The ODMG API

by Brian McCallister
Table of contents

I 1 L1 0o 1T i o o OSSPSR
2 INItTAITIZING ODIMG.......oiiiiiiiee ettt sae ettt eebe e beeseesbeenbeeneesreebeeneenas
3 PErSISting NEW ODJECES.......ooiei e et aeennes
4 QUErYiNg PerSiStent ODJECES.......cceiieiiiciie ettt ae e e re e s aeeteeneesreenneannans
5 Updating Persistent ODJECES..........uiiuieieiieie e st see s e e ste e se e sneesreeaesneesneennens
6 Deleting Persistent ODJECES........coiiiiie e e

The ODMG API

1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level APl and query language based interface over the PersistenceBroker API.

More detailed information can be found in the ODM G-gquide and in the other reference quides.

Thistutorial operates on a simple example class:

The metadata descriptor for mapping this classis described in the mapping tutorial

When using 1:1, 1:n and m:n references (the example doesn't use it) the ODM G-api need specific
metadata settings on relationship definition, the mandatory settings are listed in the ODM G-Guide -
additional info see auto-xxx settings and repository file settings.

Aswith the other tutorials, the source code for this tutorial is contained in the

tutorial s-src.jar whichcan be downloaded here. The source files are contained in the

or g/ apache/ oj b/ tutori al 2/ directory.

You can try it out with the ojb-blank project which can be downloaded from the same place and is
described in the Getting started section.

Further information about the OJB odmg-api implementation can be found in the ODMG guide.

2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. Thisis accomplished
viathe following code:

With method call QJB. get | nst ance() alwaysanew org.odmg.lmplementation instance will

be created and odny. newDat abase() returnsanew Dat abase instance.

Cal db. open(...) opensan ODMG Dat abase using the name specified in metadata for the
database -- "default” in this case. Notice the Dat abase isopened in read/write mode. It is possible
to open it in read-only or write-only modes as well.

Onceal npl enment at i on instance is created and a Dat abase has been opened it isavailable

N

http://www.odmg.org/
../../docu/guides/pb-guide.html
../../docu/guides/odmg-guide.html
../../docu/guides/summary.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/odmg-guide.html#metadata
../../docu/guides/basic-technique.html#cascading
../../docu/guides/repository.html
http://www.apache.org/dyn/closer.cgi/db/ojb/
../../docu/getting-started.html
../../docu/guides/odmg-guide.html
../../api/org/odmg/Implementation.html
../../docu/guides/odmg-guide.html#lookup-odmg
../../docu/guides/odmg-guide.html#lookup-odmg

The ODMG API

for use. Unlike Per si st enceBr oker instances, ODMG | npl enent at i on and Dat abase
instances are threadsafe and can typically be used for the entire lifecycle of an application. Thereis
no need to call the Dat abase. cl ose() method until the database is truly no longer needed.

The QJB. get | nst ance() function providesthe ODMG | npl enent at i on instance required
for using the ODMG API. From here on out it is straight ODMG code that should work against any
compliant ODMG implementation.

3. Persisting New Objects

Persisting an object viathe ODMG API is handled by writing it to the peristence store within the
context of atransaction:

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain awrite
lock on the Pr oduct , and commit the transaction. It is very important to note that all changes
need to be made within transactions in the ODM G API. When the transaction is committed the
changes are made to the database. Until the transaction is committed the database is unaware of any
changes -- they exist solely in the object model.

4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL
isvery similar to SQL, and using it is very similar to use JDBC. The ODMG implementation is
used to create a query, the query is specifed, executed, and alist fo resultsis returned:

5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

w ‘

../../docu/guides/pb-guide.html

The ODMG API

The sample code obtains awrite lock on the object (befor e the changes are made), binding it to the
transaction, changes the object, and commits the transaction. The newly modified Pr oduct now
hasanew st ock value.

6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Dat abase which contains the
persistent object. This can be obtained from the ODMG | npl enent at i on by asking for it. Once
retrieved, just ask the Dat abase to delete the object. Once again, thisis all done in the context of
atransaction.

It isimportant to note that the Dat abase. del et ePer sti ent () call does not delete the object
itself, just the persistent representation of it. The transient object still exists and can be used
however desired -- it issimply no longer persistent.

S

	1 Introduction
	2 Initializing ODMG
	3 Persisting New Objects
	4 Querying Persistent Objects
	5 Updating Persistent Objects
	6 Deleting Persistent Objects

