Locking

by Thomas Mahler, Armin Waibel
Table of contents

I 1 L1 0o 1T i o o OSSPSR
20 o 1] 40 TES (o I Tox (1 o USRS
3 PESSIMISHIC-LOCKING. .. cctieiieeitie ettt sttt ettt et e s e et eeaae e beeasteebeesaeeenseesneeenseesrneenns
3.1 SUPPOIEd ISOIELION LEVEIS........oeceeeieeeceee ettt e ens
3.2 How to specify 1ocking iSOlation [@VEL.........cc.ooe e
3.3 Specify the LockManager Implementation.............ooeoererereneneseeee e
3.4 The LockManager Implementations............coeieririireninieieee s
3.4.1 LockManagerINMemOry TMPL........ooeoiieieeiesie et et
3.4.2 LockManagerCommONSIMPL..........ooiiiiieiii et nee
3.4.3 LockManagerRemMOtEIMIPL.........ocviiieice et

Z @B 1Y [€= o oo (o TS
A1 WHEE IT AOBS.....c.eeeeeecieeie ettt et e e s e teeseesse e seaneesreenseeneeaseenseeneesreenseanenns
5 Locking in distributed enVIFONMENE...........coiiiiiiriieeeeee e
6 Pluggin OWN 1OCKING CIaSSES.......ccuiiieiiiiee e e e

Locking

1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple transactions
(possibly in clustered environments).

An example:

Assume there are two transactionst x 1 and t x2 running. The first transactiont x1 modify object
A and perform an update. At the same time transaction t x2 modify an object A' with the same
identity oi dA, so both objects represent the same row in DB table and both operate on the "same”
row at the same time, thus the state of object with identity oi dA isinconsistent.

Assume that t x1 was committed, now the modified object A' int x2 based on outdated data (state
before A changed). If now t x2 commits object A' the changes of t x1 will be overwritten with the
"illegal" object A" .

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't allow t x2 to
read or modify objects with identity oi dAaslong ast x1 commit or rollback (pessimistic locking).
In other words, if in arunning transaction an object in awith identity oi dA has awrite lock, the
lock manager doesn't allow other transactions to acquire aread or write lock on the same identity
oi dA objects (for the sake of completeness: dependent on the used locking isolation level).

OJB supports two kind of locking strategies:

e optimistic locking
e pessimistic locking

OJB provide an pluggable low-level locking-api (located in
or g. apache. oj b. br oker . | ocki ng) for pessimistic locking, which can be used by the
top-level api'slike ODMG. The PB-api itself does not support pessimistic locking out of the box.

The base classes of the locking-api can be found in or g. apache. oj b. br oker . | ocki ng and
the entry point is class LockManager.

Object locking helps to guarantee data consistency without the need of database locks. During a
transaction objects can be locked without the use a database connection, e.g the ODMG
implementation lookup a database connection not until the transaction commit was called. If
database locks are used, a connection is needed during the whol e transaction.

2. Optimistic Locking

To control concurrent access to objects optimistic locking uses aversion field on each persistent
object.

Optimistic locking is supported by al API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long, Integer or
Timestamp) which is incremented each time changes are committed to the object, and is utilizied to
determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,
because it checks dataintegrity only at update time.

1. Inyour table you need a dedicated column of type Bl G NT, | NTEGER or TI MESTAMP. Say
the column istyped as| NTEGER and named VERSI ON_MAI NTAI NED_BY_QJB.

2. Youthen need a(possibly private) attribute in your java class corresponding to the column. Say
the attribute is defined as:

3.1in repostory.xm‘ you ng a!l!!-!eﬁcrl ptor !or t!lsattrl!ute. T!IS!I!!-!GSCFIU[OI’ must

specify attribute | ocki ng="t r ue"

../../docu/tutorials/odmg-tutorial.html
../../docu/tutorials/pb-tutorial.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/tutorials/odmg-tutorial.html
../../docu/guides/repository.html#field-descriptor

Locking

4. Theresulting field-descriptor will look as follows:

Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and database
the precision of timestamp values differ (e.g. new value only after 10 ms or 1000 ms). In high concurrency applications this will cause
problems.

3. Pessimistic-L ocking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks on
persistent object (more precisely, on the identity object of the persistent object).

Pessimistic locking is currently used by the ODM G-api implementation. The PB-api does not
support PL out of the box.

3.1. Supported I solation Levels

The OJB locking package supports four different isolation level.

read-uncommitted
read-committed
repeatable-read
seridizable

(none)
(optimistic)

The object locking isolation levels can be simply characterized as follows:

Uncommitted Reads

Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read
locksis allowed even if another transaction iswriting to that object (case 13). (Thats why thislevel
isalso called dirty reads, because you can read lock objects with an existing write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locksis
allowed only if there is no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining awrite lock on an object that has been locked for reading
by another transaction is not allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case
6).

Theisolation level none and optimistic are self-explanatory:

none - don't lock objects associated with thisisolation level

optimistic - don't lock objects associated with thisisolation level, because optimistic locking was
used instead.

Thus the lock manager will ignore all objects associated with these isolation level.

../../docu/tutorials/pb-tutorial.html
../../api/org/apache/ojb/broker/locking/IsolationLevels.html

It's not needed to declare the optimistic isolation level in all persistent objects class-descriptor using thisisolation level, because OJB
will automatically detect an enabled optimistic locking and will bypass pessimistic locking.
Only the proper settings for optimistic locking are mandatory.

Locking

The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it, so take
care when comparing database transaction isolation level with object locking isolation level.

The proper behaviour of the different locking isolation level is checked by JUnit TestCases that
implement test methods for each of the 17 cases specified in the above table. (See code for classes
in package or g. apache. oj b. br oker. | ocki ng in OJB test suite).

The semantics of the strategies are defined by the following table:

Tx1 Tx2
1 SingleRead R
18 ReadThenF R
R
2 UpgradeRe R
U
3 ReadThenV R
w
4 SingleWrite W
5 WriteThenk W
R
6 MultipleReg R R
7 UpgradeWit R U
8 WriteWithE: R w
9 UpgradeWil R R
U
10 WriteWithM R R
11 UpgradeWil R R
w

ReadUncor ReadComn Repeatable Serializable

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

False

False

False

False

False

True

True

True

True

True

True

False

False

False

False

False

False

../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html

Locking

12 WriteWithM R R True True False False
W
13 ReadWithE: W R True False False False
14 MultipleWrit W W False False False False
15 ReleaseRe: R True True True True
Rel W
16 ReleaseUp(U True True True True
Rel W
17 ReleaseWri W True True True True
Rel W
Acquire R
ReadlLock
Acquire W
WriteLock
Upgrade U
Lock

Release Rel
Lock

The tableisto be read as follows. The acquisition of asingle read lock on agiven object (case 1) is
allowed (returns True) for al isolationlevels. To upgrade asingle read lock (case 2) isaso alowed
for al isolationlevels. If there is already awrite lock on a given object for tx1, it is not allowed
(returns False) to obtain awrite lock from tx2 for all isolationlevels (case 14).

If the low-level locking api was used by hand:

Not all LockManager implementation support the Lock Manager #upgr ade(. . .) method (e.g. upgrade was delegated to write
lock) or behavior of this method is awee bit other than shown above. More detail see javadoc comment of the used LockManager
implementation.

3.2. How to specify locking isolation level

The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository element:

Theisolation level of aclass can be configured with the following attribute to a class-descriptor:

5

../../api/org/apache/ojb/broker/locking/LockManager.html
../../docu/guides/repository.html#descriptor-repository
../../docu/guides/repository.html#class-descriptor

Locking

If no isolation-level was specified a default isolation level was used - see interface IsolationL evels.
The semantics of isolation levels are described in isolation level section.

3.3. Specify the L ockM anager | mplementation

To specify the used lock manager implementation set the LockManager Class property in
OJB.propertiesfile. By default an in memory lock manager is enabled.

3.4. The LockManager I mplementations
Below all LockManager implementations shipped with OJB are listed.

The LockManager implementation can optionally support

lock timeout: The locked objects of an owner will be released after a specified time
block timeout: The maximal time to wait for acquire alock (e.g. when an object was locked by
another thread). Implementations which do not support this feature are called non-blocking

3.4.1. L ockM anager InMemoryl mpl

A non-blocking, single VM, in-memory LockManager implementation. All
LockManager . upgr adeLock(. . .) calsaredelegated to writelocks. It'sasimple and fast
implementation.

The timeout of locks is supported. The block timeout is ignored, because it's non-blocking.

3.4.2. L ockM anager Commonsl mpl

This implementation use the locking part of apache's commons-transaction api. The timeout of
locksis currently (OJB 1.0.2) not supported, maybe in further versions. This implementation
supports blocking (with deadlock detection) and non-blocking of acquired locks.

3.4.3. LockM anager Remotel mpl

Supports locking in distributed environments based on a servlet. The LockManager Remotel mpl
class delegates all locking callsto aremote servlet (LockManager Ser vl et). The URL to
contact the servlet have to be set in OJB.properties file using the LockServietUr| property, e.g.

To make deployment of the LockManager Ser vl et on aservlet container easier an Ant target
lockserviet-war exist, which will build an example .war file containing all needed files (maybe
some useless files) for deployment.

The generated web. xmi filelook like:

D

../../api/org/apache/ojb/broker/locking/IsolationLevels.html
../../OJB.properties.txt
../../api/org/apache/ojb/broker/locking/LockManager.html
http://jakarta.apache.org/commons/transaction/
../../OJB.properties.txt

Locking

It's possible to use each LockManager implementation as backend of the lock manager servlet -
only adapt the lockManager init-param entry in theweb. xni file.

4. ODM G-api L ocking

The OJB ODMG implementation provides object level transactions as specified by the ODMG.
Thisincludes features like registering objects to transactions, persistence by reachability (atoplevel
object isregistered to atransaction, and also all its associated objects become registered
implicitely) and as a very important aspect: object level locking.

The ODMG locking implementation is located in or g. apache. oj b. odng. | ocki ng and base
on the OJB kernel locking codein or g. apache. oj b. br oker . | ocki ng. The odmg
implementation use it's own internal locking interface

or g. apache. oj b. odng. | ocki ng. LockManager with specific methods to handle
transactions as owner of alock and persistent object |dentity objects as resources to lock..

4.1. What it does

The ODMG-Api allows transactions to lock an object obj asfollows:

where lockM ode defines the locking modes:

A sample session could look as follows:

~

../../api/org/apache/ojb/broker/Identity.html

Locking

The ODMG specification does not say if locks must be acquired explicitely by client applications
or may be acquired implicitely. OJB providesimplicit locking for the application programmers
convenience: On commit of atransaction all read-locked objects are checked for modifications. If a
modification is detected, awrite lock is acquired for the respective object. If automatic acquisition
of read- or write-lock failes, the transaction is aborted.

On locking an object to atransaction, OJB automatically locks all associated objects (as part of the
persistence by reachability feature) with the same locking level. If application use large object nets
which are shared among several transactions acquisition of write-locks may be very difficult. Thus
OJB can be configured to aguire only read-locks for associated objects.

Y ou can change this behaviour by modifying the file OJB.properties and changing the entry
LockAssoci ati ons=WRI TEtoLockAssoci at i ons=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies to be
used. Thusthere are no API callsfor setting isolation levels. OJB provides four different isolation
levels that can be configured global or for each persistent classin the configuration files.

5. Lockingin distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) have to be
consistent over several JVM. The optimistic locking worksin clustered/distributed environments
without any modifications.

Currently OJB was shipped was simple servlet based L ockM anager implementation called
L ockM anagerRemotel mpl.

Hereis adescription how to use it:

1. Change LockManager Class entry in OJB.properties file to the remote implementation:
or g. apache. oj b. broker . | ocki ng. LockManager Renot el npl and the
LockSer vl et Ur | to the servelt engine where the lock-server serviet will be deployed:

2.Runtheant | ockservl et -war target to generate the lock-server servlet . war application
file. The generated file will befound in[db- oj b] / di st .

3. Check that all needed libraries be copied in lockserviet-war file.

../../docu/guides/ojb-properties.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt

Locking

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the LockMap
servlet.

A much better solution will be a IMS- or JavaGroups-based L ockM anager implementation (hope
we can start working on such aimplementation some day).

6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.

This may not be viable in some environments. Thus OJB allowsto plug in user defined

L ockManager implementations.

To specify specific implementations change the following entry in the OJB.properties configuration
file:

} Of course we are interested in your solutions! If you have implemented something interesting, just contact us. (

../../api/org/apache/ojb/broker/locking/LockManager.html
../../api/org/apache/ojb/broker/locking/LockManager.html
../../OJB.properties.txt

	1 Introduction
	2 Optimistic Locking
	3 Pessimistic-Locking
	3.1 Supported Isolation Levels
	3.2 How to specify locking isolation level
	3.3 Specify the LockManager Implementation
	3.4 The LockManager Implementations
	3.4.1 LockManagerInMemoryImpl
	3.4.2 LockManagerCommonsImpl
	3.4.3 LockManagerRemoteImpl

	4 ODMG-api Locking
	4.1 What it does

	5 Locking in distributed environment
	6 Pluggin own locking classes

