Advanced O/R Mapping Technique

by Thomas Mahler, Jakob Braeuchli, Armin Waibel
Table of contents

1 Extents and POlYMOIPNISIM.......c..oiiiieee e 2
1.2 POIYMOIPRESIML ..ttt st b et e et e sbe et e s reenee e e eneenes 2
L2 EXEEINES. ..ttt ettt ettt ettt e e R e e R et e R e e Re e e Re e e R R e e Re e eaE e e nRe e e reeaneenareenneeenns 3
I = 0T 7= o= I o SRS 4

2 Mapping INheritance HIerarChies............coveiiee e 4
2.1 Mapping Each Class of aHierarchy to aDistinct Table (table per class)........c.ccooeveverennnne 5
2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy).........cccocvevivenenieeenne, 7

2.2.1 Implement your own Discriminator Handling..........ccoceveererininieneree e 9
2.3 Mapping Each Subclassto a Distinct Table (table per subclass).........ccoccvveveeicivcieeciecen, 10
2.3.1 Table Per Subclass Via Foreign Ky .........coveiceciieie ettt 12

3USING INtErfaCeS With OJB.......c.ccueiieieceeiere ettt reeaesne e seeneesnee e 13

4 Change PerSiStentFT@ld ClaSS.......c.uuiiiiriiiieieeee st 17

5 HOW dO an0NYMOUS KEYS WOTK?.........eiuiiiieiieieiesie sttt sn e 17

(O LS T o 0T == o [ PSP 18
6.1 ROWIEader EXAMPIE......ccueiiiieiie ettt sttt et e e s ae e e b e e sneeenreenneeenns 20

AN L=S (=0 [0 o= o £ 21

8 INSLANCE CAlIDACKS...... ettt st bbbt nes 22

9 Manageal @ COlIECHION. .......cciiieieeee bbb 23
9.1 Types Allowed for Implementing 1:n and mM:N ASSOCIBLIONS...........cccurererereeieenieseeseeseneens 24
9.2 Which collection-class type should Be used?.............ooeoieiinii e 25

10 Customizing COIECLION QUETES........cciuiiieeiie ettt e e re e 26

11 Metadata ruNtime ChANQES.........eocveieerie ettt e steeee s et re et e s e sre e seeseesseenseeneesreenseaneens 26




Advanced O/R Mapping Technique

1. Extents and Polymor phism

Working with inheritance hierarchies is a common task in object oriented design and programming.
Of course, any serious Java O/R tool must support inheritance and interfaces for persistent classes.
There are many example classes for polymorphism in OJB's JUnit TestSuite.

To demonstrate/explain Extents and Polymor phism we will look at a simple class hierarchy:
Thereisaprimary interfacel nt er f aceArti cl e. Thisinterfaceisimplemented by Arti cl e
and CdArticl e. Thereisaso aclassBookArti cl e derived fromArti cl e. (Seethe
following class diagram for details)

<=Interfacex:>
Inte rface Article
public void addToStockiint diff)
public int getArticle dd
public String getArticle Name
public Inte face ProductG roup getProductG roupld
public double getStockyalusd
public woid setArticleldiint newA rticle d)
public woid setArticle Mame String newArticle Hame)
public String toString(

£y va

Article CdArticle
protected int article1d private int article Id
protected String article Mame private String article Name
protected boolean is%e lloutArticla private int issalloutArticls
protacted int minimumStock private int minimumstock
protected int orde redlUnits private int orde redUnits
protected double price private double price
protected Inte face ProductS roup productS roup private Interface Productl roup praductGroup
protacted int productG roupld private int productG roupld
protectad int stock private int stock_
protected int supplierid private int supplie rid
protected String unit private string unit
private String labe Iname

Z‘l private String musicians

Boo kA rticle

private int articls 14

private String article Name
private int is%elloutArticle
private int minimum3tock
private int orde redUnits
private double price
private Inteface ProductG roup productGroup
private int productC roupld
private int stock

private int supplizrid
private String unit

private String author
private String isbn

polymorphism.gif

1.1. Polymor phism

OJB alows usto use interfaces, abstract or concrete base classes in queries, or in type definitions
of reference attributes. A Query against the interface | nt er f aceAr ti ¢l e must not only return

objectsof type Arti cl e but also of CdArti cl e and BookArti cl e!

The following example method searches for all objectsimplementing | nt er f aceArti cl e with
an articleName equal to Hamlet (provided that the object mapping is correct, details will described
later). The Collection is e.g filled with one matching BookAr t i cl e object.



../../docu/testing/testsuite.html
../../docu/guides/basic-technique.html
../../docu/guides/basic-technique.html

Advanced O/R Mapping Technique

Of courseit is also possible to define reference attributes of an interface or baseclass type. The
exampleclassAr t i cl e hasareference attribute (1:1 reference) of type Pr oduct G- oup and this
can be a concrete/abstract class or interface.

1.2. Extents

The query in the last example returned just one object. Now, imagine a query against the

| nt erfaceArti cl e interface with no selecting criteria. OJB returns al the objects
implementing | nt erfaceArticle.Eg.alArticl e, BookArticleandCdArticles
objects.

In the following example the method prints out the collection of all | nt er f aceArti cl e
objects:

The set of all instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG and JDO
terminology.

OJB extends this notion slightly, as all objects which are subclasses of a concrete/abstract base class or implementing a given interface
can be regarded as members of the base class or interface extent.

In our class diagram we find:

1. two simple one-class-only extents, BookArticle and CdArticle.
2. A compound extent Article containing al Article and BookArticle instances.
3. Aninterface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the metadata
mapping file. The classes from the above example require the following declarations:

1. one-class-only extents require no declaration
2. A declaration for the base classAr t i cl e, defining which classes are subclasses of Article:

3. Adeclarationfor| nterfaceArticl e,



../../docu/guides/basic-technique.html
../../docu/guides/basic-technique.html#one-to-one
../../docu/guides/repository.html
../../docu/guides/repository.html

Advanced O/R Mapping Technique

No need to declare BookAr t i cl e here, becauseit'sadeclared sub classof Arti cl e, soit's
implicit declared by Art i cl e extent.

Why isit necessary to explicitely declare which classes implement an interface and which classes
are derived from a base class?

Of courseit is quite simple in Javato check whether a class implements a given interface or
extends some other class. But sometimes it may not be appropiate to treat special implementors
(e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but is only allowed
to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as
derived from a base even if they are not (we don't recommend to use this feature it's bad design, but
if you don't have an alternative...).

As an example, you will find that the ClassDescriptor of abstract test class

or g. apache. oj b. br oker. Col | ecti onTest $BookShel f | t eminthe OJB's Test Suite

contains an entry declaring classor g. apache. oj b. br oker . Col | ecti onTest $Candi e
asaderived class:

1.3. Performance Tip

When using extents OJB will produce some overhead for each declared extent (e.g. execute a
separate select-query for each extent or using complex table joins).

Thusit'simportant to avoid unnecessary extent declarations. If in the above example class

| nt erfaceArti cl e isnever used in queries, don't declare the extents for the implementing
classes(Articl e, CdArti cl e). It'saways possible to add additional extents in mapping files.

2. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies to
RDBMS has been widely covered. In the following sections we will use a simple inheritance
example to show the different inheritance mapping strategies.

Assume we have a base class Enpl oyee and classExecut i ve extends Enpl oyee. Further on
classManager extendsExecuti ve.

mapping-inheritance.png
If we have to define database tables that have to contain these classes we have to choose one of the
following solutions:

1. Map each class of ahierarchy to adistinct table and have al attributes from the base class in the
derived class.

2. Map class hierarchy onto one table.

3. Map subclassfields of ahierarchy to adistinct table, but do not map super classfieldsto
derived classes. Use joins to materialize over all tables to materialize objects.

OJB provides direct support for all three approaches.



../../docu/guides/repository.html#class-descriptor
../../docu/testing/testsuite.html
../../docu/guides/repository.html

Advanced O/R Mapping Technique

But it's currently not recommended to mix mapping strategies within the same hierarchy !

In the following we demonstrate how these mapping approaches can be implemented by using
0JB.

2.1. Mapping Each Class of a Hierarchy to a Distinct Table (table per class)

Thisisthe most simple solution. Just write a complete ClassDescriptor with FieldDescriptors for al
of the attributes, including inherited attributes.

The classes of our mapping example would look like:

The ClassDescriptors include all fields of the representing java-class and each descriptor pointsto a
different table:



../../docu/guides/repository.html#class-descriptor
../../docu/guides/repository.html#field-descriptor
../../docu/guides/repository.html#class-descriptor

Advanced O/R Mapping Technique

The extent-class e ement is needed to declare the inheritance between the classes.
The DDL for the tables would look like:



../../docu/guides/repository.html#extent-class

Advanced O/R Mapping Technique

e
2.2. Mapping Class Hierarchy on the Same Table (table per hierarchy)

Mapping several classes on one table works well under OJB. There isonly one special situation
that needs some attention:

Storing Enpl oyee, Executi ve and Manager objectsto thistable worksfine. But now
consider a Query against the baseclass Enpl oyee. How can the correct type of the stored objects
be determined?

OJB needs adiscriminator column of type CHAR or VARCHAR that contains the class name to be
used for instantiation. This column must be mapped on a specia attribute oj bConcr et ed ass.
On loading objects from the table, OJB checks this attribute and instantiates objects of this type.

The criterion for oj bConcr et ed ass is statically added to the query in class Quer yFact or y and it therefore appearsin the
sel ect-statement for each extent. This means that mixing mapping strategies should be avoided.

The classes of our mapping example would look like:



../../api/org/apache/ojb/broker/query/QueryFactory.html

Advanced O/R Mapping Technique

Getter/setter for attribute oj bConcr et eC ass in base class Enpl oyee are only needed if OJB isforced to use getter/setter for field
access.

Here are the metadata mappings of our mapping example:



../../docu/guides/advanced-technique.html#persistent-field
../../docu/guides/advanced-technique.html#persistent-field

Advanced O/R Mapping Technique

The column CLASS_NANME is used to store the concrete type of each object.
The extent-class el ement is needed to declare the inheritance between the classes.
The DDL for the table would look like:

2.2.1. Implement your own Discriminator Handling

If you cannot provide such an additional column, but need to use some other means of indicating
the type of each object you will require some additional programming:

Y ou haveto derive a Class from

or g. apache. oj b. br oker . accessl ayer. RowReader Def aul t | npl and override the
method RowReader Def aul t I npl . sel ect G assDescri ptor () toimplement your
specific type selection mechanism. The code of the default implementation looks like follows:



../../docu/guides/repository.html#extent-class

Advanced O/R Mapping Technique

After implementing your own RowReader you must edit the ClassDescriptor for the respective
classin the XML repository to specify the usage of your RowReader Implementation:

Y ou will learn more about RowReaders in this section.

2.3. Mapping Each Subclassto a Distinct Table (table per subclass)

This mapping strategy maps all subclass fields of a hierarchy to a distinct table (but do not map
super classfields to derived class tables - except the primary key fields) and use joins to materialize
over all tablesto materialize the objects.

The classes of the inheritance hierarchy don't need any specific fields or settings, thus our mapping
example java-classes ook would look like the classes for the table-per-class mapping.

The next code block contains the class-descriptors of our mapping example.



../../docu/guides/repository.html#primary-key
../../docu/guides/repository.html#class-descriptor

Advanced O/R Mapping Technique

The mapping for base class Enpl oyee isordinary and we using a autoincrement primary key
field.

In the subclasses Execut i ve and Manager it's not allowed to use autoincrement primary keys,
because OJB will automatically copy the primary keys of the base classto all subclasses.

Asyou can see this mapping needs a special reference-descriptor in the subclasses Execut i ve
and Manager that advises OJB to load the values for the inherited attributes from the super-class
by a JOIN using the foreign key reference.

Thename="super " attribute is not used to address an actua attribute of the super-class but asa
marker keyword defining the JOIN to the super-class.

1. The auto-xxx attributes and the proxy attribute will be ignored when using the super keyword.
2. Beaware that this sample does not declare Execut i ve or Manager to be an extent of Enpl oyee. Using extents here will lead to
problems (instatiating the wrong class) because the primary key is not unique within the hierarchy defined in the repository.

The DDL for the tables would look like:

Attributes from the base- or superclasses can be used the same way as attributes of the target class
when querying - e.g. for Execut i ve or Manager . No path-expression is needed in this case. The
following examplesreturns all Execut i ve and Manager matching the criteria:



../../docu/guides/repository.html#autoincrement
../../docu/guides/repository.html#reference-descriptor
../../docu/guides/basic-technique.html#cascading
../../docu/guides/basic-technique.html#reference-proxy
../../docu/guides/repository.html
../../docu/guides/query.html#joins

Advanced O/R Mapping Technique

2.3.1. Table Per Subclassvia Foreign Key

The above example is based on the assumption that the primary key attribute Enpl oyee. i d and
its underlying column EMPLOYEE. | Disaso used asthe foreign key attribute in the the
subclasses.

Now let us consider a case where thisis not possible, then it's possible to use an additional foreign
key field/column in the subclass referencing the base-/superclass.

In this case the layout for class Execut i ve would need an additional field enpl oyeeFk to store
the foreign key reference to Enpl oyee.

To avoid the additional field in the subclass (if desired) we can use OJB's anonymous field feature
to get everything working without the enpl oyeeFk attribute in subclass Enpl oyee (thusthe
java classes of our mapping example). We keep the field-descriptor for enpl oyeeFk, but declare

it as an anonymous field. We just have to add an attribute access="anonynous" to the new
field-descriptor enpl oyeeFk:.



../../docu/guides/repository.html#primary-key
../../docu/guides/advanced-technique.html#anonymous-keys
../../docu/guides/repository.html#field-descriptor

Advanced O/R Mapping Technique

Now it's possible to use autoincrement primary key fieldsin all classes of the hierarchy (because
they are decoupled from the inheritance references).
The foreignkey-element have to refer the new (anomymous) foreign-key field.

The used primary keys (compound or single) have to unique over the mapped class hierarchy to avoid object identity conflicts. Elseit
could happen e.g. when searching for a Enpl oyee with id="42" OJB maybe find aEnpl oyee and aExecut i ve object with
id="42"!.

Thusit's problematic to use a database idenity columns based sequence-manager. In this caseit's mandatory to use a different value
scope (start index of identity column) for each classin hierarchy (e.g. 1 for Employee, 17000000000 for Executive, ...).

3. Using interfaceswith OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes.
With OJB thisis no problem, but there are a couple of thingsto be aware of, which are detailed in
this section.

Consider this example hierarchy :



../../docu/guides/sequencemanager.html#identity-columns
../../docu/guides/sequencemanager.html

Advanced O/R Mapping Technique

Here, class C references the interface A rather than B. In order to make this work with OJB, four
things must be done:

All features common to al implementations of A are declared in the class descriptor of A. This
includes references (with their foreignkeys) and collections.

Since interfaces cannot have instance fields, it is necessary to use bean propertiesinstead. This

means that for every field (including collection fields), there must be accessors (a get method

and, if thefield isnot marked asaccess="r eadonl y", aset method) declared in the

interface.

Since we're using bean properties, the appropriate

or g. apache. oj b. br oker. net adat a. fi el daccess. Persi stentFi el d
implementation must be used (see below). Thisclassis used by OJB to access the fields when
storing/loading objects. Per default, OJB uses a direct access implementation

(org. apache. oj b. broker. net adat a. fi el daccess. Persi stent Fi el dDi rect| npl)
which requires actual fields to be present.

In our case, we need an implementation that rather uses the accessor methods. Since the

Per si st ent Fi el d setting is (currently) global, you have to check whether there are

accessors defined for every field in the metadata. If yes, then you can use the

or g. apache. oj b. br oker. net adat a. fi el daccess. Persi stent Fi el dl ntrospector|m
otherwise you'll have to resort to the

or g. apache. oj b. br oker. net adat a. fi el daccess. Per si st ent Fi el dAut oPr oxyl npl ,
which determines for every field what type of field it is and then uses the appropriate strategy.

If at some place OJB hasto create an object of the interface, say as the result type of a query,

then you have to specify f act or y- cl ass andf act or y- net hod for the interface. OJB

then uses the specified class and (static) method to create an uninitialized instance of the

interface.

In our example, thiswould result in:




Advanced O/R Mapping Technique

The class descriptors would look like:




Advanced O/R Mapping Technique

One scenario where you might run into problems is the use of interfaces for nested objects. In the
above example, we could construct such a scenario if we remove the descriptors for A and B, as
well asthe foreign key field al d from class C and change its class descriptor to:

The accessto desc will work because of the usage of bean properties, but you will get into trouble
when using dynamic proxies for C. Upon materializing an object of type C, OJB will try to create
the instance for the field obj whichisof type A. Of course, thisis an interface but OJB won't
check whether thereis class descriptor for the type of obj (in fact there does not have to be one,
and usually there isn't) because obj isnot defined as areference. Asaresult, OJB triesto



../../docu/guides/basic-technique.html#dynamic-proxy

Advanced O/R Mapping Technique

instantiate an interface, which of coursefails.
Currently, the only way to handle thisisto write a custom invocation handler that knows how to
create an object of type A.

4. Change PersistentField Class

OJB supports a pluggabl e strategy to read and set the persistent attributes in the persistence capable
classes. All strategy implementation classes have to implement the interface

or g. apache. oj b. broker. nmet adat a. fi el daccess. Persi stent Fi el d. OJB
provide a few implementation classes which can be set in OJB.propertiesfile:

i rect | mpl
rivil egec
| nt r ospect

naBeanl r
ut oPr oxyl

E.g. if the PersistentFieldDirectimpl is used there must be an attribute in the persistent class with
this name, if the PersistentFieldintrospectorlmpl is used there must be a JavaBeans compliant
property of this name. More info about the individual implementation can be found in javadoc.

5. How do anonymous keyswork?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys.

All involved classes can befound in or g. apache. oj b. br oker . net adat a. fi el daccess
package. The classes used for anonymous keys start with a Anonynous XYZ. j ava prefix.

Main class used for provide anonymous keysis

or g. apache. oj b. br oker . net adat a. fi el daccess. AnonynousPer si st ent Fi el d.
Current implementation use an object identity based weak HashMap. The persistent object identity
isused as key for the anonymous key value. The (Anonymous)PersistentField instance is associated
with the FieldDescriptor declared in the repository.

17


../../docu/guides/basic-technique.html#proxy-customization
../../OJB.properties.txt
../../api/index.html
../../docu/howtos/howto-use-anonymous-keys.html

Advanced O/R Mapping Technique

Thismeans that al anonymous key information will be lost when the object identity change, e.g.
the persistent object will be de-/serialized or copied. In conjuction with 1:1 references thiswill be
no problem, because OJB can use the referenced object to re-create the anonymous key information
(FK to referenced object).

The use of anonymous keysin 1:n references (FK to main object) or for PK fieldsis only valid when object identity does not change,
e.g. useinsingle VM without persistent object serialization and without persistent object copying.

6. Using Rowr eader

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism.
All implementation classes have to implement interface RowReader .

Y ou can specify the RowReader implementation in
« theQJB. properti es fileto set the standard used RowReader implementation

» within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
QIB. properti es file If neither a RowReader was set in OJB.propertiesfile nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To
materialize objects from ardoms OJB uses Rslterators, that are essentially wrappersto JDBC
ResultSets. Rslterators are constructed from queries against the Database.

The method Rsl t er at or . next () isused to materialize the next object from the underlying
ResultSet. This method first checks if the underlying ResultSet is not yet exhausted and then
delegates the construction of an Object from the current ResultSet row to the method

get Obj ect FronResul t Set () :



../../api/org/apache/ojb/broker/accesslayer/RowReader.html
../../OJB.properties.txt
../../docu/guides/repository.html#class-descriptor

Advanced O/R Mapping Technique

This method first uses a RowReader to instantiate a new object array and to fill it with primitive
attributes from the current ResultSet row.

The RowReader to be used for a Class can be configured in the XML repository with the attribute
r ow r eader . If no RowReader is specified, the standard RowReader isused. The method
readQbj ect ArrayFron{...) of thisclasslookslike follows:



../../docu/guides/repository.html#class-descriptor

Advanced O/R Mapping Technique

In the second step OJB checksif there is already a cached version of the object to materialize. If so
the cached instance is returned. If not, the object is fully materialized by first reading in primary
attributes with the RowReader method r eadCbj ect From( Map row, C assDescri ptor
descri pt or) andinasecond step by retrieving reference- and collection-attributes. The fully
materilized Object is then returned.

By implementing your own RowReader you can hook into the OJB materialization process and
provide additional features.

6.1. Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with aforeign key
relationship to a different database table but read the associated object 'inline' from some columns
of the master object's table. This approach is aso called 'nested objects. The section nested objects
contains a different and much simpler approach to implement nested fields.

Theclassor g. apache. oj b. broker. Articl eWthSt ockDet ai | hasast ockDet ai |
attribute, holding areferenceto aSt ockDet ai | object. The class StockDetail is not declared in
the XML repository. Thus OJB is not ableto fill this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
or g. apache. oj b. br oker. RowReader Test | npl extends the RowReaderDefaultimpl and
overridesther eadObj ect Fron{. . .) method asfollows:

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the
following entry:

20



Advanced O/R Mapping Technique

7. Nested Objects
In the last section we discussed the usage of a user written RowReader to implement nested objects.
This approach has several disadvantages.

1. Itisnecessary to write code and to have some understanding of OJB internals.
2. Theuser must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without any
further trouble just by afew settings in the repository.xml file.

Theclassor g. apache. oj b. broker. Articl eWthNest edSt ockDet ai | hasa
st ockDet ai | attribute, holding areferenceto aSt ockDet ai | object. The class StockDetail is
not declared in the XML repository as afirst class entity class.

The StockDetail class has the following layout:

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:




Advanced O/R Mapping Technique

That's al! Just add nested fields by using : : to specify attributes of the nested object. All aspects
of storing and retrieving the nested object are managed by OJB.

8. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an
interface or extent a persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. Thisis
supported by a simple instance callback mechanism.

Theinterfaceor g. apache. o] b. Per si st enceBr oker Awar e provides a set of methods that
are invoked from the PersistenceBroker during operations on persistent instances:

Example

If you want that all persistent objects take care of CRUD operations performed by the
PersistenceBroker you have to do the following steps:

1. let your persistent entity classimplement the interface Per si st enceBr oker Awar e.
2. provide empty implementations for all required mthods.
3. implement the method af t er Updat e( Per si st enceBr oker broker),
afterl nsert (PersistenceBroker broker) and
af t er Del et e( Per si st enceBr oker broker) to perform your intended logic.

In the following "for demonstration only code" you see aclass BaseObj ect (all persistent objects

22


../../api/org/apache/ojb/broker/PersistenceBrokerAware.html

Advanced O/R Mapping Technique

extend this class) that does send a notification using a messenger object after object state change.

9. Manageable Collection

In 1:n or m:n relations, OJB can handlej ava. uti | . Col | ecti on aswell asuser defined
collection classes as collection attributes in persistent classes. See
collection-descriptor.collection-cl ass attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by thisinterface
or g. apache. oj b. br oker. Manageabl eCol | ecti on.



../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/repository.html#collection-descriptor

Advanced O/R Mapping Technique

The methods have a prefix "ojb" that indicates that these methods are "technical” methods, required
by OJB and not to be used in business code.

In package or g. apache. oj b. broker. util . col | ecti ons canbefound abunch of
pre-defined implementations of or g. apache. oj b. br oker. Manageabl eCol | ecti on.

More info about which collection class to used here.

9.1. Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. Thereis also no
additional programming required. The following types are supported:

1. java.util.Collection, java.util.List, java.util.Vector asinthe
example above. Internally OJB usesj ava. uti | . Vect or toimplement collections.

Arrays (seethefile Pr oduct G oupW t hAr r ay).

User-defined collections (see the file Pr oduct G oupW t hTypedCol | ecti on). A typica
application for this approach are typed Collections.

Here is some sample code from the Collection classAr t i cl eCol | ect i on. This Collection
istyped, i.e. it accepts only InterfaceArticle objects for adding and will return InterfaceArticle
objectswithget (i nt i ndex) . Tolet OJB handle such a user-defined Collection it must
implement the callback interface Manageabl eCol | ect i on and the typed collection class
must be declared in the collection-descriptor using the collection-class attribute.

Manageabl eCol | ect i on provides hooks that are called by OJB during object
materialization, updating and deletion.

wn




Advanced O/R Mapping Technique

And the collection-descriptor have to declare this class:

9.2. Which collection-class type should be used?

Earlier in this section the or g. apache. oj b. br oker . Manageabl eCol | ecti on was

introduced. Now we talk about which type to use.

By default OJB use aremoval-awar e collection implementation. These implementations (classes
prefixed with Removal...) track removal and addition of elements.

This tracking allow the PersistenceBroker to delete elements from the database that have been
removed from the collection before a PB.store() operation occurs.

This default behaviour isundesired in some cases;

« Inm:nrelations, e.g. between Movie and Actor class. If an Actor was removed from the Actor
collection of a Movie object expected behaviour was that the Actor be removed from the
indirection table, but not the Actor itself. Using aremoval aware collection will remove the
Actor too. In that case a simple manageabl e collection is recommended by set e.g.
col | ection-cl ass="org. apache. oj b. broker. util.col |l ections. Manageabl eArray
in collection-descriptor.
« In L1:nrelations when the n-side objects be removed from the collection of the main object, but
we don't want to remove them itself (be careful with this, because the FK entry of the main
object still exists - more info about linking here).



../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#m-to-n
../../docu/guides/basic-technique.html#one-to-n
../../docu/guides/basic-technique.html#linking

Advanced O/R Mapping Technique

10. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of
collection mechanism. For example only children having a certain attribute should be loaded. This
is achieved by a QueryCustomizer defined in the collection-descriptor of arelationship:

The query customizer must implement the interface

or g. apache. oj b. br oker . accessl ayer. Quer yCust om zer . Thisinterface defines
the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

Theclassor g. apache. o] b. br oker. accessl ayer. Quer yCust om zer Def aul t | npl
provides a default implentation without any functionality, it smply returns the query.

11. Metadata runtime changes

This was described in metadata section.



../../docu/guides/metadata.html

	1 Extents and Polymorphism
	1.1 Polymorphism
	1.2 Extents
	1.3 Performance Tip

	2 Mapping Inheritance Hierarchies
	2.1 Mapping Each Class of a Hierarchy to a Distinct Table (table per class)
	2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy)
	2.2.1 Implement your own Discriminator Handling

	2.3 Mapping Each Subclass to a Distinct Table (table per subclass)
	2.3.1 Table Per Subclass via Foreign Key


	3 Using interfaces with OJB
	4 Change PersistentField Class
	5 How do anonymous keys work?
	6 Using Rowreader
	6.1 Rowreader Example

	7 Nested Objects
	8 Instance Callbacks
	9 Manageable Collection
	9.1 Types Allowed for Implementing 1:n and m:n Associations
	9.2 Which collection-class type should be used?

	10 Customizing collection queries
	11 Metadata runtime changes

