ODMG-api Guide

by Armin Waibel
Table of contents

I 1 L1 0o 1T i o o OSSPSR 2
2 SPECITIC Metalata SELLINGS.ceveeeeriee ettt s r e e e e be e nne e 2
3 HOW tO ACCESS ODM G-Iveeiveieieeiiieiiteesiee et e seeete e st e ete e st e e te e sbe s abeesseeeteesreeenseesseeereesanesans 3
4 CoNfiQUIation PrOPEITIES........ecieiieeiecie ettt sttt e te e st be e e sae e teeneesneenseensesrnenes 3
5 0OJB EXIENSIONS Of ODIMG.....oeiiiiiiiiieiisiesie sttt sttt bbbt nbe e nes 5
5.1 The Implementati ONEXE INTEITACE. ..o 5
5.2 The TransaCtioNEXE INTEITACE........c.cccveiieiceeseee e 5
5.3 The EnhancedOQL QUENY INEEITACE........cuiiiiiiieee et 6
5.4 Access the PB-api Within ODMG.........cooiiiiiicic ettt et nee s 6
6 Notes 0N USING the ODM G APoouiieeece ettt et ens 6
B.1 TTANSACTIONS.veueeueeieteste sttt sttt ettt b e s b bt ae e e e e e e e b e s be e b e sbe e bt e st e e et et e nbesbesbenbenneeneeneas 6
372 I 0 Tox 6
6.3 Persisting Non-TransacCtional ODJECES..........ccocueiririiriireeeeee e 7
7 ODMG NAMEA ODJECES.....eeeeiiiieiieeiiesiee ettt te e sreente s e e sbeeeesseesbeesesneesseensans 7
T L EXAMPIES. ..o e e e e e b e e re e aae e reeanreeree s 8
8 ODMG'S DCOIECLIONS.cveiuiiiiriieieiesie sttt sttt ne et st b e b sne s enes 9
9 Foreign Keys Constraints and ODM G-api........cceeurieerieeiieiieseeeseesiesseesseesseeseesseessesnessseesseens 10
10 QUESETONS BN TIPS, veterteriieieeieeie sttt sttt sttt ettt b e st ae e e e et et e b e bt s be e st e se e e e eennennenreas 10
10.1 Disable OJB's object ordering, determine object order "by hand"............cccoeieiiiiiininnns 10
10.2 Circular- and Bidirectional REFEIENCES.........coieeiieriiiiieieeie e 11
10.3 | don't like OQL, can | use the PersistenceBroker Queries within ODMG.............c..c.c....... 11

10.4 HOW tO USE MUILIPIE DALADBSES.ccveivieieeeieciecteecie ettt sneene e 11

ODMG-api Guide

1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level APl and OQL guery language based interface over the PersistenceBroker
APIL.

This document is not a ODMG tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the ODM G-api and the proprietary
extensions by OJB.

If you don't find an answer for a specific question, please have alook at the FAQ and the other
reference guides.

Additionaly the OJB's ODMG implementation has several extensions described below.

2. Specific M etadata Settings

To make OJB's ODMG-api implementation proper work, some specific metadata settings needed in
the repository mapping files.

All defined reference-descriptor and collection-descriptor need specific auto-xxx settings:

e auto-retrieve="true"
e auto_update="none"
» auto-delete="none" or auto-delete="object" (to enable cascading delete, since OJB 1.0.4!)

} These settings are mandatory for proper work of the odmg-api! {

So an exampl e object mapping class-descriptor look like:

A lot of mapping samples can be found in mappings for the OJB test suite. All mappings for the
ODMG unittestareinr eposi tory_junit_odnyg. xm file, which can be found under the

http://www.odmg.org/
../../docu/guides/query.html#odmg-oql
../../docu/guides/pb-guide.html
../../docu/guides/pb-guide.html
../../docu/tutorials/odmg-tutorial.html
../../docu/faq.html
../../docu/guides/summary.html
../../docu/guides/repository.html
../../docu/guides/repository.html#reference-descriptor
../../docu/guides/repository.html#collection-descriptor
../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html

ODMG-api Guide

src/test directory.

3. How to access ODM G-api

Obtainaor g. odng. | npl enent at i on instance first, then create a new
or g. odng. Dat abase instance and open this instance by setting the used jcd-alias name:

The user and password separated by # hash only needed, when the user/passwd is not specified in
the connection metadata (jdbc-connection-descriptor).

The jdbc-connection-descriptor may look like:

With method call QJB. get | nst ance() awaysanew org.odmg.lmplementation instance will
be created and odng. newDat abase() returnsanew Dat abase instance.

For best performance it's recommended to share the | npl enent at i on instance across the
application. To get the current open database from the | npl enent at i on instance, use method
| npl enent ati on. get Dat abase(nul |)

Or share the open Dat abase instance as well.

See further in FAQ "Needed to put user/password of database connection in repository file?".

4. Configuration Properties

The OJB ODMG-api implementation has some adjustable properties and pluggable components.
All configuration properties can be set in the OJB.propertiesfile.

Here are all properties used by OJB's ODMG-api implementation:

OglCollectionClass This entry defines the collection type returned
from OQL queries. By default this value is set to
a List implementation. This will be suffice in
most situations.

If you want to use the additional features of the
DList interface (DList itself is persistable,
support of predicates) directly on query results,
change setting to the DList implementation (See
also property 'DListClass' entry).

But this will affect the performance - especially
for large result sets. So recommended way is
create DCol | ect i on instances only when
needed (e.g. by converting a List result set to a

w

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/repository.html#jdbc-connection-descriptor
../../api/org/odmg/Implementation.html
../../api/org/odmg/Implementation.html
../../docu/faq.html#userPasswordNeeded
../../OJB.properties.txt
../../docu/guides/query.html#odmg-oql

ImplementationClass

0OJBTxManagerClass

ImplicitLocking

LockAssociations

Ordering

ImplicitLockingBackward

ODMG-api Guide

DList).

Important note: The collection class to be used

MUST implement the interface

org. apache. oj b. broker . Manageabl eCol | ecti on.
More info about implementing OJB collection

types here.

Specifies the used base class for the ODMG API
implementation. In managed environments a
specific class is needed to potentiate JTA
integration of OJB's ODMG implementation.

Specifies the class for transaction management.
In managed environments a specific class is
needed to potentiate JTA integration of OJB's
ODMG implementation.

This property defines the implicit locking
behavior. If set to true OJB implicitely locks
objects to ODMG transactions after performing
OQL queries or when do a single lock on an
object using Tr ansact i on#l ock(...)
method.

If implicit locking is used locking objects is
recursive, that is associated objects are also
locked.

If ImplicitLocking is set to false, no locks are
obtained in OQL queries and there is also no
recursive locking when do single lock on an
object.

This property was only used when
ImplicitLocking is enabled. It defines the
behaviour for the OJB implicit locking feature. If
set to true acquiring a write-lock on a given
object x implies write locks on all objects
associated to x.

If set to false, in any case implicit read-locks are
acquired. Acquiring a read- or write lock on x
thus allways results in implicit read-locks on all
associated objects.

Enable/Disable OJB's persistent object ordering
algorithm on commit of a transaction. If enabled
OJB try to calculate a valid order for all
new/modified objects (and referenced objects).

If the used databases support ‘deferred checks'
it's recommended to use this feature and to
disable OJB's object ordering.

This setting can be changed at runtime using OJB's
ODMG extensions.

A @deprecated property only for backward
compatibility with older versions (before 1.0.4).

If set true the behavior of method
Implementationimpl#setimplicitLocking(...) will
be the same as in OJB in 1.0.3 or earlier (set the
implicit locking behavior of the current used

../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/advanced-technique.html#manageable-collection
../../docu/guides/advanced-technique.html#manageable-collection

ODMG-api Guide

transaction) and disable the new possibility of
global 'implicit locking' setting at runtime with
ImplementationExt#setimplicitLocking. This is
only for backward compatibility and will be
removed at a later date.

DListClass The used or g. odng. DLi st implementation
class.

DArrayClass The used or g. odng. DAr r ay implementation
class.

DMapClass The used or g. odng. DVap implementation
class.

DBagClass The used or g. odng. DBag implementation
class.

DSetClass The used or g. odng. DSet implementation
class.

5. OJB Extensionsof ODMG
This section describes the propietary extension of the ODMG-api provided by OJB.

5.1. The ImplementationExt I nterface

The OJB extension of the odmg Implementation interface is called |mplementationExt and provide
additional methods missed in the standard class definition.

» get/setOqglCollectionClass
Use this methods to change the used OQL query result class at runtime. Description can be
found in Configuration Properties section and in javadoc of |mplementationExt.

e ig/setimpliciteWritelL ocks
Use this methods to global change the associated locking type at runtime when implicit locking
is used. Description can be found in Configuration Properties section and in javadoc of
| mplementationExt.

e ig/setOrdering
Use this methods to global enable/disable OJB's object ordering algorithm. Description can be
found in Configuration Properties section and in javadoc of |mplementationExt.

5.2. The TransactionExt I nterface

The OJB extension of the odmg Transaction interface is called TransactionExt and provide
additional methods missed in the standard class definition.

 markDelete

Description can be found in javadoc of TransactionExt.
e markDirty

Description can be found in javadoc of TransactionExt.
o flush

Description can be found in javadoc of TransactionExt.
e ig/setimplicitLocking

Description can be found in javadoc of TransactionExt.
e ig/setOrdering

Description can be found in javadoc of TransactionExt.
» setCascadingDelete

Description can be found in javadoc of TransactionExt.

../../api/org/odmg/Implementation.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/apache/ojb/odmg/ImplementationExt.html
../../api/org/odmg/Transaction.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/apache/ojb/odmg/TransactionExt.html

ODMG-api Guide

« getBroker()
Returns the current used broker instance. Usage exampleis here.

5.3. The EnhancedOQL Query Interface
The OJB extension of the odmg OQL Query interface is called EnhancedOQL Query and provide
additional methods missed in the standard class definition.

e create(String queryString, int startAtlndex, int endAtlndex)
Description can be found in javadoc of EnhancedOQL Query.

5.4. Access the PB-api within ODMG

Asthe PB-api was used by OJB's ODMG-api implementation, thusit is possible to get access of
the used Per si st enceBr oker instance using the extended Transaction interface class
TransactionExt:

It's mandatory that the used PersistenceBroker instance never be closed with a

Per si st enceBr oker . cl ose() call or be committed with

Per si st enceBr oker. comm t Transact i on(), thiswill be doneinternally by the ODMG
implementation.

6. Notes on Usingthe ODM G API

6.1. Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level
transactions. An ODMG Tr ansact i on instance contains all of the changes made to the object
model within the context of that transaction, and will not commit them to the database until the
ODMG Tr ansact i on iscommitted. At that point it will use a database transaction (the
underlying PB-api) to ensure atomicity of its changes.

6.2. Locks

The ODMG specification includes several levels of locks and isolation. These are explained in
much more detail in the Locking documentation.

In the ODMG API, locks obtained on objects are locked within the context of a transaction. Any
object modified within the context of atransaction will be stored with the transaction, other
changes made to the same object instance by other threads, ignoring the lock state of the object,
will also be stored - so take care of locking conventions.

The ODMG locking conventions (obtain awrite lock before do any modifications on an object)
ensure that an object can only be modified within the transaction.

It's possible to configure OJB's ODMG implementation to support implicit locking with WRITE
locks. Then awrite lock on an object forces OJB to obtain implicit write locks on al referenced
objects. See configuration properties.

../../api/org/odmg/OQLQuery.html
../../api/org/apache/ojb/odmg/oql/EnhancedOQLQuery.html
../../api/org/apache/ojb/odmg/oql/EnhancedOQLQuery.html
../../docu/guides/pb-guide.html
../../api/org/apache/ojb/odmg/TransactionExt.html
../../api/org/odmg/Transaction.html
../../docu/guides/lockmanager.html

ODMG-api Guide

6.3. Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data
access object in aweb application. In those cases a persistent object can still be modified, but not
directly through the OMG ODMG specification. OJB provides an extension to the ODMG
specification for instances such as this. Examine this code:

In this function the product is modified outside the context of the transaction, and is then the
changes are persisted within atransaction. The Tr ansact i onExt . mar kDi rt y() method
indicates to the Transaction that the passed object has been modified, even if the Transaction itself
sees no changes to the object.

7. ODM G Named Objects

Using named objects allows to persist all serializable objects under a specified name. The methods
to handle named objects are:

To use this feature ainternal table and metadata mapping is madatory (by default these settings are
enabled in OJB). More information about the needed internal tables seein Platform Guide.

If the object to bi nd is a persistence capable object (the object classis declared in OJB metadata
mapping), then the object will be persisted (if needed) dependent on the declared metadata mapping

~

../../docu/guides/platforms.html#internal-tables
../../docu/tutorials/mapping-tutorial.html
../../docu/tutorials/mapping-tutorial.html
../../docu/tutorials/mapping-tutorial.html

ODMG-api Guide

and the named object will be alink to the real persisted object.
On unbi nd of the named object only the link of the persistent object will be removed, the
persistent object itself will be untouched.

If the object to bi nd is a serializable non-persistence cacpabl e object, the object will be serialized
and persisted under the specified name.

On unbi nd the serialized object will be removed.

7.1. Examples

In OJB test-suite is atest case called or g. apache. oj b. odng. NanmedRoot sTest which
shown similar examples as below, but more detailed.

1. Persist a serializable object as named obj ect

We want to persist anamelist of all planets:

The specified Li st with all planet names will be serialized and persisted as VARBINARY object.
To lookup the persisted list of the solar system planets:

To remove the persistent list do:

2. Persist a persistence capable object as hamed object

We want to create a named object representing a persistence capable Art i cl e object (Arti cl e
classisdeclared in OJB metadata mapping):

OJB first checksiif the specified Art i cl e object isalready persisted - if not it will be persisted.
Then basedontheArti cl e object | dent i t y the named object will be persisted. So the
persistent named object isalink to the persistent real Art i cl e object.

On lookup of the named object thereal Arti cl e instance will be returned:

../../docu/testing/testsuite.html
../../docu/tutorials/mapping-tutorial.html
../../api/org/apache/ojb/broker/Identity.html

ODMG-api Guide

On unbind of the named object only thelink tothereal Arti cl e object will be removed, the
Arti cl e itsalf will not be touched.
Toremovethenaned obj ect andtheArti cl e instance do:

3. Persist a collection of persistence capable object as named object

We want to persist alist of thelast shown Art i cl e objects. TheArti cl e classisapersistence
capable object (declared in OJB metadata mapping). Thus we don't want to persist aserialized List
of Arti cl e objects (becausethereal Arti cl e object may change), as shown in example 1,
rather we want to persist aList that linksto the real persistent Art i cl e objects.

Thisis possible when the ODMG DCol | ect i ons are used:

In this case OJB first checks for transient Ar t i cl e objects and make these new objects persistent,
then based onthe Arti cl e object | dent i t y the named object will be persisted. So the
persistent named object isin thiscase alist of linksto persistent Art i cl e objects.

Ondat abase. | ookup("I ast - shown") theDLi st will be returned and when access the
list entriesthe Art i cl e objectswill be materialized.

To remove the named object some more attention is needed:

After this the named object will be completely removed, but all Arti cl e object will be
untouched.

8. ODMG's DCaoallections

The ODMG api declare some specific extensions of thej ava. uti | . Col | ecti on interface:

or g. odng. DLi st
or g. odng. DSet

or g. odng. DBag
or g. odng. DVap

©

../../docu/tutorials/mapping-tutorial.html
../../api/org/apache/ojb/broker/Identity.html

ODMG-api Guide

e org.odny. DArray

The ODMG | npl enent at i on class provide methods to get new instances of these classes.

In OJB all associations between persistence capable classes are declared in the mapping files and
1:nand m:n relations can use any collection type class which implement the specific interface
Manageabl eCol | ecti on.

So there is no need to use the ODMG specific collection classes in object relations or when
oqgl-queries are performed (more detailed info see 'ogl collection class setting’).

One difference to normal collection classesisthat DCol | ect i on implementation classes are
persistence capable classes itself. This means that they can be persisted - e.g. see named objects
example. Mandatory isthat all containing objects are persistence capable itself.

When persisting aDCol | ect i on object OJB first lock the collection entries, then the collection
itself was locked. On commit the collection entries will be handled in a normal way and for each
entry alink object (containing the | dent i t y of the persistence capable object) is persisted.

When lookup the persisted DCol | ect i on object the link objects are materialized and on access
the collection entry will be materialized by the identity.

9. Foreign Keys Constraints and ODM G-api

If cross-referenced database tables are used it's recommended to set foreign key constraints to
guarantee database consistency. The consequence of using foreign key constraintsis that the order
of the persistence capable objects on insert and delete operations will become cruical.

Some databases support deferred constraint checks, this can help to avoid foreign key issues.

On transaction commit (using standard settings) OJB try to order the objects by itself. If this doesn't
sufficeit's possible to determine the object order "by hand".

If foreign key constraint violations arise when using 1:1 references and circular/bidirectional 1:1

references it's possible to use a workaround introduced in version 1.0.4 to specify the database FK
constraint in OJB using a custom attribute named 'constraint':

10. Questionsand Tips

10.1. Disable OJB's object ordering, determine object order " by hand"

By default OJB try to order all persistent objects on transaction commit call to avoid ordering
problems. If thisis not needed or helpful it can be disabled in two ways.

In most casesit's needed to disable implicite locking too, because it will lock/register dependend
objects (e.g. 1:n references) automatically. First in OJB.propertiesfile:

10

../../api/org/odmg/Implementation.html
../../docu/tutorials/mapping-tutorial.html
../../docu/guides/advanced-technique.html#manageable-collection
../../api/org/apache/ojb/broker/Identity.html
../../docu/guides/basic-technique.html#one-to-one
../../docu/guides/repository.html#custom-attribute
../../docu/guides/ojb-properties.html

ODMG-api Guide

Second at runtime, using OJB's ODMG extension classes |mplementationExt (global setting) and
TransactionExt (per tx setting).

10.2. Circular- and Bidirectional References

The good news, OJB can handle bidirectional- and circular- references. When using foreign key
constraints for referential integrety in these cases you have to pay attention.

In OJB test-suite aunit test called or g. apache. oj b. odng. Gi r cul ar Test can befound.
The tests show the handling of circular/bidirectional references and the possibilities how to handle
object insert/update/del ete ordering on transaction commit.

10.3. 1 don't like OQL, can | usethe PersistenceBroker Querieswithin ODMG

Y esyou can! The ODMG implementation relies on PB Queries internally! Several users (including
myself) are doing this.

If you have alook at the simple example below you will see how OJB Query objects can be used
withing ODMG transactions.

The most important thing isto lock all objects returned by a query to the current transaction before
starting manipulating these objects.

Further on do not commit or close the obtained PB-instance, thiswill be done by the ODMG
transactionont x. commt () / tx.roll back().

Note: Don't close or commit the used broker instance, this will be done by the odmg-api.

10.4. How to use multiple Databases
For each database define a jdbc-connection-descriptor same way as described in the FAQ.

../../docu/testing/testsuite.html
../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/faq.html#multipleDB

ODMG-api Guide

Now it is possible to
» access the databases one after another, by closing the current used Dat abase instance and by

open anew one.

The Dat abase. cl ose() call closethe current used Dat abase instance, after thisitis
possible to open a new database instance.

« use multiple databases in parallel, by creating aseparate | npl enent at i on and Dat abase
instance for each jdbc-connection-descriptor defined in the mapping metadata.

Now it's possible to use both databases in parall€l.

OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

12

../../docu/guides/repository.html#jdbc-connection-descriptor
../../docu/guides/deployment.html#j2ee-server
../../docu/guides/deployment.html#j2ee-server

	1 Introduction
	2 Specific Metadata Settings
	3 How to access ODMG-api
	4 Configuration Properties
	5 OJB Extensions of ODMG
	5.1 The ImplementationExt Interface
	5.2 The TransactionExt Interface
	5.3 The EnhancedOQLQuery Interface
	5.4 Access the PB-api within ODMG

	6 Notes on Using the ODMG API
	6.1 Transactions
	6.2 Locks
	6.3 Persisting Non-Transactional Objects

	7 ODMG Named Objects
	7.1 Examples

	8 ODMG's DCollections
	9 Foreign Keys Constraints and ODMG-api
	10 Questions and Tips
	10.1 Disable OJB's object ordering, determine object order "by hand"
	10.2 Circular- and Bidirectional References
	10.3 I don't like OQL, can I use the PersistenceBroker Queries within ODMG
	10.4 How to use multiple Databases

