Object Transaction Manager Tutorial

by Brian McCallister
Table of contents

I I =Y O B Y N ST
I 0o (1 o TR
1.2 PerSisting NEW ODJECLS.........ciiiiieiii ettt st eebe e sae e s aeesneesnnnen
1.3 Deleting PersiStent ObJECES.........cciiiiiie e ettt st aesreenne e sreeneas
1.4 QUENYING FOI ODJECES.....eieiiieeiieiesteere e e et e e e e e te e e sreesseeseesseeteeneesneensneneens
1.5 More Sophisticated Transaction HaNdliNg..........ccovviirereriiieiesese e

2 Notes on the Object TransaCtion M NBGET...........covreiirerieieieeeie et
p2 I I = 105 o £ 0] T TSR

Object Transaction Manager Tutorial

1. TheOTM API

1.1. Introduction

The Object Transaction Manager (OTM) iswritten as atool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's similar to
the ODMG and PersistenceBroker API'sin OJB. Several of itsidioms are designed around the fact
that it is meant to have additional, client-oriented, API's built on top of it, however.

The OTMKi t istheinitial access point to the OTM interfaces. The kit provides basic configuration
information to the OTM components used in your system. This tutorial will usethe Si npl eKi t
which will work well under most circumstances for local transaction implementations.

Thistutorial operates on asimple example class:

The metadata descriptor for mapping this class is described in the mapping tutorial.

As aways the source code for thistutorial can befound inthet ut ori al s-src. j ar avallable
from here, more specifically intheor g/ apache/ oj b/ t ut ori al s/ directory.

1.2. Persisting New Objects

The starting point for using the OTM directly isto look at making atransient object persistent. This
code will use three things, an OTMKi t , an OTMConnect i on,andaTr ansacti on. The
connection and transaction objects are obtained from the kit.

Initial accessto the OTM client API'sisthrough the OTMKi t interface. Well usethe Si npl eKi t
an implementation of the OTIWKi t suitable for most circumstances using local transactions.

N

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../docu/tutorials/mapping-tutorial.html
http://www.apache.org/dyn/closer.cgi/db/ojb/

Object Transaction Manager Tutorial

A kit isobtained and is used to obtain a connection. Connections are against a specific JCD dlias. In
this case we use the default, but a named datasource could also be used, as configured in the
metadata repository. A transaction is obtained from the kit for the specific connection. Because
multiple connections can be bound to the same transaction in the OTM, the transaction needsto be
acquired from the kit instead of the connection itself. The Si npl eKi t usesthe commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM -- transactions
must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn. nakePer si stent (. .) cal obtainsawrite lock on pr oduct and will commit (insert)
the object when the transaction is committed.

TheLocki ngExcept i on will be thrown if the object cannot be write-locked in this transaction.
Asitisatransient object to begin with, thiswill probably only ever happen if it has been
write-locked in another transaction already -- but this depends on the transaction semantics
configured in the repository metadata.

Finally, connections maintain resources so it isimportant to make sure they are closed when no
longer needed.

1.3. Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is almost
identical to making it persistent -- the differenceisjust in the

conn. del et ePer si st ent (product) call instead of the

conn. makePer si st ent (product) call. The same notes about transactions and resources

apply here.

w

Object Transaction Manager Tutorial

1.4. Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of
guery at present -- an PersistenceBroker like query-by-criteria style querying system, and an
ODMG OQL query system.

Information on constructing these types of queriesis available in the PersistenceBroker and ODMG
tutorials respectively. Using those queries with the OTM is examined here.

A PB style query can be handled as follows:

Where, by default, aread lock is obtained on the returned objects. If adifferent lock isrequired it
may be specified specifically:

Theint | ock argument is one of the integer constants on
or g. apache. oj b. ot m | ock. LockType:

OQL queries are also supported, as this somewhat more complex example demonstrates:

4

../../docu/tutorials/pb-tutorial.html
../../docu/tutorials/odmg-tutorial.html

Object Transaction Manager Tutorial

Thisfunction is, at its core, doing the same thing as the PB style queries, except that it constructs
the OQL query, which supports binding values in a manner similar to JDBC prepared statements.

The OQL style queries aso support specifying the lock level the same way:

1.5. More Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go -- they
are only good for retrieving data. More often datawill need to be retrieved, used, and committed
back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an already established
transaction, data will be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applicationsisto start a transaction and then
let any downstream code be executed within the bounds of the transaction automatically. Thisis
straightforward to do with the OTM using the Si npl eKi t ! Take alook at avery sightly
modified version of the query by criteria function:

Object Transaction Manager Tutorial

In this case the function looks to seeif atransaction is already in progress and sets a boolean flag if
itis, aut o. It then handles transactions itself, or allows the already opened transaction to maintain
control.

Because connections can be attached to existing transactionsthe Si npl eKi t can attach the new
connection to the already established transaction, allowing this function to work as expected
whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and
commit the changes back. For example:

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder
Widget" and stores them back. It must makes the changes within the context of the transaction it
obtained for those changes to be stored back to the database. If the same iterator were obtained
outside of atransaction, and the changes made, the changes would be made on the objectsin
memory, but not in the database. Y ou can think of non-transaction objects as free immutable
transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameW dget Exanpl e(. . .) function obtains a connection, and the

D

Object Transaction Manager Tutorial

nor eReal i sticQueryByCriteria(...) functionobtainsan additional connection to the
same transaction!

2. Notes on the Object Transaction M anager

2.1. Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects. It
typically maps 1:1 to database transactions behind the scenes, but this is not actually required for
the OTM to work correctly.

The OTM supports awide range of transactional options, delimited in the LockM anager
documentation. While the lock manager is writte to the ODMG API, the same locking rules apply
at the OTM layer.

../../docu/guides/lockmanager.html

	1 The OTM API
	1.1 Introduction
	1.2 Persisting New Objects
	1.3 Deleting Persistent Objects
	1.4 Querying for Objects
	1.5 More Sophisticated Transaction Handling

	2 Notes on the Object Transaction Manager
	2.1 Transactions

