.3 OJB - Features
	1.4 OJB - API Status
	1.5 OJB - References and Testimonials
	1.5.1 References and Testimonials
	1.5.1.1 projects using OJB
	1.5.1.2 user testimonials

	1.6 OJB - Mailing Lists
	1.6.1 Mailing Lists

	1.7 OJB - Mailing Lists Archives
	1.7.1 Mailing Lists Archives

	1.8 OJB - Links and further readings
	1.8.1 Summary
	1.8.2 OJB - Tutorials and Howto
	1.8.2.1 OJB and Spring

	1.8.3 Design
	1.8.4 Further readings on O/R mapping
	1.8.5 Patterns
	1.8.6 Books covering OJB

	2 Download
	3 Development
	3.1 Coding Standards

	4 Index
	4.1 Site Linkmap
	4.1.1 Table of Contents

	5 Documentation
	5.1 Documentation - Introduction
	5.2 Frequently Asked Questions
	5.2.1 Questions
	5.2.1.1 1. General
	5.2.1.1.1 1.1. Why OJB? Why do we need another O/R mapping tool?
	5.2.1.1.2 1.2. How is OJB related to ODMG and JDO?
	5.2.1.1.3 1.3. What are the OJB design principals?
	5.2.1.1.4 1.4. Where can I learn more about Object/Relational mapping in general?
	5.2.1.1.5 1.5. How OJB performance compares to native JDBC programming?
	5.2.1.1.6 1.6. How OJB performance compares to other O/R mapping tools?
	5.2.1.1.7 1.7. Is OJB ready for production environments?
	5.2.1.1.8 1.8. Does OJB supports caching?

	5.2.1.2 2. Getting Started
	5.2.1.2.1 2.1. Help! I'm having problems installing and using OJB!
	5.2.1.2.2 2.2. Help! I still have serious problems installing OJB!
	5.2.1.2.3 2.3. OJB does not start?
	5.2.1.2.4 2.4. Does OJB support my RDBMS?
	5.2.1.2.5 2.5. What are the OJB internal tables for?
	5.2.1.2.6 2.6. What does the exception Could not borrow connection from pool mean?
	5.2.1.2.7 2.7. Any tools help to generate the metadata files?

	5.2.1.3 3. OJB APIs
	5.2.1.3.1 3.1. What are the differences between the different OJB APIs? Which one should I use in my applications?
	5.2.1.3.2 3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
	5.2.1.3.3 3.3. The OJB JDO implementation is not finished, how can I start using OJB?

	5.2.1.4 4. Howto
	5.2.1.4.1 4.1. How to use OJB with my RDBMS?
	5.2.1.4.2 4.2. How to use OJB in an web app?
	5.2.1.4.3 4.3. What are the best settings for maximal performance?
	5.2.1.4.4 4.4. How to page and sort?
	5.2.1.4.5 4.5. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
	5.2.1.4.6 4.6. When is it helpful to use Proxy Classes?
	5.2.1.4.7 4.7. How can I convert data between RDBMS and OJB?
	5.2.1.4.8 4.8. How can I trace and/or profile SQL statements executed by OJB?
	5.2.1.4.9 4.9. How does OJB manage foreign keys?
	5.2.1.4.10 4.10. How does OJB manage 'null' for primitive primary key?
	5.2.1.4.11 4.11. How to lookup object by primary key?
	5.2.1.4.12 4.12. Difference between getIteratorByQuery() and getCollectionByQuery()?
	5.2.1.4.13 4.13. How can Collections of primitive typed elements be mapped?
	5.2.1.4.14 4.14. How could class 'myClass' represent a collection of 'myClass' objects
	5.2.1.4.15 4.15. How to lookup PersistenceBroker instances?
	5.2.1.4.16 4.16. How to access ODMG?
	5.2.1.4.17 4.17. Needed to put user/password of database connection in repository file?
	5.2.1.4.18 4.18. Many different database user - How do they login?
	5.2.1.4.19 4.19. How do I use multiple databases within OJB?
	5.2.1.4.20 4.20. How does OJB handle connection pooling?
	5.2.1.4.21 4.21. Can I directly obtain a java.sql.Connection within OJB?
	5.2.1.4.22 4.22. Is it possible to perform my own sql-queries in OJB?
	5.2.1.4.23 4.23. When does OJB open/close a connection?
	5.2.1.4.24 4.24. Start OJB without a repository file?
	5.2.1.4.25 4.25. Connect to database at runtime?
	5.2.1.4.26 4.26. Hook into OJB - How to add Listener, callback interface?
	5.2.1.4.27 4.27. Add new persistent objects metadata (class-descriptor) at runtime?
	5.2.1.4.28 4.28. Global metadata changes at runtime?
	5.2.1.4.29 4.29. Per thread metadata changes at runtime?
	5.2.1.4.30 4.30. Is it possible to use OJB within EJB's?
	5.2.1.4.31 4.31. Can OJB handle ternary (or higher) associations?
	5.2.1.4.32 4.32. How to map a list of Strings
	5.2.1.4.33 4.33. How to set up Optimistic Locking
	5.2.1.4.34 4.34. How to use OJB in a cluster
	5.2.1.4.35 4.35. How to turn of caching?
	5.2.1.4.36 4.36. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

	5.3 Getting Started
	5.3.1 Acquiring ojb-blank
	5.3.2 Contents of ojb-blank
	5.3.2.1 Sample project

	5.3.3 The build files
	5.3.3.1 Configuration via build.properties
	5.3.3.2 Building via build.xml
	5.3.3.3 Sample project

	5.3.4 The runtime configuration files
	5.3.4.1 Configuring the OJB runtime
	5.3.4.2 Configuring the database connection
	5.3.4.3 Configuring the repository
	5.3.4.4 Sample project

	5.3.5 Learning More

	5.4 Tutorials
	5.4.1 Tutorial Summary
	5.4.2 Mapping Tutorial
	5.4.2.1 What is the Object-Relational Mapping Metadata?
	5.4.2.1.1 The Product Class
	5.4.2.1.2 The Database
	5.4.2.1.3 The Metadata
	5.4.2.1.4 Using the XDoclet module

	5.4.2.2 Advanced Topics
	5.4.2.2.1 Relations
	5.4.2.2.2 Inheritence
	5.4.2.2.3 Anonymous Keys
	5.4.2.2.4 Large Projects
	5.4.2.2.5 Custom JDBC Mapping

	5.4.3 Persistence Broker Tutorial
	5.4.3.1 The PersistenceBroker API
	5.4.3.1.1 Introduction
	5.4.3.1.2 A First Look - Persisting New Objects
	5.4.3.1.3 Querying Persistent Objects
	5.4.3.1.4 Updating Persistent Objects
	5.4.3.1.5 Deleting Persistent Objects
	5.4.3.1.6 Find object by primary key

	5.4.3.2 Exception Handling

	5.4.4 The ODMG API
	5.4.4.1 Introduction
	5.4.4.2 Initializing ODMG
	5.4.4.3 Persisting New Objects
	5.4.4.4 Querying Persistent Objects
	5.4.4.5 Updating Persistent Objects
	5.4.4.6 Deleting Persistent Objects

	5.4.5 JDO Tutorial
	5.4.5.1 Using the ObJectRelationalBridge JDO API
	5.4.5.1.1 Introduction
	5.4.5.1.2 Running the Tutorial Application

	5.4.5.2 Using the JDO API in the UseCase Implementations
	5.4.5.2.1 Obtaining the JDO PersistenceManager Object
	5.4.5.2.2 Retrieving collections
	5.4.5.2.3 Storing objects
	5.4.5.2.4 Updating Objects
	5.4.5.2.5 Deleting Objects

	5.4.5.3 Conclusion

	5.4.6 Object Transaction Manager Tutorial
	5.4.6.1 The OTM API
	5.4.6.1.1 Introduction
	5.4.6.1.2 Persisting New Objects
	5.4.6.1.3 Deleting Persistent Objects
	5.4.6.1.4 Querying for Objects
	5.4.6.1.5 More Sophisticated Transaction Handling

	5.4.6.2 Notes on the Object Transaction Manager
	5.4.6.2.1 Transactions

	5.5 Reference Guides
	5.5.1 Reference Guides Summary
	5.5.2 PB-api Guide
	5.5.2.1 Introduction
	5.5.2.2 How to access the PB-api?
	5.5.2.3 Notes on Using the PersistenceBroker API
	5.5.2.3.1 Exception Handling
	5.5.2.3.2 Management of PersistenceBroker instances
	5.5.2.3.3 Transactions

	5.5.2.4 Questions
	5.5.2.4.1 How to use multiple Databases
	5.5.2.4.2 Hook into OJB - PB-Listener and Instance Callbacks

	5.5.3 ODMG-api Guide
	5.5.3.1 Introduction
	5.5.3.2 Specific Metadata Settings
	5.5.3.3 How to access ODMG-api
	5.5.3.4 Configuration Properties
	5.5.3.5 OJB Extensions of ODMG
	5.5.3.5.1 The ImplementationExt Interface
	5.5.3.5.2 The TransactionExt Interface
	5.5.3.5.3 The EnhancedOQLQuery Interface
	5.5.3.5.4 Access the PB-api within ODMG

	5.5.3.6 Notes on Using the ODMG API
	5.5.3.6.1 Transactions
	5.5.3.6.2 Locks
	5.5.3.6.3 Persisting Non-Transactional Objects

	5.5.3.7 ODMG Named Objects
	5.5.3.7.1 Examples

	5.5.3.8 ODMG's DCollections
	5.5.3.9 Foreign Keys Constraints and ODMG-api
	5.5.3.10 Questions and Tips
	5.5.3.10.1 Disable OJB's object ordering, determine object order "by hand"
	5.5.3.10.2 Circular- and Bidirectional References
	5.5.3.10.3 I don't like OQL, can I use the PersistenceBroker Queries within ODMG
	5.5.3.10.4 How to use multiple Databases

	5.5.4 Platforms
	5.5.4.1 How to use OJB with a specific relational database
	5.5.4.2 Basic Concepts
	5.5.4.2.1 OJB internal tables
	5.5.4.2.2 Tables for the regression testbed
	5.5.4.2.3 Tables for the tutorial applications

	5.5.4.3 The setup process
	5.5.4.3.1 Selecting a platform profile
	5.5.4.3.2 editing the profile to point to your target db
	5.5.4.3.3 Executing the build script
	5.5.4.3.4 Verifying the installation

	5.5.5 OJB.properties Configuration File
	5.5.5.1 OJB Configuration
	5.5.5.2 OJB.properties File

	5.5.6 JDBC Types
	5.5.6.1 Mapping of JDBC Types to Java Types
	5.5.6.2 Type and Value Conversions - The FieldConversion Interface
	5.5.6.2.1 Introduction
	5.5.6.2.2 The problem
	5.5.6.2.3 The Solution

	5.5.7 Repository File
	5.5.7.1 Introduction - repository syntax
	5.5.7.2 descriptor-repository
	5.5.7.2.1 Elements
	5.5.7.2.2 Attributes

	5.5.7.3 jdbc-connection-descriptor
	5.5.7.3.1 Elements
	5.5.7.3.2 Attributes
	5.5.7.3.3 Custom attributes

	5.5.7.4 connection-pool
	5.5.7.4.1 Elements
	5.5.7.4.2 Attributes
	5.5.7.4.3 Custom attributes
	5.5.7.4.3.1 jdbc.*
	5.5.7.4.3.2 fetchSize
	5.5.7.4.3.3 dbcp.poolPreparedStatements
	5.5.7.4.3.4 dbcp.maxOpenPreparedStatements
	5.5.7.4.3.5 dbcp.accessToUnderlyingConnectionAllowed

	5.5.7.5 sequence-manager
	5.5.7.5.1 Elements
	5.5.7.5.2 Attributes
	5.5.7.5.3 Custom Attributes

	5.5.7.6 object-cache
	5.5.7.6.1 Elements
	5.5.7.6.2 Attributes
	5.5.7.6.3 Custom Attributes

	5.5.7.7 custom attribute
	5.5.7.8 class-descriptor
	5.5.7.8.1 Elements
	5.5.7.8.2 Attributes

	5.5.7.9 extent-class
	5.5.7.10 field-descriptor
	5.5.7.11 reference-descriptor
	5.5.7.12 foreignkey
	5.5.7.13 collection-descriptor
	5.5.7.14 order-by
	5.5.7.15 inverse-foreignkey
	5.5.7.16 fk-pointing-to-this-class
	5.5.7.17 fk-pointing-to-element-class
	5.5.7.18 query-customizer
	5.5.7.19 index-descriptor
	5.5.7.20 index-column
	5.5.7.21 Stored Procedure Support
	5.5.7.21.1 insert-procedure
	5.5.7.21.2 update-procedure
	5.5.7.21.3 delete-procedure
	5.5.7.21.4 runtime-argument
	5.5.7.21.5 constant-argument

	5.5.8 Basic O/R Mapping Technique
	5.5.8.1 Mapping 1:1 associations
	5.5.8.1.1 1:1 auto-xxx setting

	5.5.8.2 Mapping 1:n associations
	5.5.8.2.1 1:n auto-xxx setting

	5.5.8.3 Mapping m:n associations
	5.5.8.3.1 Manual decomposition into two 1:n associations
	5.5.8.3.2 Support for Non-Decomposed m:n Mappings
	5.5.8.3.3 m:n auto-xxx setting

	5.5.8.4 Setting Load, Update, and Delete Cascading
	5.5.8.4.1 auto-retrieve setting
	5.5.8.4.2 Link references

	5.5.8.5 Using Proxy Classes
	5.5.8.5.1 Using Dynamic Proxies
	5.5.8.5.2 Using a Single Proxy for a Whole Collection
	5.5.8.5.3 Using a Proxy for a Reference
	5.5.8.5.4 Customizing the proxy mechanism

	5.5.8.6 Type and Value Conversions

	5.5.9 Advanced O/R Mapping Technique
	5.5.9.1 Extents and Polymorphism
	5.5.9.1.1 Polymorphism
	5.5.9.1.2 Extents
	5.5.9.1.3 Performance Tip

	5.5.9.2 Mapping Inheritance Hierarchies
	5.5.9.2.1 Mapping Each Class of a Hierarchy to a Distinct Table (table per class)
	5.5.9.2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy)
	5.5.9.2.2.1 Implement your own Discriminator Handling

	5.5.9.2.3 Mapping Each Subclass to a Distinct Table (table per subclass)
	5.5.9.2.3.1 Table Per Subclass via Foreign Key

	5.5.9.3 Using interfaces with OJB
	5.5.9.4 Change PersistentField Class
	5.5.9.5 How do anonymous keys work?
	5.5.9.6 Using Rowreader
	5.5.9.6.1 Rowreader Example

	5.5.9.7 Nested Objects
	5.5.9.8 Instance Callbacks
	5.5.9.9 Manageable Collection
	5.5.9.9.1 Types Allowed for Implementing 1:n and m:n Associations
	5.5.9.9.2 Which collection-class type should be used?

	5.5.9.10 Customizing collection queries
	5.5.9.11 Metadata runtime changes

	5.5.10 OJB Queries
	5.5.10.1 Introduction
	5.5.10.2 Query by Criteria
	5.5.10.2.1 Query Criteria
	5.5.10.2.1.1 in / not in
	5.5.10.2.1.2 and / or
	5.5.10.2.1.3 negating the criteria

	5.5.10.2.2 ordering and grouping
	5.5.10.2.3 subqueries
	5.5.10.2.4 joins
	5.5.10.2.5 user defined alias
	5.5.10.2.6 class hints
	5.5.10.2.7 prefetched relationships
	5.5.10.2.8 querying for objects
	5.5.10.2.9 Report Queries
	5.5.10.2.9.1 Limitations of Report Queries

	5.5.10.3 ODMG OQL
	5.5.10.4 JDO queries

	5.5.11 Metadata handling
	5.5.11.1 Introduction
	5.5.11.2 When does OJB read metadata
	5.5.11.3 Connection metadata
	5.5.11.3.1 Load and merge connection metadata

	5.5.11.4 Persistent object metadata
	5.5.11.4.1 Load and merge object metadata
	5.5.11.4.2 Global object metadata changes
	5.5.11.4.3 Per thread metadata changes
	5.5.11.4.4 Object metadata profiles
	5.5.11.4.5 Reference runtime changes on per query basis
	5.5.11.4.6 Pitfalls

	5.5.11.5 Questions
	5.5.11.5.1 Start OJB without a repository file?
	5.5.11.5.2 Connect to database at runtime?
	5.5.11.5.3 Add new persistent objects metadata (class-descriptor) at runtime?

	5.5.12 Deployment
	5.5.12.1 Introduction
	5.5.12.2 Things needed for deploying OJB
	5.5.12.2.1 1. The OJB binary jar archive
	5.5.12.2.2 2. Configuration data
	5.5.12.2.3 3. External dependencies that do not come with OJB
	5.5.12.2.4 4. Optional jar archives that come with OJB
	5.5.12.2.5 5. Don't forget the JDBC driver

	5.5.12.3 Deployment in standalone applications
	5.5.12.4 Deployment in servlet based applications
	5.5.12.5 Deployment in managed environment (e.g. EJB based)
	5.5.12.5.1 Configure OJB for managed environments considering as JBoss example
	5.5.12.5.1.1 1. Adapt OJB.properties file
	5.5.12.5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	5.5.12.5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	5.5.12.5.1.4 3. Include all OJB configuration files in classpath
	5.5.12.5.1.5 4. Enclose all libraries OJB depend on
	5.5.12.5.1.6 5. Take care of caching
	5.5.12.5.1.7 6. Take care of locking
	5.5.12.5.1.8 7. Put all together
	5.5.12.5.1.9 7b. Example: Deployable jar
	5.5.12.5.1.10 8. How to access OJB API?
	5.5.12.5.1.11 9. OJB logging within JBoss

	5.5.12.5.2 Example Session Beans
	5.5.12.5.2.1 Introduction
	5.5.12.5.2.2 Generate the sample session beans
	5.5.12.5.2.3 How to run test clients for PB / ODMG - api

	5.5.12.5.3 Packing an .ear file
	5.5.12.5.3.1 The Package Structure
	5.5.12.5.3.2 Make OJB API Resources available

	5.5.12.5.4 Make OJB accessible via JNDI
	5.5.12.5.4.1 JBoss
	5.5.12.5.4.2 Other Application Server

	5.5.12.5.5 Instructions for Weblogic

	5.5.13 Connection Handling
	5.5.13.1 Introduction
	5.5.13.2 ConnectionFactory
	5.5.13.2.1 ConnectionFactoryPooledImpl
	5.5.13.2.2 ConnectionFactoryNotPooledImpl
	5.5.13.2.3 ConnectionFactoryManagedImpl
	5.5.13.2.4 ConnectionFactoryDBCPImpl

	5.5.13.3 ConnectionManager
	5.5.13.4 Questions and Answers
	5.5.13.4.1 How does OJB handle connection pooling?
	5.5.13.4.2 Can I directly obtain a java.sql.Connection within OJB?
	5.5.13.4.3 When does OJB open/close a connection

	5.5.14 The Object Cache
	5.5.14.1 Introduction
	5.5.14.2 Why a cache and how it works?
	5.5.14.3 How to declare and change the used ObjectCache implementation
	5.5.14.3.1 Priority of Cache Level
	5.5.14.3.2 Exclude classes from being cached
	5.5.14.3.3 Exclude packages from being cached
	5.5.14.3.4 Turn off caching

	5.5.14.4 Shipped cache implementations:
	5.5.14.4.1 ObjectCacheDefaultImpl
	5.5.14.4.2 ObjectCacheTwoLevelImpl
	5.5.14.4.3 ObjectCachePerBrokerImpl
	5.5.14.4.4 ObjectCacheEmptyImpl
	5.5.14.4.5 ObjectCacheJCSImpl
	5.5.14.4.6 ObjectCacheOSCacheImpl
	5.5.14.4.7 More implementations ...

	5.5.14.5 Distributed ObjectCache?
	5.5.14.6 Implement your own cache
	5.5.14.7 Future prospects

	5.5.15 Sequence Manager
	5.5.15.1 The OJB Sequence Manager
	5.5.15.1.1 Automatical assignment of unique values
	5.5.15.1.2 Force computation of unique values
	5.5.15.1.3 How to change the sequence manager?
	5.5.15.1.4 SequenceManager implementations
	5.5.15.1.4.1 High/Low sequence manager
	5.5.15.1.4.2 In-Memory sequence manager
	5.5.15.1.4.3 Database sequences based implementation
	5.5.15.1.4.4 Database sequences based high/low implementation
	5.5.15.1.4.5 Database Identity-column based sequence manager
	5.5.15.1.4.6 Stored Procedures based (Oracle-style) sequencing
	5.5.15.1.4.7 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

	5.5.15.1.5 The sequence-name attribute
	5.5.15.1.6 The autoNaming property
	5.5.15.1.7 How to write my own sequence manager?
	5.5.15.1.8 Questions
	5.5.15.1.8.1 When using sequence-name attribute in field-descriptor?
	5.5.15.1.8.2 What to hell does extent aware mean?
	5.5.15.1.8.3 How could I prevent auto-build of the sequence-name?
	5.5.15.1.8.4 Sequence manager handling using multiple databases
	5.5.15.1.8.5 One sequence manager with multiple databases?
	5.5.15.1.8.6 Can I get direct access to the sequence manager?
	5.5.15.1.8.7 Any known pitfalls?

	5.5.16 OJB logging configuration
	5.5.16.1 Logging in OJB
	5.5.16.2 Logging configuration within OJB
	5.5.16.2.1 How and when OJB determines what kind of logging to use
	5.5.16.2.2 Configuration of logging for the individual components

	5.5.16.3 Logging configuration via configuration files
	5.5.16.3.1 OJB-logging.properties
	5.5.16.3.2 commons-logging.properties
	5.5.16.3.3 log4j.properties
	5.5.16.3.4 Where to put the configuration files

	5.5.16.4 Logging configuration at runtime
	5.5.16.5 Defining your own logger

	5.5.17 Locking
	5.5.17.1 Introduction
	5.5.17.2 Optimistic Locking
	5.5.17.3 Pessimistic-Locking
	5.5.17.3.1 Supported Isolation Levels
	5.5.17.3.2 How to specify locking isolation level
	5.5.17.3.3 Specify the LockManager Implementation
	5.5.17.3.4 The LockManager Implementations
	5.5.17.3.4.1 LockManagerInMemoryImpl
	5.5.17.3.4.2 LockManagerCommonsImpl
	5.5.17.3.4.3 LockManagerRemoteImpl

	5.5.17.4 ODMG-api Locking
	5.5.17.4.1 What it does

	5.5.17.5 Locking in distributed environment
	5.5.17.6 Pluggin own locking classes

	5.5.18 XDoclet OJB module documentation
	5.5.18.1 Acquiring and building
	5.5.18.1.1 Building with a XDoclet source distribution
	5.5.18.1.2 Building with a XDoclet CVS checkout
	5.5.18.1.3 Other build options

	5.5.18.2 Usage
	5.5.18.3 Tag reference
	5.5.18.4 Interfaces and Classes
	5.5.18.4.1 ojb.class
	5.5.18.4.2 ojb.extent-class
	5.5.18.4.3 ojb.modify-inherited
	5.5.18.4.4 ojb.object-cache
	5.5.18.4.5 ojb.index
	5.5.18.4.6 ojb.delete-procedure
	5.5.18.4.7 ojb.insert-procedure
	5.5.18.4.8 ojb.update-procedure
	5.5.18.4.9 ojb.constant-argument
	5.5.18.4.10 ojb.runtime-argument

	5.5.18.5 Fields and Bean properties
	5.5.18.5.1 ojb.field

	5.5.18.6 References
	5.5.18.6.1 ojb.reference

	5.5.18.7 Collections
	5.5.18.7.1 ojb.collection

	5.5.18.8 Nested objects
	5.5.18.8.1 ojb.nested
	5.5.18.8.2 ojb.modify-nested

	5.5.19 OJB Performance
	5.5.19.1 Introduction
	5.5.19.2 The Performance Test Suite
	5.5.19.2.1 Interpreting test results
	5.5.19.2.2 How OJB compares to native JDBC programming - single-threaded
	5.5.19.2.3 OJB performance in multi-threaded environments

	5.5.19.3 How OJB compares to other O/R mapping tools?
	5.5.19.4 What are the best settings for maximal performance?

	5.6 Howto's
	5.6.1 Howto's Summary
	5.6.2 HOWTO - Build O/R Mapping Files
	5.6.2.1 How to build O/R mapping files
	5.6.2.2 classification of O/R related transformations
	5.6.2.3 Forward engineering from XMI
	5.6.2.4 Forward engineering from Torque
	5.6.2.5 Forward engineering from repository.xml
	5.6.2.6 XDoclet transformation from Java code
	5.6.2.7 Reverse engineering from database

	5.6.3 HOWTO - Use Anonymous Keys
	5.6.3.1 Why Do We Need Anonymous Keys?
	5.6.3.2 How it works
	5.6.3.3 Using Anonymous Keys
	5.6.3.3.1 The Code
	5.6.3.3.2 The Database
	5.6.3.3.3 The Repository Configuration

	5.6.3.4 Benefits and Drawbacks

	5.6.4 HOWTO - Use DB Sequences
	5.6.4.1 Introduction
	5.6.4.2 The Sample Database
	5.6.4.3 Using OJB
	5.6.4.3.1 The Database Repository Descriptor
	5.6.4.3.2 Defining a Thingie Class
	5.6.4.3.3 Using Thingie

	5.6.5 HOWTO - Work with LOB Data Types
	5.6.5.1 Using Oracle LOB Data Types with OJB
	5.6.5.1.1 Introduction

	5.6.5.2 Backgrounder: Large objects in databases
	5.6.5.2.1 Your database: The most expensive file system?
	5.6.5.2.2 Oracle LARGE versus LOB datatypes

	5.6.5.3 Large Objects in OJB
	5.6.5.3.1 Strategy 1: Using streams for LOB I/O
	5.6.5.3.2 Strategy 2: Embedding OJB content in Java objects
	5.6.5.3.3 Querying CLOB content

	5.6.6 HOWTO - Use OJB in clustered environments
	5.6.6.1 How to use OJB in clustered environments
	5.6.6.2 Three steps to clustering your OJB application
	5.6.6.2.1 First: Take care of the sequence manager
	5.6.6.2.1.1 Handling sequence names

	5.6.6.2.2 Second: Enable optimistic locking
	5.6.6.2.3 Do The Cache

	5.6.6.3 Notes

	5.6.7 HOWTO - Stored Procedure Support
	5.6.7.1 Introduction
	5.6.7.2 Repository entries
	5.6.7.3 Common attributes
	5.6.7.4 insert-procedure
	5.6.7.5 update-procedure
	5.6.7.6 delete-procedure
	5.6.7.7 Argument descriptors
	5.6.7.7.1 runtime-argument descriptors
	5.6.7.7.2 constant-argument descriptors

	5.6.7.8 A simple example
	5.6.7.8.1 The basic requirements
	5.6.7.8.2 The database objects
	5.6.7.8.3 The CUSTOMER table
	5.6.7.8.4 The sequence
	5.6.7.8.5 The insert and update triggers
	5.6.7.8.6 The package
	5.6.7.8.7 The implementation

	5.6.7.9 A complex example

	5.6.8 HOWTO - Spring with OJB
	5.6.8.1 Spring with OJB
	5.6.8.1.1 Spring, OJB, and Struts, getting started
	5.6.8.1.2 Spring, OJB, and Struts. Version 2 with DAO.
	5.6.8.1.3 Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching

	5.7 Testing
	5.7.1 Testing Summary
	5.7.2 JUnit Test Suite
	5.7.2.1 Introduction
	5.7.2.1.1 Where can I find the test sources?

	5.7.2.2 How to run the Test Suite
	5.7.2.2.1 How to run the test-suite with a different database than OJB default DB

	5.7.2.3 What about known issues?
	5.7.2.4 Donate own tests for OJB Test Suite

	5.7.3 Write Tests
	5.7.3.1 Introduction
	5.7.3.2 How to write a new Test
	5.7.3.2.1 The Test Class
	5.7.3.2.2 Persistent Objects used by Test
	5.7.3.2.3 Test Class Metadata

