Connection Handling

by Armin Waibel, Martin Kalén
Table of contents

I 1 L1 0o 1T i o o OSSPSR
2 CONNECTIONFACTONY ...ttt sttt e se e b et e s st e s beebesaeesbeeneesneenaeensens
2.1 ConnectionFactoryPoolediMpl...........ooieiir e e
2.2 ConnectionFactoryNOtPOOI€AIMPL.........c.coueiiee e
2.3 ConnectionFactoryManagedimPpl..........coeeieeieieese et
2.4 ConnectioNFaCtOryDBCPIMPL.........coiiiiieeese e
3 CONNECHIONMBNEBGEceueeueeeeterte sttt sttt e et st bbbt e st e e e e b e s besbesbeebeeseene et e s et e sbenbeneeene e
4 QUESHIONS NG ANSIVENS.......eeetieieeiiesieeieseesteesteeeesteesbesaessaeesbesseesseesbesaeesaeesseansesseesbesntesneessesnsenns

Connection Handling

1. Introduction
In this section the connection handling within OJB is described. The connection management is
implemented through two OJB interfaces:

« org.apache. oj b. broker. accessl ayer. Connecti onFact ory
e« org.apache. oj b. broker. accessl ayer. Connecti onManager | F

2. ConnectionFactory

Theor g. apache. oj b. br oker . accessl ayer. Connect i onFact ory interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for creation/lookup and release of connections.

To enable a specific ConnectionFactory implementation class in the OJB.propertiesfile, set
property ConnectionFactoryClass. Default:

Connect i onFact oryC ass=or g. apache. o b. b oker . access ayer . Connect onFact oryPool ed 1

OJB is shipped with several different implementation classes for use in different situations. The
default implementation for example, will pool created Connection instances for increased
performance (since instance creation normally makes a database server roundtrip and thusis
costly).

To make it more easier to implement your own ConnectionFactory class, an abstract base class
caled

or g. apache. oj b. br oker. accessl ayer. Connecti onFact or yAbst ract | npl
exists, most shipped implementation classes inherit from this class.

All shipped implementations of ConnectionFactory with support for connection pooling will only use object pools for connections
obtained directly from the JDBC DriverManager. If you are using a DataSour ce configuration, the INDI DataSource is responsible for

pooling.

2.1. ConnectionFactoryPooledI mpl

A ConnectionFactory implementation using commons-pool to pool the Connection instances. On
lookupConnection a Connection instance is borrowed from the object pool, and returned on the
releaseConnection call. Thisimplementation is used as default setting in the OJB.propertiesfile.

This implementation alows awide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

2.2. ConnectionFactor yNotPooledI mpl

Implementation that creates a new Connection instance on each lookupConnection call and closes
(destroys) it on releaseConnection. All connection-pool settings are ignored by this
implementation.

../../OJB.properties.txt
../../docu/guides/ojb-properties.html
../../docu/guides/ojb-properties.html
http://jakarta.apache.org/commons/pool/
../../OJB.properties.txt
../../docu/guides/repository.html#connection-pool
../../docu/guides/repository.html#connection-pool

Connection Handling

2.3. ConnectionFactoryM anaged! mpl

[@deprecated since OJB 1.0.4, now OJB automatic detect the running JT A-transaction and
suppress critical method calls on the used connection]

Implementation specifically for use in managed environments like J2EE conformant application
servers. In managed environmentsit is mandatory to use DataSource configuration, with
Connection objects provided by the application server. OJB will not control Connection properties
or transaction handling when using this implementation.

All connection-pool settings are ignored by this implementation.

2.4. ConnectionFactoryDBCPImpl

Implementation using commons-dbcp to pool the Connection instances. Since DBCPis using
commons-pool internaly, thisimplementation is very similar to ConnectionFactoryPooledimpl,
but permits additional configuration for logging abandoned Connection instances (usable under
development for detecting bad programming patterns).

This implementation alows awide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

3. ConnectionM anager

Theor g. apache. oj b. broker. accessl ayer. Connect i onManager | F interface
implementation is a pluggable component (viathe OJB.properties file - more about the
OJB.propertiesfile here) responsible for managing the connection usage lifecycle and connection
status (commit/rollback of connections).

The ConnectionManager is used by the PersistenceBroker to handle connection usage lifecycle.

../../docu/guides/repository.html#connection-pool
http://jakarta.apache.org/commons/dbcp/
http://jakarta.apache.org/commons/pool/
../../docu/guides/repository.html#connection-pool
../../OJB.properties.txt
../../docu/guides/ojb-properties.html
../../docu/guides/ojb-properties.html

Connection Handling

4. Questions and Answers

4.1. How does OJB handle connection pooling?

OJB does connection pooling per default, except for datasources that are never pooled internally by
OJB. Pooling of Connection instances when configuring OJB with DataSource lookup must be
configured and performed in the DataSource provider.

The implementations of the

or g. apache. oj b. br oker . accessl ayer. Connecti onFact ory. j ava interface are
responsible for managing the connections in OJB. There are several implementations shipped with
OJB called

or g. apache. oj b. br oker . accessl ayer. Connecti onFact oryl npl . j ava. Thereis,
among others, a non-pooling implementation and an implementation using Commons DBCP API.

Configuration of the connection pooling is specified using the connection-pool element for each
Jdbc-connection-descriptor. The connection-pool element can be configured with properties for the
specific ConnectionFactory implementation or JDBC driver used. For general information about
the configuration, see the repository section or read the comments in repository.dtd.

4.2. Can | directly obtain a java.sgl.Connection within OJB?

It is possible to obtain a Connection using the PB APl and aPer si st enceBr oker instance.
Example:

After obtaining a Connection with

br oker . servi ceConnect i onManager () . get Connect i on() , the connection can be
used for any JDBC operations (except for transaction handling, more on this below). The user is
responsible for cleanup of created Statement and ResultSet instances, so be sure to guard your call
with afinally clause and close resources after use.

For read-only operations there is no need to start a PB transaction as in the example.

Note:

Do not commit any transactions on the Connection level, this should be |eft to OJB's PB API and will be performed automatically by
calling PersistenceBroker commit-/abortTransaction methods.

Note:

Do not call Connect i on. cl ose() on the obtained Connection, this should be left to OJB's ConnectionFactory and will be
performed automatically when calling br oker . cl ose() .

If no transaction is running, it is possible to release a connection "by hand" after use by calling:

../../docu/guides/repository.html#connection-pool
../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html
../../repository.dtd.txt

Connection Handling

This call performs cleanup operations on the used connection and pass the instance to the release
method of ConnectionFactory (thiswill e.g. return the connection to pool or close it).

If you do not do any connection cleanup, the connection will at the latest be released when calling
br oker. cl ose().

Userswho are interested in this section might also be interested in 'Is it possible to perform my own
sgl-queriesin OJB?.

4.3. When does OJB open/close a connection

Thisis dependent on the used OJB api. Generally OJB try to obtain a connection as late as possible
and close (if a connection pool was used, OJB return the connection to the pool) the connection as
soon as possible.

Using the PB-api the connection is obtained when

Per si st enceBr oker . begi nTransacti on() wascaled or aquery is executed.

On Per si st enceBroker. comm t Transacti on() or

Per si st enceBr oker . abort Transact i on() call the connection was released. If no PB-tx
is running, the connection will be released on Per si st enceBr oker . cl ose() call.

Using the ODM G-api the connection is obtained when a query is executed or when the transaction
commit. On leaving the commit method, the connection will be released.
All other top-level API should behave similar.

../../docu/faq.html#performSQL
../../docu/faq.html#performSQL
../../docu/guides/pb-guide.html
../../api/org/apache/ojb/broker/PersistenceBroker.html
../../docu/guides/odmg-guide.html

	1 Introduction
	2 ConnectionFactory
	2.1 ConnectionFactoryPooledImpl
	2.2 ConnectionFactoryNotPooledImpl
	2.3 ConnectionFactoryManagedImpl
	2.4 ConnectionFactoryDBCPImpl

	3 ConnectionManager
	4 Questions and Answers
	4.1 How does OJB handle connection pooling?
	4.2 Can I directly obtain a java.sql.Connection within OJB?
	4.3 When does OJB open/close a connection

