Metadata handling

by Armin Waibel
Table of contents

I 1 L1 0o 1T i o o OSSPSR 2
2 When does OJB read MELAOELAL.c.ceieieereeie e st sbe e 2
3 CONNECEION MELAAELALo eeeetieie et ettt st b et sae e b e e e ae e be et nae e 2
3.1 Load and merge connection Metadata.............cccueveeieiiesieie e 2
4 Persistent ObjECt MELAALAL.ccoveieee e e e e e e e sreenne e 3
4.1 Load and merge ObjeCt MEtAdataL.ccveeeieiiereseeeree e 4
4.2 Global object metadata ChaNQESocvoiiiri e 4
4.3 Per thread metadata ChaNQES..........ooeeuiiieiie et 5
4.4 Object Metadata ProfilES.........cuviiie i ere e 5
4.5 Reference runtime changes on per qUEry basis............ocveeiie e 6
A6 PITFAIIS. .. ettt e e b bt eneas 6
SO 1B 1 (0] SRS 6
5.1 Start OJB Without arepoSITOrY FIlE?..........oiiieee e 6
5.2 Connect t0 database @l MUNTIME?..........oiiiiiereee ettt sre et saeesae e 6

5.3 Add new persistent objects metadata (class-descriptor) at runtime?ccccecevevivveveeseeennen, 7

Metadata handling

1. Introduction

To make OJB proper work information about the used databases (more info see connection
handling) and seguence managers is needed. Henceforth these metadata information is called
connection metadata.

Further on OJB needs information about the persistent objects and object relations, henceforth this
information is called (per sistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata. Thusit is
possible to use the same object metadata on different databases.
But it is also possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

« using xml configuration files parsed at start up by OJB
» set metadata instances at runtime by building metadata class instances at runtime
» parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under

or g. apache. oj b. br oker . net adat a. * -package.

The main class for metadata handling and entry point for metadata manipulation at runtimeis
or g. apache. o] b. br oker . net adat a. Met adat aManager .

2. When does OJB read metadata

By default all metadataisread at startup of OJB, when thefirst call to
Per si st enceBr oker Fact or y (directly or by atop-level api) or Met adat aManager class
was done.

OJB expects arepository file at startup, but it is also possible to start OJB without an repository file
or only |oad connection metadata and object metadata at runtime or what ever combination fit your
requirements.

3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be
declared in OJB repository file.

For each database a jdbc-connection-descriptor must be declared. This element encapusaltes the
connection specific metadata information.

The JdbcConnectionDescriptor instances are managed by
org. apache. oj b. br oker. net adat a. Connecti onReposi tory

3.1. Load and mer ge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing one.
The used repository files have to be valid against the repository.dtd:

../../docu/guides/connection.html
../../docu/guides/connection.html
../../docu/guides/sequencemanager.html
../../docu/guides/repository.html
../../api/org/apache/ojb/broker/metadata/MetadataManager.html
../../docu/guides/repository.html
../../docu/guides/repository.html
../../docu/guides/repository.html#jdbc-connection-descriptor
../../api/org/apache/ojb/broker/metadata/ConnectionRepository.html
../../repository.dtd.txt

Metadata handling

In the above additional repository file two new jdbc-connection-descriptor (new databases) runtime
and minimal are declared, to load and merge the additional connection metadata the
MetadataManager was used:

After the merge the access to the new databasesis ready for use.

4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java objects and
the associated tables in database. Object metadata must be declared in OJB repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by

org. apache. o] b. br oker . net adat a. Descri pt or Reposi t ory . Per default OJB use
only one global instance of this class - it's the repository file read at startup of OJB. But it is

../../docu/guides/repository.html
../../docu/guides/repository.html#class-descriptor
../../api/org/apache/ojb/broker/metadata/DescriptorRepository.html

Metadata handling

possible to change the global use repository:

4.1. Load and merge object metadata

It is possible to load additional object metadata at runtime and merge it with the existing one. The
used repository files have to be valid against the repository.dtd:

When using the dynamic mapping technique described below, all objects in the structure must implementet
java.io. Serializabl e for OJB to be able to created cloned copies. OJB currently uses SerializationUtils from Commons Lang
Core Language Utilities for all deep-cloning operations.

An additional repository file may look like:

To load and merge the object metadata of the additional repository files first read the metadata
using the MetadataManager .

It is also possible to keep the different object metadata for the same classes parallel by using
metadata profiles.

4.2. Global object metadata changes
The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use aglobal instance of class Descriptor Repository to manage all object metadata.

S

../../repository.dtd.txt
http://jakarta.apache.org/commons/lang/api/org/apache/commons/lang/SerializationUtils.html
../../api/org/apache/ojb/broker/metadata/MetadataManager.html
../../api/org/apache/ojb/broker/metadata/MetadataManager.html
../../api/org/apache/ojb/broker/metadata/DescriptorRepository.html

Metadata handling

This means that all PersistenceBroker instances (kernel component used by all top-level api) use
the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a
ClassDescriptor) will be seen immediately by all PersistenceBroker instances. Thisisin most cases
not the favoured behaviour and OJB supports per thread changes of object metadata.

4.3. Per thread metadata changes

Per default the manager handle one global Descriptor Repository for al calling threads (keep in
mind PB-api is not threadsafe, thus each thread use it's own PersistenceBroker instance), but it is
ditto possible to use different metadata profilesin a per thread manner - profiles means different
instances of DescriptorRepository objects. Each thread/PersistenceBroker instance can be
associated with a specific Descriptor Repository instance. All made object metadata changes only
will be seen by the PersistenceBroker instances using the same DescriptorRepository instance. In
theory each PersistenceBroker instance could be associated with a separate instance of object
metadata, but the recommended way is to use metadata profiles.

To enable the use of different Descriptor Repository instances for each thread do:

This can be done e.g. at start up or at runtime when it's needed. If method
set Enabl ePer Thr eadChanges is set false only the global Descriptor Repository was used.
Now it's possible to use dedicated DescriptorRepository instances per thread:

Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread, because the
metadata was bound to the PersistenceBroker instance at lookup.

4.4. Object metadata profiles

M etadatalM anager was shipped with a ssmple mechanism to add, remove and load different
persistent objects metadata profiles (different DescriptorRepository instances) in a per thread
manner. Use method addPr ofile to add different persistent object metadata profiles, method
removeProfile to remove profiles and loadProfile load a profile for the calling thread.

[¢)]

../../api/org/apache/ojb/broker/metadata/DescriptorRepository.html

Metadata handling

After the loadProfile call all PersistenceBroker instances will be associated with the admin profile.

i Method |oadProfile only proper work if the per thread mode is enabled. |

4.5. Reference runtime changeson per query basis

FIXME (arminw):

| Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

4.6. Pitfalls

OJB'sflexibility of metadata handling demanded specific attention on object caching. If a global
cache (shared permanent cache) was used, be aware of side-effects caused by runtime metadata
changes.

For example, using two metadata profiles A and B. In profile A al fields of a class are showed, in
profile B only the 'namefiled' is showed. Thread 1 use profile A, thread 2 use profile B. It is
obvious that a global shared cache will cause trouble.

5. Questions

5.1. Start OJB without a repository file?

It is possible to start OJB without any repository file. In this case you have to declare the

j dbc- connecti on-descri ptor andcl ass-descri ptor at runtime. See Connect to
database at runtime? and Add new persistent objects (class-descriptors) at runtime? for more
information.

5.2. Connect to database at runtime?

There are two possibilities to connect your database at runtime:

« load connection metadata by parsing additional repository files
« create the JdbcConnectionDescriptor at runtime

Thefirst oneis described in section |oad and merge connection metadata. For the second one a new
instance of classor g. apache. oj b. br oker . net adat a. JdbcConnecti onDescri pt or

is needed. The prepared instance will be passed to class ConnectionRepository:

../../docu/guides/objectcache.html
../../docu/guides/objectcache.html
../../api/org/apache/ojb/broker/metadata/JdbcConnectionDescriptor.html

Metadata handling

Please read this section from beginning for further information.

5.3. Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

» |load object metadata by parsing additional repository files
« create new metadata objects at runtime

Thefirst oneis described in section |oad object metadata.

To create and add new metadata objects at runtime we create new
org. apache. o] b. br oker . net adat a. Cl assDescr i pt or instances at runtime and using
the Met adat aManager to add them to OJB:

Please read this section from beginning for further information.

~

../../docu/guides/metadata.html
../../api/org/apache/ojb/broker/metadata/ClassDescriptor.html
../../docu/guides/metadata.html

	1 Introduction
	2 When does OJB read metadata
	3 Connection metadata
	3.1 Load and merge connection metadata

	4 Persistent object metadata
	4.1 Load and merge object metadata
	4.2 Global object metadata changes
	4.3 Per thread metadata changes
	4.4 Object metadata profiles
	4.5 Reference runtime changes on per query basis
	4.6 Pitfalls

	5 Questions
	5.1 Start OJB without a repository file?
	5.2 Connect to database at runtime?
	5.3 Add new persistent objects metadata (class-descriptor) at runtime?

