Repository File

by Thomas Mahler, Daren Drummond, Brian McCallister, Armin Waibel, Thomas Dudziak, Martin Kalén

Table of contents

1 INtroducCtion - FEPOSITONY SYNMEAX........ceeeeerieriesteriestesieeieeeese et s e e bt e e s e st b seesresse e enens 3
2 ESCITLO-TEPOSITONY ... eeeeeteeeestee it e e tee st et e st s bt te e e s be e beeseesseebesseesbeesbeeneesaeenbesneesreesbesnsesneans 3
2.1 ETBMENES. ...t b ettt a e bt et nre e nneen 3
2.2 ATEITDULES. ...ttt e s b et e b e e be e st e e et e aenbesrenbenreas 3
3 JADC-CONNECTI ON-OESCIIPLONeteeee ettt e e s e te e s aeeteeseesseenneenaenrens 4
Bl EIEMENES.....cceece ettt er e te et e ereenneeneenreenreenenneens 4
K L] 0T (-SSR 4
3.3 CUSLOM @IITIDULES. ..ottt bttt ettt bt e st e be et e s st e sreebesneesneeneens 6
4 CONNECLION-PO0N......eeeieiieiee ettt e e te e s re e et e e s ae e e beesaeeeabeesseeeaseesneeenbeesnneaseens 6
1= 0101 | USRS 6
T N 1] 010 | =< PSSP PR PP 6
4.3 CUSEOM BTTULES. ..ottt enae et esne e teenneeneenseeneenneennn 8
e T I | o oSO 9
A3 2 TEICNSIZE. ... et b ettt he et e sreere e 9
4.3.3 dbCp.pOo0l PreparedStateMENtS........ccciiiie et ere e 9
4.3.4 dbcp.maxOpenPreparedStateMENTES...........coveiieieeieere et nneas 10
4.3.5 dbcp.accessToUnderlyingConnectioNAIIOWEd.............oovevieiiereeie e 10

5 SEOUENCE-IMANATES -......eeeeeeeureesseeereesseeasseesseeaseesseessseeaseeaaseeaseesmreeaneeanneeaneesmreeaneesnneenneesnreenneesnnis 10
DL ELBMENES. ...ttt a et g e re e neeteenaenreenes 10
o) L] o TU (- SR 10
5.3 CUSLOM AIITIULES. ...ttt sttt st ae et e s be e st e e eesneen 10
[0 o= ok o= o 1RSSR 11
B.1 ELOIMENTS......oeieeet bbbt b bbbttt e e e ns 11
LS A L] 01U (- 11
6.3 CUSLOM ATIITIDULES. ..ottt sae e ae s e s teetesseesaeeneesneesseeneenneens 11
AT (o]0 g 1= 11 | 10 =TRSO 12
SR eSS0 (=S 1] 0] SRR 13
S = = 0TS (RSSO 13
8.2 ATIITDULES. ...ttt bbb bbbttt e bt na e re e 13
S T = S 14

Ol L= Lo B0 (= ol T o (o SRS PO 14

Repository File

= 1= T[S o] oo USSR 16
12 FOFBIGNKEY ..ottt sttt bbbt b e bt he e h e e e e s et et e nE e e bt e bt e et e ae et e e e nb e benbennennenneas 17
13 COl ECH ON-OESTIILON ...ttt ettt bbbt e e e b e b e b e nr e ebeene e e s 18
00 e o TSP 19
15 INVEFSE-TOTEIGNKEYeeeecee ettt e e e s ae et e saeesre e seeneesreeseeneesreeseeneens 20
16 FK-POINtING-tO-thiS-CIaSS.......cceeiice e 20
17 TK-POINtING-tO-El @MENT-ClESS.......ceeeieeie ettt e e tesreesneeseeneensens 20
18 QUETY-CUSIOMUIZE ...ttt sttt ettt ettt s et st sb e bt st e e s e e e b e e b e nbe e bt e aeeae e e e s e e e nnesbesrennenneas 21
19 TNAEX-OESCITIONttt e et et b bt s e e e e e e s e b e sb e eb e eb e e st e se e s e e e s e nnenreane e 21
P20 g0 (<ol] ¥ oo R TPR 21
21 Stored ProCedUIe SUPPOM.........ciueieeiteeieseesteeee et e steete st e ste e e sreesse s e e sseesseeseesreeseeneesseensesneenns 21
I R ST o 0ot [S 21
21.2 UPABLE-PIOCEAUIE.cveeeeeeeeeieeie et e e s ee st e e e s e ste e e sseesaeesaesseesseeneesseesseensesneessennsennenns 22
21.3 AElEEE-PIOCEAUNE. ...ttt e bbbt e bt s e e e e e e nesaeabenne s 22
214 FUNEIME-BIGUIMIENT. ...ttt ettt s e s e b e sb e bt nb e e bt e se e e e e e s e nneneeanenneas 23
21.5 CONSEANT-ANGUIMENL.eeeiieee et ctie e st e et e s s et e e et e e sseeeesseeessseeesaseeessseeensaeeeneeesnneensnsneans 23

Repository File

1. Introduction - repository syntax

The syntax of the OJB repository xml filesis defined by the repository.dtd.
An overview of al repository.dtd-elements can be found here. The repository.dtd can be found
here.

The actual repository metadta declaration is split up into several separate files, hereis an excerpt of
the most important files:

1. therepository.xml. Main file for metadata declaration. Thisfileis split into several sub files
using xml-Entity references.

2. therepository_database.xml. Thisfile contains the mapping information for
database/connection handling.

3. therepository_internal.xml. Thisfile contains the mapping information for the OJB internal

tables. These tables are used for implementing SequenceM anagers and persistent collections.

the repository_user.xml. This file contains mappings for the tutorial applications and may be

used to hold further user defined class mappings.

the repository_junit.xml. Thisfile contains mapping information for common OJB JUnit

regression test suite. In production environments these tables are not needed.

other repository_junit_XYZ.xml

More specific junit test mapping. In production environments these tables are not needed.

7. There are some more files, for more information see comment in appropriate xml-file.

»

o

o

2. descriptor-repository

The descriptor-repository is the root element of arepository.xml file. It consists of one or more
jdbc-connection-descriptor and at least one class-descriptor element. But it's also possible to
startup OJB without any of these elements and add them at runtime.

2.1. Elements

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

The jdbc-connection-descriptor element specifies ajdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

2.2. Attributes

The version attribute is used to bind arepository.xml file to a given version of thisdtd. A given
OJB release will work properly only with the repository version shipped with that relase. This
strictness maybe inconvenient but it does help to avoid the most common version conflicts.

The isolation-level attribute defines the default locking isolation level used by OJB's pessimistic
locking api. All jdbc-connection-descriptor or class-descriptor that do not define a specific isolation
level will usethis.

w

../../docu/guides/dtdx/repository.dtdx.html
../../repository.dtd.txt
../../repository.xml.txt
../../repository_database.xml.txt
../../repository_internal.xml.txt
../../repository_user.xml.txt
../../repository_junit.xml.txt
../../docu/guides/metadata.html#without-repository
../../docu/guides/lockmanager.html#pessimistic-locking
../../docu/guides/lockmanager.html#pessimistic-locking

Repository File

Note: Thisdoes NOT touch the jdbc-level of the connection.

The proxy-prefetching-limit attribute specifies a default value to be applied to all proxy instances. If
none is specified a default value of 50 is used. Proxy prefetching specifies how many instances of a
proxied class should be loaded in a single query when the proxy isfirst accessed.

3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies ajdbc connection for the repository. It is alowed
to define more than one jdbc-connection-descriptor. All class-descriptor elements are independent
from the jdbc-connection-descriptors. More info about connection handling here.

3.1. Elements

The object-cache element specifies the obj ect-cache implementation class associated with this
class.

A connection-pool element may be used to define connection pool properties for the specified
JDBC connection.

Further a sequence-manager element may be used to define which sequence manager
implementation should be used within the defined connection.

Use the custom-attribute element to pass implementation specific properties.

3.2. Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd
alias as key for the defined connections.

The default-connection attribute used to defineif this connection should used as default connection
with OJB. Y ou could define only one connection as default connection. It is also possible to set the
default connection at runtime using Per sistenceBroker Factory#setDefaultKey(...) method. If set
true you can use a PB-api shortcut-method of the PersistenceBroker Factory to lookup
PersistenceBroker instances.

If default-connection is not set at runtime, it is mandatory that username and password is set in repository file.

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to
a org.apache.ojb.broker .platforms.PlatformXXXImpl class. Supported databases see here. Default
isHsqgldb.

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver.
Allowed values are: 1.0, 2.0, 3.0. Default is 1.0.

DEPRECATED!. The eager-release attribute is used to solve a problem that occurs when using

../../docu/guides/connection.html
../../docu/guides/objectcache.html
../../docu/guides/pb-guide.html#lookup-pb

Repository File

OJB within JBoss (3.0 <= version < 3.2.2, seems to be fixed in jboss 3.2.2 and higher). Only use
within JBoss. DEPRECATED attribute.

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used
database), 'true’ value allows to enable per-session batch mode, whereas 'false’ prohibitsit.
PB.serviceConnectionManager .setBatchMode(...) method can be used to switch on/off batch
modus, if batch-mode is enabled. On PB.close() OJB switches off batch modus, thus you have to do
"...setBatchM ode(true)' on each obtained PB instance again.

0OJB 1.0.4 and earlier:

When using database identity columnsit's not allowed to enable batch mode for insert operations.

When using optimistic locking the version check will always succeed for update operations when batch-mode is enabled - take carel!.
Thiswill be fixed and automatically handled by OJB till next major release.

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used
connections. The default mode is 1. When using mode 0 or 2 with the PB-api, you must use PB
transaction demarcation.

e 0- OJB ignores the autoCommit setting of the connection and does not try to changeit. This
mode could be helpful if the connection won't let you set the autoCommit state (e.g. using
datasources within an application server).

e 1 - [default mode] set the connection's autoCommit state temporary to 'false’ if needed (when
using transaction demarcation in non-managed environment) and restore the 'old' state after use.
In versions before OJB 1.0.4 the autoCommit state was explicit set ‘true’ when connection was
created, now OJB expect that thisis done by the jdbc-driver/DataSource configuration. To
enable the old behavior set a custom attribute initializationCheck to 'true'.

T!en OJB set t!e autoCommit state exp‘ |C|t‘y to 'true’ W!en t!e connection Is creat! !y t!e

ConnectionFactory.
« 2 - Set the connection's autoCommit explicitly to false when a connection is created.

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting
autocommit state, will be ignored. Default mode is false.

If ajndi-datasource-name for INDI based lookup of Jdbc connections is specified, the following
four attributes driver, protocol, subprotocol, and dbalias used for Jdbc DriverManager based
construction of Jdbc Connections must not be declared.

If ajndi-datasource-name is specified, OJB always assume that a INDI based datasource
connection lookup was expected (so take care that this attribute is empty or absent on driver based
connection handling).

The username and password attributes are used as credentials for obtaining ajdbc connections.
If users don't want to keep user/password information in the repository.xml file, they can pass
user/password using a PBKey to obtain a PersistenceBroker. More info see FAQ.

../../docu/guides/sequencemanager.html#identity-columns
../../docu/guides/lockmanager.html#optimistic-locking
../../docu/guides/connection.html
../../docu/faq.html

Repository File

3.3. Custom attributes

The JdbcConnectionDescriptor supports specific configuration properties via custom-attributes.

Attribute initializationCheck is an attribute to support backward compatibility with OJB versions
before 1.0.4.

In older versions OJB change the 'autoCommit' state dependent of the used 'useA utoCommit'
attribute setting at connection initialization. This doesn't work in al situations/environments, thus
for useAutoCommit="1" the ConnectionFactory does no longer set autoCommit to true on
connection creation.

To use the old behavior (OJB version 1.0.3 or earlier) set this property to true, then OJB change the
‘autoCommit’ state (if needed) of new obtained connections at connection initialization.

If false or this property is removed, OJB dosen't try to change connection ‘autoCommit' state at
connection initialization.

Usage example of supported custom attributes:

4. connection-pool

The connection-pool element specifies the connection pooling and low-level JDBC driver
parameters. Read more about OJB connection handling.

4.1. Elements
The documentation element can be used to store arbitrary information.

Use the attribute element to set JDBC-level properties or to enable DBCP PreparedStatement
pooling if your JDBC driver does not have a PreparedStatement cache already.

See section custom attributes below for more information.

When using an external DataSource, OJB cannot configure any JDBC-properties.

4.2. Attributes

D

../../docu/guides/connection.html

Repository File

maxActive (default=21) The maximum number of active connections that can be allocated from this
pool at the sametime, or zero for no limit.

maxldle (default=-1) The maximum number of active connections that can remain idle in the pool,
without extra ones being released, or zero for no limit.

minldle (Since OJB 1.0.4, default=0) The minimum number of active connections that can remain
idle in the pool, without extra ones being created, or zero to create none.

maxWait (default=5000) The maximum number of milliseconds that the pool will wait (when there
are no available connections) for a connection to be returned before throwing an exception, or -1 to
wait indefinitely.

Must be > 0 for timeout to actually happen in DBCP PoolingDataSource.

whenExhaustedAction (default=0)

e 0-fail when pool is exhausted
e 1- block when pool is exhausted
e 2-grow when pool is exhausted

validationQuery (default=not specified) The SQL query that will be used to validate connections
from this pool according to testOnBorrow/testOnReturn/testWhileldle. If specified, this query must
be an SQL SELECT statement that returns at |east one row.

If not specified, only connection.isClosed() checks will be performed according to
testOnBorrow/testOnReturn/testWhileldle.

Many database servers will discard idle connections after some time of inactivity. This timespan is usually configurable by the DBA and
can range from anything between one hour and severa days.
Consider specifying a vaidation query that fits your database server and set at least testOnBorrow=true.

Example validation queries:

testOnBorrow (default=true) The indication of whether connections will be validated before being
borrowed from the pool. If the connection fails to validate, it will be dropped from the pool, and
OJB will attempt to borrow another.

testOnReturn (default=false) The indication of whether connections will be validated before being
returned to the pool.

testWhileldle (default=false) The indication of whether connections will be validated by the idle
object evictor (if any). If aconnection failsto validate, it will be dropped from the pool.

timeBetweenEvictionRunsMillis (default=-1) The number of milliseconds to sleep between runs of
the idle object evictor thread. When non-positive, no idle object evictor thread will be run.

numTestsPer EvictionRun (default=10) The number of objects to examine during each run of the
idle object evictor thread (if any).
Has no meaning if timeBetweenEvictionRunsMillis is non-positive.

minEvictableldleTimeMillis (default=1800000) The minimum amount of time a connection may sit
idlein the pool beforeit is eligable for eviction by the idle object evictor (if any).

When non-positive, no connection will be dropped from the pool due to idle time aone.

Has no meaning if timeBetweenEvictionRunsMillis is non-positive.

Repository File

removeAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to remove abandoned
connectionsif they exceed the removeAbandonedTimout. If set to true a connection is considered
abandoned and €ligible for removal if it has been idle longer than the removeAbandonedTimeoui.
Setting this to true can recover db connections from poorly written applications which fail to close
aconnection.

If you have enabled "removeAbandoned"” then it is possible that a connection is reclaimed by the
pool because it is considered to be abandoned. This mechanism is triggered on borrowObject (iein
OJB when a PersistenceBroker gets a Connection) when:

(numdle < 2) and (numActive > maxActive - 3)

For example maxActive=20, 18 active connections and 1 idle connection would trigger the
"removeAbandoned”. But only the active connections that aren't used for more then
removeAbandonedTimeout seconds are removed. Traversing aresultset doesn't count as being used.
The abandoned object eviction takes place before normal borrowObject logic (there is no asynch
evictor thread like for testWhileldle).

removeAbandonedTimeout [ConnectionFactoryDBCPImpl] (default=300) Timeout in seconds
before an abandoned connection can be removed.
Has no meaning if removeAbandoned is false.

logAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to log stack traces for
application code which abandoned a Statement or Connection.

Logging of abandoned Statements and Connections adds overhead for every Connection open or new Statement because a stack trace
has to be generated.

4.3. Custom attributes

OJB itself and the ConnectionFactory implementation classes support specific connection
configuration properties, these properties can be set by using custom-attributes.

Usage example of supported custom attributes:

o4}

Repository File

4.3.1. jdbc*

Since OJB 1.0.4, custom attributes with names starting with "jdbc." will be passed (without the
"jdbc." prefix) to the IDBC DriverManager when creating new Connection objects.

Use this attribute to set driver-specific customized tuning options. For example, to set
Oracle-batching to 5 statements:

4.3.2. fetchSize

(defaul t=0, unspecified) SetsahintintheJDBC driver not to fetch more than specified
number of rows per server roundtrip for any ResultSet.

Setttings different than the default (0) are especialy useful to reduce memory footprint when using
driversthat default to not using server-side cursors and retrieves all rows to the JDBC client-side
driver buffer. PostgreSQL JDBC driver is awell-known example of this.

* Many JDBC drivers will silently ignore the fetchSze hint.
* Also note that fetchS ze has nothing to do with max rows returned by a ResultSet, only number of rows retrieved per JDBC- driver

network roundtrip to the database server (if the driver cares about the hint at all, that is).

4.3.3. dbcp.pool Prepar edStatements

Only valid for ConnectionFactoryDBCPImpl (def aul t =f al se) Enable prepared statement
pooling.

PreparedStatement pooling with Commons DBCP is programmatically disabled when using pl at f or m=Or acl e9i in OJB, since the
platform implementation activates Oracle-specific statement caching that conflicts with DBCP ObjectPool-based caching. le, for a
descriptor with platform="0Oracle9i" there is no effect in setting:

Repository File

4.3.4. dbcp.maxOpenPr epar edStatements

Only valid for ConnectionFactoryDBCPImpl (def aul t =0, unl i m t ed) The maximum
number of open statements that can be allocated from the statement pool at the same time, or zero
for no limit.

4.3.5. dbcp.accessToUnder lyingConnectionAllowed

Only valid for ConnectionFactoryDBCPImpl (def aul t =f al se) Controlsif the DBCP
"PoolGuard" connection wrapper allows access to the underlying Connection instance from the
JDBC-driver.

Only use when you need direct access to driver-specific extentions. It is generally not needed to
change this setting in OJB.

* Do not close the underlying connection, only the original one.
* |f using P6Spy, the underlying connection in DBCP will still be wrapped by P6Spy and you will have to continue unwrapping to the
innermost delegate and Connection of JDBC-driver specific class.

5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key
generation. All sequence manager implementations shipped with OJB can be found in the
org.apache.ojb.broker.util.sequence package. If no sequence manager is defined, OJB uses the
default one. More info about sequence key generation here.

5.1. Elements

Use the custom-attribute element to pass implementation specific properties.

5.2. Attributes

The className attribute represents the full qualified class name of the desired sequence manager
implementation - it is mandatory when using the sequence-manager element. All sequence manager
implementations you find will under org.apache.ojb.broker.util.sequence package named as
SequenceManager XXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

5.3. Custom Attributes

The SequenceManager implementation classes support specific configuration properties, these
properties can be set by using custonmattributes.

The description of the properties can be found in sequence manager docs.
Usage example of supported custom attributes:

S ﬁ
o

../../docu/guides/sequencemanager.html
../../docu/guides/sequencemanager.html
../../docu/guides/sequencemanager.html

Repository File

6. obj ect-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB.
There are three levels of declaration:

« in OJB.propertiesfile, to declare the standard (default) ObjectCache implementation

« on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per
connection/user level

» on class-descriptor level, to declare ObjectCache implementation on a per class level

The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.qg. if you declare ObjectCache implementation ‘'my.cacheDef" as standard, set ObjectCache
implementation 'my.cacheA' in class-descriptor for class A and class B does not declare an
object-cache element. Then OJB use 'my.cacheA" as ObjectCache for class A and ‘'my.cacheDef’ for
classB.

6.1. Elements

Use the custom-attribute element to pass implementation specific properties.

6.2. Attributes

Attribute 'class specifies the full qualified class name of the used ObjectCache implementation.

6.3. Custom Attributes

Many ObjectCache implementation classes support specific configuration properties, these

../../docu/guides/objectcache.html
../../OJB.properties.txt

Repository File

properties can be set by using custom-attributes.

The description of the properties can be found in object cache docs.
Usage example of supported custom attributes:

I npl "/ >

7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the
repository.dtd for details on which elements support it (e.g. class-descriptor, object-cache, ...).

The attribute-name identifies the name of the attribute.
The attribute-value identifies the value of the attribute.

To get access of the definied attribute use methods of
or g. apache. oj b. br oker. net adat a. At tri but eCont ai ner . All classes supporting
custom attributes have to implement this interface.

Here you can see an example how to define an custom attribute within the class-descriptor element:

To access the attribute you have to know the associated At t r i but eCont ai ner class. Hereit
was ClassDescriptor. To read the attribute at runtime do:

12

../../docu/guides/objectcache.html
../../repository.dtd.txt
../../api/org/apache/ojb/broker/metadata/ClassDescriptor.html

Repository File

8. class-descriptor

A class-descriptor and the associated java class ClassDescriptor encapsul ate metadata information
of an interface, abstract or concrete class.

8.1. Elements

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements
which specify the types extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables.
References to other persistent entity classes are specified by reference-descriptor elements.
Collections or arrays attributes that contain other persistent entity classes are specified by
collection-descriptor elements

A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

8.2. Attributes

The class attribute contains the full qualified name of the specified class. Asthis attribute is of the
XML type ID there can only be one class-descriptor per class.

The isolation-level attribute defines the locking isolation level of the specified class (used by OJB's
pessimistic locking api).

The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting

and only important when pessimistic locking was used.

If the proxy attribute is set, proxies are used for al loading operations of instances of this class. If
set to dynamic, dynamic proxies are used. If set to another value this value is interpreted as the
full-qualified name of the proxy classto use. More info about using of proxies here.

The proxy-prefetching-limit attribute specifies alimit to the number of elements|oaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.

13

../../api/org/apache/ojb/broker/metadata/ClassDescriptor.html
../../docu/guides/advanced-technique.html#extents
../../docu/guides/lockmanager.html#pessimistic-locking
../../docu/guides/lockmanager.html#pessimistic-locking
../../docu/guides/basic-technique.html#using-proxy

Repository File

The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain afull qualified class name. This class will be used as the
RowReader implementation used to materialize instances of the persistent class.

The extends attribute is deprecated and will be removed or reintroduced with changed
funcitonality in future. DON'T USE IT!

The accept-locks attribute specifies whether implicit locking should propagate to this class.
Currently relevant for the ODMG layer only.

The optional initialization-method specifies a no-argument instance method that isinvoked after
reading an instance from a database row. It can be used to do initialization and validations.

The optional factory-class specifies afactory class that that isto be used instead of a no argument
constructor when new objects are created. If the factory classis specified, then the factory-method
also must be defined. It refersto a static no-argument method of the factory class that returns a new
instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache.
Means all field values (except references) will be replaced by values retrieved from the database.
It's set to false by default.

9. extent-class

An extent-class element is used to specify an implementing class or aderived class that belongs to
the extent of all instances of the interface or base class.

The class-ref attribute must contain afully qualified classname and the repository file must contain
a class-descriptor for this class.

10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom+-attribute element to pass implementation specific properties.

Theid attribute is optional. If not specified, OJB internally sorts field-descriptors according to

14

../../docu/guides/advanced-technique.html#using-rowreader

Repository File

their order of appearance in the repository file.
If adifferent sort order isintended the id attribute may be used to hold a unique number identifying
the decriptors position in the sequence of field-descriptors.

} The order of the numbers for the field-descri ptors must correspond to the order of columnsin the mapped table. ‘

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The table attribute may specify atable different from the mapped table for the persistent class.
(currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify
the JDBC type by inspecting the Java attribute by reflection - OJB use the javal/jdbc mapping
desribed here.

The primarykey specifies if the column is a primary key column, default value isfalse. It's possible
to auto assign primary key fields, more info see autoincrement section

The nullable attribute specifiesif the column may contain null values.
The indexed attribute specifiesif thereis an index on this column

The autoincrement attribute specifiesif the values for the persistent attribute should be
automatically generated by OJB. More info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence
manager implementations. Check the javadocs of the used sequence manager implementation to get
information if thisis a mandatory attribute. OJB standard sequence manager implementations build
a seguence name by its own, if the attribute is not set. More info about sequence key generation
here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More
about optimistic locking. The default value is false.

The updatel ock attribute is set to false if the persistent attribute is used for optimistic locking AND
the dbms should update the lock column itself. The default is true which means that when locking
istrue then OJB will update the locking fields. Can only be set for TIMESTAMP and INTEGER
columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default
fetch group.

The conversion attribute contains afully qualified class name. This class must implement the
interface or g. apache. oj b. accessl ayer. conver si ons. Fi el dConver si on. A
FieldConversion can be used to implement conversions between Java- attributes and database
columns. More about field conversion.

The length attribute can be used to specify alength setting if required by the jdbc-type of the
underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the
underlying database column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the
underlying database column.

15

../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/jdbc-types.html
../../docu/guides/sequencemanager.html
../../api/index.html
../../docu/guides/sequencemanager.html
../../docu/guides/sequencemanager.html
../../docu/faq.html#optimisticLocking
../../docu/guides/jdbc-types.html#field-conversion

Repository File

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to
modified. readwrite marks fields that may be read and written to. anonymous marks anonymous
fields.

An anonymous field has a database representation (column) but no corresponding Java attribute.
Hence the name of such afield does not refer to a Java attribute of the class, but is used as a unique
identifier only. More info about anonymous keys here.

11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not
primitive but references another persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association
on the database level.

The name attribute holds the name of the persistent classes attribute. Depending on the used
PersistendField implementation, there must be e.g. an attribute in the persistent class with this name
or a JavaBeans compliant property of this name.

The class-ref attribute contains afully qualified class name. This classis the Object type of the
persistent reference attribute. Asthisis an IDREF there must be a class-descriptor for this classin
the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for
this attribute.

The proxy-prefetch-limit attribute specifies alimit to the number of elements|oaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
isloaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).

This could be useful if the ObjectCache implementation cache full object graphs without

../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/guides/basic-technique.html#one-to-one
../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/basic-technique.html#cascading
../../docu/guides/objectcache.html

Repository File

synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fieldsitself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
isresponsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api hone is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred
object or deletes it if the reference field is set to null. Also otm-dependent references behave as if
auto-update and auto-del ete were set to true, but the auto-update and auto-del ete attributes themself
must be always set to false for use with OTM layer.

12. foreignkey

A foreignkey element contains information on aforeign-key persistent attribute that implement the
association on the database level.

The field-ref and field-id-ref attributes contain the name and the id attributes of the fiel d-descriptor
used as aforeign key.

} Exactly one of these attributes must be specified. {

../../docu/guides/objectcache.html
../../docu/guides/basic-technique.html#auto-retrieve
../../docu/guides/basic-technique.html#cascading
../../docu/guides/basic-technique.html#cascading

Repository File

13. collection-descriptor

A collection-descriptor contains mapping info for a Collection- or Array-attribute of a persistent
class that contains persistent entity Objects. See more about 1:n and m:n references.

The orderby element(s) allow to specify the order the collection objects. It's allowed to specify
multiple order fields.

The inver se-foreignkey elements contains information on foreign-key attributes that implement the
association on the database level.

The fk-pointing-to-this-class and fk-pointing-to-el ement-class elements are only needed if the
Collection or array implements a m:n association. In this case they contain information on the
foreign-key columns of the intermediary table.

Use the custom-attribute element to pass implementation specific properties.

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The collection-class may hold afully qualified class name. This class must be the Java type of the
Collection attribute. This attribute must only specified if the attribute typeis not a

java. util. Coll ecti on (or subclass) or Array type. It isalso possible to use non Collection
or Array type user defined "collection” classes. More info see section manageabl e collection.

The element-class-ref attribute contains afully qualified class name. This classis the Object type of
the elements of persistent collection or Array attribute. Asthisis an IDREF there must be a
class-descriptor for this class in the repository too.

DEPRECATED, please use the 'orderby’-element. The orderby attribute may specify afield of the
element class. The Collection or Array will be sorted according to the specified attribute. The sort
attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection
attribute implements a m:n association.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for
this attribute. More about using proxy here.

The proxy-prefetch-limit attribute specifies alimit to the number of elements loaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
isloaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).

../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/basic-technique.html#using-proxy
../../docu/guides/basic-technique.html#cascading

Repository File

This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fieldsitself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
isresponsible to fill the reference attribute.

More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-del ete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-X XX settings here.

This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api hone is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates collection
elements that were included into the collection, and deletes collection elements that were removed
from the collection. Also otm-dependent references behave as if auto-update and auto-delete were
set to true, but the auto-update and auto-del ete attributes themself must be always set to false for
use with OTM layer.

14. order-by

A order-by element contains an attribute name and a sort order.

19

../../docu/guides/objectcache.html
../../docu/guides/objectcache.html
../../docu/guides/basic-technique.html#auto-retrieve
../../docu/guides/basic-technique.html#cascading
../../docu/guides/basic-technique.html#cascading

Repository File

The name attribute specifies the field or the column (full qualified column name) the order based
on. The sort attribute specifies the order direction.

Here is an examples of how to use ordering for one side of am:n reference:

15. inver se-foreignkey

A inverse-foreignkey element contains information on a foreign-key persistent attribute that
implement the association on the database level.

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor
used as aforeign key. Exactly one of these attributes must be specified.

16. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an
intermediary table in am:n scenario.

The column attribute specifies the foreign-key column in the intermediary table that points to the
class holding the collection.

17. fk-pointing-to-element-class

A fk-pointing-to-el ement-class element contains information on a foreign-key column of an
intermediary table in am:n scenario.

2

o

Repository File

The column attribute specifies the foreign-key column in the intermediary table that points to the
class of the collection el ements.

18. query-customizer

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query.
More info about customizing collection gueries.

Use the custom-attribute element to pass implementation specific properties.

19. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

20. index-column

An index-column isjust the name of a column in an index.

21. Stored Procedure Support
OJB supports stored procedures for insert, update and del ete operations. How to use stored

procedures within OJB can be found here.

21.1. insert-procedure

| dentifies the procedure/function that should be used to handle insertions for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well asthe
source for each argument.

Use the custom-attribute element to pass implementation specific properties.

N

1

../../docu/guides/advanced-technique.html#query-customizer
../../docu/howtos/howto-work-with-stored-procedures.html
../../docu/howtos/howto-work-with-stored-procedures.html

Repository File

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if al field-descriptorsin the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fieldsis 'true’, any nested 'argument’
elements will beignored. In this case, values for al field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fieldsis false, then
values will be passed to the procedure/function based on the information in the nested ‘argument’
elements.

21.2. update-procedure

| dentifies the procedure/function that should be used to handle updates for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the
source for each argument.

Use the custom-attribute element to pass implementation specific properties.

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if al field-descriptorsin the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fieldsis 'true’, any nested 'argument’
elements will beignored. In this case, values for al field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fieldsis false, then
values will be passed to the procedure/function based on the information in the nested ‘argument’
elements.

21.3. delete-procedure

| dentifies the procedure/function that should be used to handle deletions for a specific
class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the
procedure/function as well as the source for each argument.

Repository File

Use the custom-attribute element to pass implementation specific properties.

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include areturn value, then do not specify a
value for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor
that are identified as being part of the primary key are to be passed to the procedure/function. If
include-pk-only is'true’, any nested ‘argument’ elements will be ignored. In this case, values for all
field-descriptors that are identified as being part of the primary key will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-pk-only isfalse, then
values will be passed to the procedure/ function based on the information in the nested ‘argument'

21.4. runtime-ar gument

Defines an argument that is passed to a procedure/function. Each argument will be set to avalue
from afield-descriptor or null.

Use the custom+-attribute element to pass implementation specific properties.

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that
provides the value for this argument. If this attribute is unspecified, then this argument will be set
to null.

21.5. constant-ar gument
Defines a constant value that is passed to a procedure/function.

Use the custom+-attribute element to pass implementation specific properties.

The value attribute identifies the value that is passed to the procedure/ function.

N

3

	1 Introduction - repository syntax
	2 descriptor-repository
	2.1 Elements
	2.2 Attributes

	3 jdbc-connection-descriptor
	3.1 Elements
	3.2 Attributes
	3.3 Custom attributes

	4 connection-pool
	4.1 Elements
	4.2 Attributes
	4.3 Custom attributes
	4.3.1 jdbc.*
	4.3.2 fetchSize
	4.3.3 dbcp.poolPreparedStatements
	4.3.4 dbcp.maxOpenPreparedStatements
	4.3.5 dbcp.accessToUnderlyingConnectionAllowed

	5 sequence-manager
	5.1 Elements
	5.2 Attributes
	5.3 Custom Attributes

	6 object-cache
	6.1 Elements
	6.2 Attributes
	6.3 Custom Attributes

	7 custom attribute
	8 class-descriptor
	8.1 Elements
	8.2 Attributes

	9 extent-class
	10 field-descriptor
	11 reference-descriptor
	12 foreignkey
	13 collection-descriptor
	14 order-by
	15 inverse-foreignkey
	16 fk-pointing-to-this-class
	17 fk-pointing-to-element-class
	18 query-customizer
	19 index-descriptor
	20 index-column
	21 Stored Procedure Support
	21.1 insert-procedure
	21.2 update-procedure
	21.3 delete-procedure
	21.4 runtime-argument
	21.5 constant-argument

