Basic O/R Mapping Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel
Table of contents

1 MEPPING 1:1 @SSOCIALIONS......eevetereeieerueeieeeeseseessesre st b sie st e e e s e ssesbesbesbessesseese e e e nnensesbeseeareneeas 2
I Bt = 1 0 00 = L1 1 OSSPSR 4
2 MaPPING 1iN @SSOCIALIONS.eeiieeiieeitee st esiee e ere e st et e e sseeebeesaeesbeesseesateesseeenseesseesnseesseesnseenseas 4
2 R AT 110 T e G = 111 o SRS 6
3 MaPPING M:N BSSOCIALIONS......ecueeieeeieeeesteeeeeeeseeseeeeesseesaeaeesseessesseesseessessessseessesseesseessesesssennsens 7
3.1 Manual decomposition iNt0 tWO 1:N @SSOCIATIONS.........ccoververiererierieeeeeeiee e 7
3.2 Support for Non-Decomposed M:N MaPPINGS.......coeierirereeierienie s seesee e sse e 9
3.3 MIN AULO-XXX SEEING. . ..eeveeieistieiteeie sttt sttt sae e sbe et e s st e sbeeneesaeeneeennesneennens 11
4 Setting Load, Update, and Delete CasCating..........ccoccveiieiiieiie e 12
4.1 QUEO-TELIEVE SEHLING.....eeiveeiee ettt ettt e st e et esae e st e et e sseesbeeneesaeesseennesrnenens 12
A T o (= L= (= 10T 13
5 USING PrOXY ClIaSSES......cueiuiiuiiiiieiiesie ettt st bttt e ettt b e bt e e et e nne e 14
5.1 USING DYNAIMIC PrOXIES......ccuiiuiiiieiiiieieieesie sttt st b b e e s e e snenne s 17
5.2 Using a Single Proxy for aWhole CollECtION...........cceeiiriiiiinieeseeee s 18
53 UsiNg aProxy for aREFEIENCE..........ccuveiiiiiece e 19
5.4 Customizing the proxXy MECNANISM...........c.ciiiiiieere e 19

6 TYPE aNd ValUE CONVEISIONS.......cccueeueerieeieseesieesiesseesseeeesseesseassesseessesssssseessesssessesssesssssseensesees 20

Basic O/R Mapping Technique

1. Mapping 1:1 associations

As asample for a simple association we take the reference from an article to its productgroup.

This association is navigable only from the article to its productgroup. Both classes are modelled in
the following class diagram. This diagram does not show methods, as only attributes are relevant
for the O/R mapping process.

ProductC roup Article
private Yector allArticleslnGroup protected int article d
private String description protected String article Mame
private int groupld protected boolean isselloutArticle
private String grouphame protected int minimum5tock

protected int orderedUnits

protected double price

protected Inte face ProductS roup productC roup
protected int products roupld

protected int stock

protected int supplie rid

protected String unit

1:1 association

The association isimplemented by the attribute pr oduct G oup. To automatically maintain this
reference OJB relies on foreignkey attributes. The foreign key containing the gr oupl d of the
referenced pr oduct gr oup isstored in the attribute pr oduct G- oupl d. To avoid FK attribute
in persistent object class see section about anonymous keys.

Thisisthe DDL of the underlying tables:

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

The attribute implementing the association (nanme=" pr oduct G oup™) is productGroup.
« Thereferenced object is of type (

cl ass-ref ="org. apache. oj b. br oker. Product G oup")

or g. apache. oj b. br oker . Product G oup.
« A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

contains t!e name o! t!e !I!!-!ESCH ptor !wcrl !I ng t!e !ore| gn!ey !I!!S. T!e FI!!DGSCH ptor

with the name "productGroupld" describes the foreignkey attribute productGroupl d:

N

../../docu/guides/advanced-technique.html#anonymous-keys

Basic O/R Mapping Technique

See the following extract from the repository.xml file containing the Article ClassDescriptor:

This example provides unidirectional navigation only. Bidirectional navigation may be added by
including areference from a ProductGroup to asingle Article (for example, a sample article for the
productgroup). To accomplish this we need to perform the following steps:

1. Addaprivate Article attribute named sanpl eArti cl e totheclassPr oduct G oup.

2. Addaprivateint attribute named sanpl eArti cl el d to the ProductGroup class representing
the foreign key. To avoid FK attribute in persistent object class see section about anonymous
keys.

. Add acolumn SAMPLE_ARTI CLE_I D | NT tothetable Kat egori en.

. Add aFieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class
ProductGroup:

../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/guides/advanced-technique.html#anonymous-keys

Basic O/R Mapping Technique

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

1.1. 1:1 auto-xxx setting
General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced object will NOT be updated by
default. The reference will not be inserted or updated, the link to the reference (foreign key
value to the reference) on the main object will not be assigned automatically. The user has to
link the main object and to store the reference before the main object to avoid violation of
referential integrity.

« link On updating or inserting of the main object with
Per si st enceBr oker. store(...),theFK assignment on the main object was done
automatic. OJB reads the PK from the referenced object and sets these values as FK in main
object. But the referenced object remains untouched. If no referenced object is found, the FK
will be nullified. (On insert it is allowed to set the FK without populating the referenced object)

« 0bject On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced object will be stored first, then OJB
doesthe same asin link.

« falselsequivaent tolink.

« truelsequivalent to object.

auto-delete

« none On deleting an object with Per si st enceBr oker . del ete(...) thereferenced
object will NOT be touched.

« link Isequivalent to none.

» object On deleting an object with Per si st enceBr oker . del et e(. . .) thereferenced
object will be deleted too.

» falselsequivaent to none.

» truelsequivalent to object.

2. Mapping 1:n associations

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only from the
ProductGroup to its Article instances. Both classes are modelled in the following class diagram.
This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

../../docu/faq.html#primitiveNull

Basic O/R Mapping Technique

Products roup q = Article
private Yector allArticlesinG roup "w._ |protected int articleId
private 5tring de scription protected String article Name
private int groupld protected boolean isSelloutArticle
private String grouphame protected int minimumsStock

protected int orde redUnits

protected double price

protected Inte rface ProductG roup productC roup
protected int productG roupld

protected int stock

protected int supplie rid

protected String unit

1:n association

The association isimplemented by the Vect or attributeal | Arti cl esl nG oup onthe
ProductGroup class. Asin the previous example, the Article class contains aforeignkey attribute
named productGroupld that identifies an Article's ProductGroup. The Database table are the same
as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor contains the
following information:

1. The attribute implementing the association (nane="al | Arti cl esl nG oup")

2. Theclass of the elementsin the collection (
el enent - cl ass-ref ="org. apache. oj b. broker. Article")

3. Thename of field-descriptor of the element class used as foreign key attributes are defined in
inverse-foreignkey elements:

T!lSlsagaln pointing to t!efl!!-!escrlptor for t!e attn!ute pr o!uct Goupl ! in c‘ass

Article.
4. optiona attributes to define the sort order of the retrieved collection:
orderby="articleld" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

Basic O/R Mapping Technique

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup. Thisis
done with two SQL -calls: one for the ProductGroup and one for all Articles.

2. if Articleisaproxy (using proxy classes), OJB will only load the keys of the Articles after the
ProductGroup. When accessing an Article-proxy OJB will have to materialize it with another
SQL-Call. Loading the ProductGroup and all it's Articles will thus produce n+2 SQL-calls: one
for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

« A.issuitablefor asmall number of related objects that are easily instantiated. It's efficient
regarding DB-calls. The major drawback is the amount of data |loaded. For example to show a
list of ProductGroups the Articles may not be needed.

« B.isbest used for alarge number of related heavy objects. This solution |oads the objects when
they are needed ("lazy loading"). The priceto pay isaDB-call for each object.

Further down athird solution using a single proxy for awhole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. But in some cases the
default behaviour of OJB is undesired. Please read here for more information.

When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK

2.1. 1:n auto-xxx setting
General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectsare NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user has
to link and to store the referenced objects after storing the main object to avoid violation of
referential integrity.

e link On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectsare NOT updated by default.
The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

« 0bject On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectswill be linked and stored
automatically.

« falselsequivaenttolink.

« truelsequivalent to object.

auto-delete

../../docu/guides/advanced-technique.html#which-collection-type
../../docu/faq.html#primitiveNull

Basic O/R Mapping Technique

« none On deleting an object with Per si st enceBr oker . del ete(...) thereferenced
objects are NOT touched. Thismay lead to violation of referential integrity if the referenced
objects are childs of the main object. In this case the referenced objects have to be deleted
manually first.

link I's equivalent to none.

object On deleting an object with Per si st enceBr oker . del et e(. ..) thereferenced
objects will be deleted too.

false Is equivalent to none.

true Is equivalent to object.

3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated support
for non decomposed m:n associations.

3.1. Manual decomposition into two 1:n associations

Have alook at the following class diagram:

Perzan Project

-id :int
-title : String

-id :int
-firstname : String

-laztname : String
-projects ; Collection
-roles : Caollaction

—description : 5tring
-parsons ; Collection
-roles : Callectian

m:n association

We see atwo classes with am:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.

Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

Thisintermediary table allows to decompose the m:n association into two 1:n associations. The
intermediary table may also hold additional information. For example, the role a certain person
playsfor a project:

~

Basic O/R Mapping Technique

The decomposition is mandatory on the ER model level. On the object model level it is not
mandatory, but may be avalid solution. It is mandatory on the object level if the association is
qualified (asin our example with arolename). Thiswill result in the introduction of a association
class. A class-diagram reflecting this decomposition looks like:

Person Rl Froject
-id : int 0% | -person_id @ int o0.* -id :int
-firstname : 5tring -project_id :int ~title : 5tring
-lastname : 5tring -parson ; Person —-de scription : 5tring
-projects : Collection -praject : Project -perzons: : Callection
-roles @ Callection —-role Hame : 5tring -role = : Collection

m:n association

A Per son object has a Collection attribute r ol es containing Rol e entries. A Pr oj ect hasa
Collection attribute r ol es containing Rol e entries. A Rol e hasreference attributes to its

Per son andtoitsPr oj ect .

Handling of 1:n mapping has been explained above. Thus we will finish this section with a short
look at the repository entries for the classesor g. apache. oj b. br oker . Per son,

or g. apache. oj b. br oker. Proj ect andor g. apache. oj b. br oker. Rol e:

Basic O/R Mapping Technique

3.2. Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a Person
does not have a collection of Rol e objects but only a Collection of Pr o] ect objects (held in the
attribute pr oj ect s). Projects also are expected to contain a collection of Per son objects (hold
in attribute per sons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes pr oj ect s andr ol es need additional information on the intermediary table and the
foreign key columns pointing to the PERSON table and the foreign key columns pointing to the
PRQJECT table:

Basic O/R Mapping Technique

0JB supports a multiplicity of collection implementations, inter aia

org. apache. oj b. broker . util.col |l ecti ons. Renoval Awar eCol | ecti on and

org. apache. oj b. broker. util.collections. Renoval Awar eLi st . By default the removal aware collections were used.
This cause problemsin m:n relationswhen aut o- updat e="true" or "object" andaut o-del et e="fal se" or "none"
is set, because objects deleted in the collection will be deleted on update of main object. Thusit is recommended to use aNOT removal
aware collection classin m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

An full example for a non-decomposed m:n relation looks like:

../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/repository.html#collection-descriptor

Basic O/R Mapping Technique

That is all that needs to be configured! See the codein class
or g. apache. oj b. br oker. M oNVappi ng for JUnit testmethods using the classes Per son,
Proj ect andRol e.

} When using primitive primary key fields, please pay attention on how OJB manage nul | for primitive PK/FK ‘

3.3. m:n auto-xxx setting

General info about the aut 0- xxx and pr oxy attributes can be found here

auto-retrieve
See here

auto-update

« none On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectsare NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entriesin the indirection table) automatically. The user has to store the main
object, the referenced objects and to link the m:n relation after storing of all objects.
establishing the m:n relationship before storing main and referenced objects may violate
referential integrity.

« link On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectsare NOT updated by default.
The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entriesin the indirection table).

Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of
referential integrity.

« 0bject On updating or inserting of the main object with
Per si st enceBr oker. store(...),thereferenced objectswill be linked and stored
automatically.

« falselsequivaenttolink.

« truelsequivalent to object.

auto-delete

« none On deleting an object with Per si st enceBr oker . del et e(...) thereferenced
objects are NOT touched. The corresponding entries of the main object in the indirection table
will not be removed. This may lead to violation of referential integrity depending on the
definition of the indirection table.

11

../../docu/faq.html#primitiveNull

Basic O/R Mapping Technique

« link On deleting an object with Per si st enceBr oker . del et e(...) them:nrelation
will be unlinked (all entries of the main object in the indirection table will be removed).

» 0bject On deleting an object with Per si st enceBr oker . del ete(...) al referenced
objects will be deleted too.

« falselsequivaenttolink.

« truelsequivalent to object.

4. Setting L oad, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Java terminology) by declaring special Reference and Collection Descriptors. These
Descriptor may contain some additional information that modifies OJB's behaviour on object
materialization, updating and deletion.

The behaviour depends on specific attributes

« auto-retrieve - possible settings are false, true. If not specified in the descriptor the default
valueistrue

« auto-update - possible settings are none, link, object and deprecated [false, trug]. If not
specified in the descriptor the default value is false

« auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

When using atop-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.

For OTM- and JDO-api the settings are:

- auto-retrieve="true"

- auto-update="false"

- auto-retrieve="false"

This are at the same time the default auto-XX X settings (so don't specify any of this attributes will have the same effect).
For the ODM G-api the mandatory settings are (since OJB 1.0.2):

- auto-retrieve="true"

- auto-update="none"

- auto-retrieve="none"

The attribute auto-update and auto-del ete are described in detail in the corresponding sections for
1:1, 1:n and m:n references. The auto-retrieve setting is described below:

4.1. auto-retrieve setting

Theaut o-retri eve attributeusedinr ef er ence- descri pt or or
col | ecti on-descri pt or elements handlesthe loading behaviour of references (1:1, 1:n and
m:n):

» falself set false the referenced objects will not be materialized on object materiaization. The
user hasto materialize the n-side objects (or single object for 1:1) by hand using one of the
following service methods of the Per si st enceBr oker class.

Thefirst method load only the specifi
for the given object.

reference, the second one |oads

Be careful when using "opposite” settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or
"true" or "link").

Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an
nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference was
removed.

12

Basic O/R Mapping Technique

« truelf set true the referenced objects (single reference or al n-side objects) will be automatic
loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but
lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to
use cascading retrieval (aut o-retri eve="true"), cascading insert/update (

aut o- updat e="obj ect " or aut o- updat e="t r ue") and cascading delete (

aut o- del et e="obj ect " oraut o-del et e="t rue") operations:

4.2. Link references

Ifinr ef erence-descri ptor orcol |l ecti on-descri ptor the auto-update or

auto-del ete attributes are set to none, OJB does not touch the referenced objects on insert, update or
delete operations of the main object. The user has to take care of the correct handling of referenced
objects. When using referential integrity (who does not ?) it's essential that insert and delete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK valuesis transcribed with
link referencesin OJB. In 1:1 references the main object has a FK to the referenced object, in 1:n
references the referenced objects have FK pointing to the main object and in non-decomposed m:n
relations a indirection table containing FK values from both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK) in
or g. apache. oj b. broker . util. Broker Hel per class.

These methods are accessibleviaor g. apache. oj b. br oker . Per si st enceBr oker :

The link/unlink methods are only useful if you set auto-update/-del ete to none. In all other cases OJB handles the link/unlink of
referencesinternaly. It is also possible to set all FK values by hand without using the link/unlink service methods.

13

Basic O/R Mapping Technique

Examples

Now we prepared for some example. Say class Movi e has an m:n reference with class Act or and
we want to store an Movie object with alist of Actor objects. The auto-update setting of
collection-descriptor for Movie is none:

First store the main object and the references, then use

br oker. servi ceBrokerHel per().link(nmovie, "actors", true) tolinkthe
main object with the references. In case of am:n relation linking create all FK entriesin the
indirection table.

In the next examples we want to manually delete aPr o] ect object with a 1:n relation to class
SubPr oj ect . Inthe example, the Project object has load all SubProject objects and we want to
delete the Project but don't want to delete the referenced SubProjects too (don't ask if this make
sense ;-)). SubProject has an FK to Project, so we first have to unlink the reference from the main
object to the references to avoid integrity constraint violation. Then we can delete the main object:

5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can
help you in reducing unneccessary database |ookups.
There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switchesin
repository.xml. Thisis the solution recommemded for most cases.
2. User defined proxies. User defined proxies allow the user to write proxy implementations.

Asit isimportant to understand the mechanics of the proxy mechanism | highly recommend to read
this section before turning to the next sections "using dynamic proxies', "using asingle proxy for a
whole collection" and "using a proxy for areference", covering dynamic proxies.

Basic O/R Mapping Technique

As a simple example we take a ProductGroup object pg which contains a collection of fifteen
Article objects. Now we examine what happens when the ProductGroup is loaded from the
database:

Without using proxies all fifteen associated Article objects are immediately loaded from the db,
even if you are not interested in them and just want to lookup the description-attribute of the
ProductGroup object.

If proxies are used, the collection isfilled with fifteen proxy objects, that implement the same
interface as the "real objects’ but contain only an OID and avoid reference. The fifteen article
objects are not instantiated when the ProductGroup isinitially materialized. Only when amethod is
invoked on such a proxy object will it load its "real subject” and delegate the method call to it.
Using this dynamic delegation mechanism instantiation of persistent objects and database |ookups
can be minimized.

To use proxies, the persistent classin question (in our case the Article class) must implement an
interface (for example InterfaceArticle). Thisinterface is needed to allow replacement of the proper
Article object with a proxy implementing the same interface. Have alook at the code:

Basic O/R Mapping Technique

The proxy is constructed from the identity of the real subject. All method calls are delegated to the
object returned by r eal Subj ect ().
This method uses getReal Subject() from the base class Virtual Proxy:

The proxy delegates the the materialization work to its| ndi r ect i onHandl er . If therea
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the
following section to the XML repository file:

The following class diagram shows the rel ationships between all above mentioned classes:

16

Basic O/R Mapping Technique

VirtualPraxy = = |nte face = = ProductG roup
Inte face Article -
+addTastocklin diff:int . -g!*:c“r:;'tel; InG i Vector
" +getArticleld :int .. = 'n .
+WirtualPrazyd +get.-9«rticle Mame i : String = -groupld :int
+¥irtualProxyioid:) +getPraductG raup) -groupMame : String
+WirtualPrososihandle r) +Qetstockyalue § : double +getldd :int
+alreadyMate rializedd : baolean))) +setArticle Idiin newA rticle Id:int) +taStringd : String
+create Prnx‘gflipmxyc I;:::C lazs, realSubjectside ntity:) : Object +setArticle Mame (newA rticle Name String) +getNamef ; String
+getRealsubjectd : Object +tostringd : String +3etName lin groupName :String)
‘{"_\ +gatAllArticlesd : List
| +zetldlin new\alue:int)

----------------------- 1
| |
| |
1 1
Article Prosxy Article
HarticleId : int
#article Mame : String
+Article Prozoy #izSe|loutArticle : boolean
+Article Prozoyiunique 1d:) #minimumstock : int
+Article Prozoyihandle r) #arderedUnits : int
+addToStockiin diff:int) #price : double
+getArticle | :int #productGroupld : int
+gethrticle Mame § : String #stock it
+getProductG roupd #supplierld : int
+getStockyalue § double #unit : String
-realSubject] : Inte face Article : . -
+setArticle Idiin newArticlz |d:int) :;E?jt{g%gc'kscf:g?ﬂ.inﬂ
+zetArtiche Name (newArticle Mame String) +getArticle 140 ; int :

+getArticle Mame 0 String

+get5itockalue) : double

+zetArticle Idlin newArticle Id:int)

+zetArticle Name inewArticle Mame Stringd
+getlsSelloutArticle § ; boolean
+getMinimumStock(: int

+getlrde redUnitsf : int

+getPrice § : double

+getProductC roupl

+getProductC roupld] @ int

+getStock(:int

+getSupplierld] : int

+getUnitd : String

+zetlzhe [loutArticle (in newlsSe lloutArticle :boalean)
+setMinimumStockiin newMinimumstock:int)
+zetlrde redUnitsiin newQrde redUnits:int)
+setPrice{in newPrice :double)

+setProductG roupinewProductG roup:

+ zetProductG roupldiin newProductG roupld:int)
+setStockiin newStock:int)

+zetSupplie ridiin newSupplierid:int)
+=zetUnit{newlnit:5tring)

proxy image

5.1. Using Dynamic Proxies

The implementation of a proxy classis aboring task that repeats the same del egation scheme for
each new class. To liberate the developer from this unproductive job OJB provides a dynamic
proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK 1.2 we ship areplacement
for therequired j ava. | ang. r ef | ect classes. Credits for this solution to ObjectMentor.) The
basic idea of the dynamic proxy concept is to catch all method invocations on the not-yet
materialized (loaded from database) object. When a method is called on the object, Java directs this
call to theinvocation handler registered for it (in OJB's case a class implementing the

or g. apache. oj b. br oker. core. proxy. I ndi recti onHandl er interface). This
handler then materializes the object from the database and replaces the proxy with the real object.
By default OJB uses the class

or g. apache. oj b. broker. core. proxy. I ndirecti onHandl er Def aul t| npl . If
you are interested in the mechanics have alook at this class.

To use adynamic proxy for lazy materialization of Article objects we have to declareit in the
repository.xml file.

17

Basic O/R Mapping Technique

Just as with normal proxies, the persistent classin question (in our case the Article class) must
implement an interface (for example InterfaceArticle) to be able to benefit from dynamic proxies.

Asof OJB 1.0.4, afacility is now present to allow the generation of dynamic proxies that do not require the persistent classto
implement an interface. Previous versions generated Proxies using the JDK proxy pattern. That has been extracted into a new
configuration setting named 'ProxyFactoryClass..

Two implementations of this ProxyClass have been provided: the previous JDK-based version (default), and a new CGLIB-based
implementation. Since the CGLIB version does byte-code manipulation to generate the proxy, your classis not required to implement
any interface. All generated Proxies will automatically be sub-classes of your persistent class.

See below in the section "Customizing the proxy mechanism" for how to enable the new CGLIB Proxy generation.

5.2. Using a Single Proxy for a Whole Collection

A collection proxy represents awhole collection of objects, where as a proxy class represents a
single object.

The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A
collection proxy only needs asingle db-call to materialize all it's objects. This happens the first
time its content is accessed (ie: by calling iterator();). An additional db-call is used to calculate the
size of the collection if size() is called before loading the data. So collection proxy is mainly used
as adeferred execution of aquery.

OJB uses three specific proxy classes for collections:

1. List proxiesare specificj ava. uti | . Li st implementations that are used by OJB to replace
lists. The default set proxy classis
or g. apache. oj b. br oker . core. proxy. Li st ProxyDef aul t 1 npl

2. Set proxiesare specificj ava. uti | . Set implementations that are used by OJB to replace
sets. The default set proxy classis
or g. apache. oj b. br oker. core. proxy. Set ProxyDef aul t | npl

3. Collection proxies are collection classes implementing the more generic
java. util. Col | ecti on interface and are used if the collection is neither alist nor a set.
The default collection proxy classis
or g. apache. oj b. br oker. core. proxy. Col | ecti onProxyDef aul t 1 npl

Which of these proxy classis actually used, is determined by thecol | ecti on- cl ass setting of
this collection. If noneis specified in the repository descriptor, or if the specified class does not
implement j ava. util . Li st norjava. util . Set, thenthe generic collection proxy is used.

The following mapping shows how to use a collection proxy for arelationship:

18

Basic O/R Mapping Technique

The classes participating in this relationship do not need to implement a special interface to be used
in acollection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not
recommended because it increases the number of database calls.

5.3. Using a Proxy for a Reference

A proxy referenceis based on the original proxy class concept. The main difference is that the
ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.

In the following mapping the class ProductGroup is not defined to be a proxy classin its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

Because a proxy referenceis only about the location of the definition, the referenced class must
implement a special interface (see using proxy classes).

5.4. Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies, you can select a ProxyFactory, as well as provide your own indirection
handler. Two default indirection handler implementations have been provided that coorespond to
the apporpriate ProxyFactory (IndirectionHandlerJDKImpl and IndirectionHandlerCGLIBImpl).

Note: All indirection handlers must implement the appropriate base indirection handler class,
depending on what ProxyFactory is being used. For example: when using ProxyFactoryJDKImpl,
the specified indirection handler must implement the IndirectionHandlerJDK interface.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(ava.util.Collection,java.util.List,orjava.util. Set)aswell asthe
or g. apache. oj b. br oker. Manageabl eCol | ect i on interface.

Proxy implementations are configured in the ojb propertiesfile. These are the relevant settings:

Basic O/R Mapping Technique

6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your
Domain objects. Y ou need atype and value mapping described by a FieldConversion!

../../docu/guides/jdbc-types.html

	1 Mapping 1:1 associations
	1.1 1:1 auto-xxx setting

	2 Mapping 1:n associations
	2.1 1:n auto-xxx setting

	3 Mapping m:n associations
	3.1 Manual decomposition into two 1:n associations
	3.2 Support for Non-Decomposed m:n Mappings
	3.3 m:n auto-xxx setting

	4 Setting Load, Update, and Delete Cascading
	4.1 auto-retrieve setting
	4.2 Link references

	5 Using Proxy Classes
	5.1 Using Dynamic Proxies
	5.2 Using a Single Proxy for a Whole Collection
	5.3 Using a Proxy for a Reference
	5.4 Customizing the proxy mechanism

	6 Type and Value Conversions

