
OJB

Table of contents

1 OJB...8

1.1 Apache ObJectRelationalBridge - OJB... 8

1.1.1 Summary... 8

1.1.1.1 flexibility.. 8

1.1.1.2 scalability..8

1.1.1.3 functionality..8

1.2 News.. 8

1.2.1 ...9

1.3 OJB - Features... 9

1.4 OJB - API Status... 10

1.5 OJB - References and Testimonials.. 11

1.5.1 References and Testimonials.. 11

1.5.1.1 projects using OJB..11

1.5.1.2 user testimonials .. 12

1.6 OJB - Mailing Lists... 13

1.6.1 Mailing Lists... 13

1.7 OJB - Mailing Lists Archives..13

1.7.1 Mailing Lists Archives..13

1.8 OJB - Links and further readings.. 13

1.8.1 Summary... 13

1.8.2 OJB - Tutorials and Howto... 14

1.8.2.1 OJB and Spring...14

1.8.3 Design... 14

1.8.4 Further readings on O/R mapping...15

1.8.5 Patterns..15

1.8.6 Books covering OJB... 15

2 Download... 15

3 Development.. 16

3.1 Coding Standards...16

4 Index...17

4.1 Site Linkmap... 17

4.1.1 Table of Contents.. 17

5 Documentation... 20

Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.1 Documentation - Introduction... 20

5.2 Frequently Asked Questions..20

5.2.1 Questions...20

5.2.1.1 1. General... 20

5.2.1.2 2. Getting Started..22

5.2.1.3 3. OJB APIs.. 24

5.2.1.4 4. Howto... 25

5.3 Getting Started...34

5.3.1 Acquiring ojb-blank.. 34

5.3.2 Contents of ojb-blank..35

5.3.2.1 Sample project.. 36

5.3.3 The build files... 36

5.3.3.1 Configuration via build.properties..36

5.3.3.2 Building via build.xml..37

5.3.3.3 Sample project.. 38

5.3.4 The runtime configuration files...41

5.3.4.1 Configuring the OJB runtime... 41

5.3.4.2 Configuring the database connection... 41

5.3.4.3 Configuring the repository... 41

5.3.4.4 Sample project.. 41

5.3.5 Learning More...43

5.4 Tutorials...43

5.4.1 Tutorial Summary... 43

5.4.2 Mapping Tutorial.. 44

5.4.2.1 What is the Object-Relational Mapping Metadata?... 44

5.4.2.2 Advanced Topics.. 47

5.4.3 Persistence Broker Tutorial...47

5.4.3.1 The PersistenceBroker API.. 47

5.4.3.2 Exception Handling.. 52

5.4.4 The ODMG API..53

5.4.4.1 Introduction.. 53

5.4.4.2 Initializing ODMG... 54

5.4.4.3 Persisting New Objects...54

5.4.4.4 Querying Persistent Objects... 55

5.4.4.5 Updating Persistent Objects... 55

5.4.4.6 Deleting Persistent Objects...55

5.4.5 JDO Tutorial... 56

5.4.5.1 Using the ObJectRelationalBridge JDO API... 56

OJB

2
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.4.5.2 Using the JDO API in the UseCase Implementations.. 57

5.4.5.3 Conclusion..61

5.4.6 Object Transaction Manager Tutorial... 61

5.4.6.1 The OTM API...61

5.4.6.2 Notes on the Object Transaction Manager... 66

5.5 Reference Guides...67

5.5.1 Reference Guides Summary..67

5.5.2 PB-api Guide...67

5.5.2.1 Introduction.. 68

5.5.2.2 How to access the PB-api?... 68

5.5.2.3 Notes on Using the PersistenceBroker API..68

5.5.2.4 Questions.. 69

5.5.3 ODMG-api Guide... 70

5.5.3.1 Introduction.. 70

5.5.3.2 Specific Metadata Settings... 70

5.5.3.3 How to access ODMG-api..71

5.5.3.4 Configuration Properties.. 71

5.5.3.5 OJB Extensions of ODMG...73

5.5.3.6 Notes on Using the ODMG API...74

5.5.3.7 ODMG Named Objects.. 75

5.5.3.8 ODMG's DCollections..78

5.5.3.9 Foreign Keys Constraints and ODMG-api... 78

5.5.3.10 Questions and Tips..78

5.5.4 Platforms... 80

5.5.4.1 How to use OJB with a specific relational database...80

5.5.4.2 Basic Concepts... 80

5.5.4.3 The setup process... 83

5.5.5 OJB.properties Configuration File..85

5.5.5.1 OJB Configuration..85

5.5.5.2 OJB.properties File...85

5.5.6 JDBC Types.. 85

5.5.6.1 Mapping of JDBC Types to Java Types...85

5.5.6.2 Type and Value Conversions - The FieldConversion Interface................................... 86

5.5.7 Repository File..89

5.5.7.1 Introduction - repository syntax... 89

5.5.7.2 descriptor-repository...89

5.5.7.3 jdbc-connection-descriptor... 90

5.5.7.4 connection-pool.. 92

OJB

3
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.7.5 sequence-manager.. 96

5.5.7.6 object-cache..97

5.5.7.7 custom attribute.. 98

5.5.7.8 class-descriptor... 99

5.5.7.9 extent-class... 100

5.5.7.10 field-descriptor..101

5.5.7.11 reference-descriptor.. 102

5.5.7.12 foreignkey... 104

5.5.7.13 collection-descriptor... 104

5.5.7.14 order-by...106

5.5.7.15 inverse-foreignkey.. 106

5.5.7.16 fk-pointing-to-this-class..106

5.5.7.17 fk-pointing-to-element-class...107

5.5.7.18 query-customizer.. 107

5.5.7.19 index-descriptor.. 107

5.5.7.20 index-column.. 107

5.5.7.21 Stored Procedure Support... 107

5.5.8 Basic O/R Mapping Technique...110

5.5.8.1 Mapping 1:1 associations... 110

5.5.8.2 Mapping 1:n associations... 112

5.5.8.3 Mapping m:n associations.. 115

5.5.8.4 Setting Load, Update, and Delete Cascading... 120

5.5.8.5 Using Proxy Classes... 122

5.5.8.6 Type and Value Conversions..128

5.5.9 Advanced O/R Mapping Technique... 128

5.5.9.1 Extents and Polymorphism...128

5.5.9.2 Mapping Inheritance Hierarchies... 131

5.5.9.3 Using interfaces with OJB..140

5.5.9.4 Change PersistentField Class... 143

5.5.9.5 How do anonymous keys work?...144

5.5.9.6 Using Rowreader.. 145

5.5.9.7 Nested Objects..147

5.5.9.8 Instance Callbacks.. 149

5.5.9.9 Manageable Collection...150

5.5.9.10 Customizing collection queries...152

5.5.9.11 Metadata runtime changes.. 153

5.5.10 OJB Queries.. 153

5.5.10.1 Introduction...153

OJB

4
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.10.2 Query by Criteria.. 153

5.5.10.3 ODMG OQL... 162

5.5.10.4 JDO queries...162

5.5.11 Metadata handling... 162

5.5.11.1 Introduction...162

5.5.11.2 When does OJB read metadata... 163

5.5.11.3 Connection metadata...163

5.5.11.4 Persistent object metadata...164

5.5.11.5 Questions.. 167

5.5.12 Deployment... 168

5.5.12.1 Introduction...168

5.5.12.2 Things needed for deploying OJB.. 168

5.5.12.3 Deployment in standalone applications.. 170

5.5.12.4 Deployment in servlet based applications.. 170

5.5.12.5 Deployment in managed environment (e.g. EJB based)...170

5.5.13 Connection Handling...181

5.5.13.1 Introduction...181

5.5.13.2 ConnectionFactory..181

5.5.13.3 ConnectionManager..182

5.5.13.4 Questions and Answers...183

5.5.14 The Object Cache.. 184

5.5.14.1 Introduction...184

5.5.14.2 Why a cache and how it works?... 185

5.5.14.3 How to declare and change the used ObjectCache implementation.........................185

5.5.14.4 Shipped cache implementations:.. 187

5.5.14.5 Distributed ObjectCache?... 194

5.5.14.6 Implement your own cache...194

5.5.14.7 Future prospects..194

5.5.15 Sequence Manager.. 194

5.5.15.1 The OJB Sequence Manager...194

5.5.16 OJB logging configuration.. 206

5.5.16.1 Logging in OJB...206

5.5.16.2 Logging configuration within OJB... 207

5.5.16.3 Logging configuration via configuration files.. 208

5.5.16.4 Logging configuration at runtime... 210

5.5.16.5 Defining your own logger...210

5.5.17 Locking..210

5.5.17.1 Introduction...210

OJB

5
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.17.2 Optimistic Locking... 211

5.5.17.3 Pessimistic-Locking..212

5.5.17.4 ODMG-api Locking..216

5.5.17.5 Locking in distributed environment..217

5.5.17.6 Pluggin own locking classes... 217

5.5.18 XDoclet OJB module documentation..218

5.5.18.1 Acquiring and building... 218

5.5.18.2 Usage.. 219

5.5.18.3 Tag reference.. 221

5.5.18.4 Interfaces and Classes...221

5.5.18.5 Fields and Bean properties..230

5.5.18.6 References...235

5.5.18.7 Collections.. 237

5.5.18.8 Nested objects... 240

5.5.19 OJB Performance.. 243

5.5.19.1 Introduction...243

5.5.19.2 The Performance Test Suite..243

5.5.19.3 How OJB compares to other O/R mapping tools?..247

5.5.19.4 What are the best settings for maximal performance?..248

5.6 Howto's.. 248

5.6.1 Howto's Summary...248

5.6.2 HOWTO - Build O/R Mapping Files..248

5.6.2.1 How to build O/R mapping files.. 249

5.6.2.2 classification of O/R related transformations... 249

5.6.2.3 Forward engineering from XMI... 249

5.6.2.4 Forward engineering from Torque... 251

5.6.2.5 Forward engineering from repository.xml... 252

5.6.2.6 XDoclet transformation from Java code...252

5.6.2.7 Reverse engineering from database..252

5.6.3 HOWTO - Use Anonymous Keys.. 253

5.6.3.1 Why Do We Need Anonymous Keys?...253

5.6.3.2 How it works.. 254

5.6.3.3 Using Anonymous Keys...254

5.6.3.4 Benefits and Drawbacks... 258

5.6.4 HOWTO - Use DB Sequences..258

5.6.4.1 Introduction.. 258

5.6.4.2 The Sample Database... 258

5.6.4.3 Using OJB.. 259

OJB

6
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.6.5 HOWTO - Work with LOB Data Types...261

5.6.5.1 Using Oracle LOB Data Types with OJB.. 261

5.6.5.2 Backgrounder: Large objects in databases... 261

5.6.5.3 Large Objects in OJB... 263

5.6.6 HOWTO - Use OJB in clustered environments..263

5.6.6.1 How to use OJB in clustered environments... 263

5.6.6.2 Three steps to clustering your OJB application..264

5.6.6.3 Notes...265

5.6.7 HOWTO - Stored Procedure Support... 266

5.6.7.1 Introduction.. 266

5.6.7.2 Repository entries...266

5.6.7.3 Common attributes... 267

5.6.7.4 insert-procedure..267

5.6.7.5 update-procedure.. 267

5.6.7.6 delete-procedure... 268

5.6.7.7 Argument descriptors... 268

5.6.7.8 A simple example... 269

5.6.7.9 A complex example..273

5.6.8 HOWTO - Spring with OJB..275

5.6.8.1 Spring with OJB... 275

5.7 Testing... 275

5.7.1 Testing Summary.. 276

5.7.2 JUnit Test Suite...276

5.7.2.1 Introduction.. 276

5.7.2.2 How to run the Test Suite...276

5.7.2.3 What about known issues?... 277

5.7.2.4 Donate own tests for OJB Test Suite..277

5.7.3 Write Tests.. 277

5.7.3.1 Introduction.. 277

5.7.3.2 How to write a new Test...278

OJB

7
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

1. OJB

1.1. Apache ObJectRelationalBridge - OJB

1.1.1. Summary

Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that allows transparent
persistence for Java Objects against relational databases.

1.1.1.1. flexibility

OJB supports multiple persistence APIs to provide users with their API of choice:

• A PersistenceBroker API which serves as the OJB persistence kernel. The OTM-, ODMG-
and JDO-implementations are built on top of this kernel.
This API can also be used directly by applications that don't need full fledged object level
transactions. (See the Persistence Broker Tutorial for details.)

• A full featured ODMG 3.0 compliant API. (See the ODMG Tutorial for an introduction.)
• A JDO compliant API. We currently provide a plugin to the JDO Reference Implementation

(RI). Combining the JDO RI and our plugin provides a JDO 1.0 compliant o/r solution.
A full JDO implementation is scheduled for OJB 2.0. (See the JDO tutorial for an introduction
to the JDO programming model.)

• An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG
have in common. (See the OTM tutorial for details).

See the FAQ for a detailed view of the OJB layering. Get the latest information on each API's
status.

1.1.1.2. scalability

OJB has been designed for a large range of applications, from embedded systems to rich client
application to multi-tier J2EE based architectures.

OJB integrates smoothly into J2EE Application servers. It supports JNDI lookup of datasources. It
ships with full JTA and JCA integration. OJB can be used within JSPs, Servlets and SessionBeans.
OJB provides special support for Bean Managed EntityBeans (BMP).

1.1.1.3. functionality

OJB uses an XML based Object/Relational mapping. The mapping resides in a dynamic MetaData
layer, which can be manipulated at runtime through a simple Meta-Object-Protocol (MOP) to
change the behaviour of the persistence kernel.

OJB provides several advanced O/R features like Object Caching, lazy materialization through
virtual proxies and distributed lock-management with configurable Transaction-Isolation levels.
Optimistic and pessimistic locking is supported.

OJB provides a flexible configuration and plugin mechanism that allows to select from set of
predefined components or to implement your own extensions and plugins.

A more complete featurelist can be found here.

Learn more about the OJB design principles in this document.

1.2. News

OJB

8
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

1.2.1.

12/2005 - OJB 1.0.4.rc1 released
Contains bug fixes and new features. For more details see release-notes.

11/2005 - Work for OJB 1.x started
The 1.x release of OJB will be a big step forward in usability and integration in existing
frameworks (like Spring).

08/2005 - Linguine Maps supports OJB
Linguine Maps is an open-source (LGPL, Java 1.4+) utility that will automatically produce easy to
read UML-style entity-relation diagrams from OJB mapping files.

1.3. OJB - Features
• Supports both standard- and non-standard APIs:

• PB API (non-standard)
• ODMG API (standard)
• OTM API (non-standard)
• JDO API (standard)

• The PersistenceBroker kernel API and all top-level APIs (ODMG, OTM, JDO) allows Java
Programmers to store and retrieve Java Objects in/from (any) JDBC-compliant RDBMS

• Transparent persistence: classes does not have to inherit from any OJB base class nor
implement a special interface. OJB delivers pure transparent persistence for POJOs.

• Scalable architecture that allows to build massively distributed and clustered systems.
• Configurable persistence by reachability: All Objects associated to a persistent object by

references can made persitent too.
• Extremly flexible design with pluggable implementation of most service classes like

PersistenceBroker, ObjectCache, SequenceManager, RowReader, ConnectionFactory,
ConnectionManager, IndirectionHandler, SQLGenerator, JdbcAccess, ... and so on.

• Quality assurance taken seriously: More than 800 JUnit Test Cases for regression tests. JUnit
tests are integrated into the build scripts and used as quality assurance for daily development.

• Mapping support for 1:1, 1:n and m:n associations.
• Configurable collection queries to control loading of relationships. See QueryCustomizer.
• Automatic and manual assignment of foreign key values.
• The Object / Relational mapping is defined in an XML Repository. The mapping is completely

dynamic and can be manipulated at runtime for maximum flexibility
• Easy use of multiple databases.
• Configurable Lazy Materialization through Proxy support in the PersistenceBroker. The user

can implement specific Proxy classes or let OJB generate dynamic Proxies.
• Support for Polymorphism and Extents. You can use Interface-types and abstract classes as

attribute types in your persistent classes. Queries are also aware of extents: A query against a
baseclass or interface will return matches from derived classes, even if they are mapped to
different DB-tables

• Support for Java Array- and Collection-attributes in persistent classes. The attribute-types can
be Arrays, java.util.Collection or may be user defined collections that implement the interface
ojb.broker.ManageableCollection.

• Sequence-Managing . The SequenceManager is aware of "extents" and maintains uniqueness of
ids accross any number of tables. Sequence Numbering can be declared in the mappping
repository.
Native Database based Sequence Numbering is also supported.

• Reusing Prepared Statements, internal connection pooling.
• Integrates smoothly in controlled environments like EJB containers

OJB

9
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• Full JTA and JCA (in progress) Integration.
• Support for prefetched relationships to minimize the number of queries.
• ODMG compliant API, a Tutorial, and TestCases are included.
• JDO 1.0.1 compliant API (based on jdori, native implementation in progress), a Tutorial, and

TestCases are included.
• The Lockmanagement supporting four pessimistic Transaction Isolation Levels (uncommited or

"dirty" reads, commited reads, repeatable reads, serializable transactions) - distributed locking
is possible.

• Optimistic locking support. Users may declare int or long fields as version attributes or
java.sql.Timestamp fields as timestamp attributes.

• Support for persistent object caching. Different caching strategies and distributed caches.
• Comes along with fully functional demo applications running against HSQLDB.
• Provides Commons-Logging and Log4J logging facilities.
• 100%: pure Java, Open Source, Apache License

Note:
- OQL is currently not fully implemented (Aggregations and Method Invocations)
- ODMG implicit locking is partly implemented but does currently not maintain transaction isolation properly. To achieve safe
transaction isolation client applications must use explicit lock acquisition.

1.4. OJB - API Status

Status reports for the different APIs in Apache OJB.

Any known issues, including for the parts of OJB that are stable, can be found in release-notes.txt.

• PB API

The PB (Persistence Broker) API implementation is stable.

• ODMG

The ODMG API implementation is stable.

Note:
OQL is currently not fully implemented (Aggregations and Method Invocations). Workaround is to use the PB-API within the ODMG
implementation.

• JDO

By providing a plugin to the SUN JDO Reference Implementation we provide a complete JDO
1.0.1 prototype O/R mapping tool.

Integration in managed environments (in particular JTA integration) is not supported for the
JDO 1.0 prototype.

A complete Apache licensed JDO 2.0 implementation is scheduled for OJB 2.0.

• OTM

The OTM (Object Transaction Manager) API implementation is in early beta.

Note:
The active development on the OTM API implementation is currently stopped due to lack of developer resources in that area. The future
of the OTM layer will be discussed on the OJB developer mailing list.

• SODA

The legacy S.O.D.A. (Simple Object Database Access) API should be considered deprecated

OJB

10
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

and might be removed in a future release.

For more information about S.O.D.A. Query API, see the project's SourceForge Website.

1.5. OJB - References and Testimonials

1.5.1. References and Testimonials

1.5.1.1. projects using OJB

Jakarta JetSpeed
Jetspeed is an Open Source implementation of an Enterprise Information Portal, using Java and
XML.
OJB will be the default persistence model within Jetspeed 2.

BIT
The swiss federal office for information technology and telecommunications (BIT) uses OJB 1.0.1
as data access layer in their framework for webbased applications.
The BIT extended OJB with a complex history-mechanism by simply replacing the
JdbcAccessImpl their own class.

The Tammi project
Tammi is a JMX-based Java application development framework and run-time environment
providing a service architecture for J2EE server side Internet applications that are accessible from
any device that supports HTTP including mobile (wireless) handsets.
Future plans include integration of Apache OJB based persistence services to the framework.

The Object Console project
The Object Console is an open web based application meant for the administration of objects via
the web. Any object that is persistable by the ObJectRelationalBridge (OJB) framework can be
managed through this tool. In addition, this tool provides administration functionality for the
ObJectRelationalBridge (OJB) framework itself.
Object Console uses Struts and OJB. It ships with full sourcecode and is thus a great source for
learning Struts + OJB techniques.

The IntAct project
The IntAct project establishes a knowledgebase for protein-protein interaction data. It's hosted at
EBI - European Bioinformatics Institute, Cambridge.
IntAct uses OJB as its persistence layer.

Network for Earthquake Engineering Simulation
The NEES program will provide an unprecedented infrastructure for research and education,
consisting of networked and geographically distributed resources for experimentation, computation,
model-based simulation, data management, and communication.
OJB is used as the O/R mapping layer.

The OJB.NET project
OJB.NET is an object-to-relational persistence tool for the .NET platform. It enables applications to
transparently store and retrieve .NET objects using relational databases.
OJB.NET is a port ojb Apache OJB to the .NET platform

The OpenEMed project
OpenEMed is a set of distributed healthcare information service components built around the OMG
distributed object specifications and the HL7 (and other) data standards and is written in Java for
platform portability.

OJB

11
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

http://www.bit.admin.ch

OpenEMed uses ODMG as its persistence API. OJB is used as ODMG compliant O/R tool.

1.5.1.2. user testimonials

"At the BIT some stress-test were performed simulating 3000 parallel users accessing tables
containing more than 1.8 million rows per table. These test were run on Websphere 4.1 and DB2 on
IBM z/OS (Host). The PB-API of OJB 1.RC1 was used without problems. The ODMG-API of this
release then had too many bugs (deadlocks, parallel threads, etc.)."

"We're using OJB in two production applications at the Northwest Alliance for Computational
Science and Engineering (NACSE). One is a data mining toolset, and the other is a massive
National Science Foundation project that involves huge amounts of data, and about 20 or 25
universities and research groups like mine.
In fact, I've begun making OJB sort of a de-facto standard for NACSE java/database development.
I've thrown out EJB's for the most part and I've tried JDO from Castor, but I'm sticking with OJB.
Maybe we'll reconsider JDO when the OJB implementation is more complete."

"We are planning a November 2003 production deployment with OJB and WE LOVE IT!! We
have been in development on a very data-centric application in the power industry for about 5
months now and OJB has undoubtedly saved us countless hours of development time. We have
received benefits in the following areas:
-> Easily adapts to any data model that we've thrown at it. No problems mapping tables with
compound keys, tables mapping polymorphic relationships, identity columns, etc.
-> Seemlesly switches between target DB platforms. We develop and unit test on our local
workstations with HSQLDB and PostgreSQL, and deploy to DB2 using the Type 4 JDBC driver
from IBM. Works great!
-> Makes querying a breeze with the PersistenceBroker API
Overall we have found OJB to be very stable (and we've really tested it out quite a bit). The only
issues we've got outstanding at the moment is support for connections to multiple databases, but
I've noticed in CVS that the OJB guys are already fixing this for OJB 0.9.9."

"We've been using it in "production" for a long time now, from about version 0.9.4, I believe. It has
been very robust. We don't use all of its features. We've only see to failures of our persistent store
in about 9 months, and I'm not sure they were due to OJB."

"So yes, we have made a quite useful mediumsized production website based on OJB (with JBoss,
Jakarta Jetspeed, Jakarta Turbine and Jakarta Jelly, three Tomcats, OpenSymhony OSCache and for
the database MSSQL server, all running on Win2000.) It is attracting between 600 and 9000 (peak)
users a day, and runs smoothly for extended periods of time. And no, I can not actually show you
the wonders of the editorial interface of the content management system, because it is hidden
behind a firewall.
I feel OJB is quite useful in production, but you certainly have to know what you are doing and
what you are trying to achieve with it. And there have been some tricky aspects, but these could be
solved by simple workarounds and small hacks.
The main thing about OJB is that AFAIK it has an overall clean design, and it far beats making
your own database abstraction layer and object/relational mapper. We certainly do not use all of it,
only the Persistence Broker parts, so there was less to learn. We love the virtual proxy and
collection proxy concepts, the criteria objects for building queries, and the nice little hidden
features that you find when you start to learn the system."

"My Company is building medium to large scale, mission critical applications (100 - 5.000
concurrent users) for our customers. Our largest customer is KarstadtQuelle, Europes largest retail
company. The next big system that will go in production (in June) is the new logistics system for
the stationary logistics of Karstadt.
Of course we are using OJB in those Systems! We have several OJB based systems now in

OJB

12
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

http://www.bit.admin.ch

production for over a year. We never had any OJB related problems in production.
Most problems we faced during development were related to the learning curve developers had to
face who were new to O/R mapping."

"I've also worked with OJB on high-load situations in J2EE environments. We're using JRun and/or
Orion with OJB in a clustered/distributed environment. This is a National Science Foundation
project called the Network for Earthquake Engineering Simulation (NEES).
The only major problem that we ran into was the cache. JCS just isn't good, and hasn't seemed to
get much better over the last year. We ended up plugging in Tangosol's Coherence Clustered Cache
into the system. We can also do write-behinds, and buffered data caching that is queued for
transaction. That's important to us because we're dealing with very expensive scientific data that
can't get lost if a db goes down. Some of these Tsunami experiments can get pretty expensive.
Otherwise, we use mostly the PersistenceBroker, and a little of the ODMG. Performance seems
better on PB, but less functional. It's not really that much of a problem anyway, because we can
cheaply and quickly add app-servers to the cluster."

1.6. OJB - Mailing Lists

1.6.1. Mailing Lists

These are the mailing lists that have been established for this project. For each list, there is a
subscribe, unsubscribe, and an archive link.

The user and dev list are subscriber only lists, this means you have to subscribe before you can post
to the list.

List Name Subscribe Unsubscribe Archive

OJB User List Subscribe Unsubscribe Archive

OJB Developer List Subscribe Unsubscribe Archive

1.7. OJB - Mailing Lists Archives

1.7.1. Mailing Lists Archives

Follow the links below to browse through or search in the mailing list archives, through a number
of different providers and interfaces.

Archive Provider OJB User List OJB Developer
List

Searchable? Remarks

The Mail Archive ojb-user ojb-dev yes --

GMANE gmane.comp.jakarta.ojb.usergmane.comp.jakarta.ojb.develyes Latest 600
postings available
via web access.
Unlimited access
through NNTP
(news reader)

Apache ojb-user@db.apache.orgojb-dev@db.apache.orgyes --

MARC ojb-user ojb-dev yes --

1.8. OJB - Links and further readings

1.8.1. Summary

OJB

13
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

This page contains interesting Links and recommended readings that will help to learn more about
OJB concepts, related projects, didactic material, research reports, integration in frameworks etc.

1.8.2. OJB - Tutorials and Howto

• The famous Beer4All Struts/OJB tutorial by Chuck Cavaness
• A presentation on OJB held at the Atlanta Java Users Group by Chuck Cavaness
• An extensive tutorial on OJB by John Carnell
• Roberto Ghizzioli's tutorial on Struts, OJB, and nested tags
• An introductory tutorial on the O'Reilly site.

1.8.2.1. OJB and Spring

• Spring, OJB, and Struts, getting started (June 23, 2005)
• Spring, OJB, and Struts. Version 2 with DAO (June 23, 2005)
• Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching (June 27, 2005)
• Springframework and OJB (Nov 21, 2004)

1.8.3. Design

OJB is based on a variety of conceptual sources. In this section I'll give a summary about the most
prominent influences.

1. Craig Larmans Applying UML and Patterns
2. The Siemens Guys "Pattern-Oriented Software Architecture"
3. Scott Amblers classic papers on O/R mapping
4. The "Crossing Chasms" paper from Brown et. al.
5. The GOF Design Patterns
(sorted by relevance)

1. The most important input came from Applying UML and Patterns. It contains a chapter
describing the design of a PersistenceBroker based approach persistence layer. His presentation
contains a lot of other good ideas (e.g. usage of Proxies, caching etc.) I implemented a lot of his
things 1:1. This book is a must have for all OJB developers !

2. Larman does not cover the dynamic metadata concept. He mentiones that such a thing would be
possible, but does not go into details. As I had been a fan of MetaLevel architectures for quite a
while I wanted to have such a thing in OJB too !!!

mop-gif
I took the concepts from the book Pattern-Oriented Software Architecture. They have a chapter on
the Reflection pattern (aka Open Implementation, Meta-Level Architecture).
They even provide an example how to apply this pattern to a persistence layer.
There is another Architectural pattern from this book that I am using: The Microkernel pattern.
My idea was to have a kernel (the PersistenceBroker) that does all the hard work (O/R mapping,
JDBC access, etc.)
High Level object transaction frameworks like a ODMG or JDO implementations are clients to the
PersistenceBroker kernel in this concept!

OJB

14
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/struts-ojb.zip?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/cavaness-ajug-slides.pdf?rev=HEAD
http://cvs.apache.org/viewcvs.cgi/*checkout*/db-ojb/contrib/ojb-dataccess.pdf?rev=HEAD
http://www.robertoghizzioli.it/jcomm/jcomm_tutorial.html
http://www.onjava.com/pub/a/onjava/2003/01/08/ojb.html
http://www.craiglarman.com/book_applying_2nd/Applying_2nd.htm
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html
http://hillside.net/patterns/books/Siemens/book.html
http://www2.parc.com/csl/groups/sda/projects/mops/default.html

3. I read Scott Amblers papers before starting OJB. Sure! There are several things in OJB that are
from his classic The design of a robust persistence layer and from his Mapping Objects To
Relational Databases. Most prominent: The PersistenceBroker concept.
I incorporated the Query API from the OpenSource project COBRA that applies Amblers
PersistentCriteria concept.
Reading Amblers paper on these topics is a must.

But IMO these are the only aspects of Amblers presentation that map directly to OJB. Here are the
concepts that differ:

• Amblers concept relies on a persistent base class.
• caching is not covered by his design
• his concept of OID does not fit for legacy databases with compound PKs.
• The OJB proxy concept is quite different (Ambler has proxy functionality in his

PersistentObject base class.)
• OJB does not use Insert- and UpdateCriteria
• OJB uses a different mapping approach (A full metadata layer)

4. For several detail questions (like mapping inheritance hierarchies) I consulted crossing chasms.
This is also a very good source for all O/R implementors.

5. For all the "small things" I'm using the common GOF patterns like Factory, Observer, Singleton,
Proxy, Adaptor, State, Command, etc.

Here is a thesis describing concepts very similar to OJB.
As I read this paper I saw a lot of thing inspired by OJB. It's giving a nice introduction into the
PersistenceBroker pattern and related topics.

The PARC software design area pioneering in Metalevel computation, aspect oriented
programming etc.

1.8.4. Further readings on O/R mapping

• ObjectArchitects O/R pattern page
• JavaSkyLine page on database integration
• Barry and Associates page on O/R mapping
• Portland Pattern Repository page on O/R
• Martin Fowlers book "Pattern of Enterprise Application Architecture" covers many O/R

patterns that can be found in OJB. Here you will find an online catalog of these patterns.

1.8.5. Patterns

• The Hillside Pattern page
• The Portland Pattern Repository

1.8.6. Books covering OJB

• The O'Reilly book on Struts programming by Chuck Cavaness has a whole chapter about how
to build an applications model layers based on OJB. A must reading for everyone intending to
use Struts and OJB. All source code from the book can be found here: Struts Programming
sources.

• There's also a WROX book on Struts + OJB All source code from the book can be found here:
Professional Struts and OJB sources.

• Enterprise Java Development on a Budget

2. Download

OJB

15
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

http://www.ambysoft.com/
http://www.ambysoft.com/persistenceLayer.html
http://www.ambysoft.com/mappingObjects.html
http://www.ambysoft.com/mappingObjects.html
http://www.kimble.easynet.co.uk/cobra/index.htm
http://members.aol.com/kgb1001001/Chasms.htm
http://hillside.net/patterns/books/DPBook/DPBook.html
http://www2.parc.com/csl/groups/sda/projects.shtml
http://www.objectarchitects.de/ObjectArchitects/orpatterns/
http://www.javaskyline.com/database.html
http://www.service-architecture.com/object-relational-mapping/articles/
http://c2.com/cgi/wiki?ObjectRelationalMapping
http://www.martinfowler.com/eaaCatalog/
http://www.martinfowler.com/eaaCatalog/
http://hillside.net/patterns/
http://c2.com/cgi/wiki?CategoryPattern
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://www.amazon.com/exec/obidos/ASIN/0596003285/qid=1054656123/sr=2-1/ref=sr_2_1/103-9325116-6675068
http://examples.oreilly.com/jakarta/
http://examples.oreilly.com/jakarta/
http://www.amazon.com/exec/obidos/tg/detail/-/1861007817/qid=1054655953/sr=8-1/ref=sr_8_1/103-9325116-6675068?v=glance&s=books&n=507846
http://web.wrox.com/download/code/professional/7817.zip
http://www.amazon.com/exec/obidos/ASIN/1590591259/qid%3D1082279566/sr%3D11-1/ref%3Dsr%5F11%5F1/103-0814434-1236616

3. Development

3.1. Coding Standards

This document describes a list of coding conventions that are required for code submissions to the
project. By default, the coding conventions for most Open Source Projects should follow the
existing coding conventions in the code that you are working on. For example, if the bracket is on
the same line as the if statement, then you should write all your code to have that convention.

If you commit code that does not follow these conventions, you are responsible for also fixing
your own code.

Below is a list of coding conventions that are specific to OJB, everything else not specificially
mentioned here should follow the official Sun Java Coding Conventions.

1. Brackets should begin and end on a new line and should exist even for one line statements.
Examples:

if (foo)
{

// code here
}

try
{

// code here
}
catch (Exception bar)
{

// code here
}
finally
{

// code here
}

while (true)
{

// code here
}

2. Though it's considered okay to include spaces inside parens, the preference is to not include
them. Both of the following are okay:

if (foo)

or

if (foo)

3. Use 4 space indent. NO tabs. Period. We understand that many developers like to use tabs, but
the fact of the matter is that in a distributed development environment where diffs are sent to the
mailing lists by both developers and the version control system (which sends commit log
messages), the use tabs makes it impossible to preserve legibility.

In Emacs-speak, this translates to the following command:

(setq-default tab-width 4 indent-tabs-mode nil)

4. Unix linefeeds for all .java source code files. Other platform specific files should have the

OJB

16
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

platform specific linefeeds.

5. JavaDoc MUST exist on all methods. If your code modifications use an existing
class/method/variable which lacks JavaDoc, it is required that you add it. This will improve the
project as a whole.

6. The ASF license MUST be placed at the top of each and every file.

7. All .java files should have a @version tag with CVS Id keyword expansion, like the one below.

@version $Id: code-standards.xml 365208 2005-12-14 01:19:23Z arminw $

Note:
To add the keyword to a new file, either use $Id: code-standards.xml 365208 2005-12-14 01:19:23Z arminw $
or copy an existing expanded id-string from another file (all the parameters will be replaced by CVS). Just watch out not to type $Id $,
since that extra space will signal to CVS that keyword expansion already took place.

8. Import statements must be fully qualified for clarity.

import java.util.ArrayList;
import java.util.Hashtable;

import org.apache.foo.Bar;
import org.apache.bar.Foo;

And not

import java.util.*;
import org.apache.foo.*;
import org.apache.bar.*;

Emacs/XEmacs users might appreciate the following in their .emacs file.

(defun apache-db-mode ()
"The Java mode specialization for Apache DB projects."
(if (not (assoc "apache-db" c-style-alist))

;; Define the Apache DB cc-mode style.
(c-add-style "apache-db" '("java" (indent-tabs-mode . nil))))

(c-set-style "apache-db")
(c-set-offset 'substatement-open 0 nil)
(setq mode-name "Apache DB")

;; Turn on syntax highlighting when X is running.
(if (boundp 'window-system)

(progn (setq font-lock-support-mode 'lazy-lock-mode)
(font-lock-mode t))))

;; Activate Apache DB-mode for JDE.
(if (fboundp 'jde-mode)

(add-hook 'jde-mode-hook 'apache-db-mode)
(add-hook 'java-mode-hook 'apache-db-mode))

Thanks for your cooperation.

4. Index

4.1. Site Linkmap

4.1.1. Table of Contents

OJB

17
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• OJB _________________________ site

• OJB _________________________ ojb

• Home _________________________ index

• News _________________________ news

• Features _________________________ features

• Status _________________________ status

• Release Notes _________________________ release-notes

• References _________________________ references

• Wiki _________________________ wiki

• Mailing Lists _________________________ mail-lists

• List Archives _________________________ mail-archives

• Issue Tracking _________________________ bugs

• Links _________________________ links

• Download _________________________ download

• Binaries _________________________ binaries

• Source _________________________ source

• Development _________________________ development

• OJB CVS _________________________ todo

• Apache CVS _________________________ todo

• License _________________________ license

• Coding Standards _________________________ coding

• Index _________________________ all

• Sitemap _________________________ linkmap

• Site as PDF _________________________ whole_site_pdf

• Documentation _________________________ documentation

• Summary _________________________ index

• FAQ's _________________________ faq

• JavaDocs _________________________ javadoc

• Getting Started _________________________ getting-started

• Tutorials _________________________ tutorials

• Summary _________________________ summary

• Mapping Tutorial _________________________ mapping-tutorial

• The PB API _________________________ pb-tutorial

• The ODMG API _________________________ odmg-tutorial

• The JDO API _________________________ jdo-tutorial

• The OTM API _________________________ otm-tutorial

OJB

18
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• Reference Guides _________________________ guides

• Summary _________________________ summary

• PB API guide _________________________ pb-guide

• ODMG API guide _________________________ odmg-guide

• Platform settings _________________________ platform

• OJB propertyfile _________________________ ojb-properties

• JDBC Types _________________________ jdbc-types

• Repository file _________________________ repository

• Basic mapping _________________________ basic-technique

• Advanced
mapping _________________________ advanced-technique

• OJB queries _________________________ query

• Metadata handling _________________________ metadata

• Deployment _________________________ deployment

• Connection handling _________________________ connection

• Caching _________________________ object-cache

• Sequence manager _________________________ sequence-manager

• Logging _________________________ logging

• Locking _________________________ lock-manager

• XDoclet module _________________________ xdoclet-module

• Performance _________________________ performance

• Howto's _________________________ howto

• Summary _________________________ summary

• Build large Metadata
Mappings _________________________ large-metadata

• Anonymous Keys _________________________ anonymous-keys

• Using database
sequences _________________________ db-sequences

• Use Oracle LOB's _________________________ use-lobs

• Work in clustered
environment _________________________ clustering

• Work with Stored
Procedures _________________________ stored-procedures

• Using Spring with OJB _________________________ use-spring

• Testing _________________________ testing

• Summary _________________________ summary

• Test Suite _________________________ test-suite

• Write Tests _________________________ test-write

OJB

19
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5. Documentation

5.1. Documentation - Introduction

This section contains the Apache OJB documentation.

Some additional information exists on our Wiki.

If you are new to OJB, we recommend that you start with reading the Getting Started section and
the FAQ.

There are tools for building the metadata mapping files used by OJB. Information about them can
be found here.

• Tutorials
Tutorials for the API's supported by OJB.

• Reference Guides
OJB reference guides.

• Howto's
Practical hands-on HOWTO documents provided by both OJB users and committers.

• Testing
Info about OJB's quality assurance and test writing.

5.2. Frequently Asked Questions

5.2.1. Questions

5.2.1.1. 1. General

1.1. Why OJB? Why do we need another O/R mapping tool?

here are some outstanding OJB features:

• It's fully ODMG 3.0 compliant
• It will have a full JDO implementation
• It's higly scalable (Loadbalanced Multiserver scenario)
• It provides multiple APIs:

• The full fledged ODMG-API,
• The JDO API (planned)
• and the PersistenceBroker API. This API provides a O/R persistence kernel which can be

used to build higher level APIs (like the ODMG and JDO Implementations)

• It's able to handle multiple RDBMS simultaneously.
• it has a slick MetaLevel Architecture: By changing the MetaData at runtime you can change the

O/R mapping behaviour. (E.G. turning on/off usage of Proxies.)
• It has a simple CacheMechanisms that is fully garbage collectable by usage of weak references.
• It has a simple and clean pattern based design.
• It uses a configurable plugin concept. This allows to replace components (e.g. the ObjectCache)

by user defined Replacements.
• It has a modular architecture (you can quite easily reuse some components in your own

applications if you don't want to use the whole thing:
• The PersistenceBroker (e.g. to build your own PersistenceManager)
• The Query Interface as an abstract query syntax
• The OQL Parser
• The MetaData Layer

OJB

20
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• The JDBC Accesslayer

• It has a very sharp focus: It's concerned with O/R mapping and nothing else.

Before making OJB an OpenSource project I had a look around at the emerging OpenSource O/R
scene and was asking myself if there is really a need for yet another O/R tool. I came to the
conclusion that there was a need for OJB because:

• There was no ODMG/JDO compliant opensource tool available
• There was no scalable opensource O/R tool available
• there was no tool available with the idea of a PersistenceBroker Kernel that could be easiliy

extended
• The tools available had no dynamic MetaData architectures.
• The tools available were not as clearly designed as I hoped, thus extending one of them would

have been very difficult.

1.2. How is OJB related to ODMG and JDO?

ODMG is a standard API for Object Persistence specified by the ODMG consortium
(www.odmg.org). JDO is Sun's API specification for Object Persistence. ODMG may well be
regarded as a Precursor to JDO. In fact JDO incorporates many ideas from ODMG and several
people who have been involved in the ODMG spec are now in the JDO team.
I assume JDO will have tremendous influence on OODBMS-, RDBMS-, J2EE-server and
O/R-tool-vendors to provide compliant products.
OJB wants to provide first class support for JDO and ODMG APIs.

OJB currently contains of four main layers, each with its own API:

1. A low-level PersistenceBroker API which serves as the OJB persistence kernel. The
PersistenceBroker also provides a scalable multi-server architecture that allows to used it in
heavy-duty app-server scenarios.
This API can also be used directly by applications that don't need full fledged object level
transactions (see PB tutorial for details).

2. An Object Transaction Manager (OTM) layer that contains all features that JDO and ODMG
have in common as Object level transactions, lock-management, instance lifecyle etc. (See
OTM tutorial for details.) The OTM is work in progress.

3. A full featured ODMG 3.0 compliant API. (See ODMG tutorial for an introduction.)
Currently this API is implemented on top the PersistenceBroker. Once the OTM layer is
finished ODMG will be implemented on top of OTM.

4. A JDO compliant API. This is work in progress. (See JDO tutorial for an introduction.)
Currently this API is implemented on top the PersistenceBroker. Once the OTM layer is
finished JDO will be implemented on top of OTM.

The following graphics shows the layering of these APIs. Please note that the layers coloured in
yellow are not yet implemented.

OJB Layer

1.3. What are the OJB design principals?

OJB has a "pattern driven" design. Please refer to this document for more details

1.4. Where can I learn more about Object/Relational mapping in general?

We have a link list pointing to further readings.

1.5. How OJB performance compares to native JDBC programming?

OJB

21
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

See page Performance.

1.6. How OJB performance compares to other O/R mapping tools?

See page Performance.

1.7. Is OJB ready for production environments?

Depends on your production environment. If you want to program an aeroplane autopilot system
you should not use Java at all. (according to the official disclaimer).
But I assume we are talking about enterprise business applications, aren't we? And for such
applications it's a clear yes. OJB is used in production application since version 0.5. We have about
6.000 downloads each month (and growing) and a large user base using it in a wide spectrum of
production scenarios.
We provide a regression test suite for Quality Assurance. You can use this testsuite to check if OJB
works smoothly in your target environment. (see supported platforms documentation)
We also provide a performance testsuite that compares OJB performance against native JDBC. This
test will give you an impression of the performance impact OJB will have in your target
environment. (see Performance testsuite documentation)
OJB is also the persistence layer of choice in several books on programming J2EE based enterprise
business systems. (see our links and references section)
Reference projects and user testimonials are listed here.

1.8. Does OJB supports caching?

Short answer is yes. To get a detailed answer, please read the caching guide.

5.2.1.2. 2. Getting Started

2.1. Help! I'm having problems installing and using OJB!

Please read the Getting Started document. OJB is a powerful and complex system - installing and
configuring OJB is not a trivial task. Be sure to follow all the steps mentioned in that document -
don't skip any steps when first installing OJB on your systems.

If you are having problems running OJB against your target database, read the respective platform
documentation. Before you try to deploy OJB to your environment, read the deployment guide.

2.2. Help! I still have serious problems installing OJB!

The following answer is quoted from the OJB user-list. It is from a reply to a user who had serious
problems getting started with OJB.

I would say it was stupid not to understand OJB. How can you know what another programmer
wrote. I've been a Java programmer for quite some time and I could show you stuff I wrote that I
know you wouldn't understand. I'll just break it down the best I can on what, where and why.

OJB is a data persistence layer for Java. I'll just use an example of how I use it. I have an RDMS. I
would like to save Java object states to this database and I would like to be able to search this
information as well. If you serialize objects it's hard to search and if you use SQL it won't work
with any different database. Plus it's a mess having to work with all that SQL in your code. And by
using SQL you don't get to work with just Java objects. But, with OJB your separated from having
to work outside the object world and unlike serialization you can preform SQL like searches on
your data. Also, there's things like caching and connection pooling in OJB that help with
performance. After setting up OJB you will use either PB-API or ODMG or JDO to access your

OJB

22
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

information in a object centric manner. PB API is a non-standard O/R mapping API with many
features and great flexibility. All top-level API's like ODMG or JDO build on top of the PB-api.
ODMG is a standard for the api for accessing your data. That means you can use any ODMG
compliant api if you don't want to use OJB. The JDO part is like ODMG except it's the SUN JDO
standard. I use ODMG because the JDO interface is not ready yet.

OJB is easy to use. I'll just break it down into two sides. There's the side your writing your code for
your application and there's the side that you configure to make OJB connect to your database.
Starting with your application side, all that is needed is to use the interface you wish. I use ODMG
because JDO is not complete yet. Here's a link to the ODMG part with some code for examples.
That's all you need on the application side. Next there's the configuration side. This is the one your
fighting with. Here you need to setup the core tables for OJB and you will define the classes you
wish to store in your database.

First thing to do is to build the cvs's with the default database HSQL, because you know it will
work. If you get past this point you should have a working OJB compiled. Now if your using JDK
1.4 you will need to set in build.properties JDBC=+JDBC30 and do a ant preprocess first. Next
you will do a ant junit and this will build OJB and test everything for you. If you get a build
successful then your in business. Then you will want to run ant jar to create the OJB jar to put in
your /lib. You will need a couple other jars in you /lib directory to make it all work. See this page
for those. http://jakarta.apache.org/ojb/deployment.html

Next you will need some xml and configuration files in your class path for OJB. You will find
those files under {$OJB_base_dir}/target/test/ojb. All the repository.xml's and OJB.properties for
sure. With all these files in place with your application you should be ready to use OJB and start
writing your application.

Finally you will want to setup your connection to your database and define your classes you will be
storing in your database. In the repository.xml file you can configure your JDBC parameters so
OJB can connect to your database. You will also need your JDBC jar somewhere in your class
path. Then you will define your classes in the repository_user.xml file. Look here for examples.
http://jakarta.apache.org/ojb/tutorial1.html Note you will want to comment out the junit part in
repository.xml because it's just for testing.

The final thing to do is to make sure the OJB core tables are in your database. Look on this page for
the core tables. These core tables are used by OJB to store internal data while it's running. It needs
these. Then there's the tables you define. The ones you mapped in the repository_user.xml file.

Sorry if any of this is off. OJB is growing so fast that it's hard to keep up with all changes. The
order I gave the steps in is just how I would think it's understood better. You can go in any order
you want. The steps I've shown are mostly for deployment. Hope this helps you understand OJB a
little better. I'm not sure if this is what your wanting or not.

2.3. OJB does not start?

If you carefully attended the installing hints there may be something wrong with your metadata
mapping defined in the repository file or one the included sub files.

• Are you included all configuration files in classpath?
• On update to a new release, make sure you replaced all configuration files
• Check your metadata mapping - typos,... ?

If something going wrong while OJB read the metadata files you can enable debug log level for
org.apache.ojb.broker.metadata.RepositoryXmlHandler and
org.apache.ojb.broker.metadata.ConnectionDescriptorXmlHandler to get
more detailed information.

OJB

23
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Note:
If OJB default logging was used, change entries for these classes in OJB.properties file (this may change in future).

2.4. Does OJB support my RDBMS?

please refer to this document.

2.5. What are the OJB internal tables for?

Please refer to this document.

2.6. What does the exception Could not borrow connection from pool mean?

There can be several reasons

2.7. Any tools help to generate the metadata files?

Please refer to this document.

5.2.1.3. 3. OJB APIs

3.1. What are the differences between the different OJB APIs? Which one should I use in my applications?

The PersistenceBroker (PB) provides a minimal API for transparent persistence:

• O/R mapping
• Retrieval of objects with a simple query interface from RDBMS
• storing (insert, update) of objects to RDBMS
• deleting of objects from RDBMS

This is all you need for simple applications as in tutorial1.

The OJB ODMG implementation uses the PB as its persistence kernel. But it provides much more
functionality to the application developer. ODMG is a full fledged API for Object Persistence,
including:

• OQL Query interface
• real Object Transactions
• A Locking Mechanism for management of concurrent threads (apps) accessing the same objects
• predefined persistent capable Collections and Hashtables

Some examples explaining the implications of these functional differences:

1. Say you use the PB to query an object O that has a collection attribute col with five elements
a,b,c,d,e. Next you delete Objects d and e from col and store O again with
PersistenceBroker.store(O);
PB will store the remaining objects a,b,c. But it will not delete d and e ! If you then requery
object O it will again contain a,b,c,d,e !!!
The PB keeps no transactional state of the persistent Objects, thus it does not know that d and e
have to be deleted. (as a side note: deletion of d and e could also be an error, as there might be
references to them from other objects !!!)
Using ODMG for the above scenario will eliminate all trouble: Objects are registered to a
transaction so that on commit of the transaction it knows that d and e do not longer belong to
the collection. the ODMG collection will not delete the objects d and e but only the
REFERENCES from the collection to those objects!

2. Say you have two threads (applications) that try to access and modify the same object O. The

OJB

24
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

PB has no means to check whether objects are used by concurrent threads. Thus it has no
locking facilities. You can get all kind of trouble by this situation. The ODMG implementation
has a Lockmanager that is capable of synchronizing concurrent threads. You can even use four
transaction isolation levels:
read-uncommitted, read-committed, repeatable-read, serializable.

In my eyes the PB is a persistence kernel that can be used to build high-level PersistenceManagers
like an ODMG or JDO implementation. It can also be used to write simple applications, but you
have to do all management things (locking, tracking objects state, object transactions) on your own.

3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?

Please refer to the ODMG-guide.

3.3. The OJB JDO implementation is not finished, how can I start using OJB?

I recommend to not use JDO now, but to use the existing ODMG api for the time being.

Migrating to JDO later will be smooth if you follow the following steps. I recommend to first
divide your model layer into Activity- (or Process-) classes and Entity classes.

Entity classes represent classes that must be made persistent at some point in time, say a
"Customer" or a "Order" object. These persistent classes and the repsective O/R mapping in
repository.xml will remain unchanged.

Activities are classes that perform business tasks and work upon entities, e.g. "edit a Customer
entry", "enter a new Order"... They implement (parts of) use cases.

Activities are driving transactions against the persistent storage.

I recommend to have a Transaction interface that your Activities can use. This Transaction
interface can be implemented by ODMG or by JDO Transactions (which are quite similar). The
implementation should be made configurable to allow to switch from ODMG to JDO later.

The most obvious difference between ODMG and JDO are the query languages: ODMG uses OQL,
JDO define JDOQL. As an OO developer you won't like both of them. I recommend to use the ojb
Query objects that allow an abstract syntax representation of queries. It is possible to use these
queries within ODMG transactions and it will also be possible to use them within JDO
Transactions. (this is contained in the FAQ too).

Using your own Transaction interface in conjunction with the OJB query api will provide a simple
but powerful abstraction of the underlying persistence layer.

We are using this concept to provide an abstract layer above OJB-ODMG, TopLink and LDAP
servers in my company. Making it work with OJB-JDO will be easy!

5.2.1.4. 4. Howto

4.1. How to use OJB with my RDBMS?

please refer to this document.

4.2. How to use OJB in an web app?

If you follow these rules, then OJB works fine in web apps:

• Don't put OJB's jars into one of the servers directories but rather put them into the
WEB-INF/lib folder of your web app.

• OJB searches for its configuration files (OJB.properties, repository.xml) in the

OJB

25
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

classpath. Therefore, it is easiest if you put them in the WEB-INF/classes folder which is
automatically in the classpath of the web app

• Don't hold onto the PersistenceBroker instances, rather get one whenever you want to do
something, and close it once you're done.

See deployment doc for more information.

4.3. What are the best settings for maximal performance?

See performance section.

4.4. How to page and sort?

Sorting can be configured by
org.apache.ojb.broker.query.Criteria::orderBy(column_name).

There is no paging support in OJB. OJB is concerned with Object/Relational mapping and not with
application specific presentation details like presenting a scrollable page of items.

OJB returns query results as Collections or Iterators.

You can easily implement your partial display of result data by using an Iterator as returned by
ojb.broker.PersistenceBroker::getIteratorByQuery(...).

4.5. What about performance and memory usage if thousands of objects matching a query are returned as a
Collection?

You can do two things to enhance performance if you have to process queries that produce
thousands of result objects:

1. Use getIteratorByQuery() rather than getCollectionByQuery(). The returned Iterator is lazy and
does not materialize Objects in advance. Objects are only materialized if you call the Iterators
next() method. Thus you have total control about when and how many Objects get materialized!
Please see here for proper handling.

2. You can define Proxy Objects as placeholder for your persistent business objects. Proxys are
lighweight objects that contain only primary key information. Thus their materialization is not
as expensive as a full object materialization. In your case this would result in a collection
containing 1000 lighweight proxies. Materialization of the full objects does only occur if the
objects are accessed directly. Thus you can build similar lazy paging as with the Iterator. You
will find examples in the OJB test suite (src-distribution only: [db-ojb]/src/test). More info
about Proxy object here.

The Perfomance of 1. will be better than 2. This approach will also work for VERY large resultsets,
as there are no references to result objects that would prevent their garbage collectability.

4.6. When is it helpful to use Proxy Classes?

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can
help you in reducing unneccessary db lookups. Example:

Say you load a ProductGroup object from the db which contains a collection of 15 Article objects.

Without proxies all 15 Article objects are immediately loaded from the db, even if you are not
interested in them but just want to lookup the description-attribute of the ProductGroup object.

With a proxy class, the collection is filled with 15 proxy objects, that implement the same interface
as the "real objects" but contain only an OID and a void reference.

Once you access such a proxy object it loads its "real subject" by OID and delegates the method

OJB

26
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

call to it.

have a look at section proxy usage of page basic technique.

4.7. How can I convert data between RDBMS and OJB?

For Example I have a DB column of type INTEGER but a class atribute of type boolean. How can I
provide an automatic mapping with OJB?

OJB provides a concept of ConversionStrategies that can be used for such conversion tasks. Have a
look at the respective document.

4.8. How can I trace and/or profile SQL statements executed by OJB?

OJB ships with out of the box support for P6Spy. P6Spy is a JDBC proxy which delegates all
JDBC calls to the real JDBC driver and traces all calls to a log file.

P6Spy is contained in the p6spy.jar, which you'll find in the lib folder of your OJB distribution.
Add this to the classpath of your app (if you're using the ojb-blank project, then simply copy the jar
into the lib folder of the project and if you're using Eclipse then also add it to the project build
path).

Now the only other thing left is to configure OJB to use P6Spy, and P6Spy to use your database's
driver. To achieve this, change the database driver in your jdbc-connection-descriptor
(in your repository file) to

<jdbc-connection-descriptor
...
driver="com.p6spy.engine.spy.P6SpyDriver"
...
/>

In ojb-blank this setting is changed in the build.properties instead.

Also copy the file spy.properties which can be found in the
src/test/org/apache/ojb folder into your classpath (e.g. in the same place where your
OJB.properties file is). In this file you'll find a line starting with realdriver where you
should put the name of the jdbc driver of your database, e.g.
realdriver=org.hsqldb.jdbcDriver

Also, here you can influence to where P6Spy will output the SQL statements. The appender defines
how the logging is performed, e.g. to the console or to a file. The logfile setting defines into
which file the statements will be printed (when a file appender is used). For instance, these settings
will write to a file spy.log:

logfile = spy.log
appender = com.p6spy.engine.logging.appender.FileLogger

This would be logging to the console
#appender = com.p6spy.engine.logging.appender.StdoutLogger

That's all there is to it, no recompile or other change of your app is necessary. Btw, P6Spy also
measures the time needed to execute each statement!

4.9. How does OJB manage foreign keys?

Automatically! you just define 1:1, 1:n or m:n associations in the repository_user.xml file. OJB
does the rest!

Please refer to basic technique and xml-metadata repository for details.

OJB

27
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

4.10. How does OJB manage 'null' for primitive primary key?

Primitive values (int, long, ...) can't be null, so OJB interpret '0' as null for primitive PK/FK
fields in persistent objects. Thus primitive PK fields of persistent objects should never be
represented by a '0' value in DB and never used as a sequence key value.
This is only true for primitive PK/FK fields (e.g. Integer(0) is allowed). All other fields have
'normal' behavior.

4.11. How to lookup object by primary key?

Please see PB tutorial section.

4.12. Difference between getIteratorByQuery() and getCollectionByQuery()?

The first one returns an org.apache.ojb.broker.OJBIterator instance. The returned
Iterator instance is lazy and does not materialize Objects in advance. Objects are only materialized
from the underlying query result set if you call the Iterators next() method. If all objects
materialized or the calling org.apache.ojb.broker.PersistenceBroker instance was
closed or transaction demarcations ends the Iterator instance release all used resources (e.g. used
Statement and ResultSet instances).

Method getCollectionByQuery() use an Iterator to materialize all objects first and then
return the materialized objects within the java.util.Collection instance.

Note:
If method getIteratorByQuery() was used keep in mind that the used Iterator instance is only valid as long as the used
org.apache.ojb.broker.PersistenceBroker instance ends transaction or be closed. So it is NOT possible to get an
Iterator, close the PersistenceBroker and pass the Iterator instance to a servlet or client. In that case use
getCollectionByQuery().

4.13. How can Collections of primitive typed elements be mapped?

The first thing to ask is: How are these primitive typed elements (Strings are also treated as
primitive types here) stored in the database.
1) are they treated as ordinary domain objects and stored in a separate table?
2) are they serialized into a Varchar field?
3) are they stored as a comma separated varchar field?
4) is each element of the vector or array stored in a separate column? (this solution does only work
for a fixed number of elements!)
Follow these steps for solution 3):
a) simply define ordinary collection-descriptors as for every other collection of domain objects.
b) use the Object2ByteArrFieldConversion. See jdbc-types.html for details on conversion
strategies.
c) use the StringVector2VarcharFieldConversion. See jdbc-types.html for details on conversion
strategies.
d) provide a field-descriptor for each element.

4.14. How could class 'myClass' represent a collection of 'myClass' objects

OJB can handle such recursive associations without problems.

• add a collection attribute 'myClasses' to the class myClass this collection will hold the
associated myClass objects.

• you have to decide wether this assosciation is 1:n or m:n.
for 1:n you just need an additional foreignkey attribute in the MY_CLASS table. Of course

OJB

28
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

you'll also need a matching attribute in the class myClass.
For a m:n association you'll have to define a intermediary table to hold the mapping entries.

• define a collection-descriptor tag in the class-descriptor of myClass in
repository.xml. Follow the steps in basic technique on 1:n and m:n.

4.15. How to lookup PersistenceBroker instances?

Please refer to PB-guide.

4.16. How to access ODMG?

Please refer to ODMG-guide.

4.17. Needed to put user/password of database connection in repository file?

There is no need to put user/password in the repository file (more exact in the
jdbc-connection-descriptor). You can pass this information at runtime. See Many
different database user - How do they login?.

Only if you want to use convenience PersistenceBroker lookup method of
PersistenceBrokerFactory, OJB needs all database connection information in the
configuration files. More details see repository file doc - section jdbc-connection-descriptor
default-connection attribute

See lookup PB api.
See lookup ODMG api.

PBKey pbKey = new PBKey(jcdAlias, user, passwd);
PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(pbKey);
// or using a convenience (when default-connection was set in
jdbc-connection-descriptor)
PersistenceBroker broker = PersistenceBrokerFactory.defaultPersistenceBroker();

4.18. Many different database user - How do they login?

There are two ways to do that. Define for each user a jdbc-connection-descriptor
(unattractive way, because we have to add each new user to repository file), or let OJB handle this
for you.
For it define one jdbc-connection-descriptor, now you can use the same jcdAlias
name with different User/Password. OJB copy the defined
jdbc-connection-descriptor and replace the username and password with the given
User/Password.

PersistenceBroker-api example:

PBKey user_1 = new PBKey(jcdAlias,username, passwd);
PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(user_1);
...

ODMG-api example:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("jcdAlias#username#passwd", Database.OPEN_READ_WRITE);
...

Keep in mind, when the connection-pool element enables connection pooling, every user get
its separate pool. See How does OJB handle connection pooling?.

OJB

29
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

4.19. How do I use multiple databases within OJB?

Define for each database a jdbc-connection-descriptor, use the different jcdAlias
names in the repositry file to match the according database.

<jdbc-connection-descriptor
jcd-alias="myFirstDb"
...

>
...

</jdbc-connection-descriptor>

<jdbc-connection-descriptor
jcd-alias="mySecondDb"
...

>
...

</jdbc-connection-descriptor>

Specific notes related to the PB-api here.
Specific notes related to the ODMG-api here.

Note:
OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

4.20. How does OJB handle connection pooling?

Please have a look in section Connection Handling.

4.21. Can I directly obtain a java.sql.Connection within OJB?

Please have a look in section Connection Handling.

4.22. Is it possible to perform my own sql-queries in OJB?

There are serveral ways in OJB to do that.
If you completely want to bypass the OJBquery-api see Can I directly obtain a java.sql.Connection
within OJB?.
A more elegant way is to use a QueryBySQL object:

String sql =
"SELECT A.Artikel_Nr FROM Artikel A, Kategorien PG"
+ " WHERE A.Kategorie_Nr = PG.Kategorie_Nr"
+ " AND PG.Kategorie_Nr = 2";
// get the QueryBySQL
Query q2 = QueryFactory.newQuery(Article.class, sql);

Iterator iter2 = broker.getIteratorByQuery(q2);
// or
Collection col2 = broker.getCollectionByQuery(q2);

4.23. When does OJB open/close a connection?

Please see Connection handling guide.

4.24. Start OJB without a repository file?

See section Metadata Handling.

4.25. Connect to database at runtime?

OJB

30
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

See section Metadata Handling.

4.26. Hook into OJB - How to add Listener, callback interface?

See Listener/Callback section in PB-Guide.

4.27. Add new persistent objects metadata (class-descriptor) at runtime?

See section Metadata Handling.

4.28. Global metadata changes at runtime?

Please see section Metadata Handling.

4.29. Per thread metadata changes at runtime?

Please see section Metadata Handling.

4.30. Is it possible to use OJB within EJB's?

Yes, see deployment instructions in the docs. Additional you can find some EJB example beans in
package org.apache.ojb.ejb under [jakarta-ojb]/src/ejb.

4.31. Can OJB handle ternary (or higher) associations?

Yes, that's possible. Here is an example. With a ternary relationship there are three (or more)
entities 'related' to each other. An example would be Developer, Language and Project.

Each entity is mapped to one table (DEVELOPER, LANGUAGE and PROJECT). To represent the
combinations of these entities we need an additional bridge table (
PROJECTRELATIONSHIP)with three columns holding the foreign keys to the other three tables
(just like an m:n association is represented by an intermediary table with 2 columns).

To handle this table with OJB we have to define a class that is mapped on it. This Relationship
class can then be used to perform queries/updates as with any other persistent class. Here is the
layout of this class:

public class ProjectRelationship {
Integer developerId;
Integer languageId;
Integer projectId;

Developer developer;
Language lanuage;
Project project;

/** setters and getters not shown for brevity**/
}

Here is the respective extract from the repository :

<class-descriptor
class="ProjectRelationship"
table="PROJECTRELATIONSHIP"

>
<field-descriptor

name="developerId"
column="DEVELOPER_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

OJB

31
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

name="languageId"
column="LANGUAGE_ID"

jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="projectId"
column="PROJECT_ID"

jdbc-type="INTEGER"
primarykey="true"

/>
<reference-descriptor

name="developer"
class-ref="Developer"

>
<foreignkey field-id-ref="developerId" />

</reference-descriptor>
<reference-descriptor

name="language"
class-ref="Language"

>
<foreignkey field-id-ref="languageId" />

</reference-descriptor>
<reference-descriptor

name="project"
class-ref="Project"

>
<foreignkey field-ref="projectId" />

</reference-descriptor>
</class-descriptor>

Here is some sample code for storing a relationship :

Developer dev = ; // create or retrieve
Project proj = ; // create or retrieve
Language lang = ; // create or retrieve

ProjectRelationship rel = new ProjectRelationship();
rel.setDeveloper(dev);
rel.setLanguage(lang);
rel.setProject(proj);

broker.store(r);

In the next code sample we are looking up all Projects that Developer "Bob" has done in "Java".

Criteria criteria = new Criteria();
criteria.addEqualTo("developer.name","Bob");
cirteria.addEquatTo("language.name","Java");

Query q = new QueryByCriteria(ProjectRelationship.class, criteria, true);
Iterator iter = Broker.getIteratorByQuery(q);

// now iterate over the collection and retrieve all projects:
while (iter.hasNext())
{

ProjectRelationship rel = (ProjectRelationship) iter.next();
System.out.println(rel.getProject().toString());

}

You could also have on the Project class-descriptor a collection-descriptor that returns
all relationships associated with the Project. If it was call "projectRelationships" the following
would give you all projects that have a relationship with "bob" and the language "java".

Criteria criteria = new Criteria();
criteria.addEqualTo("projectRelationships.developer.name","bob");
cirteria.addEquatTo("projectRelationships.language.name","java");

Query q = new QueryByCriteria(Project.class, criteria, true);
Collection projects = Broker.getCollectionByQuery(q);

OJB

32
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

This is the layout of the Project class:

public class Project {
Integer id;
String name;
Collection projectRelationships;

/** setters and getters not shown for brevity**/
}

This is the class-descriptor of the Project class:

<class-descriptor
class="Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="name"
column="NAME"

jdbc-type="VARCHAR"
/>
<collection-descriptor

name="projectRelationships"
element-class-ref="ProjectRelationship"

>
<inverse-foreignkey field-ref="projectId" />

</collection-descriptor>
</class-descriptor>

4.32. How to map a list of Strings

You can not map a list of Strings with a collection descriptor. A collection descriptor can only be
used if the element class is a persistent class too. But element-class-ref="java.lang.String" won't
work, because it's no persistent entity class!
Follow these steps to provide a mapping for an attribute holding alist of Strings. Let's assume your
persistent class has an attribute listOfStrings holding a list of Strings:

protected Collection listOfStrings;

The database table mapped to the persistent class has a colum LIST_OF_STRINGS of type
VARCHAR that is used to hold all strings.

<field-descriptor
name="listOfStrings"
column="LIST_OF_STRINGS"
jdbc-type="VARCHAR"
conversion=

"o.a.ojb.broker.accesslayer.conversions.StringVector2VarcharFieldConversion"
/>

4.33. How to set up Optimistic Locking

Please see locking section.

4.34. How to use OJB in a cluster

Q: I'm running a web site in a load-balanced/cluster environment. Multiple servlet engines
(different VMs/HTTP sessions), each running an OJB instance, against a single shared database.
How should OJB be configured to get the concurrent servlet engines synchronized properly?

OJB

33
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

transactional isolation and locking
If you are using the PersistenceBroker API use optimistic locking (OL) to let OJB handle write
conflicts. To use OL define a TIMESTAMP or INTEGER column and the respective Java attribute
for it. In the field-descriptor of this attribute set the attribute locking="true".
If you are working with the ODMG API distributed pessemistic locking should be used, by setting
the respective flag in OJB.properties.

sequence numbers
Use a SequenceManager that is safe across multiple JVMs. The NextVal based SequenceManagers
or any other SequenceManager based on database mechanisms will be fine.

caching
You could use different caching implementations

1. Use the EmptyCacheImpl to avoid any dirty reads. (But: The EmptyCache cannot handle cyclic
structures on load!)

2. Use the PerBrokerCache Implementation to avoid dirty reads.
3. Use the OSCache cache implementation as distributed object cache.

There is also a complete howto document available that covers these topics.

4.35. How to turn of caching?

Declare an no-op implementation of the ObjectCache interface as cache. See detailed
description here.

4.36. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

As specified by JDO all persistent classe must implement the interface
javax.jdo.spi.PersistenceCapable. If a class does not implement this interface a JDO
implementation does not know how to handle it.
On the other hand the JDO spec claims to provide transaparent persistence. That is no persistence
class is required to implement a specific interface or to be derived from a special base class.
Sounds like a contradiction? It is! The JDO spec resolves this contradiction by stating that a JDO
implemention is responsible to add the methods required by
javax.jdo.spi.PersistenceCapable to the the user classes. This "injection" could be
achieved by Pre- or Post-processing. The strategy most implementations use is called
"bytecode-enhancement". This is a postprocesing step that adds the required methods to the .class
files of the persistent user classes.
The JDO Reference implementation also uses bytecode-enhancement. In order to enhance the
Product class to implement the javax.jdo.spi.PersistenceCapable interface use the
ant target "enhance-jdori" before launching the tutorial5 application. This is documentated in the
first section of tutorial4.html.

5.3. Getting Started

This document will guide you through the very first steps of setting up a project with OJB. To
make this easier, OJB comes with a blank project template called ojb-blank which you're
encouraged to use. You can download it here.

For the purpose of this guide, we'll be showing you how to setup the project for a simple
application that handles products and uses MySQL. This is continued later on in the next tutorial
parts.

5.3.1. Acquiring ojb-blank

OJB

34
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

First off, OJB uses Ant to build, so please install it prior to using OJB. In addition, please make
sure that the environment variables ANT_HOME and JAVA_HOME are correctly set to the top-level
folders of your Ant distribution and your JDK installation, respectively.

Next download the latest ojb-blank and OJB binary distributions. You can also start with the source
distribution rather than the binary as the unit tests provide excellent sample code and you can build
the ojb-blank project on your own with it.

The ojb-blank project contains all libraries necessary to get running. However, there may be
additional libraries required when you venture deeper into OJB's APIs. See here for a list of
additional libraries.
Most notably, you'll probably want to add the jdbc driver for you database unless you plan to use
the embedded Hsqldb database for which the ojb-blank project is pre-configured (including all
necessary jars).

5.3.2. Contents of ojb-blank

Copy the ojb-blank.jar file to your project directory and unpack it via the command

jar xvf ojb-blank.jar

This will unpack it into the ojb-blank directory under wherever you unpacked it from. You can
move things out of that directory into your project directory, or, more simply, rename the
ojb-blank directory to be whatever you want your project directory to be named.
After you unpacked the jar, you'll get the following directory layout:

\ojb-blank
.classpath
.project
build.properties
build.xml
\lib
\src

\java
\resources
\schema
\test

Here's a quick rundown on what the individual directories and files are:

.classpath, .project
An Eclipse project for your convenience. You can simply import it into Eclipse via File
-> Import... -> Existing Project into Workspace.
build.xml, build.properties
The Ant build script and the build properties. These are described in more detail below.
lib
Contains the libraries necessary to compile and run your project. If you want to use a
different database than Hsqldb, then put the jars of your jdbc driver in here.
src/java
Put your java source code here.
src/resources
Contains the runtime configuration files for OJB. For more detail see below.
src/schema
Here you will find a schema containing tables that are required by certain components
of OJB such as clustered locking and OJB managed sequences. More information on
these tables is available in the platform documentation. The schema is in a
database-independent format that can be used by Torque or commons-sql to create
the database.

OJB

35
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The ojb-blank project contains the runtime files of Torque 3.0.2, and provides a build
target that can be invoked on your schema (see below for details). Therefore, this
directory also contains the build script of Torque, but you won't need to invoke it
directly.
src/java
Place your unit tests in here.

5.3.2.1. Sample project

For our sample project, we should rename the directory to something more fitting, like
productmanager.

Also, since we're using MySQL, we put the MySQL jar of the jdbc driver, which is called
something like mysql-connector-java-[version]-stable-bin.jar, into the lib
subdirectory.

The only other thing missing is the source code, but since that's what the other tutorials are dealing
with, we will silently assume that it is already present in the src/java subdirectory.
If you don't want to write the code yourself, you can use the code from one of the tutorials which
you can download here.

Warning:
Note that if you do not intent to use JDO, then you should delete the files in the ojb.apache.ojb.tutorial5, otherwise you'll
get compilation errors.

5.3.3. The build files

5.3.3.1. Configuration via build.properties

The next step is to adapt the build files, especially the build.properties file to your
environment. It basically contains two sets of information, the database settings and the build
configuration. While you shouldn't have to change the latter, the database settings probably need to
be adapted to suit your needs:

Property Purpose

jcdAlias The name of the connection. You should leave
the default value, which is default.

databaseName This is the name of the database, per default
ojb_blank.

databaseUser The user name for accessing the database
(default: sa). If you're using Torque to create the
database, then this user also requires sufficient
rights to create databases and tables.

databasePassword Password for the user, per default empty.

dbmsName The type of database, which is one of the
following:
Db2, Firebird, Hsqldb, Informix, MaxDB,
MsAccess, MsSQL, MySQL,Oracle (pre-9i
versions), Oracle9i, WLOracle9i (Oracle 9i or
above used from WebSphere), PostgreSQL,
Sapdb, Sybase (generic), SybaseASA,
SybaseASE.
Please note that this setting is case-sensitive.
Per default, Hsqldb is used, which is an

OJB

36
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

embedded database. All files required for this
database come with the ojb-blank project.

jdbcRuntimeDriver The fully-qualified classname of the jdbc driver.
For Hsqldb this is org.hsqldb.jdbcDriver.

jdbcLevel The jdbc level that the driver conforms to.
Please check the documentation of your jdbc
driver for this value, though most jdbc drivers
conform to version 2.0 at least.
For the Hsqldb jdbc driver this is 2.0.

urlProtocol The protocol of the database url (see below),
usually jdbc.

urlSubprotocol The sub-protocol of the database url which is
database- and driver-specific. For Hsqldb, you're
using hsqldb.

urlDbalias This is the address that points the jdbc driver to
the database. For Hsqldb this is per default the
database name.

torque.database If you're using Torque to create the database,
then you have to set the database here (again).
Unfortunately, this value is different from the
dbmsName which defines the database for OJB.
Currently, these values are defined:
axion, cloudscape, db2, db2400, hypersonic
(which is Hsqldb), interbase (use for Firebird),
mssql, mysql, oracle, postgresql, sapdb, and
sybase.
Default value is hypersonic for use with
Hsqldb.

torque.database.createUrl This specifies the url that Torque will use in
order to create the database. Depending on the
database, this may be the same as the normal
access url (the default value), but for some
database this is different. Please check the
manual of your database for this url.

If you know how the jdbc url for connecting to your database looks like, then you can derive the
settings databaseName, databaseName, databaseName and databaseName easily:
Assume this url is given as:
jdbc:mysql://localhost:3306/myDatabase

then these properties are

Property Value

databaseName myDatabase

urlProtocol jdbc

urlSubprotocol mysql

urlDbalias //localhost/myDatabase

5.3.3.2. Building via build.xml

After setting up the build you're probably eager to actually build the project. Here's the actions that
you can perform using the Ant build file build.xml:

OJB

37
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Action (target in the build.xml file) What it does

clean Cleans up all files from the previous build.

compile Compiles your java source files to
build/classes. Usually, you don't run this
target, but rather the next one which includes
the compilation step.

build Compiles your java sources files (using the
compile action), and prepares the runtime
configuration files using the settings that you
specified in the build.properties file, most
notably the repository_database.xml
which will be located in the build/resources
directory after the build.
After you run this action, your application is
ready to go (if the action ran successfully, of
course).

jar A convenience action that packs your
successfully build application into a jar.

xdoclet Creates the runtime configuration files that
describe the repository, from javadoc comments
embedded in your java source files. Details on
how to this are given in the tutorials and in the
documentation of the XDoclet OJB module.

setup-db Creates the database and tables from a
database-independent schema using Torque.
You'll find more info on this schema in the
documentation of the XDoclet OJB module and
on the Torque homepage.

enhance-jdori This is a sample target that shows how a class
meant to be persistent with JDO, is processed
by the JDO bytecode enhancer from the JDO
reference implementation. It uses the Product
class from the JDO tutorial (tutorial 5).

So, a typical build would be achieved with this Ant call:
ant build

If you want to create the database as well, and you have javadoc comments in your source code that
describe the repository, then you would call Ant this way:
ant build setup-db

This will perform in that order the actions build, xdoclet (invoked automatically from the next
action) and setup-db.
Of course, you do not need to use Torque to setup your database, but it is a convenient way to do
so.

5.3.3.3. Sample project

First we change the database properties to these values (assuming that Torque will be used to setup
the database):

Property Value

jcdAlias We leave the default value of default.

databaseName Since the application manages products, we call

OJB

38
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

the database productmanager.

databaseUser This depends on your setup. For the purposes of
this guide, let's call him steve.

databasePassword Again depending on your setup. How about
secret (you know that you should not use this
password in reality ?!).

dbmsName MySQL

jdbcRuntimeDriver Its called com.mysql.jdbc.Driver.

jdbcLevel For the newer Mysql drivers this is 3.0.

urlProtocol The default of jdbc will do.

urlSubprotocol For MySQL, we're using mysql.

urlDbalias Assuming that the database runs locally on the
default port, we have
//localhost/${databaseName}.

torque.database We want to use Torque, so we put mysql here.

torque.database.createUrl MySQL allows to create a database via jdbc.
The url that we should use to do so, is the
normal url used to access the database minus
the database name. So the value here is:
${urlProtocol}:${urlSubProtocol}://localhost/.
Please note that the trailing slash is important.

Ok, now we have everything configured for building. The build.properties file now looks
like this (the comments have been removed for brevity):

jcdAlias=default
databaseName=productmanager
databaseUser=steve
databasePassword=secret

dbmsName=MySQL
jdbcLevel=3.0
jdbcRuntimeDriver=com.mysql.jdbc.Driver
urlProtocol=jdbc
urlSubprotocol=mysql
urlDbalias=//localhost/${databaseName}

torque.database=mysql
torque.database.createUrl=${urlProtocol}:${urlSubprotocol}://localhost/

jar.name=projectmanager.jar

source.dir=src
source.java.dir=${source.dir}/java
source.resource.dir=${source.dir}/resources
source.test.dir=${source.dir}/test
source.schema.dir=${source.dir}/schema

build.dir=build
build.lib.dir=lib
build.classes.dir=${build.dir}/classes/
build.resource.dir=${build.dir}/resources/

target.dir=target

Looks like we're ready for building. Again, we're assuming that the source code is already present.
So we're invoking Ant now in the top-level folder productmanager:

OJB

39
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

ant build setup-db

which should (assuming five java classes) produce an output like this

Buildfile: build.xml

compile:
[mkdir] Created dir: /home/steve/projects/productmanager/build
[mkdir] Created dir: /home/steve/projects/productmanager/build/classes
[javac] Compiling 5 source files to

/home/steve/projects/productmanager/build/classes

build:
[copy] Copying 10 files to

/home/steve/projects/productmanager/build/resources

xdoclet:
[ojbdoclet] (XDocletMain.start 47) Running <ojbrepository/>
[ojbdoclet] Generating ojb repository descriptor
(build/resources//repository_user.xml)
[ojbdoclet] Type test.Project
[ojbdoclet] Processed 5 types
[ojbdoclet] Processed 5 types
[ojbdoclet] (XDocletMain.start 47) Running <torqueschema/>
[ojbdoclet] Generating torque schema (build/resources//project-schema.xml)
[ojbdoclet] Processed 5 types

setup-db:

check-use-classpath:

check-run-only-on-schema-change:

sql-check:

sql:
[echo] +--+
[echo] | |
[echo] | Generating SQL for YOUR Torque project! |
[echo] | Woo hoo! |
[echo] | |
[echo] +--+

sql-classpath:
[torque-sql] Using contextProperties file:

/home/steve/projects/productmanager/build.properties
[torque-sql] Using classpath
[torque-sql] Generating to file
/home/steve/projects/productmanager/build/resources/report.productmanager.sql.generation
[torque-sql] Parsing file: 'ojbcore-schema.xml'
[torque-sql] (transform.DTDResolver 128) Resolver: used
database.dtd from

org.apache.torque.engine.database.transform package
[torque-sql] Parsing file: 'project-schema.xml'
[torque-sql] (transform.DTDResolver 140) Resolver: used

http://jakarta.apache.org/turbine/dtd/database.dtd

sql-template:

create-db-check:

create-db:
[torque-data-model] Using classpath
[torque-data-model] Generating to file
/home/steve/projects/productmanager/build/resources/create-db.sql
[torque-data-model] Parsing file: 'ojbcore-schema.xml'
[torque-data-model] (transform.DTDResolver 128) Resolver: used
database.dtd from

org.apache.torque.engine.database.transform package
[torque-data-model] Parsing file: 'project-schema.xml'

OJB

40
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

[torque-data-model] (transform.DTDResolver 140) Resolver: used
http://jakarta.apache.org/turbine/dtd/database.dtd

[echo]
[echo] Executing the create-db.sql script ...
[echo]
[sql] Executing file:

/home/steve/projects/productmanager/build/resources/create-db.sql
[sql] 2 of 2 SQL statements executed successfully

insert-sql:
[torque-sql-exec] Our new url -> jdbc:mysql://localhost/productmanager
[torque-sql-exec] Executing file:
/home/steve/projects/productmanager/build/resources/project-schema.sql
[torque-sql-exec] Executing file:
/home/steve/projects/productmanager/build/resources/ojbcore-schema.sql
[torque-sql-exec] 50 of 50 SQL statements executed successfully

BUILD SUCCESSFUL

That was it. You now have your database setup properly. Go on, have a look:

mysql -u steve productmanager

mysql> show tables;

There, all tables for your project, as well as the tables required for some OJB functionality which
we also used in the above process (you can recognize them by their names which start with ojb_).

5.3.4. The runtime configuration files

The last thing missing for actually running your project is to adapt the runtime configuration files
used by OJB. There are basically three sets of configuration that need to be provided: configuration
of the OJB runtime, description of the database connection, and description of the repository.

5.3.4.1. Configuring the OJB runtime

With the OJB.properties file and OJB-logging.properties (both located in src/resources), you
configure and finetune the runtime aspects of OJB. For a simple application you'll probably won't
have to change anything in them, though.

5.3.4.2. Configuring the database connection

For projects that use OJB, you configure the connections to the database via jdbc connection
descriptors. These are usually defined in a file called repository_database.xml (located in
src/resources). In the ojb-blank project, the build file will setup this file for you and place it
in the build/resources directory.

5.3.4.3. Configuring the repository

Finally you need to configure the repository. It consists of descriptors that define which java classes
are mapped in what way to which database tables, and it is typically contained in the
repository_user.xml file. This is the most complicated configuration part which will be
explained in much more detail in the rest of the tutorials.
An convenient way of creating the repository metadata is to use the XDoclet OJB module.
Basically, you put specific Javadoc comments into your source code, which are then processed by
the build file (xdoclet and setup-db targets) and the repository metadata and the database
schema are generated.

5.3.4.4. Sample project

Actually, there is not much to do here. For our simple sample application the default properties of

OJB

41
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB work just fine, so we leave OJB.properties and OJB-logging.properties
untouched.

Also, the build file generated the connection descriptor for us, and we were using the XDoclet OJB
module and Torque to generate the repository metadata and database for us. For instance, the
processed connection descriptor (file build/resources/repository_database.xml)
looks like this:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="MySQL"
jdbc-level="3.0"
driver="com.mysql.jdbc.Driver"
protocol="jdbc"
subprotocol="mysql"
dbalias="//localhost/productmanager"
username="steve"
password="secret"
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>
<connection-pool

maxActive="21"
validationQuery="" />

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>
<attribute attribute-name="globalSequenceId" attribute-value="false"/>
<attribute attribute-name="globalSequenceStart"

attribute-value="10000"/>
</sequence-manager>

</jdbc-connection-descriptor>

If you're curious as to what this stuff means, check this reference guide.

The repository metadata (file build/resources/repository_user.xml) starts like:

<class-descriptor
class="productmanager.Product"
table="Product"

>
<field-descriptor

name="name"
column="name"
jdbc-type="VARCHAR"
length="32"

>
</field-descriptor>
<field-descriptor

name="price"
column="price"
jdbc-type="FLOAT"

>
</field-descriptor>
<field-descriptor

name="stock"
column="stock"
jdbc-type="INTEGER"

>
</field-descriptor>

OJB

42
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"

>
</field-descriptor>

</class-descriptor>
...

Now you should be able to run your application:

cd build/resources

java productmanager.Main

Of course, you'll need to setup the CLASSPATH before running your application. You'll should add
all jars from the lib folder except the ones for Torque (torque-[version].jar,
velocity-[version].jar and commons-collections-[version].jar) and for the
XDoclet OJB module (xdoclet-[version].jar, xjavadoc-[version].jar and
xdoclet-ojb-module-[version].jar).

It is important to note that OJB per default assumes the OJB.properties and
OJB-logging.properties files in the directory where you're starting the application. Hence,
we changed to the build/resources directory before running the application. This of course
requires the compiled classes to be on the classpath, as well (directory build/classes).

Per default, the same applies to the other configuration files (repository*.xml) but you can
change this in the OJB.properties file.

5.3.5. Learning More

After you've have learned about building and configuring projects that use OJB, you should check
out the tutorials to learn how to specify your persistent classes and how to use OJB's APIs to
perform database operations. The Mapping Tutorial in particular shows you how to map your
classes to tables in an RDBMS.

5.4. Tutorials

5.4.1. Tutorial Summary

Summary of all OJB tutorials.

• Object-Relational Mapping
The Object-Relational Mapping tutorial walks though a basic metadata mapping for an object to
a relational database.

• The Persistence Broker API
The PB tutorial demonstrates how to use the PersistenceBroker API which forms an
object persistence kernel for OJB. While it is the lowest level API provided by OJB it is also
exceptionally easy to use.

• The ODMG API
The ODMG API tutorial steps though using the ODMG 3.0 API provided by OJB. This is an
industry standard API designed for Object Databases.

• The JDO API
JDO is a standard API for accessing persistent objects in Java. This tutorial steps through how
to use OJB's JDO plugin.

• The Object Transaction Manager
The OTM is OJB's implementation of object level transactions. These are transactions
independent of the underlying relational database providing more efficient resource utilisation

OJB

43
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

and extremely flexible locking semantics.

Further strongly recommended documentation for all beginners:

• OJB Queries
This document explains the usage of the query syntax.

• Basic O/R Technique
This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n
relations, the auto-xxx settings for references and proxy objects/collections.

• Tools to build large metadata mappings
Explains how to build large metadata mapping and present useful tools.

5.4.2. Mapping Tutorial

5.4.2.1. What is the Object-Relational Mapping Metadata?

The O/R mapping metadata is the specific configuration information that specifies how to map
classes to relational tables. In OJB this is primarily accomplished through an xml document, the
repository.xml file, which contains all of the initial mapping information.

The Product Class

This tutorial looks at mapping a simple class with no relations:

package org.apache.ojb.tutorials;

public class Product
{

/** product name */
private String name;

/** price per item */
private Double price;

/** stock of currently available items */
private int stock;

...
}

This class has three fields, price, stock, and name, that need to be mapped to the database.
Additionally, we will introduce one artificial field used by the database that has no real meaning to
the class, an artificial key primary id:

/** Artificial primary-key */
private Integer id;

Including the primary-key attribute in the class definition is mandatory, but under certain
conditions anonymous keys can also be used to keep this database artifact hidden in the database.
However, as access to an artifical unique identifier for a particular object instance can be useful,
particularly in web-based applications, this tutorial will expose it

The Database

OJB is very flexible in terms of how it can map classes to database tables, however the simplest
technique for mapping a single class to a relational database is to map the class to a single table,
and each attribute on the class to a single column. Each row will then represent a unique instance of
that class.

The DDL for such a table, for the Product class might look like:

OJB

44
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

CREATE TABLE Product
(

id INTEGER PRIMARY KEY,
name VARCHAR(100),
price DOUBLE,
stock INTEGER

)

The individual field names in the database and class definition match here, but this is no
requirement. They may vary independently of each other as the metadata will specify what maps to
what.

The Metadata

The repository.xml document is split into several physical documents. The
repository_user.xml xml file is used to contain user-defined mappings. OJB uses the other
ones for managing other metadata, such as database information.

In general each class will be defined within a class-descriptor element with
field-descriptoy child elements for each field. In addition the mapping of references and
collections is described in the basic technique section. This tutorial sticks to mapping a single,
simplistic, class.

The complete mapping for the Product class is as follows:

<class-descriptor
class="org.apache.ojb.tutorials.Product"
table="Product"

>
<field-descriptor

name="id"
column="id"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="name"

/>
<field-descriptor

name="price"
column="price"

/>
<field-descriptor

name="stock"
column="stock"

/>
</class-descriptor>

Examine the class-descriptor element. It has two attributes:

• class - This attribute is used to specify the fully-qualified Java class name for this mapping.
• table - This attribute specifies which table is used to store instances of this class.

Other information can be specified here, such as proxies and custom row-readers as specified in the
repository.xml documentation.

Examine now the first field-descriptor element. This is used to describe the id field of the
Product class. Two required attributes are specified:

• name - This specifies the name of the instance variable in the Java class.
• column - This specifies the column in the table specified for this class used to store the value.

In addition to those required attributes, notice that the first element specifies two optional

OJB

45
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

attributes:

• primary-key - This attribute specifies that this field is the primary key for this class.
• autoincrement - The autoincrement attribute specifies that the value will be automatically

assigned by OJB sequence manager. This might use a database supplied sequence, or, by
default, an OJB generated value.

Using the XDoclet module

OJB provides an XDoclet module to make generating the repository descriptor and the
corresponding table schema easier. An XDoclet module basically processes custom JavaDoc tags in
the source code, and generates files from them. In the case of OJB, two types of files can be
generated: the repository descriptor (repository_user.xml) and a Torque schema which can
be used to create the tables in the database. This provides one important benefit: the descriptor and
the database schema are much more likely in sync with the code thus avoiding errors that are
usually hard to find. Furthermore, the XDoclet module contains some checks that find common
mapping errors.

In the above example, the source code for Product class with JavaDoc tags would look like:

package org.apache.ojb.tutorials;

/**
* @ojb.class
*/
public class Product
{

/**
* Artificial primary-key
*
* @ojb.field primarykey="true"
* autoincrement="ojb"
*/
private Integer id;

/**
* product name
*
* @ojb.field length="100"
*/
private String name;

/**
* price per item
*
* @ojb.field
*/
private Double price;

/**
* stock of currently available items
*
* @ojb.field
*/
private int stock;

}

As you can see, much of the stuff that is present in the descriptor (and the DDL) is generated
automatically by the XDoclet module, e.g. the table/column names and the jdbc-types. Of course,
you can also specify them in the JavaDoc tags, e.g. if they differ from the java names.

For details on OJB's JavaDoc tags and how to generate and use the mapping files please see the
OJB XDoclet Module documentation.

OJB

46
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.4.2.2. Advanced Topics

Relations

As most object models have relationships between objects, mapping specific types of relationships
(1:1, 1:Many, Many:Many) is important in mapping objects into a relational database. The basic
technique tutorial discusses this in great detail.

It is important to note that this metadata mapping can be modified at runtime through the
org.apache.ojb.metadata.MetadataManager class.

Inheritence

OJB can map inheritence hierarchies using a variety of techniques discussed in the Extents and
Polymorphism section of the Advanced O/R Documentation

Anonymous Keys

This tutorial uses explicit keys mapped into the Java class. It is also possible to keep artificial keys
completely hidden within the database. The Anonymous Keys HOWTO explains how this is
accomplished.

Large Projects

Projects with small numbers of persistent classes can be mapped by hand, however, many projects
can have hundreds, or even thousands, of distinct classes which must be mapped. In these
circumstances managing the class-database mapping by hand is not viable. The How To Build
Mappings HOWTO explores different tools which can be used for managing large-scale mapping.

Custom JDBC Mapping

OJB maps Java types to JDBC types according to the JDBC Types table. You can, however, define
custom JDBC -> Java type mappings via custom field conversions.

5.4.3. Persistence Broker Tutorial

5.4.3.1. The PersistenceBroker API

Introduction

The PersistenceBroker API provides the lowest level access to OJB's persistence engine. While it is
a low-level API compared to the OTM, ODMG, or JDO API's it is still very straightforward to use.

The core class in the PersistenceBroker API is the
org.apache.ojb.broker.PersistenceBroker class. This class provides the point of
access for all persistence operations in this API.

More detailed information can be found in the PB-guide and in the other reference guides.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{

/* Instance Properties */

OJB

47
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

private Double price;
private Integer stock;
private String name;lean

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial

The source code for all tutorials is available in the seperate tutorials-src.jar which you
can download here. If you're eager to try them out, you can use them with the ojb-blank project
which can be downloaded from the same place. It is described in the Getting started section.

Further information about the OJB PB-api implementation can be found in the PB guide.

A First Look - Persisting New Objects

The most basic operation is to persist an object. This is handled very easily by just

1. obtaining a PersistenceBroker
2. begin the PB-transaction
3. storing the object via the PersistenceBroker
4. commit transaction
5. closing the PersistenceBroker

For example, the following function stores a single object of type Product.

public static void storeProduct(Product product)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.store(product);
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

Two OJB classes are used here, the PersistenceBrokerFactory and the
PersistenceBroker. The PersistenceBrokerFactory class manages the lifecycles of
PersistenceBroker instances: it creates them, pools them, and destroys them as needed. The
exact behavior is very configurable.

In this case we used the static
PersistenceBrokerFactory.defaultPersistenceBroker() method to obtain an
instance of a PersistenceBroker to the default data source. This is most often how it is used
if there is only one database for an application. If there are multiple data sources, a broker may be
obtained by name (using a PBKey instance as argument in
PersistenceBrokerFactory.createPersistenceBroker(pbKey)).

OJB

48
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

It is worth noting that the broker.close() call is made within a finally {...} block.
This ensures that the broker will be closed, and returned to the broker pool, even if the function
throws an exception.

To use this function, we just create a Product and pass it to the function:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(1.99);
product.setStock(10);
storeProduct(product);

Once a PersistenceBroker has been obtained, its
PersistenceBroker.store(Object) method is used to make an object persistent.

Maybe you have noticed that there has not been an assignment to product.id, the primary-key
attribute. Upon storing product OJB detects that the attribute is not properly set and assigns a
unique id. This automatic assignment of unique Ids for the attribute id has been explicitly declared
in the XML repository file, as we discussed in the .

If several objects need to be stored, this can be done within a transaction, as follows.

public static void storeProducts(Product[] products)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
for (int i = 0; i < products.length; i++)
{

broker.store(products[i]);
}
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

This contrived example stores all of the passed Product instances within a single transaction via the
PersistenceBroker.beginTransaction() and
PersistenceBroker.commitTransaction(). These are database level transactions, not
object level transactions.

Querying Persistent Objects

Once objects have been stored to the database, it is important to be able to get them back. The
PersistenceBroker API provides two mechanisms for building queries, by using a template object,
or by using specific criteria.

public static Product findByTemplate(Product template)
{

PersistenceBroker broker = null;
Product result = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

OJB

49
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

QueryByCriteria query = new QueryByCriteria(template);
result = (Product) broker.getObjectByQuery(query);

}
finally
{

if (broker != null) broker.close();
}
return result;

}

This function finds a Product by building a query against a template Product. The template
should have any properties set which should be matched by the query. Building on the previous
example where a product was stored, we can now query for that same product:

Product product = new Product();
product.setName("Sprocket");
product.setPrice(new Double(1.99));
product.setStock(new Integer(10));
storeProduct(product);

Product template = new Product();
template.setName("Sprocket");
Product sameProduct = findByTemplate(template);

In the above code snippet, product and sameProduct will reference the same object
(assuming there are no additional products in the database with the name "Sprocket").

The template Product has only one of its properties set, the name property. The others are all
null. Properties with null values are not used to match.

An alternate, and more flexible, way to have specified a query via the PersistenceBroker API is by
constructing the criteria on the query by hand. The following function does this.

public static Collection getExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));
criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
finally
{

if (broker != null) broker.close();
}
return results;

}

This function builds a Criteria object and uses it to set more complex query parameters - in this
case greater-than and less-than contraints. Looking at the first constraint put on the criteria,
criteria.addLessOrEqualThan("stock", new Integer(10)); notice the
arguments. The first is the property name on the object being queried for. The second is an
Integer instance to be used for the comparison.

After the Criteria has been built, the QueryByCriteria constructor used is also different
from the previous example. In this case the criteria does not know the type of the object it is being
used against, so the Class must be specified to the query.

Finally, notice that this example uses the

OJB

50
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

PersistenceBroker.getCollectionByQuery(...) method instead of the
PersistenceBroker.getObjectByQuery(...) method used previously. This is used
because we want all of the results. Either form can be used with either method of constructing
queries. In the case of the PersistenceBroker.getObjectByQuery(...) style query,
the first matching object is returned, even if there are multiple matching objects.

Updating Persistent Objects

The same mechanism, and method, is used for updating persistent objects as for inserting persistent
objects. The same PersistenceBroker.store(Object) method is used to store a
modified object as to insert a new one - the difference between new and modified objects is
irrelevent to OJB.

This can cause some confusion for people who are very used to working in the stricter confines of
SQL inserts and updates. Basically, OJB will insert a new object into the relational store if the
primary key, as specified in the O/R metadata is not in use. If it is in use, it will update the existing
object rather than create a new one.

This allows programmers to treat every object the same way in an object model, whether it has
been newly created and made persistent, or materialized from the database.

Typically, making changes to a peristent object first requires retrieving a reference to the object, so
the typical update cycle, unless the application caches objects, is to query for the object to modify,
modify the object, and then store the object. The following function demonstrates this behavior by
"selling" a Product.

public static boolean sellOneProduct(Product template)
{

PersistenceBroker broker = null;
boolean isSold = false;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
QueryByCriteria query = new QueryByCriteria(template);
Product result = (Product) broker.getObjectByQuery(query);

if (result != null)
{

broker.beginTransaction();
result.setStock(new Integer(result.getStock().intValue() - 1));
broker.store(result);
// alternative, more performant
// broker.store(result, ObjectModificationDefaultImpl.UPDATE);
broker.commitTransaction();
isSold = true;

}
}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}
return isSold;

}

This function uses the same query-by-template and PersistenceBroker.store() API's
examined previously, but it uses the store method to store changes to the object it retrieved. It is
worth noting that the entire operation took place within a transaction.

OJB

51
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Deleting Persistent Objects

Deleting persistent objects from the repository is accomplished via the
PersistenceBroker.delete() method. This removes the persistent object from the
repository, but does not affect any change on the object itself. For example:

public static void deleteProduct(Product product)
{

PersistenceBroker broker = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();
broker.beginTransaction();
broker.delete(product);
broker.commitTransaction();

}
catch(PersistenceBrokerException e)
{

if(broker != null) broker.abortTransaction();
// do more exception handling

}
finally
{

if (broker != null) broker.close();
}

}

This method simply deletes an object from the database.

Find object by primary key

In some cases only the primary key values (single field or n-fields for composed primary keys) of
an object are known. In OJB you have several ways to request the whole object. It is possible to
build a query as shown above, but the smarter solution is to use
PersistenceBroker#getObjectByIdentity(Identity oid). An Identity object is a
unique representation of a persistence capable object based on the object primary key values and
the top-level class (abstract class, interface or the class itself, depending on the extent metadata
mapping).

For example, to find an Product with an single primary key of '23' do

Identity oid = broker.serviceIdentity().buildIdentity(Product.class, new
Integer(23));
Product product = (Product) broker.getObjectByIdentity(oid);

5.4.3.2. Exception Handling

Most PersistenceBroker operations throw a
org.apache.ojb.broker.PersistenceBrokerException, which is derived from
java.lang.RuntimeException if an error occurs. This means that no try/catch block is
required but does not mean that it should not be used. This tutorial specifically does not catch
exceptions all in order to focus more tightly on the specifics of the API, however, best usage would
be to include a try/catch/finally block around persistence operations using the PeristenceBroker
API.

Additionally, the closing of PersistenceBroker instances is best handled in finally blocks
in order to guarantee that it is run, even if an exception occurs. If the
PersistenceBroker.close() is not called then the application will leak broker instances.
The best way to ensure that it is always called is to always retrieve and use
PersistenceBroker instances within a try {...} block, and always close the broker in a
finally {...} block attached to the try {...} block.

OJB

52
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

A better designed getExpensiveLowStockProducts() method is presented here.

public static Collection betterGetExpensiveLowStockProducts()
{

PersistenceBroker broker = null;
Collection results = null;
try
{

broker = PersistenceBrokerFactory.defaultPersistenceBroker();

Criteria criteria = new Criteria();
criteria.addLessOrEqualThan("stock", new Integer(20));
criteria.addGreaterOrEqualThan("price", new Double(100000.0));

QueryByCriteria query = new QueryByCriteria(Product.class, criteria);
results = broker.getCollectionByQuery(query);

}
catch (PersistenceBrokerException e)
{

// Handle exception
}
finally
{

if (broker != null) broker.close();
}
return results;

}

Notice first that the PersistenceBroker is retrieved and used within the confines of a try
{...} block. Assuming nothing goes wrong the entire operation will execute there, all the way to
the return results; line. Java guarantees that finally {...} blocks will be called
before a method returns, so the broker.close() method is only included once, in the
finally block. As an exception may have occured while attempting to retrieve the broker, a
not-null test is first performed before closing the broker.

5.4.4. The ODMG API

5.4.4.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level API and query language based interface over the PersistenceBroker API.

More detailed information can be found in the ODMG-guide and in the other reference guides.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{
/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...
}

The metadata descriptor for mapping this class is described in the mapping tutorial

OJB

53
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

When using 1:1, 1:n and m:n references (the example doesn't use it) the ODMG-api need specific
metadata settings on relationship definition, the mandatory settings are listed in the ODMG-Guide -
additional info see auto-xxx settings and repository file settings.

As with the other tutorials, the source code for this tutorial is contained in the
tutorials-src.jar which can be downloaded here. The source files are contained in the
org/apache/ojb/tutorial2/ directory.
You can try it out with the ojb-blank project which can be downloaded from the same place and is
described in the Getting started section.

Further information about the OJB odmg-api implementation can be found in the ODMG guide.

5.4.4.2. Initializing ODMG

The ODMG implementation needs to have a database opened for it to access. This is accomplished
via the following code:

Implementation odmg = OJB.getInstance();
Database db = odmg.newDatabase();
db.open("default", Database.OPEN_READ_WRITE);

/* ... use the database ... */

db.close();

With method call OJB.getInstance() always a new org.odmg.Implementation instance will
be created and odmg.newDatabase() returns a new Database instance.

Call db.open(...) opens an ODMG Database using the name specified in metadata for the
database -- "default" in this case. Notice the Database is opened in read/write mode. It is possible
to open it in read-only or write-only modes as well.

Once a Implementation instance is created and a Database has been opened it is available
for use. Unlike PersistenceBroker instances, ODMG Implementation and Database
instances are threadsafe and can typically be used for the entire lifecycle of an application. There is
no need to call the Database.close() method until the database is truly no longer needed.

The OJB.getInstance() function provides the ODMG Implementation instance required
for using the ODMG API. From here on out it is straight ODMG code that should work against any
compliant ODMG implementation.

5.4.4.3. Persisting New Objects

Persisting an object via the ODMG API is handled by writing it to the peristence store within the
context of a transaction:

public static void storeNewProduct(Product product)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();
// get current used Database instance
Database db = odmg.getDatabase(null);
// make persistent new object
db.makePersistent(product);
tx.commit();

}

Once the ODMG implementation has been obtained it is used to begin a transaction, obtain a write
lock on the Product, and commit the transaction. It is very important to note that all changes

OJB

54
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

need to be made within transactions in the ODMG API. When the transaction is committed the
changes are made to the database. Until the transaction is committed the database is unaware of any
changes -- they exist solely in the object model.

5.4.4.4. Querying Persistent Objects

The ODMG API uses the OQL query language for obtaining references to persistent objects. OQL
is very similar to SQL, and using it is very similar to use JDBC. The ODMG implementation is
used to create a query, the query is specifed, executed, and a list fo results is returned:

public static Product findProductByName(String name) throws Exception
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();

OQLQuery query = odmg.newOQLQuery();
query.create("select products from "

+ Product.class.getName()
+ " where name = $1");

query.bind(name);
List results = (List) query.execute();
Product product = (Product) results.iterator().next();

tx.commit();
return product;

}

5.4.4.5. Updating Persistent Objects

Updating a persistent object is done by modifying it in the context of a transaction, and then
committing the transaction:

public static void sellProduct(Product product, int number)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();
tx.begin();

tx.lock(product, Transaction.WRITE);
product.setStock(new Integer(product.getStock().intValue() - number));

tx.commit();
}

The sample code obtains a write lock on the object (before the changes are made), binding it to the
transaction, changes the object, and commits the transaction. The newly modified Product now
has a new stock value.

5.4.4.6. Deleting Persistent Objects

Deleting persistent objects requires directly addressing the Database which contains the
persistent object. This can be obtained from the ODMG Implementation by asking for it. Once
retrieved, just ask the Database to delete the object. Once again, this is all done in the context of
a transaction.

public static void deleteProduct(Product product)
{

// get the used Implementation instance
Implementation odmg = ...;
Transaction tx = odmg.newTransaction();

OJB

55
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

tx.begin();
// get current used Database instance
Database db = odmg.getDatabase(null);
db.deletePersistent(product);
tx.commit();

}

It is important to note that the Database.deletePerstient() call does not delete the object
itself, just the persistent representation of it. The transient object still exists and can be used
however desired -- it is simply no longer persistent.

5.4.5. JDO Tutorial

5.4.5.1. Using the ObJectRelationalBridge JDO API

Introduction

This document demonstrates how to use ObjectRelationalBridge and the JDO API in a simple
application scenario. The tutorial application implements a product catalog database with some
basic use cases. The source code for the tutorial application is shipped in the
tutorials-src.jar which can be downloaded here. The source for this tutorial is found in the
directory org/apache/ojb/tutorial5.

This document is not meant as a complete introduction to JDO. For more information see: Sun's
JDO site.

Note:
OJB does not provide it's own JDO implementation yet. A full JDO implementation is in the scope of the 2.0 release.
For the time being we provide a plugin to the JDO reference implementation called OjbStore. The OjbStore plugin resides in the
package org.apache.ojb.jdori.sql.

Running the Tutorial Application

To install and run the demo application with the ojb-blank sample project (which is described
in more detail here) please follow the following steps:

1. Extract the tutorial-src.jar that you downloaded from here into the src/java
subdirectory of the ojb-blank project.
The JDO tutorial source files are contained in the org/apache/ojb/tutorial5
subdirectory, and you can safely erase the subdirectories of the other tutorials.

2. Download the JDO Reference Implementation from Sun's JDO site.
Extract the archiv to a local directory and copy the files:
• jdori.jar
• jdo.jar

into the lib directory of the project.
3. Now you can run the test application with these commands:

ant build enhance-jdori
from the toplevel project directory. The latter of these commands will enhance the jdo tutorial
classes. Note that due to some limitations in the JDO reference implementation, the ant target
will only work for the JDO tutorial, so if you want to create you own JDO application using the
ojb-blank project, you have to adapt the build file accordingly.
To setup the test database you can issue this command

ant setup-db
4. Now you can start the tutorial application by executing

OJB

56
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

cd build/resources

java org.apache.ojb.tutorial5.Main
from the project toplevel directory.

5.4.5.2. Using the JDO API in the UseCase Implementations

As shown here OJB supports four different API's. The PersistenceBroker, the OTM layer, the
ODMG implementation, and the JDO implementation.

The PB tutorial implemented the sample application's use cases with the PersistenceBroker API.
This tutorial will show how the same use cases can be implemented using the JDO API.

You can get more information about the JDO API at JDO javadocs.

Obtaining the JDO PersistenceManager Object

In order to access the functionalities of the JDO API you have to deal with a special facade object
that serves as the main entry point to all JDO operations. This facade is specified by the Interface
javax.jdo.PersistenceManager.

A Vendor of a JDO compliant product must provide a specific implementation of the
javax.jdo.PersistenceManager interface. JDO also specifies that a JDO implementation
must provide a javax.jdo.PersistenceManagerFactory implementation that is
responsible for generating javax.jdo.PersistenceManager instances.

So if you know how to use the JDO API you only have to learn how to obtain the OJB specific
PersistenceManagerFactory object. Ideally this will be the only vendor specific operation.

In our tutorial application the PersistenceManagerFactory object is obtained in the
constructor of the Application class and reached to the use case implementations for further usage:

public Application()
{

factory = null;
manager = null;
try
{

// create OJB specific factory:
factory = new OjbStorePMF();

}
catch (Throwable t)
{

System.out.println("ERROR: " + t.getMessage());
t.printStackTrace();

}
useCases = new Vector();
useCases.add(new UCListAllProducts(factory));
useCases.add(new UCEnterNewProduct(factory));
useCases.add(new UCEditProduct(factory));
useCases.add(new UCDeleteProduct(factory));
useCases.add(new UCQuitApplication(factory));

}

The class org.apache.ojb.jdori.sql.OjbStorePMF is the OJB specific
javax.jdo.PersistenceManagerFactory implementation.

########### TODO: Put information about the .jdo files #############

The PersistenceManagerFactory object is reached to the constructors of the UseCases.
These constructors store it in a protected attribute factory for further usage.

Retrieving collections

OJB

57
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The next thing we need to know is how this Implementation instance integrates into our persistence
operations.

In the use case UCListAllProducts we have to retrieve a collection containing all product
entries from the persistent store. To retrieve a collection containing objects matching some criteria
we can use the JDOQL query language as specified by the JDO spec. In our use case we want to
select all persistent instances of the class Products. In this case the query is quite simple as it does
not need any limiting search criteria.

We use the factory to create a PersistenceManager instance in step one. In the second step we ask
the PersistenceManager to create a query returning all Product instances.

In the third step we perform the query and collect the results in a collection.

In the fourth step we iterate through the collection to print out each product matching our query.

public void apply()
{

// 1. get a PersistenceManager instance
PersistenceManager manager = factory.getPersistenceManager();
System.out.println("The list of available products:");

try
{

// clear cache to provoke query against database
PersistenceBrokerFactory.

defaultPersistenceBroker().clearCache();

// 2. start tx and form query
manager.currentTransaction().begin();
Query query = manager.newQuery(Product.class);

// 3. perform query
Collection allProducts = (Collection)query.execute();

// 4. now iterate over the result to print each
// product and finish tx
java.util.Iterator iter = allProducts.iterator();
if (! iter.hasNext())
{

System.out.println("No Product entries found!");
}
while (iter.hasNext())
{

System.out.println(iter.next());
}
manager.currentTransaction().commit();

}
catch (Throwable t)
{

t.printStackTrace();
}
finally
{

manager.close();
}

}

Storing objects

Now we will have a look at the use case UCEnterNewProduct. It works as follows: first create
a new object, then ask the user for the new product's data (productname, price and available stock).
These data is stored in the new object's attributes. This part is no different from the PB tutorial
implementation. (Steps 1. and 2.)

OJB

58
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Now we will store the newly created object in the persistent store by means of the JDO API. With
JDO, all persistence operations must happen within a transaction. So the third step is to ask the
PersistenceManager object for a fresh javax.jdo.Transaction object to work with. The
begin() method starts the transaction.

We then have to ask the PersistenceManager to make the object persistent in step 4.

In the last step we commit the transaction. All changes to objects touched by the transaction are
now made persistent. As you will have noticed there is no need to explicitly store objects as with
the PersistenceBroker API. The Transaction object is responsible for tracking which objects have
been modified and to choose the appropriate persistence operation on commit.

public void apply()
{

// 1. this will be our new object
Product newProduct = new Product();
// 2. now read in all relevant information and fill the new object:
System.out.println("please enter a new product");
String in = readLineWithMessage("enter name:");
newProduct.setName(in);
in = readLineWithMessage("enter price:");
newProduct.setPrice(Double.parseDouble(in));
in = readLineWithMessage("enter available stock:");
newProduct.setStock(Integer.parseInt(in));

// 3. create PersistenceManager and start transaction
PersistenceManager manager = factory.getPersistenceManager();

Transaction tx = null;
tx = manager.currentTransaction();
tx.begin();

// 4. mark object as persistent
manager.makePersistent(newProduct);

// 5. commit transaction
tx.commit();

manager.close();
}

Updating Objects

The UseCase UCEditProduct allows the user to select one of the existing products and to edit
it.

The user enters the products unique id. The object to be edited is looked up by this id. (Steps 1., 2.
and 3.) This lookup is necessary as our application does not hold a list of all product objects.

The product is then edited (Step 4.).

In step five the transaction is commited. All changes to objects touched by the transaction are now
made persistent. Because we modified an existing object an update operation is performed against
the backend database.

public void apply()
{

PersistenceManager manager = null;

// ask user which object should edited
String in = readLineWithMessage("Edit Product with id:");
int id = Integer.parseInt(in);

Product toBeEdited;
try

OJB

59
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

{
// 1. start transaction
manager = factory.getPersistenceManager();
manager.currentTransaction().begin();

// We don't have a reference to the selected Product.
// So we have to look it up first,

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query
Collection result = (Collection) query.execute();
toBeEdited = (Product) result.iterator().next();

if (toBeEdited == null)
{

System.out.println("did not find a matching instance...");
manager.currentTransaction().rollback();
return;

}

// 4. edit the existing entry
System.out.println("please edit the product entry");
in =

readLineWithMessage(
"enter name (was " + toBeEdited.getName() + "):");

toBeEdited.setName(in);
in =

readLineWithMessage(
"enter price (was " + toBeEdited.getPrice() + "):");

toBeEdited.setPrice(Double.parseDouble(in));
in =

readLineWithMessage(
"enter available stock (was "

+ toBeEdited.getStock()
+ "):");

toBeEdited.setStock(Integer.parseInt(in));

// 5. commit changes
manager.currentTransaction().commit();

}
catch (Throwable t)
{

// rollback in case of errors
manager.currentTransaction().rollback();
t.printStackTrace();

}
finally
{

manager.close();
}

}

Deleting Objects

The UseCase UCDeleteProduct allows the user to select one of the existing products and to
delete it from the persistent storage.

The user enters the products unique id. The object to be deleted is looked up by this id. (Steps 1., 2.
and 3.) This lookup is necessary as our application does not hold a list of all product objects.

In the fourth step we check if a Product matching to the id could be found. If no entry is found we
print a message and quit the work.

If a Product entry was found we delete it in step 5 by calling the PersistenceManager to delete the
persistent object. On transaction commit all changes to objects touched by the transaction are made

OJB

60
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

persistent. Because we marked the Product entry for deletion, a delete operation is performed
against the backend database.

public void apply()
{

PersistenceManager manager = null;
Transaction tx = null;
String in = readLineWithMessage("Delete Product with id:");
int id = Integer.parseInt(in);

try
{

// 1. start transaction
manager = factory.getPersistenceManager();
tx = manager.currentTransaction();
tx.begin();

// 2. Build a query to look up product by the id
Query query = manager.newQuery(Product.class, "id == " + id);

// 3. execute query
Collection result = (Collection) query.execute();

// 4. if no matching product was found, print a message
if (result.size() == 0)
{

System.out.println("did not find a Product with id=" + id);
tx.rollback();
manager.close();
return;

}
// 5. if a matching product was found, delete it
else
{

Product toBeDeleted = (Product) result.iterator().next();
manager.deletePersistent(toBeDeleted);
tx.commit();
manager.close();

}
}
catch (Throwable t)
{

// rollback in case of errors
//broker.abortTransaction();
tx.rollback();
t.printStackTrace();

}
}

5.4.5.3. Conclusion

In this tutorial you learned to use the standard JDO API as implemented by the OJB system within
a simple application scenario. I hope you found this tutorial helpful. Any comments are welcome.

5.4.6. Object Transaction Manager Tutorial

5.4.6.1. The OTM API

Introduction

The Object Transaction Manager (OTM) is written as a tool on which to implement other
high-level object persistence APIs. It is, however, very usable directly. It supports API's similar to
the ODMG and PersistenceBroker API's in OJB. Several of its idioms are designed around the fact
that it is meant to have additional, client-oriented, API's built on top of it, however.

OJB

61
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The OTMKit is the initial access point to the OTM interfaces. The kit provides basic configuration
information to the OTM components used in your system. This tutorial will use the SimpleKit
which will work well under most circumstances for local transaction implementations.

This tutorial operates on a simple example class:

package org.apache.ojb.tutorials;

public class Product
{

/* Instance Properties */

private Double price;
private Integer stock;
private String name;

/* artificial property used as primary key */

private Integer id;

/* Getters and Setters */
...

}

The metadata descriptor for mapping this class is described in the mapping tutorial.

As always the source code for this tutorial can be found in the tutorials-src.jar available
from here, more specifically in the org/apache/ojb/tutorials/ directory.

Persisting New Objects

The starting point for using the OTM directly is to look at making a transient object persistent. This
code will use three things, an OTMKit, an OTMConnection, and a Transaction. The
connection and transaction objects are obtained from the kit.

Initial access to the OTM client API's is through the OTMKit interface. We'll use the SimpleKit,
an implementation of the OTMkit suitable for most circumstances using local transactions.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.makePersistent(product);
tx.commit();

}
catch (LockingException e)
{

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

}

A kit is obtained and is used to obtain a connection. Connections are against a specific JCD alias. In
this case we use the default, but a named datasource could also be used, as configured in the
metadata repository. A transaction is obtained from the kit for the specific connection. Because

OJB

62
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

multiple connections can be bound to the same transaction in the OTM, the transaction needs to be
acquired from the kit instead of the connection itself. The SimpleKit uses the commonly seen
transaction-per-thread idiom, but other kits do not need to do this.

Every persistence operation within the OTM needs to be executed within the context of a
transaction. The JDBC concept of implicit transactions doesn't exist in the OTM -- transactions
must be explicit.

Locks, on the other hand, are implicit in the OTM (though explicit locks are available). The
conn.makePersistent(..) call obtains a write lock on product and will commit (insert)
the object when the transaction is committed.

The LockingException will be thrown if the object cannot be write-locked in this transaction.
As it is a transient object to begin with, this will probably only ever happen if it has been
write-locked in another transaction already -- but this depends on the transaction semantics
configured in the repository metadata.

Finally, connections maintain resources so it is important to make sure they are closed when no
longer needed.

Deleting Persistent Objects

Deleting a persistent object from the backing store (making a persistent object transient) is almost
identical to making it persistent -- the difference is just in the
conn.deletePersistent(product) call instead of the
conn.makePersistent(product) call. The same notes about transactions and resources
apply here.

public static void storeProduct(Product product) throws LockingException
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
conn.deletePersistent(product);
tx.commit();

}
catch (LockingException e)
{

if (tx.isInProgress()) tx.rollback();
throw e;

}
finally
{

conn.close();
}

}

Querying for Objects

The OTM implements a transaction system, not a new client API. As such it supports two styles of
query at present -- an PersistenceBroker like query-by-criteria style querying system, and an
ODMG OQL query system.

Information on constructing these types of queries is available in the PersistenceBroker and ODMG
tutorials respectively. Using those queries with the OTM is examined here.

OJB

63
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

A PB style query can be handled as follows:

public Iterator findByCriteria(Query query)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query);
tx.commit();
return results;

}
finally
{

conn.close();
}

}

Where, by default, a read lock is obtained on the returned objects. If a different lock is required it
may be specified specifically:

public Iterator findByCriteriaWithLock(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
tx.commit();
return results;

}
finally
{

conn.close();
}

}

The int lock argument is one of the integer constants on
org.apache.ojb.otm.lock.LockType:

LockType.NO_LOCK
LockType.READ_LOCK
LockType.WRITE_LOCK

OQL queries are also supported, as this somewhat more complex example demonstrates:

public Iterator findByOQL(String query, Object[] bindings) throws Exception
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
OQLQuery oql = conn.newOQLQuery();
oql.create(query);
for (int i = 0; i < bindings.length; ++i)
{

oql.bind(bindings[i]);
}

OJB

64
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

tx.begin();
Iterator results = conn.getIteratorByOQLQuery(oql);
tx.commit();
return results;

}
catch (QueryInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Invalid OQL expression given", e);

}
catch (QueryParameterCountInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect number of bindings given", e);

}
catch (QueryParameterTypeInvalidException e)
{

if (tx.isInProgress()) tx.rollback();
throw new Exception("Incorrect type of object given as binding", e);

}
finally
{

conn.close();
}

}

This function is, at its core, doing the same thing as the PB style queries, except that it constructs
the OQL query, which supports binding values in a manner similar to JDBC prepared statements.

The OQL style queries also support specifying the lock level the same way:

Iterator results = conn.getIteratorByOQLQuery(query, lock);

More Sophisticated Transaction Handling

These examples are a bit simplistic as they begin and commit their transactions all in one go -- they
are only good for retrieving data. More often data will need to be retrieved, used, and committed
back.

Only changes to persistent objects made within the bounds of a transaction are persisted. This
means that frequently a query will be executed within the bounds of an already established
transaction, data will be changed on the objects obtained, and the transaction will then be
committed back.

A very convenient way to handle transactions in many applications is to start a transaction and then
let any downstream code be executed within the bounds of the transaction automatically. This is
straightforward to do with the OTM using the SimpleKit! Take a look at a very slightly
modified version of the query by criteria function:

public Iterator moreRealisticQueryByCriteria(Query query, int lock)
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
boolean auto = ! tx.isInProgress();
if (auto) tx.begin();
Iterator results = conn.getIteratorByQuery(query, lock);
if (auto) tx.commit();
return results;

}
finally
{

OJB

65
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

conn.close();
}

}

In this case the function looks to see if a transaction is already in progress and sets a boolean flag if
it is, auto. It then handles transactions itself, or allows the already opened transaction to maintain
control.

Because connections can be attached to existing transactions the SimpleKit can attach the new
connection to the already established transaction, allowing this function to work as expected
whether there is a transaction in progress or not!

Client code using this function could then open a transaction, query for products, change them, and
commit the changes back. For example:

public void renameWidgetExample()
{

OTMKit kit = SimpleKit.getInstance();
OTMConnection conn = null;
Transaction tx = null;
try
{

conn = kit.acquireConnection(PersistenceBrokerFactory.getDefaultKey());
tx = kit.getTransaction(conn);
tx.begin();
Product sample = new Product();
sample.setName("Wonder Widget");
Query query = QueryFactory.newQueryByExample(sample);
Iterator wonderWidgets

= moreRealisticQueryByCriteria(query, LockType.WRITE_LOCK);
while (wonderWidgets.hasNext())
{

Product widget = (Product) wonderWidgets.next();
widget.setName("Improved Wonder Widget");

}
tx.commit();

}
finally
{

conn.close();
}

}

This sample renames a whole bunch of products from "Wonder Widget" to "Improved Wonder
Widget" and stores them back. It must makes the changes within the context of the transaction it
obtained for those changes to be stored back to the database. If the same iterator were obtained
outside of a transaction, and the changes made, the changes would be made on the objects in
memory, but not in the database. You can think of non-transaction objects as free immutable
transfer objects.

This example also demonstrates two connections bound to the same transaction, as the
renameWidgetExample(...) function obtains a connection, and the
moreRealisticQueryByCriteria(...) function obtains an additional connection to the
same transaction!

5.4.6.2. Notes on the Object Transaction Manager

Transactions

The Object Transaction Manager (OTM) is a transaction management layer for Java objects. It
typically maps 1:1 to database transactions behind the scenes, but this is not actually required for
the OTM to work correctly.

The OTM supports a wide range of transactional options, delimited in the LockManager

OJB

66
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

documentation. While the lock manager is writte to the ODMG API, the same locking rules apply
at the OTM layer.

5.5. Reference Guides

5.5.1. Reference Guides Summary

Summary and explanation of the OJB reference guides.

• PB guide
This document explains specific usage of the PB API.

• ODMG guide
This document explains specific usage of the ODMG API.

• OJB Queries
This document explains the usage of the query syntax.

• Basic O/R Technique
This tutorial explains basic object-relational mapping technique in OJB like 1:1, 1:n and m:n
relations, the auto-xxx settings for references and proxy objects/collections.

• Platforms
What OJB requires from relational databases, and how to let it know which database to use.

• Logging configuration
Detailed information about configuring the logging within OJB.

• OJB.properties configuration
The details on how to modify OJB's behaviour. This includes changing pluggable components.

• JDBC Types
This document explains the standard mapping of JDBC types to Java classes.

• Repository Metadata
The specific details of OJB metadata.

• Advanced O/R Technique
This document explains some advanced O/R techniques like Polymorphism and "OJB Extents",
Mapping Inheritance Hierarchies, Nested Objects and so on.

• Metadata Handling
This document explains how the metadata xml file work and how the metadata information can
be modified at runtime.

• Deployment
Specifics on what is required to deploy OJB, including deployment to EJB containers.

• Connection Handling
This document explains how OJB handles the Connection instances and how this can be
user-configured.

• Caching
Documentation on the different object caching implementations and strategies included with
OJB.

• The Sequence Manager
How to use different sequence management strategies with OJB.

• Locking
The optimistic and pessimistic locking capabilities of OJB.

• OJB XDoclet Module
Documentation for the OJB XDoclet module. The module can build mappings and schema.

• OJB Performance
A look at how OJB performs and how to use OJB's performance tests.

5.5.2. PB-api Guide

OJB

67
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.2.1. Introduction

The PersistenceBroker API (PB-api) provides the lowest level access to OJB's persistence engine.
While it is a low-level API compared to the standardised ODMG or JDO API's it is still very
straightforward to use.

The core class in the PersistenceBroker API is the
org.apache.ojb.broker.PersistenceBroker class. This class provides the point of
access for all persistence operations in this API.

This document is not a PB tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the PB-api.

If you don't find an answer for a specific question, please have a look at the FAQ and the other
reference guides.

5.5.2.2. How to access the PB-api?

The org.apache.ojb.broker.PersistenceBrokerFactory make several methods
available:

public PersistenceBroker createPersistenceBroker(PBKey key) throws
PBFactoryException;

public PersistenceBroker createPersistenceBroker(String jcdAlias, String user,
String password)

throws PBFactoryException;

public PersistenceBroker defaultPersistenceBroker() throws PBFactoryException;

Method defaultPersistenceBroker() can be used if the attribute default-connection is set
true in jdbc-connection-descriptor. It's a convenience method, useful when only one database is
used.

The standard way to lookup a broker instance is via org.apache.ojb.broker.PBKey by
specify jcdAlias (defined in the jdbc-connection-descriptor of the repository file or sub file), user
and passwd. If the user and password is already set in jdbc-connection-descriptor it is possible to
lookup the broker instance only be specify the jcdAlias in PBKey:

PBKey pbKey = new PBKey("myJcdAliasName", "user", "password");
// alternative if user/passwd set in configuration file
PBKey pbKey = new PBKey("myJcdAliasName");
PersistenceBroker broker =
PersitenceBrokerFactory.createPersistenceBroker(pbKey);

See further in FAQ "Needed to put user/password of database connection in repository file?".

5.5.2.3. Notes on Using the PersistenceBroker API

Exception Handling

The exception handling is described in the PB-tutorial exception handling section.

Management of PersistenceBroker instances

There is no need to cache or pool the used PersistenceBroker instances, because OJB itself use a
PB-pool. The configuration of the PB-pool is adjustable in the OJB.properties file.

Using the PersistenceBroker.close() method releases the broker back to the pool under

OJB

68
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

the default implementation. For this reason the examples in the PB tutorial all retrieve, use, and
close a new broker for each logical transaction.

Apart from the pooling management PersistenceBroker.close() force the internal
cleanup of the used broker instance - e.g. removing of temporary PersistenceBrokerListener
instances, release of used connection if needed, internal used object registration lists, ...
Therefore it's not recommended always refer to the same PB instance without closing it.

Transactions

Transactions in the PeristenceBroker API are database level transactions. This differs from object
level transactions used by e.g. the odmg-api. The broker does not maintain a collection of
modified, created, or deleted objects until a commit is called -- it operates on the database using the
databases transaction mechanism. If object level transactions are required, one of the higher level
API's (ODMG, JDO, or OTM) should be used.

5.5.2.4. Questions

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now each database will be accessible via the PersistenceBrokerFactory using a PBKey
matching the defined jcdAliase name as shown in section How to access the PB-api?.

Hook into OJB - PB-Listener and Instance Callbacks

All Listener and instance callback interfaces supported by the PB-api can be used in the top-level
API (like ODMG-api) as well.

The OJB Kernel supports three types of "hook" into OJB:

• PersistenceBrokerAware

A callback interface used by persistence capable objects (the object class is declared in OJB
metadata mapping) to be aware of PersistenceBroker operations on itself.
More detailed information can be found in the Advanced-Technique Guide.

• PBStateListener

The listener interface for receiving PersistenceBroker state changes.
• PBLifeCycleListener

The listener interface for receiving persistent object life cycle information. This interface is
intended for non persistent objects which want to track persistent object life cycle. Persistence
capable objects can implement PersistenceBrokerAware - see above.

To add a PBListener use one of the following PersistenceBroker methods:

public void addListener(PBListener listener) throws PersistenceBrokerException;

public void addListener(PBListener listener, boolean permanent) throws
PersistenceBrokerException;

The first method adds a temporary org.apache.ojb.broker.PBListener to the current
PersistenceBroker instance - on PersistenceBroker.close() call the listener was
removed.

The second one allows to add permanent org.apache.ojb.broker.PBListener when
the method argument is set true. If set false the listener only be temporary added.

OJB

69
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Note:
Be carefully when adding permanent listener, keep in mind you don't know which instance was returned next time from the pool, with
a permanent listener or without!
To guarantee that any pooled broker instance use the permanent listener, best way is to extend the used
org.apache.ojb.broker.core.PersistenceBrokerFactoryIF implementation and add the listener at creation of the
PersistenceBroker instances.
Or add each time you lookup a PersistenceBroker instance the listener as a temporary listener.

5.5.3. ODMG-api Guide

5.5.3.1. Introduction

The ODMG API is an implementation of the ODMG 3.0 Object Persistence API. The ODMG API
provides a higher-level API and OQL query language based interface over the PersistenceBroker
API.

This document is not a ODMG tutorial (newbies please read the tutorial first) rather than a guide
showing the specific usage and possible pitfalls in handling the ODMG-api and the proprietary
extensions by OJB.

If you don't find an answer for a specific question, please have a look at the FAQ and the other
reference guides.

Additionaly the OJB's ODMG implementation has several extensions described below.

5.5.3.2. Specific Metadata Settings

To make OJB's ODMG-api implementation proper work, some specific metadata settings needed in
the repository mapping files.

All defined reference-descriptor and collection-descriptor need specific auto-xxx settings:

• auto-retrieve="true"
• auto_update="none"
• auto-delete="none" or auto-delete="object" (to enable cascading delete, since OJB 1.0.4!)

Note:
These settings are mandatory for proper work of the odmg-api!

So an example object mapping class-descriptor look like:

<class-descriptor
class="org.apache.ojb.odmg.shared.Master"
table="MDTEST_MASTER"
>
<field-descriptor

name="masterId"
column="MASTERID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="masterText"
column="MASTER_TEXT"
jdbc-type="VARCHAR"
/>

<collection-descriptor
name="collDetailFKinPK"
element-class-ref="org.apache.ojb.odmg.shared.DetailFKinPK"

OJB

70
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

proxy="false"
auto-retrieve="true"
auto-update="none"
auto-delete="none"
>
<inverse-foreignkey field-ref="masterId"/>

</collection-descriptor>
...
</class-descriptor>

A lot of mapping samples can be found in mappings for the OJB test suite. All mappings for the
ODMG unit test are in repository_junit_odmg.xml file, which can be found under the
src/test directory.

5.5.3.3. How to access ODMG-api

Obtain a org.odmg.Implementation instance first, then create a new
org.odmg.Database instance and open this instance by setting the used jcd-alias name:

Implementation odmg = OJB.getInstance();
Database database = odmg.newDatabase();
database.open("jcdAliasName#user#password", Database.OPEN_READ_WRITE);

The user and password separated by # hash only needed, when the user/passwd is not specified in
the connection metadata (jdbc-connection-descriptor).

The jdbc-connection-descriptor may look like:

<jdbc-connection-descriptor
jcd-alias="jcdAliasName"
...
username="user"
password="password"
...

>
...

</jdbc-connection-descriptor>

With method call OJB.getInstance() always a new org.odmg.Implementation instance will
be created and odmg.newDatabase() returns a new Database instance.

For best performance it's recommended to share the Implementation instance across the
application. To get the current open database from the Implementation instance, use method
Implementation.getDatabase(null)

Implementation odmg =
// get current used database
Database database = odmg.getDatabase(null);

Or share the open Database instance as well.

See further in FAQ "Needed to put user/password of database connection in repository file?".

5.5.3.4. Configuration Properties

The OJB ODMG-api implementation has some adjustable properties and pluggable components.
All configuration properties can be set in the OJB.properties file.

Here are all properties used by OJB's ODMG-api implementation:

Property Name Description

OqlCollectionClass This entry defines the collection type returned
from OQL queries. By default this value is set to
a List implementation. This will be suffice in

OJB

71
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

most situations.

If you want to use the additional features of the
DList interface (DList itself is persistable,
support of predicates) directly on query results,
change setting to the DList implementation (See
also property 'DListClass' entry).
But this will affect the performance - especially
for large result sets. So recommended way is
create DCollection instances only when
needed (e.g. by converting a List result set to a
DList).
Important note: The collection class to be used
MUST implement the interface
org.apache.ojb.broker.ManageableCollection.
More info about implementing OJB collection
types here.

ImplementationClass Specifies the used base class for the ODMG API
implementation. In managed environments a
specific class is needed to potentiate JTA
integration of OJB's ODMG implementation.

OJBTxManagerClass Specifies the class for transaction management.
In managed environments a specific class is
needed to potentiate JTA integration of OJB's
ODMG implementation.

ImplicitLocking This property defines the implicit locking
behavior. If set to true OJB implicitely locks
objects to ODMG transactions after performing
OQL queries or when do a single lock on an
object using Transaction#lock(...)
method.
If implicit locking is used locking objects is
recursive, that is associated objects are also
locked.

If ImplicitLocking is set to false, no locks are
obtained in OQL queries and there is also no
recursive locking when do single lock on an
object.

LockAssociations This property was only used when
ImplicitLocking is enabled. It defines the
behaviour for the OJB implicit locking feature. If
set to true acquiring a write-lock on a given
object x implies write locks on all objects
associated to x.

If set to false, in any case implicit read-locks are
acquired. Acquiring a read- or write lock on x
thus allways results in implicit read-locks on all
associated objects.

Ordering Enable/Disable OJB's persistent object ordering
algorithm on commit of a transaction. If enabled
OJB try to calculate a valid order for all
new/modified objects (and referenced objects).

If the used databases support 'deferred checks'
it's recommended to use this feature and to
disable OJB's object ordering.

OJB

72
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Note:
This setting can be changed at runtime using OJB's
ODMG extensions.

ImplicitLockingBackward A @deprecated property only for backward
compatibility with older versions (before 1.0.4).
If set true the behavior of method
ImplementationImpl#setImplicitLocking(...) will
be the same as in OJB in 1.0.3 or earlier (set the
implicit locking behavior of the current used
transaction) and disable the new possibility of
global 'implicit locking' setting at runtime with
ImplementationExt#setImplicitLocking. This is
only for backward compatibility and will be
removed at a later date.

DListClass The used org.odmg.DList implementation
class.

DArrayClass The used org.odmg.DArray implementation
class.

DMapClass The used org.odmg.DMap implementation
class.

DBagClass The used org.odmg.DBag implementation
class.

DSetClass The used org.odmg.DSet implementation
class.

5.5.3.5. OJB Extensions of ODMG

This section describes the propietary extension of the ODMG-api provided by OJB.

The ImplementationExt Interface

The OJB extension of the odmg Implementation interface is called ImplementationExt and provide
additional methods missed in the standard class definition.

• get/setOqlCollectionClass
Use this methods to change the used OQL query result class at runtime. Description can be
found in Configuration Properties section and in javadoc of ImplementationExt.

• is/setImpliciteWriteLocks
Use this methods to global change the associated locking type at runtime when implicit locking
is used. Description can be found in Configuration Properties section and in javadoc of
ImplementationExt.

• is/setOrdering
Use this methods to global enable/disable OJB's object ordering algorithm. Description can be
found in Configuration Properties section and in javadoc of ImplementationExt.

The TransactionExt Interface

The OJB extension of the odmg Transaction interface is called TransactionExt and provide
additional methods missed in the standard class definition.

• markDelete
Description can be found in javadoc of TransactionExt.

OJB

73
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• markDirty
Description can be found in javadoc of TransactionExt.

• flush
Description can be found in javadoc of TransactionExt.

• is/setImplicitLocking
Description can be found in javadoc of TransactionExt.

• is/setOrdering
Description can be found in javadoc of TransactionExt.

• setCascadingDelete
Description can be found in javadoc of TransactionExt.

• getBroker()
Returns the current used broker instance. Usage example is here.

The EnhancedOQLQuery Interface

The OJB extension of the odmg OQLQuery interface is called EnhancedOQLQuery and provide
additional methods missed in the standard class definition.

• create(String queryString, int startAtIndex, int endAtIndex)
Description can be found in javadoc of EnhancedOQLQuery.

Access the PB-api within ODMG

As the PB-api was used by OJB's ODMG-api implementation, thus it is possible to get access of
the used PersistenceBroker instance using the extended Transaction interface class
TransactionExt:

Implementation odmg = ...;
TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
...
PersistenceBroker broker = tx.getBroker();
// do work with broker
...
tx.commit();

It's mandatory that the used PersistenceBroker instance never be closed with a
PersistenceBroker.close() call or be committed with
PersistenceBroker.commitTransaction(), this will be done internally by the ODMG
implementation.

5.5.3.6. Notes on Using the ODMG API

Transactions

The ODMG API uses object-level transactions, compared to the PersistenceBroker database-level
transactions. An ODMG Transaction instance contains all of the changes made to the object
model within the context of that transaction, and will not commit them to the database until the
ODMG Transaction is committed. At that point it will use a database transaction (the
underlying PB-api) to ensure atomicity of its changes.

Locks

The ODMG specification includes several levels of locks and isolation. These are explained in
much more detail in the Locking documentation.

In the ODMG API, locks obtained on objects are locked within the context of a transaction. Any
object modified within the context of a transaction will be stored with the transaction, other

OJB

74
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

changes made to the same object instance by other threads, ignoring the lock state of the object,
will also be stored - so take care of locking conventions.
The ODMG locking conventions (obtain a write lock before do any modifications on an object)
ensure that an object can only be modified within the transaction.

It's possible to configure OJB's ODMG implementation to support implicit locking with WRITE
locks. Then a write lock on an object forces OJB to obtain implicit write locks on all referenced
objects. See configuration properties.

Persisting Non-Transactional Objects

Frequently, objects will be modified outside of the context of an ODMG transaction, such as a data
access object in a web application. In those cases a persistent object can still be modified, but not
directly through the OMG ODMG specification. OJB provides an extension to the ODMG
specification for instances such as this. Examine this code:

public static void persistChanges(Product product)
{

Implementation impl = OJB.getInstance();
TransactionExt tx = (TransactionExt) impl.newTransaction();

tx.begin();
tx.markDirty(product);
tx.commit();

}

In this function the product is modified outside the context of the transaction, and is then the
changes are persisted within a transaction. The TransactionExt.markDirty() method
indicates to the Transaction that the passed object has been modified, even if the Transaction itself
sees no changes to the object.

5.5.3.7. ODMG Named Objects

Using named objects allows to persist all serializable objects under a specified name. The methods
to handle named objects are:

/**
* Associate a name with an object and make it persistent.
* An object instance may be bound to more than one name.
* Binding a previously transient object to a name makes that object persistent.
* @param object The object to be named.
* @param name The name to be given to the object.
* @exception org.odmg.ObjectNameNotUniqueException
* If an attempt is made to bind a name to an object and that name is already
bound
* to an object.
*/
public void bind(Object object, String name) throws
ObjectNameNotUniqueException;

/**
* Lookup an object via its name.
* @param name The name of an object.
* @return The object with that name.
* @exception ObjectNameNotFoundException There is no object with the specified
name.
* @see ObjectNameNotFoundException
*/
public Object lookup(String name) throws ObjectNameNotFoundException;

/**
* Disassociate a name with an object
* @param name The name of an object.

OJB

75
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

* @exception ObjectNameNotFoundException No object exists in the database with
that name.
*/
public void unbind(String name) throws ObjectNameNotFoundException;

To use this feature a internal table and metadata mapping is madatory (by default these settings are
enabled in OJB). More information about the needed internal tables see in Platform Guide.

If the object to bind is a persistence capable object (the object class is declared in OJB metadata
mapping), then the object will be persisted (if needed) dependent on the declared metadata mapping
and the named object will be a link to the real persisted object.
On unbind of the named object only the link of the persistent object will be removed, the
persistent object itself will be untouched.

If the object to bind is a serializable non-persistence cacpable object, the object will be serialized
and persisted under the specified name.
On unbind the serialized object will be removed.

Examples

In OJB test-suite is a test case called org.apache.ojb.odmg.NamedRootsTest which
shown similar examples as below, but more detailed.

1. Persist a serializable object as named object

We want to persist a name list of all planets:

Transaction tx = odmg.newTransaction();
tx.begin();
List planets = new ArrayList();
example.add("Mercury");
example.add("Venus");
example.add("Earth");
...
database.bind(planets, "planet-list");
tx.commit();

The specified List with all planet names will be serialized and persisted as VARBINARY object.

To lookup the persisted list of the solar system planets:

Transaction tx = odmg.newTransaction();
tx.begin();
List planets = (List) database.lookup("planet-list");
tx.commit();

To remove the persistent list do:

Transaction tx = odmg.newTransaction();
tx.begin();
database.unbind("planet-list");
tx.commit();

2. Persist a persistence capable object as named object

We want to create a named object representing a persistence capable Article object (Article
class is declared in OJB metadata mapping):

Transaction tx = odmg.newTransaction();
tx.begin();
// get existing or a new Article object
Article article =
database.bind(article, "my-article");
tx.commit();

OJB first checks if the specified Article object is already persisted - if not it will be persisted.

OJB

76
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Then based on the Article object Identity the named object will be persisted. So the
persistent named object is a link to the persistent real Article object.

On lookup of the named object the real Article instance will be returned:

Transaction tx = odmg.newTransaction();
tx.begin();
Article article = (Article) database.lookup("my-article");
tx.commit();

On unbind of the named object only the link to the real Article object will be removed, the
Article itself will not be touched.
To remove the named object and the Article instance do:

tx.begin();
// this only remove the named object link, the Article object
// itself will not be touched
database.unbind("my-article");
// thus delete the object itself too
database.deletePersistent(article);
tx.commit();

3. Persist a collection of persistence capable object as named object

We want to persist a list of the last shown Article objects. The Article class is a persistence
capable object (declared in OJB metadata mapping). Thus we don't want to persist a serialized List
of Article objects (because the real Article object may change), as shown in example 1,
rather we want to persist a List that links to the real persistent Article objects.
This is possible when the ODMG DCollections are used:

// get the list with last shown Article objects
List lastArticles = ...
Transaction tx = odmg.newTransaction();
tx.begin();
// obtain new DList instance from Implementation class
DList namedArticles = odmg.newDList();
// push Articles to DList
namedArticles.addAll(lastArticles);
database.bind(namedArticles, "last-shown");
tx.commit();

In this case OJB first checks for transient Article objects and make these new objects persistent,
then based on the Article object Identity the named object will be persisted. So the
persistent named object is in this case a list of links to persistent Article objects.

On database.lookup("last-shown") the DList will be returned and when access the
list entries the Article objects will be materialized.

To remove the named object some more attention is needed:

tx.begin();
DList namedArticles = ...
// we want to completely remove the named object
// the persisted DList with all DList entries,
// but the Article objects itself shouldn't be deleted:
// 1. mandatory, clear the list to remove all entries
namedArticles.clear();
// 2. unbind named object
database.unbind("last-shown");
tx.commit();

After this the named object will be completely removed, but all Article object will be
untouched.

OJB

77
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.3.8. ODMG's DCollections

The ODMG api declare some specific extensions of the java.util.Collection interface:

• org.odmg.DList
• org.odmg.DSet
• org.odmg.DBag
• org.odmg.DMap
• org.odmg.DArray

The ODMG Implementation class provide methods to get new instances of these classes.

In OJB all associations between persistence capable classes are declared in the mapping files and
1:n and m:n relations can use any collection type class which implement the specific interface
ManageableCollection.
So there is no need to use the ODMG specific collection classes in object relations or when
oql-queries are performed (more detailed info see 'oql collection class setting').

One difference to normal collection classes is that DCollection implementation classes are
persistence capable classes itself. This means that they can be persisted - e.g. see named objects
example. Mandatory is that all containing objects are persistence capable itself.

When persisting a DCollection object OJB first lock the collection entries, then the collection
itself was locked. On commit the collection entries will be handled in a normal way and for each
entry a link object (containing the Identity of the persistence capable object) is persisted.

When lookup the persisted DCollection object the link objects are materialized and on access
the collection entry will be materialized by the identity.

5.5.3.9. Foreign Keys Constraints and ODMG-api

If cross-referenced database tables are used it's recommended to set foreign key constraints to
guarantee database consistency. The consequence of using foreign key constraints is that the order
of the persistence capable objects on insert and delete operations will become cruical.

Some databases support deferred constraint checks, this can help to avoid foreign key issues.

On transaction commit (using standard settings) OJB try to order the objects by itself. If this doesn't
suffice it's possible to determine the object order "by hand".

If foreign key constraint violations arise when using 1:1 references and circular/bidirectional 1:1
references it's possible to use a workaround introduced in version 1.0.4 to specify the database FK
constraint in OJB using a custom attribute named 'constraint':

<reference-descriptor name="refAA"
class-ref="org.apache.ojb.odmg.CircularTest$ObjectAA"
proxy="false"
auto-retrieve="true"
auto-update="none"
auto-delete="none"

>
<foreignkey field-ref="fkId"/>
<attribute attribute-name="constraint" attribute-value="true"/>

</reference-descriptor>

5.5.3.10. Questions and Tips

Disable OJB's object ordering, determine object order "by hand"

OJB

78
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

By default OJB try to order all persistent objects on transaction commit call to avoid ordering
problems. If this is not needed or helpful it can be disabled in two ways.
In most cases it's needed to disable implicite locking too, because it will lock/register dependend
objects (e.g. 1:n references) automatically. First in OJB.properties file:

Enable/Disable OJB's persistent object ordering algorithm on commit
of a transaction. If enabled OJB try to calculate a valid order for
all new/modified objects (and referenced objects).
If the used databases support 'deferred checks' it's recommended to use this
feature and to disable OJB's object ordering.
This setting can be changed at runtime using OJB's ODMG extensions.
Ordering=false

Second at runtime, using OJB's ODMG extension classes ImplementationExt (global setting) and
TransactionExt (per tx setting).

TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
...
/*
we want to manually insert new object, so we disable
OJB's ordering and implicit object locking
*/
tx.setOrdering(false);
tx.setImplicitLocking(false);
...
tx.commit();

Circular- and Bidirectional References

The good news, OJB can handle bidirectional- and circular- references. When using foreign key
constraints for referential integrety in these cases you have to pay attention.

In OJB test-suite a unit test called org.apache.ojb.odmg.CircularTest can be found.
The tests show the handling of circular/bidirectional references and the possibilities how to handle
object insert/update/delete ordering on transaction commit.

I don't like OQL, can I use the PersistenceBroker Queries within ODMG

Yes you can! The ODMG implementation relies on PB Queries internally! Several users (including
myself) are doing this.

If you have a look at the simple example below you will see how OJB Query objects can be used
withing ODMG transactions.
The most important thing is to lock all objects returned by a query to the current transaction before
starting manipulating these objects.
Further on do not commit or close the obtained PB-instance, this will be done by the ODMG
transaction on tx.commit() / tx.rollback().

TransactionExt tx = (TransactionExt) odmg.newTransaction();
tx.begin();
....
// cast to get intern used PB instance
PersistenceBroker broker = tx.getBroker();
...
// build query
QueryByCriteria query = ...
// perform PB-query
Collection result = broker.getCollectionByQuery(query);
// use result
...

OJB

79
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

tx.commit();
...

Note: Don't close or commit the used broker instance, this will be done by the odmg-api.

How to use multiple Databases

For each database define a jdbc-connection-descriptor same way as described in the FAQ.

Now it is possible to

• access the databases one after another, by closing the current used Database instance and by
open a new one.

// get current used database instance
Database database = ...;
// close it
database.close();
// open a new one
database = odmg.newDatabase();
database.open("jcdAliasName#user#password", Database.OPEN_READ_WRITE);
...

The Database.close() call close the current used Database instance, after this it is
possible to open a new database instance.

• use multiple databases in parallel, by creating a separate Implementation and Database
instance for each jdbc-connection-descriptor defined in the mapping metadata.

Implementation odmg_1 = OJB.getInstance();
Database database_1 = odmg.newDatabase();
database.open("db_1#user#password", Database.OPEN_READ_WRITE);

Implementation odmg_2 = OJB.getInstance();
Database database_2 = odmg.newDatabase();
database.open("db_2#user#password", Database.OPEN_READ_WRITE);

Now it's possible to use both databases in parallel.

Note:
OJB does not provide distributed transactions by itself. To use distributed transactions, OJB have to be integrated in an j2ee conform
environment (or made work with an JTA/JTS implementation).

5.5.4. Platforms

5.5.4.1. How to use OJB with a specific relational database

OJB has been designed to smoothly integrate with any relational database that provides JDBC
support. OJB can be configured to use only JDBC 1.0 API calls to avoid problems with restrictions
of several JDBC drivers.
It uses a limited SQL subset to avoid problems with restrictions of certain RDBMS. This design
allows to keep the OJB code generic and free from database specifics.

This document explains basic concepts and shows how OJB can be configured to run against a
specific RDBMS.

If you not already have done so, then you also might want to have a look at the Getting Started
section which presents a sample skeleton project.

5.5.4.2. Basic Concepts

OJB

80
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB internal tables

For certain features OJB relies on several internal tables that must be present in the target RDBMS
to allow a proper functioning. The associated internal object metadata mapping of these internal
used tables can be found in repository_internal.xml file.
If those features are not needed/used OJB can be safely run without any internal tables and
metadata mapping.

The following table lists all tables and their specific purpose.

Table Purpose

OJB_HL_SEQ

<table name="OJB_HL_SEQ"
description="HIGH/LOW
SequenceManager table">

<column name="TABLENAME"
required="true" primaryKey="true"

type="VARCHAR" size="250"/>
<column name="MAX_KEY"

type="BIGINT"/>
<column name="GRAB_SIZE"

type="INTEGER"/>
<column name="VERSION"

type="INTEGER"/>
</table>

Table for the high/low sequence manager. The
column TABLENAME was used to persist the
sequence name (may be re-named in further
versions of OJB).
If the built-in OJB sequence manager is not
used, this table is not needed.

OJB_NRM

<table name="OJB_NRM"
description="OJB NAMED ROOTS Table">

<column name="NAME"
required="true" primaryKey="true"

type="VARCHAR" size="250"/>
<column name="OID_"

type="LONGVARBINARY"/>
</table>

The "Named Roots Map". ODMG allows to bind
persistent objects to an user defined name - called
named objects.
The Named roots map is used to store these bindings.
It has NAME (String of arbitrary length) as primary
key and keeps the serialized OID of a persistent
object or an arbitrary serialized object in the field
OID (String of arbitrary length).
If Database.bind(...) and
Database.lookup(...) are not used in client
apps, this table is not needed.

OJB_DLIST

<table name="OJB_DLIST"
description="DLIST IMPLEMENTATION">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="SIZE_"

type="INTEGER"/>
</table>

The table used for the ODMG persistent DList
collections.
If ODMG DLists are not used, this table is not
needed.

OJB_DLIST_ENTRIES

<table name="OJB_DLIST_ENTRIES"
description="DList entry table">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="DLIST_ID"

required="true" type="INTEGER"/>
<column name="POSITION_"

type="INTEGER"/>
<column name="OID_"

type="LONGVARBINARY"/>
</table>

stores the entries of DLists (a wrapper to objects
stored in the DList)
If ODMG DLists are not used, this table is not
needed.

OJB

81
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB_DSET

<table name="OJB_DSET"
description="DSET IMPLEMENTATION">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="SIZE_"

type="INTEGER"/>
</table>

The table used to store ODMG persistent DSET
collections
If ODMG DSets are not used, this table is not
needed.

OJB_DSET_ENTRIES

<table name="OJB_DSET_ENTRIES"
description="DSet entry table">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="DLIST_ID"

required="true" type="INTEGER"/>
<column name="POSITION_"

type="INTEGER"/>
<column name="OID_"

type="LONGVARBINARY"/>
</table>

This table stores the entries of DSets.
If ODMG DSets are not used, this table is not
needed.

OJB_DMAP

<table name="OJB_DMAP"
description="DMap table">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="SIZE_"

type="INTEGER"/>
</table>

The table use to store the ODMG persistent DMap
tables
If ODMG DMaps are not used, this table is not
needed.

OJB_DMAP_ENTRIES

<table name="OJB_DMAP_ENTRIES"
description="DMap entry table">

<column name="ID"
required="true" primaryKey="true"

type="INTEGER"/>
<column name="DMAP_ID"

required="true" type="INTEGER"/>
<column name="KEY_OID"

type="VARBINARY"/>
<column name="VALUE_OID"

type="VARBINARY"/>
</table>

The table containing the DMap entries. The Keys and
Values of the map can be arbitrary persistent objects.
If ODMG DMaps are not used, this table is not
needed.

OJB uses Torque to create all required tables and data. Thus there is no SQL DDL file, but an XML
file describing the tables in format readable by Torque. The Torque DDL information for the
internal tables resides in the file src/schema/ojbcore-schema.xml.

The o/r mappings for these tables are contained in the file repository_internal.xml.

If you want to have a look at how these files could be used, have a look at the the ojb-blank sample
project which is already prepared to use these files.

Tables for the regression testbed

It is recommended to run the OJB test-suite against your target database. Thus you will have to
provide several more tables, filled with the proper testdata.

The DDL information for these tables resides in the file

OJB

82
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

.

The testdata is defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for these tables are contained in the file repository_junit.xml.

Tables for the tutorial applications

If you intend to run the OJB tutorial applications against your target database you will have to
provide one extra table.

The DDL information for this table also resides in the file
src/schema/ojbtest-schema.xml.

The testdata is also defined in the file src/schema/ojbtest-data.xml.

The o/r mappings for this table is contained in the file repository_user.xml.

5.5.4.3. The setup process

OJB provides a setup routine to generate the target database and to fill it with the required testdata.
This routine is based on Torque scripts and is driven from the build.xml file. This section describes
how to use it.

Selecting a platform profile

OJB ships with support for several popular database platforms. The target platform is selected by
the switch profile in the file build.properties. You can choose one out of the predefined profiles:

With the 'profile' property you can choose the RDBMS platform OJB is using
implemented profiles:
#
profile=hsqldb
use the mssqldb-JSQLConnect profile for Microsoft SQL Server and
you will automatically JSQLConnect driver, from http://www.j-netdirect.com/
MBAIRD: This is my driver of preference for MS SQL Server, I find the OEM'd
MS driver to have some problems.
#profile=mssqldb-JSQLConnect
#profile=mssqldb-Opta2000
#profile=mssqldb-ms
#profile=mysql
#profile=db2
#profile=oracle
#profile=oracle9i
#profile=oracle9i-Seropto
#profile=msaccess
#profile=postgresql
#profile=informix
#profile=sybase
#profile=sapdb
#profile=maxdb

The profile switch activated in build.properties is used to select a profile file from the
profile directory.
If you set profile=db2, then the file profile/db2.profile is selected.
This file is used by the Torque scripts to set platform specific properties and to perform platform
specific SQL operations.

editing the profile to point to your target db

The platform specific file profile/xxx.profile contains lots of information used by Torque.
You can ignore most of it. The only important part in this file is the section where the url to the

OJB

83
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

target db is assembled, here is an snip of the DB2 profile:

--
#
D A T A B A S E S E T T I N G S
#
--
JDBC connection settings. This is used by the JDBCToXML task
that will create an XML database schema from JDBC metadata.
These settings are also used by the SQL Ant task to initialize
your Turbine system with the generated SQL.
--

dbmsName = Db2
jdbcLevel = 1.0
urlProtocol = jdbc
urlSubprotocol = db2
urlDbalias = OJB

createDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
buildDatabaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseUrl = ${urlProtocol}:${urlSubprotocol}:${urlDbalias}
databaseDriver = COM.ibm.db2.jdbc.app.DB2Driver
databaseUser = admin
databasePassword = db2
databaseHost = 127.0.0.1

These settings result in a database URL jdbc:db2:OJB. If your production database is registered
with the name MY_PRODUCTION_DB you have to edit the entry urlDBalias to:
urlDbalias = MY_PRODUCTION_DB.

In this section you can also set application user name and password. You can also enter a different
jdbc driver class, to activate a different driver.

Before progressing, please check that the jdbc driver class, named in the databaseDriver entry
is located on the classpath! You can either edit the global environment variable CLASSPATH or
place the jdbc driver jar file into the jakarta-ojb-xxx/lib directory.

Executing the build script

Now everything should be prepared to launch the setup routine. This routine can be invoked by
calling ant prepare-testdb .

If you are prompted with a BUILD SUCCESSFUL message after some time, everything is OK.

If you are prompted with a BUILD FAILED message after some time, something went wrong.
This may have several reasons:

• You entered some incorrect settings. Please check the log messages to see what went wrong.
• Torque does not work properly against your target database. Torque is very flexible and should

be able to work against a wide range of databases. But the code templates for each database
may not be accurate. Please check the ojb-user mailinglist archive if there are any failure
reports for your specific database. Please also check if some contributed a fix already. If you
don't find anything please post your problem to the ojb user-list.

As a last resort you can try the following: Switch back to the default hsqldb profile and execute
ant prepare-testdb This will setup the default hsqldb database. And it will also generate
SQL scripts that you may use to generate your database manually.

The SQL scripts are generated to jakarta-ojb-xxx/target/src/sql. You can touch
these scripts to match your database specifics and execute them manually against your platform.

Verifying the installation

OJB

84
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Now everything is setup to run the junit regression tests against your target database.

Execute

ant junit

to see if everything works as expected. more information about the OJB Test Suite here. If you did
not manage to set up the target database with the ant prepare-testdb you can use
ant junit-no-compile-no-prepare to run the testsuite without generation of the test
database.

5.5.5. OJB.properties Configuration File

5.5.5.1. OJB Configuration

OJB provides two different configuration mechanisms:

1. An XML based repository.xml is used to define the Object/Relational Mapping. This
Mapping is translated into a metadata dictionary at runtime. The metadata layer may also be
manipulated at runtime through OJB API calls. Follow this link to learn more about the XML
repository.

2. A properties file OJB.properties that is responsible for the configuration of the OJB
runtime environment. It contains information that does not change at runtime and does not
contain O/R mapping related information.

The rest of this document details on this properties file.

5.5.5.2. OJB.properties File

By default this file is named OJB.properties and is loaded from the classpath by a J2EE
compliant resource lookup:

Thread.currentThread().getContextClassLoader().getResource(getFilename());

The filename of the properties file can be changed by setting a Java system property. This can be
done programmatically:

System.setProperty("OJB.properties","myOwnPropertiesFile.props");

or by setting a -D option to the JVM:

java -DOJB.properties=myOwnPropertiesFile.props my.own.ojb.Application

All things that can be configured by OJB.properties are commented in the file itself. Have a look at
the default version of this file.

5.5.6. JDBC Types

5.5.6.1. Mapping of JDBC Types to Java Types

OJB implements the mapping conversions for JDBC and Java types as specified by the JDBC 3.0
specification (see JDBC 3.0 specification Appendix B, Data Type Conversion Tables). See the table
below for details.

If a sql-java type mapping is needed, that doesn't match the java types defined by the specification,
e.g. a field in the persistent object class is of type int[] and the DB type is VARCHAR or a List field
have to be mapped to VARCHAR a field-conversion class can be used.

JDBC Type Java Type

OJB

85
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

BOOLEAN boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

CLOB Clob

BLOB Blob

ARRAY Array

DISTINCT mapping of underlying type

STRUCT Struct

REF Ref

DATALINK java.net.URL

JAVA_OBJECT underlying Java class

5.5.6.2. Type and Value Conversions - The FieldConversion Interface

Introduction

A typical problem with O/R tools is mismatching datatypes: a class from the domain model has an
attribute of type boolean but the corresponding database table stores this attribute in a column of
type BIT or int.

This example explains how OJB allows you to define FieldConversions that do the proper
translation of types and values.

OJB

86
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The source code of this example is included in the OJB source distribution and resides in the test
package org.apache.ojb.broker.

The problem

The test class org.apache.ojb.broker.Article contains an attribute
isSelloutArticle of type boolean:

public class Article implements InterfaceArticle
{

protected int articleId;
protected String articleName;

// maps to db-column Auslaufartikel of type int
protected boolean isSelloutArticle;

...
}

The coresponding table uses an int column (Auslaufartikel) to store this attribute:

CREATE TABLE Artikel (
Artikel_Nr INT PRIMARY KEY,
Artikelname CHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit CHAR(30),
Einzelpreis DECIMAL,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

The Solution

OJB allows to use predefined (or self-written) FieldConversions that do the appropiate mapping.
The FieldConversion interface declares two methods: javaToSql(...) and
sqlToJava(...):

/**
* FieldConversion declares a protocol for type and value
* conversions between persistent classes attributes and the columns
* of the RDBMS.
* The default implementation does not modify its input.
* OJB users can use predefined implementation and can also
* build their own conversions that perform arbitrary mappings.
* the mapping has to defined in the xml repository
* in the field-descriptor.
*
* @author Thomas Mahler
*/
public interface FieldConversion extends Serializable
{

/**
* convert a Java object to its SQL
* pendant, used for insert & update
*/
public abstract Object javaToSql(Object source) throws ConversionException;

/**
* convert a SQL value to a Java Object, used for SELECT
*/
public abstract Object sqlToJava(Object source) throws ConversionException;

}

The method FieldConversion.sqlToJava() is a callback that is called within the OJB

OJB

87
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

broker when Object attributes are read in from JDBC result sets. If OJB detects that a
FieldConversion is declared for a persistent classes attributes, it uses the FieldConversion to do the
marshalling of this attribute.

For the above mentioned problem of mapping an int column to a boolean attribute we can use the
predefined FieldConversion Boolean2IntFieldConversion. Have a look at the code to see
how it works:

public class Boolean2IntFieldConversion implements FieldConversion
{

private static Integer I_TRUE = new Integer(1);
private static Integer I_FALSE = new Integer(0);

private static Boolean B_TRUE = new Boolean(true);
private static Boolean B_FALSE = new Boolean(false);

/**
* @see FieldConversion#javaToSql(Object)
*/
public Object javaToSql(Object source)
{

if (source instanceof Boolean)
{

if (source.equals(B_TRUE))
{

return I_TRUE;
}
else
{

return I_FALSE;
}

}
else
{

return source;
}

}

/**
* @see FieldConversion#sqlToJava(Object)
*/
public Object sqlToJava(Object source)
{

if (source instanceof Integer)
{

if (source.equals(I_TRUE))
{

return B_TRUE;
}
else
{

return B_FALSE;
}

}
else
{

return source;
}

}
}

There are other helpful standard conversions defined in the package
org.apache.ojb.broker.accesslayer.conversions: Of course it is possible to map
between java.sql.date and java.util.date by using a Conversion. A very interesting
Conversion is the Object2ByteArrFieldConversion it allows to store inlined objects in
varchar columns!

OJB

88
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Coming back to our example, there is only one thing left to do: we must tell OJB to use the proper
FieldConversion for the Article class. This is done in the XML repository file. The field-descriptor
allows to define a conversion attribute declaring the fully qualified FieldConversion class:

<!-- Definitions for test.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...
<field-descriptor

name="isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
/>
...

</class-descriptor>

5.5.7. Repository File

5.5.7.1. Introduction - repository syntax

The syntax of the OJB repository xml files is defined by the repository.dtd.
An overview of all repository.dtd-elements can be found here. The repository.dtd can be found
here.

The actual repository metadta declaration is split up into several separate files, here is an excerpt of
the most important files:

1. the repository.xml. Main file for metadata declaration. This file is split into several sub files
using xml-Entity references.

2. the repository_database.xml. This file contains the mapping information for
database/connection handling.

3. the repository_internal.xml. This file contains the mapping information for the OJB internal
tables. These tables are used for implementing SequenceManagers and persistent collections.

4. the repository_user.xml. This file contains mappings for the tutorial applications and may be
used to hold further user defined class mappings.

5. the repository_junit.xml. This file contains mapping information for common OJB JUnit
regression test suite. In production environments these tables are not needed.

6. other repository_junit_XYZ.xml
More specific junit test mapping. In production environments these tables are not needed.

7. There are some more files, for more information see comment in appropriate xml-file.

5.5.7.2. descriptor-repository

The descriptor-repository is the root element of a repository.xml file. It consists of one or more
jdbc-connection-descriptor and at least one class-descriptor element. But it's also possible to
startup OJB without any of these elements and add them at runtime.

Elements

<!ELEMENT descriptor-repository (documentation?, attribute*,
jdbc-connection-descriptor*, class-descriptor*)>

The documentation element can be used to store arbitrary information.

The attribute element allows to add custom attributes, e.g. for passing arbitrary properties.

OJB

89
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The jdbc-connection-descriptor element specifies a jdbc connection for the repository.

The class-descriptor element specify o/r mapping information for persistent class.

<!ELEMENT descriptor-repository (
documentation?,
attribute*,
jdbc-connection-descriptor*,
class-descriptor*)

>

Attributes

The version attribute is used to bind a repository.xml file to a given version of this dtd. A given
OJB release will work properly only with the repository version shipped with that relase. This
strictness maybe inconvenient but it does help to avoid the most common version conflicts.

The isolation-level attribute defines the default locking isolation level used by OJB's pessimistic
locking api. All jdbc-connection-descriptor or class-descriptor that do not define a specific isolation
level will use this.
Note: This does NOT touch the jdbc-level of the connection.

The proxy-prefetching-limit attribute specifies a default value to be applied to all proxy instances. If
none is specified a default value of 50 is used. Proxy prefetching specifies how many instances of a
proxied class should be loaded in a single query when the proxy is first accessed.

<!ATTLIST descriptor-repository
version (1.0) #REQUIRED
isolation-level (read-uncommitted | read-committed | repeatable-read |

serializable | optimistic | none) "read-uncommitted"
proxy-prefetching-limit CDATA "50"

>

5.5.7.3. jdbc-connection-descriptor

The jdbc-connection-descriptor element specifies a jdbc connection for the repository. It is allowed
to define more than one jdbc-connection-descriptor. All class-descriptor elements are independent
from the jdbc-connection-descriptors. More info about connection handling here.

Elements

The object-cache element specifies the object-cache implementation class associated with this
class.

A connection-pool element may be used to define connection pool properties for the specified
JDBC connection.

Further a sequence-manager element may be used to define which sequence manager
implementation should be used within the defined connection.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT jdbc-connection-descriptor (documentation?, attribute*,
object-cache?, connection-pool?, sequence-manager?)>

Attributes

The jdbc-connection-descriptor element contains a bunch of required and implied attributes:

The jcdAlias attribute is a shortcut name for the defined connection descriptor. OJB uses the jcd
alias as key for the defined connections.

OJB

90
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The default-connection attribute used to define if this connection should used as default connection
with OJB. You could define only one connection as default connection. It is also possible to set the
default connection at runtime using PersistenceBrokerFactory#setDefaultKey(...) method. If set
true you can use a PB-api shortcut-method of the PersistenceBrokerFactory to lookup
PersistenceBroker instances.

Note:
If default-connection is not set at runtime, it is mandatory that username and password is set in repository file.

The platform attribute is used to define the specific RDBMS Platform. This attribute corresponds to
a org.apache.ojb.broker.platforms.PlatformXXXImpl class. Supported databases see here. Default
is Hsqldb.

The jdbc-level attribute is used to specify the Jdbc compliance level of the used Jdbc driver.
Allowed values are: 1.0, 2.0, 3.0. Default is 1.0.

DEPRECATED!. The eager-release attribute is used to solve a problem that occurs when using
OJB within JBoss (3.0 <= version < 3.2.2, seems to be fixed in jboss 3.2.2 and higher). Only use
within JBoss. DEPRECATED attribute.

The batch-mode attribute allow to enable JDBC connection batch support (if supported by used
database), 'true' value allows to enable per-session batch mode, whereas 'false' prohibits it.
PB.serviceConnectionManager.setBatchMode(...) method can be used to switch on/off batch
modus, if batch-mode is enabled. On PB.close() OJB switches off batch modus, thus you have to do
'...setBatchMode(true)' on each obtained PB instance again.

Note:
OJB 1.0.4 and earlier:
When using database identity columns it's not allowed to enable batch mode for insert operations.
When using optimistic locking the version check will always succeed for update operations when batch-mode is enabled - take care!!.
This will be fixed and automatically handled by OJB till next major release.

The useAutoCommit attribute allow to set how OJB uses the autoCommit state of the used
connections. The default mode is 1. When using mode 0 or 2 with the PB-api, you must use PB
transaction demarcation.

• 0 - OJB ignores the autoCommit setting of the connection and does not try to change it. This
mode could be helpful if the connection won't let you set the autoCommit state (e.g. using
datasources within an application server).

• 1 - [default mode] set the connection's autoCommit state temporary to 'false' if needed (when
using transaction demarcation in non-managed environment) and restore the 'old' state after use.
In versions before OJB 1.0.4 the autoCommit state was explicit set 'true' when connection was
created, now OJB expect that this is done by the jdbc-driver/DataSource configuration. To
enable the old behavior set a custom attribute initializationCheck to 'true'.

<attribute attribute-name="initializationCheck"
attribute-value="false" />

Then OJB set the autoCommit state explicitly to 'true' when the connection is created by the
ConnectionFactory.

• 2 - Set the connection's autoCommit explicitly to false when a connection is created.

If the ignoreAutoCommitExceptions attribute is set to true, all exceptions caused by setting
autocommit state, will be ignored. Default mode is false.

If a jndi-datasource-name for JNDI based lookup of Jdbc connections is specified, the following
four attributes driver, protocol, subprotocol, and dbalias used for Jdbc DriverManager based

OJB

91
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

construction of Jdbc Connections must not be declared.
If a jndi-datasource-name is specified, OJB always assume that a JNDI based datasource
connection lookup was expected (so take care that this attribute is empty or absent on driver based
connection handling).

The username and password attributes are used as credentials for obtaining a jdbc connections.
If users don't want to keep user/password information in the repository.xml file, they can pass
user/password using a PBKey to obtain a PersistenceBroker. More info see FAQ.

<!ATTLIST jdbc-connection-descriptor
jcd-alias CDATA #REQUIRED
default-connection (true | false) "false"
platform (Db2 | Hsqldb | Informix | MsAccess | MsSQLServer |

MySQL | Oracle | PostgreSQL | Sybase | SybaseASE |
SybaseASA | Sapdb | Firebird | Axion | NonstopSql |
Oracle9i | MaxDB) "Hsqldb"

jdbc-level (1.0 | 2.0 | 3.0) "1.0"
eager-release (true | false) "false"
batch-mode (true | false) "false"
useAutoCommit (0 | 1 | 2) "1"
ignoreAutoCommitExceptions (true | false) "false"

jndi-datasource-name CDATA #IMPLIED

driver CDATA #IMPLIED
protocol CDATA #IMPLIED
subprotocol CDATA #IMPLIED
dbalias CDATA #IMPLIED

username CDATA #IMPLIED
password CDATA #IMPLIED

>

Custom attributes

The JdbcConnectionDescriptor supports specific configuration properties via custom-attributes.

Attribute initializationCheck is an attribute to support backward compatibility with OJB versions
before 1.0.4.
In older versions OJB change the 'autoCommit' state dependent of the used 'useAutoCommit'
attribute setting at connection initialization. This doesn't work in all situations/environments, thus
for useAutoCommit="1" the ConnectionFactory does no longer set autoCommit to true on
connection creation.
To use the old behavior (OJB version 1.0.3 or earlier) set this property to true, then OJB change the
'autoCommit' state (if needed) of new obtained connections at connection initialization.
If false or this property is removed, OJB dosen't try to change connection 'autoCommit' state at
connection initialization.

Usage example of supported custom attributes:

<jdbc-connection-descriptor
...

>

<attribute attribute-name="initializationCheck"
attribute-value="false" />

...
</jdbc-connection-descriptor>

5.5.7.4. connection-pool

The connection-pool element specifies the connection pooling and low-level JDBC driver
parameters. Read more about OJB connection handling.

OJB

92
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Elements

The documentation element can be used to store arbitrary information.

Use the attribute element to set JDBC-level properties or to enable DBCP PreparedStatement
pooling if your JDBC driver does not have a PreparedStatement cache already.

See section custom attributes below for more information.

Note:
When using an external DataSource, OJB cannot configure any JDBC-properties.

<!ELEMENT connection-pool (documentation?, attribute*)>

Attributes

maxActive (default=21) The maximum number of active connections that can be allocated from this
pool at the same time, or zero for no limit.

maxIdle (default=-1) The maximum number of active connections that can remain idle in the pool,
without extra ones being released, or zero for no limit.

minIdle (Since OJB 1.0.4, default=0) The minimum number of active connections that can remain
idle in the pool, without extra ones being created, or zero to create none.

maxWait (default=5000) The maximum number of milliseconds that the pool will wait (when there
are no available connections) for a connection to be returned before throwing an exception, or -1 to
wait indefinitely.
Must be > 0 for timeout to actually happen in DBCP PoolingDataSource.

whenExhaustedAction (default=0)

• 0 - fail when pool is exhausted
• 1 - block when pool is exhausted
• 2 - grow when pool is exhausted

validationQuery (default=not specified) The SQL query that will be used to validate connections
from this pool according to testOnBorrow/testOnReturn/testWhileIdle. If specified, this query must
be an SQL SELECT statement that returns at least one row.
If not specified, only connection.isClosed() checks will be performed according to
testOnBorrow/testOnReturn/testWhileIdle.

Note:
Many database servers will discard idle connections after some time of inactivity. This timespan is usually configurable by the DBA and
can range from anything between one hour and several days.
Consider specifying a validation query that fits your database server and set at least testOnBorrow=true.

Example validation queries:

Oracle SELECT 1 FROM DUAL
PostgreSQL SELECT 1
MySQL SELECT 1

testOnBorrow (default=true) The indication of whether connections will be validated before being
borrowed from the pool. If the connection fails to validate, it will be dropped from the pool, and
OJB will attempt to borrow another.

testOnReturn (default=false) The indication of whether connections will be validated before being

OJB

93
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

returned to the pool.

testWhileIdle (default=false) The indication of whether connections will be validated by the idle
object evictor (if any). If a connection fails to validate, it will be dropped from the pool.

timeBetweenEvictionRunsMillis (default=-1) The number of milliseconds to sleep between runs of
the idle object evictor thread. When non-positive, no idle object evictor thread will be run.

numTestsPerEvictionRun (default=10) The number of objects to examine during each run of the
idle object evictor thread (if any).
Has no meaning if timeBetweenEvictionRunsMillis is non-positive.

minEvictableIdleTimeMillis (default=1800000) The minimum amount of time a connection may sit
idle in the pool before it is eligable for eviction by the idle object evictor (if any).
When non-positive, no connection will be dropped from the pool due to idle time alone.
Has no meaning if timeBetweenEvictionRunsMillis is non-positive.

removeAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to remove abandoned
connections if they exceed the removeAbandonedTimout. If set to true a connection is considered
abandoned and eligible for removal if it has been idle longer than the removeAbandonedTimeout.
Setting this to true can recover db connections from poorly written applications which fail to close
a connection.
If you have enabled "removeAbandoned" then it is possible that a connection is reclaimed by the
pool because it is considered to be abandoned. This mechanism is triggered on borrowObject (ie in
OJB when a PersistenceBroker gets a Connection) when:
(numIdle < 2) and (numActive > maxActive - 3)
For example maxActive=20, 18 active connections and 1 idle connection would trigger the
"removeAbandoned". But only the active connections that aren't used for more then
removeAbandonedTimeout seconds are removed. Traversing a resultset doesn't count as being used.
The abandoned object eviction takes place before normal borrowObject logic (there is no asynch
evictor thread like for testWhileIdle).

removeAbandonedTimeout [ConnectionFactoryDBCPImpl] (default=300) Timeout in seconds
before an abandoned connection can be removed.
Has no meaning if removeAbandoned is false.

logAbandoned [ConnectionFactoryDBCPImpl] (default=false) Flag to log stack traces for
application code which abandoned a Statement or Connection.

Note:
Logging of abandoned Statements and Connections adds overhead for every Connection open or new Statement because a stack trace
has to be generated.

<!ATTLIST connection-pool
maxActive CDATA #IMPLIED
minIdle CDATA #IMPLIED
maxIdle CDATA #IMPLIED
maxWait CDATA #IMPLIED
minEvictableIdleTimeMillis CDATA #IMPLIED
numTestsPerEvictionRun CDATA #IMPLIED
testOnBorrow (true | false) #IMPLIED
testOnReturn (true | false) #IMPLIED
testWhileIdle (true | false) #IMPLIED
timeBetweenEvictionRunsMillis CDATA #IMPLIED
whenExhaustedAction (0 | 1 | 2) #IMPLIED
validationQuery CDATA #IMPLIED

removeAbandoned (true | false) #IMPLIED
removeAbandonedTimeout CDATA #IMPLIED

OJB

94
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

logAbandoned (true | false) #IMPLIED
>

Custom attributes

OJB itself and the ConnectionFactory implementation classes support specific connection
configuration properties, these properties can be set by using custom-attributes.

Usage example of supported custom attributes:

<connection-pool
maxActive="30"
validationQuery="@VALIDATION_QUERY@"
testOnBorrow="@TEST_ON_BORROW@"
testOnReturn="@TEST_ON_RETURN@"
whenExhaustedAction="0"
maxWait="10000">

<!-- Set fetchSize to 0 to use driver's default. -->
<attribute attribute-name="fetchSize" attribute-value="0"/>

<!-- Attributes with name prefix "jdbc." are passed directly to the JDBC
driver. -->

<!-- Example setting (used by Oracle driver when Statement batching is
enabled) -->

<attribute attribute-name="jdbc.defaultBatchValue" attribute-value="5"/>

<!-- Attributes determining if ConnectionFactoryDBCPImpl
should also pool PreparedStatement. This is programmatically disabled
when using platform=Oracle9i since Oracle statement caching will

conflict
with DBCP ObjectPool-based PreparepdStatement caching (ie setting true
here has no effect for Oracle9i platform). -->

<attribute attribute-name="dbcp.poolPreparedStatements"
attribute-value="true"/>

<attribute attribute-name="dbcp.maxOpenPreparedStatements"
attribute-value="60"/>

<!-- Attribute determining if the Commons DBCP connection wrapper will allow
access to the underlying concrete Connection instance from the

JDBC-driver
(normally this is not allowed, like in J2EE-containers using wrappers).

-->
<attribute attribute-name="dbcp.accessToUnderlyingConnectionAllowed"

attribute-value="false"/>
</connection-pool>

jdbc.*

Since OJB 1.0.4, custom attributes with names starting with "jdbc." will be passed (without the
"jdbc." prefix) to the JDBC DriverManager when creating new Connection objects.

Use this attribute to set driver-specific customized tuning options. For example, to set
Oracle-batching to 5 statements:

<attribute attribute-name="jdbc.defaultBatchValue" attribute-value="5"/>

fetchSize

(default=0, unspecified) Sets a hint in the JDBC driver not to fetch more than specified
number of rows per server roundtrip for any ResultSet.
Setttings different than the default (0) are especially useful to reduce memory footprint when using
drivers that default to not using server-side cursors and retrieves all rows to the JDBC client-side
driver buffer. PostgreSQL JDBC driver is a well-known example of this.

Note:

OJB

95
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

* Many JDBC drivers will silently ignore the fetchSize hint.
* Also note that fetchSize has nothing to do with max rows returned by a ResultSet, only number of rows retrieved per JDBC- driver
network roundtrip to the database server (if the driver cares about the hint at all, that is).

dbcp.poolPreparedStatements

Only valid for ConnectionFactoryDBCPImpl (default=false) Enable prepared statement
pooling.

Note:
PreparedStatement pooling with Commons DBCP is programmatically disabled when using platform=Oracle9i in OJB, since the
platform implementation activates Oracle-specific statement caching that conflicts with DBCP ObjectPool-based caching. Ie, for a
descriptor with platform="Oracle9i" there is no effect in setting:

<attribute attribute-name="dbcp.poolPreparedStatements" attribute-value="true"/>

dbcp.maxOpenPreparedStatements

Only valid for ConnectionFactoryDBCPImpl (default=0, unlimited) The maximum
number of open statements that can be allocated from the statement pool at the same time, or zero
for no limit.

dbcp.accessToUnderlyingConnectionAllowed

Only valid for ConnectionFactoryDBCPImpl (default=false) Controls if the DBCP
"PoolGuard" connection wrapper allows access to the underlying Connection instance from the
JDBC-driver.

Only use when you need direct access to driver-specific extentions. It is generally not needed to
change this setting in OJB.

Note:
* Do not close the underlying connection, only the original one.
* If using P6Spy, the underlying connection in DBCP will still be wrapped by P6Spy and you will have to continue unwrapping to the
innermost delegate and Connection of JDBC-driver specific class.

5.5.7.5. sequence-manager

The sequence-manager element specifies the sequence manager implementation used for key
generation. All sequence manager implementations shipped with OJB can be found in the
org.apache.ojb.broker.util.sequence package. If no sequence manager is defined, OJB uses the
default one. More info about sequence key generation here.

Elements

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT sequence-manager (
documentation?,
attribute*)

>

Attributes

The className attribute represents the full qualified class name of the desired sequence manager
implementation - it is mandatory when using the sequence-manager element. All sequence manager
implementations you find will under org.apache.ojb.broker.util.sequence package named as

OJB

96
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

SequenceManagerXXXImpl

More info about the usage of the Sequence Manager implementations can be found here.

<!ATTLIST sequence-manager
className CDATA #REQUIRED>

Custom Attributes

The SequenceManager implementation classes support specific configuration properties, these
properties can be set by using custom-attributes.

The description of the properties can be found in sequence manager docs.
Usage example of supported custom attributes:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<!-- attributes supported by SequenceManagerHighLowImpl,
SequenceManagerInMemoryImpl, SequenceManagerNextValImpl
please see "Sequence Manager" guide or/and javadoc of class for more

information -->
<attribute attribute-name="seq.start" attribute-value="200000"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

<!-- attributes supported by SequenceManagerHighLowImpl
please see "Sequence Manager" guide or/and javadoc of classes for more

information -->
<attribute attribute-name="grabSize" attribute-value="20"/>

<!-- optional attributes supported by SequenceManagerNextValImpl (support
depends

on the used database), please see "Sequence Manager" guide or/and javadoc of
classes for more information -->
<!-- attribute attribute-name="seq.as" attribute-value="INTEGER"/ -->
<!-- attribute attribute-name="seq.incrementBy" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.maxValue"

attribute-value="999999999999999999999999999"/ -->
<!-- attribute attribute-name="seq.minValue" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.cycle" attribute-value="false"/ -->
<!-- attribute attribute-name="seq.cache" attribute-value="20"/ -->
<!-- attribute attribute-name="seq.order" attribute-value="false"/ -->

</sequence-manager>

5.5.7.6. object-cache

The object-cache element can be used to specify the ObjectCache implementation used by OJB.
There are three levels of declaration:

• in OJB.properties file, to declare the standard (default) ObjectCache implementation
• on jdbc-connection-descriptor level, to declare ObjectCache implementation on a per

connection/user level
• on class-descriptor level, to declare ObjectCache implementation on a per class level

Note:
The priority of the declared object-cache elements are:
per class > per jdbc descriptor > standard

E.g. if you declare ObjectCache implementation 'my.cacheDef' as standard, set ObjectCache
implementation 'my.cacheA' in class-descriptor for class A and class B does not declare an
object-cache element. Then OJB use 'my.cacheA' as ObjectCache for class A and 'my.cacheDef' for
class B.

Elements

OJB

97
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT object-cache (documentation?, attribute*)>

Attributes

Attribute 'class' specifies the full qualified class name of the used ObjectCache implementation.

<!ATTLIST object-cache class CDATA #REQUIRED>

Custom Attributes

Many ObjectCache implementation classes support specific configuration properties, these
properties can be set by using custom-attributes.

The description of the properties can be found in object cache docs.
Usage example of supported custom attributes:

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl">
<!-- meaning of attributes, please see docs section "Caching" -->
<!-- common attributes -->
<attribute attribute-name="cacheExcludes" attribute-value=""/>

<!-- ObjectCacheTwoLevelImpl attributes -->
<attribute attribute-name="applicationCache"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl"/>
<attribute attribute-name="copyStrategy"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl$CopyStrategyImpl"/>
<attribute attribute-name="forceProxies" attribute-value="false"/>

<!-- ObjectCacheDefaultImpl attributes -->
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>
<attribute attribute-name="cachingKeyType" attribute-value="0"/>
<attribute attribute-name="useSoftReferences" attribute-value="true"/>

</object-cache>

5.5.7.7. custom attribute

An attribute element allows arbitrary name/value pairs to be represented in the repository. See the
repository.dtd for details on which elements support it (e.g. class-descriptor, object-cache, ...).

<!ELEMENT attribute EMPTY>

The attribute-name identifies the name of the attribute.
The attribute-value identifies the value of the attribute.

<!ATTLIST attribute
attribute-name CDATA #REQUIRED
attribute-value CDATA #REQUIRED

>

To get access of the definied attribute use methods of
org.apache.ojb.broker.metadata.AttributeContainer. All classes supporting
custom attributes have to implement this interface.

Here you can see an example how to define an custom attribute within the class-descriptor element:

<class-descriptor
class="my.TestClass"
table="OJB_TEST_CLASS"

>
<field-descriptor

name="id"

OJB

98
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
...
<attribute attribute-name="myAttribute" attribute-value="myValue"/>

</class-descriptor>

To access the attribute you have to know the associated AttributeContainer class. Here it
was ClassDescriptor. To read the attribute at runtime do:

// get the ClassDescriptor
ClassDescriptor cld = broker.getClassDescriptor(TestClass.class);
String value = cld.getAttribute("myAttribute");

5.5.7.8. class-descriptor

A class-descriptor and the associated java class ClassDescriptor encapsulate metadata information
of an interface, abstract or concrete class.

Elements

For interfaces or abstract classes a class-descriptor holds a sequence of extent-class elements
which specify the types extending this class.
Concrete base classes may specify a sequence of extent-class elements, naming the derived classes.

For concrete classes it must have field-descriptors that describe primitive typed instance variables.
References to other persistent entity classes are specified by reference-descriptor elements.
Collections or arrays attributes that contain other persistent entity classes are specified by
collection-descriptor elements
A class-descriptor may contain user defined custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT class-descriptor (
(

documentation?,
extent-class+,
attribute*) |

(
documentation?,
object-cache?,
extent-class*,
field-descriptor+,
reference-descriptor*,
collection-descriptor*,
index-descriptor*,
attribute*,
insert-procedure?,
update-procedure?,
delete-procedure?)

)
>

Attributes

The class attribute contains the full qualified name of the specified class. As this attribute is of the
XML type ID there can only be one class-descriptor per class.

The isolation-level attribute defines the locking isolation level of the specified class (used by OJB's
pessimistic locking api).

Note:

OJB

99
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The isolation-level does not touch the jdbc-connection isolation level. It's completely independend from the database connection setting
and only important when pessimistic locking was used.

If the proxy attribute is set, proxies are used for all loading operations of instances of this class. If
set to dynamic, dynamic proxies are used. If set to another value this value is interpreted as the
full-qualified name of the proxy class to use. More info about using of proxies here.

The proxy-prefetching-limit attribute specifies a limit to the number of elements loaded on a
proxied reference. When the first proxied element is loaded, a number up to the
proxy-prefetch-limit will be loaded in addition.

The schema attribute may contain the database schema owning the table mapped to this class.

The table attribute speciefies the table name this class is mapped to.

The row-reader attribute may contain a full qualified class name. This class will be used as the
RowReader implementation used to materialize instances of the persistent class.

The extends attribute is deprecated and will be removed or reintroduced with changed
funcitonality in future. DON'T USE IT!

The accept-locks attribute specifies whether implicit locking should propagate to this class.
Currently relevant for the ODMG layer only.

The optional initialization-method specifies a no-argument instance method that is invoked after
reading an instance from a database row. It can be used to do initialization and validations.

The optional factory-class specifies a factory class that that is to be used instead of a no argument
constructor when new objects are created. If the factory class is specified, then the factory-method
also must be defined. It refers to a static no-argument method of the factory class that returns a new
instance.

The refresh attribute can be set to true to force OJB to refresh instances when loaded from cache.
Means all field values (except references) will be replaced by values retrieved from the database.
It's set to false by default.

<!ATTLIST class-descriptor
class ID #REQUIRED
isolation-level (read-uncommitted | read-committed |

repeatable-read | serializable | optimistic | none) "read-uncommitted"
proxy CDATA #IMPLIED
proxy-prefetching-limit CDATA #IMPLIED
schema CDATA #IMPLIED
table CDATA #IMPLIED
row-reader CDATA #IMPLIED
extends IDREF #IMPLIED
accept-locks (true | false) "true"
initialization-method CDATA #IMPLIED
factory-class CDATA #IMPLIED
factory-method CDATA #IMPLIED
refresh (true | false) "false"

>

5.5.7.9. extent-class

An extent-class element is used to specify an implementing class or a derived class that belongs to
the extent of all instances of the interface or base class.

<!ELEMENT extent-class EMPTY>

The class-ref attribute must contain a fully qualified classname and the repository file must contain
a class-descriptor for this class.

OJB

100
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<!ATTLIST extent-class class-ref IDREF #REQUIRED>

5.5.7.10. field-descriptor

A field descriptor contains mapping info for a primitive typed attribute of a persistent class.
A field descriptor may contain custom attribute elements.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT field-descriptor (documentation?, attribute*)>

The id attribute is optional. If not specified, OJB internally sorts field-descriptors according to
their order of appearance in the repository file.
If a different sort order is intended the id attribute may be used to hold a unique number identifying
the decriptors position in the sequence of field-descriptors.

Note:
The order of the numbers for the field-descriptors must correspond to the order of columns in the mapped table.

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The table attribute may specify a table different from the mapped table for the persistent class.
(currently not implemented).

The column attribute specifies the column the persistent classes field is mapped to.

The jdbc-type attribute specifies the JDBC type of the column. If not specified OJB tries to identify
the JDBC type by inspecting the Java attribute by reflection - OJB use the java/jdbc mapping
desribed here.

The primarykey specifies if the column is a primary key column, default value is false. It's possible
to auto assign primary key fields, more info see autoincrement section

The nullable attribute specifies if the column may contain null values.

The indexed attribute specifies if there is an index on this column

The autoincrement attribute specifies if the values for the persistent attribute should be
automatically generated by OJB. More info about sequence key generation here.

The sequence-name attribute can be used to state explicitly a sequence name used by the sequence
manager implementations. Check the javadocs of the used sequence manager implementation to get
information if this is a mandatory attribute. OJB standard sequence manager implementations build
a sequence name by its own, if the attribute is not set. More info about sequence key generation
here.

The locking attribute is set to true if the persistent attribute is used for optimistic locking. More
about optimistic locking. The default value is false.

The updatelock attribute is set to false if the persistent attribute is used for optimistic locking AND
the dbms should update the lock column itself. The default is true which means that when locking
is true then OJB will update the locking fields. Can only be set for TIMESTAMP and INTEGER
columns.

The default-fetch attribute specifies whether the persistent attribute belongs to the JDO default
fetch group.

The conversion attribute contains a fully qualified class name. This class must implement the

OJB

101
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

interface org.apache.ojb.accesslayer.conversions.FieldConversion. A
FieldConversion can be used to implement conversions between Java- attributes and database
columns. More about field conversion.

The length attribute can be used to specify a length setting if required by the jdbc-type of the
underlying database column.

The precision attribute can be used to specify a precision setting, if required by the jdbc-type of the
underlying database column.

The scale attribute can be used to specify a sclae setting, if required by the jdbc-type of the
underlying database column.

The access attribute specifies the accessibility of the field. Fields marked as readonly are not to
modified. readwrite marks fields that may be read and written to. anonymous marks anonymous
fields.
An anonymous field has a database representation (column) but no corresponding Java attribute.
Hence the name of such a field does not refer to a Java attribute of the class, but is used as a unique
identifier only. More info about anonymous keys here.

<!ATTLIST field-descriptor
id CDATA #IMPLIED
name CDATA #REQUIRED
table CDATA #IMPLIED
column CDATA #REQUIRED
jdbc-type (BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE |

FLOAT | REAL | NUMERIC | DECIMAL | CHAR | VARCHAR |
LONGVARCHAR | DATE | TIME | TIMESTAMP | BINARY |
VARBINARY | LONGVARBINARY | CLOB | BLOB) #REQUIRED

primarykey (true | false) "false"
nullable (true | false) "true"
indexed (true | false) "false"
autoincrement (true | false) "false"
sequence-name CDATA #IMPLIED
locking (true | false) "false"
update-lock (true | false) "true"
default-fetch (true | false) "false"
conversion CDATA #IMPLIED
length CDATA #IMPLIED
precision CDATA #IMPLIED
scale CDATA #IMPLIED
access (readonly | readwrite | anonymous) "readwrite"

>

5.5.7.11. reference-descriptor

A reference-descriptor contains mapping info for an attribute of a persistent class that is not
primitive but references another persistent entity Object. More about 1:1 references here.

A foreignkey element contains information on foreign key columns that implement the association
on the database level.

<!ELEMENT reference-descriptor (foreignkey+)>

The name attribute holds the name of the persistent classes attribute. Depending on the used
PersistendField implementation, there must be e.g. an attribute in the persistent class with this name
or a JavaBeans compliant property of this name.

The class-ref attribute contains a fully qualified class name. This class is the Object type of the
persistent reference attribute. As this is an IDREF there must be a class-descriptor for this class in
the repository too.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for

OJB

102
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

this attribute.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
is loaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).
This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fields itself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates the referred
object or deletes it if the reference field is set to null. Also otm-dependent references behave as if
auto-update and auto-delete were set to true, but the auto-update and auto-delete attributes themself
must be always set to false for use with OTM layer.

<!ATTLIST reference-descriptor
name CDATA #REQUIRED
class-ref IDREF #REQUIRED

proxy (true | false) "false"
proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

auto-retrieve (true | false) "true"
auto-update (none | link | object | true | false) "false"
auto-delete (none | link | object | true | false) "false"
otm-dependent (true | false) "false"

>

OJB

103
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.7.12. foreignkey

A foreignkey element contains information on a foreign-key persistent attribute that implement the
association on the database level.

<!ELEMENT foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor
used as a foreign key.

Note:
Exactly one of these attributes must be specified.

<!ATTLIST foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

5.5.7.13. collection-descriptor

A collection-descriptor contains mapping info for a Collection- or Array-attribute of a persistent
class that contains persistent entity Objects. See more about 1:n and m:n references.

The orderby element(s) allow to specify the order the collection objects. It's allowed to specify
multiple order fields.

The inverse-foreignkey elements contains information on foreign-key attributes that implement the
association on the database level.

The fk-pointing-to-this-class and fk-pointing-to-element-class elements are only needed if the
Collection or array implements a m:n association. In this case they contain information on the
foreign-key columns of the intermediary table.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT collection-descriptor (
documentation?,
orderby*,
inverse-foreignkey*,
fk-pointing-to-this-class*,
fk-pointing-to-element-class*,
attribute*)>

The name attribute holds the name of the persistent classes attribute. More info about persistent
field handling.

The collection-class may hold a fully qualified class name. This class must be the Java type of the
Collection attribute. This attribute must only specified if the attribute type is not a
java.util.Collection (or subclass) or Array type. It is also possible to use non Collection
or Array type user defined "collection" classes. More info see section manageable collection.

The element-class-ref attribute contains a fully qualified class name. This class is the Object type of
the elements of persistent collection or Array attribute. As this is an IDREF there must be a
class-descriptor for this class in the repository too.

DEPRECATED, please use the 'orderby'-element. The orderby attribute may specify a field of the
element class. The Collection or Array will be sorted according to the specified attribute. The sort
attribute may be used to specify ascending or descending order for this operation.

The indirection-table must specify the name of an intermediary table, if the persistent collection

OJB

104
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

attribute implements a m:n association.

The proxy attribute can be set to true to specify that proxy based lazy loading should be used for
this attribute. More about using proxy here.

The proxy-prefetch-limit attribute specifies a limit to the number of elements loaded on a proxied
reference. When the first proxied element is loaded, a number up to the proxy-prefetch-limit will be
loaded in addition.

The refresh attribute can be set to true to force OJB to refresh the object reference when the object
is loaded from cache. If true OJB try to retrieve the reference (dependent on the auto-xxx settings)
again when the main object is loaded from cache (normally only make sense for 1:n and m:n
relations).
This could be useful if the ObjectCache implementation cache full object graphs without
synchronize the referenced objects.

Note:
This does not mean that all referenced objects will be read from database. It only means that the reference will be refreshed, the objects
itself may provided by the cache. To refresh the object fields itself set the refresh attribute in class-descriptor of the referenced object or
disable caching (to always read objects from the persistent storage).

The auto-retrieve attribute specifies whether OJB automatically retrieves this reference attribute on
loading the persistent object. If set to false the reference attribute is set to null. In this case the user
is responsible to fill the reference attribute.
More info about auto-retrieve here.

The auto-update attribute specifies whether OJB automatically stores this reference attribute on
storing the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The auto-delete attribute specifies whether OJB automatically deletes this reference attribute on
deleting the persistent object.
More info about the auto-XXX settings here.

Note:
This attribute must be set to false if using the OTM or JDO layer.
For ODMG-api none is mandatory (since OJB 1.0.2).

The otm-dependent attribute specifies whether the OTM layer automatically creates collection
elements that were included into the collection, and deletes collection elements that were removed
from the collection. Also otm-dependent references behave as if auto-update and auto-delete were
set to true, but the auto-update and auto-delete attributes themself must be always set to false for
use with OTM layer.

<!ATTLIST collection-descriptor
name CDATA #IMPLIED
collection-class CDATA #IMPLIED
element-class-ref IDREF #REQUIRED
orderby CDATA #IMPLIED
sort (ASC | DESC) "ASC"

indirection-table CDATA #IMPLIED

proxy (true | false) "false"

OJB

105
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

proxy-prefetching-limit CDATA #IMPLIED
refresh (true | false) "false"

auto-retrieve (true | false) "true"
auto-update (none | link | object | true | false) "false"
auto-delete (none | link | object | true | false) "false"
otm-dependent (true | false) "false"

>

5.5.7.14. order-by

A order-by element contains an attribute name and a sort order.

<!ELEMENT orderby (documentation?)>

The name attribute specifies the field or the column (full qualified column name) the order based
on. The sort attribute specifies the order direction.

<!ATTLIST orderby
name CDATA #REQUIRED
sort (ASC | DESC) "ASC"

>

Here is an examples of how to use ordering for one side of a m:n reference:

<collection-descriptor
name="actors"

collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
element-class-ref="org.apache.ojb.broker.M2NTest$Actor"
auto-retrieve="false"
auto-update="false"
auto-delete="false"
indirection-table="M2N_ROLE"

>
<!-- Check the use of order by element for fields and plain columns -->
<orderby name="name" sort="ASC"/>
<orderby name="M2N_ROLE.MOVIE_ID_INT" sort="DESC"/>

<fk-pointing-to-this-class column="MOVIE_ID_INT"/>
<fk-pointing-to-this-class column="MOVIE_ID2_INT"/>
<fk-pointing-to-this-class column="MOVIE_ID_STR"/>
<fk-pointing-to-element-class column="ACTOR_ID"/>
<fk-pointing-to-element-class column="ACTOR_ID2"/>

</collection-descriptor>

5.5.7.15. inverse-foreignkey

A inverse-foreignkey element contains information on a foreign-key persistent attribute that
implement the association on the database level.

<!ELEMENT inverse-foreignkey EMPTY>

The field-ref and field-id-ref attributes contain the name and the id attributes of the field-descriptor
used as a foreign key. Exactly one of these attributes must be specified.

<!ATTLIST inverse-foreignkey
field-id-ref CDATA #IMPLIED
field-ref CDATA #IMPLIED

>

5.5.7.16. fk-pointing-to-this-class

A fk-pointing-to-this-class element contains information on a foreign-key column of an
intermediary table in a m:n scenario.

<!ELEMENT fk-pointing-to-this-class EMPTY>

OJB

106
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The column attribute specifies the foreign-key column in the intermediary table that points to the
class holding the collection.

<!ATTLIST fk-pointing-to-this-class
column CDATA #REQUIRED

>

5.5.7.17. fk-pointing-to-element-class

A fk-pointing-to-element-class element contains information on a foreign-key column of an
intermediary table in a m:n scenario.

<!ELEMENT fk-pointing-to-element-class EMPTY>

The column attribute specifies the foreign-key column in the intermediary table that points to the
class of the collection elements.

<!ATTLIST fk-pointing-to-element-class
column CDATA #REQUIRED

>

5.5.7.18. query-customizer

A query enhancer element to enhance the 1:n query, e.g. to modify the result objects of a query.
More info about customizing collection queries.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT query-customizer (
documentation?,
attribute*)>

<!ATTLIST query-customizer
class CDATA #REQUIRED

>

5.5.7.19. index-descriptor

An index-descriptor describes an index by listing its columns. It may be unique or not.

<!ELEMENT index-descriptor (documentation?, index-column+)>

<!ATTLIST index-descriptor
name CDATA #REQUIRED
unique (true | false) "false">

5.5.7.20. index-column

An index-column is just the name of a column in an index.

<!ELEMENT index-column (documentation?)>

<!ATTLIST index-column
name CDATA #REQUIRED>

5.5.7.21. Stored Procedure Support

OJB supports stored procedures for insert, update and delete operations. How to use stored
procedures within OJB can be found here.

insert-procedure

OJB

107
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Identifies the procedure/function that should be used to handle insertions for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the
source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT insert-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fields is 'true', any nested 'argument'
elements will be ignored. In this case, values for all field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then
values will be passed to the procedure/function based on the information in the nested 'argument'
elements.

<!ATTLIST insert-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

update-procedure

Identifies the procedure/function that should be used to handle updates for a specific
class-descriptor.

The nested argument elements define the argument list for the procedure/function as well as the
source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT update-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-all-fields attribute indicates if all field-descriptors in the corresponding class-descriptor
are to be passed to the procedure/ function. If include-all-fields is 'true', any nested 'argument'
elements will be ignored. In this case, values for all field-descriptors will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-all-fields is false, then
values will be passed to the procedure/function based on the information in the nested 'argument'
elements.

<!ATTLIST update-procedure
name CDATA #REQUIRED

OJB

108
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

return-field-ref CDATA #IMPLIED
include-all-fields (true | false) "false"

>

delete-procedure

Identifies the procedure/function that should be used to handle deletions for a specific
class-descriptor.

The nested runtime-argument and constant-argument elements define the argument list for the
procedure/function as well as the source for each argument.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT delete-procedure
(documentation?, (runtime-argument | constant-argument)?, attribute*)>

The name attribute identifies the name of the procedure/function to use

The return-field-ref identifies the field-descriptor that will receive the value that is returned by the
procedure/function. If the procedure/ function does not include a return value, then do not specify a
value for this attribute.

The include-pk-only attribute indicates if all field-descriptors in the corresponding class-descriptor
that are identified as being part of the primary key are to be passed to the procedure/function. If
include-pk-only is 'true', any nested 'argument' elements will be ignored. In this case, values for all
field-descriptors that are identified as being part of the primary key will be passed to the
procedure/function. The order of values that are passed to the procedure/function will match the
order of field-descriptors on the corresponding class-descriptor. If include-pk-only is false, then
values will be passed to the procedure/ function based on the information in the nested 'argument'
elements.

<!ATTLIST delete-procedure
name CDATA #REQUIRED
return-field-ref CDATA #IMPLIED
include-pk-only (true | false) "false"

>

runtime-argument

Defines an argument that is passed to a procedure/function. Each argument will be set to a value
from a field-descriptor or null.

Use the custom-attribute element to pass implementation specific properties.

<!ELEMENT runtime-argument
(documentation?, attribute*)>

The field-ref attribute identifies the field-descriptor in the corresponding class-descriptor that
provides the value for this argument. If this attribute is unspecified, then this argument will be set
to null.

<!ATTLIST runtime-argument
field-ref CDATA #IMPLIED
return (true | false) "false"

>

constant-argument

Defines a constant value that is passed to a procedure/function.

Use the custom-attribute element to pass implementation specific properties.

OJB

109
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<!ELEMENT constant-argument
(documentation?, attribute*)>

The value attribute identifies the value that is passed to the procedure/ function.

<!ATTLIST constant-argument
value CDATA #REQUIRED

>

5.5.8. Basic O/R Mapping Technique

5.5.8.1. Mapping 1:1 associations

As a sample for a simple association we take the reference from an article to its productgroup.
This association is navigable only from the article to its productgroup. Both classes are modelled in
the following class diagram. This diagram does not show methods, as only attributes are relevant
for the O/R mapping process.

1:1 association

The association is implemented by the attribute productGroup. To automatically maintain this
reference OJB relies on foreignkey attributes. The foreign key containing the groupId of the
referenced productgroup is stored in the attribute productGroupId. To avoid FK attribute
in persistent object class see section about anonymous keys.

This is the DDL of the underlying tables:

CREATE TABLE Artikel
(

Artikel_Nr INT NOT NULL PRIMARY KEY,
Artikelname VARCHAR(60),
Lieferanten_Nr INT,
Kategorie_Nr INT,
Liefereinheit VARCHAR(30),
Einzelpreis FLOAT,
Lagerbestand INT,
BestellteEinheiten INT,
MindestBestand INT,
Auslaufartikel INT

)

CREATE TABLE Kategorien
(

Kategorie_Nr INT NOT NULL PRIMARY KEY,
KategorieName VARCHAR(20),
Beschreibung VARCHAR(60)

)

To declare the foreign key mechanics of this reference attribute we have to add a
reference-descriptor to the class-descriptor of the Article class. This descriptor contains the
following information:

OJB

110
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• The attribute implementing the association (name="productGroup") is productGroup.
• The referenced object is of type (

class-ref="org.apache.ojb.broker.ProductGroup")
org.apache.ojb.broker.ProductGroup.

• A reference-descriptor contains one or more foreignkey elements. These elements define
foreign key attributes. The element

<foreignkey field-ref="productGroupId"/>
contains the name of the field-descriptor describing the foreignkey fields. The FieldDescriptor
with the name "productGroupId" describes the foreignkey attribute productGroupId:

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>

See the following extract from the repository.xml file containing the Article ClassDescriptor:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
...

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

This example provides unidirectional navigation only. Bidirectional navigation may be added by
including a reference from a ProductGroup to a single Article (for example, a sample article for the
productgroup). To accomplish this we need to perform the following steps:

1. Add a private Article attribute named sampleArticle to the class ProductGroup.
2. Add a private int attribute named sampleArticleId to the ProductGroup class representing

the foreign key. To avoid FK attribute in persistent object class see section about anonymous
keys.

OJB

111
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

3. Add a column SAMPLE_ARTICLE_ID INT to the table Kategorien.
4. Add a FieldDescriptor for the foreignkey attribute to the ClassDescriptor of the Class

ProductGroup:

<field-descriptor
name="sampleArticleId"
column="SAMPLE_ARTICLE_ID"
jdbc-type="INTEGER"

/>
1. Add a ReferenceDescriptor to the ClassDescriptor of the Class ProductGroup:

<reference-descriptor
name="sampleArticle"
class-ref="org.apache.ojb.broker.Article"

>
<foreignkey field-ref="sampleArticleId""/>

</reference-descriptor>

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

1:1 auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will NOT be updated by
default.The reference will not be inserted or updated, the link to the reference (foreign key
value to the reference) on the main object will not be assigned automatically. The user has to
link the main object and to store the reference before the main object to avoid violation of
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the FK assignment on the main object was done
automatic. OJB reads the PK from the referenced object and sets these values as FK in main
object. But the referenced object remains untouched. If no referenced object is found, the FK
will be nullified. (On insert it is allowed to set the FK without populating the referenced object)

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced object will be stored first, then OJB
does the same as in link.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced
object will NOT be touched.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced

object will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

5.5.8.2. Mapping 1:n associations

OJB

112
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

We will take a different perspective from the previous exmaple for a 1:n association. We will
associate multiple Articles with a single ProductGroup. This association is navigable only from the
ProductGroup to its Article instances. Both classes are modelled in the following class diagram.
This diagram does not show methods, as only attributes are relevant for the O/R mapping process.

1:n association

The association is implemented by the Vector attribute allArticlesInGroup on the
ProductGroup class. As in the previous example, the Article class contains a foreignkey attribute
named productGroupId that identifies an Article's ProductGroup. The Database table are the same
as above.

To declare the foreign key mechanics of this collection attribute we must add a
CollectionDescriptor to the ClassDescriptor of the ProductGoup class. This descriptor contains the
following information:

1. The attribute implementing the association (name="allArticlesInGroup")
2. The class of the elements in the collection (

element-class-ref="org.apache.ojb.broker.Article")
3. The name of field-descriptor of the element class used as foreign key attributes are defined in

inverse-foreignkey elements:

<inverse-foreignkey field-ref="productGroupId"/>
This is again pointing to the field-descriptor for the attribute productGoupId in class
Article.

4. optional attributes to define the sort order of the retrieved collection:
orderby="articleId" sort="DESC".

See the following extract from the repository.xml file containing the ProductGoup ClassDescriptor:

<!-- Definitions for org.apache.ojb.broker.ProductGroup -->
<class-descriptor

class="org.apache.ojb.broker.ProductGroup"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="Beschreibung"
jdbc-type="VARCHAR"

OJB

113
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

/>
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
orderby="articleId"
sort="DESC"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

With the mapping shown above OJB has two possibilities to load the Articles belonging to a
ProductGroup:

1. loading all Articles of the ProductGroup immediately after loading the ProductGroup. This is
done with two SQL-calls: one for the ProductGroup and one for all Articles.

2. if Article is a proxy (using proxy classes), OJB will only load the keys of the Articles after the
ProductGroup. When accessing an Article-proxy OJB will have to materialize it with another
SQL-Call. Loading the ProductGroup and all it's Articles will thus produce n+2 SQL-calls: one
for the ProductGroup, one for keys of the Articles and one for each Article.

Both approaches have their benefits and drawbacks:

• A. is suitable for a small number of related objects that are easily instantiated. It's efficient
regarding DB-calls. The major drawback is the amount of data loaded. For example to show a
list of ProductGroups the Articles may not be needed.

• B. is best used for a large number of related heavy objects. This solution loads the objects when
they are needed ("lazy loading"). The price to pay is a DB-call for each object.

Further down a third solution using a single proxy for a whole collection will be presented to
circumvent the described drawbacks.

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. But in some cases the
default behaviour of OJB is undesired. Please read here for more information.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

1:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here.

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(foreign key assignment on referenced objects) to the main object automatically. The user has
to link and to store the referenced objects after storing the main object to avoid violation of
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the referenced objects will be linked
automatically (FK assignment) the main object.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and stored

OJB

114
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

automatically.
• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced
objects are NOT touched. This may lead to violation of referential integrity if the referenced
objects are childs of the main object. In this case the referenced objects have to be deleted
manually first.

• link Is equivalent to none.
• object On deleting an object with PersistenceBroker.delete(...) the referenced

objects will be deleted too.
• false Is equivalent to none.
• true Is equivalent to object.

5.5.8.3. Mapping m:n associations

OJB provides support for manually decomposed m:n associations as well as an automated support
for non decomposed m:n associations.

Manual decomposition into two 1:n associations

Have a look at the following class diagram:

m:n association
We see a two classes with a m:n association. A Person can work for an arbitrary number of
Projects. A Project may have any number of Persons associated to it.
Relational databases don't support m:n associations. They require to perform a manual
decomposition by means of an intermediary table. The DDL looks like follows:

CREATE TABLE PERSON (
ID INT NOT NULL PRIMARY KEY,
FIRSTNAME VARCHAR(50),
LASTNAME VARCHAR(50)

);

CREATE TABLE PROJECT (
ID INT NOT NULL PRIMARY KEY,
TITLE VARCHAR(50),
DESCRIPTION VARCHAR(250)

);

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

This intermediary table allows to decompose the m:n association into two 1:n associations. The
intermediary table may also hold additional information. For example, the role a certain person
plays for a project:

OJB

115
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

CREATE TABLE PERSON_PROJECT (
PERSON_ID INT NOT NULL,
PROJECT_ID INT NOT NULL,
ROLENAME VARCHAR(20),
PRIMARY KEY (PERSON_ID, PROJECT_ID)

);

The decomposition is mandatory on the ER model level. On the object model level it is not
mandatory, but may be a valid solution. It is mandatory on the object level if the association is
qualified (as in our example with a rolename). This will result in the introduction of a association
class. A class-diagram reflecting this decomposition looks like:

m:n association

A Person object has a Collection attribute roles containing Role entries. A Project has a
Collection attribute roles containing Role entries. A Role has reference attributes to its
Person and to its Project.
Handling of 1:n mapping has been explained above. Thus we will finish this section with a short
look at the repository entries for the classes org.apache.ojb.broker.Person,
org.apache.ojb.broker.Project and org.apache.ojb.broker.Role:

<!-- Definitions for org.apache.ojb.broker.Person -->
<class-descriptor

class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="person_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor

class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"

OJB

116
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
<collection-descriptor

name="roles"
element-class-ref="org.apache.ojb.broker.Role"

>
<inverse-foreignkey field-ref="project_id"/>

</collection-descriptor>
...

</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Role -->
<class-descriptor

class="org.apache.ojb.broker.Role"
table="PERSON_PROJECT"

>
<field-descriptor

name="person_id"
column="PERSON_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="project_id"
column="PROJECT_ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="roleName"
column="ROLENAME"
jdbc-type="VARCHAR"

/>
<reference-descriptor

name="person"
class-ref="org.apache.ojb.broker.Person"

>
<foreignkey field-ref="person_id"/>

</reference-descriptor>
<reference-descriptor

name="project"
class-ref="org.apache.ojb.broker.Project"

>
<foreignkey field-ref="project_id"/>

</reference-descriptor>
</class-descriptor>

Support for Non-Decomposed m:n Mappings

If there is no need for an association class at the object level (we are not interested in role
information), OJB can be configured to do the m:n mapping transparently. For example, a Person
does not have a collection of Role objects but only a Collection of Project objects (held in the
attribute projects). Projects also are expected to contain a collection of Person objects (hold
in attribute persons).

To tell OJB how to handle this m:n association the CollectionDescriptors for the Collection
attributes projects and roles need additional information on the intermediary table and the

OJB

117
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

foreign key columns pointing to the PERSON table and the foreign key columns pointing to the
PROJECT table:

Note:
OJB supports a multiplicity of collection implementations, inter alia
org.apache.ojb.broker.util.collections.RemovalAwareCollection and
org.apache.ojb.broker.util.collections.RemovalAwareList. By default the removal aware collections were used.
This cause problems in m:n relations when auto-update="true" or "object" and auto-delete="false" or "none"
is set, because objects deleted in the collection will be deleted on update of main object. Thus it is recommended to use a NOT removal
aware collection class in m:n relations using the collection-class attribute.

Example for setting a collection class in the collection-descriptor:

collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

An full example for a non-decomposed m:n relation looks like:

<class-descriptor
class="org.apache.ojb.broker.Person"
table="PERSON"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="firstname"
column="FIRSTNAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="lastname"
column="LASTNAME"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="projects"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Project"
auto-retrieve="true"
auto-update="true"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PERSON_ID"/>
<fk-pointing-to-element-class column="PROJECT_ID"/>

</collection-descriptor>
</class-descriptor>

<!-- Definitions for org.apache.ojb.broker.Project -->
<class-descriptor
class="org.apache.ojb.broker.Project"
table="PROJECT"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="title"
column="TITLE"
jdbc-type="VARCHAR"

OJB

118
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

/>
<field-descriptor

name="description"
column="DESCRIPTION"
jdbc-type="VARCHAR"

/>
...
<collection-descriptor

name="persons"
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"

element-class-ref="org.apache.ojb.broker.Person"
auto-retrieve="true"
auto-update="false"
indirection-table="PERSON_PROJECT"

>
<fk-pointing-to-this-class column="PROJECT_ID"/>
<fk-pointing-to-element-class column="PERSON_ID"/>

</collection-descriptor>
</class-descriptor>

That is all that needs to be configured! See the code in class
org.apache.ojb.broker.MtoNMapping for JUnit testmethods using the classes Person,
Project and Role.

Note:
When using primitive primary key fields, please pay attention on how OJB manage null for primitive PK/FK

m:n auto-xxx setting

General info about the auto-xxx and proxy attributes can be found here

auto-retrieve
See here

auto-update

• none On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, the referenced objects will not be linked
(creation of FK entries in the indirection table) automatically. The user has to store the main
object, the referenced objects and to link the m:n relation after storing of all objects.
establishing the m:n relationship before storing main and referenced objects may violate
referential integrity.

• link On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects are NOT updated by default.
The referenced objects will not be inserted or updated, but the m:n relation will be linked
automatically (creation of FK entries in the indirection table).

Note:
Make sure that the referenced objects exist in database before storing the main object with auto-update set link to avoid violation of
referential integrity.

• object On updating or inserting of the main object with
PersistenceBroker.store(...), the referenced objects will be linked and stored
automatically.

• false Is equivalent to link.
• true Is equivalent to object.

auto-delete

• none On deleting an object with PersistenceBroker.delete(...) the referenced

OJB

119
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

objects are NOT touched. The corresponding entries of the main object in the indirection table
will not be removed. This may lead to violation of referential integrity depending on the
definition of the indirection table.

• link On deleting an object with PersistenceBroker.delete(...) the m:n relation
will be unlinked (all entries of the main object in the indirection table will be removed).

• object On deleting an object with PersistenceBroker.delete(...) all referenced
objects will be deleted too.

• false Is equivalent to link.
• true Is equivalent to object.

5.5.8.4. Setting Load, Update, and Delete Cascading

As shown in the sections on 1:1, 1:n and m:n mappings, OJB manages associations (or object
references in Java terminology) by declaring special Reference and Collection Descriptors. These
Descriptor may contain some additional information that modifies OJB's behaviour on object
materialization, updating and deletion.
The behaviour depends on specific attributes

• auto-retrieve - possible settings are false, true. If not specified in the descriptor the default
value is true

• auto-update - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

• auto-delete - possible settings are none, link, object and deprecated [false, true]. If not
specified in the descriptor the default value is false

Warning:
When using a top-level api (ODMG, OTM, JDO) it is mandatory to use specific auto-xxx settings.
For OTM- and JDO-api the settings are:
- auto-retrieve="true"
- auto-update="false"
- auto-retrieve="false"
This are at the same time the default auto-XXX settings (so don't specify any of this attributes will have the same effect).
For the ODMG-api the mandatory settings are (since OJB 1.0.2):
- auto-retrieve="true"
- auto-update="none"
- auto-retrieve="none"

The attribute auto-update and auto-delete are described in detail in the corresponding sections for
1:1, 1:n and m:n references. The auto-retrieve setting is described below:

auto-retrieve setting

The auto-retrieve attribute used in reference-descriptor or
collection-descriptor elements handles the loading behaviour of references (1:1, 1:n and
m:n):

• false If set false the referenced objects will not be materialized on object materialization. The
user has to materialize the n-side objects (or single object for 1:1) by hand using one of the
following service methods of the PersistenceBroker class:

PersistenceBroker.retrieveReference(Object obj, String attributeName);
// or
PersistenceBroker.retrieveAllReferences(Object obj);
The first method load only the specified reference, the second one loads all references declared
for the given object.

Note:
Be careful when using "opposite" settings, e.g. if you declare a 1:1 reference with auto-retrieve="false" BUT auto-update="object" (or
"true" or "link").

OJB

120
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Before you can perform an update on the main object, you have to "retrieve" the 1:1 reference. Otherwise you will end up with an
nullified reference enty in main object, because OJB doesn't find the referenced object on update and assume the reference was
removed.

• true If set true the referenced objects (single reference or all n-side objects) will be automatic
loaded by OJB when the main object was materialized.

If OJB is configured to use proxies, the referenced objects are not materialized immmediately, but
lazy loading proxy objects are used instead.

In the following code sample, a reference-descriptor and a collection-descriptor are configured to
use cascading retrieval (auto-retrieve="true"), cascading insert/update (
auto-update="object" or auto-update="true") and cascading delete (
auto-delete="object" or auto-delete="true") operations:

<reference-descriptor
name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
>
<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
auto-retrieve="true"
auto-update="object"
auto-delete="object"
orderby="articleId"
sort="DESC"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

Link references

If in reference-descriptor or collection-descriptor the auto-update or
auto-delete attributes are set to none, OJB does not touch the referenced objects on insert, update or
delete operations of the main object. The user has to take care of the correct handling of referenced
objects. When using referential integrity (who does not ?) it's essential that insert and delete
operations are done in the correct sequence.

One important thing is assignment of the FK values. The assign of the FK values is transcribed with
link references in OJB. In 1:1 references the main object has a FK to the referenced object, in 1:n
references the referenced objects have FK pointing to the main object and in non-decomposed m:n
relations a indirection table containing FK values from both sides of the relationship is used.

OJB provides some helper methods for linking references manually (assignment of the FK) in
org.apache.ojb.broker.util.BrokerHelper class.

public void link(Object obj, boolean insert)
public void unlink(Object obj)
public boolean link(Object obj, String attributeName, boolean insert)
public boolean unlink(Object obj, String attributeName)

These methods are accessible via org.apache.ojb.broker.PersistenceBroker:

BrokerHelper bh = broker.serviceBrokerHelper();

Note:

OJB

121
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The link/unlink methods are only useful if you set auto-update/-delete to none. In all other cases OJB handles the link/unlink of
references internally. It is also possible to set all FK values by hand without using the link/unlink service methods.

Examples
Now we prepared for some example. Say class Movie has an m:n reference with class Actor and
we want to store an Movie object with a list of Actor objects. The auto-update setting of
collection-descriptor for Movie is none:

broker.beginTransaction();
// store main object first
broker.store(movie);
//now we store the right-side objects
Iterator it = movie.getActors().iterator();
while(it.hasNext())
{

Object actor = it.next();
broker.store(actor);

}
// now both side exist and we can link the references
broker.serviceBrokerHelper().link(movie, "actors", true);
/*
alternative call
broker.serviceBrokerHelper().link(movie, true);
*/
broker.commitTransaction();

First store the main object and the references, then use
broker.serviceBrokerHelper().link(movie, "actors", true) to link the
main object with the references. In case of a m:n relation linking create all FK entries in the
indirection table.

In the next examples we want to manually delete a Project object with a 1:n relation to class
SubProject. In the example, the Project object has load all SubProject objects and we want to
delete the Project but don't want to delete the referenced SubProjects too (don't ask if this make
sense ;-)). SubProject has an FK to Project, so we first have to unlink the reference from the main
object to the references to avoid integrity constraint violation. Then we can delete the main object:

broker.beginTransaction();
// first unlink the n-side references
broker.serviceBrokerHelper().unlink(project, "subProjects");

// update the n-side references, store SubProjects with nullified FK
Iterator it = project.getSubProjects().iterator();
while(it.hasNext())
{

SubProject subProject = (SubProject) it.next();
broker.store(subProject);

}

// now delete the main object
broker.delete(project);
broker.commitTransaction();

5.5.8.5. Using Proxy Classes

Proxy classes can be used for "lazy loading" aka "lazy materialization". Using Proxy classes can
help you in reducing unneccessary database lookups.
There are two kind of proxy mechanisms available:

1. Dynamic proxies provided by OJB. They can simply be activated by setting certain switches in
repository.xml. This is the solution recommemded for most cases.

2. User defined proxies. User defined proxies allow the user to write proxy implementations.

OJB

122
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

As it is important to understand the mechanics of the proxy mechanism I highly recommend to read
this section before turning to the next sections "using dynamic proxies", "using a single proxy for a
whole collection" and "using a proxy for a reference", covering dynamic proxies.

As a simple example we take a ProductGroup object pg which contains a collection of fifteen
Article objects. Now we examine what happens when the ProductGroup is loaded from the
database:

Without using proxies all fifteen associated Article objects are immediately loaded from the db,
even if you are not interested in them and just want to lookup the description-attribute of the
ProductGroup object.

If proxies are used, the collection is filled with fifteen proxy objects, that implement the same
interface as the "real objects" but contain only an OID and a void reference. The fifteen article
objects are not instantiated when the ProductGroup is initially materialized. Only when a method is
invoked on such a proxy object will it load its "real subject" and delegate the method call to it.
Using this dynamic delegation mechanism instantiation of persistent objects and database lookups
can be minimized.

To use proxies, the persistent class in question (in our case the Article class) must implement an
interface (for example InterfaceArticle). This interface is needed to allow replacement of the proper
Article object with a proxy implementing the same interface. Have a look at the code:

public class Article implements InterfaceArticle
{

/** maps to db-column "Artikel-Nr"; PrimaryKey*/
protected int articleId;
/** maps to db-column "Artikelname"*/
protected String articleName;
...

public int getArticleId()
{

return articleId;
}

public java.lang.String getArticleName()
{

return articleName;
}
...

}

public interface InterfaceArticle
{

public int getArticleId();
public java.lang.String getArticleName();
...

}

public class ArticleProxy extends VirtualProxy implements InterfaceArticle
{

public ArticleProxy(ojb.broker.Identity uniqueId, PersistenceBroker broker)
{

super(uniqueId, broker);
}

public int getArticleId()
{

return realSubject().getArticleId();
}

public java.lang.String getArticleName()
{

OJB

123
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

return realSubject().getArticleName();
}

private InterfaceArticle realSubject()
{

try
{

return (InterfaceArticle) getRealSubject();
}
catch (Exception e)
{

return null;
}

}
}

The proxy is constructed from the identity of the real subject. All method calls are delegated to the
object returned by realSubject().
This method uses getRealSubject() from the base class VirtualProxy:

public Object getRealSubject() throws PersistenceBrokerException
{

return indirectionHandler.getRealSubject();
}

The proxy delegates the the materialization work to its IndirectionHandler. If the real
subject has not yet been materialized, a PersistenceBroker is used to retrieve it by its OID:

public synchronized Object getRealSubject()
throws PersistenceBrokerException

{
if (realSubject == null)
{

materializeSubject();
}
return realSubject;

}

private void materializeSubject()
throws PersistenceBrokerException

{
realSubject = broker.getObjectByIdentity(id);

}

To tell OJB to use proxy objects instead of materializing full Article objects we have to add the
following section to the XML repository file:

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="org.apache.ojb.broker.ArticleProxy"
table="Artikel"

>
...

The following class diagram shows the relationships between all above mentioned classes:

OJB

124
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

proxy image

Using Dynamic Proxies

The implementation of a proxy class is a boring task that repeats the same delegation scheme for
each new class. To liberate the developer from this unproductive job OJB provides a dynamic
proxy solution based on the JDK 1.3 dynamic proxy concept. (For JDK1.2 we ship a replacement
for the required java.lang.reflect classes. Credits for this solution to ObjectMentor.) The
basic idea of the dynamic proxy concept is to catch all method invocations on the not-yet
materialized (loaded from database) object. When a method is called on the object, Java directs this
call to the invocation handler registered for it (in OJB's case a class implementing the
org.apache.ojb.broker.core.proxy.IndirectionHandler interface). This
handler then materializes the object from the database and replaces the proxy with the real object.
By default OJB uses the class
org.apache.ojb.broker.core.proxy.IndirectionHandlerDefaultImpl. If
you are interested in the mechanics have a look at this class.

To use a dynamic proxy for lazy materialization of Article objects we have to declare it in the
repository.xml file.

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...

Just as with normal proxies, the persistent class in question (in our case the Article class) must

OJB

125
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

implement an interface (for example InterfaceArticle) to be able to benefit from dynamic proxies.

Note:
As of OJB 1.0.4, a facility is now present to allow the generation of dynamic proxies that do not require the persistent class to
implement an interface. Previous versions generated Proxies using the JDK proxy pattern. That has been extracted into a new
configuration setting named 'ProxyFactoryClass'.
Two implementations of this ProxyClass have been provided: the previous JDK-based version (default), and a new CGLIB-based
implementation. Since the CGLIB version does byte-code manipulation to generate the proxy, your class is not required to implement
any interface. All generated Proxies will automatically be sub-classes of your persistent class.
See below in the section "Customizing the proxy mechanism" for how to enable the new CGLIB Proxy generation.

Using a Single Proxy for a Whole Collection

A collection proxy represents a whole collection of objects, where as a proxy class represents a
single object.
The advantage of this concept is a reduced number of db-calls compared to using proxy classes. A
collection proxy only needs a single db-call to materialize all it's objects. This happens the first
time its content is accessed (ie: by calling iterator();). An additional db-call is used to calculate the
size of the collection if size() is called before loading the data. So collection proxy is mainly used
as a deferred execution of a query.

OJB uses three specific proxy classes for collections:

1. List proxies are specific java.util.List implementations that are used by OJB to replace
lists. The default set proxy class is
org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl

2. Set proxies are specific java.util.Set implementations that are used by OJB to replace
sets. The default set proxy class is
org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl

3. Collection proxies are collection classes implementing the more generic
java.util.Collection interface and are used if the collection is neither a list nor a set.
The default collection proxy class is
org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl

Which of these proxy class is actually used, is determined by the collection-class setting of
this collection. If none is specified in the repository descriptor, or if the specified class does not
implement java.util.List nor java.util.Set, then the generic collection proxy is used.

The following mapping shows how to use a collection proxy for a relationship:

<!-- Definitions for
org.apache.ojb.broker.ProductGroupWithCollectionProxy -->
<class-descriptor
class="org.apache.ojb.broker.ProductGroupWithCollectionProxy"
table="Kategorien"

>
<field-descriptor

name="groupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"
primarykey="true"

/>
...
<collection-descriptor

name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
proxy="true"

>
<inverse-foreignkey field-ref="productGroupId"/>

</collection-descriptor>
</class-descriptor>

OJB

126
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The classes participating in this relationship do not need to implement a special interface to be used
in a collection proxy.

Although it is possible to mix the collection proxy concept with the proxy class concept, it is not
recommended because it increases the number of database calls.

Using a Proxy for a Reference

A proxy reference is based on the original proxy class concept. The main difference is that the
ReferenceDescriptor defines when to use a proxy class and not the ClassDescriptor.
In the following mapping the class ProductGroup is not defined to be a proxy class in its
ClassDescriptor. Only for shown relationship a proxy of ProductGroup should be used:

<!-- Definitions for org.apache.ojb.broker.ArticleWithReferenceProxy -->
<class-descriptor

class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

proxy="true"
>

<foreignkey field-ref="productGroupId"/>
</reference-descriptor>

</class-descriptor>

Because a proxy reference is only about the location of the definition, the referenced class must
implement a special interface (see using proxy classes).

Customizing the proxy mechanism

Both the dynamic and the collection proxy mechanism can be customized by supplying a
user-defined implementation.

For dynamic proxies, you can select a ProxyFactory, as well as provide your own indirection
handler. Two default indirection handler implementations have been provided that coorespond to
the apporpriate ProxyFactory (IndirectionHandlerJDKImpl and IndirectionHandlerCGLIBImpl).

Note: All indirection handlers must implement the appropriate base indirection handler class,
depending on what ProxyFactory is being used. For example: when using ProxyFactoryJDKImpl,
the specified indirection handler must implement the IndirectionHandlerJDK interface.

Each of the three collection proxy classes can be replaced by a user-defined class. The only
requirement is that such a class implements both the corresponding interface
(java.util.Collection, java.util.List, or java.util.Set) as well as the
org.apache.ojb.broker.ManageableCollection interface.

Proxy implementations are configured in the ojb properties file. These are the relevant settings:

...
#--

ProxyFactory and IndirectionHandler
#--

OJB

127
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The ProxyFactoryClass entry defines which ProxyFactory implementation
is to be used.

By default, a 1.0 compatiable, JDK-based version is used. However, a
the CGLIB

based entry is available.
#
- ProxyFactoryCGLIBImpl: Refernece proxies are generated using

bytecode manipulation
from the CGLIB library. Any class can become a dynamic

proxy, and not
just ones that implement an interface.
- ProxyFactoryJDKImpl: OJB 1.0 compatiable Proxy implementation.

Proxies in this method
can only be generated from classes that implement an

interface, and
the generated Proxy will implement all methods of that

interface.
#
NOTE: The appropriate cooresponding IndirectionHandler must be choosen

as well
#

#ProxyFactoryClass=org.apache.ojb.broker.core.proxy.ProxyFactoryCGLIBImpl
ProxyFactoryClass=org.apache.ojb.broker.core.proxy.ProxyFactoryJDKImpl
#
The IndirectionHandlerClass entry defines the class to be used by

OJB's proxies to
handle method invocations
#

#IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerCGLIBImpl
IndirectionHandlerClass=org.apache.ojb.broker.core.proxy.IndirectionHandlerJDKImpl

#
#--

ListProxy
#--

The ListProxyClass entry defines the proxy class to be used for
collections that

implement the java.util.List interface.
#
ListProxyClass=org.apache.ojb.broker.core.proxy.ListProxyDefaultImpl
#

#--
SetProxy

#--
The SetProxyClass entry defines the proxy class to be used for

collections that
implement the java.util.Set interface.
#
SetProxyClass=org.apache.ojb.broker.core.proxy.SetProxyDefaultImpl
#

#--
CollectionProxy

#--
The CollectionProxyClass entry defines the proxy class to be used for

collections that
do not implement java.util.List or java.util.Set.
#

CollectionProxyClass=org.apache.ojb.broker.core.proxy.CollectionProxyDefaultImpl
...

5.5.8.6. Type and Value Conversions

Say your database column contains INTEGER values but you have to use boolean attributes in your
Domain objects. You need a type and value mapping described by a FieldConversion!

5.5.9. Advanced O/R Mapping Technique

5.5.9.1. Extents and Polymorphism

OJB

128
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Working with inheritance hierarchies is a common task in object oriented design and programming.
Of course, any serious Java O/R tool must support inheritance and interfaces for persistent classes.
There are many example classes for polymorphism in OJB's JUnit TestSuite.

To demonstrate/explain Extents and Polymorphism we will look at a simple class hierarchy:
There is a primary interface InterfaceArticle. This interface is implemented by Article
and CdArticle. There is also a class BookArticle derived from Article. (See the
following class diagram for details)

polymorphism.gif

Polymorphism

OJB allows us to use interfaces, abstract or concrete base classes in queries, or in type definitions
of reference attributes. A Query against the interface InterfaceArticle must not only return
objects of type Article but also of CdArticle and BookArticle!
The following example method searches for all objects implementing InterfaceArticle with
an articleName equal to Hamlet (provided that the object mapping is correct, details will described
later). The Collection is e.g filled with one matching BookArticle object.

public void testCollectionByQuery() throws Exception
{

Criteria crit = new Criteria();
crit.addEqualTo("articleName", "Hamlet");
Query q = QueryFactory.newQuery(InterfaceArticle.class, crit);

Collection result = broker.getCollectionByQuery(q);
}

OJB

129
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Of course it is also possible to define reference attributes of an interface or baseclass type. The
example class Article has a reference attribute (1:1 reference) of type ProductGroup and this
can be a concrete/abstract class or interface.

Extents

The query in the last example returned just one object. Now, imagine a query against the
InterfaceArticle interface with no selecting criteria. OJB returns all the objects
implementing InterfaceArticle. E.g. all Article, BookArticle and CdArticles
objects.
In the following example the method prints out the collection of all InterfaceArticle
objects:

public void testExtentByQuery() throws Exception
{

// no criteria signals to omit a WHERE clause
Query q = QueryFactory.newQuery(InterfaceArticle.class, null);
Collection result = broker.getCollectionByQuery(q);

System.out.println(
"The InterfaceArticle Extent objects: " +result);

}

Note:
The set of all instances of a class (whether living in memory or stored in a persistent medium) is called an Extent in ODMG and JDO
terminology.
OJB extends this notion slightly, as all objects which are subclasses of a concrete/abstract base class or implementing a given interface
can be regarded as members of the base class or interface extent.

In our class diagram we find:

1. two simple one-class-only extents, BookArticle and CdArticle.
2. A compound extent Article containing all Article and BookArticle instances.
3. An interface extent containing all Article, BookArticle and CdArticle instances.

There is no extra coding necessary to define extents, but they have to be declared in the metadata
mapping file. The classes from the above example require the following declarations:

1. one-class-only extents require no declaration
2. A declaration for the base class Article, defining which classes are subclasses of Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="false"
table="Artikel"
...

>
<extent-class class-ref="org.apache.ojb.broker.BookArticle" />

...
</class-descriptor>

3. A declaration for InterfaceArticle, defining which classes implement this interface:

<!-- Definitions for org.apache.ojb.broker.InterfaceArticle -->
<class-descriptor class="org.apache.ojb.broker.InterfaceArticle">

<extent-class class-ref="org.apache.ojb.broker.Article" />
<extent-class class-ref="org.apache.ojb.broker.CdArticle" />
<!-- not needed to declare -->
<!--<extent-class class-ref="org.apache.ojb.broker.BookArticle" />-->

</class-descriptor>

No need to declare BookArticle here, because it's a declared sub class of Article, so it's
implicit declared by Article extent.

OJB

130
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Why is it necessary to explicitely declare which classes implement an interface and which classes
are derived from a base class?
Of course it is quite simple in Java to check whether a class implements a given interface or
extends some other class. But sometimes it may not be appropiate to treat special implementors
(e.g. proxies) as proper implementors.

Other problems might arise because a class may implement multiple interfaces, but is only allowed
to be regarded as member of one extent.

In other cases it may be neccessary to treat certain classes as implementors of an interface or as
derived from a base even if they are not (we don't recommend to use this feature it's bad design, but
if you don't have an alternative...).
As an example, you will find that the ClassDescriptor of abstract test class
org.apache.ojb.broker.CollectionTest$BookShelfItem in the OJB's Test Suite
contains an entry declaring class org.apache.ojb.broker.CollectionTest$Candie
as a derived class:

<class-descriptor class="org.apache.ojb.broker.CollectionTest$BookShelfItem">
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$Book"/>
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$DVD"/>
<!-- This class isn't a subclass of Book or DVD or a implementation of
BookShelfItem, anyway it's possible to declare it as extent (but not

recommended) -->
<extent-class class-ref="org.apache.ojb.broker.CollectionTest$Candie"/>

</class-descriptor>

Performance Tip

When using extents OJB will produce some overhead for each declared extent (e.g. execute a
separate select-query for each extent or using complex table joins).
Thus it's important to avoid unnecessary extent declarations. If in the above example class
InterfaceArticle is never used in queries, don't declare the extents for the implementing
classes (Article, CdArticle). It's always possible to add additional extents in mapping files.

5.5.9.2. Mapping Inheritance Hierarchies

In the literature on object/relational mapping the problem of mapping inheritance hierarchies to
RDBMS has been widely covered. In the following sections we will use a simple inheritance
example to show the different inheritance mapping strategies.

Assume we have a base class Employee and class Executive extends Employee. Further on
class Manager extends Executive.

mapping-inheritance.png

If we have to define database tables that have to contain these classes we have to choose one of the
following solutions:

1. Map each class of a hierarchy to a distinct table and have all attributes from the base class in the
derived class.

2. Map class hierarchy onto one table.

3. Map subclass fields of a hierarchy to a distinct table, but do not map super class fields to
derived classes. Use joins to materialize over all tables to materialize objects.

OJB provides direct support for all three approaches.

Note:
But it's currently not recommended to mix mapping strategies within the same hierarchy !

OJB

131
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

In the following we demonstrate how these mapping approaches can be implemented by using
OJB.

Mapping Each Class of a Hierarchy to a Distinct Table (table per class)

This is the most simple solution. Just write a complete ClassDescriptor with FieldDescriptors for all
of the attributes, including inherited attributes.

The classes of our mapping example would look like:

public class Employee implements Serializable
{

private Integer id;
private String name;

public Employee()
{
}

....
// getter/setter for id and ojbConcreteClass
}

public class Executive extends Employee
{

private String department;
....
// getter/setter
}

public class Manager extends Executive
{

private int consortiumKey;
....
// getter/setter
}

The ClassDescriptors include all fields of the representing java-class and each descriptor points to a
different table:

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<extent-class class-ref="Executive" />
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>
<extent-class class-ref="Manager" />
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"

OJB

132
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Manager"
table="MANAGER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>
</class-descriptor>

The extent-class element is needed to declare the inheritance between the classes.

The DDL for the tables would look like:

CREATE TABLE EMPLOYEE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150)

)
CREATE TABLE EXECUTIVE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150)

)
CREATE TABLE MANAGER
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150),
CONSORTIUM_KEY INT

)

Mapping Class Hierarchy on the Same Table (table per hierarchy)

Mapping several classes on one table works well under OJB. There is only one special situation

OJB

133
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

that needs some attention:

Storing Employee, Executive and Manager objects to this table works fine. But now
consider a Query against the baseclass Employee. How can the correct type of the stored objects
be determined?

OJB needs a discriminator column of type CHAR or VARCHAR that contains the class name to be
used for instantiation. This column must be mapped on a special attribute ojbConcreteClass.
On loading objects from the table, OJB checks this attribute and instantiates objects of this type.

Note:
The criterion for ojbConcreteClass is statically added to the query in class QueryFactory and it therefore appears in the
select-statement for each extent. This means that mixing mapping strategies should be avoided.

The classes of our mapping example would look like:

public class Employee implements Serializable
{

private Integer id;
/**
* This special attribute telling OJB which concrete class
* this Object has.
* NOTE: this attribute MUST be called ojbConcreteClass
*/
private String ojbConcreteClass;
private String name;

public Employee()
{

// this guarantee that always the correct class name will be set
this.ojbConcreteClass = this.getClass().getName();

}
....
// getter/setter for id and ojbConcreteClass
}

public class Executive extends Employee
{

private String department;

public Executive()
{

super();
}

....
// getter/setter
}

public class Manager extends Executive
{

private int consortiumKey;

public Manager()
{

super();
}

....
// getter/setter
}

Note:
Getter/setter for attribute ojbConcreteClass in base class Employee are only needed if OJB is forced to use getter/setter for field
access.

Here are the metadata mappings of our mapping example:

OJB

134
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<class-descriptor
class="Employee"
table="MANPOWER"

>
<extent-class class-ref="Executive" />

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="MANPOWER"

>
<extent-class class-ref="Manager" />

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Manager"
table="MANPOWER"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="ojbConcreteClass"
column="CLASS_NAME"
jdbc-type="VARCHAR"

OJB

135
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>
</class-descriptor>

The column CLASS_NAME is used to store the concrete type of each object.

The extent-class element is needed to declare the inheritance between the classes.

The DDL for the table would look like:

CREATE TABLE MANPOWER
(

ID INT NOT NULL PRIMARY KEY,
CLASS_NAME VARCHAR(150)
NAME VARCHAR(150),
DEPARTMENT VARCHAR(150),
CONSORTIUM_KEY INT

)

Implement your own Discriminator Handling

If you cannot provide such an additional column, but need to use some other means of indicating
the type of each object you will require some additional programming:

You have to derive a Class from
org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl and override the
method RowReaderDefaultImpl.selectClassDescriptor() to implement your
specific type selection mechanism. The code of the default implementation looks like follows:

protected ClassDescriptor selectClassDescriptor(Map row)
throws PersistenceBrokerException

{
// check if there is an attribute which tells us
// which concrete class is to be instantiated
ClassDescriptor result = m_cld;
Class ojbConcreteClass = (Class) row.get(OJB_CONCRETE_CLASS_KEY);
if(ojbConcreteClass != null)
{

result = m_cld.getRepository().getDescriptorFor(ojbConcreteClass);
// if we can't find class-descriptor for concrete
// class, something wrong with mapping
if (result == null)
{

throw new PersistenceBrokerException(
"Can't find class-descriptor for ojbConcreteClass '"
+ ojbConcreteClass + "', the main class was "
+ m_cld.getClassNameOfObject());

}
}
return result;

}

After implementing your own RowReader you must edit the ClassDescriptor for the respective
class in the XML repository to specify the usage of your RowReader Implementation:

OJB

136
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<class-descriptor
class="my.Object"
table="MY_OBJECT"
...
row-reader="my.own.RowReaderImpl"
...

>
...

You will learn more about RowReaders in this section.

Mapping Each Subclass to a Distinct Table (table per subclass)

This mapping strategy maps all subclass fields of a hierarchy to a distinct table (but do not map
super class fields to derived class tables - except the primary key fields) and use joins to materialize
over all tables to materialize the objects.

The classes of the inheritance hierarchy don't need any specific fields or settings, thus our mapping
example java-classes look would look like the classes for the table-per-class mapping.

The next code block contains the class-descriptors of our mapping example.

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>

<reference-descriptor name="super"
class-ref="Employee"

>
<foreignkey field-ref="id"/>

</reference-descriptor>
</class-descriptor>

<class-descriptor
class="Manager"
table="MANAGER"

>

OJB

137
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>

<reference-descriptor name="super"
class-ref="Executive"

>
<foreignkey field-ref="id"/>

</reference-descriptor>
</class-descriptor>

The mapping for base class Employee is ordinary and we using a autoincrement primary key
field.
In the subclasses Executive and Manager it's not allowed to use autoincrement primary keys,
because OJB will automatically copy the primary keys of the base class to all subclasses.

As you can see this mapping needs a special reference-descriptor in the subclasses Executive
and Manager that advises OJB to load the values for the inherited attributes from the super-class
by a JOIN using the foreign key reference.
The name="super" attribute is not used to address an actual attribute of the super-class but as a
marker keyword defining the JOIN to the super-class.

Note:
1. The auto-xxx attributes and the proxy attribute will be ignored when using the super keyword.
2. Be aware that this sample does not declare Executive or Manager to be an extent of Employee. Using extents here will lead to
problems (instatiating the wrong class) because the primary key is not unique within the hierarchy defined in the repository.

The DDL for the tables would look like:

CREATE TABLE EMPLOYEE
(

ID INT NOT NULL PRIMARY KEY,
NAME VARCHAR(150)

)
CREATE TABLE EXECUTIVE
(

ID INT NOT NULL PRIMARY KEY,
DEPARTMENT VARCHAR(150)

)
CREATE TABLE MANAGER
(

ID INT NOT NULL PRIMARY KEY,
CONSORTIUM_KEY INT

)

Attributes from the base- or superclasses can be used the same way as attributes of the target class
when querying - e.g. for Executive or Manager. No path-expression is needed in this case. The
following examples returns all Executive and Manager matching the criteria:

Criteria c = new Criteria();
// attribute defined in base class Employee
c.addEqualTo("name", "Kent");
// attribute defined in Executive
c.addEqualTo("department", "press");
Query q = QueryFactory.newQuery(Executive.class, c);
// returns all matching Executive and Manager instances
Collection result = broker.getCollectionByQuery(q);

OJB

138
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Table Per Subclass via Foreign Key

The above example is based on the assumption that the primary key attribute Employee.id and
its underlying column EMPLOYEE.ID is also used as the foreign key attribute in the the
subclasses.

Now let us consider a case where this is not possible, then it's possible to use an additional foreign
key field/column in the subclass referencing the base-/superclass.

In this case the layout for class Executive would need an additional field employeeFk to store
the foreign key reference to Employee.
To avoid the additional field in the subclass (if desired) we can use OJB's anonymous field feature
to get everything working without the employeeFk attribute in subclass Employee (thus the
java classes of our mapping example). We keep the field-descriptor for employeeFk, but declare
it as an anonymous field. We just have to add an attribute access="anonymous" to the new
field-descriptor employeeFk:.

<class-descriptor
class="Employee"
table="EMPLOYEE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"

/>
</class-descriptor>

<class-descriptor
class="Executive"
table="EXECUTIVE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="department"
column="DEPARTMENT"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="employeeFk"
column="EMPLOYEE_FK"
jdbc-type="INTEGER"
access="anonymous"

/>
<reference-descriptor name="super"

class-ref="Employee"
>

<foreignkey field-ref="employeeFk"/>
</reference-descriptor>

</class-descriptor>

<class-descriptor
class="Manager"

OJB

139
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

table="MANAGER"
>

<field-descriptor
name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="consortiumKey"
column="CONSORTIUM_KEY"
jdbc-type="INTEGER"

/>

<field-descriptor
name="executiveFk"
column="EXECUTIVE_FK"
jdbc-type="INTEGER"
access="anonymous"

/>

<reference-descriptor name="super"
class-ref="Executive"

>
<foreignkey field-ref="executiveFk"/>

</reference-descriptor>
</class-descriptor>

Now it's possible to use autoincrement primary key fields in all classes of the hierarchy (because
they are decoupled from the inheritance references).
The foreignkey-element have to refer the new (anomymous) foreign-key field.

Warning:
The used primary keys (compound or single) have to unique over the mapped class hierarchy to avoid object identity conflicts. Else it
could happen e.g. when searching for a Employee with id="42" OJB maybe find a Employee and a Executive object with
id="42"!.
Thus it's problematic to use a database idenity columns based sequence-manager. In this case it's mandatory to use a different value
scope (start index of identity column) for each class in hierarchy (e.g. 1 for Employee, 1000000000 for Executive, ...).

5.5.9.3. Using interfaces with OJB

Sometimes you may want to declare class descriptors for interfaces rather than for concrete classes.
With OJB this is no problem, but there are a couple of things to be aware of, which are detailed in
this section.

Consider this example hierarchy :

public interface A
{

String getDesc();
}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;

OJB

140
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

}
}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

Here, class C references the interface A rather than B. In order to make this work with OJB, four
things must be done:

• All features common to all implementations of A are declared in the class descriptor of A. This
includes references (with their foreignkeys) and collections.

• Since interfaces cannot have instance fields, it is necessary to use bean properties instead. This
means that for every field (including collection fields), there must be accessors (a get method
and, if the field is not marked as access="readonly", a set method) declared in the
interface.

• Since we're using bean properties, the appropriate
org.apache.ojb.broker.metadata.fieldaccess.PersistentField
implementation must be used (see below). This class is used by OJB to access the fields when
storing/loading objects. Per default, OJB uses a direct access implementation
(org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectImpl)
which requires actual fields to be present.
In our case, we need an implementation that rather uses the accessor methods. Since the
PersistentField setting is (currently) global, you have to check whether there are
accessors defined for every field in the metadata. If yes, then you can use the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl,
otherwise you'll have to resort to the
org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl,
which determines for every field what type of field it is and then uses the appropriate strategy.

• If at some place OJB has to create an object of the interface, say as the result type of a query,
then you have to specify factory-class and factory-method for the interface. OJB
then uses the specified class and (static) method to create an uninitialized instance of the
interface.

In our example, this would result in:

public interface A
{

void setId(Integer id);
Integer getId();
void setDesc(String desc);
String getDesc();

}

public class B implements A
{

/** primary key */
private Integer id;
/** sample attribute */
private String desc;

public String getId()

OJB

141
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

{
return id;

}
public void setId(Integer id)
{

this.id = id;
}
public String getDesc()
{

return desc;
}
public void setDesc(String desc)
{

this.desc = desc;
}

}

public class C
{

/** primary key */
private Integer id;
/** foreign key */
private Integer aId;
/** reference */
private A obj;

public void test()
{

String desc = obj.getDesc();
}

}

public class AFactory
{

public static A createA()
{

return new B();
}

}

The class descriptors would look like:

<class-descriptor
class="A"
table="A_TABLE"
factory-class="AFactory"
factory-method="createA"

>
<extent-class class-ref="B"/>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="B"
table="B_TABLE"

>
<field-descriptor

name="id"
column="ID"

OJB

142
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="aId"
column="A_ID"
jdbc-type="INTEGER"

/>
<reference-descriptor name="obj"

class-ref="A">
<foreignkey field-ref="aId" />

</reference-descriptor>
</class-descriptor>

One scenario where you might run into problems is the use of interfaces for nested objects. In the
above example, we could construct such a scenario if we remove the descriptors for A and B, as
well as the foreign key field aId from class C and change its class descriptor to:

<class-descriptor
class="C"
table="C_TABLE"

>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="obj::desc"
column="DESC"
jdbc-type="VARCHAR"
length="100"

/>
</class-descriptor>

The access to desc will work because of the usage of bean properties, but you will get into trouble
when using dynamic proxies for C. Upon materializing an object of type C, OJB will try to create
the instance for the field obj which is of type A. Of course, this is an interface but OJB won't
check whether there is class descriptor for the type of obj (in fact there does not have to be one,
and usually there isn't) because obj is not defined as a reference. As a result, OJB tries to
instantiate an interface, which of course fails.
Currently, the only way to handle this is to write a custom invocation handler that knows how to
create an object of type A.

5.5.9.4. Change PersistentField Class

OJB

143
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB supports a pluggable strategy to read and set the persistent attributes in the persistence capable
classes. All strategy implementation classes have to implement the interface
org.apache.ojb.broker.metadata.fieldaccess.PersistentField. OJB
provide a few implementation classes which can be set in OJB.properties file:

The PersistentFieldClass property defines the implementation class
for PersistentField attributes used in the OJB MetaData layer.
By default the best performing attribute/refection based implementation
is selected (PersistentFieldDirectAccessImpl).
#
- PersistentFieldDirectAccessImpl
is a high-speed version of the access strategies.
It does not cooperate with an AccessController,
but accesses the fields directly. Persistent
attributes don't need getters and setters
and don't have to be declared public or protected
- PersistentFieldPrivilegedImpl
Same as above, but does cooperate with AccessController and do not
suppress the java language access check (but is slow compared with direct
access).
- PersistentFieldIntrospectorImpl
uses JavaBeans compliant calls only to access persistent attributes.
No Reflection is needed. But for each attribute xxx there must be
public getXxx() and setXxx() methods.
- PersistentFieldDynaBeanAccessImpl
implementation used to access a property from a
org.apache.commons.beanutils.DynaBean.
- PersistentFieldAutoProxyImpl
for each field determines upon first access how to access this particular
field
(directly, as a bean, as a dyna bean) and then uses that strategy
#
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDirectImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldPrivilegedImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldIntrospectorImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldDynaBeanImpl
#PersistentFieldClass=org.apache.ojb.broker.metadata.fieldaccess.PersistentFieldAutoProxyImpl
#(DynaBean implementation does not support nested fields)
#

E.g. if the PersistentFieldDirectImpl is used there must be an attribute in the persistent class with
this name, if the PersistentFieldIntrospectorImpl is used there must be a JavaBeans compliant
property of this name. More info about the individual implementation can be found in javadoc.

5.5.9.5. How do anonymous keys work?

To play for safety it is mandatory to understand how this feature is working. In the HOWTO
section is detailed described how to use anoymous keys.

All involved classes can be found in org.apache.ojb.broker.metadata.fieldaccess
package. The classes used for anonymous keys start with a AnonymousXYZ.java prefix.
Main class used for provide anonymous keys is
org.apache.ojb.broker.metadata.fieldaccess.AnonymousPersistentField.
Current implementation use an object identity based weak HashMap. The persistent object identity
is used as key for the anonymous key value. The (Anonymous)PersistentField instance is associated
with the FieldDescriptor declared in the repository.

This means that all anonymous key information will be lost when the object identity change, e.g.
the persistent object will be de-/serialized or copied. In conjuction with 1:1 references this will be
no problem, because OJB can use the referenced object to re-create the anonymous key information
(FK to referenced object).

Warning:

OJB

144
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The use of anonymous keys in 1:n references (FK to main object) or for PK fields is only valid when object identity does not change,
e.g. use in single JVM without persistent object serialization and without persistent object copying.

5.5.9.6. Using Rowreader

RowReaders provide a callback mechanism that allows to interact with the OJB load mechanism.
All implementation classes have to implement interface RowReader.

You can specify the RowReader implementation in

• the OJB.properties file to set the standard used RowReader implementation

#---
RowReader
#---
Set the standard RowReader implementation. It is also possible to specify the
RowReader on class-descriptor level.
RowReaderDefaultClass=org.apache.ojb.broker.accesslayer.RowReaderDefaultImpl
• within the class-descriptor to set the RowReader for a specific class.

RowReader setting on class-descriptor level will override the standard reader set in
OJB.properties file. If neither a RowReader was set in OJB.properties file nor in
class-descriptor was set, OJB use an default implementation.

To understand how to use them we must know some of the details of the load mechanism. To
materialize objects from a rdbms OJB uses RsIterators, that are essentially wrappers to JDBC
ResultSets. RsIterators are constructed from queries against the Database.

The method RsIterator.next() is used to materialize the next object from the underlying
ResultSet. This method first checks if the underlying ResultSet is not yet exhausted and then
delegates the construction of an Object from the current ResultSet row to the method
getObjectFromResultSet():

protected Object getObjectFromResultSet() throws PersistenceBrokerException
{

if (getItemProxyClass() != null)
{

// provide m_row with primary key data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readPkValuesFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled with primary key values from db
return getProxyFromResultSet();

}
else
{

// 0. provide m_row with data of current row
getQueryObject().getClassDescriptor().getRowReader()

.readObjectArrayFrom(getRsAndStmt().m_rs, getRow());
// assert: m_row is filled from db

// 1.read Identity
Identity oid = getIdentityFromResultSet();
Object result = null;

// 2. check if Object is in cache. if so return cached version.
result = getCache().lookup(oid);
if (result == null)
{

// 3. If Object is not in cache
// materialize Object with primitive attributes filled from
// current row
result = getQueryObject().getClassDescriptor()

.getRowReader().readObjectFrom(getRow());
// result may still be null!

OJB

145
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

if (result != null)
{

synchronized (result)
{

getCache().enableMaterializationCache();
getCache().cache(oid, result);
// fill reference and collection attributes
ClassDescriptor cld = getQueryObject().getClassDescriptor()

.getRepository().getDescriptorFor(result.getClass());
// don't force loading of reference
final boolean unforced = false;
// Maps ReferenceDescriptors to HashSets of owners
getBroker().getReferenceBroker().retrieveReferences(result,

cld, unforced);
getBroker().getReferenceBroker().retrieveCollections(result,

cld, unforced);
getCache().disableMaterializationCache();

}
}

}
else // Object is in cache
{

ClassDescriptor cld = getQueryObject().getClassDescriptor()
.getRepository().getDescriptorFor(result.getClass());

// if refresh is required, update the cache instance from the db
if (cld.isAlwaysRefresh())
{

getQueryObject().getClassDescriptor()
.getRowReader().refreshObject(result,

getRow());
}
getBroker().refreshRelationships(result, cld);

}
return result;

}
}

This method first uses a RowReader to instantiate a new object array and to fill it with primitive
attributes from the current ResultSet row.
The RowReader to be used for a Class can be configured in the XML repository with the attribute
row-reader. If no RowReader is specified, the standard RowReader is used. The method
readObjectArrayFrom(...) of this class looks like follows:

public void readObjectArrayFrom(ResultSet rs, ClassDescriptor cld, Map row)
{

try
{

Collection fields = cld.getRepository().
getFieldDescriptorsForMultiMappedTable(cld);

Iterator it = fields.iterator();
while (it.hasNext())
{

FieldDescriptor fmd = (FieldDescriptor) it.next();
FieldConversion conversion = fmd.getFieldConversion();
Object val = JdbcAccess.getObjectFromColumn(rs, fmd);
row.put(fmd.getColumnName() , conversion.sqlToJava(val));

}
}
catch (SQLException t)
{

throw new PersistenceBrokerException("Error reading from result set",t);
}

}

In the second step OJB checks if there is already a cached version of the object to materialize. If so
the cached instance is returned. If not, the object is fully materialized by first reading in primary
attributes with the RowReader method readObjectFrom(Map row, ClassDescriptor
descriptor) and in a second step by retrieving reference- and collection-attributes. The fully

OJB

146
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

materilized Object is then returned.

public Object readObjectFrom(Map row, ClassDescriptor descriptor)
throws PersistenceBrokerException

{
// allow to select a specific classdescriptor
ClassDescriptor cld = selectClassDescriptor(row, descriptor);
return buildWithReflection(cld, row);

}

By implementing your own RowReader you can hook into the OJB materialization process and
provide additional features.

Rowreader Example

Assume that for some reason we do not want to map a 1:1 association with a foreign key
relationship to a different database table but read the associated object 'inline' from some columns
of the master object's table. This approach is also called 'nested objects'. The section nested objects
contains a different and much simpler approach to implement nested fields.

The class org.apache.ojb.broker.ArticleWithStockDetail has a stockDetail
attribute, holding a reference to a StockDetail object. The class StockDetail is not declared in
the XML repository. Thus OJB is not able to fill this attribute by ordinary mapping techniques.

We have to define a RowReader that does the proper initialization. The Class
org.apache.ojb.broker.RowReaderTestImpl extends the RowReaderDefaultImpl and
overrides the readObjectFrom(...) method as follows:

public Object readObjectFrom(Map row, ClassDescriptor cld)
{

Object result = super.readObjectFrom(row, cld);
if (result instanceof ArticleWithStockDetail)
{

ArticleWithStockDetail art = (ArticleWithStockDetail) result;
boolean sellout = art.isSelloutArticle;
int minimum = art.minimumStock;
int ordered = art.orderedUnits;
int stock = art.stock;
String unit = art.unit;
StockDetail detail = new StockDetail(sellout, minimum,

ordered, stock, unit, art);
art.stockDetail = detail;
return art;

}
else
{

return result;
}

}

To activate this RowReader the ClassDescriptor for the class ArticleWithStockDetail contains the
following entry:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithStockDetail"
table="Artikel"
row-reader="org.apache.ojb.broker.RowReaderTestImpl"

>

5.5.9.7. Nested Objects

In the last section we discussed the usage of a user written RowReader to implement nested objects.
This approach has several disadvantages.

1. It is necessary to write code and to have some understanding of OJB internals.

OJB

147
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

2. The user must take care that all nested fields are written back to the database on store.

This section shows that nested objects can be implemented without writing code, and without any
further trouble just by a few settings in the repository.xml file.

The class org.apache.ojb.broker.ArticleWithNestedStockDetail has a
stockDetail attribute, holding a reference to a StockDetail object. The class StockDetail is
not declared in the XML repository as a first class entity class.

public class ArticleWithNestedStockDetail implements java.io.Serializable
{

/**
* this attribute is not filled through a reference lookup
* but with the nested fields feature
*/
protected StockDetail stockDetail;

...
}

The StockDetail class has the following layout:

public class StockDetail implements java.io.Serializable
{

protected boolean isSelloutArticle;

protected int minimumStock;

protected int orderedUnits;

protected int stock;

protected String unit;

...
}

Only precondition to make things work is that StockDetail needs a default constructor.
The nested fields semantics can simply declared by the following class- descriptor:

<class-descriptor
class="org.apache.ojb.broker.ArticleWithNestedStockDetail"
table="Artikel"

>
<field-descriptor

name="articleId"
column="Artikel_Nr"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="articleName"
column="Artikelname"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="supplierId"
column="Lieferanten_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::unit"

OJB

148
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

column="Liefereinheit"
jdbc-type="VARCHAR"

/>
<field-descriptor

name="price"
column="Einzelpreis"
jdbc-type="FLOAT"

/>
<field-descriptor

name="stockDetail::stock"
column="Lagerbestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::orderedUnits"
column="BestellteEinheiten"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::minimumStock"
column="MindestBestand"
jdbc-type="INTEGER"

/>
<field-descriptor

name="stockDetail::isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
/>

</class-descriptor>

That's all! Just add nested fields by using :: to specify attributes of the nested object. All aspects
of storing and retrieving the nested object are managed by OJB.

5.5.9.8. Instance Callbacks

OJB does provide transparent persistence. That is, persistent classes do not need to implement an
interface or extent a persistent baseclass.

For certain situations it may be neccesary to allow persistent instances to interact with OJB. This is
supported by a simple instance callback mechanism.

The interface org.apache.ojb.PersistenceBrokerAware provides a set of methods that
are invoked from the PersistenceBroker during operations on persistent instances:

Example

If you want that all persistent objects take care of CRUD operations performed by the
PersistenceBroker you have to do the following steps:

1. let your persistent entity class implement the interface PersistenceBrokerAware.
2. provide empty implementations for all required mthods.
3. implement the method afterUpdate(PersistenceBroker broker),

afterInsert(PersistenceBroker broker) and
afterDelete(PersistenceBroker broker) to perform your intended logic.

In the following "for demonstration only code" you see a class BaseObject (all persistent objects
extend this class) that does send a notification using a messenger object after object state change.

public abstract class BaseObject implements PersistenceBrokerAware
{

private Messenger messenger;

public void afterInsert(PersistenceBroker broker)
{

if(messenger != null)

OJB

149
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

{
messenger.send(this.getClass + " Object insert");

}
}
public void afterUpdate(PersistenceBroker broker)
{

if(messenger != null)
{

messenger.send(this.getClass + " Object update");
}

}
public void afterDelete(PersistenceBroker broker)
{

if(messenger != null)
{

messenger.send(this.getClass + " Object deleted");
}

}

public void afterLookup(PersistenceBroker broker){}
public void beforeDelete(PersistenceBroker broker){}
public void beforeStore(PersistenceBroker broker){}

public void setMessenger(Messenger messenger)
{

this.messenger = messenger;
}

}

5.5.9.9. Manageable Collection

In 1:n or m:n relations, OJB can handle java.util.Collection as well as user defined
collection classes as collection attributes in persistent classes. See
collection-descriptor.collection-class attribute for more information.

In order to collaborate with the OJB mechanisms these collection must provide a minimum
protocol as defined by this interface
org.apache.ojb.broker.ManageableCollection.

public interface ManageableCollection extends java.io.Serializable
{

/**
* add a single Object to the Collection. This method is used during reading
* Collection elements from the database. Thus it is is save to cast

anObject
* to the underlying element type of the collection.
*/
void ojbAdd(Object anObject);

/**
* adds a Collection to this collection. Used in reading Extents from the
* Database. Thus it is save to cast otherCollection to this.getClass().
*/
void ojbAddAll(ManageableCollection otherCollection);

/**
* returns an Iterator over all elements in the collection. Used during

store and
* delete Operations.
* If the implementor does not return an iterator over ALL elements, OJB

cannot
* store and delete all elements properly.
*/
Iterator ojbIterator();

/**
* A callback method to implement 'removal-aware' (track removed objects and

delete

OJB

150
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

* them by its own) collection implementations.
*/
public void afterStore(PersistenceBroker broker) throws

PersistenceBrokerException;
}

The methods have a prefix "ojb" that indicates that these methods are "technical" methods, required
by OJB and not to be used in business code.

In package org.apache.ojb.broker.util.collections can be found a bunch of
pre-defined implementations of org.apache.ojb.broker.ManageableCollection.

More info about which collection class to used here.

Types Allowed for Implementing 1:n and m:n Associations

OJB supports different Collection types to implement 1:n and m:n associations. OJB detects the
used type automatically, so there is no need to declare it in the repository file. There is also no
additional programming required. The following types are supported:

1. java.util.Collection, java.util.List, java.util.Vector as in the
example above. Internally OJB uses java.util.Vector to implement collections.

2. Arrays (see the file ProductGroupWithArray).
3. User-defined collections (see the file ProductGroupWithTypedCollection). A typical

application for this approach are typed Collections.
Here is some sample code from the Collection class ArticleCollection. This Collection
is typed, i.e. it accepts only InterfaceArticle objects for adding and will return InterfaceArticle
objects with get(int index). To let OJB handle such a user-defined Collection it must
implement the callback interface ManageableCollection and the typed collection class
must be declared in the collection-descriptor using the collection-class attribute.
ManageableCollection provides hooks that are called by OJB during object
materialization, updating and deletion.

public class ArticleCollection implements ManageableCollection,
java.io.Serializable

{
private Vector elements;

public ArticleCollection()
{

super();
elements = new Vector();

}

public void add(InterfaceArticle article)
{

elements.add(article);
}

public InterfaceArticle get(int index)
{

return (InterfaceArticle) elements.get(index);
}

/**
* add a single Object to the Collection. This method is
* used during reading Collection elements from the
* database. Thus it is is save to cast anObject
* to the underlying element type of the collection.
*/
public void ojbAdd(java.lang.Object anObject)
{

elements.add((InterfaceArticle) anObject);
}

OJB

151
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

/**
* adds a Collection to this collection. Used in reading
* Extents from the Database.
* Thus it is save to cast otherCollection to this.getClass().
*/
public void ojbAddAll(

ojb.broker.ManageableCollection otherCollection)
{

elements.addAll(
((ArticleCollection) otherCollection).elements);

}

/**
* returns an Iterator over all elements in the collection.
* Used during store and delete Operations.
*/
public java.util.Iterator ojbIterator()
{

return elements.iterator();
}

}

And the collection-descriptor have to declare this class:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"
auto-update="false"
auto-delete="true"
>
<inverse-foreignkey field-ref="productGroupId"/>
</collection-descriptor>

Which collection-class type should be used?

Earlier in this section the org.apache.ojb.broker.ManageableCollection was
introduced. Now we talk about which type to use.

By default OJB use a removal-aware collection implementation. These implementations (classes
prefixed with Removal...) track removal and addition of elements.
This tracking allow the PersistenceBroker to delete elements from the database that have been
removed from the collection before a PB.store() operation occurs.

This default behaviour is undesired in some cases:

• In m:n relations, e.g. between Movie and Actor class. If an Actor was removed from the Actor
collection of a Movie object expected behaviour was that the Actor be removed from the
indirection table, but not the Actor itself. Using a removal aware collection will remove the
Actor too. In that case a simple manageable collection is recommended by set e.g.
collection-class="org.apache.ojb.broker.util.collections.ManageableArrayList"
in collection-descriptor.

• In 1:n relations when the n-side objects be removed from the collection of the main object, but
we don't want to remove them itself (be careful with this, because the FK entry of the main
object still exists - more info about linking here).

5.5.9.10. Customizing collection queries

Customizing the query used for collection retrieval allows a developer to take full control of
collection mechanism. For example only children having a certain attribute should be loaded. This
is achieved by a QueryCustomizer defined in the collection-descriptor of a relationship:

<collection-descriptor

OJB

152
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

name="allArticlesInGroup"
...

>
<inverse-foreignkey field-ref="productGroupId"/>

<query-customizer
class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">

<attribute
attribute-name="attr1"
attribute-value="value1"

/>
</query-customizer>

</collection-descriptor>

The query customizer must implement the interface
org.apache.ojb.broker.accesslayer.QueryCustomizer. This interface defines
the single method below which is used to customize (or completely rebuild) the query passed as
argument. The interpretation of attribute-name and attribute-value read from the
collection-descriptor is up to your implementation.

/**
* Return a new Query based on the original Query, the
* originator object and the additional Attributes
*
* @param anObject the originator object
* @param aBroker the PersistenceBroker
* @param aCod the CollectionDescriptor
* @param aQuery the original 1:n-Query
* @return Query the customized 1:n-Query
*/
public Query customizeQuery(Object anObject,

PersistenceBroker aBroker,
CollectionDescriptor aCod, Query aQuery);

The class org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl
provides a default implentation without any functionality, it simply returns the query.

5.5.9.11. Metadata runtime changes

This was described in metadata section.

5.5.10. OJB Queries

5.5.10.1. Introduction

This tutorial describes the use of the different queries mechanisms. The sample code shown here is
taken mainly from JUnit test classes. The junit test source can be found under
[db-ojb]/src/test in the source distribution.

5.5.10.2. Query by Criteria

In this section you will learn how to use the query by criteria. The classes are located in the
package org.apache.ojb.broker.query. Using query by criteria you can either query for
whole objects (ie. person) or you can use report queries returning row data.

A query consists mainly of the following parts:

1. the class of the objects to be retrieved
2. a list of criteria
3. a DISTINCT flag
4. additional ORDER BY and GROUP BY

OJB

153
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB offers a QueryFactory to create a new Query. Although the constructors of the query classes
are public using the QueryFactory is the preferred way to create a new query.

Query q = QueryFactory.newQuery(Person.class, crit);

To create a DISTINCT-Query, simply add true as third parameter.

Query q = QueryFactory.newQuery(Person.class, crit, true);

Each criterion stands for a column in the SQL-WHERE-clause.

Criteria crit = new Criteria();
crit.addEqualTo("upper(firstname)", "TOM");
crit.addEqualTo("lastname", "hanks");
Query q = QueryFactory.newQuery(Person.class, crit);

This query will generate an SQL statement like this:

SELECT ... FROM PERSON WHERE upper(FIRSTNAME) = "TOM" AND LASTNAME = "hanks";

OJB supports functions in field criteria ie. upper(firstname). When converting a field name to a
database column name, the function is added to the generated sql. OJB does not and can not verify
the correctness of the specified function, an illegal function will produce an SqlException.

Query Criteria

OJB provides selection criteria for almost any SQL-comparator. In most cases you do not have to
deal directly with the implementing classes like EqualToCriteria. The Criteria class provides
factory methods for the appropriate classes. There are four kinds of factory methods:

• create criteria to compare a field to a value: ie. addEqualTo("firstname", "tom");
• create criteria to compare a field to another field: ie. addEqualToField("firstname",

"other_field");
• create criteria to check null value: ie. addIsNull("firstname");
• create a raw sql criteria: ie: addSql("REVERSE(name) like 're%'");

The following list shows some of the factory methods to compare a field to a value:

• addEqualTo
• addLike
• addGreaterOrEqualThan
• addGreaterThan
• addLike
• addBetween , this methods has two value parameters
• addIn , this method uses a Collection as value parameter
• and of course there negative forms

This list shows some factory methods to compare a field to another field, all those methods end on
...field:

• addEqualToField
• addGreaterThanField
• and of course there negative forms

in / not in

Some databases limit the number of parameters in an IN-statement.
If the limit is reached OJB will split up the IN-Statement into multiple Statements, the limit is set to
3 for the following sample:

OJB

154
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr IN (? , ? , ?)
OR A0.Kategorie_Nr IN (? , ?) ORDER BY 7 DESC

The IN-limit for prefetch can be defined in OJB.properties:

...
The SqlInLimit entry limits the number of values in IN-sql
statement, -1 for no limits. This hint is used in Criteria.
SqlInLimit=200
...

and / or

All selection criteria added to a criteria set using the above factory methods will be ANDed in the
WHERE-clause. To get an OR combination two criteria sets are needed. These sets are combined
using addOrCriteria:

Criteria crit1 = new Criteria();
crit1.addLike("firstname", "%o%");
crit1.addLike("lastname", "%m%");
Criteria crit2 = new Criteria();
crit2.addEqualTo("firstname", "hank");

crit1.addOrCriteria(crit2);
Query q = QueryFactory.newQuery(Person.class, crit1);

Collection results = broker.getCollectionByQuery(q);

This query will generate an SQL statement like this:

SELECT ... WHERE (FIRSTNAME LIKE "%o%") AND LASTNAME
LIKE "%m%" OR FIRSTNAME = "hank"

negating the criteria

A criteria can be negated to obtain NOT in the WHERE-clause:

Criteria crit1 = new Criteria();
crit1.addLike("firstname", "%o%");
crit1.addLike("lastname", "%m%");
crit1.setNegative(true);

Collection results = broker.getCollectionByQuery(q);

This query will generate an SQL statement like this:

SELECT ... WHERE NOT (FIRSTNAME LIKE "%o%" AND LASTNAME LIKE "%m%")

ordering and grouping

The following methods of QueryByCriteria are used for ordering and grouping:

• addOrderByAscending(String anAttributeName);
• addOrderByDescending(String anAttributeName);
• addGroupBy(String anAttributeName); this method is used for report queries

You can of course have multiple order by and group by clauses, simply repeat the addOrderBy.

crit = new Criteria();
query = new QueryByCriteria(Person.class, crit);
query.addOrderByDescending("id");
query.addOrderByAscending("lastname");
broker.getCollectionByQuery(query);

The code snippet will query all Persons and order them by attribute "id" descending and
"lastname" ascending. The query will produce the following SQL-statement using column numbers

OJB

155
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

in the ORDER BY clause:

SELECT A0.ID,A0.FIRSTNAME,A0.LASTNAME FROM
PERSON A0 ORDER BY 1 DESC, 3

When you use the column name "LASTNAME" instead of the attribute name "lastname"
(query.addOrderBy("LASTNAME");), an additional column named "LASTNAME" without alias
will be added.

SELECT A0.ID,A0.FIRSTNAME,A0.LASTNAME,LASTNAME FROM
PERSON A0 ORDER BY 1 DESC,4

If there are multiple tables with a column "LASTNAME" the SQL-Statement will produce an error,
so it's better to always use attribute names.

subqueries

Subqueries can be used instead of values in selection criteria. The subquery should thus be a
ReportQuery.
The following example queries all articles having a price greator or equal than the average price of
articles named 'A%':

ReportQueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addLike("articleName", "A%");
subQuery = QueryFactory.newReportQuery(Article.class, subCrit);
subQuery.setAttributes(new String[] { "avg(price)" });

crit.addGreaterOrEqualThan("price", subQuery);
Query q = QueryFactory.newQuery(Article.class, crit);

Collection results = broker.getCollectionByQuery(q);

It's also possible to build a subquery with attributes referencing the enclosing query. These
attributes have to use a special prefix Criteria.PARENT_QUERY_PREFIX.
The following example queries all product groups having more than 10 articles:

ReportQueryByCriteria subQuery;
Criteria subCrit = new Criteria();
Criteria crit = new Criteria();

subCrit.addEqualToField("productGroupId", Criteria.PARENT_QUERY_PREFIX +
"groupId");
subQuery = QueryFactory.newReportQuery(Article.class, subCrit);
subQuery.setAttributes(new String[] { "count(productGroupId)" });

crit.addGreaterThan(subQuery, "10"); // MORE than 10 articles
crit.addLessThan("groupId", new Integer(987654));
Query q = QueryFactory.newQuery(ProductGroup.class, crit);

Collection results = broker.getCollectionByQuery(q);

Note:
Subqueries are not extent aware. Thus it's not possible to use an abstract class or an interface as search class of a subquery.

joins

Joins resulting from path expressions ("relationship.attribute") in criteria are automatically
handled by OJB. Path expressions are supported for all relationships 1:1, 1:n and m:n (decomposed
and non-decomposed) and can be nested.

OJB

156
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The following sample looks for all articles belonging to the product group "Liquors". Article and
product group are linked by the relationship "productGroup" in class Article:

<!-- Definitions for org.apache.ojb.ojb.broker.Article -->
<class-descriptor

class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="Artikel"

>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.ProductGroup"
proxy="org.apache.ojb.broker.ProductGroupProxy"
table="Kategorien"

>
...
<field-descriptor

name="groupName"
column="KategorieName"
jdbc-type="VARCHAR"

/>
...

</class-descriptor>

The path expression includes the 1:1 relationship "productGroup" and the attribute "groupName":

Criteria crit = new Criteria();
crit.addEqualTo("productGroup.groupName", "Liquors");
Query q = QueryFactory.newQuery(Article.class, crit);

Collection results = broker.getCollectionByQuery(q);

If path expressions refer to a class having extents, the tables of the extent classes participate in the
JOIN and the criteria is ORed. The shown sample queries all ProductGroups having an Article
named 'F%'. The path expression 'allArticlesInGroup' refers to the class Articles which has two
extents: Books and CDs.

Criteria crit = new Criteria();
crit.addLike("allArticlesInGroup.articleName", "F%");
QueryByCriteria q = QueryFactory.newQuery(ProductGroup.class, crit, true);

Collection results = broker.getCollectionByQuery(q);

This sample produces the following SQL:

SELECT DISTINCT A0.KategorieName,A0.Kategorie_Nr,A0.Beschreibung
FROM Kategorien A0
INNER JOIN Artikel A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
LEFT OUTER JOIN BOOKS A1E0 ON A0.Kategorie_Nr=A1E0.Kategorie_Nr
LEFT OUTER JOIN CDS A1E1 ON A0.Kategorie_Nr=A1E1.Kategorie_Nr
WHERE A1.Artikelname LIKE 'F%' OR
A1E0.Artikelname LIKE 'F%' OR
A1E1.Artikelname LIKE 'F%'

OJB tries to do it's best to automatically use outer joins where needed. This is currently the case for
classes having extents and ORed criteria. But you can force the SQLGenerator to use outer joins
where you find it useful.
This is done by the method QueryByCriteria#setPathOuterJoin(String).

OJB

157
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

ReportQueryByCriteria query;
Criteria crit;
Iterator result1, result2;

crit = new Criteria();

query = new ReportQueryByCriteria(Person.class, crit);
query.setAttributes(new String[] { "id", "name", "vorname", "sum(konti.saldo)"
});
query.addGroupBy(new String[]{ "id", "name", "vorname" });

result1 = broker.getReportQueryIteratorByQuery(query);

query.setPathOuterJoin("konti");
result2 = broker.getReportQueryIteratorByQuery(query);

The first query will use an inner join for relationship "konti", the second an outer join.

The whole path is evaluated, thus for a multi segment path (ie. owner.address) you'll have to set an
outer join path for each segment that needs an outer join.
Given 'Account' - 'Owner' - 'Adress' and a query looking for 'Account'. To force an outer join from
'Owner' to 'Adress' setPathOuterJoin('owner.address') does the trick. In case you also need an outer
join between 'Account' and 'Owner' an additional setPathOuterJoin('owner') is needed.

user defined alias

This feature allows to have multiple aliases for the same table. The standard behaviour of OJB is to
build one alias for one relationship.

Suppose you have two classes Issue and Keyword and there is a 1:N relationship between them.
Now you want to retrieve Issues by querying on Keywords. Suppose you want to retrieve all Issues
with keywords 'JOIN' and 'ALIAS'. If these values are stored in the attribute 'value' of Keyword,
OJB generates a query that contains " A1.value = 'JOIN' AND A1.value = 'ALIAS' " in the
where-clause. Obviously, this will not work, no hits will occur because A1.value can not have more
then 1 value at the time !

For the examples below, suppose you have the following classes (pseudo-code):

class Container
int id
Collection allAbstractAttributes

class AbstractAttribute
int id
inf ref_id
String name
String value
Collection allAbstractAttributes

OJB maps these classes to separate tables where it maps allAbstractAttributes using a
collectiondescriptor to AbstractAttribute using ref_id as inverse foreignkey on Container for the
collection descriptor.
For demo purposes : AbstractAttribute also has a collection of abstract attributes.

Criteria crit1 = new Criteria();
crit1.setAlias("company"); // set an alias
crit1.addEqualTo("allAbstractAttributes.name", "companyName");
crit1.addEqualTo("allAbstractAttributes.value", "iBanx");

Criteria crit2 = new Criteria();
crit2.setAlias("contact"); // set an alias
crit2.addEqualTo("allAbstractAttributes.name", "contactPerson");
crit2.addLike("allAbstractAttributes.value", "janssen");

OJB

158
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Criteria crit3 = new Criteria();
crit3.addEqualTo("allAbstractAttributes.name", "size");
crit3.addGreaterThan("allAbstractAttributes.value", new Integer(500));

crit1.addAndCriteria(crit2);
crit1.addAndCriteria(crit3);

q = QueryFactory.newQuery(Container.class, crit1);
q.addOrderBy("company.value"); // user alias

The generated query will be as follows. Note that the alias name 'company' does not show up in the
SQL.

SELECT DISTINCT A0.ID, A1.VALUE
FROM CONTAINER A0 INNER JOIN ABSTRACT_ATTRIBUTE A1

ON A0.ID=A1.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A2
ON A0.ID=A2.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A3
ON A0.ID=A3.REF_ID

WHERE ((A0.NAME = 'companyName') AND (A0.VALUE = 'iBanx')) AND
((A1.NAME = 'contactPerson') AND (A1.VALUE LIKE '%janssen%')) AND
((A2.NAME = 'size') AND (A2.VALUE = '500'))

ORDER BY 2

The next example uses a report query.

Criteria crit1 = new Criteria();
crit1.setAlias("ALIAS1");
crit1.addEqualTo("allAbstractAttributes.allAbstractAttributes.name", "xxxx");
crit1.addEqualTo("allAbstractAttributes.allAbstractAttributes.value", "hello");

Criteria crit2 = new Criteria();
crit2.setAlias("ALIAS2");
crit2.addEqualTo("allAbstractAttributes.name", "yyyy");
crit2.addLike("allAbstractAttributes.value", "");

crit1.addAndCriteria(crit2);

q = QueryFactory.newReportQuery(Container.class, crit1);

String[] cols = { id, "ALIAS2.name", "ALIAS2.name", "ALIAS1.name", "ALIAS1.name"
};
q.setAttributes(cls);

The generated query will be:

SELECT DISTINCT A0.ID, A1.NAME, A1.VALUE, A2.NAME, A2.VALUE
FROM CONTAINER A0 INNER JOIN ABSTRACT_ATTRIBUTE A1

ON A0.ID=A1.REF_ID
INNER JOIN ABSTRACT_ATTRIBUTE A2
ON A1.ID=A2.REF_ID

WHERE ((A2.NAME = 'xxxx') AND (A2.VALUE = 'hello')) AND
((A1.NAME = 'yyyy') AND (A2.VALUE LIKE '%%')) AND

ORDER BY 2

Note:
When you define an alias for a criteria, you have to make sure that all attributes used in this criteria belong to the same class. If you
break this rule OJB will probably use a wrong ClassDescriptor to resolve your attributes !

class hints

This feature allows the user to specify which class of an extent to use for a path-segment. The
standard behaviour of OJB is to use the base class of an extent when it resolves a path-segment.

In the following sample the path allArticlesInGroup points to class Article, this is defined in the
repository.xml. Assume we are only interested in ProductGroups containing CdArticles performed

OJB

159
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

by Eric Clapton or Books authored by Eric Clapton, a class hint can be defined for the path. This
hint is defined by:
Criteria#addPathClass("allArticlesInGroup", CdArticle.class);

//
// find a ProductGroup with a CD or a book by a particular artist
//
String artistName = new String("Eric Clapton");
crit1 = new Criteria();
crit1.addEqualTo("allArticlesInGroup.musicians", artistName);
crit1.addPathClass("allArticlesInGroup", CdArticle.class);

crit2 = new Criteria();
crit2.addEqualTo("allArticlesInGroup.author", artistName);
crit2.addPathClass("allArticlesInGroup", BookArticle.class);

crit1.addOrCriteria(crit2);

query = new QueryByCriteria(ProductGroup.class, crit1);
broker.getObjectByQuery(query);

Note:
This feature is also available in class QueryByCriteria but using it on Criteria-level provides additional flexibility.
QueryByCriteria#addPathClass is only useful for ReportQueries to limit the class of the selected columns.

prefetched relationships

This feature can help to minimize the number of queries when reading objects with relationships. In
our Testcases we have ProductGroups with a one to many relationship to Articles. When reading
the ProductGroups one query is executed to get the ProductGroups and for each ProductGroup
another query is executed to retrieve the Articles.

With prefetched relationships OJB tries to read all Articles belonging to the ProductGroups in one
query. See further down why one query is not always possible.

Criteria crit = new Criteria();
crit.addLessOrEqualThan("groupId", new Integer(5));

QueryByCriteria q = QueryFactory.newQuery(ProductGroup.class, crit);
q.addOrderByDescending("groupId");
q.addPrefetchedRelationship("allArticlesInGroup");

Collection results = broker.getCollectionByQuery(q);

The first query reads all matching ProductGroups:

SELECT ... FROM Kategorien A0 WHERE
A0.Kategorie_Nr <= ? ORDER BY 3 DESC

The second query retrieves Articles belonging to the ProductGroups read by the first query:

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr
IN (? , ? , ? , ? , ?) ORDER BY 7 DESC

After reading all Articles they are associated with their ProductGroup.

Note:
This function is not yet supported for relationships using Arrays.

Some databases limit the number of parameters in an IN-statement. If the limit is reached OJB will
split up the second query into multiple queries, the limit is set to 3 for the following sample:

SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr

OJB

160
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

IN (? , ? , ?) ORDER BY 7 DESC
SELECT ... FROM Artikel A0 WHERE A0.Kategorie_Nr
IN (? , ?) ORDER BY 7 DESC

The IN-limit for prefetch can be defined in OJB.properties SqlInLimit.

querying for objects

OJB queries return complete objects, that means all instance variables are filled and all
'auto-retrieve' relationships are loaded. Currently there's no way to retrieve partially loaded objects
(ie. only first- and lastname of a person).

More info about manipulation of metadata setting here.

Report Queries

Report queries are used to retrieve row data, not 'real' business objects. A row is an array of Object.
With these queries you can define what attributes of an object you want to have in the row. The
attribute names may also contain path expressions like 'owner.address.street'. To define the
attributes use ReportQuery #setAttributes(String[] attributes).

The following ReportQuery retrieves the name of the ProductGroup, the name of the Article etc.
for all Articles named like "C%":

Criteria crit = new Criteria();
Collection results = new Vector();
crit.addLike("articleName", "C%");
ReportQueryByCriteria q = QueryFactory.newReportQuery(Article.class, crit);
q.setAttributes(new String[] { "productGroup.groupName","articleId",
"articleName", "price" });

Iterator iter = broker.getReportQueryIteratorByQuery(q);

The ReportQuery returns an Iterator over a Collection of Object[4] ([String, Integer, String,
Double]).

Limitations of Report Queries

ReportQueries should not be used with columns referencing classes with extents. Assume we want
to select all ProductGroups and summarize the amount and prize of items in stock per group. The
class Article referenced by allArticlesInGroup has the extents Books and CDs.

Criteria crit = new Criteria();
Collection results = new Vector();
ReportQueryByCriteria q = QueryFactory.newReportQuery(ProductGroup.class, crit);
q.setAttributes(new String[] { "groupName", "sum(allArticlesInGroup.stock)",
"sum(allArticlesInGroup.price)" });
q.addGroupBy("groupName");

Iterator iter = broker.getReportQueryIteratorByQuery(q);

The ReportQuery looks quite reasonable, but it will produce an SQL not suitable for the task:

SELECT A0.KategorieName,sum(A1.Lagerbestand),sum(A1.Einzelpreis)
FROM Kategorien A0
LEFT OUTER JOIN artikel A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
LEFT OUTER JOIN books A1E2 ON A0.Kategorie_Nr=A1E2.Kategorie_Nr
LEFT OUTER JOIN cds A1E1 ON A0.Kategorie_Nr=A1E1.Kategorie_Nr
GROUP BY A0.KategorieName

This SQL will select the columns "Lagerbestand" and "Einzelpreis" from one extent only, and for
ProductGroups having Articles, Books and CDs the result is wrong!

As a workaround the query can be "reversed". Instead of selection the ProductGroup we go for the

OJB

161
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Articles:

Criteria crit = new Criteria();
Collection results = new Vector();
ReportQueryByCriteria q = QueryFactory.newReportQuery(Article.class, crit);
q.setAttributes(new String[] { "productGroup.groupName", "sum(stock)",
"sum(price)" });
q.addGroupBy("productGroup.groupName");

This ReportQuery executes the following three selects (one for each concrete extent) and produces
better results.

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM artikel A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM cds A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

SELECT A1.KategorieName,sum(A0.Lagerbestand),sum(A0.Einzelpreis)
FROM books A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr
GROUP BY A1.KategorieName

Of course there's also a drawback here: the same ProductGroup may be selected several times, so to
get the correct sum, the results of the ProductGroup has to be added. In our sample the
ProductGroup "Books" will be listed three times.

After listing so many drawbacks and problems, here's the SQL the produces the desired result. This
is a manually created SQL, not generated by OJB. Unfortunately it's not fully supported by some
DBMS because of "union" and sub-selects.

select KategorieName, sum(lagerbestand), sum(einzelpreis)
from
(

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM artikel A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

union

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM books A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

union

SELECT A1.KategorieName,A0.Lagerbestand,A0.Einzelpreis
FROM cds A0
INNER JOIN Kategorien A1 ON A0.Kategorie_Nr=A1.Kategorie_Nr

)
group by kategorieName

5.5.10.3. ODMG OQL

5.5.10.4. JDO queries

5.5.11. Metadata handling

5.5.11.1. Introduction

OJB

162
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

To make OJB proper work information about the used databases (more info see connection
handling) and sequence managers is needed. Henceforth these metadata information is called
connection metadata.

Further on OJB needs information about the persistent objects and object relations, henceforth this
information is called (persistent) object metadata.

All metadata information need to be stored in the OJB repository file.

The connection metadata are completely decoupled from the persistent object metadata. Thus it is
possible to use the same object metadata on different databases.
But it is also possible to use different object metadata profiles .

In OJB there are several ways to make metadata information available:

• using xml configuration files parsed at start up by OJB
• set metadata instances at runtime by building metadata class instances at runtime
• parse additional xml configuration files (additional repository files) and merge at runtime

All classes used for managing metadata stuff can be find under
org.apache.ojb.broker.metadata.*-package.
The main class for metadata handling and entry point for metadata manipulation at runtime is
org.apache.ojb.broker.metadata.MetadataManager .

5.5.11.2. When does OJB read metadata

By default all metadata is read at startup of OJB, when the first call to
PersistenceBrokerFactory (directly or by a top-level api) or MetadataManager class
was done.

OJB expects a repository file at startup, but it is also possible to start OJB without an repository file
or only load connection metadata and object metadata at runtime or what ever combination fit your
requirements.

5.5.11.3. Connection metadata

The connection metadata encapsulate all information referring to used database and must be
declared in OJB repository file.
For each database a jdbc-connection-descriptor must be declared. This element encapusaltes the
connection specific metadata information.

The JdbcConnectionDescriptor instances are managed by
org.apache.ojb.broker.metadata.ConnectionRepository

Load and merge connection metadata

It is possible to load additional connection metadata at runtime and merge it with the existing one.
The used repository files have to be valid against the repository.dtd:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-level="read-uncommitted">
<jdbc-connection-descriptor

jcd-alias="runtime"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"

OJB

163
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

subprotocol="hsqldb"
dbalias="../OJB_FarAway"
username="sa"
password=""
batch-mode="false"

>

<object-cache
class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>

<connection-pool
maxActive="5"
whenExhaustedAction="0"
validationQuery="select count(*) from OJB_HL_SEQ"

/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="grabSize" attribute-value="5"/>
</sequence-manager>

</jdbc-connection-descriptor>

<!-- user/passwd at runtime required -->
<jdbc-connection-descriptor

jcd-alias="minimal"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"
protocol="jdbc"
subprotocol="hsqldb"
dbalias="../OJB_FarAway"

>
</jdbc-connection-descriptor>

</descriptor-repository>

In the above additional repository file two new jdbc-connection-descriptor (new databases) runtime
and minimal are declared, to load and merge the additional connection metadata the
MetadataManager was used:

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// read connection metadata from repository file
ConnectionRepository cr = mm.readConnectionRepository("valid path/url to
repository file");

// merge new connection metadata with existing one
mm.mergeConnectionRepository(cr);

After the merge the access to the new databases is ready for use.

5.5.11.4. Persistent object metadata

The object metadata encapsulate all information referring to the persistent capable java objects and
the associated tables in database. Object metadata must be declared in OJB repository file.
Each persistence capable java object must be declared in a corresponding class-descriptor.

The ClassDescriptor instances are managed by
org.apache.ojb.broker.metadata.DescriptorRepository . Per default OJB use
only one global instance of this class - it's the repository file read at startup of OJB. But it is
possible to change the global use repository:

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

OJB

164
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

mm.setDescriptor(myGlobalRepository, true);

Load and merge object metadata

It is possible to load additional object metadata at runtime and merge it with the existing one. The
used repository files have to be valid against the repository.dtd:

Note:
When using the dynamic mapping technique described below, all objects in the structure must implementet
java.io.Serializable for OJB to be able to created cloned copies. OJB currently uses SerializationUtils from Commons Lang
Core Language Utilities for all deep-cloning operations.

An additional repository file may look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd">

<descriptor-repository version="1.0" isolation-level="read-uncommitted">

<class-descriptor
class="org.my.MyObject"
table="MY_OBJ"

>
<field-descriptor
name="id"
column="OBJ_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="name"
column="NAME"
jdbc-type="VARCHAR"
/>

</class-descriptor>
</descriptor-repository>

To load and merge the object metadata of the additional repository files first read the metadata
using the MetadataManager .

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// read the additional repository file
DescriptorRepository dr = mm.readDescriptorRepository("valid path/url to
repository file");

// merge the new class-descriptor with existing object metadata
mm.mergeDescriptorRepository(dr);

It is also possible to keep the different object metadata for the same classes parallel by using
metadata profiles .

Global object metadata changes

The MetadataManager provide several methods to read/set and manipulate object metadata.

Per default OJB use a global instance of class DescriptorRepository to manage all object metadata.
This means that all PersistenceBroker instances (kernel component used by all top-level api) use
the same object metadata.

So changes of the object metadata (e.g. remove of a CollectionDescriptor instance from a

OJB

165
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

ClassDescriptor) will be seen immediately by all PersistenceBroker instances. This is in most cases
not the favoured behaviour and OJB supports per thread changes of object metadata.

Per thread metadata changes

Per default the manager handle one global DescriptorRepository for all calling threads (keep in
mind PB-api is not threadsafe, thus each thread use it's own PersistenceBroker instance), but it is
ditto possible to use different metadata profiles in a per thread manner - profiles means different
instances of DescriptorRepository objects. Each thread/PersistenceBroker instance can be
associated with a specific DescriptorRepository instance. All made object metadata changes only
will be seen by the PersistenceBroker instances using the same DescriptorRepository instance. In
theory each PersistenceBroker instance could be associated with a separate instance of object
metadata, but the recommended way is to use metadata profiles.

To enable the use of different DescriptorRepository instances for each thread do:

MetadataManager mm = MetadataManager.getInstance();
// tell the manager to use per thread mode
mm.setEnablePerThreadChanges(true);
...

This can be done e.g. at start up or at runtime when it's needed. If method
setEnablePerThreadChanges is set false only the global DescriptorRepository was used.
Now it's possible to use dedicated DescriptorRepository instances per thread:

// e.g get a coppy of the global repository
DescriptorRepository dr = mm.copyOfGlobalRepository();
// now we can manipulate the persistent object metadata of the copy
......

// set the changed repository for current thread
mm.setDescriptor(dr);

// now let this thread lookup a PersistenceBroker instance
// with the modified metadata
// all other threads use still the global object metadata
PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myKey)

Note:
Set object metadata (setting of the DescriptorRepository) before lookup the PersistenceBroker instance for current thread, because the
metadata was bound to the PersistenceBroker instance at lookup.

Object metadata profiles

MetadataManager was shipped with a simple mechanism to add, remove and load different
persistent objects metadata profiles (different DescriptorRepository instances) in a per thread
manner. Use method addProfile to add different persistent object metadata profiles, method
removeProfile to remove profiles and loadProfile load a profile for the calling thread.

// get MetadataManager instance
MetadataManager mm = MetadataManager.getInstance();

// enable per thread mode if not done before
mm.setEnablePerThreadChanges(true);

// Load additional object metadata by parsing an repository file
DescriptorRepository dr_1 = mm.readDescriptorRepository("pathOrURLtoFile_1");
DescriptorRepository dr_2 = mm.readDescriptorRepository("pathOrURLtoFile_2");

// add profiles

OJB

166
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

mm.addProfile("global", mm.copyOfGlobalRepository());
mm.addProfile("guest", dr_1);
mm.addProfile("admin", dr_2);

// now load a specific profile
mm.loadProfile("admin");
broker = PersistenceBrokerFactory.defaultPersistenceBroker();

After the loadProfile call all PersistenceBroker instances will be associated with the admin profile.

Note:
Method loadProfile only proper work if the per thread mode is enabled.

Reference runtime changes on per query basis

FIXME (arminw):
Changes of reference settings on a per query basis will be supported with next upcoming release 1.1

Pitfalls

OJB's flexibility of metadata handling demanded specific attention on object caching. If a global
cache (shared permanent cache) was used, be aware of side-effects caused by runtime metadata
changes.

For example, using two metadata profiles A and B. In profile A all fields of a class are showed, in
profile B only the 'name filed' is showed. Thread 1 use profile A, thread 2 use profile B. It is
obvious that a global shared cache will cause trouble.

5.5.11.5. Questions

Start OJB without a repository file?

It is possible to start OJB without any repository file. In this case you have to declare the
jdbc-connection-descriptor and class-descriptor at runtime. See Connect to
database at runtime? and Add new persistent objects (class-descriptors) at runtime? for more
information.

Connect to database at runtime?

There are two possibilities to connect your database at runtime:

• load connection metadata by parsing additional repository files
• create the JdbcConnectionDescriptor at runtime

The first one is described in section load and merge connection metadata. For the second one a new
instance of class org.apache.ojb.broker.metadata.JdbcConnectionDescriptor
is needed. The prepared instance will be passed to class ConnectionRepository:

ConnectionRepository cr = MetadataManager.getInstance().connectionRepository();

JdbcConnectionDescriptor jcd = new JdbcConnectionDescriptor();
jcd.setJcdAlias("testConnection");
jcd.setUserName("sa");
jcd.setPassWord("sa");
jcd.setDbAlias("aAlias");
jcd.setDbms("aDatabase");
// the other required setter

// add new descriptor

OJB

167
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

cr.addDescriptor(jcd);

// Now it's possible to obtain a PB-instance
PBKey key = new PBKey("testConnection", "sa", "sa");
PersistenceBroker broker = PersistenceBrokerFactory.
createPersistenceBroker(key);

Please read this section from beginning for further information.

Add new persistent objects metadata (class-descriptor) at runtime?

There are two possibilities to add new object metadata at runtime:

• load object metadata by parsing additional repository files
• create new metadata objects at runtime

The first one is described in section load object metadata.

To create and add new metadata objects at runtime we create new
org.apache.ojb.broker.metadata.ClassDescriptor instances at runtime and using
the MetadataManager to add them to OJB:

DescriptorRepository dr = MetadataManager.getInstance().getRepository();

ClassDescriptor cld = new ClassDescriptor(dr);
cld.setClassOfObject(A.class);
//.... other setter

// add the fields of the class
FieldDescriptor fd = new FieldDescriptor(cld, 1);
fd.setPersistentField(A.class, "someAField");
cld.addFieldDescriptor(fd);

// now we add the the class descriptor
dr.setClassDescriptor(cld);

Please read this section from beginning for further information.

5.5.12. Deployment

5.5.12.1. Introduction

This section enumerates all things needed to deploy OJB in standalone or servlet based applications
and j2ee-container.

5.5.12.2. Things needed for deploying OJB

1. The OJB binary jar archive

You need a db-ojb-<version>.jar file containing the compiled OJB library.
This jar files contains all OJB code neccessary in production level environments. It does not
contain any test code. It also does not contain any configuration data. You'll find this file in the lib
directory of the binary distribution. If you are working with the source distribution you can
assemble the binary jar archive By calling

ant jar

This ant task generates the binary jar to the dist directory.

2. Configuration data

OJB needs two kinds of configuration data:

OJB

168
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

1. Configuration of the OJB runtime environment. This data is stored in a file named
OJB.properties . Learn more about this file here.

2. Configuration of the MetaData layer. This data is stored in file named repository.xml
(and several included files). Learn more about this file here.

Note:
These configuration files are read in through ClassLoader resource lookup and must therefore be placed on the classpath.

3. External dependencies that do not come with OJB

Some components of OJB depend on external libraries and components that cannot be shipped with
OJB. You'll also need these if you want to compile OJB from source. Here is a list of these
dependencies:

j2ee.jar
This is the main archive of the J2EE SDK.
jdo.jar, jdori*.jar
The JDO Reference implementation is required if you plan to use the JDO Api.

4. Optional jar archives that come with OJB

Some of jar files in the lib folder are only used during build-time or are only required by certain
components of OJB, and so they might need not to be needed in runtime environments.
Apart from wasting disk space they do no harm. If you don't care about disk space you just take all
jars from the lib folder.
If you do care, here is the list of jars you might omit during runtime:

ant-*.jar
These are the Apache Ant 1.6 jars.
antlr-[version].jar
ANTLR is a parser generator which is used in the ODMG component of OJB. If you
only use the PB Api, then you don't need this.
junit.jar
Junit for running the unit tests. You'll need this only if you're also writing unit tests for
you app.
xerces.jar, xml-apis.jar
The Xerces XML parser. Since most newer JDK's ship with an XML parser, it is likely
that you do not need these files.
xalan.jar
Xalan is used to generate the unit test report, so you'll probably don't need this.
jakarta-regexp-[version].jar
The Jakarta Regular Expression library is only used when building OJB from source.
torque-xxx.jar, velocity-xxx.jar
Torque is used to generate concrete databases from database-independent schema
files. OJB uses it internally to setup databases for the unit tests.
xdoclet-[version].jar, xjavadoc-[version].jar,
xdoclet-ojb-module-[version].jar,
commons-collections-[version].jar
The XDoclet OJB module can be used to generate the repository metadata and
Torque schema files from Javadoc comments in the Java source files. It is however not
required at runtime, so you can safely ignore these files then.

5. Don't forget the JDBC driver

The repository.xml defines JDBC Connections to your runtime databases. To use the declared

OJB

169
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

JDBC drivers the respective jar archives must also be present in the classpath. Refer to the
documentation of your databases.

In the following sections I will describe how to deploy these items for specific runtime
environments.

5.5.12.3. Deployment in standalone applications

Deploying OJB for standalone applications is most simple. If you follow these four steps your
application will be up in a few minutes.

1. Add db-ojb-<version>.jar to the classpath
2. place OJB.properties and repository.xml files on the classpath
3. Add the additional runtime jar archives to the classpath.
4. Add your JDBC drivers jar archive to the classpath.

5.5.12.4. Deployment in servlet based applications

Generally speaking the four steps described in the previous section have to be followed also in
Servlet / JSP based environments.
The exact details may differ for your specific Servlet container, but the general concepts should be
quite similar.

1. Deploy db-ojb-<version>.jar with your servlet applications WAR file.
The WAR format specifies that application specific jars are to be placed in a directory
WEB-INF/lib. Place db-ojb-<version>.jar to this directory.

2. Deploy OJB.properties and repository.xml with your servlet applications WAR file.
The WAR format specifies that Servlet classes are to be placed in a directory
WEB-INF/classes. The OJB configuration files have to be in this directory.

3. Add the additional runtime jar archives to WEB-INF/lib too.
4. Add your JDBC drivers jar archive to WEB-INF/lib.

By executing ant war you can generate a sample servlet application assembled to a valid WAR
file. The resulting ojb-servlet.war file is written to the dist directory. You can deploy this
WAR file to your servlet engine or unzip it to have a look at its directory structure.
you can also use the target war as a starting point for your own deployment scripts.

5.5.12.5. Deployment in managed environment (e.g. EJB based)

The above mentioned guidelines concerning jar files and placing of the OJB.properties and the
repository.xml are valid for managed/EJB environments as well.
But apart from these basic steps you'll have to perform some additional configurations to integrate
OJB into a managed environment.

Managed environment: Using of OJB in a managed environment means primarily the cooperation
of OJB with the application server JTA service (via JCA or by using JTA classes).

The instructions to make OJB running within your application server should be similar for all
server. So the following instructions for JBoss should be useful for all user. E.g. most
OJB.properties file settings are the same for all application server.

There are some topics you should examine very carefully:

• Connection handling: Lookup DataSource from your AppServer, only these connections can
be enlisted in running transactions (JTA)

• Caching: Do you need caching? Do you need distributed caching?
• Locking: Do you need distributed locking (when using odmg-api in clustered environments)?

OJB

170
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Configure OJB for managed environments considering as JBoss example

The following steps describe how to configure OJB for managed environments and deploy on a ejb
conform Application Server on the basis of the shipped ejb-examples. In managed environments
OJB needs some specific properties:

1. Adapt OJB.properties file

If the PB-api is the only persistence API being used (no ODMG nor JDO) and it is only being used
in a managed environment, it is strongly recommended to use a special
PersistenceBrokerFactory class, which enables PersistenceBroker instances to
participate in the running JTA transaction - e.g. this makes PBStateListener proper work in
managed environments and enables OJB to synchronize the persistent caches (e.g. the two-level
cache):

PersistenceBrokerFactoryClass=org.apache.ojb.broker.core.PersistenceBrokerFactorySyncImpl

Note:
Don't use this setting in conjunction with any other top-level api (e.g. ODMG-api).
If no permanent caching (only the "empty" cache implementation or the "per broker cache") is used and the PBStateListener is
not used to detect tx demarcation, it's possible to use the default PersistenceBrokerFactory implementation, because OJB
doesn't need to synchronize anything.

Your OJB.properties file need the following additional settings to work within managed
environments (apply to all used api):

...
only needed when using OJB 1.0.3 or earlier in managed environments. Since
version
1.0.4 OJB detects datasources from managed environments automatically.
ConnectionFactoryClass=
org.apache.ojb.broker.accesslayer.ConnectionFactoryManagedImpl

...
set used application server TM access class
JTATransactionManagerClass=
org.apache.ojb.otm.transaction.factory.JBossTransactionManagerFactory

A specific ConnectionFactory implementation is used in version before 1.0.4 to by-pass all
forbidden method calls in managed environments. Since OJB 1.0.4 datasources from managed
environments are detected automatically by checking the JTA-TxManager.

The JTATransactionManagerClass property specify the used implementation class to lookup the
transaction manager used by the application server. The
javax.transaction.TransactionManager is needed to make it possible for OJB to
participate in running JTA transaction via javax.transaction.Synchronization
interface.

The ODMG-api needs some additional settings for use in managed environments (only needed
when odmg-api was used):

...
only needed for odmg-api
ImplementationClass=org.apache.ojb.odmg.ImplementationJTAImpl

...
only needed for odmg-api
OJBTxManagerClass=org.apache.ojb.odmg.JTATxManager

The ImplementationClass specify the ODMG base class implementation. In managed environments
a specific implementation is used, able to participate in JTA transactions.

OJB

171
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The OJBTxManagerClass specify the used OJBTxManager implementation to manage the
transaction synchronization in managed enviroments.

Note:
Currently OJB integrate in managed environments via javax.transaction.Synchronization interface. When the JCA
adapter is finished (work in progress) integration will be more smooth.

2. Declare datasource in the repository (repository_database) file and do additional configuration

Do only use DataSource from the application server to connect to your database (Local used
connections can not participate in JTA transaction).

Note:
We strongly recommend to use JBoss 3.2.2 or higher of the 3.x series of JBoss. With earlier versions of 3.x we got
Statement/Connection resource problems when running some ejb stress tests. As workaround we introduce a jboss specific attribute
eager-release for version before 3.2.2, but it seems that this attribute can cause side-effects. Again, this problem seems to be fixed in
3.2.2.

Define OJB to use a DataSource:

<!-- Datasource example -->
<jdbc-connection-descriptor

jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="java:DefaultDS"
username="sa"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="0"
ignoreAutoCommitExceptions="false"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>

</object-cache>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

</sequence-manager>

</jdbc-connection-descriptor>

In OJB versions before 1.0.4 the attribute useAutoCommit="0" is mandatory in managed
environments, because it's in most cases not allowed to change the connection's autoCommit state.

Note:
In managed environments you can't use the default sequence manager implementation (SequenceManagerHighLowImpl) of OJB. For
alternative sequence manager implemetation see here.

[2b. How to deploy ojb test hsqldb database to jboss]

If you use hsql database for testing you can easy setup the DB on jboss. After creating the database
in OJB test directory with ant prepare-testdb, take the generated
.../target/test/OJB.script file and rename it to default.script. Then replace the
jboss default.script file in .../jboss-3.x.y/server/default/db/hypersonic with
this file.

OJB

172
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

3. Include all OJB configuration files in classpath

Include the all needed OJB configuration files in your classpath:

- OJB.properties
- repository.dtd
- repository.xml
- repository_internal.xml
- repository_database.xml,
- repository_ejb.xml (if you want to run the ejb examples)

To deploy the ejb-examples beans we include all configuration files in a ejb jar file - more info
about this see below.

The repository.xml for the ejb-example beans look like:

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a sample metadata repository for the ObJectBridge
System. Use this file as a template for building your own
mappings-->

<!-- defining entities for include-files -->
<!DOCTYPE descriptor-repository SYSTEM "repository.dtd" [
<!ENTITY database SYSTEM "repository_database.xml">
<!ENTITY internal SYSTEM "repository_internal.xml">
<!ENTITY ejb SYSTEM "repository_ejb.xml">
]>

<descriptor-repository version="1.0"
isolation-level="read-uncommitted">

<!-- include all used database connections -->
&database;

<!-- include ojb internal mappings here -->
&internal;

<!-- include mappings for the EJB-examples -->
&ejb;

</descriptor-repository>

4. Enclose all libraries OJB depend on

In most cases it is recommended to include all libraries OJB depend on in the application .ear/.sar
or ejb .jar file to make OJB run and (re-)deployable. Here are the libraries needed to make the ojb
sample session beans run on JBoss:

• The jakarta commons libraries files (all commons-xxx.jar) from OJB /lib directory
• The antlr jar file (antlr-xxx.jar) from OJB /lib directory
• jakarta-regexp-xxx.jar from OJB /lib directory
• [jakarta turbine jcs.jar from OJB /lib directory, only if ObjectCacheJCSImpl was used]

(This was tested with jboss 3.2.2)

5. Take care of caching

Very important thing is cache synchronization with the database. When using the ODMG-api or
PB-api (with special PBF (see 1.) setting) it's possible to use all ObjectCache implementations
as long as OJB doesn't run in a clustered mode. When the ObjectCacheDefaultImpl cache
implementation was used it's recommended to enable the autoSync mode.

OJB

173
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

In clustered environments (OJB run on different AppServer nodes) you need a distributed
ObjectCache or you should use a local/empty cache like

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl

or

ObjectCacheClass=org.apache.ojb.broker.cache.ObjectCacheEmptyImpl

The cache is pluggable, so you can write your own ObjectCache implementation to accomplish
your expectations.

More info you can find in clustering and ObjectCache topic.

6. Take care of locking

If the used api supports Object Locking (e.g. ODMG-api, PB-api does not), in clustered
environments (OJB run on different AppServer nodes) a distributed lock management is
mandatory.

7. Put all together

Now put all files together. We keep the examples as simple as possible, thus we deploy only a ejb
.jar file. Below you can find a short instruction how to pack an ejb application .ear file including
OJB.

Generate the ejb-examples described below or build your own ejb .jar file including all beans,
ejb-jar.xml and appServer dependend files. Then add all OJB configuration files, the db-ojb jar file
and all libraries OJB depends on into this ejb .jar file.
The structure of the ejb .jar file should now look like this:

/OJB.properties
/repository.dtd
/repository.xml
/all used repository-XYZ.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml
.../jboss.xml

/all ejb classes

/db-ojb-1.X.jar
/all used libraries

7b. Example: Deployable jar

For example the jar-file used to test the ejb-examples shipped with OJB, base on the
db-ojb-XY-beans.jar file. This jar was created when the ejb-examples target was called.

The generated jar contains only the ejb-classes and the deployment-descriptor. We have to add
additional jars (all libraries used by OJB) and files (all configuration files) to make it deployable.
The deployable db-ojb-XY-beans.jar should look like this:

/OJB.properties
/repository.dtd
/repository.xml
/repository_database.xml
/repository_ejb.xml
/repository_internal.xml
/META-INF
.../Manifest.mf
.../ejb-jar.xml

OJB

174
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

.../jboss.xml

/org
.../apache (all ejb classes)

/db-ojb-1.X.jar

/antlr-XXX.jar
/commons-beanutils-XXX.jar
/commons-collections-XXX.jar
/commons-dbcp-XXX.jar
/commons-lanf-XXX.jar
/commons-logging-XXX.jar
/commons-pool-XXX.jar
/jakarta-regexp-XXX.jar

Please pay attention on the configuration settings to make OJB work in managed environments
(especially the OJB.properties settings).

Note:
This example isn't a real world production example. Normally you will setup one or more enterprise archive files (.ear files) to bundle
one or more complete J2EE (web) applications. More about how to build an J2EE application using OJB see here.

The described example should be re-deployable/hot-deployable in JBoss.
If you will get any problems, please let me know. All suggestions are welcome!

8. How to access OJB API?

In managed environments it is possible to access OJB in same way used in non-managed
environments:

// PB-api
PersistenceBroker broker = PersistenceBrokerFactory.create...;

//ODMG-api
Implementation odmg = OJB.getInstance();

But it is recommended to bind OJB api access classes to JNDI and lookup the the api entry classes
via JNDI.

9. OJB logging within JBoss

Jboss use log4j as standard logging api.
In summary, to use log4j logging with OJB within jBoss:
1) in OJB.properties set

LoggerClass=org.apache.ojb.broker.util.logging.Log4jLoggerImpl

There is no need for a separate log4j.properties file of OJB-specific log4j settings (in fact the
OJB.properties setting LoggerConfigFile is ignored). Instead, the jBoss log4j configuration file
must be used:

2) in JBOSS_HOME/server/default/conf/log4j.xml,
define appenders and add categories to add or filter logging of desired OJB packages, following the
numerous examples in that file. For example,

<category name="org.apache.ojb">
<priority value="DEBUG" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

<category name="org.apache.ojb.broker.metadata.RepositoryXmlHandler">

OJB

175
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<priority value="ERROR" />
<appender-ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>

</category>

Example Session Beans

Introduction

The OJB source distribution was shipped with a bunch of sample session beans and client classes
for testing. Please recognize that we don't say that these examples show "best practices" of using
OJB within enterprise java beans - it's only one way to make it work.

To keep the examples as simple as possible we directly use the OJB main classes via static lookup
or helper classes on each ejbCreate() call. But we recommend to bind the OJB main classes in
JNDI instead of direct use in the session beans.

Generate the sample session beans

The source code of the sample beans is stored in directory
[db-ojb]/src/ejb/org/apache/ojb/ejb
To generate the sample beans call

ant ejb-examples

This ant target copies the bean sources to [db-ojb]/target/srcejb generates all needed
bean classes and deployment descriptor (by using xdoclet) to the same directory, compiles the
sources and build an ejb .jar file called [db-ojb]/dist/db-ojb-XXX-beans.jar. Test
clients for the generated beans included in the [db-ojb]/dist/db-ojb-XXX-client.jar.

To run xdoclet properly the following xdoclet jar files needed in [db-ojb]/lib directory
(xdoclet version 1.2xx or higher):

xdoclet-xxx.jar
xdoclet-ejb-module-xxx.jar
xdoclet-jboss-module-xxx.jar
xdoclet-jmx-module-xxx.jar
xdoclet-web-module-xxx.jar
xdoclet-xjavadoc-module-xxx.jar

If you using a different application server than JBoss, you have to modifiy the xdoclet ant target in
[db-ojb]/build-ejb-examples.xml to force xdoclet to generate the appServer specific
files. See xdoclet documentation for further information.

How to run test clients for PB / ODMG - api

If the "extended ejb .jar" file was successfully deployed we need a test client to invoke the
ejb-examples. As said above, the ejb-examples target generates a test client jar too. It's called
[db-ojb]/dist/db-ojb-XXX-client.jar and contains junit based test clients for the
PB-/ODMG-api.
The main test classes are:

• org.apache.ojb.ejb.AllODMGTests
• org.apache.ojb.ejb.AllPBTests

OJB provide an ant target to run the client side bean tests. Include all needed appServer libraries in
[db-ojb]/lib (e.g. for JBoss jbossall-client.jar do the job, beside the "j2ee jars"). To run the
PB-api test clients (access running JBoss server with default settings) call

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests

OJB

176
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

To run the test clients on an arbitrary appServer pass the JNDI properties for naming context
initalisation too, e.g.

• -Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
• -Djava.naming.provider.url="jnp://localhost:1099"
• -Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Then the target call may looks like

ant ejb-examples-run -Dclient.class=org.apache.ojb.ejb.AllPBTests
-Djava.naming.factory.initial="org.jnp.interfaces.NamingContextFactory"
-Djava.naming.provider.url="jnp://localhost:1099"
-Djava.naming.factory.url.pkgs="org.jboss.naming:org.jnp.interfaces"

Packing an .ear file

Here is an example of the .ear package structure. It is redeployable without having to restart JBoss.

The Package Structure

The package structure of the .ear file should look like:

/ejb.jar/
...EJBs
...META-INF/
......ejb-jar.xml
......jboss.xml
......MANIFEST.MF

/web-app.war/
...JSP
...WEB-INF/
......web.xml

/META-INF/
...application.xml
/ojb.jar
/[ojb required runtime jar]

/OJB.properties
/OJB-logging.properties
/repository.dtd
/respository_internal.xml
/repository.xml
/repository_database1.xml
/repository_app1.xml
/repository_database2.xml
/repository_app2.xml

Make OJB API Resources available

There are two approaches to use OJB api in the ejb.jar file:

1. To create a Manifest.mf file with classpath attribute that include all the runtime jar required by
OJB (Very important to include all required jar). The sample below works fine (replace [version]
with distributed JAR versions):

Class-Path: db-ojb-[version].jar antlr-[version].jar
commons-beanutils-[version].jar
commons-collections-[version].jar commons-dbcp-[version].jar
commons-lang-[version].jar
commons-logging-[version].jar commons-pool-[version].jar
jakarta-regexp-[version].jar

Note:

OJB

177
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

If you to include the jar file under a directory of the ear file, says /lib/db-ojb-[version].jar and etc. At the classpath attribute
it will be something like: Class-Path: ./lib/db-ojb-[version].jar and etc (The "." in front is important)

2. To add the required jar file as a "java" element in the application.xml file:

<module>
<java>antlr-[version].jar</java>

</module>
<module>

<java>commons-beanutils-[version].jar</java>
</module>
<module>

<java>commons-collections-[version].jar</java>
</module>
<module>

<java>commons-dbcp-[version].jar</java>
</module>
<module>

<java>commons-lang-[version].jar</java>
</module>
<module>

<java>commons-logging-[version].jar</java>
</module>
<module>

<java>commons-pool-[version].jar</java>
</module>
<module>

<java>db-ojb-[version].jar</java>
</module>

Note:
To use this approach, all the library had to be in the root of the ear.

(This was tested on Jboss 3.2.3)

Make OJB accessible via JNDI

Current bean examples do directly use OJB main classes, but it's also possible to make OJB
accessible via JNDI and use a JNDI-lookup to access OJB api's in your beans.
To make the OJB api's accessible via JNDI, bind main/access classes to JNDI. How to do this
depends on the used environment. The main classes/methods to bind are:

• PB-api:
Method
org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory#instance()
returns the used
org.apache.ojb.broker.core.PersistenceBrokerFactoryIF. Make this
instance accessible via JNDI.

• ODMG-api:
Method org.apache.ojb.odmg.OJB#getInstance() returns a new instance of the
org.odmg.Implementation instance. Open a new Databaseand make this instance and
the Database instance accessible via JNDI.

JBoss

In JBoss you can write mbean classes to bind OJB main/access classes to JNDI, similar to the
Weblogic example below.
Let JBoss know about the new mbeans, so declare them in a jboss-service.xml file. Please
see JBoss documentation how to write mbeans and bind objects to JNDI.

OJB

178
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Other Application Server

In other application server you can do similar steps to bind OJB main api classes to JNDI. For
example in Weblogic you can use startup class implementation to bind OJB main/access classes to
JNDI (see below).

Instructions for Weblogic

1. Add the OJB jar files and depedencies into the Weblogic classpath

2. As usual create the connection pool and the datasource.

3. Prepare the OJB.properties file. Should be similar to jboss. Expect the following entry:

...
Weblogic Transaction Manager Factory
JTATransactionManagerClass=
org.apache.ojb.broker.transaction.tm.WeblogicTransactionManagerFactory

4. Modify the connection information in the repository.xml (specify the datasource name).
SequenceManager implementation depends on the used DB, more info see here:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="Sapdb"
jdbc-level="2.0"
jndi-datasource-name="datasource_demodb"
eager-release="false"
batch-mode="false"
useAutoCommit="0"
ignoreAutoCommitExceptions="false"
>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="grabSize" attribute-value="20"/>
</sequence-manager>
</jdbc-connection-descriptor>

Note:
The following step is only neccessary if you want to bind OJB main api classes to JNDI.

[5.] Compile the following classes (see at the end of this section) and add them to the weblogic
classpath. This allows to access the PB-api via JNDI lookup. Register via the weblogic console the
startup class (see OjbPbStartup class below). The JNDI name and the OJB.properties file path
can be specified as parameters in this startup class.

To use the ODMG-api you have to write a similar startup class. This shouldn't be too complicated.
Take a look in org.apache.ojb.jboss package (dir src/connector/main). Here you
could find the jboss mbeans. All you have to do is bound a similar class to JNDI in weblogic.
Implement ODMGJ2EEFactory Interface in your class bound this class to JNDI (in the
ejb-examples the beans try to lookup the Implementation instance via
"java:/ojb/defaultODMG"). Your ODMGFactory class should implement this method

public Implementation getInstance()
{

return OJBJ2EE_2.getInstance();
}

Write a session bean similar to those provided for the JBOSS samples. It is also possible to use the
ejb-example beans (doing minor modifications when the JNDI lookup should be used).

OJB

179
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Webolgic startup class
Write an OJB startup class to make OJB accessible via JNDI can look like (I couldn't test this
sample class, so don't know if it will work ;-)):

package org.apache.ojb.weblogic;

import javax.naming.*;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryFactory;
import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

import weblogic.common.T3ServicesDef;
import weblogic.common.T3StartupDef;
import java.util.Hashtable;

/**
* This startup class created and binds an instance of a
* PersistenceBrokerFactoryIF into JNDI.
*/
public class OjbPbStartup

implements T3StartupDef, OjbPbFactory, Serializable
{

private String defaultPropsFile = "org/apache/ojb/weblogic/OJB.properties";

public void setServices(T3ServicesDef services)
{
}

public PersistenceBrokerFactoryIF getInstance()
{

return PersistenceBrokerFactoryFactory.instance();
}

public String startup(String name, Hashtable args)
throws Exception

{

try
{

String jndiName = (String) args.get("jndiname");
if(jndiName == null || jndiName.length() == 0)

jndiName = OjbPbFactory.DEFAULT_JNDI_NAME;

String propsFile = (String) args.get("propsfile");
if(propsFile == null || propsFile.length() == 0)
{

System.setProperty("OJB.properties", defaultPropsFile);
}
else
{

System.setProperty("OJB.properties", propsFile);
}

InitialContext ctx = new InitialContext();
bind(ctx, jndiName, this);

// return a message for logging
return "Bound OJB PersistenceBrokerFactoryIF to " + jndiName;

}
catch(Exception e)
{

e.printStackTrace();
// return a message for logging
return "Startup Class error: impossible to bind OJB PB factory";

}
}

private void bind(Context ctx, String name, Object val)
throws NamingException

OJB

180
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

{
Name n;
for(n = ctx.getNameParser("").parse(name); n.size() > 1; n =

n.getSuffix(1))
{

String ctxName = n.get(0);
try
{

ctx = (Context) ctx.lookup(ctxName);
}
catch(NameNotFoundException namenotfoundexception)
{

ctx = ctx.createSubcontext(ctxName);
}

}
ctx.bind(n.get(0), val);

}
}

The used OjbPbFactory interface:

package org.apache.ojb.weblogic;

import org.apache.ojb.broker.core.PersistenceBrokerFactoryIF;

public interface OjbPbFactory
{

public static String DEFAULT_JNDI_NAME = "PBFactory";
public PersistenceBrokerFactoryIF getInstance();

}

5.5.13. Connection Handling

5.5.13.1. Introduction

In this section the connection handling within OJB is described. The connection management is
implemented through two OJB interfaces:

• org.apache.ojb.broker.accesslayer.ConnectionFactory
• org.apache.ojb.broker.accesslayer.ConnectionManagerIF

5.5.13.2. ConnectionFactory

The org.apache.ojb.broker.accesslayer.ConnectionFactory interface
implementation is a pluggable component (via the OJB.properties file - more about the
OJB.properties file here) responsible for creation/lookup and release of connections.

public interface ConnectionFactory
{

Connection lookupConnection(JdbcConnectionDescriptor jcd) throws
LookupException;

void releaseConnection(JdbcConnectionDescriptor jcd, Connection con);

void releaseAllResources();
}

To enable a specific ConnectionFactory implementation class in the OJB.properties file, set
property ConnectionFactoryClass. Default:

ConnectionFactoryClass=org.apache.ojb.broker.accesslayer.ConnectionFactoryPooledImpl

OJB is shipped with several different implementation classes for use in different situations. The
default implementation for example, will pool created Connection instances for increased
performance (since instance creation normally makes a database server roundtrip and thus is

OJB

181
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

costly).

To make it more easier to implement your own ConnectionFactory class, an abstract base class
called
org.apache.ojb.broker.accesslayer.ConnectionFactoryAbstractImpl
exists, most shipped implementation classes inherit from this class.

Note:
All shipped implementations of ConnectionFactory with support for connection pooling will only use object pools for connections
obtained directly from the JDBC DriverManager. If you are using a DataSource configuration, the JNDI DataSource is responsible for
pooling.

ConnectionFactoryPooledImpl

A ConnectionFactory implementation using commons-pool to pool the Connection instances. On
lookupConnection a Connection instance is borrowed from the object pool, and returned on the
releaseConnection call. This implementation is used as default setting in the OJB.properties file.

This implementation allows a wide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

ConnectionFactoryNotPooledImpl

Implementation that creates a new Connection instance on each lookupConnection call and closes
(destroys) it on releaseConnection. All connection-pool settings are ignored by this
implementation.

ConnectionFactoryManagedImpl

[@deprecated since OJB 1.0.4, now OJB automatic detect the running JTA-transaction and
suppress critical method calls on the used connection]
Implementation specifically for use in managed environments like J2EE conformant application
servers. In managed environments it is mandatory to use DataSource configuration, with
Connection objects provided by the application server. OJB will not control Connection properties
or transaction handling when using this implementation.

All connection-pool settings are ignored by this implementation.

ConnectionFactoryDBCPImpl

Implementation using commons-dbcp to pool the Connection instances. Since DBCP is using
commons-pool internally, this implementation is very similar to ConnectionFactoryPooledImpl,
but permits additional configuration for logging abandoned Connection instances (usable under
development for detecting bad programming patterns).

This implementation allows a wide range of different settings, more info about the configuration
properties can be found in the metadata repository connection-pool section.

5.5.13.3. ConnectionManager

The org.apache.ojb.broker.accesslayer.ConnectionManagerIF interface
implementation is a pluggable component (via the OJB.properties file - more about the
OJB.properties file here) responsible for managing the connection usage lifecycle and connection
status (commit/rollback of connections).

public interface ConnectionManagerIF

OJB

182
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

{
JdbcConnectionDescriptor getConnectionDescriptor();

Platform getSupportedPlatform();

boolean isAlive(Connection conn);

Connection getConnection() throws LookupException;

boolean isInLocalTransaction();

void localBegin();

void localCommit();

void localRollback();

void releaseConnection();

void setBatchMode(boolean mode);

boolean isBatchMode();

void executeBatch();

void executeBatchIfNecessary();

void clearBatch();
}

The ConnectionManager is used by the PersistenceBroker to handle connection usage lifecycle.

5.5.13.4. Questions and Answers

How does OJB handle connection pooling?

OJB does connection pooling per default, except for datasources that are never pooled internally by
OJB. Pooling of Connection instances when configuring OJB with DataSource lookup must be
configured and performed in the DataSource provider.

The implementations of the
org.apache.ojb.broker.accesslayer.ConnectionFactory.java interface are
responsible for managing the connections in OJB. There are several implementations shipped with
OJB called
org.apache.ojb.broker.accesslayer.ConnectionFactoryImpl.java. There is,
among others, a non-pooling implementation and an implementation using Commons DBCP API.

Configuration of the connection pooling is specified using the connection-pool element for each
jdbc-connection-descriptor. The connection-pool element can be configured with properties for the
specific ConnectionFactory implementation or JDBC driver used. For general information about
the configuration, see the repository section or read the comments in repository.dtd.

Can I directly obtain a java.sql.Connection within OJB?

It is possible to obtain a Connection using the PB API and a PersistenceBroker instance.
Example:

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myKey);
broker.beginTransaction();
// do something

Connection con = broker.serviceConnectionManager().getConnection();
// perform your connection action and do more

OJB

183
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

// close the created statement and result set

broker.commitTransaction();
broker.close();

After obtaining a Connection with
broker.serviceConnectionManager().getConnection(), the connection can be
used for any JDBC operations (except for transaction handling, more on this below). The user is
responsible for cleanup of created Statement and ResultSet instances, so be sure to guard your call
with a finally clause and close resources after use.

For read-only operations there is no need to start a PB transaction as in the example.

Note:
Do not commit any transactions on the Connection level, this should be left to OJB's PB API and will be performed automatically by
calling PersistenceBroker commit-/abortTransaction methods.

Note:
Do not call Connection.close() on the obtained Connection, this should be left to OJB's ConnectionFactory and will be
performed automatically when calling broker.close().

If no transaction is running, it is possible to release a connection "by hand" after use by calling:

broker.serviceConnectionManager().releaseConnection();

This call performs cleanup operations on the used connection and pass the instance to the release
method of ConnectionFactory (this will e.g. return the connection to pool or close it).

If you do not do any connection cleanup, the connection will at the latest be released when calling
broker.close().

Users who are interested in this section might also be interested in 'Is it possible to perform my own
sql-queries in OJB?'.

When does OJB open/close a connection

This is dependent on the used OJB api. Generally OJB try to obtain a connection as late as possible
and close (if a connection pool was used, OJB return the connection to the pool) the connection as
soon as possible.

Using the PB-api the connection is obtained when
PersistenceBroker.beginTransaction() was called or a query is executed.
On PersistenceBroker.commitTransaction() or
PersistenceBroker.abortTransaction() call the connection was released. If no PB-tx
is running, the connection will be released on PersistenceBroker.close() call.

Using the ODMG-api the connection is obtained when a query is executed or when the transaction
commit. On leaving the commit method, the connection will be released.
All other top-level API should behave similar.

5.5.14. The Object Cache

5.5.14.1. Introduction

OJB supports several caching strategies and allow to pluggin own caching solutions by
implementing the ObjectCache interface. All implementations shipped with OJB can be found in
package org.apache.ojb.broker.cache. The naming convention of the implementation
classes is ObjectCacheXXXImpl.

OJB

184
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

To classify the different implementations we differ local/session cache and
shared/global/application cache implementations (we use the different terms synonymous). The
ObjectCacheTwoLevelImpl use both characteristics.

• Local cache implementation mean that each instance use its own map to manage cached
objects.

• Shared/global cache implementations share one (in most cases static) map to manage cached
objects.

A distributed object cache implementation supports caching of objects across different JVM.

5.5.14.2. Why a cache and how it works?

OJB provides a pluggable object cache provided by the ObjectCache interface:

public interface ObjectCache
{

/**
* Write to cache.
*/
public void cache(Identity oid, Object obj);

/**
* Lookup object from cache.
*/
public Object lookup(Identity oid);

/**
* Removes an Object from the cache.
*/
public void remove(Identity oid);

/**
* Clear the ObjectCache.
*/
public void clear();

}

Each PersistenceBroker instance (PersistenceBroker is a standalone api and the basic layer for all
top-level api's like ODMG) use it's own ObjectCache instance. The ObjectCache instances
are created by the ObjectCacheFactory class on PersistenceBroker instantiation.

Each cache implementation holds objects previously loaded or stored by the
PersistenceBroker - dependend on the implementation.
Using a Cache has several advantages:

• It increases performance as it reduces database lookups or/and object materialization. If an
object is looked up by Identity the associated PersistenceBroker instance does not perform a
SELECT against the database immediately but first looks up the cache if the requested object is
already loaded. If the object is cached it is returned as the lookup result. If it is not cached a
SELECT is performed.
Other queries were performed against the database, but before an object from the ResultSet was
materialized the object identity was looked up in cache. If not found the whole object was
materialized.

• It allows to perform circular lookups (as by crossreferenced objects) that would result in
non-terminating loops without such a cache (Note: Since OJB 1.0.2 this is handled internally by
OJB and does not depend on the used cache implementation).

5.5.14.3. How to declare and change the used ObjectCache implementation

The object-cache element can be used to specify the ObjectCache implementation used by

OJB

185
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

OJB. If no object-cache is declared in configuration files (see below), OJB use by default a
noop-implementation of the ObjectCache interface.
There are two levels of declaration:

• jdbc-connection-descriptor level
• class-descriptor level

and the possibility to exclude all persistent objects of specified package names.

Use a jdbc-connection-descriptor level declaration to declare ObjectCache implementation on a
per connection/user level. Additional configuration properties can be passed by using custom
attributes entries:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">

<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="useAutoSync" attribute-value="true"/>

</object-cache>
...
</jdbc-connection-descriptor>

Set an object-cache tag on class-descriptor level , to declare ObjectCache implementation on a per
class level:

<class-descriptor
class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>

...
</class-descriptor>

Additional configuration properties can be passed by using custom attributes entries.

Note:
If polymorphism was used it's only possible to declare the object-cache element in the class-descriptor of the top-level class/interface
(root class), all object-cache declarations in the sub-classes will be ignored by OJB.

Priority of Cache Level

Since it is possible to mix the different levels of object-cache element declaration a ordering of
priority is needed:

Note:
The order of priority of declared object-cache elements in metadata are:
per class > excluded packages > per jdbc-connection-descriptor

E.g. if you declare ObjectCache 'OC1' on connection level and set ObjectCache 'OC2' in
class-descriptor of class A. Then OJB use 'OC2' as ObjectCache for class A instances and 'OC1' for
all other classes.

Exclude classes from being cached

If it's undesirable to cache an persistent object (e.g. persistent objects with BLOB fields or large
binary fields) declare an object-cache descriptor with the noop-cache implementation called
ObjectCacheEmptyImpl.

<class-descriptor

OJB

186
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

class="org.apache.ojb.broker.util.sequence.HighLowSequence"
table="OJB_HL_SEQ"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>

...
</class-descriptor>

Note:
If polymorphism was used and the class to exclude is part of an inheritance hierarchy and it's declared in in OJB metadata, it's not
possible to exclude it. Only for the top-level class/interface (root class) it's allowed to specify the object-cache element in metadata. So
it's only possible to exclude all sub-classes of the top-level class/interface (root class). More info see here.

Exclude packages from being cached

To exclude all persistent objects of a whole package from being cached use the custom attribute
cacheExcludes on connection level within the object-cache declaration. To declare several
packages use a comma seperated list.

<jdbc-connection-descriptor
jcd-alias="myDefault"
...>

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl">
<attribute attribute-name="cacheExcludes"

attribute-value="my.core, my.persistent.local"/>
... more attributes

</object-cache>
</jdbc-connection-descriptor

To include a persistent class of a excluded package, simply declare an object-cache descriptor on
class-descriptor level of the class to include, object cache declarations on class-descriptor level
have a higher priority as the excluded packages - see more.

Turn off caching

If you don't declare a object-cache element in configuration files (see here), OJB doesn't cache
persistent objects by default.
To explicitly turn off caching declare a no-op implementation of the ObjectCache interface as
caching implementation. OJB was shipped with such a class called ObjectCacheEmptyImpl. To
explicitly turn off caching for a used database look like this:

<jdbc-connection-descriptor ...>
...
<object-cache class="org.apache.ojb.broker.cache.ObjectCacheEmptyImpl">
</object-cache>
...

</jdbc-connection-descriptor>

To get more detailed info about the different level of cache declaration, please see here.

5.5.14.4. Shipped cache implementations:

ObjectCacheDefaultImpl

Per default OJB use a shared reference based ObjectCache implementation -
ObjectCacheDefaultImpl. It's a really fast cache but there are a few drawbacks:

• There is no transaction isolation, when thread one modify an object, thread two will see the
modification when lookup the same object or use a reference of the same object, so
"dirty-reads" can happen.

• If you rollback/abort a transaction the modified/corrupted objects will not be removed from the

OJB

187
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

cache by default(when using PB-api, top-level api may support automatic cache
synchronization). You have to do this by your own using a service method to remove cached
objects or enable the autoSync property.

broker.removeFromCache(obj);

// or (using Identity object)
ObjectCache cache = broker.serviceObjectCache();
cache.remove(oid);
• This implementation cache full object graphs (the object with all referenced objects) and does

not synchronize the references. So if cached object ProductGroup has a 1:n reference to
Article, e.g. article1, article2, article3 and another thread delete article2, the ProductGroup still
has a reference to article2. To avoid such a behavior you can use the collection-descriptor
'refresh' attribute to force OJB to query the referenced objects when the main object is loaded
from cache or use another ObjectCache implementation supporting synchronization of
references (e.g. ObjectCacheTwoLevelImpl).

This implementation use by default SoftReference to wrap all cached objects. If the cached
object was not longer referenced by your application but only by the cache, it can be reclaimed by
the garbage collector.
As we don't know when the garbage collector reclaims the freed objects, it is possible to set a
timeout property. So an cached object was only returned from cache if it was not garbage
collected and was not timed out.

To enable this ObjectCache implementation declare

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl">
<attribute attribute-name="cacheExcludes" attribute-value=""/>
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>
<attribute attribute-name="cachingKeyType" attribute-value="0"/>
<attribute attribute-name="useSoftReferences" attribute-value="true"/>

</object-cache>

Implementation configuration properties:

Property Key Property Values

timeout Lifetime of the cached objects in seconds. If
expired, the cached object was discarded -
default was 900 sec. When set to -1 the lifetime
of the cached object never expire.

autoSync If set true all cached/looked up objects within a
PB-transaction are traced. If the the
PB-transaction was aborted all traced objects
will be removed from cache. Default is false.

NOTE: This does not prevent "dirty-reads" by
concurrent threads (more info see above).

It's not a smart solution for keeping cache in sync
with DB but should do the job in most cases.
E.g. if OJB read 1000 objects from the database
within a transaction, one object was modified and the
transaction will be aborted, then 1000 objects will be
passed to the cache on lookup, 1000 objects will be
traced and all 1000 objects will be removed from
cache on abort.
Read these objects without running tx or in a former
tx and then modify one object in a tx and abort the tx,
only one object was traced/removed. Keep in mind

OJB

188
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

that this property counteract the useSoftReferences
property as long as the PB-transaction is running,
because all traced objects will have strong references.

cachingKeyType Determines how the key was build for the
cached objects:
0 - Identity object was used as key, this was the
default setting.
1 - Idenity + jcdAlias name was used as key.
Useful when the same object metadata model
(DescriptorRepository instance) are used for
different databases (JdbcConnectionDescriptor),
because different databases should use
separated caches (persistent object instances).
2 - Identity + model (DescriptorRepository) was
used as key. Useful when different metadata
model (DescriptorRepository instance) are used
for the same database. Keep in mind that there
was no synchronization between cached objects
with same Identity but different metadata model.
E.g. when the same database use different
metadata versions of the same persistent object
class.
3 - all together (Idenity + jcdAlias + model)
If possible '0' is recommended, because it will be
the best performing setting.

useSoftReferences If set true this class use {@link
java.lang.ref.SoftReference} to cache objects.
Default value is true. If set true and the cached
object was not longer referenced by your
application but only by the cache, it can be
reclaimed by the garbage collector. If set false
it's strongly recommended to the timeout
property to prevent memory problems of the
JVM.

Recommendation:
If you take care of cache synchronization (or use autoSync property) and be aware of dirty reads,
this implementation is useful for read-only or less update centric classes.

ObjectCacheTwoLevelImpl

ObjectCacheTwoLevelImpl is a two level ObjectCache implementation with a transactional
session- and a shared application-cache part.

The first level is a transactional session cache that cache objects till PersistenceBroker#close() or if
a PB-tx is running till #abortTransaction() or #commitTransaction() was called.
On commit all objects reside in the session cache will be pushed to the application cache.
If objects be new materialized from the database (e.g. when achieve a query), the full materialized
objects will be pushed immediately to the application cache (more precisely, if the application
cache doesn't contain the "new materialized" objects).

The second level cache can be specified with the applicationCache property. Properties of the
specified application cache are allowed too. Here is an example how to use the two level cache with
ObjectCacheDefaultImpl as second level cache.

<object-cache class="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl">
<!-- meaning of attributes, please see docs section "Caching" -->
<!-- common attributes -->

OJB

189
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<attribute attribute-name="cacheExcludes" attribute-value=""/>

<!-- ObjectCacheTwoLevelImpl attributes -->
<attribute attribute-name="applicationCache"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheDefaultImpl"/>
<attribute attribute-name="copyStrategy"

attribute-value="org.apache.ojb.broker.cache.ObjectCacheTwoLevelImpl$CopyStrategyImpl"/>
<attribute attribute-name="forceProxies" attribute-value="true"/>

<!-- ObjectCacheDefaultImpl attributes -->
<attribute attribute-name="timeout" attribute-value="900"/>
<attribute attribute-name="autoSync" attribute-value="true"/>
<attribute attribute-name="cachingKeyType" attribute-value="0"/>
<attribute attribute-name="useSoftReferences" attribute-value="true"/>

</object-cache>

The most important characteristic of the two-level cache is that all objects put to or read from the
application cache are copies of the target object, so the cached objects never could be corrupted by
the user when changing fields, because all operations done on copies of objects cached in the
application cache (in contrast to ObjectCacheDefaultImpl).

The strategy to make copies of the persistent objects is pluggable and can be specified by the
copyStrategy property which expects an implementation of the
ObjectCacheTwoLevelImpl.CopyStrategy interface.

The default ObjectCacheTwoLevelImpl.CopyStrategy implementation make copies
based on the field-descriptors of the cached object and set these values in a new instance of the
cached object. If you lookup a cached object with 1:n or m:n relation a query is needed to get the
ID's of the referenced objects, because in application cache only "flat" objects without
references/reference-info will be cached.

Note:
This two-level cache implementation does not guarantee that cache and persistent storage (e.g. database) are always consistent, because
the session cache push the persistent objects to application cache after the PB-tx was commited.
Let us assume that thread 1 (using broker 1) update objects A1, A2, ... within a transaction and does commit the tx. Now before OJB
could execute the after commit call on thread 1 to force session cache to push the objects to the application cache, thread 2 (using broker
2) lookup and update object A2 too (improbably but could happen, because thread 1 has already commited the objects A1, A2,... to the
persistent storage) and push A2 to application cache. After this thread 1 was able to perform the after commit call and the 'outdated'
version of A2 was pushed to the application cache overwriting the actual version of A2 in cache - cache and persistent storage are out of
synchronization.
To avoid writing of outdated data to the persistence storage optimistic locking can be used. OL will not prevent the above scenario, but
if it happens and e.g. broker 3 read the outdated object A1 from the cache and try to perform an update of A1, an optimistic locking
exception will be thrown. So it is guaranteed that the persistent storage is always consistent.
A possibility to completely prevent synchronization problems of cache and persistent storage is the usage of pessimistic locking (if the
used api supports it) with an adequate locking isolation level. If only one thread/broker could modify an object at the same time and the
lock will be released after all work is done, the above scenario can't happen.

To avoid corrupted data, all objects cached by users (using the methods of the ObjectCache
interface) will never be pushed to the application cache, they will be buffered in the session cache
till it was cleared.

Implementation configuration properties:

Property Key Property Values

applicationCache Specifies the ObjectCache implementation used
as application cache (second level cache). By
default ObjectCacheDefaultImpl was used. It's
recommended to use a shared cache
implementation (all used PB instances should
access the same pool of objects - e.g. by using
a static Map in cache implementation).

copyStrategy Specifies the implementation class of the
ObjectCacheTwoLevelImpl.CopyStrategy

OJB

190
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

interface, which was used to copy objects on
read and write operations to application cache. If
not set, a default implementation was used
(ObjectCacheTwoLevelImpl.CopyStrategyImpl
make field-descriptor based copies of the
cached objects).

forceProxies If true on materialization of cached objects, all
referenced objects will be represented by proxy
objects (independent from the proxy settings in
reference- or collection-descriptor).

Note: To use this feature all persistence capable
objects have to be interface based or the
ProxyFactory and IndirectionHandler
implementation classes supporting dynamic
proxy enhancement for all classes (see
OJB.properties, find more information about
proxy settings here).

ObjectCachePerBrokerImpl

ObjectCachePerBrokerImpl is a local/session cache implementation allows to have dedicated
caches per PersistenceBroker instance.

Note: When the used broker instance was closed (returned to pool) the cache was cleared.

This cache implementation is not synchronized with the other ObjectCache instances, there will
be no automatic refresh of objects modified/updated by other threads (PersistenceBroker
instances).

So, objects modified by other threads will not influence the cached objects, because for each broker
instance the objects will be cached separately and each thread should use it's own
PersistenceBroker instance.

ObjectCacheEmptyImpl

This is an no-op ObjectCache implementation. Useful when caching was not desired.

Note:
This implementaion supports circular references as well (since OJB 1.0.2, materialization of object graphs with circular references will
be handled internally by OJB).

ObjectCacheJCSImpl

A shared ObjectCache implementation using a JCS region for each classname. More info see
turbine-JCS.

ObjectCacheOSCacheImpl

You're basically in good shape at this point. Now you've just got to set up OSCache to work with
OJB. Here are the steps for that:

• Download OSCache from OSCache. Add the oscache-2.0.x.jar to your project so that it is in
your classpath (for Servlet/J2EE users place in your WEB-INF/lib directory).

• Download JavaGroups from JavaGroups. Add the javagroups-all.jar to your classpath (for
Servlet/J2EE users place in your WEB-INF/lib directory).

• Add oscache.properties from your OSCache distribution to your project so that it is in the
classpath (for Servlet/J2EE users place in your WEB-INF/classes directory). Open the file and

OJB

191
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

make the following changes:
1. Add the following line to the CACHE LISTENERS section of your oscache.properties file:

cache.event.listeners=com.opensymphony.oscache.plugins.clustersupport.JavaGroupsBroadcastingListener
2. Add the following line at the end of the oscache.properties file (your network must support

multicast):
cache.cluster.multicast.ip=231.12.21.132

• Add the following class to your project (feel free to change package name, but make sure that
you specify the full qualified class name in configuration files). You can find source of this
class under db-ojb/contrib/src/ObjectCacheOSCacheImpl or copy this source:

public class ObjectCacheOSCacheImpl implements ObjectCacheInternal
{

private Logger log = LoggerFactory.getLogger(ObjectCacheOSCacheImpl.class);
private static GeneralCacheAdministrator admin = new

GeneralCacheAdministrator();
private static final int REFRESH_PERIOD =

com.opensymphony.oscache.base.CacheEntry.INDEFINITE_EXPIRY;

public ObjectCacheOSCacheImpl()
{
}

public ObjectCacheOSCacheImpl(PersistenceBroker broker, Properties prop)
{
}

public void cache(Identity oid, Object obj)
{

try
{

/*
Actually, OSCache sends notifications (Events) only on flush
events. The putInCache method do not flush the cache, so no event is

sent.
The ObjectCacheOSCacheInternalImpl should force OSCache to flush the

entry
in order to generate an event. This guarantee that other nodes

always
in sync with the DB.
Alternative a non-indefinite refresh-period could be used in

conjunction
with optimistic-locking for persistent objects.
*/
remove(oid);
admin.putInCache(oid.toString(), obj);

}
catch(Exception e)
{

log.error("Error while try to cache object: " + oid, e);
}

}

public void doInternalCache(Identity oid, Object obj, int type)
{

cache(oid, obj);
}

public boolean cacheIfNew(Identity oid, Object obj)
{

boolean result = false;
Cache cache = admin.getCache();
try
{

cache.getFromCache(oid.toString());
}
catch(NeedsRefreshException e)
{

OJB

192
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

try
{

cache.putInCache(oid.toString(), obj);
result = true;

}
catch(Exception e1)
{

cache.cancelUpdate(oid.toString());
log.error("Error while try to cache object: " + oid, e);

}
}
return result;

}

public Object lookup(Identity oid)
{

Cache cache = admin.getCache();
try
{

return cache.getFromCache(oid.toString(), REFRESH_PERIOD);
}
catch(NeedsRefreshException e)
{

// not found in cache
if(log.isDebugEnabled()) log.debug("Not found in cache: " + oid);
cache.cancelUpdate(oid.toString());
return null;

}
catch(Exception e)
{

log.error("Unexpected error when lookup object from cache: " + oid,
e);

cache.cancelUpdate(oid.toString());
return null;

}
}

public void remove(Identity oid)
{

try
{

if(log.isDebugEnabled()) log.debug("Remove from cache: " + oid);
admin.flushEntry(oid.toString());

}
catch(Exception e)
{

throw new RuntimeCacheException("Unexpected error when remove object
from cache: " + oid, e);

}
}

public void clear()
{

try
{

if(log.isDebugEnabled()) log.debug("Clear cache");
admin.flushAll();

}
catch(Exception e)
{

throw new RuntimeCacheException("Unexpected error while clear
cache", e);

}
}

}

To allow usage of this implementation as application cache level in the two-level cache implement
the internal object cache interface instead of the standard one.

Now OSCache can be used by OJB as standalone cache (by declaring the implementation class on

OJB

193
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

connection- or class-level) or as application cache in the two-level cache.

More implementations ...

Additional ObjectCache implementations can be found in org.apache.ojb.broker.cache package.

5.5.14.5. Distributed ObjectCache?

If OJB was used in a clustered enviroment it is mandatory to distribute all shared cached objects
across different JVM. OJB does not support distributed caching "out of the box", to do this a
external caching library is needed, e.g. the OSCache implementation supports distributed caching.
More information how to setup OJB in clustered enviroments see clustering howto.

5.5.14.6. Implement your own cache

The OJB cache implementations are quite simple but should do a good job for most scenarios. If
you need a more sophisticated cache or need to pluggin a proprietary caching library you'll write
your own implementation of the ObjectCache interface.
Integration of your implementation in OJB is easy since the object cache is a pluggable component.
All you have to do, is to declare it on connection- or class-level. Here an example howto declare the
new implementation on connection level:

<jdbc-connection-descriptor
jcd-alias="myDefault"
...

>
<object-cache class="my.ObjectCacheMyImpl">

<attribute attribute-name="cacheExcludes" attribute-value=""/>
... additional attributes of the cache

</object-cache>
</jdbc-connection-descriptor

If interested to get more detailed information about the "type" of the objects to cache (objects
written to DB, new materialized objects,...) implement the ObjectCacheInternal interface (For an
implementation example see source for ObjectCacheTwoLevelImpl).

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

5.5.14.7. Future prospects

In OJB 1.1 the caching part will be rewritten to get rid of static classes, factories and member
variables.

5.5.15. Sequence Manager

5.5.15.1. The OJB Sequence Manager

All sequence manager implementations shipped with OJB you can find under the
org.apache.ojb.broker.util.sequence package using the following naming
convention SequenceManagerXXXImpl.

Automatical assignment of unique values

As mentioned in mapping tutorial OJB provides a mechanism to automatic assign unique values for
primary key attributes. You just have to enable the autoincrement attribute in the respective
field-descriptor of the XML repository file as follows:

OJB

194
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<class-descriptor
class="my.Article"
table="ARTICLE"

>
<field-descriptor
name="articleId"
column="ARTICLE_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>
....

</class-descriptor>

This definitions contains the following information:
The attribute articleId is mapped on the table's column ARTICLE_ID. The JDBC Type of this
column is INTEGER. This is a primary key column and OJB shall automatically assign unique
values to this attribute.

This mechanism works for all whole-numbered column types like BIGINT, INTEGER,
SMALLINT,... and for CHAR, VARCHAR columns. This mechanism helps you to keep your
business logic free from code that computes unique ID's for primary key attributes.

Force computation of unique values

By default OJB triggers the computation of unique ids during calls to PersistenceBroker.store(...).
Sometimes it will be necessary to have the ids computed in advance, before a new persistent object
was written to database. This can be done by simply obtaining the Identity of the respective object
as follows:

Identity oid = broker.serviceIdentity().buildIdentity(Object
newPersistentObject);

This creates an Identity object for the new persistent object and set all primary key values of the
new persistent object - But it only works if autoincrement is enabled for the primary key
fields.

Warning:
Force computation of unique values is not allowed when using database based Identity columns for primary key generation (e.g via
Identity column supporting sequence manager), because the real PK value is at the earliest available after database insert operation. If
you nevertheless force PK computing, OJB will use an temporary dummy PK value in the Identity object and this may lead to unexpeted
behavior.

Info about lookup persistent objects by primary key fields see here.

How to change the sequence manager?

To enable a specific SequenceManager implementation declare an sequence-manager attribute
within the jdbc-connection-descriptor element in the repository file.
If no sequence-manager was specified in the jdbc-connection-descriptor, OJB use a default
sequence manager implementation (default was SequenceManagerHighLowImpl).

Further information you could find in the repository.dtd section sequence-manager element.

Example jdbc-connection-descriptor using a sequence-manager tag:

<jdbc-connection-descriptor
jcd-alias="farAway"
platform="Hsqldb"
jdbc-level="2.0"
driver="org.hsqldb.jdbcDriver"

OJB

195
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

protocol="jdbc"
subprotocol="hsqldb"
dbalias="../OJB_FarAway"
username="sa"
password=""
batch-mode="false"

>

<connection-pool
maxActive="5"
whenExhaustedAction="0"
validationQuery="select count(*) from OJB_HL_SEQ"

/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="seq.start" attribute-value="10000"/>
<attribute attribute-name="grabSize" attribute-value="20"/>

</sequence-manager>
</jdbc-connection-descriptor>

The mandatory className attribute needs the full-qualified class name of the desired
sequence-manager implementation. If a implementation needs configuration properties you pass
them using custom attribute tags with attribute-name represents the property name and
attribute-value the property value. Each sequence manager implementation shows all properties on
the according javadoc page.

SequenceManager implementations

Source code of all SequenceManager implementations can be found in
org.apache.ojb.broker.util.sequence package.
If you still think something is missing, you can just write your own sequence manager
implementation.

High/Low sequence manager

The sequence manager implementation class
ojb.broker.util.sequence.SequenceManagerHighLowImpl and is able to generate
ID's unique to a given object and all extent objects declarated in the objects class descriptor.
If you ask for an ID using an interface with several implementor classes, or a baseclass with several
subclasses the returned ID have to be unique accross all tables representing objects of the interface
or base class (more see here).
It's also possible to use this implementation in a global mode, generate global unique id's.

This implementation needs an internal database table and object mapping declaration to persist
the used sequences. The table structure can be found in in platform guide the object metadata
mapping can be found in OJB internal mapping file (called repository_internal.xml).

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager className=
"org.apache.ojb.broker.util.sequence.SequenceManagerHighLowImpl">

<attribute attribute-name="seq.start" attribute-value="5000"/>
<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>
<attribute attribute-name="globalSequenceId" attribute-value="false"/>
<!-- deprecated settings -->
<attribute attribute-name="sequenceStart" attribute-value="5000"/>

</sequence-manager>

The property seq.start (or deprecated sequenceStart) define the start value of the id

OJB

196
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

generation (default was '1'). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

With property grabSize you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of ID's (default grabSize is 20).
If OJB was shutdown/redeployed all unused assigned ID's are lost.

If property globalSequenceId was set true you will get global unique ID's over all persistent
objects. Default was false.
NOTE: If the database is already populated or the global sequence name in OJB_HL_SEQ database
table was removed (by accident), the seq.start value must be greater than the biggest PK value in
database.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names here.
The attribute autoNaming can be used to enable auto-generation of sequence-names, default
value is true.
More info about attribute autoNaming here.

Limitations:
- do not use in managed environments when connections were enlisted in running transactions,
e.g. when using DataSources of an application server
- if set connection-pool attribute 'whenExhaustedAction' to 'block' (wait for connection if
connection-pool is exhausted), under heavy load this sequence manager implementation can block
application.
- superfluously to mention, do not use if other non-OJB applications insert objects too

In-Memory sequence manager

Another sequence manager implementation is a In-Memory version called
ojb.broker.util.sequence.SequenceManagerInMemoryImpl.
Only the first time an UID was requested for a object, the manager query the database for the max
value of the target column - all following request were performed in memory. This implementation
ditto generate unique ID's across all extents, using the same mechanism as the High/Low sequence
manager implementation.

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerInMemoryImpl">

<attribute attribute-name="seq.start" attribute-value="0"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

</sequence-manager>

The property seq.start (or deprecated sequenceStart) define the start value of the id
generation (default was '1'). It's recommended to use start values greater than '0' to avoid problems
with primitive primary key fields when used as foreign key in references.

This sequence manager implementation supports user defined sequence-names as well as automatic
generated sequence-names to manage the sequences - more about sequence-names.
The attribute autoNaming can be used to enable auto-generation of sequence-names, default
value is true.
More info about autoNaming.

The specified sequences will only be used in memory. First time a sequence was used OJB does a
select max-query to find the latest/greatest value for the autoincrement field and use this as

OJB

197
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

starting point for further in-memory key generation.

This is the fastest standard sequence manager implementation and should work with all databases
without any specific preparation, but has some Limitations.

Limitations:
- do not use in clustered environments
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too
- only declare "number" fields as autoincrement fields (because e.g. "select max ... does not work
with CHAR columns in the used manner)

Database sequences based implementation

If your database support sequence key generation (e.g. Oracle, SAP DB, PostgreSQL, ...) you can
use the SequenceManagerNextValImpl implementation to force generation of the sequence
keys by your database.

Database based sequences (sequence objects, sequence generators) are special (single-row) tables
in the database created with an specific statement, e.g. CREATE SEQUENCE sequenceName.
This implementation use database based sequences to assign ID's in autoincrement fields.
The sequences can be managed by hand, by a database tool or by OJB. If the autoNaming attribute
is enabled OJB creates sequences if needed. Also it's possible to declare sequence names in the
field-descriptor

<class-descriptor
class="org.greatest.software.Person"
table="GS_PERSON"

>
<field-descriptor

name="seqId"
column="SEQ_ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="PERSON_SEQUENCE"

/>

....
</class-descriptor>

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="seq.start" attribute-value="200000"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

<!-- optional attributes supported by Oracle, PostgreSQL, MaxDB/SapDB, DB2
-->

<!-- attribute attribute-name="seq.incrementBy" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.maxValue"

attribute-value="999999999999999999999999999"/ -->
<!-- attribute attribute-name="seq.minValue" attribute-value="1"/ -->
<!-- attribute attribute-name="seq.cycle" attribute-value="false"/ -->
<!-- attribute attribute-name="seq.cache" attribute-value="20"/ -->
<!-- attribute attribute-name="seq.order" attribute-value="false"/ -->

</sequence-manager>

Attribute autoNaming, default setting is true. If set true OJB will try to auto-generate a sequence
name if none was found in field-descriptor's sequence-name attribute and create a database
sequence if needed - more details see autoNaming section.

OJB

198
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The auto-generated name will be set as sequence-name in the field-descriptor.
If set false OJB throws an exception if none sequence-name was found in field-descriptor, also OJB
does NOT try to create a database sequence when for a given sequence name (specified in
field-descriptor) no database sequence can be found.

The table below show additional sequence properties. To specifiy the properties use
custom-attributes within the sequence-manager element.
The database sequence specific properties are generally speaking, see database user guide for
detailed description.

Name Value Description Supported By

seq.as database specific, e.g.
INTEGER

Database sequence
specific property.
Specifies the datatype
of the sequence, the
allowed datatypes
depend on the used
database
implementation.

DB2

seq.start 1 ... max INTEGER Database sequence
specific property.
Specifies the first
sequence number to
be generated. Allowed:
1 or greater.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.incrementBy >=1 Database sequence
specific property.
Specifies the interval
between sequence
numbers. This value
can be any positive or
negative integer, but it
cannot be 0.
Decrement sequences
are currently not
supported

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.maxValue 1 ... max INTEGER Database sequence
specific property.
Set max value for
sequence numbers.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.minValue min INTEGER Database sequence
specific property.
Set min value for
sequence numbers.
Negative sequences
are not tested as yet.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.cycle true/false Database sequence
specific property.
If true, specifies that
the sequence
continues to generate
values after reaching
either its maximum or
minimum value.
If false, specifies that
the sequence cannot
generate more values

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

OJB

199
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

after reaching its
maximum or minimum
value.

seq.cache >= 2 Database sequence
specific property.
Specifies how many
values of the sequence
Oracle preallocates
and keeps in memory
for faster access.
Allowed values: 2 or
greater. If set 0, an
explicite nocache
expression will be set.

Oracle, PostgreSQL,
MaxDB/SapDB, DB2

seq.order true/false Database sequence
specific property.
If set true, guarantees
that sequence
numbers are
generated in order of
request.
If false, a no order
expression will be set.

Oracle,
MaxDB/SapDB, DB2

Limitations:
- none known

Database sequences based high/low implementation

Based on the sequence manager implementation described above, but use a high/low algorithm to
avoid database access.

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerSeqHiLoImpl">

<attribute attribute-name="grabSize" attribute-value="20"/>
<attribute attribute-name="autoNaming" attribute-value="true"/>

</sequence-manager>

With property grabSize you set the size of the assigned ID's kept in memory for each
autoincrement field. If the assigned ID's are exhausted a database call is made to lookup the next
bunch of ID's using the next database sequence (default grabSize is 20).
If OJB was shutdown/redeployed all unused assigned ID's are lost.

Note:
Keep in mind that the database sequence value does not correspond with the used value in the autoincrement-field (table column value).

Attribute autoNaming is the same as for SequenceManagerNextValImpl.

This sequence manager implementation supports user defined sequence-names to manage the
sequences (see more) or if not set in field-descriptor it is done automatic when autoNaming
is enabled.

Limitations:
- superfluously to mention, do not use (or handle with care) if other non-OJB applications insert
objects too

Database Identity-column based sequence manager

OJB

200
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

This sequence manager implementation supports database Identity columns (supported by MySQL,
MsSQL, HSQL, ...). When using identity columns we have to do a trick to make the sequence
manager work.
OJB identify each persistence capable object by a unique ojb-Identity object. These ojb-Identity
objects were created using the sequence manager instance to get UID's. Often these ojb-Identity
objects were created before the persistence capable object was written to database.
When using Identity columns it is not possible to retrieve the next valid UID before the object was
written to database. As recently as the real object was written to database, you can ask the DB for
the last generated UID. Thus in SequenceManagerNativeImpl we have to do a trick and use a
'temporary' UID till the object was written to database.
So for best compatibility try to avoid using Identity columns in your database model. If this is not
possible, use this sequence manager implementation to work with database Identity columns.

To enable this sequence manager implementation set in your
jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNativeImpl">

</sequence-manager>

To declare the identity column in the persistent class mapping class-descriptor, add the following
attributes to the primary key/identity key field-descriptor:
primarykey="true", autoincrement="true" and access="readonly"
The first and second attributes are the same as all sequence manager implementations use to
support autoincrement PK fields, the third one is mandatory for database Identity columns only.

<field-descriptor
name="identifier"
column="NATIVE_ID"
jdbc-type="BIGINT"
primarykey="true"
autoincrement="true"
access="readonly"/>

Limitations:
- The Identity columns have to start with value greater than '0' and should never be negative.
- Use of Identity columns is not extent aware (This may change in further versions). More info
here.

Stored Procedures based (Oracle-style) sequencing

(By Ryan Vanderwerf et al.)
"This solution will give those seeking an oracle-style sequence generator a final answer (Identity
columns really suck). If you are using multiple application servers in your environment, and your
database does not support read locking like Microsoft SQL Server, this is the only safe way to
guarantee unique keys (HighLowSequenceManager WILL give out duplicate keys, and corrupt
your data)".
The SequenceManagerStoredProcedureImpl implementation enabled database sequence
key generation in a Oracle-style for all databases (e.g. MSSQL, MySQL, DB2, ...).

To declare this sequence manager implementation specify a sequence-manager element
within the jdbc-connection-descriptor:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerStoredProcedureImpl">

<attribute attribute-name="autoNaming" attribute-value="true"/>
</sequence-manager>

OJB

201
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

For attribute autoNaming see.

This sequence manager implementation supports user defined sequence-names to manage the
sequences or if not set in field-descriptor it is done automatic when autoNaming is
enabled.

• Add a new table OJB_NEXTVAL_SEQ to your database.
• You will also need a stored procedure called ojb_nextval_proc that will take care of

giving you a guaranteed unique sequence number.

Below you can find the stored procedures you need to use sequencing for MSSQL server and
Informix.
You have to adapt the scripts for other databases (We are interested in scripts for other databases).

Here you can find the currently supported databases and the statements to create the sql functions:

Database Table Statement Stored Procedure

MSSQL
DROP TABLE
OJB_NEXTVAL_SEQ;
CREATE TABLE
OJB_NEXTVAL_SEQ
(

SEQ_NAME
VARCHAR(150) NOT NULL,

MAX_KEY
INTEGER,

CONSTRAINT
SYS_PK_OJB_NEXTVAL

PRIMARY
KEY(SEQ_NAME)
);

CREATE PROCEDURE
OJB_NEXTVAL_PROC
@SEQ_NAME varchar(150)
AS
declare @MAX_KEY BIGINT
-- return an error if
-- sequence does not
exist
-- so we will know if
someone
-- truncates the table
set @MAX_KEY = 0

UPDATE OJB_NEXTVAL_SEQ
SET @MAX_KEY =
MAX_KEY = MAX_KEY + 1
WHERE SEQ_NAME =
@SEQ_NAME

if @MAX_KEY = 0
select 1/0
else
select @MAX_KEY
RETURN @MAX_KEY

Informix
drop table
ojb_nextval_seq;
create table
ojb_nextval_seq
(

seq_name
varchar(250,0) not
null,

max_key int8,
primary

key(seq_name)
);

create function
ojb_nextval_proc
(out arg1 int8, arg2
varchar(250,250))
returns int8;
let arg1 = 0;
update ojb_nextval_seq
set max_key = max_key +
1
where seq_name = arg2;
select max_key into
arg1
from ojb_nextval_seq
where seq_name = arg2;
return arg1;
end function;

Oracle
TODO TODO

Limitations:

OJB

202
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

- currently none known

Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

For those users you are using SQL Server 7.0 and up, the uniqueidentifier was introduced, and
allows for your rows Primary Keys to be GUID's that are guaranteed to be unique in time and
space.

However, this type is different than the Identity field type, whereas there is no way to
programmatically retrieve the inserted value. Most implementations when using the u.i. field type
set a default value of "newid()". The SequenceManagerMSSQLGuidImpl class manages this
process for you as if it was any normal generated sequence/identity field.

Assuming that your PK on your table is set to 'uniqueidentifier', your field-description would be the
same as using any other SequenceManager:

<field-descriptor
name="guid"
column="document_file_guid"
jdbc-type="VARCHAR"
primarykey="true"
autoincrement="true"

/>

Note that the jdbc-type is a VARCHAR, and thus the attribute (in this case 'guid') on your class
should be a String (SQL Server does the conversion from the String representation to the binary
representation when retrieved/set).

You also need to turn on the SequenceManager in your jdbc-connection-descriptor like this:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerMSSQLGuidImpl"
/>

Limitations:
-This will only work with SQL Server 7.0 and higher as the uniqueidentifier type was not
introduced until then.
This works well in situations where other applications might be updated the database as well,
because it guarantees (well, as much as Microsoft can guarantee) that there will be no collisions
between the Guids generated.

The sequence-name attribute

Several SequenceManager implementations using sequences (synonyms: sequence objects,
sequence generators) to manage the ID generation. Sequences are entities which generate unique
ID's using e.g. database table per sequence, database row per sequence or an in-memory
java-object.
To address the sequences, each sequence has an unique sequence-name.

In OJB the sequence-name of an autoincrement field is declared in a sequence-name attribute
within the field-descriptor.

<class-descriptor
class="org.greatest.software.Person"
table="GS_PERSON"
>
<field-descriptor

name="id"
column="ID_PERSON"
jdbc-type="INTEGER"

OJB

203
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

primarykey="true"
autoincrement="true"
sequence-name="PERSON_SEQUENCE"

/>

....
</class-descriptor>

The sequence-name attribute in the field-descriptor is only needed if the used sequence manager
supports sequences, the field should be autoincremented and the auto-assign of a sequence-name is
not desired.

Note:
Each sequence-name has be extent-aware.

If you don't specify a sequence name in the field-descriptor it is possible to auto-assign a
sequence-name by OJB if autoNaming is supported by the used sequence manager implementation.

The autoNaming property

All shipped SequenceManager implementations using sequences for ID generation support a
property called autoNaming which can be declared as a custom attribute within the
sequence-manager element:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">
<attribute attribute-name="autoNaming" attribute-value="true"/>
</sequence-manager>

If set true OJB try to build a sequence name by it's own (a simple algorithm was used to
auto-generate the sequence name - more details how it works in pitfalls section) and set this name
as sequence-name in the field-descriptor of the autoincrement field if no sequence name is
specified.
If set false the sequence manager throw an exception if a sequence name can't be found or was not
declared in the field-descriptor of the autoincrement field. In this case OJB expects a valid
sequence-name in the field-descriptor.
If the attribute autoNaming is set false the sequence manager never try to auto-generate a
sequence-name (more detailed info here). If set true and a sequence-name is set in the
field-descriptor, the SequenceManager will use this one and does not override the existing one.

The default setting is true.

How to write my own sequence manager?

Very easy to do, just write a implementation class of the interface
org.apache.ojb.broker.util.sequence.SequenceManager. OJB use a factory (
SequenceManagerFactory) to obtain sequence manager instances.

This Factory can be configured to generate instances of your specific implementation by adding a
sequence-manager tag in the jdbc-connection-descriptor.

<sequence-manager className="my.SequenceManagerMYImpl">
</sequence-manager>

That's it!

If your sequence manager implementation was derived from
org.apache.ojb.broker.util.sequence.AbstractSequenceManager it's easy to
pass configuration properties to your implementation using custom attributes.

OJB

204
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<sequence-manager className="my.SequenceManagerMYImpl">
<attribute attribute-name="myProperty" attribute-value="test"/>

</sequence-manager>

With

public String getConfigurationProperty(String key, String defaultValue)

method get the properties in your implementation class.

Note:
Of course we interested in your solutions! If you have implemented something interesting, just contact us.

Questions

When using sequence-name attribute in field-descriptor?

Most SequenceManager implementations based on sequence names. If you want retain control
of sequencing use your own sequence-name attribute in the field-descriptor. In that
case you are reponsible to use the same name across extents, we call it extent-aware (see more info
about extents and polymorphism). Per default the sequence manager build its own extent aware
sequence name with an simple algorithm (see
org.apache.ojb.broker.util.sequence.SequenceManagerHelper#buildSequenceName)
if necessary.
In most cases this should be sufficient. If you have a very complex data model and you will do
many metadata changes in the repository file in future, then it could be better to explicit use
sequence-names in the field-descriptor. See more avoid pitfals.

What to hell does extent aware mean?

Say we have an abstract base class Animal and two classes Dog and Cat which extend Animal.
For each non-abstract class we create a separate database table and declare the inheritance in OJB.
Now it is possible to do a query like give me all animals and OJB will return all Cat and Dog
objects. To make this working in OJB the ID's of Dog and Cat objects must be unique across the
tables of both classes or else you may not get a vaild query result (e.g. you can't query for the
Animal with id=23, because in both tables such an id can exist).
The reason for this behaviour is the org.apache.ojb.broker.Identity class
implementation (more details see javadoc/source of this class).

How could I prevent auto-build of the sequence-name?

All shipped SequenceManager implementations which using sequence names for UID
generation, support by default auto-build (autoNaming) of the sequence name if none was found in
the field-descriptor.
To prevent this, all relevant SM implementations support a autoNaming property - set via
attribute element. If set false OJB doesn't try to build sequence names automatic.

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="autoNaming" attribute-value="false"/>
</sequence-manager>

Keep in mind that user defined sequence names have to be extent-aware.

Sequence manager handling using multiple databases

If you use multiple databases you have to declare a sequence manager in each

OJB

205
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

jdbc-connection-descriptor. If you don't specify a sequence manager OJB use a default
one (currently ojb.broker.util.sequence.SequenceManagerHighLowImpl).

One sequence manager with multiple databases?

OJB was intended to use a sequence manager per database. But it shouldn't be complicated to
realize a global sequence manager solution by writing your own SequenceManager
implementation.

Can I get direct access to the sequence manager?

That's no problem:

PersistenceBroker broker =
PersistenceBrokerFactory.createPersistenceBroker(myPBKey);
SequenceManager sm = broker.serviceSequenceManager();
...
broker.close();

If you use autoincrement=true in your field-descriptor, there is no reason to obtain
UID directly from the sequence manager or to handle UID in your object model.
Except when using user-defined sequence manager implementations, in this case it could be
needed.

Note:
Don't use SequenceManagerFactory#getSequenceManager(PersistenceBroker broker), this method returns a new sequence manager
instance for the given broker instance and not the current used SM instance of the given PersistenceBroker instance]

Any known pitfalls?

• When using sequences based sequence manager implementations it's possible to enable
auto-generation of sequence names - see autoNaming section. To build the sequence name an
simple algorithm was used.
The algorithm try to get the top-level class of the field's (the autoincrement field-descriptor)
enclosing class, if no top-level class was found, the table name of the field's enclosing class was
used. If a top-level class was found, the first found extent class table name was used as
sequence name. The algorithm can be found in
org.apache.ojb.broker.util.sequence.SequenceManagerHelper#buildSequenceName.
When using base classes/interfaces with extent classes (declared in the class-descriptor) based
on different database tables and the extent-class entries in repository often change (e.g. add new
top-level class, change top-level class), the algorithm could be corrupted after restart of OJB,
because the first found extent class's table name could be change, hence the used
sequence-name. Now the ID generation start over and could clash with existing ID's.
To avoid this, remove the implementation specific internal sequence name entry (e.g. from table
OJB_HL_SEQ when using the Hi/Lo implementation, or remove the database sequence entry
when using the 'Nextval' implementation) or use custom sequence name attributes in the field
descriptor.

5.5.16. OJB logging configuration

5.5.16.1. Logging in OJB

For generating log messages, OJB provides its own, simplistic logging component
PoorMansLoggerImpl, but is also able to use the two most common Java logging libraries,
commons-logging (which is actually a wrapper around several logging components) and Log4j. In
addition, it is also possible to define your own logging implementation.

OJB

206
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Per default, OJB uses its own PoorMansLoggerImpl which does not require configuration and
prints to stdout.

5.5.16.2. Logging configuration within OJB

How and when OJB determines what kind of logging to use

Logging is the first component of OJB that is initialized. If you access any component of OJB,
logging will be initialized first before that component is doing anything else. Therefore, you'll have
to provide for the configuration of logging before you access OJB in your program (this is mostly
relevant if you plan to initialize OJB at runtime as is described below). Please note that logging
configuration is independent of the configuration of other parts of OJB, namely the runtime (via
OJB.properties) and the database/repository (via repository.xml).

These are the individual steps OJB performs in order to initialize the logging component:

1. First, OJB checks whether the system property
org.apache.ojb.broker.util.logging.Logger.class is set. If specified, this
property gives the fully qualified class name of the logger class (a class implementing the
Logger interface). Along with this property, another property is then read which may specify a
properties file for this logger class,
org.apache.ojb.broker.util.logging.Logger.configFile.

2. If this property is not set, then OJB tries to read the file OJB-logging.properties. The
name and path of this file can be changed by setting the runtime property of the same name. See
below for the contents of this file.

3. For backwards compatibility, OJB next tries to read the logging settings from the file
OJB.properties which is the normal runtime configuration file of OJB. Again, the name and
path of this file can be changed by setting the runtime property of the same name. This file may
contain the same entries as the OJB-logging.properties file.

4. If the the OJB.properties file does not contain logging settings, next it is checked whether
the commons-logging log property org.apache.commons.logging.Log or the
commons-logging log factory system property
org.apache.commons.logging.LogFactory is set. If that's the case, OJB will use
commons-logging for its logging purposes.

5. Next, OJB checks for the presence of the Log4j properties file log4j.properties. If it is
found, the OJB uses Log4j directley (without commons-logging).

6. Finally, OJB tries to find the commons-logging properties file
commons-logging.properties which when found directs OJB to use commons-logging
for its logging.

7. If none of the above is true, or if the specified logger class could not be found or initialized,
then OJB defaults to its PoorMansLoggerImpl logger which simply logs to stdout.

The only OJB component whose logging is not initialized this way, is the boot logger which is used
by logging component itself and a few other core components. It will (for obvious reasons) always
use PoorMansLoggerImpl and therefore log to stdout. You can define the log level of the boot
logger via the OJB.bootLogLevel system property. Per default, WARN is used.

Configuration of logging for the individual components

Regardless of the logging implementation that is used by OJB, the configuration is generally
similar. The individual logging implementations mainly differ in the syntax and in the
configuration of the format of the output and of the output target (where to log to). See below for
specific details and examples.
In general, you specify a default log level and for every component (usually a class) that should log
differently, the amount and level of detail that is logged about that component. These are the levels:

OJB

207
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

DEBUG
Messages that express what OJB is currently doing. This is the most detailed
debugging level
INFO
Informational messages
WARN
Warnings that may denote potentional problems (this is the default level)
ERROR
As the name says, this level is for errors which means that some action could not be
completed successfully
FATAL
Fatal errors which usually prevent an application from continuing

The levels DEBUG and INFO usually result in a lot of log messages which will reduce the
performance of the application. Therefore these levels should only be used when necessary.

There are two special loggers to be aware of. The boot logger is the logger used by the logging
component itself as well as a few other core components. It will therefore always use the
PoorMansLoggerImpl logging implementation. You can configure its logging level via the
OJB.bootLogLevel system property.
The default logger is denoted in the OJB-logging.properties file by the keyword
DEFAULT instead of the class name. It is used by components that don't require their own logging
configuration (usually because they are rather small components).

5.5.16.3. Logging configuration via configuration files

OJB-logging.properties

This file usually specifies which logging implementation to use using the
org.apache.ojb.broker.util.logging.Logger.class property, and which
properties file this logger has (if any) using the
org.apache.ojb.broker.util.logging.Logger.configFile property. You should
also use this file to specify log levels for OJB's components if you're not using Log4j or
commons-logging (which have their own configuration files).

A typical OJB-logging.properties file looks like this:

Which logger to use
org.apache.ojb.broker.util.logging.Logger.class=org.apache.ojb.broker.util.logging.PoorMansLoggerImpl

Configuration file of the logger
#org.apache.ojb.broker.util.logging.Logger.configFile=

Global default log level used for all logging entities if not specified
ROOT.LogLevel=ERROR

The log level of the default logger
DEFAULT.LogLevel=WARN

Logger for PersistenceBrokerImpl class
org.apache.ojb.broker.core.PersistenceBrokerImpl.LogLevel=WARN

Logger for RepositoryXmlHandler, useful for debugging parsing of
repository.xml!
org.apache.ojb.broker.metadata.RepositoryXmlHandler.LogLevel=WARN

commons-logging.properties

This file is used by commons-logging. For details on its structure see here.

OJB

208
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

An example commons-logging.properties file would be:

Use Log4j
org.apache.commons.logging.Log=org.apache.commons.logging.impl.Log4JLogger

Configuration file of the log
log4j.configuration=log4j.properties

Note:
Since commons-logging provides the same function as the logging component of OJB, it will likely be used as OJB's logging
component in the near future.

log4j.properties

The commons-logging configuration file. Details can be found here.

A sample log4j configuration is:

Root logging level is WARN, and we're using two logging targets
log4j.rootCategory=WARN, A1, A2

A1 is set to be ConsoleAppender sending its output to System.out
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Appender A2 writes to the file "org.apache.ojb.log".
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.File=org.apache.ojb.log

Truncate the log file if it aleady exists.
log4j.appender.A2.Append=false

A2 uses the PatternLayout.
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-5r %-5p [%t] %c{2} - %m%n

Special logging directives for individual components
log4j.logger.org.apache.ojb.broker.metadata.RepositoryXmlHandler=DEBUG
log4j.logger.org.apache.ojb.broker.accesslayer.ConnectionManager=INFO
log4j.logger.org.apache.ojb.odmg=INFO

Where to put the configuration files

OJB and the different logging implementations usually look up their configuration files in the
classpath. So for instance, OJB searches for the OJB-logging.properties file directly in
any of the entries of the classpath, directories and jar files. If the classpath contains in that order
some-library.jar, db-ojb.jar, and ., then it will first search in the two jars (which
themselves contain a directory structure in which OJB will search only in the root), and lastly in the
current directory (which only happens if . is part of the classpath) but not in sub directories of it.

For applications, this classpath can easily be set either as an environment variable CLASSPATH or
by using the commandline switch -classpath when invoking the java executable.

For web applications however, the server will define the classpath. There are specific folders in the
webapp structure that are always part of the webapp's classpath. The one that is normally used to
store configuration files, is the classes folder:

[folder containing webapps]\
mywebapp\

WEB-INF\

OJB

209
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

lib\
classes\ <-- Put your configuration files here

5.5.16.4. Logging configuration at runtime

Sometimes you want to configure OJB completely at runtime (within your program). How to do
that for logging depends on the used logging implementation, but you can usually configure them
via system properties. The only thing to keep in mind is that logging in OJB is initialized as soon as
you use one of its components, so you'll have to define the properties prior to using any OJB parts.

With system properties (which are accessible via System.getProperty() from within a Java
program) you can always define the following OJB logging settings:

org.apache.ojb.broker.util.logging.Logger.class
Which logger OJB shall use
org.apache.ojb.broker.util.logging.Logger.configFile
The config file of the logger
OJB-logging.properties
The path to the logging properties file, default is OJB-logging.properties
OJB.properties
The path to the OJB properties file (which may contain logging settings), default is
OJB.properties
org.apache.commons.logging.Log
Use commons-logging with the specified log implementation
org.apache.commons.logging.LogFactory
Use commons-logging with the specified log factory
log4j.configuration
When using Log4j directly or via commons-logging, this is the Log4j configuration file
(default is log4j.properties)

In addition, all Log4j properties (e.g. log4j.rootCategory) can be specified as system
properties.

5.5.16.5. Defining your own logger

It is rather easy to use your own logger. All you need to do is to provide a class that implements the
interface Logger. Besides the actual log methods (debug, info, warn, error, fatal)
this interface defines a method void configure(Configuration) which is used to
initialize the logger with the logging properties (as contained in OJB-logging.properties).

Note:
Because commons-logging performs a similar function to the OJB logging component, it is likely that it will be used as such in the near
future. Therefore you're encouraged to also implement the Log interface which is nearly the same as the Logger interface.

5.5.17. Locking

5.5.17.1. Introduction

Lock management is needed to synchronize concurrent access to objects from multiple transactions
(possibly in clustered environments).

An example:
Assume there are two transactions tx1 and tx2 running. The first transaction tx1 modify object
A and perform an update. At the same time transaction tx2 modify an object A' with the same
identity oidA, so both objects represent the same row in DB table and both operate on the "same"
row at the same time, thus the state of object with identity oidA is inconsistent.

OJB

210
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Assume that tx1 was committed, now the modified object A' in tx2 based on outdated data (state
before A changed). If now tx2 commits object A' the changes of tx1 will be overwritten with the
"illegal" object A'.

The OJB lock manager is responsible for detecting such a conflict and e.g. doesn't allow tx2 to
read or modify objects with identity oidA as long as tx1 commit or rollback (pessimistic locking).
In other words, if in a running transaction an object in a with identity oidA has a write lock, the
lock manager doesn't allow other transactions to acquire a read or write lock on the same identity
oidA objects (for the sake of completeness: dependent on the used locking isolation level).

OJB supports two kind of locking strategies:

• optimistic locking
• pessimistic locking

OJB provide an pluggable low-level locking-api (located in
org.apache.ojb.broker.locking) for pessimistic locking, which can be used by the
top-level api's like ODMG. The PB-api itself does not support pessimistic locking out of the box.

The base classes of the locking-api can be found in org.apache.ojb.broker.locking and
the entry point is class LockManager.

Object locking helps to guarantee data consistency without the need of database locks. During a
transaction objects can be locked without the use a database connection, e.g the ODMG
implementation lookup a database connection not until the transaction commit was called. If
database locks are used, a connection is needed during the whole transaction.

5.5.17.2. Optimistic Locking

To control concurrent access to objects optimistic locking uses a version field on each persistent
object.

Optimistic locking is supported by all API's (PB-api, ODMG-api, JDO when it's done).

Optimistic locking use an additional field/column for each persistent-object/table (Long, Integer or
Timestamp) which is incremented each time changes are committed to the object, and is utilizied to
determine whether an optimistic transaction should succeed or fail. Optimistic locking is fast,
because it checks data integrity only at update time.

1. In your table you need a dedicated column of type BIGINT, INTEGER or TIMESTAMP. Say
the column is typed as INTEGER and named VERSION_MAINTAINED_BY_OJB.

2. You then need a (possibly private) attribute in your java class corresponding to the column. Say
the attribute is defined as:

private int versionMaintainedByOjb;
3. in repository.xml you need a field-descriptor for this attribute. This field-descriptor must

specify attribute locking="true"
4. The resulting field-descriptor will look as follows:

<field-descriptor
name="versionMaintainedByOjb"
column="VERSION_MAINTAINED_BY_OJB"
jdbc-type="INTEGER"
locking="true"

/>

Note:
Using of TIMESTAMP as optimistic locking field could cause problems, because dependent of the used operating system and database
the precision of timestamp values differ (e.g. new value only after 10 ms or 1000 ms). In high concurrency applications this will cause
problems.

OJB

211
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.5.17.3. Pessimistic-Locking

To control concurrent access to objects pessimistic locking uses shared and exclusive locks on
persistent object (more precisely, on the identity object of the persistent object).
Pessimistic locking is currently used by the ODMG-api implementation. The PB-api does not
support PL out of the box.

Supported Isolation Levels

The OJB locking package supports four different isolation level.

• read-uncommitted
• read-committed
• repeatable-read
• serializable
• (none)
• (optimistic)

The object locking isolation levels can be simply characterized as follows:

Uncommitted Reads
Obtaining two concurrent write locks on a given object is not allowed (case 14). Obtaining read
locks is allowed even if another transaction is writing to that object (case 13). (Thats why this level
is also called dirty reads, because you can read lock objects with an existing write lock).

Committed Reads
Obtaining two concurrent write locks on a given object is not allowed. Obtaining read locks is
allowed only if there is no write lock on the given object (case 13).

Repeatable Reads
Same as commited reads, but obtaining a write lock on an object that has been locked for reading
by another transaction is not allowed (case 7).

Serializable transactions
As Repeatable Reads, but it is even not allowed to have multiple read locks on a given object (case
6).

The isolation level none and optimistic are self-explanatory:
none - don't lock objects associated with this isolation level
optimistic - don't lock objects associated with this isolation level, because optimistic locking was
used instead.
Thus the lock manager will ignore all objects associated with these isolation level.

Note:
It's not needed to declare the optimistic isolation level in all persistent objects class-descriptor using this isolation level, because OJB
will automatically detect an enabled optimistic locking and will bypass pessimistic locking.
Only the proper settings for optimistic locking are mandatory.

Note:
The locking isolation levels named similar to the database transaction isolation level, but the definitions are different from it, so take
care when comparing database transaction isolation level with object locking isolation level.

The proper behaviour of the different locking isolation level is checked by JUnit TestCases that
implement test methods for each of the 17 cases specified in the above table. (See code for classes
in package org.apache.ojb.broker.locking in OJB test suite).

OJB

212
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The semantics of the strategies are defined by the following table:

Case Name of
TestCase

Transaction Transaction-Isolationlevel

Tx1 Tx2 ReadUncommitedReadCommitedRepeatableReadsSerializable

1 SingleReadlockR True True True True

18 ReadThenReadR True True True True

R

2 UpgradeReadlockR True True True True

U

3 ReadThenWriteR True True True True

W

4 SingleWritelockW True True True True

5 WriteThenReadW True True True True

R

6 MultipleReadlockR R True True True False

7 UpgradeWithExistingReaderR U True True False False

8 WriteWithExistingReaderR W True True False False

9 UpgradeWithMultipleReadersR R True True False False

U

10 WriteWithMultipleReadersR R True True False False

W

11 UpgradeWithMultipleReadersOn1R R True True False False

W

12 WriteWithMultipleReadersOn1R R True True False False

W

13 ReadWithExistingWriterW R True False False False

14 MultipleWritelocksW W False False False False

15 ReleaseReadLockR True True True True

Rel W

OJB

213
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

16 ReleaseUpgradeLockU True True True True

Rel W

17 ReleaseWriteLockW True True True True

Rel W

Acquire
ReadLock

R

Acquire
WriteLock

W

Upgrade
Lock

U

Release
Lock

Rel

The table is to be read as follows. The acquisition of a single read lock on a given object (case 1) is
allowed (returns True) for all isolationlevels. To upgrade a single read lock (case 2) is also allowed
for all isolationlevels. If there is already a write lock on a given object for tx1, it is not allowed
(returns False) to obtain a write lock from tx2 for all isolationlevels (case 14).

Note:
If the low-level locking api was used by hand:
Not all LockManager implementation support the LockManager#upgrade(...) method (e.g. upgrade was delegated to write
lock) or behavior of this method is a wee bit other than shown above. More detail see javadoc comment of the used LockManager
implementation.

How to specify locking isolation level

The locking isolation level can be specified global or per class.

The global setting is done in the descriptor-repository element:

<descriptor-repository version="1.0" isolation-level="read-uncommitted"
proxy-prefetching-limit="50">

...
</descriptor-repository>

The isolation level of a class can be configured with the following attribute to a class-descriptor:

<ClassDescriptor isolation-level="read-uncomitted" ...>
...

</ClassDescriptor>

If no isolation-level was specified a default isolation level was used - see interface IsolationLevels.
The semantics of isolation levels are described in isolation level section.

Specify the LockManager Implementation

To specify the used lock manager implementation set the LockManagerClass property in
OJB.properties file. By default an in memory lock manager is enabled.

LockManagerClass=org.apache.ojb.broker.locking.LockManagerInMemoryImpl
...

OJB

214
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The LockManager Implementations

Below all LockManager implementations shipped with OJB are listed.

The LockManager implementation can optionally support

• lock timeout: The locked objects of an owner will be released after a specified time
• block timeout: The maximal time to wait for acquire a lock (e.g. when an object was locked by

another thread). Implementations which do not support this feature are called non-blocking

LockManagerInMemoryImpl

A non-blocking, single JVM, in-memory LockManager implementation. All
LockManager.upgradeLock(...) calls are delegated to write locks. It's a simple and fast
implementation.

The timeout of locks is supported. The block timeout is ignored, because it's non-blocking.

LockManagerCommonsImpl

This implementation use the locking part of apache's commons-transaction api. The timeout of
locks is currently (OJB 1.0.2) not supported, maybe in further versions. This implementation
supports blocking (with deadlock detection) and non-blocking of acquired locks.

LockManagerRemoteImpl

Supports locking in distributed environments based on a servlet. The LockManagerRemoteImpl
class delegates all locking calls to a remote servlet (LockManagerServlet). The URL to
contact the servlet have to be set in OJB.properties file using the LockServletUrl property, e.g.

LockServletUrl=http://127.0.0.1:8080/ojb-lockserver

To make deployment of the LockManagerServlet on a servlet container easier an Ant target
lockservlet-war exist, which will build an example .war file containing all needed files (maybe
some useless files) for deployment.
The generated web.xml file look like:

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>OJB ODMG Lock Server</display-name>
<description>
OJB ODMG Lock Server
</description>

<servlet>
<servlet-name>lockserver</servlet-name>

<servlet-class>org.apache.ojb.broker.locking.LockManagerServlet</servlet-class>
<init-param>

<param-name>lockManager</param-name>
<param-value>org.apache.ojb.broker.locking.LockManagerInMemoryImpl</param-value>

</init-param>
<init-param>

<param-name>lockTimeout</param-name>
<param-value>80000</param-value>

</init-param>
<init-param>

<param-name>blockTimeout</param-name>
<param-value>1000</param-value>

</init-param>

OJB

215
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<!--load-on-startup>1</load-on-startup-->
</servlet>

<!-- The mapping for the webdav servlet -->
<servlet-mapping>

<servlet-name>lockserver</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<!-- Establish the default list of welcome files -->
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>

</welcome-file-list>
</web-app>

It's possible to use each LockManager implementation as backend of the lock manager servlet -
only adapt the lockManager init-param entry in the web.xml file.

5.5.17.4. ODMG-api Locking

The OJB ODMG implementation provides object level transactions as specified by the ODMG.
This includes features like registering objects to transactions, persistence by reachability (a toplevel
object is registered to a transaction, and also all its associated objects become registered
implicitely) and as a very important aspect: object level locking.

The ODMG locking implementation is located in org.apache.ojb.odmg.locking and base
on the OJB kernel locking code in org.apache.ojb.broker.locking. The odmg
implementation use it's own internal locking interface
org.apache.ojb.odmg.locking.LockManager with specific methods to handle
transactions as owner of a lock and persistent object Identity objects as resources to lock..

What it does

The ODMG-Api allows transactions to lock an object obj as follows:

org.odmg.Transaction.lock(Object obj, int lockMode)

where lockMode defines the locking modes:

org.odmg.Transaction.READ
org.odmg.Transaction.UPGRADE
org.odmg.Transaction.WRITE

A sample session could look as follows:

// get odmg facade instance
Implementation odmg = ...

//get open database
Database db = ...

// start a transaction
Transaction tx = odmg.newTransaction();
tx.begin();

MyClass myObject = ... ;

// lock object for write access
tx.lock(myObject, Transaction.WRITE);

// now perform write access on myObject ...

// finally commit transaction to make changes to myObject persistent

OJB

216
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

tx.commit();

The ODMG specification does not say if locks must be acquired explicitely by client applications
or may be acquired implicitely. OJB provides implicit locking for the application programmers
convenience: On commit of a transaction all read-locked objects are checked for modifications. If a
modification is detected, a write lock is acquired for the respective object. If automatic acquisition
of read- or write-lock failes, the transaction is aborted.

On locking an object to a transaction, OJB automatically locks all associated objects (as part of the
persistence by reachability feature) with the same locking level. If application use large object nets
which are shared among several transactions acquisition of write-locks may be very difficult. Thus
OJB can be configured to aquire only read-locks for associated objects.
You can change this behaviour by modifying the file OJB.properties and changing the entry
LockAssociations=WRITE to LockAssociations=READ.

The ODMG specification does not prescribe transaction isolation levels or locking strategies to be
used. Thus there are no API calls for setting isolation levels. OJB provides four different isolation
levels that can be configured global or for each persistent class in the configuration files.

5.5.17.5. Locking in distributed environment

In distributed or clustered environments the object level locking (pessimistic locking) have to be
consistent over several JVM. The optimistic locking works in clustered/distributed environments
without any modifications.

Currently OJB was shipped was simple servlet based LockManager implementation called
LockManagerRemoteImpl.

Here is a description how to use it:

1. Change LockManagerClass entry in OJB.properties file to the remote implementation:
org.apache.ojb.broker.locking.LockManagerRemoteImpl and the
LockServletUrl to the servelt engine where the lock-server servlet will be deployed:

LockManagerClass=org.apache.ojb.broker.locking.LockManagerRemoteImpl
...
LockServletUrl=http://127.0.0.1:8080/ojb-lockserver

2. Run the ant lockservlet-war target to generate the lock-server servlet .war application
file. The generated file will be found in [db-ojb]/dist.

3. Check that all needed libraries be copied in lockservlet-war file.

This implementation has some drawbacks, e.g. it uses one servlet node to deploy the LockMap
servlet.

A much better solution will be a JMS- or JavaGroups-based LockManager implementation (hope
we can start working on such a implementation some day).

5.5.17.6. Pluggin own locking classes

OJB was shipped with several locking classes implementations.
This may not be viable in some environments. Thus OJB allows to plug in user defined
LockManager implementations.
To specify specific implementations change the following entry in the OJB.properties configuration
file:

LockManagerClass=my.ojb.LockManagerMyImpl

OJB

217
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Note:
Of course we are interested in your solutions! If you have implemented something interesting, just contact us.

5.5.18. XDoclet OJB module documentation

5.5.18.1. Acquiring and building

The XDoclet OJB module is part of OJB source. As such, the source of the module is part of the
OJB source tree and can be found in directory src/xdoclet. Likewise, binary versions of the module
and the required libraries (xjavadoc, xdoclet) are to be found in the lib folder.

In order to build the XDoclet OJB module from source, you'll need a source distribution of XDoclet
version 1.2, either a source distribution from the sourceforge download site or a CVS
checkout/drop. See the XDoclet website at http://xdoclet.sourceforge.net/install.html for details.

Building with a XDoclet source distribution

Unpack the source distribution of XDoclet which is contained in a file
xdoclet-src-<version>.<archive-format> somewhere. If you unpacked it
side-by-side of OJB, you'll get a directory layout similar to:

\xdoclet-1.2
\config
\core
\lib
...

\db-ojb
\bin
\contrib
...

The XDoclet OJB module is then build using the build-xdoclet-module.xml ant script:

ant -Dxdoclet.src.dir=../xdoclet-1.2 -f build-xdoclet-module.xml

The build process will take some time, and after successful compilation the three jars
xjavadoc-<version>.jar, xdoclet-<version>.jar, and
xdoclet-ojb-module-<version>.jar are copied to the library directory of OJB.

Building with a XDoclet CVS checkout

When checking out from CVS (the xdoclet-all target), you'll get a directory like:

\xdoclet-all
\xdoclet

\config
\core
...

\xdocletgui
\xjavadoc

\db-ojb
\bin
\contrib
...

Building is XDoclet OJB module is performed by calling:

ant -Dxdoclet.src.dir=../xdoclet-all/xdoclet -f build-xdoclet-module.xml

Since this is the default structure assumed by the build script, this can be shortend to:

OJB

218
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

ant -f build-xdoclet-module.xml

Other build options

The build script for the XDoclet OJB module uses the OJB build properties so the following line
added to the build.properties file in the OJB root directory allows to omit the
-Dxdoclet.src.dir=<xdoclet src dir> commandline option:

xdoclet.src.dir=<xdoclet src dir>

5.5.18.2. Usage

Using the XDoclet OJB module is rather easy. Put the module jar along with the xdoclet and
xjavadc jars in a place where ant will find it, and then invoke it in your build file like:

<target name="repository-files">
<taskdef name="ojbdoclet"

classname="xdoclet.modules.ojb.OjbDocletTask"
classpathref="build-classpath">

<ojbdoclet destdir="./build">
<fileset dir="./src"/>
<ojbrepository destinationFile="repository_user.xml"/>
<torqueschema databaseName="test" destinationFile="project-schema.xml"/>

</ojbdoclet>
</target>

The XDoclet OJB module has two sub tasks, ojbrepository and torqueschema, which
generate the OJB repository part containing the user descriptors and the torque table schema,
respectively. Please note that the XDoclet OJB module (like all xdoclet tasks) expects the directory
structure of its input java source files to match their package structure. In this regard it is similar to
the javac ant task.
Due to a bug in XDoclet, you should not call the ojbdoclet task more than once in the same
taskdef scope. So, each ojbdoclet call should be in its own target with a leading taskdef.

The main ojbdoclet task has two attributes:

destdir
The destination directory where generated files will be placed.
checks : none | basic | strict (default)
The amount of the checks performed. Per default, strict checks are performed
which means that for instance classes specified in an attribute (e.g.
collection-class, row-reader etc.) are loaded from the classpath and checked.
So in this mode it is necessary to have OJB as well as the processed classes on the
classpath (using the classpathref attribute of the taskdef ant task above). If this
is for some reason not possible, then use basic which performs most of the checks
but does not load classes from the classpath. none does not perform any checks so
use it with care and only if really necessary (in this case it would be helpful if you would
post the problem to the ojb-user mailing list).

The ojbrepository subtask has the following attributes:

destinationFile
Specifies the output file. The default is repository_user.xml.
verbose : true | false (default)
Whether the task should output some information about its progress.

The torqueschema subtask has these attributes:

databaseName
This attribute gives the name of the database for torque (required).
destinationFile

OJB

219
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The output file, default is project-schema.xml.
dtdUrl
Allows to specify the url of the torque dtd. This is necessary e.g. for XML parsers that
have problems with the default dtd url
(http://jakarta.apache.org/turbine/dtd/database.dtd), or when using a newer version of
torque.
generateForeignkeys : true (default) | false
Whether foreignkey tags are generated in the torque database schema.
verbose : true | false (default)
Whether the task outputs some progress information.

The classpathref attribute in the taskdef can be used to define the classpath for xdoclet
(containing the xdoclet and ojb module jars), e.g. via:

<path id="build-classpath">
<fileset dir="lib">

<include name="**/*.jar"/>
</fileset>

</path>

Using the generated torque schema is a bit more tricky. The easiest way is to use the
build-torque.xml script which is part of OJB. Include the lib subdirectory of the OJB
distribution which also includes torque (e.g. in build-classpath as shown above). You will
also want to use your OJB settings (if you're using the ojb-blank project, then only
build.properties), so include them at the beginning of the build script if they are not already
there:

<property file="build.properties"/>

Now you can create the database with ant calls similar to these:

<target name="init-db" depends="repository-files">
<!-- Torque's build file -->
<property name="torque.buildFile"

value="build-torque.xml"/>

<!-- The name of the database which we're taking from the profile -->
<property name="torque.project"

value="${databaseName}"/>

<!-- Where the schemas (your project and, if required, ojb's internal
tables) are -->

<property name="torque.schema.dir"
value="src/schema"/>

<!-- Build directory of Torque -->
<property name="torque.output.dir"

value="build"/>

<!-- Torque will put the generated sql here -->
<property name="torque.sql.dir"

value="${torque.output.dir}"/>

<!-- Torque shall use the classpath (to find the jdbc driver etc.) -->
<property name="torque.useClasspath"

value="true"/>

<!-- Which jdbc driver to use (again from the profile) -->
<property name="torque.database.driver"

value="${jdbcRuntimeDriver}"/>

<!-- The url used to build the database; note that this may be different
from the url to access the database (e.g. for MySQL) -->

<property name="torque.database.buildUrl"
value="${urlProtocol}:${urlSubprotocol}:${urlDbalias}"/>

OJB

220
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<!-- Now we're generating the database sql -->
<ant dir="."

antfile="${torque.buildFile}"
target="sql">

</ant>
<!-- Next we create the database -->
<ant dir="."

antfile="${torque.buildFile}"
target="create-db">

</ant>
<!-- And the tables -->
<ant dir="."

antfile="${torque.buildFile}"
target="insert-sql">

</ant>
</target>

As you can see, the major problem of using Torque is to correctly setup Torque's build properties.

One important thing to note here is that the latter two calls modify the database and in the process
remove any existing data, so use them with care. Similar to the above targets, you can use the
additional targets datadump for storing the data currently in the database in an XML file, and
datasql for inserting the data from an XML file into the database.
Also, these steps are only valid for the torque that is delivered with OJB, but probably not for
newer or older versions.

5.5.18.3. Tag reference

Interfaces and Classes
ojb.class
ojb.extent-class
ojb.modify-inherited
ojb.object-cache
ojb.index
ojb.delete-procedure
ojb.insert-procedure
ojb.update-procedure
ojb.constant-argument
ojb.runtime-argument
Fields and Bean properties
ojb.field
References
ojb.reference
Collections
ojb.collection
Nested objects
ojb.nested
ojb.modify-nested

5.5.18.4. Interfaces and Classes

ojb.class

The ojb.class tag marks interfaces and classes that shall be present in the repository descriptor.
This includes types that are used as reference targets or as collection elements, but for instance not
abstract base classes not used elsewhere.

OJB

221
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Attributes:

attributes
Optionally contains attributes of the class as a comma-separated list of name-value
pairs.
determine-extents : true (default) | false
When set to true, then the XDoclet OJB module will automatically determine all
extents (ojb-relevant sub types) of this type. If set to false, then extents need to be
specified via the ojb.extent-class class tag (see below).
documentation
Optionally contains documentation on the class. If no table-documentation
attribute is specified, then the value is also used for the table documentation in the
database schema.
generate-repository-info : true (default) | false
Setting this to false prevents the generation of field/reference/collection descriptors
in the repository XML file, and also automatically enforces generate-table-info =
false.
Note that there is one case where the XDoclet module will still generate field
descriptors. If the type is referenced by a reference or collection, then the
corresponding foreign key fields (if 1:n collection) or primary keys (if reference or m:n
collection) will be automatically included in the class descriptor, even if they are only
defined in subtypes.
generate-table-info : true (default) | false
This attribute controls whether the type has an associated table. If set to true, a
torque table descriptor will be created in the database schema. Otherwise, no table will
be in the database schema for this type.
include-inherited : true (default) | false
Determines whether base type fields/references/collections with the appropriate tags (
ojb.field, ojb.reference, ojb.collection) will be included in the descriptor and table
definition of this class. Note that all base type fields/references/collections with an
appropriate tag are included regardless of whether the base types have the ojb.class
tag or not.
table
The name of the table used for this type. Is only used when table info is generated. If
not specified, then the short name of the type is used.
table-documentation
Optionally contains documentation for the table in the database schema.

The following class-descriptor attributes are also supported in the ojb.class tag and will be
written directly to the generated class descriptor (see the repository.dtd for their meaning):

• accept-locks
• factory-class
• factory-method
• initialization-method
• isolation-level
• proxy
• proxy-prefetching-limit
• refresh
• row-reader

Example: (from the unit tests)

/**

OJB

222
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

* @ojb.class generate-table-info="false"
*/
public abstract class AbstractArticle implements InterfaceArticle,
java.io.Serializable
...

/**
* @ojb.class table="ARTICLE"
* proxy="dynamic"
* include-inherited="true"
* documentation="This is important documentation on the Article
class."
* table-documentation="And this is important documentation on the
ARTICLE table."
* attributes="color=blue,size=big"
*/
public class Article extends AbstractArticle implements InterfaceArticle,
java.io.Serializable
...

The AbstractArticle class will have an class descriptor in the repository file, but no field,
reference or collection descriptors. The Article class however will not only have descriptors for
its own fields/references/collections but also for those inherited from AbstractArticle. Also,
its table definition in the torque file will be called "Artikel", not "Article". The resulting class
descriptors look like:

<class-descriptor
class="org.apache.ojb.broker.AbstractArticle"

>
<extent-class class-ref="org.apache.ojb.broker.Article"/>

</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.Article"
proxy="dynamic"
table="ARTICLE"

>
<documentation>This is important documentation on the Article

class.</documentation>
...
<attribute attribute-name="color" attribute-value="blue"/>
<attribute attribute-name="size" attribute-value="big"/>

</class-descriptor>
...

ojb.extent-class

Use the ojb.extent-class to explicitly specify extents (direct persistent sub types) of the current
type. The class-ref attribute contains the fully qualified name of the class. However, these tags are
only evaluated if the determine-extents attribute of the ojb.class tag is set to false.

Attributes:

class-ref
The fully qualified name of the sub-class (required).

Example:

/**
* @ojb.class determine-extents="false"
* generate-table-info="false"
* @ojb.extent-class class-ref="org.apache.ojb.broker.CdArticle"
*/
public abstract class AbstractCdArticle extends Article implements
java.io.Serializable
...

OJB

223
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

which results in:

<class-descriptor
class="org.apache.ojb.broker.AbstractCdArticle"

>
<extent-class class-ref="org.apache.ojb.broker.CdArticle"/>

</class-descriptor>

ojb.modify-inherited

Allows to modify attributes of inherited fields/references/collections (normally, all attributes are
used without modifications) for this and all sub types. One special case is the specification of an
empty value which leads to a reset of the attribute value. As a result the default value is used for
this attribute.

Attributes: All of ojb.field, ojb.reference, and ojb.collection (with the exception of the attributes
related to indirection tables (indirection-table, remote-foreignkey,
indirection-table-primarykeys, indirection-table-documentation, foreignkey-documentation,
remote-foreignkey-documentation), and also:

ignore : true | false (default)
Specifies that this feature will be ignored in this type (but only in the current type, not in
subtypes).
name
The name of the field/reference/collection to modify (required).

Example:

/**
* @ojb.class table="Artikel"
* @ojb.modify-inherited name="productGroup"
* proxy="true"
* auto-update="object"
*/
public class ArticleWithReferenceProxy extends Article

produces the class descriptor

<class-descriptor
class="org.apache.ojb.broker.ArticleWithReferenceProxy"
table="Artikel"

>
...
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"
proxy="true"
auto-update="object"

>
<documentation>this is the reference to an articles

productgroup</documentation>
<attribute attribute-name="color" attribute-value="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>
</class-descriptor>

ojb.object-cache

The ojb.object-cache tag allows to specify the ObjectCache implementation that OJB uses for
objects of this class (instead of the one defined in the jdbc connection descriptor or in the
ojb.properties file). Classes specified with this tag have to implement the
org.apache.ojb.broker.cache.ObjectCache interface. Note that object cache

OJB

224
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

specifications are not inherited.

Attributes:

attributes
Optionally contains attributes of the object cache as a comma-separated list of
name-value pairs.
class
The fully qualified name of the object cache class (required).
documentation
Optionally contains documentation on the object cache specification.

Example:

/**
* @ojb.class
* @ojb.object-cache
class="org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl"
* documentation="Some important documentation"
*/
public class SomeClass implements Serializable
{

...
}

and the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<object-cache class="org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl">

<documentation>Some important documentation</documentation>
</object-cache>
...

</class-descriptor>

ojb.index

The ojb.index tag is used to define possibly unique indices for the class. An index consists of at
least one field of the class (either locally defined or inherited, anonymous or explicit). There is an
default index (without a name) that is made up by all fields that have the indexed attribute set to
true. All other indices have to be defined via the ojb.index tag. In contrast to the indexed
attribute, indices defined via the ojb.index tag are not inherited.

Attributes:

documentation
Optionally contains documentation on the index.
fields
The fields that make up the index separated by commas (required).
name
The name of the index (required). If there are multiple indices with the same name,
then only the first one is used (all others are ignored).
unique : true | false (default)
Whether the index is unique or not.

Example:

/**
* @ojb.class table="SITE"
* @ojb.index name="NAME_UNIQUE"

OJB

225
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

* unique="true"
* fields="name"
*/
public class Site implements Serializable
{

/**
* @ojb.field indexed="true"
*/
private Integer nr;
/**
* @ojb.field column="NAME"
* length="100"
*/
private String name;
...

}

the class descriptor

<class-descriptor
class="org.apache.ojb.odmg.shared.Site"
table="SITE"

>
<field-descriptor

name="nr"
column="nr"
jdbc-type="INTEGER"
indexed="true"

>
</field-descriptor>
<field-descriptor

name="name"
column="NAME"
jdbc-type="VARCHAR"
length="100"

>
</field-descriptor>
...
<index-descriptor

name="NAME_UNIQUE"
unique="true"

>
<index-column name="NAME"/>

</index-descriptor>
</class-descriptor>

and the torque table schema

<table name="SITE">
<column name="nr"

javaName="nr"
type="INTEGER"

/>
<column name="NAME"

javaName="name"
type="VARCHAR"
size="100"

/>
...
<index>

<index-column name="nr"/>
</index>
<unique name="NAME_UNIQUE">

<unique-column name="NAME"/>
</unique>

</table>

ojb.delete-procedure

Declares a database procedure that is used for deleting persistent objects.

OJB

226
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Attributes:

arguments
A comma-separated list of the names of constant or runtime arguments specified in the
same class.
attributes
Optionally contains attributes of the procedure as a comma-separated list of
name-value pairs.
documentation
Optionally contains documentation on the procedure.
include-pk-only : true | false (default)
Whether all fields of the class that make up the primary key, shall be passed to the
procedure. If set to true then the arguments value is ignored.
name
The name of the procedure (required).
return-field-ref
Identifies a field of the class that will receive the return value of the procedure. Use
only if the procedure has a return value.

Example:

/**
* @ojb.class
* @ojb.delete-procedure name="DELETE_PROC"
* arguments="arg1,arg2"
* return-field-ref="attr2"
* documentation="Some important documentation"
* @ojb.constant-argument name="arg1"
* value="0"
* @ojb.runtime-argument name="arg2"
* field-ref="attr1"
*/
public class SomeClass
{

/** @ojb.field */
private Integer attr1;
/** @ojb.field */
private String attr2;
...

}

leads to the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<field-descriptor

name="attr1"
column="attr1"
jdbc-type="INTEGER"

>
</field-descriptor>
<field-descriptor

name="attr2"
column="attr2"
jdbc-type="VARCHAR"
length="254"

>
</field-descriptor>
...
<delete-procedure

name="DELETE_PROC"
return-field-ref="attr2"

OJB

227
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

>
<documentation>Some important documentation</documentation>
<constant-argument

value="0"
>
</constant-argument>
<runtime-argument

field-ref="attr2"
>
</runtime-argument>

</delete-procedure>
</class-descriptor>

ojb.insert-procedure

Identifies the database procedure that shall be used for inserting objects into the database.

Attributes:

arguments
Comma-separated list of names of constant or runtime arguments that are specified in
the same class.
attributes
Contains optional attributes of the procedure in a comma-separated list of name-value
pairs.
documentation
Contains optional documentation on the procedure.
include-all-fields : true | false (default)
Specifies whether all persistent fields of the class shall be passed to the procedure. If
so, then the arguments value is ignored.
name
The name of the procedure (required).
return-field-ref
The persistent field that receives the return value of the procedure (should only be
used if the procedure returns a value).

For an example see constant argument.

ojb.update-procedure

The database procedure that will be used for updating persistent objects in the database.

Attributes:

arguments
A comma-separated list of names of constant or runtime arguments in the same class.
attributes
The optional attributes of the procedure in a comma-separated list of name-value
pairs.
documentation
Optional documentation on the procedure.
include-all-fields : true | false (default)
Whether all persistent fields of the class shall be passed to the procedure in which
case the arguments value is ignored.
name
Name of the database procedure (required).
return-field-ref
A persistent field that will receive the return value of the procedure (only to be used if
the procedure returns a value).

OJB

228
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

For an example see runtime argument.

ojb.constant-argument

A constant argument for a database procedure. These arguments are referenced by the procedure
tags in the arguments attribute via their names.

Attributes:

attributes
Optionally contains attributes of the argument.
documentation
Optionally contains documentation on the argument.
value
The constant value.
name
The identifier of the argument to be used the arguments attribute of a procedure tag
(required).

Example:

/**
* @ojb.class
* @ojb.insert-procedure name="INSERT_PROC"
* arguments="arg"
* @ojb.constant-argument name="arg"
* value="Some value"
* attributes="name=value"
*/
public class SomeClass
{

...
}

will result in the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
...
<insert-procedure

name="INSERT_PROC"
>

<constant-argument
value="Some value"

>
<attribute attribute-name="name" attribute-value="value"/>

</constant-argument>
</insert-procedure>

</class-descriptor>

ojb.runtime-argument

An argument for a database procedure that is backed by a persistent field. Similar to constant
arguments the name is important for referencing by the procedure tags in the arguments attribute.

Attributes:

attributes
Contains optionally attributes of the argument.
documentation
Optionally contains documentation on the argument.
field-ref

OJB

229
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The persistent field that delivers the value. If unspecified, then in the procedure call
null will be used.
name
Identifier of the argument for using it in the arguments attribute of a procedure tag
(required).
return
If the field receives a value (?).

Example:

/**
* @ojb.class
* @ojb.update-procedure name="UPDATE_PROC"
* arguments="arg"
* @ojb.runtime-argument name="arg"
* field-ref="attr"
* documentation="Some documentation"
*/
public class SomeClass
{

/** @ojb.field */
private Integer attr;
...

}

will result in the class descriptor

<class-descriptor
class="SomeClass"
table="SomeClass"

>
<field-descriptor

name="attr"
column="attr"
jdbc-type="INTEGER"

>
</field-descriptor>
...
<update-procedure

name="UPDATE_PROC"
>

<runtime-argument
value="attr"

>
<documentation>Some documentation</documentation>

</runtime-argument>
</update-procedure>

</class-descriptor>

5.5.18.5. Fields and Bean properties

ojb.field

Fields or accessor methods (i.e. get/is and set methods) for properties are marked with the ojb.field
tag to denote a persistent field. When a method is marked, then the corresponding bean property is
used for naming purposes (e.g. "value" for a method getValue()). The XDoclet OJB module
ensures that a field is not present more than once, therefore it is safe to mark both fields and their
accessors. However, in that case these ojb.field tags are required to have the same attributes.

Due to a bug in XDoclet, it is currently not possible to process final or transient fields.

Marked fields are used for descriptor generation in the same type (if it has an ojb.class tag) and all
sub types with the ojb.class tag having the include-inherited attribute set to true.

OJB

230
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

It is also possible to use the ojb.field tag at the class level (i.e. in the JavaDoc comment of the
class). In this case, the tag is used to define an anonymous field, e.g. a "field" that has no
counterpart in the class but exists in the database. For anonymous fields, both the name and the
jdbc-type attributes are required, and the access attribute is ignored (it defaults to the value
anonymous). Beside these differences, anonymous fields are handled like other fields, e.g. they
result in field-descriptor entries in the repository descriptor, and in columns in the table schema,
and they are inherited and can be modified via the ojb.modify-inherited tag.

The XDoclet OJB module orders the fields in the repository descriptor and table schema according
to the following rules:

1. Fields (anonymous and non-anonymous) from base types/nested objects and from the current
file that have an id, sorted by the id value. If fields have the same id, then they are sorted
following the rules for fields without an id.

2. Fields (anonymous and non-anonymous) from base types/nested objects and from the current
file that have no id, in the order they appear starting with the farthest base type. Per class, the
anonymous fields come first, followed by the non-anonymous fields.

Attributes:

access : readonly | readwrite (default)
Specifies the accessibility of the field. readonly marks fields that are not to modified.
readwrite marks fields that may be read and written to. Anonymous fields do not
have to be marked (i.e. anonymous value) as the position of the ojb.field tag in the
class JavaDoc comment suffices.
attributes
Optionally contains attributes of the field as a comma-separated list of name-value
pairs.
autoincrement : none (default) | ojb | database
Defines whether this field gets its value automatically. If ojb is specified, then OJB fills
the value using a sequence manager. If the value is database, then the column is
also defined as autoIncrement in the torque schema (i.e. the database fills the
field), and in the repository descriptor, the field is marked as access='readonly' (if
it isn't an anonymous field). The database value is intended to be used with the
org.apache.ojb.broker.util.sequence.SequenceManagerNativeImpl
sequence manager. For details, see the Sequence Manager documentation.
The default value is none which means that the field is not automatically filled.
column
The name of the database column for this field. If not given, then the name of the
attribute is used.
column-documentation
Optionally contains documentation on the column in the database schema.
conversion
The name of the class to be used for conversion between the java type of the field
(e.g. java.lang.Boolean or java.util.Date) and the java type for the JDBC
type (e.g. java.lang.Integer or java.sql.Date). Conversion classes must
implement the
org.apache.ojb.broker.accesslayer.conversions.FieldConversion
interface. If no explicit JDBC type is defined and the java type has no defined
conversion (see below), then per default the
org.apache.ojb.broker.accesslayer.conversions.Object2ByteArrFieldConversion
conversion class is used.
Default conversion is also used for the following java types when no jdbc type is given
(default type is used instead), and no conversion is specified:

OJB

231
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Java type Default conversion

org.apache.ojb.broker.util.GUID org.apache.ojb.broker.accesslayer.conversions.GUID2StringFieldConversion

documentation
Optionally contains documentation on the field. If no column-documentation
attribute value is specified, then this value is also used for the documentation of the
column in the database schema.
id
An integer specifying the position in the repository descriptor and table schema. For
the placement rules see above.
jdbc-type : BIT | TINYINT | SMALLINT | INTEGER | BIGINT | DOUBLE | FLOAT |
REAL | NUMERIC | DECIMAL | CHAR | VARCHAR | LONGVARCHAR | DATE |
TIME | TIMESTAMP | BINARY | VARBINARY | LONGVARBINARY | CLOB | BLOB |
STRUCT | ARRAY | REF | BOOLEAN | DATALINK
The JDBC type for the column. The XDoclet OJB module will automatically determine
a jdbc type for the field if none is specified. This means that for anonymous fields, the
jdbc-type attribute is required. The automatic mapping performed by the XDoclet OJB
module from java type to jdbc type is as follows:

Java type JDBC type

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

char CHAR

float REAL

double FLOAT

java.lang.Boolean BIT

java.lang.Byte TINYINT

java.lang.Short SMALLINT

java.lang.Integer INTEGER

java.lang.Long BIGINT

java.lang.Character CHAR

java.lang.Float REAL

java.lang.Double FLOAT

java.lang.String VARCHAR

java.util.Date DATE

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Blob BLOB

OJB

232
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

java.sql.Clob CLOB

java.sql.Ref REF

java.sql.Struct STRUCT

java.math.BigDecimal DECIMAL

org.apache.ojb.broker.util.GUID VARCHAR

For any other type (including array types) the default mapping is to LONGVARBINARY using the
Object2ByteArrFieldConversion conversion (see conversion attribute above).

length
The length of the column which might be required by the jdbc type in some databases.
This is the reason that for some jdbc types, the XDoclet OJB module imposes default
lengths if no length is specified:

Jdbc type Default length

CHAR 1

VARCHAR 254

name
The name of the field. This attribute is required for anonymous fields, otherwise it is
ignored.
precision
scale
The precision and scale of the column if required by the jdbc type. They are usually
used in combination with the DECIMAL and NUMERIC types, and then specifiy the
number of digits before (precision) and after (scale) the comma (excluding the
plus/minus sign). Due to restrictions in some databases (e.g. MySQL), the XDoclet
OJB module imposes default values for some types if none are specified:

Jdbc type Default values for precision, scale

DECIMAL 20,0 (this corresponds to the range of long
where the longest number is
-9223372036854775808).

NUMERIC 20,0

For other types, if only the precision is specified, the scale defaults to 0. If only scale is specified,
precision defaults to 1.

Other attributes supported in the ojb.field tag that have the same meaning as in the repository
descriptor (and partly in the torque table schema) are:

• default-fetch
• indexed
• locking
• nullable
• primarykey
• sequence-name
• update-lock

Examples:

/**
* @ojb.field column="Auslaufartikel"
* jdbc-type="INTEGER"

OJB

233
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

*
conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
* column-documentation="Some documentation on the column"
* id="10"
* attributes="color=green,size=small"
*/
protected boolean isSelloutArticle;

will result in the following field descriptor:

<field-descriptor
name="isSelloutArticle"
column="Auslaufartikel"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
>

<attribute attribute-name="color" attribute-value="green"/>
<attribute attribute-name="size" attribute-value="small"/>

</field-descriptor>

The column descriptor looks like:

<table name="Artikel">
...
<column name="Auslaufartikel"

javaName="isSelloutArticle"
type="INTEGER"
description="Some documentation on the column"

/>
...

</table>

An anonymous field is declared like this:

/**
* @ojb.class table="TABLE_F"
* include-inherited="false"
* @ojb.field name="eID"
* column="E_ID"
* jdbc-type="INTEGER"
* @ojb.reference class-ref="org.apache.ojb.broker.E"
* auto-retrieve="true"
* auto-update="object"
* auto-delete="object"
* foreignkey="eID"
*/
public class F extends E implements Serializable
...

In this case an anonymous field is declared and also used as the foreignkey of an anonymous
reference. The corresponding class descriptor looks like:

<class-descriptor
class="org.apache.ojb.broker.F"
table="TABLE_F"

>
<field-descriptor

name="eID"
column="E_ID"
jdbc-type="INTEGER"
access="anonymous"

>
</field-descriptor>
...
<reference-descriptor

name="super"
class-ref="org.apache.ojb.broker.E"
auto-retrieve="true"
auto-update="object"
auto-delete="object"

OJB

234
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

>
<foreignkey field-ref="eID"/>

</reference-descriptor>
</class-descriptor>

Here the anonymous field and reference (which implicitly refers to super) are used to establish
the super-subtype relationship between E and F on the database level. For details on this see the
advanced technique section.

5.5.18.6. References

ojb.reference

Similar to fields, references (java fields or accessor methods) are marked with the ojb.reference
tag. We have a reference when the type of the java field is itself a persistent class (has an ojb.class
tag) and therefore the java field represents an association. This means that the referenced type of an
association (or the one specified by the class-ref attribute, see below) is required to be present in
the repository descriptor (it has the ojb.class tag).
Foreign keys of references are also declared in the torque table schema (see example below).
OJB currently requires that the referenced type has at least one field used to implement the
reference, usually some id of an integer type.
A reference can be stated in the JavaDoc comment of the class (anonymous reference), but in this
case it silently refer to super (see the example of ojb.field) which can be used to establish an
inheritance relationship. Note that anonymous references are not inherited (in contrast to
anonymous fields and normal references).

Attributes:

attributes
Optionally contains attributes of the reference as a comma-separated list of
name-value pairs.
class-ref
Allows to explicitly specify the referenced type. Normally the XDoclet OJB module
searches the type of the field and its sub types for the nearest type with the ojb.class
tag. If the type is specified explicitly, then this type is used instead. For anonymous
references, the class-ref has to specified as there is no field to determine the type
from.
Note that the type is required to have the ojb.class tag.
database-foreignkey : true (default) | false
Specifies whether a database foreignkey shall be generated for the reference. Note
that this attribute is only evaluated if the XDoclet module has determined that a
database foreignkey could be generated. You cannot force the generation with this
attribute, and the value of the attribute is not considered when checking if database
foreignkeys can be generated in case the referencing class has subtypes (in which
case database foreignkeys can only be generated if all subtypes map to the same
table or don't map to a table or the inheritance is mapped via a super-reference).
documentation
Optionally contains documentation on the reference.
foreignkey
Contains one or more foreign key fields separated by commas (required). The foreign
key fields are fields with the ojb.field tag in the same class as the reference, which
implement the association, i.e. contains the values of the primarykeys of the
referenced object.

Other supported attributes (see repository.dtd for their meaning) written directly to the repository

OJB

235
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

descriptor file:

• auto-delete
• auto-retrieve
• auto-update
• otm-dependent
• proxy
• proxy-prefetching-limit
• refresh

Example:

public abstract class AbstractArticle implements InterfaceArticle,
java.io.Serializable
{

protected InterfaceProductGroup productGroup;

/**
* @ojb.reference class-ref="org.apache.ojb.broker.ProductGroup"
* foreignkey="productGroupId"
* documentation="this is the reference to an articles

productgroup"
* attributes="color=red,size=tiny"
*/
protected InterfaceProductGroup productGroup;
/**
* @ojb.field
*/
protected int productGroupId;
...

}

Here the java type is InterfaceProductGroup although the repository reference uses the sub
type ProductGroup. The generated reference descriptor looks like:

<field-descriptor
name="productGroupId"
column="Kategorie_Nr"
jdbc-type="INTEGER"

>
</field-descriptor>
<reference-descriptor

name="productGroup"
class-ref="org.apache.ojb.broker.ProductGroup"

>
<documentation>this is the reference to an articles

productgroup</documentation>
<attribute attribute-name="color" attribute-value="red"/>
<attribute attribute-name="size" attribute-value="tiny"/>
<foreignkey field-ref="productGroupId"/>

</reference-descriptor>

In the torque table schema for the Article class, the foreign key for the product group is
explicitly declared:

<table name="Artikel">
...
<column name="Kategorie_Nr"

javaName="productGroupId"
type="INTEGER"

/>
...
<foreign-key foreignTable="Kategorien">

<reference local="Kategorie_Nr" foreign="Kategorie_Nr"/>
</foreign-key>

</table>

OJB

236
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

For an example of an anonymous reference, see the examples of ojb.field.

5.5.18.7. Collections

ojb.collection

Persistent collections which implement 1:n or m:n associations are denoted by the ojb.collection
tag. If the collection is an array, then the XDoclet OJB module can determine the element type
automatically (analogous to references). Otherwise the type must be specified using the
element-class-ref attribute. m:n associations are also supported (collections on both sides) via the
indirection-table, foreignkey and remote-foreignkey attributes.

Attributes:

attributes
Optionally contains attributes of the collection as a comma-separated list of
name-value pairs.
collection-class
Specifies the class that implements the collection. This attribute is usually only
required if the actual type of the collection object shall be different from the variable
type, e.g. if an interface like java.util.Collection is used as the declared type.
Collections that use java.util.Collection, java.util.List or
java.util.Set can be handled by OJB as-is so specifying collection-class is not
necessary. For the types that do not, the XDoclet OJB module checks whether the
declared collection field type implements the
org.apache.ojb.broker.ManageableCollection interface, and if so,
generates the collection-class attribute automatically. Otherwise, you have to specify
it.
database-foreignkey : true (default) | false
Specifies whether a database foreignkey shall be generated for the collection. Note
that this attribute is only evaluated if the XDoclet module has determined that a
database foreignkey could be generated. You cannot force the generation with this
attribute, and the value of the attribute is not considered when checking if database
foreignkeys can be generated in the case of subtypes of the element type or the type
having the collection (if m:n collection). For 1:n collections, database foreignkeys can
only be generated if all subtypes of the element type map to the same table or don't
map to a table or the inheritance is mapped via a super-reference. For m:n collections,
the same applies to the class owning the collection.
documentation
Optionally contains documentation on the collection.
element-class-ref
Allows to explicitly specify the type of the collection elements. Note that the type is
required to have the ojb.class tag.
foreignkey
Contains one or more foreign key field or columns separated by commas (required).
If the collection implements an 1:n association, then this attribute specifies the fields in
the element type that implement the association on the element side, i.e. they refer to
the primary keys of the class containing this collection. Note that these fields are
required to have the ojb.field tag.
When the collection is one part of an m:n association (e.g. with an indirection table),
this attribute specifies the columns in the indirection table that point to the type owning
this collection. This attribute is required of both collections. If the other type has no
explicit collection, use the remote-foreignkey attribute to specify the foreign keys for

OJB

237
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

the other type.
foreignkey-documentation
Optionally contains documentation for the columns in the indirection table in the
database schema that point to this class.
indirection-table
Gives the name of the indirection table used for m:n associations. The XDoclet OJB
module will create an appropriate torque table schema. The specified foreign keys are
taken from the foreignkey attribute in this class and the corresponding collection in the
element class, or if the element class has no collection, from the remote-foreignkey
attribute of this collection. The XDoclet OJB module associates the foreignkeys (in the
order they are stated in the foreignkey/ remote-foreignkey attributes) to the ordered
primarykey fields (for the ordering rules see the ojb.field tag), and use ther jdbc type
(and length setting if necessary) of these primarey keys for the columns.
indirection-table-documentation
Optionally contains documentation for the indirection table in the database schema.
indirection-table-primarykeys : true | false (default)
Specifies that the columns in the indirection table that point to this type, are primary
keys of the table. If the element type has no corresponding collection, then this setting
is also applied to the columns pointing to the element type.
orderby
Contains the fields used for sorting the collection and, optionally, the sorting order
(either ASC or DESC for ascending or descending, respectively) as a comma-separated
list of name-value pairs. For instance, field1=DESC,field2,field3=ASC specifies
three fields after which to sort, the first one in descending order and the other two in
ascending order (which is the default and can be omitted).
query-customizer
Specifies a query customizer for the collection. The type is required to implement
org.apache.ojb.broker.accesslayer.QueryCustomizer.
query-customizer-attributes
Specifies attributes for the query customizer. This attribute is ignored if no query
customizer is specified for this collection.
remote-foreignkey
Contains one or more foreign key columns (separated by commas) in the indirection
table pointing to the elements. Note that this field should only be used if the other type
does not have a collection itself which the XDoclet OJB module can use to retrieve the
foreign keys. This attribute is ignored if used with 1:n collections (no indirection table
specified).
remote-foreignkey-documentation
Optionally contains documentation for the columns in the indirection table in the
database schema that point to the element type. This value can be used when the
element type has no corresponding collection (i.e. remote-foreignkey is specified) or if
the corresponding collection does not specify the foreignkey-documentation
attribute.

The same attributes as for references are written directly to the repository descriptor file (see
repository.dtd) :

• auto-delete
• auto-retrieve
• auto-update
• otm-dependent
• proxy
• proxy-prefetching-limit

OJB

238
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• refresh

Examples:

/**
* @ojb.collection element-class-ref="org.apache.ojb.broker.Article"
* foreignkey="productGroupId"
* auto-retrieve="true"
* auto-update="link"
* auto-delete="object"
* orderby="productGroupId=DESC"
*
query-customizer="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl"
* query-customizer-attributes="attr1=value1"
*/
private ArticleCollection allArticlesInGroup;

The corresponding collection descriptor is:

<collection-descriptor
name="allArticlesInGroup"
element-class-ref="org.apache.ojb.broker.Article"
collection-class="org.apache.ojb.broker.ArticleCollection"
auto-retrieve="true"
auto-update="link"
auto-delete="object"

>
<orderby name="productGroupId" sort="DESC"/>
<inverse-foreignkey field-ref="productGroupId"/>
<query-customizer

class="org.apache.ojb.broker.accesslayer.QueryCustomizerDefaultImpl">
<attribute attribute-name="attr1" attribute-value="value1"/>

</query-customizer>
</collection-descriptor>

An m:n collection is defined using the indirection-table attribute:

/**
* @ojb.class generate-table-info="false"
*/
public abstract class BaseContentImpl implements Content
{

/**
* @ojb.collection element-class-ref="org.apache.ojb.broker.Qualifier"
* auto-retrieve="true"
* auto-update="link"
* auto-delete="none"
* indirection-table="CONTENT_QUALIFIER"
* foreignkey="CONTENT_ID"
* remote-foreignkey="QUALIFIER_ID"
*/
private List qualifiers;
...

}

/**
* @ojb.class table="NEWS"
*/
public class News extends BaseContentImpl
{

...
}

/**
* @ojb.class generate-table-info="false"
*/
public interface Qualifier extends Serializable
{

...

OJB

239
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

}

The BaseContentImpl has a m:n association to the Qualifier interface. for the
BaseContentImpl class, this association is implemented via the CONTENT_ID column
(specified by the foreignkey) in the indirection table CONTENT_QUALIFIER. Usually, both ends
of an m:n association have a collection implementing the association, and for both ends the
foreignkey specifies the indirection table column pointing to the class at this end. The
Qualifier interface however does not contain a collection which could be used to determine the
indirection table column that implements the association from its side. So, this column is also
specified in the BaseContentImpl class using the remote-foreignkey attribute. The class
descriptors are:

<class-descriptor
class="org.apache.ojb.broker.BaseContentImpl"

>
<extent-class class-ref="org.apache.ojb.broker.News"/>

</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.News"
table="NEWS"

>
...
<collection-descriptor

name="qualifiers"
element-class-ref="org.apache.ojb.broker.Qualifier"
indirection-table="CONTENT_QUALIFIER"
auto-retrieve="true"
auto-update="link"
auto-delete="none"

>
<fk-pointing-to-this-class column="CONTENT_ID"/>
<fk-pointing-to-element-class column="QUALIFIER_ID"/>

</collection-descriptor>
</class-descriptor>

<class-descriptor
class="org.apache.ojb.broker.Qualifier"

>
<extent-class class-ref="org.apache.ojb.broker.BaseQualifierImpl"/>

</class-descriptor>

As can be seen, the collection definition is inherited in the News class and the two indirection table
columns pointing to the ends of the m:n associaton are correctly specified.

5.5.18.8. Nested objects

ojb.nested

The features of a class can be included in another class by declaring a field of that type and using
this tag. The XDoclet OJB module will then add every tagged feature (i.e. fields/bean properties
with ojb.field, ojb.reference or ojb.collection tag, or even with ojb.nested) from the type of the
field to the current class descriptor. It is not required that the field's type has the ojb.class tag,
though.
All attributes of the features are copied (even primarykey) and modified if necessary (e.g. the
foreignkey of a reference is adjusted accordingly). For changing an attribute use the
ojb.modify-nested tag.

For an example of nesting, see the example of ojb.modify-nested.

ojb.modify-nested

OJB

240
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Similar to ojb.modify-inherited, this tag allows to modify attributes of a nested feature.

Attributes: All of ojb.field, ojb.reference, and ojb.collection with the exception of the attributes
related to indirection tables (indirection-table, remote-foreignkey,
indirection-table-primarykeys, indirection-table-documentation, foreignkey-documentation,
remote-foreignkey-documentation), and also:

ignore : true | false (default)
Specifies that this feature will not be nested.
name
The name of the field/reference/collection to modify (required). Use here the name of
the feature in the nested type.

Example:

The two classes:

public class NestedObject implements java.io.Serializable
{

/** @ojb.field primarykey="true" */
protected int id;

/** @ojb.field */
protected boolean hasValue;

/** @ojb.field */
protected int containerId;

/**
* @ojb.reference foreignkey="containerId"
*/
protected ContainerObject container;

...
}

/** @ojb.class */
public class ContainerObject implements java.io.Serializable
{

/**
* @ojb.field primarykey="true"
* autoincrement="ojb"
* id="1"
*/
protected int id;

/** @ojb.field id="2" */
protected String name;

/**
* @ojb.nested
* @ojb.modify-nested name="hasValue"
* jdbc-type="INTEGER"
*

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
* id="3"
* @ojb.modify-nested name="id"
* primarykey=""
*/
protected NestedObject nestedObj;

...
}

result in the one class descriptor

<class-descriptor

OJB

241
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

class="ContainerObject"
table="ContainerObject"

>
<field-descriptor

name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"

/>
<field-descriptor

name="name"
column="name"
jdbc-type="VARCHAR"
length="24"

/>
<field-descriptor

name="nestedObj::hasValue"
column="nestedObj_hasValue"
jdbc-type="INTEGER"

conversion="org.apache.ojb.broker.accesslayer.conversions.Boolean2IntFieldConversion"
/>
<field-descriptor

name="nestedObj::id"
column="nestedObj_id"
jdbc-type="INTEGER"

/>
<field-descriptor

name="nestedObj::containerId"
column="nestedObj_containerId"
jdbc-type="INTEGER"

/>
<reference-descriptor

name="nestedObj::container"
class-ref="ContainerObject"

>
<foreignkey field-ref="nestedObj::containerId"/>

</reference-descriptor>
...

</class-descriptor>

and the table descriptor

<table name="ContainerObject">
<column name="id"

javaName="id"
type="INTEGER"
primaryKey="true"
required="true"

/>
<column name="name"

javaName="name"
type="VARCHAR"
size="24"

/>
<column name="nestedObj_hasValue"

type="INTEGER"
/>
<column name="nestedObj_id"

type="INTEGER"
/>
<column name="nestedObj_containerId"

type="INTEGER"
/>
<foreign-key foreignTable=\"ContainerObject\">\n"+

<reference local=\"nestedObj_containerId\" foreign=\"id\"/>\n"+
</foreign-key>\n"+
...

</table>

Note how one ojb.modify-nested tag changes the type of the nested hasValue field, add a

OJB

242
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

conversion and specifies the position for it. The other modification tag removes the
primarykey status of the nested id field.

5.5.19. OJB Performance

5.5.19.1. Introduction

" There is no such thing as a free lunch."
(North American proverb)

Object/relational mapping tools hide the details of relational databases from the application
developer. The developer can concentrate on implementing business logic and is liberated from
caring about RDBMS related coding with JDBC and SQL.

O/R mapping tools allow to separate business logic from RDBMS access by forming an additional
software layer between business logic and RDBMS. Introducing new software layers always eats
up additional computing resources.
In short: the price for using O/R tools is performance. But on the other hand the biggest
performance consumption is the database access itself (database performance, network
performance, jdbc driver, driver settings, ...). So the percentage of O/R tool performance
consumption isn't big.

Software architects have to take in account this tradeoff between programming comfort and
performance to decide if it is appropiate to use an O/R tool for a specific software system.

This document describes the OJB Performance Test Suite which was created to lighten the decision
between native JDBC, OJB (the different OJB API's) and other O/R mapper.

5.5.19.2. The Performance Test Suite

The OJB Performance Test Suite allows to compare all supported OJB API's against native
single-threaded JDBC programming against your RDBMS of choice and run OJB API's in a virtual
multithreaded environment. Further on it is possible to compare OJB against any O/R mapping tool
using a simple performance application.

All tests are integrated in the OJB build script, you only need to perform the according ant target:

ant target

The following 'targets' exist:

• perf-test multi-threaded performance/stress test of PB/OTM/ODMG api against native
JDBC

• performance single-threaded test, OJB API implementations (PB, ODMG) against native
JDBC

By changing the JdbcConnectionDescriptor in the configuration files you can point to your specific
RDBMS. Please refer to this document for details.

Interpreting test results

Interpreting the result of these benchmarks carefully will help to decide whether using OJB is
viable for specific application scenarios or if native JDBC programming should be used for
performance reasons.

Take care of compareable configuration properties when run performance tests with different O/R
tools.

OJB

243
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

If the decision made to use an O/R mapping tool the comparison with other tools helps to find the
best one for the thought scenario. But performance shouldn't be the only reason to take a specific
O/R tool. There are many other points to consider:

- Usability of the supported API's
- Flexibility of the framework
- Scalability of the framework
- Community support
- The different licences of Open Source projects
- etcetera ...

How OJB compares to native JDBC programming - single-threaded

OJB is shipped with tests compares native JDBC with ODMG and PB-API implementation. This
part of the test suite is integrated into the OJB build mechanism.
A single client test you can invoke it by typing ant performance or ant performance.

If running OJB out of the box the tests will be performed against the Hypersonic SQL (in-memory
mode) shipped with OJB. A typical console output looks like follows:

performance:
[ojb] .[performance] INFO: Test for PB-api
[ojb] [performance] INFO:
[ojb] [performance] INFO: inserting 1500 Objects: 188 msec
[ojb] [performance] INFO: updating 1500 Objects: 265 msec
[ojb] [performance] INFO: querying 1500 Objects: 0 msec
[ojb] [performance] INFO: querying 1500 Objects: 0 msec
[ojb] [performance] INFO: fetching 1500 Objects: 16 msec
[ojb] [performance] INFO: deleting 1500 Objects: 63 msec

....
[ojb] Time: 5,672
[ojb] OK (1 test)

[jdbc] .[performance] INFO: Test for JDBC
[jdbc] [performance] INFO:
[jdbc] [performance] INFO: inserting 1500 Objects: 157 msec
[jdbc] [performance] INFO: updating 1500 Objects: 187 msec
[jdbc] [performance] INFO: querying 1500 Objects: 94 msec
[jdbc] [performance] INFO: querying 1500 Objects: 94 msec
[jdbc] [performance] INFO: fetching 1500 Objects: 16 msec
[jdbc] [performance] INFO: deleting 1500 Objects: 62 msec

....
[jdbc] Time: 8,75
[jdbc] OK (1 test)

[odmg] .[performance] INFO: Test for ODMG-api
[odmg] [performance] INFO:
[odmg] [performance] INFO: inserting 1500 Objects: 266 msec
[odmg] [performance] INFO: updating 1500 Objects: 359 msec
[odmg] [performance] INFO: querying 1500 Objects: 531 msec
[odmg] [performance] INFO: querying 1500 Objects: 531 msec
[odmg] [performance] INFO: fetching 1500 Objects: 47 msec
[odmg] [performance] INFO: deleting 1500 Objects: 125 msec

....
[odmg] Time: 13,75
[odmg] OK (1 test)

Some notes on these test results:

• You see a consistently better performance in the second and third run. this is caused by
warming up effects of JVM and OJB.

• PB and native JDBC need about the same time for the three runs although JDBC performance is
better for most operations. This is caused by the second run of the querying operations. In the
second run OJB can load all objects from the cache, thus the time is much shorter. Hence the

OJB

244
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

interesting result: if you have an application that has a lot of lookups, OJB can be faster than a
native JDBC application (without caching extensions)!

• ODMG is much slower than PB or JDBC. This is due to the complex object level transaction
management it is doing and the fact that ODMG doesn't have a specific method to lookup
objects by it's identity. The second reason is responsible for slow querying results, because in
test always a complex query is done for each object. It is possible to use the PB-api within
ODMG, then the query by identity will be as fast as in PB-api.

• You can see that for HSQLDB operations like insert and update are faster with JDBC than with
PB. This performance difference strongly depends on the used cache implementation and can
rise up to 50% when the cache operate on object copies. This ratio is so high, because
HSQLDB was running with in memory mode and is much faster than ordinary database servers.
If you work against Oracle or DB2 the percentual OJB overhead is going down a lot (10 - 15
%), as the database latency is much longer than the OJB overhead.

It's easy to change target database. Please refer to this document for details.
Also it's possible to change the number of test objects by editing the ant-target in build.xml.

Another test compares PB-api,ODMG-api and native JDBC you can find next section.

OJB performance in multi-threaded environments

This test was created to check the performance and stability of the supported API's (PB-api,
ODMG-api and future API's) in a single/multithreaded environment and to compare the different
api's against native JDBC calls.
Running this test out of the box (a virgin OJB version against hsql) shouldn't cause any problems.

Per default OJB use a in-memory hsql database, by changing the JdbcConnectionDescriptor in the
repository.xml file or modify the build.properties file when running OJB out of the box you can
point to your specific RDBMS. Please refer to this document for details.

To run the multithreaded performance test call

ant perf-test

A typical output of this test, using OJB against in-memory hsql looks like this

[ojb]
==
[ojb] OJB PERFORMANCE TEST SUMMARY, Thu Dec 29 23:42:20 CET 2005
[ojb]
--
[ojb] 12 concurrent threads, handle 500 objects per thread
[ojb] 500 INSERT operations per test instance
[ojb] FETCH collection of 500 objects per test instance
[ojb] Repeat FETCH collection of 500 objects per test instance
[ojb] 125 get by Identity calls per test instance
[ojb] 500 UPDATE operations per test instance
[ojb] 500 DELETE operations per test instance
[ojb] - performance mode - results per test instance (average)
[ojb]
==
[ojb] API Total Insert Fetch Fetch 2 by Id
Update Delete
[ojb] [%] [msec] [msec] [msec] [msec]
[msec] [msec]
[ojb]
--
[ojb] JDBC 100 475(100%) 26(100%) 23(100%) 209(836%)
477(100%) 197(100%)
[ojb] PB 203 1341(282%) 153(588%) 151(656%) 25(100%)
648(135%) 239(121%)
[ojb] ODMG 250 1469(309%) 104(400%) 105(456%) 527(2108%)

OJB

245
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

800(167%) 569(288%)
[ojb]
==
[ojb] PerfTest takes 70 [sec]

This test run shows the overhead caused by the O/R layer compared to handcoded sql statements.
Most overheads results in populate the two-level cache which is useless when using a in-memory
database.

Below you can see the same test against MaxDB running on the same machine

....
[ojb]
==
[ojb] API Total Insert Fetch Fetch 2 by Id
Update Delete
[ojb] [%] [msec] [msec] [msec] [msec]
[msec] [msec]
[ojb]
--
[ojb] JDBC 100 5855(100%) 55(100%) 38(100%) 1628(5087%)
5588(184%) 4084(136%)
[ojb] ODMG 117 12043(205%) 180(327%) 294(773%) 754(2356%)
3027(100%) 2988(100%)
[ojb] PB 123 11577(197%) 94(170%) 84(221%) 32(100%)
4240(140%) 3193(106%)
[ojb]
==
[ojb] PerfTest takes 440 [sec]

Note:
The performance test output is written to console and in a file called OJB-Performance-Result.txt.

To change the test properties go to target perf-test in the build.xml file and change the
program parameter.
The test needs five parameter:
- A comma separated list of the test implementation classes (no blanks!)
- The number of test loops
- The number of concurrent threads
- The number of managed objects per thread
- The desired test mode. false means run in performance mode, true means run in stress mode
(useful only for developer to check stability).

<target name="perf-test" depends="prepare-testdb"
description="Simple performance benchmark and stress test for PB- and

ODMG-api">
<java fork="yes" classname="org.apache.ojb.performance.PerfMain"

dir="${build.test}/ojb" taskname="ojb" failonerror="true" >
<classpath refid="runtime-classpath"/>
<!-- comma separated list of the PerfTest implementations -->
<arg value=
"org.apache.ojb.compare.OJBPerfTest$JdbcPerfTest,
org.apache.ojb.compare.OJBPerfTest$PBPerfTest,
org.apache.ojb.compare.OJBPerfTest$ODMGPerfTest"
/>
<!-- test loops, default was 6 -->
<arg value="6"/>
<!-- performed threads, default was 12 -->
<arg value="12"/>
<!-- number of managed objects per thread, default was 500 -->
<arg value="500"/>
<!-- if 'false' we use performance mode, 'true' we do run in stress mode

-->
<arg value="false"/>

OJB

246
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

<!-- if 'true' all log messages will be print -->
<arg value="true"/>
<jvmarg value="-Xms128m"/>
<jvmarg value="-Xmx256m"/>

</java>
<!-- do some cleanup -->
<ant target="copy-testdb"/>

</target>

5.5.19.3. How OJB compares to other O/R mapping tools?

Many user ask this question and there is more than one answer. But OJB was shipped with a simple
performance application (independend from OJB) which allows a rudimentarily comparision of
OJB with other (java-based) O/R mapping tools.
All involved classes can be found in dirctory [db-ojb]/src/test in package
org.apache.ojb.performance.

Call ant perf-test-jar to build the jar file contain all necessary classes to set up a test with
an arbitrary O/R mapper. After the build, the db-ojb-XXX-performance.jar can be found
in [db-ojb]/dist directory.

Steps to set up the test for other O/R frameworks:

• Implement a class derived from PerfTest
• If persistent objects (used within your mapping tool) must be derived from a specific base class

or must be implement a specific interface write your own persistent object class by
implementing PerfArticle interface and override method #newPerfArticle() in
your PerfTest implementation class.
Otherwise a default implementation of interface PerfArticle was used.
The default implementation class is
org.apache.ojb.performance.PerfArticleImpl.

That's it!

You can find a example implementation called org.apache.ojb.compare.OJBPerfTest
in the test-sources directory under [db-ojb]/src/test (when using source-distribution).

This implementation class is used to compare the performance of the PB-API, ODMG-API,
OTM-api and native JDBC (to bunch all API's, for each API a static inner implementation class of
PerfTest was used). See more about multi-threaded performance.

Run the test
You have two possibilities to run the test:
a) Integration in the OJB build script
Add the full qualified class name of your PerfTest implementation class to the perf-test target
of the OJB build.xml file, add all necessary jar files to [db-ojb]/lib. The working
directory of the test is [db-ojb]/target/test/ojb.
b) Run PerfMain
It's possible to run the test using org.apache.ojb.performance.PerfMain.

java -classpath CLASSPATH org.apache.ojb.performance.PerfMain
[comma separated list of PerfTest implementation classes, no blanks!]
[number of test loops]
[number of threads]
[number of insert/fetch/delete loops per thread]
[optional boolean - run in stress mode if set true,
run in performance mode if set false, default false]
[optional boolean - if 'true' all log messages will be print, else only a test
summary, default 'true']

For example:

OJB

247
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

java -classpath CLASSPATH my.A_PerfTest,my.B_PerfTest 3 10 2000

This will use A_PerfTest and B_PerfTest and perform three loops each loop run 10 threads
and each thread operate on 2000 objects. The test run in normal mode and log all messages.

Take care of compareable configuration properties when run performance tests with different O/R
tools (caching, locking, sequence key generation, connection pooling, ...).

Note:
Please, don't start flame wars by posting performance results to mailing lists made with this simple test. This test was created for OJB
QA and to give a clue how good or bad OJB performs, NOT to start discussion like XY is 12% faster then XZ!!.

5.5.19.4. What are the best settings for maximal performance?

We don't know, that depends from the environment OJB runs (hardware, database, driver,
application server, ...). But there are some settings which affect the performance:

• The API you use, e.g. PB-api is much faster then the ODMG-api. See which API for more
information.

• The used cache implementation.

• ConnectionFactory implementation / Connection pooling. See connection pooling for more
information.

• The autocommit setting of used connections. For best performance it's recommended to use
autocommit 'false' setting in the jdbc-driver to avoid
Connection.setAutoCommit(...) calls by OJB.

• PersistentField class implementation.See OJB.properties section 'PersistentFieldClass'
to change the implementation.

• Used sequence manager implementation. See sequence manager for more information.

• Use of batch mode (when supported by the DB). See jdbc-connection-descriptor batch-mode
attribute for more information.

• PersistenceBroker pool size. See OJB.properties for more information.

• The JDBC driver settings (e.g. statement caching on/off).

To test the different settings use the tests of the performance test suite.

5.6. Howto's

5.6.1. Howto's Summary

Summary of all HOWTO documentation with pratical hands-on information, submitted both by
OJB users and developers.

• How to build large metadata mappings
• Using anonymous keys for cleaner objects
• Using native database sequences
• Using OJB in a clustered environment
• Using OJB with stored procedures
• Using Oracle LOB's
• Using Spring with OJB

5.6.2. HOWTO - Build O/R Mapping Files

OJB

248
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.6.2.1. How to build O/R mapping files

Writing the repository.xml file for only a few classes can easily be done manually with the text or
xml editor of your choice.

But keeping the repository in sync with the java codebase and the database gets more difficult if
several hundred classes and large developer teams are involved.

This page contains tips how to integrate mapping tools and code-generators into your build process.

5.6.2.2. classification of O/R related transformations

Let's start with a classification of the source transformation problems that developers have to face
in an O/R environment.

Typical development environments contain some or all of the following artefacts:

• A UML model containing at least class diagrams of the persistent classes. All modern UML
tools can export to the XMI standard format.

• Other tools, such as Torque, also use a model based approach but use different model file
formats (typically XML based)

• Java source code for the persistent classes. The Java source code can possibly be enhanced with
xdoclet tags.

• The OJB repository.xml file. This file contains all the class-descriptors for the persistent
classes.

• The database. This could be an online DB or a DDL script representing the database tables. The
database contains all tables used to store instances of the persistent classes.

The technique you will use depends a lot on the problem you have to solve, on the methodology
and the tool chain you have in use, which of transformations between those artefacts fit to your
development process.

1. Forward engineering from XMI: A UML model in XMI format with class diagrams of your
persistent classes exists and is used as the master source (model driven approach). Java code,
repository.xml and DDL for the database tables have to be generated from this model.

2. Forward engineering from Torque: A model of the persistent entity classes exists in form of
a Torque.XML file. Java code, repository.xml and DDL for the database tables have to be
generated from this model.

3. Forward engineering from the repository.xml: The OJB repository.xml file is used a model
format. Java code and DDL for the database tables have to be generated from this model.

4. Xdoclet transformation from Java code: Java code for the persistent classes exists and
contains special comment tags in the Xdoclet ojb-module format. Repository.xml and DDL for
the database tables have to be generated from the java files via Xdoclet transformation.

5. Reverse engineering from database: There is a database with existing tables or a DDL script.
Java code and repository.xml have to be generated from the database.

These transformations are depicted in the following graphics. The numbers close to the arrows
correspond to the numbers in the above enumeration. All related transformations have the same
colour.

mapping tools image

In the following sections we will have a closer look at each of these transformations an discuss
tools that provide support each approach.

5.6.2.3. Forward engineering from XMI

This approach is recommended if you start from scratch with a new project and have to deal with a

OJB

249
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

large number of persistent classes. This approach works best when there are no restrictions
regarding the database, like integration of legacy tables.

Forward engineering from XMI fits perfectly into a model driven architecture (MDA) software
development process.

Tool support

• AXGen
AXgen is a code generator using XMI as input and Velocity templates for transformation.
The power of AXgen is in its simplicity. You don't have to understand complicated structure of
your XMI file to write an XSLT stylsheet for transformation. AXgen uses nsuml to deal with
the xmi file, which gives access to the Metamodel in an objectoriented way.
Further AXgen makes use of Jakartas Velocity. Velocity is a very sophisticated Java-based
template engine. This means that inside your templates you can call Java methods. Feel free to
write templates that generate anything you want.
Our motive for AXgen is to generate Java Classes for use in a O/R Mapping tool that allows
transparent persistence for Java Objects against relational databases. Therefore AXgen comes
with a bundle of ready to use templates for generating ObJectRelationalBridge (OJB) specific
stuff like:
• Entity Classes
• XML Repository
• SQL script to build the DB scheme

• AndroMDA
AndroMDA is a code generator framework - it takes a Unified Modeling Language (UML)
model from a CASE-tool in XMI format and generates custom components. It comes with a set
of sample templates that generate classes attributed with XDoclet tags. One build step later, the
XDoclet tool generates full-blown components that can readily be deployed in the JBoss
application server (and the other servers that XDoclet can feed).

OJB

250
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

andromeda image
Currently AndroMDA provides no special support for OJB. But by tagging classes with tags of
the XDoclet OJB module it is possible to use it as a full forward engineering engine.

• Searching the Sourceforge project list for "XMI" returns a long list of projects dealing with
code generation. It may be a good idea to check if you find a tool that matches your
requirements.

5.6.2.4. Forward engineering from Torque

Torque
Torque is a persistence layer. Torque includes a generator to generate all the database resources
required by your application and includes a runtime environment to run the generated classes.

Torque was developed as part of the Turbine Framework. It is now decoupled and can be used by
itself. Starting with version 2.2 Turbine uses the decoupled Torque.

Torque uses a single XML database schema to generate the SQL for your target database and
Torque's Peer-based object relation model representing your XML database schema.

You can use devaki-nextobjects to create the model for your application.

OJB uses Torque's generator engine to setup the testbed database and feed it with initial data.

Besides the SQL generation facilities Torque also provides special support for OJB related
transformations. It provides the following two ant targets:

OJB

251
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• ojb-model
generates a simple object model for ojb

• ojb-repository
generates the repository for ojb

A complete list of all availableTorque targets can be found at the Torque Generator site.

5.6.2.5. Forward engineering from repository.xml

There is currently no tool available that directly supports this model. It is not difficult to implement
an XSLT stylesheet that transforms the OJB repository.xml directly into DDL Statements.

An even simpler approach could be to transform the repository.xml file into a Torque xml file.
DDL can then be generated by the Torque engine.
If you write such an XSLT file please tell us about it!

5.6.2.6. XDoclet transformation from Java code

XDoclet
XDoclet is a code generation engine. It enables Attribute-Oriented Programming for java. In short,
this means that you can add more significance to your code by adding meta data (attributes) to your
java sources. This is done in special JavaDoc tags.

OJB was shipped with its own xdoclet-module.

XDoclet will parse your source files and generate many artifacts such as XML descriptors and/or
source code from it. These files are generated from templates that use the information provided in
the source code and its JavaDoc tags.

XDoclet lets you apply Continuous Integration in component-oriented development. Developers
should concentrate their editing work on only one Java source file per component.

XDoclet originated as a tool for creating EJBs, it has evolved into a general-purpose code
generation engine. XDoclet consists of a core and a constantly growing number of modules.

5.6.2.7. Reverse engineering from database

• Druid
Druid is a tool that allows users to create databases in a graphical way. The user can add or
import tables, fields, folders to group tables and can modify most of the database options that
follow the SQL-92 standard. In addition to sql options, the user can document each table and
each field with HTML information. It is distributed with modules for generating Java classes,
OJB metadata, and JDO metadata.

• Impart Eclipse Plugin for OJB
The Impart Eclipse plugin is based on the OJB ReverseDB Tool and provides the same
functionality (and also some additional goodies). It ships as a plugin to the Eclipse IDE. It
provides a very convenient GUI that integrates smoothly into the Eclipse platform.

• RDBS2J
RDBS2J is a GUI based mapping tool from relational database scheme to persistent java classes
which use JDO as persistence mechanism. The mapping can be modified by the GUI.
The current version is designed to create code for OJB.
The ODMG and the JDO interface are supported. RDBS2J creates the *.jdo files and the
repository_user.xml, which are needed by OJB.

• The OJB ReverseDB tool
OJB ships with a simple reverse engineering tool that allows to connect to a RDBMS via JDBC
and to take the tables from the database catalog as input.

OJB

252
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

This tool provides a nice GUI to generate Java classes and the matching repository.xml file.
You can invoke the ReverseDB tool with the ANT target reverse-db.

Note:
The ReverseDB tool is not up to date - any help is welcome.

5.6.3. HOWTO - Use Anonymous Keys

5.6.3.1. Why Do We Need Anonymous Keys?

The core difference between referential integrity in Java and in an RDBMS lies in where the
specific referential information is maintained. Java, and most modern OO languages, maintain
referential integrity information in the runtime environment. Actual object relationships are
maintained by the virtual machine so that the symbolic variable used in the application is
dereferenced it will in fact provide access to the object instance which it is expected to provide
access to. There is no need for a manual lookup or search across the heap for the correct object
instance. Entity reference integrity is maintained and handled for the programmer by the
environment.

Relational databases, on the other, purposefully place the referential integrity and lookups into the
problem domain - that is the problem they are designed to solve. An RDBMS presumes you can
design something more efficient for your specific circumstances than the JVM does (you trust its
ability to do object lookups in the heap is sufficiently efficient). As an RDBMS has a much larger
heap equivalent it is designed to not operate under that assumption (mostly). So, in an RDBMS the
concept of specific foreign keys exists to maintain the referential integrity.

In crossing the object to relational entity barrier there is a mismatch between the referential
integrity implementations. Java programmers do not want to have to maintain both object
referential integrity and key referential integrity analogous to

{
Foo child = new SomeOtherFooType();
Foo parent = new SomeFooType();
child.setParent(parent);
child.setParentId(parent.getId());

}

This is double the work required - you set up the object relationship, then set up the key
relationship. OJB knows about the relationship of the objects, thus it is only needed to do

{
Foo child = new Foo();
Foo parent = new Foo();
child.setParent(parent);

}

OJB can provide transparent key relationship maintenance behind the scenes for 1:1 relations via
anonymous access fields. As object relationships change, the relationships will be propogated into
the key values without the Java object ever being aware of a relational key being in use. This
means that the java object does not need to specify a FK field for the reference.

Without use of anonymous keys class Foo have to look like:

class Foo
{

Integer id;
Integer fkParentFoo;
Foo parent;

OJB

253
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

// optional getter/setter
....

{

When using anonymous keys the FK field will become obsolete:

class Foo
{

Integer id;
Foo parent;

// optional getter/setter
....

{

Note:
Under specific conditions it's also possible to use anonymous keys for other relations or primary keys. More info in advanced-technique
section.

5.6.3.2. How it works

To play for safety it is mandatory to understand how this feature is working. More information how
it works please see here.

5.6.3.3. Using Anonymous Keys

Now we can start using of the anonymous key feature. In this section the using is detailed described
on the basis of an example.

The Code

Take the following classes designed to model a particular problem domain. They may do it
reasonably well, or may not. Presume they model it perfectly well for the problem being solved.

public class Desk
{

private Integer id;
private Finish finish;
/** Contains Drawer instances */
private List drawers;
private int numberOfLegs;

public Desk()
{

this.drawers = new ArrayList();
}

....
// getter/setter
}

public class Drawer
{

private Integer id;
/** Contains Thing instances */
private List stuffInDrawer;

public Drawer()
{

this.stuffInDrawer = new ArrayList();
}

....
// getter/setter
}

OJB

254
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

public class Finish
{

private Integer id;
private String wood;
private String color;

....
// getter/setter
}

public class Thing
{

private Integer id;
private String name;

....
// getter/setter
}

A Desk will typically reference multiple drawers and one finish.

The Database

When we need to store our instances in a database we use a fairly typical table per class persistance
model.

CREATE TABLE finish
(

id INTEGER PRIMARY KEY,
wood VARCHAR(255),
color VARCHAR(255)

);

CREATE TABLE desk
(

id INTEGER PRIMARY KEY,
num_legs INTEGER,
finish_id INTEGER,
FOREIGN KEY (finish_id) REFERENCES finish(id)

);

CREATE TABLE drawer
(

id INTEGER PRIMARY KEY,
desk_id INTEGER,
FOREIGN KEY (desk_id) REFERENCES desk(id)

);

CREATE TABLE thing
(

id INTEGER PRIMARY KEY,
name VARCHAR(255),
drawer_id INTEGER,
FOREIGN KEY (drawer_id) REFERENCES drawer(id)

);

At the database level the possible relationships need to be explicitely defined by the foreign key
constraints. These model all the possible object relationships according to the domain model (until
generics enter the Java language for the collections API, this is technically untrue for the classes
used here).

The Repository Configuration

When we go to map the classes to the database, it is almost a one-to-one property to field mapping.
The exception here is the primary key on each entity. This is meaningless information in Java, so
we would like to keep it out of the object model. Anonymous access keys allow us to do that.

OJB

255
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

The repository.xml must know about the database columns used for referential integrity, but OJB
can maintain the foreign key relationships behind the scenes - freeing the developer to focus on
more accurate modeling of her objects to the problem, instead of the the persistance mechanism.
Doing this is also very simple - in the repository.xml file mark the field descriptors with a
access="anonymous" attribute.

<class-descriptor
class="Desk"
table="desk">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="numberOfLegs"
column="num_legs"
jdbc-type="INTEGER"
/>

<field-descriptor
name="finishId"
column="finish_id"
jdbc-type="INTEGER"
access="anonymous" />

<reference-descriptor
name="finish"
class-ref="Finish">

<foreignkey field-ref="finishId"/>
</reference-descriptor>

<collection-descriptor
name="drawers"
element-class-ref="Drawer"
>
<inverse-foreignkey field-ref="deskId"/>

</collection-descriptor>
</class-descriptor>

<class-descriptor
class="Finish"
table="finish">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="wood"
column="wood"
jdbc-type="VARCHAR"
size="255"
/>

<field-descriptor
name="color"
column="color"
jdbc-type="VARCHAR"
size="255"
/>

</class-descriptor>

<class-descriptor

OJB

256
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

class="Drawer"
table="drawer">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="deskId"
column="desk_id"
jdbc-type="INTEGER"
access="anonymous"
/>

<collection-descriptor
name="stuffInDrawer"
element-class-ref="Thing"
>
<inverse-foreignkey field-ref="drawerId"/>

</collection-descriptor>
</class-descriptor>

<class-descriptor
class="Thing"
table="thing">

<field-descriptor
name="id"
column="id"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
/>

<field-descriptor
name="name"
column="name"
jdbc-type="VARCHAR"
size="255"
/>

<field-descriptor
name="drawerId"
column="drawer_id"
jdbc-type="INTEGER"
access="anonymous"
/>

</class-descriptor>

Look first at the class descriptor for the Thing class. Notice the field-descriptor with the name
attribute "drawerId". This field is labeled as anonymous access. Because it is anonymous access
OJB will not attempt to assign the value here to a "drawerId" field or property on the Thing class.
Normally the name attribute is used as the Java name for the attribute, in this case it is not. The
name is still required because it is used as an indicated for references to this anonymous field.

In the field descriptor for Drawer, look at the collection descriptor with the name stuffInDrawer.
This collection descriptor references a foreign key with the field-ref="drawerId". This
reference is to the anonymous field descriptor in the Thing descriptor. The field-ref matches to the
name in the descriptor whether or not the name also maps to the Java attribute name. This dual use
of name can be confusing - be careful.

The same type mapping that is used for the collection descriptor in the Drawer descriptor is also
used for the 1:1 reference descriptor in the Desk descriptor.

The primary keys are populated into the objects as it is generally a good practice to not implement
primary keys as anonymous access fields. Primary keys may be anonymous-access but references
will get lost if the cache is cleared or the persistent object is serialized.

OJB

257
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.6.3.4. Benefits and Drawbacks

There are both benefits and drawbacks to using anonymous field references for maintaining
referential integrity between Java objects and database relations. The most immediate benefit is
avoiding semantic code duplication. The second major benefit is avoiding cluttering class
definitions with persistance mechanism artifacts. In a well layered application, the persistance
mechanism will not really need to be so obvious in the object model implementation. Anonymous
fields helpt o achieve this - thereby making persistence mechanisms more flexible. Moving to a
different one becomes easier.

5.6.4. HOWTO - Use DB Sequences

5.6.4.1. Introduction

It is easy to use OJB with with database generated sequences. Typically a table using database
generated sequences will autogenerate a unique id for a field as the default value for that field. This
can be particularly useful if multiple applications access the same database. Not every application
will be using OJB and find it convenient to pull unique values from a high/low table. Using a
database managed sequence can help to enforce unique id's across applications all adding to the
same database. All of that said, care needs to be taken as using database generated sequences
imposes some portability problems.

OJB includes a sequence manager implementation that is aware of database sequences and how to
use them. It is known to work against Oracle, SAP DB, and PostgreSQL. MySQL has its own
sequence manager implementation because it is special. This tutorial will build against
PostgreSQL, but working against Oracle or SAP will work the same way.

Additional information on sequence managers is available in the Sequence Manager
documentation.

5.6.4.2. The Sample Database

Before we can work with OJB against a database with a sequence, we need the database. We will
create a simple table that pulls its primary key from a sequence named 'UniqueIdentifier'.

CREATE TABLE thingie
(

name VARCHAR(50),
id INTEGER DEFAULT NEXTVAL('UniqueIdentifier')

)

We must also define the sequence from which it is drawing values:

CREATE SEQUENCE UniqueIdentifier;

So that we have the following table:

Table "public.thingie"
Column | Type | Modifiers
--------+-----------------------+---
name | character varying(50) |
id | integer | default nextval('UniqueIdentifier'::text)

If we manually insert some entries into this table they will have their id field set automagically.

INSERT INTO thingie (name) VALUES ('Fred');
INSERT INTO thingie (name) VALUES ('Wilma');
SELECT name, id FROM thingie;

OJB

258
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

name | id
-------+----
Fred | 0
Wilma | 1
(2 rows)

5.6.4.3. Using OJB

The Database Repository Descriptor

The next step is to configure OJB to access our thingie table. We need to configure the corrct
sequence manager in the repository-database.xml.

The default repository-database.xml uses the High/Low Sequence manager. We will
delete or comment out that entry, and replace it with the
org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl
manager. This manager will pull the next value from a named sequence and use it. The entry for
our sequence manager in the repository is:

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl"

/>

This needs to be declared within the JDBC Connection descriptor, so an entire
repository-database.xml might look like:

<jdbc-connection-descriptor
jcd-alias="default"
default-connection="true"
platform="PostgreSQL"
jdbc-level="2.0"
driver="org.postgresql.Driver"
protocol="jdbc"
subprotocol="postgresql"
dbalias="test"
username="tester"
password=""
eager-release="false"
batch-mode="false"
useAutoCommit="1"
ignoreAutoCommitExceptions="false"
>

<connection-pool
maxActive="21"
validationQuery=""/>

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl" />
</jdbc-connection-descriptor>

Defining a Thingie Class

For the sake of simplicity we will make a very basic Java Thingie:

public class Thingie
{

/** thingie(name) */
private String name;

/** thingie(id) */
private int id;

public String getName() { return this.name; }
public void setName(String name) { this.name = name; }

OJB

259
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

public int getId() { return this.id; }
}

We also need a class descriptor in repository-user.xml that appears as follows:

<class-descriptor
class="Thingie"
table="THINGIE"
>
<field-descriptor

name="id"
column="ID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="UniqueIdentifier"
/>

<field-descriptor
name="name"
column="NAME"
jdbc-type="VARCHAR"
/>

</class-descriptor>

Look over the id field descriptor carefully. The autoincrement and sequence-name
attributes are important for getting our desired behavior. These tell OJB to use the sequence
manager we defined to auto-increment the the value in id, and they also tell the sequence manager
which database sequence to use - in this case UniqueIdentifier

We could allow OJB to create an extent-aware sequence and use it, however as we are working
against a table that defaults to a specific named sequence, we want to make sure to pull values from
that same sequence. Information on allowing OJB to create its own sequences is available in the
Sequence Manager documentation.

Using Thingie

Just to demonstrate that this all works, here is a simple application that uses our Thingie.

import org.apache.ojb.broker.PersistenceBroker;
import org.apache.ojb.broker.PersistenceBrokerFactory;

public class ThingieDriver
{

public static void main(String [] args)
{

PersistenceBroker broker =
PersistenceBrokerFactory.defaultPersistenceBroker();

Thingie thing = new Thingie();
Thingie otherThing = new Thingie();

thing.setName("Mabob");
otherThing.setName("Majig");

broker.beginTransaction();
broker.store(thing);
broker.store(otherThing);
broker.commitTransaction();

System.out.println(thing.getName() + " : " + thing.getId());
System.out.println(otherThing.getName() + " : " + otherThing.getId());
broker.close();

}
}

When it is run, it will create two Thingie instances, store them in the database, and report on their

OJB

260
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

assigned id values.

java -cp [...] ThingieDriver

Mabob : 2
Majig : 3

5.6.5. HOWTO - Work with LOB Data Types

5.6.5.1. Using Oracle LOB Data Types with OJB

Introduction

In a lot of applications there is a need to store large text or binary objects into the database. The
definition of large usually means that the object's size is beyond the maximum length of a character
field. In Oracle this means the objects to be stored can grow to > 4 KB each.

Depending on the application you are developing your "large objects" may either be in the range of
some Kilobytes (for example when storing text-only E-Mails or regular XML documents), but they
may also extend to several Megabytes (thinking of any binary data such as larger graphics, PDFs,
videos, etc.).

In practice, the interface between your application and the database used for fetching and storing of
your "large objects" needs to be different depending on the expected size. While it is probably
perfectly acceptable to handle XML documents or E-Mails in memory as a string and always
completely retrieve or store them in one chunk this will hardly be a good idea for video files for
example.

This HOWTO will explain:

1. Why you would want to store large objects in the database
2. Oracle LARGE versus LOB data types
3. LOB handling in OJB using JDBC LOB types

This tutorial presumes you are familiar with the basics of OJB.

5.6.5.2. Backgrounder: Large objects in databases

This section is meant to fill in non-DBA people on some of the topics you need to understand when
discussing large objects in databases.

Your database: The most expensive file system?

Depending on background some people tend to store anything in a database while others are biased
against that. As databases use a file system for physical storage anyway, why would it make sense
to store pictures, videos and the like as a large object in a database rather that just create a set of
folders and store them right into the database.

When listening to Oracle's marketing campaingns one might get the impression that there is no
need to have plain filesystems anymore and that they all will vanish and be replaced by Oracle
database servers. If that happened this would definitely boast Oracle's revenues, but at the same
time make IT cost in companies explode.

But there are applications where it in fact makes sense to have the database take care of
unstructured data that you would otherwise just store in a file. The most common criteria for
storing non-relational data in the database instead of storing it directly into the file system is
whenever there is a strong link between this non-relatinal and some relational data.

OJB

261
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Typical examples for that would be:

1. Pictures or videos of houses in a real estate agent's offer database
2. E-Mails related to a customer's order

If you are not storing these objects into the database you would need to create a link between the
relational and the non-relational data by saving filenames in the database. This means that you
application is responsible for managing this weak link in any respect. In order to make sure your
application will be robust you need to make sure in your own code that

1. When creating a new record you create a valid and unique filename for storing the object.
2. When deleting a record you delete the corresponding file as well
3. When accessing the file referred to in the record you double-check the file is there and no

locked

(There might be other, more subtle implications.)

All this is done for you by the database in case you choose to store your objects there. In addition to
that, when discussing text data, a database might come with an option to automatically index the
stored text documents for easy retrievel. This would allow you to perform an SQL seach such as
"give me all customers that ever referred to the project foo in an e-mail". (In Oracle you need to
install the InterMedia option, aka Oracle Text in order to get this extra functionality. Several
vendors have also worked on technologies that allowed to seach rich content such as PDFs files,
pictures or even sound or video stored in a database from SQL.)

Oracle LARGE versus LOB datatypes

Some people are worried about the efficiency of storing large objects in databases and the
implications on performance. They are not necessarily entirely wrong in fearing that storing large
objects in databases might be problematic the best or might require a lot of tweaks to parameters in
order to be able to handle the large objects. It all depends on how a database implements storing
large objects.

Oracle comes with two completely different mechanisms for that:

1. LARGE objects
2. LOB objects

When comparing the LARGE datatypes such as (*fixme*) to the LOB datatypes such as CLOB,
BLOB, NCLOB (*fixme*) they don't read that different at first. But there is a huge difference in
how they are handled both internally inside the database as well when storing and retrieving from
the database client.

LARGE fields are embedded directly into the table row. This has some consequences you should
be aware of:

1. If your record is made up of 5 VARCHAR fields with a maximum length of 40 bytes each and
one LONGVARCHAR and you store 10 MB into the LONGVARCHAR column, your
database row will extent to 10.000.200 bytes or roughly 10 MB.

2. The database always reads or writes the entire row. So if you do a SELECT on the VARCHAR
fields in order to display their content in a user interface as a basis for the user to decide if he or
she will need the content of the LONGVARCHAR at all the database will already have fetched
all the 10 MB. If you SELECT and display 25 records each with a 10 MB object in it this will
mean about 250 MB of I/O.

3. When storing or fetching such a row you need to make sure your fetch buffer is sized
appropriately.

In practice this cannot be efficient. It might work as long as you stay in the KB range, but you will
most likely run into trouble as soon as it gets into the MBs per record. Additionally, there are more
limitations to the concept of LONG datatypes such as limiting the number of them you can have in

OJB

262
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

one row and how you can index them. This is probably why Oracle decided to deprecate LONG
datatypes in favor of LOB columns.

A lot of non-Oracle-DBA people believe that LOB means "large OBject" because some other
vendors have used the term BLOB for "Binary Large OBject" in their products. This is not only
wrong but - even worse - misleading, because people are asking: "What's the difference between
large and long?" (Bear with all non native English speakers here, please!)

Instead, LOB stands for Locator OBject which exactly describes what is is. It is a pointer to the
place where the actual data itself is stored. This locator will need only occupy some bytes in the
row thus not harming row size at all. So all the issues discussed above vanish immediatelly. For the
sake of simplicity think of a LOB as a pointer to a file on the databases internal file system that
stores the actual content of that field. (Oracle might use plain files or different mechanisms in their
implementation, we don't have to care.)

But as there is always a trade-off while LOBs are exstremely handy inside a row, they are more
complex to store and retrieve. As opposed to all other column types their actual content stays where
it is even if you transfer the row from the database to the client. All that goes over the wire in that
case will be a token representing the actual LOB column content.

In order to read the content or to write LOB content it needs to open a separate stream connection
over the network that can be read from or written to similar to a file on a network file system.
JDBC (starting at version *fixme*) comes with special objects such as java.sql.Blob and
java.sql.Clob to access the content of LOBs that do not represent character arrays or strings but
streams!

5.6.5.3. Large Objects in OJB

After having skipped the above Backgrounder (in case you do Oracle administration for a living) of
having read and understood it (hopefully applies to the rest of us) now that you've most likely
decided to go for LOBs and forget about LONGs how is this handled with OJB?

Strategy 1: Using streams for LOB I/O

########## to be written #########

Strategy 2: Embedding OJB content in Java objects

########## to be written #########

Querying CLOB content

########## to be written #########

5.6.6. HOWTO - Use OJB in clustered environments

5.6.6.1. How to use OJB in clustered environments

Object/Relational Bridge will work fine in environments that require robustness features such as
load-balancing, failover, and clustering. However, there are some important steps that you need to
take in order for your data to be secure, and to prevent isolation failures. These steps are outlined
below.

I have tested this in a number of environments, and with Servlet engines and J2EE environments. If
you run into problems, please post questions to the OJB users mail list.

OJB

263
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

This outline for clustering is based on an email from the OJB Users Mail List: This is that mail.

5.6.6.2. Three steps to clustering your OJB application

A lot of people keep asking for robust ways to run their OJB engines in multi-VM or clustered
environments. This email covers how to do that safely and securely using Open Symphony's
OSCache caching product.

OSCache is a high-performance, robust caching product that supports clustering. I've been using it
for a while in production and it is excellent.

Back to the Topic: There are three main things that you should do in order to make your OJB
application ready for using a cache in a multi-VM or distributed environment.

First: Take care of the sequence manager

that you define within jdbc-connection-descriptor element in your repository.xml file. If none was
set OJB use per default the SequenceManagerHighLowImpl sequence manager
implementation.

Note:
As of Release Candidate 5 (rc5), you can use SequenceManagerHighLowImpl in distributed (non-managed) environments. The
SequenceManagerHighLowImpl now supports its own optimistic locking that makes the implementation cluster aware by versioning an
entry in the OJB_HL_SEQ table.

However, the SequenceManagerHighLowImpl has not been heavily tested in clustered
environments, so if you want absolute security use an sequence manager implementation which
delegates key generation to database.

If your database supports database based sequence key generation (like PostgreSQL, Oracle, ...) it's
recommended to use SequenceManagerNextValImpl (supports database based sequence
keys). Using this sequence manager will prevent conflicts in multi-vm or clustered environments.
More about sequence manager here.

Handling sequence names

If you are using SequenceManagerNextValImpl you have two possibilities:

• Do it by your own:
• Create a sequence object in your database.

• An Oracle sequence lookslike: "create sequence ackSequence increment by 1 start with
1;"

• A Postgres sequence looks like: "CREATE SEQUENCE ackSequence START 1";

• For other databases you're on your own.
• To tell OJB to use that sequence for your table add in your repository.xml the sequence

name to the field-descriptor for your table's primary key field:

<field-descriptor
name="ackID"
column="ACKID"
jdbc-type="INTEGER"
primarykey="true"
autoincrement="true"
sequence-name="ackSequence"
/>
• Let OJB do that job for you:

The SequenceManagerNextValImpl implementation create the sequence in database

OJB

264
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

automatic if none was found. If you don't want to declare a sequence-name attribute in your
field-descriptor, you can enable an automatic sequence name building by setting a specific
custom-attribute , then SequenceManagerNextValImpl build an internal sequence name
if none was found.

<sequence-manager
className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl">

<attribute attribute-name="autoNaming" attribute-value="true"/>
</sequence-manager>

More about sequence manager here.

Second: Enable optimistic locking

You need to secure the data at the database. Thomas Mahler (lead OJB developer and considerable
ORM guru) recommended in one email that you use the Optimistic Locking feature that is provided
by OJB when using the PB API in a clustered environment. Sounds good to me. To do this you
need to do three small steps:

Note:
When using one of the top-level API in most cases Pessimistic (Object) Locking is supported. In that case it is recommended to use a
distributed lock management instead of optimistic locking. More information about ODMG API and Locking here.

• Add a database column to your table that is either an INTEGER or a TIMESTAMP
• Add the field to your java class, and getter/setter methods (depends on the used PersistentField

implementation):

private Integer ackOptLock;

public Integer getAckOptLock()
{
return ackOptLock;
}

public void setAckOptLock(Integer ackOptLock)
{
this.ackOptLock = ackOptLock;
}
• Add the column to your table in your repository:

<field-descriptor
name="ackOptLock"
column="ACKOPTLOCK"
jdbc-type="INTEGER"
locking="true"/>

Now OJB will handle the locking for you. No explicit transactional code necessary!

Do The Cache

The detailed steps to setup the OSCache can be found in caching document

You're ready to go! Now just create two instances of your application and see how they
communicate at the cache level. Very cool.

5.6.6.3. Notes

• For J2EE/Servlet users: I have tested this on a number of different application servers. If you're
having problems with your engine, post an email to the OJB Users mail list.

• OSCache also supports JMS for clustering here, which I haven't covered. If you either don't
have access to a multicast network, or just plain like JMS, please refer to the OSCache

OJB

265
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

documentation for help with that, see OSCache Clustering with JMS).
• I have also tested this with Tangosol Coherence. Please refer to this Blog entry for that setup:

Coherence Setup
• OJB also has ships with JCS. Feel free to try that one out on your own.

5.6.7. HOWTO - Stored Procedure Support

5.6.7.1. Introduction

OJB supports the use of stored procedures to handle the basic DML operations (INSERT,
UPDATE, and DELETE). This document will describe the entries that you'll need to add to your
repository in order to get OJB to utilize stored procedures instead of 'traditional' INSERT,
UPDATE or DELETE statements.

Please note that there will be references to 'stored procedures' throughout this document. However,
this is just a simplification for the purposes of this document. Any place you see a reference to
'stored procedure', you can assume that either a stored procedure or function can be used.

Information presented in this document includes the following:

• Basic repository entries
• Common attributes for all procedure descriptors
• An overview of the insert procedure, update procedure and delete procedure descriptors.
• Information about the argument descriptors that are supported for all procedure
• A simple example and a more complex example

5.6.7.2. Repository entries

For any persistable class (i.e. "com.myproject.Customer") where you want to utilize stored
procedures to handle persistence operations instead of traditional DML statements (i.e. INSERT,
UPDATE or DELETE), you will need to include one or more of the following descriptors within
the corresponding class-descriptor for the persistable class:

• insert-procedure - identifies the stored procedure that is to be used whenever a class
needs to be inserted into the database.

• update-procedure - identifies the stored procedure that is to be used whenever a class
needs to be updated in the database.

• delete-procedure - identifies the stored procedure that is to be used whenever a class
needs to be removed from the database.

All of these descriptors must be nested within the class-descriptor that they apply to. Here is an
example of a simple class-descriptor that includes each of the procedure descriptors listed above:

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id" primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<insert-procedure name="CUSTOMER_PKG.ADD">

<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG">

<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">

<runtime-argument field-ref="id"/>
</delete-procedure>
</class-descriptor>

OJB

266
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.6.7.3. Common attributes

All three procedure descriptors have the following attributes in common:

• name - This is the name of the stored procedure that is to be used to handle the specific
persistence operation.

• return-field-ref - This identifies the field in the class where the return value from the
stored procedure will be stored. If this attribute is blank or not specified, then OJB will assume
that the stored procedure does not return a value and will format the SQL command
accordingly.

The basic syntax that is used to call a procedure that has a return value looks something like this:

{?= call <procedure-name>[<arg1>,<arg2>, ...]}

The basic syntax that is used to call a procedure that does not include a return value looks
something like this:

{call <procedure-name>[<arg1>,<arg2>, ...]}

When OJB assembles the SQL to call a stored procedure, it will use the value of the 'name' attribute
in place of 'procedure-name' in these two examples.

In addition, if the procedure descriptor includes a value in the 'return-field-ref' attribute that is
'valid', then the syntax that OJB builds will include the placeholder for the result parameter.

The previous section referred to the idea of a 'valid' value in the 'return-field-ref' attribute. A value
is considered to be 'valid' if it meets the following criteria:

• The value is not blank
• There is a field-descriptor with a 'name' that matches the value in the 'return-field-ref' attribute.

If the 'return-field-ref' attribute is not 'valid', then the placeholder for the result parameter will not
be included in the SQL that OJB assembles.

5.6.7.4. insert-procedure

The insert-procedure descriptor identifies the stored procedure that should be used whenever a class
needs to be inserted into the database. In addition to the common attributes listed earlier, the
insert-procedure includes the following attribute:

• include-all-fields

This attribute provides an efficient mechanism for passing all attributes of a persistable class to a
stored procedure. If this attribute is set to true, then OJB will ignore any nested argument
descriptors. Instead, OJB will assume that the argument list for the stored procedure includes
arguments for all attributes of the persistable class and that those arguments appear in the same
order as the field-descriptors for the persistable class.

The default value for this attribute is 'false'.

Note:
If the field-descriptors in your repository do not 'align' exactly with the argument list for the stored procedure, or you want to maintain
explicit control over the values that are passed to the stored procedure, then either set the 'include-all-fields' attribute to 'false' or leave it
off the insert-procedure descriptor.

5.6.7.5. update-procedure

The update-procedure descriptor identifies the stored procedure that should be used whenever a

OJB

267
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

class needs to be updated in the database. In addition to the common attributes listed earlier, the
update-procedure includes the following attribute:

• include-all-fields

This attribute provides the same capabilities and has the same caveats as the include-all-fields
attribute on the insert-procedure descriptor.

5.6.7.6. delete-procedure

The delete-procedure descriptor identifies the stored procedure that should be used whenever a
class needs to be deleted from the database. In addition to the common attributes listed earlier, the
delete-procedure includes the following attribute:

• include-pk-only
This attribute provides an efficient mechanism for passing all of the attributes that make up the
primary key for a persistable class to the specified stored procedure. If this attribute is set to
true, then OJB will ignore any nested argument descriptors. Instead, OJB will assume that the
argument list for the stored procedure includes arguments for all attributes that make up the
primary key for the persistable class (i.e. those field-descriptors where the 'primary-key'
attribute is set to 'true'). OJB will also assume that those arguments appear in the same order as
the corresponding field-descriptors for the persistable class.
The default value for this attribute is 'false'.

Note:
If the field-descriptors in your repository that make up the primary key for a persistable class do not 'align' exactly with the argument list
for the stored procedure, or you want to maintain explicit control over the values that are passed to the stored procedure, then either set
the 'include-pk-only' attribute to 'false' or leave it off the delete-procedure descriptor.

5.6.7.7. Argument descriptors

Argument descriptors are the mechanism that you will use to tell OJB two things:

1. How many placeholders should be included in the argument list for a stored procedure?
2. What value should be passed for each of those arguments?

There are two types of argument descriptors that can be defined in the repository:

• runtime arguments used to set a stored procedure argument equal to a value that is only known
at runtime.

• constant arguments used to set a stored procedure argument equal to constant value.

You may notice that there is no argument descriptor specifically designed to pass a null value to the
procedure. This capability is provided by the runtime argument descriptor.

The argument descriptors are essentially the 'mappings' between stored procedure arguments and
their runtime values. Each procedure descriptor can include 0 or more argument descriptors in it's
definition.

After reading that last comment, you may wonder why OJB allows you to configure a procedure
descriptor with no argument descriptors since the primary focus of OJB is to handle object
persistence. How could OJB perform any sort persistence operation using a stored procedure that
did not involve the passage of at least one value to the stored procedure? To be honest, it is
extremely unlikely that you would ever set up a procedure descriptor with no argument descriptors.
However, since there is no minimum number of arguments required for a stored procedure, we did
not want to implement within OJB a requirement on the number of arguments that was more
restrictive than the limits imposed by most/all database systems.

OJB

268
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

runtime-argument descriptors

A runtime-argument descriptor is used to set a stored procedure argument equal to a value that is
only known at runtime.

Two attributes can be specified for each runtime-argument descriptor:

• field-ref
The 'field-ref' attribute identifies the specific field descriptor that will provide the argument's
value. If this attribute is not specified or does not resolve to a valid field-descriptor, then a null
value will be passed to the stored procedure.

• return
The 'return' attribute is used to determine if the argument is used by the stored procedure as an
'output' argument.
If this attribute is set to true, then the corresponding argument will be registered as an output
parameter. After execution of the stored procedure, the value of the argument will be 'harvested'
from the CallableStatement and stored in the attribute identified by the field-ref attribute.
If this attribute is not specified or set to false, then OJB assumes that the argument is simply an
'input' argument, and it will do nothing special to the argument.

constant-argument descriptors

A constant-argument descriptor is used to set a stored procedure argument equal to constant value.

There is one attribute that can be specified for the constant-argument descriptor:

• value
The 'value' attribute identifies the value for the argument.

5.6.7.8. A simple example

This section provides background information and a simple example that illustrates how OJB's
support for stored procedures can be utilized.

The background information covers the following topics:

• The basic requirements
• The database objects including the table that will be manipulated, the sequence that will be used

by the stored procedures to assign primary key falues, the insert and update triggers that
maintain the four 'audit' columns and the package that provides the stored procedures that will
handle the persistence operations.

Click here to skip the background information and go straight to the implementation.

The basic requirements

These are the requirements that must be satisfied by our example

1. All insert, update and delete operations are to be performed by stored procedures.

2. All primary key values are to be by the stored procedure that handles the insert operation. The
value that is assigned should be reflected in the object that 'triggered' the insert operation.

3. For auditing purposes, all tables will include the following set of columns:
• USER_CREATED - This will contain the id of the user who created the record
• DATE_CREATED - The date on which the record was created created
• USER_UPDATED - The id of the user who last modified the record
• USER_UPDATED - The date on which the record was last modified

OJB

269
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

In addition to the inclusion of these columns on each table, the following requirements related
to these columns had to be supported:
1. The values of the two date-related audit columns were to be maintained at the database level

via insert and update triggers.
• The insert trigger will set both DATE_CREATED and DATE_UPDATED to the current

system date.
• The update trigger will set DATE_UPDATED to the current system date. The update

trigger will also ensure that the original value of DATE_CREATED is never modified.

2. The values of the two user-related audit columns are to be maintained at the database level
via insert and update triggers.
• The insert and update triggers will ensure that USER_CREATED and USER_UPDATED

are appropriately populated.
• The update trigger will ensure that the original value of USER_CREATED is never

modified.

3. Any changes that are made by the insert or update triggers to any of the four 'audit' columns
had to be reflected in the object that caused the insert or update operation to occur.

The database objects

The database objects that are described in this section utilize Oracle specific syntax. However, you
should not infer from this that the stored procedure support provided by OJB can only be used to
access data that is stored in an Oracle database. In reality, stored procedures can be used for
persistence operations in any database that supports stored procedures.

• The table that will be manipulated,
• The sequence that will be used by the stored procedures to assign primary key values
• The insert and update triggers that maintain the four 'audit' columns
• The package that provides the stored procedures that will handle the persistence operations.

Click here to skip the information about the database objects and go straight to the implementation.

The CUSTOMER table

This example will deal exclusively with persistence operations related to the a table named
'CUSTOMER' that is built using the following DDL:

CREATE TABLE CUSTOMER
(ID NUMBER(18) NOT NULL
, NAME VARCHAR2(50) NOT NULL
, USER_CREATED VARCHAR2(30)
, DATE_CREATED DATE
, USER_UPDATED VARCHAR2(30)
, DATE_UPDATED DATE
, CONSTRAINT PK_CUSTOMER PRIMARY KEY (ID)
);

The sequence

This sequence will be used to assign unique values to CUSTOMER.ID.

CREATE SEQUENCE CUSTOMER_SEQ;

The insert and update triggers

These two triggers will implement all of the requirements listed above that are related to the four
audit columns:

CREATE OR REPLACE TRIGGER CUSTOMER_ITR

OJB

270
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

BEFORE INSERT ON CUSTOMER
FOR EACH ROW
BEGIN
--
-- Populate the audit dates
--
SELECT SYSDATE, SYSDATE
INTO :NEW.DATE_CREATED, :NEW.DATE_UPDATED
FROM DUAL;
--
-- Make sure the user created column is populated.
--
IF :NEW.USER_CREATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_CREATED
FROM DUAL;

END IF;
--
-- Make sure the user updated column is populated.
--
IF :NEW.USER_UPDATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_UPDATED
FROM DUAL;

END IF;
END;
/

CREATE OR REPLACE TRIGGER CUSTOMER_UTR
BEFORE UPDATE ON CUSTOMER
FOR EACH ROW
BEGIN
--
-- Populate the date updated
--
SELECT SYSDATE
INTO :NEW.DATE_UPDATED
FROM DUAL;
--
-- Make sure the user updated column is populated.
--
IF :NEW.USER_UPDATED IS NULL
THEN
SELECT SYS_CONTEXT('USERENV','TERMINAL')
INTO :NEW.USER_UPDATED
FROM DUAL;

END IF;
--
-- Make sure the date/user created are never changed
--
SELECT :OLD.DATE_CREATED, :OLD.USER_CREATED
INTO :NEW.DATE_CREATED, :NEW.USER_CREATED
FROM DUAL;
END;
/

The package

This Oracle package will handle all INSERT, UPDATE and DELETE operations involving the
CUSTOMER table.

CREATE OR REPLACE PACKAGE CUSTOMER_PKG AS
--
-- This procedure should be used to add a record to the CUSTOMER table.
--
PROCEDURE ADD (AID IN OUT CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE

OJB

271
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE);

--
-- This procedure should be used to change a record on the CUSTOMER table.
--
PROCEDURE CHANGE (AID IN CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE);

--
-- This procedure should be used to delete a record from the CUSTOMER table.
--
PROCEDURE DELETE (AID IN CUSTOMER.ID%TYPE);
END CUSTOMER_PKG;
/
CREATE OR REPLACE PACKAGE BODY CUSTOMER_PKG AS
--
-- This procedure should be used to add a record to the CUSTOMER table.
--
PROCEDURE ADD (AID IN OUT CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE)

IS
NEW_SEQUENCE_1 CUSTOMER.ID%TYPE;

BEGIN
SELECT CUSTOMER_SEQ.NEXTVAL
INTO NEW_SEQUENCE_1
FROM DUAL;

INSERT INTO CUSTOMER (ID, NAME, USER_CREATED, USER_UPDATED)
VALUES (NEW_SEQUENCE_1, ANAME, AUSER_CREATED, AUSER_UPDATED)
RETURNING ID, USER_CREATED, DATE_CREATED, USER_UPDATED, DATE_UPDATED

INTO AID, AUSER_CREATED, ADATE_CREATED, AUSER_UPDATED, ADATE_UPDATED;
END ADD;
--
-- This procedure should be used to change a record on the CUSTOMER table.
--
PROCEDURE CHANGE (AID IN CUSTOMER.ID%TYPE

, ANAME IN CUSTOMER.NAME%TYPE
, AUSER_CREATED IN OUT CUSTOMER.USER_CREATED%TYPE
, ADATE_CREATED IN OUT CUSTOMER.DATE_CREATED%TYPE
, AUSER_UPDATED IN OUT CUSTOMER.USER_UPDATED%TYPE
, ADATE_UPDATED IN OUT CUSTOMER.DATE_UPDATED%TYPE)

IS
BEGIN
UPDATE CUSTOMER

SET NAME = ANAME
, USER_CREATED = USER_CREATED
, USER_UPDATED = AUSER_UPDATED

WHERE ID = AID
RETURNING USER_CREATED, DATE_CREATED, USER_UPDATED, DATE_UPDATED

INTO AUSER_CREATED, ADATE_CREATED, AUSER_UPDATED, ADATE_UPDATED;
END CHANGE;
--
-- This procedure should be used to delete a record from the CUSTOMER table.
--
PROCEDURE DELETE (AID IN CUSTOMER.ID%TYPE)
IS
BEGIN
DELETE
FROM CUSTOMER
WHERE ID = AID;

END DELETE;
END CUSTOMER_PKG;
/

OJB

272
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

Please note the following about the structure of the CUSTOMER_PKG package:

• The AID argument that is passed to the the ADD procedure is defined as IN OUT. This allows
the procedure to return the newly assigned ID to the caller.

• In the ADD and CHANGE procedures, the arguments that correspond to the four 'audit' columns
are defined as IN OUT. This allows the procedure to return the current value of these columns
to the 'caller'.

The implementation

Getting OJB to utilize the stored procedures described earlier in this document is as simple as
adding a few descriptors to the repository. Here is a class-descriptor related to the CUSTOMER table
that includes all of the necessary descriptors.

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id"

primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<field-descriptor column="USER_CREATED" jdbc-type="VARCHAR"

name="userCreated"/>
<field-descriptor column="DATE_CREATED" jdbc-type="TIMESTAMP"

name="dateCreated"/>
<field-descriptor column="USER_UPDATED" jdbc-type="VARCHAR"

name="userUpdated"/>
<field-descriptor column="DATE_UPDATED" jdbc-type="TIMESTAMP"

name="dateUpdated"/>
<insert-procedure name="CUSTOMER_PKG.ADD">
<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated" return="true"/>

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated" return="true"/>

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>

</delete-procedure>
</class-descriptor>

Some things to note about this class-descriptor:

1. In the insert-procedure descriptor, the first runtime-argument descriptor correspnds to the
"AID" argument that is passed to the CUSTOMER_PKG.ADD routine. The "return" attribute
on this runtime-argument is set to "true". With this configuration, OJB will 'harvest' the value
that is returned by the CUSTOMER_PKG.ADD stored procedure and store the value in the "id"
attribute on the com.myproject.Customer class.

2. In both the insert-procedure and update-procedure descriptors, the runtime-argument
descriptors that correspond to the four 'audit' columns all have the "return" argument set to
"true". This allows any updates that are made by the procedure or the insert/update triggers to
be reflected in the "Customer" object that caused the insert/update operation to occur.

5.6.7.9. A complex example

This example builds upon the simple example that was presented earlier by introducing some
additional requirements beyond those that were specified in the simple example. Some of these

OJB

273
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

additional requirements may seem a little contrived. To be honest, they are. The only purpose of
these additional requirements is to create situations that illustrate how the additional capabilities
provided by OJB's support for stored procedures can be utilized.

The additional requirements for this example include the following:

• All procedures will include two additional arguments. These two new arguments will be added
to the end of the argument list for all existing procedures.
• ASOURCE_SYSTEM - identifies the system that initiated the persistence operation. This

will provide a higher level of audit tracking capability. In our example, this will always be
"SAMPLE".

• ACOST_CENTER - identifies the 'cost center' that should be charged for the persistence
operation. In our example, this argument will always be null.

• For all "ADD" and "CHG" stored procedures, the value that was assigned to the
"DATE_UPDATED" column will no longer be returned to the caller via an "IN OUT"
argument. Instead, it will be returend to the caller via the procedure's return value.

Based on these new requirements, the class-descriptor for the "com.myproject.Customer" class will
look like this. The specific changes are detailed below.

<class-descriptor class="com.myproject.Customer" table="CUSTOMER">
<field-descriptor column="ID" jdbc-type="DECIMAL" name="id"

primarykey="true"/>
<field-descriptor column="NAME" jdbc-type="VARCHAR" name="name"/>
<field-descriptor column="USER_CREATED" jdbc-type="VARCHAR"

name="userCreated"/>
<field-descriptor column="DATE_CREATED" jdbc-type="TIMESTAMP"

name="dateCreated"/>
<field-descriptor column="USER_UPDATED" jdbc-type="VARCHAR"

name="userUpdated"/>
<field-descriptor column="DATE_UPDATED" jdbc-type="TIMESTAMP"

name="dateUpdated"/>
<insert-procedure name="CUSTOMER_PKG.ADD"

return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtime-argument field-ref="id" return="true"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated"/> <!-- See note 2 -->
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</insert-procedure>
<update-procedure name="CUSTOMER_PKG.CHG"

return-field-ref="dateUpdated"> <!-- See note 1 -->
<runtime-argument field-ref="id"/>
<runtime-argument field-ref="name"/>
<runtime-argument field-ref="userCreated" return="true"/>
<runtime-argument field-ref="dateCreated" return="true"/>
<runtime-argument field-ref="userUpdated" return="true"/>
<runtime-argument field-ref="dateUpdated"/> <!-- See note 2 -->
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</update-procedure>
<delete-procedure name="CUSTOMER_PKG.CHG">
<runtime-argument field-ref="id"/>
<constant-argument value="SAMPLE"/> <!-- See note 3 -->
<runtime-argument/> <!-- See note 4 -->

</delete-procedure>
</class-descriptor>

Here are an explanation of each modification:

• Note 1: The value that is returned by the "ADD" and "CHG" stored procedures will now be
stored in the "dateUpdated" attribute on the "com.myproject.Customer" class.

OJB

274
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

• Note 2: Since the ADATE_UPDATED argument is no longer defined as an "IN OUT"
argument, we have removed the "return" attribute from the corresponding runtime-argument
descriptor.

• Note 3: This is the first of two new arguments that were added to the argument list of each
procedure. This argument represents the 'source system', the system that initiated the
persistence operation. In our example, we will always pass a value of 'SAMPLE'.

• Note 4: This is the second of two new arguments that were added to the argument list of each
procedure. This argument represents the 'cost center' that should be charged for the persistence
operation. In our example, we have no cost center, so we need to pass a null value. This is
accomplished by including a 'runtime-argument' descriptor that has no 'field-ref' specified.

5.6.8. HOWTO - Spring with OJB

5.6.8.1. Spring with OJB

This Howto refers to external articles describe the usage of Spring with OJB's PB-api.

Included are three articles that are in-depth How-to's for using Spring Framework's declarative
transaction engine with OJB's Persistence Broker implementation. For each article, I have included
a complete sample application with an embedded database that you can run.
They are simple to setup and require minimal configuration.

Spring, OJB, and Struts, getting started

The first article covers a basic configuration and setup for integrating Spring with OJB. It covers:

• Connecting to the database using Spring's local datasources (LocalOjbConfigurer)
• Register the appropriate transactionManager for use with OJB

(PersistenceBrokerTransactionManager)
• Creating beans and interfaces for use with the database
• Having Spring handle transactions for the beans in declarative fashion

The article link is: Spring, OJB, and Struts, getting started

Spring, OJB, and Struts. Version 2 with DAO.

The second article covers more advanced Spring usage, separating out the database implementation
code from your Data Access Objects. This is an important abstraction layer for controlling data
access ubiquitously.

The article link is: Spring, OJB, and Struts. Version 2 with DAO.

Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching

The Third article covers using OJB's datasourcing and caching strategies.
The first two articles require local datasources and Per Broker caching because of the way that the
OjbConfigurer works.
Now that we've completed basics of integrating OJB in Spring, this last entry shows how to use
JNDI datasourcing with OJB and Spring, which in turn allows users to get back to other OJB
caching strategies.

The article link is: Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching

5.7. Testing

OJB

275
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

5.7.1. Testing Summary

Summary of documentation about OJB Unit testing.

OJB has an extensive JUnit-based test suite with over 800 individual tests.

• The OJB test suite
Information about how to run the test suite against your RDBMS.

• How to write tests
Explains how to add your own tests to the OJB test suite.

• The OJB performance tests
Link to the reference guide about OJB performance comparison and the OJB performance
test-suite.

5.7.2. JUnit Test Suite

5.7.2.1. Introduction

Building an Object/Relational mapping tool with support for multiple API's is really error prone.
To create a solid and stable software, the most awful thing in programmers life has to be done -
Testing.

Quality assurance taken seriously! OJB and provide specific tests for each supported API.
Currently more than 800 test cases for regression tests exist. As testing framework JUnit was used.

Where can I find the test sources?

The test sources of the OJB Test-Suite can be find under
[db-ojb]/src/test/org/apache/ojb.
It's also possible to browse the test sources online using the apache cvs view. The test directory can
be found here: [db-ojb]/src/test/org/apache/ojb.

5.7.2.2. How to run the Test Suite

If the platform depended settings are done, the test suite can be started with the ant target:

ant junit

If compiling of the sources should be skipped use

ant junit-no-compile

If you did not manage to set up the target database with the ant prepare-testdb you can use

ant junit-no-compile-no-prepare

to run the testsuite without generation of the test database (and without compiling).

After running the regression tests you should see a console output similar to this:

junit-no-compile-no-prepare:
[junit] Running org.apache.ojb.broker.AllTests
[junit] Tests run: 620, Failures: 0, Errors: 0, Time elapsed: 81,75 sec
[junit] Running org.apache.ojb.odmg.AllTests
[junit] Tests run: 183, Failures: 0, Errors: 0, Time elapsed: 21,719 sec
[junit] Running org.apache.ojb.soda.AllTests
[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 7,641 sec
[junit] Running org.apache.ojb.otm.AllTests
[junit] Tests run: 79, Failures: 0, Errors: 0, Time elapsed: 28,266 sec

OJB

276
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

junit-no-compile-no-prepare-selected:
junit-no-compile:
junit:
BUILD SUCCESSFUL
Total time: 3 minutes 26 seconds

We aim at shipping that releases have no failures and errors in the regression tests! If the Junit tests
report errors or failures something does not work properly! There may be several reasons:

• You made a mistake in configuration (OJB was shipped with settings pass all tests). See
platform, OJB.properties, repository file, .

• Your database doesn't support specific features used by the tests
• Evil hex
• Bug in OJB

JUnit writes a log-file for each tested API. You can find the logs under
[db-ojb]/target/test. The log files named like tests-XXX.txt. The test logs show in
detail what's going wrong.

In such a case please check again if you followed all the above steps. If you still have problems you
might post a request to the OJB user mailinglist.

How to run the test-suite with a different database than OJB default DB

Basically all you have to do is:

• Get source version of OJB or fetch OJB from CVS (take care of branches, branch
OJB_1_0_RELEASE represents OJB 1.0.x).

• Adapt the profile file of your database under [db-ojb]/profile/yourDB.profile and
set user, password, ...

• In [db-ojb]/build.properties file comment the "profile=hsqldb" line and uncomment
the "#profile=yourDB" line.

• Drop jdo.jar and your database driver into [db-ojb]/lib directory.
• Drop junit.jar into your ...ant/lib folder.
• Make sure that your database allows at least 20 concurrent connections.

Then follow the steps described above.

5.7.2.3. What about known issues?

All major known issues are listed in the release-notes file.
The tests reproduce open bugs will be skipped on released OJB versions. It is possible to enable
these tests to see all failing test cases of the shipped version by changing a flag in
[db-ojb]/build.properties file:

###
If 'true', junit tests marked as known issue in the junit-test
source code (see OJBTestCase class for more detailed info) will be
skipped. Default value is 'true'. For development 'false' is recommended,
because this will show unsolved problems.
OJB.skip.issues=true

5.7.2.4. Donate own tests for OJB Test Suite

Details about donate own test to OJB you can find here.

5.7.3. Write Tests

5.7.3.1. Introduction

OJB

277
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

As described in the test suite document, OJB emphasizes on quality assurance and provide a huge
test suite. But of course it is impossible to cover all parts of OJB with unit tests and OJB will never
be perfect (although we would like to think it's s nearly perfect ;-)), thus if you are missing a
testcase or think you found an bug -- don't hesitate to write your own test and send it to the
developer list or, if you have an existing issue report, attach it in the issue tracker.

5.7.3.2. How to write a new Test

Before starting to write your own test case, please pay attention to these rules.

The Test Class

All test classes have to inherit from org.apache.ojb.junit.OJBTestCase and have to
provide a static main method to start the Junit test:

public class MyTest extends OJBTestCase
{

public static void main(String[] args)
{

String[] arr = {MyTest.class.getName()};
junit.textui.TestRunner.main(arr);

}

public void testMyFirstOne()
{

....
{

You will find some test classes for specific scenarios in the org.apache.ojb.junit package:

• org.apache.ojb.junit.PBTestCase - provides a
org.apache.ojb.broker.PersistenceBroker instance for tests.

• org.apache.ojb.junit.ODMGTestCase - provides org.odmg.Implementation
and org.odmg.Database instances for tests.

• org.apache.ojb.junit.JUnitExtensions - servers as a base class when writing
multi-threaded test classes.
For more info, see the JavaDoc of the class.

A test case for the PB-API may look like:

public class ReferenceRuntimeSettingTest extends PBTestCase
{

public static void main(String[] args)
{

String[] arr = {ReferenceRuntimeSettingTest.class.getName()};
junit.textui.TestRunner.main(arr);

}

public void testChangeReferenceSetting()
{

ClassDescriptor cld = broker.getClassDescriptor(MainObject.class);
// and so on
....

}

Note:
The PersistenceBroker cleanup is done by PBTestCase.

Persistent Objects used by Test

We recommend to introduce separate persistent objects for each TestCase class. In the test suite

OJB

278
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

two concepts are used:

• Include your persistent objects as public static classes in your test class.
• Separate your test class in an independent package and include the test case and all persistent

object classes in this new package.

Test Class Metadata

Currently all test specific object metadata (class-descriptor used for tests) are shared among several
xml files. The naming convention is repository_junit_XXX.xml. Thus metadata for new
tests should be included in one of the existing junit repository (sub) files or writen in an new
separate one and included in the main repository file.

<!DOCTYPE descriptor-repository PUBLIC
"-//Apache Software Foundation//DTD OJB Repository//EN"
"repository.dtd"

[
<!ENTITY database SYSTEM "repository_database.xml">
<!ENTITY internal SYSTEM "repository_internal.xml">
<!ENTITY user SYSTEM "repository_user.xml">

<!-- Start of JUnit included files -->
<!ENTITY junit SYSTEM "repository_junit.xml">
<!ENTITY junit_odmg SYSTEM "repository_junit_odmg.xml">
<!ENTITY junit_otm SYSTEM "repository_junit_otm.xml">
<!ENTITY junit_ref SYSTEM "repository_junit_reference.xml">
<!ENTITY junit_meta_seq SYSTEM "repository_junit_meta_seq.xml">
<!ENTITY junit_model SYSTEM "repository_junit_model.xml">
<!ENTITY junit_cloneable SYSTEM "repository_junit_cloneable.xml">

<!-- Your entity here: -->
<!ENTITY junit_myfirsttest SYSTEM "repository_junit_myfirsttest.xml">
]>
<descriptor-repository version="1.0" isolation-level="read-uncommitted"

proxy-prefetching-limit="50">

<!-- include all used database connections -->
&database;

<!-- include ojb internal mappings here -->
&internal;

<!-- include user defined mappings here -->
&user;

<!-- include mappings for JUnit tests -->
&junit;
&junit_odmg;
&junit_otm;
&junit_ref;
&junit_meta_seq;
&junit_model;
&junit_cloneable;

&junit_myfirsttest;

OJB

279
Copyright © 2002-2005 The Apache Software Foundation. All rights reserved.

	1 OJB
	1.1 Apache ObJectRelationalBridge - OJB
	1.1.1 Summary
	1.1.1.1 flexibility
	1.1.1.2 scalability
	1.1.1.3 functionality

	1.2 News
	1.2.1

	1.3 OJB - Features
	1.4 OJB - API Status
	1.5 OJB - References and Testimonials
	1.5.1 References and Testimonials
	1.5.1.1 projects using OJB
	1.5.1.2 user testimonials

	1.6 OJB - Mailing Lists
	1.6.1 Mailing Lists

	1.7 OJB - Mailing Lists Archives
	1.7.1 Mailing Lists Archives

	1.8 OJB - Links and further readings
	1.8.1 Summary
	1.8.2 OJB - Tutorials and Howto
	1.8.2.1 OJB and Spring

	1.8.3 Design
	1.8.4 Further readings on O/R mapping
	1.8.5 Patterns
	1.8.6 Books covering OJB

	2 Download
	3 Development
	3.1 Coding Standards

	4 Index
	4.1 Site Linkmap
	4.1.1 Table of Contents

	5 Documentation
	5.1 Documentation - Introduction
	5.2 Frequently Asked Questions
	5.2.1 Questions
	5.2.1.1 1. General
	5.2.1.1.1 1.1. Why OJB? Why do we need another O/R mapping tool?
	5.2.1.1.2 1.2. How is OJB related to ODMG and JDO?
	5.2.1.1.3 1.3. What are the OJB design principals?
	5.2.1.1.4 1.4. Where can I learn more about Object/Relational mapping in general?
	5.2.1.1.5 1.5. How OJB performance compares to native JDBC programming?
	5.2.1.1.6 1.6. How OJB performance compares to other O/R mapping tools?
	5.2.1.1.7 1.7. Is OJB ready for production environments?
	5.2.1.1.8 1.8. Does OJB supports caching?

	5.2.1.2 2. Getting Started
	5.2.1.2.1 2.1. Help! I'm having problems installing and using OJB!
	5.2.1.2.2 2.2. Help! I still have serious problems installing OJB!
	5.2.1.2.3 2.3. OJB does not start?
	5.2.1.2.4 2.4. Does OJB support my RDBMS?
	5.2.1.2.5 2.5. What are the OJB internal tables for?
	5.2.1.2.6 2.6. What does the exception Could not borrow connection from pool mean?
	5.2.1.2.7 2.7. Any tools help to generate the metadata files?

	5.2.1.3 3. OJB APIs
	5.2.1.3.1 3.1. What are the differences between the different OJB APIs? Which one should I use in my applications?
	5.2.1.3.2 3.2. I don't like OQL, can I use the PersistenceBroker Queries within ODMG?
	5.2.1.3.3 3.3. The OJB JDO implementation is not finished, how can I start using OJB?

	5.2.1.4 4. Howto
	5.2.1.4.1 4.1. How to use OJB with my RDBMS?
	5.2.1.4.2 4.2. How to use OJB in an web app?
	5.2.1.4.3 4.3. What are the best settings for maximal performance?
	5.2.1.4.4 4.4. How to page and sort?
	5.2.1.4.5 4.5. What about performance and memory usage if thousands of objects matching a query are returned as a Collection?
	5.2.1.4.6 4.6. When is it helpful to use Proxy Classes?
	5.2.1.4.7 4.7. How can I convert data between RDBMS and OJB?
	5.2.1.4.8 4.8. How can I trace and/or profile SQL statements executed by OJB?
	5.2.1.4.9 4.9. How does OJB manage foreign keys?
	5.2.1.4.10 4.10. How does OJB manage 'null' for primitive primary key?
	5.2.1.4.11 4.11. How to lookup object by primary key?
	5.2.1.4.12 4.12. Difference between getIteratorByQuery() and getCollectionByQuery()?
	5.2.1.4.13 4.13. How can Collections of primitive typed elements be mapped?
	5.2.1.4.14 4.14. How could class 'myClass' represent a collection of 'myClass' objects
	5.2.1.4.15 4.15. How to lookup PersistenceBroker instances?
	5.2.1.4.16 4.16. How to access ODMG?
	5.2.1.4.17 4.17. Needed to put user/password of database connection in repository file?
	5.2.1.4.18 4.18. Many different database user - How do they login?
	5.2.1.4.19 4.19. How do I use multiple databases within OJB?
	5.2.1.4.20 4.20. How does OJB handle connection pooling?
	5.2.1.4.21 4.21. Can I directly obtain a java.sql.Connection within OJB?
	5.2.1.4.22 4.22. Is it possible to perform my own sql-queries in OJB?
	5.2.1.4.23 4.23. When does OJB open/close a connection?
	5.2.1.4.24 4.24. Start OJB without a repository file?
	5.2.1.4.25 4.25. Connect to database at runtime?
	5.2.1.4.26 4.26. Hook into OJB - How to add Listener, callback interface?
	5.2.1.4.27 4.27. Add new persistent objects metadata (class-descriptor) at runtime?
	5.2.1.4.28 4.28. Global metadata changes at runtime?
	5.2.1.4.29 4.29. Per thread metadata changes at runtime?
	5.2.1.4.30 4.30. Is it possible to use OJB within EJB's?
	5.2.1.4.31 4.31. Can OJB handle ternary (or higher) associations?
	5.2.1.4.32 4.32. How to map a list of Strings
	5.2.1.4.33 4.33. How to set up Optimistic Locking
	5.2.1.4.34 4.34. How to use OJB in a cluster
	5.2.1.4.35 4.35. How to turn of caching?
	5.2.1.4.36 4.36. JDO - Why must my persisten class implement javax.jdo.spi.PersistenceCapable?

	5.3 Getting Started
	5.3.1 Acquiring ojb-blank
	5.3.2 Contents of ojb-blank
	5.3.2.1 Sample project

	5.3.3 The build files
	5.3.3.1 Configuration via build.properties
	5.3.3.2 Building via build.xml
	5.3.3.3 Sample project

	5.3.4 The runtime configuration files
	5.3.4.1 Configuring the OJB runtime
	5.3.4.2 Configuring the database connection
	5.3.4.3 Configuring the repository
	5.3.4.4 Sample project

	5.3.5 Learning More

	5.4 Tutorials
	5.4.1 Tutorial Summary
	5.4.2 Mapping Tutorial
	5.4.2.1 What is the Object-Relational Mapping Metadata?
	5.4.2.1.1 The Product Class
	5.4.2.1.2 The Database
	5.4.2.1.3 The Metadata
	5.4.2.1.4 Using the XDoclet module

	5.4.2.2 Advanced Topics
	5.4.2.2.1 Relations
	5.4.2.2.2 Inheritence
	5.4.2.2.3 Anonymous Keys
	5.4.2.2.4 Large Projects
	5.4.2.2.5 Custom JDBC Mapping

	5.4.3 Persistence Broker Tutorial
	5.4.3.1 The PersistenceBroker API
	5.4.3.1.1 Introduction
	5.4.3.1.2 A First Look - Persisting New Objects
	5.4.3.1.3 Querying Persistent Objects
	5.4.3.1.4 Updating Persistent Objects
	5.4.3.1.5 Deleting Persistent Objects
	5.4.3.1.6 Find object by primary key

	5.4.3.2 Exception Handling

	5.4.4 The ODMG API
	5.4.4.1 Introduction
	5.4.4.2 Initializing ODMG
	5.4.4.3 Persisting New Objects
	5.4.4.4 Querying Persistent Objects
	5.4.4.5 Updating Persistent Objects
	5.4.4.6 Deleting Persistent Objects

	5.4.5 JDO Tutorial
	5.4.5.1 Using the ObJectRelationalBridge JDO API
	5.4.5.1.1 Introduction
	5.4.5.1.2 Running the Tutorial Application

	5.4.5.2 Using the JDO API in the UseCase Implementations
	5.4.5.2.1 Obtaining the JDO PersistenceManager Object
	5.4.5.2.2 Retrieving collections
	5.4.5.2.3 Storing objects
	5.4.5.2.4 Updating Objects
	5.4.5.2.5 Deleting Objects

	5.4.5.3 Conclusion

	5.4.6 Object Transaction Manager Tutorial
	5.4.6.1 The OTM API
	5.4.6.1.1 Introduction
	5.4.6.1.2 Persisting New Objects
	5.4.6.1.3 Deleting Persistent Objects
	5.4.6.1.4 Querying for Objects
	5.4.6.1.5 More Sophisticated Transaction Handling

	5.4.6.2 Notes on the Object Transaction Manager
	5.4.6.2.1 Transactions

	5.5 Reference Guides
	5.5.1 Reference Guides Summary
	5.5.2 PB-api Guide
	5.5.2.1 Introduction
	5.5.2.2 How to access the PB-api?
	5.5.2.3 Notes on Using the PersistenceBroker API
	5.5.2.3.1 Exception Handling
	5.5.2.3.2 Management of PersistenceBroker instances
	5.5.2.3.3 Transactions

	5.5.2.4 Questions
	5.5.2.4.1 How to use multiple Databases
	5.5.2.4.2 Hook into OJB - PB-Listener and Instance Callbacks

	5.5.3 ODMG-api Guide
	5.5.3.1 Introduction
	5.5.3.2 Specific Metadata Settings
	5.5.3.3 How to access ODMG-api
	5.5.3.4 Configuration Properties
	5.5.3.5 OJB Extensions of ODMG
	5.5.3.5.1 The ImplementationExt Interface
	5.5.3.5.2 The TransactionExt Interface
	5.5.3.5.3 The EnhancedOQLQuery Interface
	5.5.3.5.4 Access the PB-api within ODMG

	5.5.3.6 Notes on Using the ODMG API
	5.5.3.6.1 Transactions
	5.5.3.6.2 Locks
	5.5.3.6.3 Persisting Non-Transactional Objects

	5.5.3.7 ODMG Named Objects
	5.5.3.7.1 Examples

	5.5.3.8 ODMG's DCollections
	5.5.3.9 Foreign Keys Constraints and ODMG-api
	5.5.3.10 Questions and Tips
	5.5.3.10.1 Disable OJB's object ordering, determine object order "by hand"
	5.5.3.10.2 Circular- and Bidirectional References
	5.5.3.10.3 I don't like OQL, can I use the PersistenceBroker Queries within ODMG
	5.5.3.10.4 How to use multiple Databases

	5.5.4 Platforms
	5.5.4.1 How to use OJB with a specific relational database
	5.5.4.2 Basic Concepts
	5.5.4.2.1 OJB internal tables
	5.5.4.2.2 Tables for the regression testbed
	5.5.4.2.3 Tables for the tutorial applications

	5.5.4.3 The setup process
	5.5.4.3.1 Selecting a platform profile
	5.5.4.3.2 editing the profile to point to your target db
	5.5.4.3.3 Executing the build script
	5.5.4.3.4 Verifying the installation

	5.5.5 OJB.properties Configuration File
	5.5.5.1 OJB Configuration
	5.5.5.2 OJB.properties File

	5.5.6 JDBC Types
	5.5.6.1 Mapping of JDBC Types to Java Types
	5.5.6.2 Type and Value Conversions - The FieldConversion Interface
	5.5.6.2.1 Introduction
	5.5.6.2.2 The problem
	5.5.6.2.3 The Solution

	5.5.7 Repository File
	5.5.7.1 Introduction - repository syntax
	5.5.7.2 descriptor-repository
	5.5.7.2.1 Elements
	5.5.7.2.2 Attributes

	5.5.7.3 jdbc-connection-descriptor
	5.5.7.3.1 Elements
	5.5.7.3.2 Attributes
	5.5.7.3.3 Custom attributes

	5.5.7.4 connection-pool
	5.5.7.4.1 Elements
	5.5.7.4.2 Attributes
	5.5.7.4.3 Custom attributes
	5.5.7.4.3.1 jdbc.*
	5.5.7.4.3.2 fetchSize
	5.5.7.4.3.3 dbcp.poolPreparedStatements
	5.5.7.4.3.4 dbcp.maxOpenPreparedStatements
	5.5.7.4.3.5 dbcp.accessToUnderlyingConnectionAllowed

	5.5.7.5 sequence-manager
	5.5.7.5.1 Elements
	5.5.7.5.2 Attributes
	5.5.7.5.3 Custom Attributes

	5.5.7.6 object-cache
	5.5.7.6.1 Elements
	5.5.7.6.2 Attributes
	5.5.7.6.3 Custom Attributes

	5.5.7.7 custom attribute
	5.5.7.8 class-descriptor
	5.5.7.8.1 Elements
	5.5.7.8.2 Attributes

	5.5.7.9 extent-class
	5.5.7.10 field-descriptor
	5.5.7.11 reference-descriptor
	5.5.7.12 foreignkey
	5.5.7.13 collection-descriptor
	5.5.7.14 order-by
	5.5.7.15 inverse-foreignkey
	5.5.7.16 fk-pointing-to-this-class
	5.5.7.17 fk-pointing-to-element-class
	5.5.7.18 query-customizer
	5.5.7.19 index-descriptor
	5.5.7.20 index-column
	5.5.7.21 Stored Procedure Support
	5.5.7.21.1 insert-procedure
	5.5.7.21.2 update-procedure
	5.5.7.21.3 delete-procedure
	5.5.7.21.4 runtime-argument
	5.5.7.21.5 constant-argument

	5.5.8 Basic O/R Mapping Technique
	5.5.8.1 Mapping 1:1 associations
	5.5.8.1.1 1:1 auto-xxx setting

	5.5.8.2 Mapping 1:n associations
	5.5.8.2.1 1:n auto-xxx setting

	5.5.8.3 Mapping m:n associations
	5.5.8.3.1 Manual decomposition into two 1:n associations
	5.5.8.3.2 Support for Non-Decomposed m:n Mappings
	5.5.8.3.3 m:n auto-xxx setting

	5.5.8.4 Setting Load, Update, and Delete Cascading
	5.5.8.4.1 auto-retrieve setting
	5.5.8.4.2 Link references

	5.5.8.5 Using Proxy Classes
	5.5.8.5.1 Using Dynamic Proxies
	5.5.8.5.2 Using a Single Proxy for a Whole Collection
	5.5.8.5.3 Using a Proxy for a Reference
	5.5.8.5.4 Customizing the proxy mechanism

	5.5.8.6 Type and Value Conversions

	5.5.9 Advanced O/R Mapping Technique
	5.5.9.1 Extents and Polymorphism
	5.5.9.1.1 Polymorphism
	5.5.9.1.2 Extents
	5.5.9.1.3 Performance Tip

	5.5.9.2 Mapping Inheritance Hierarchies
	5.5.9.2.1 Mapping Each Class of a Hierarchy to a Distinct Table (table per class)
	5.5.9.2.2 Mapping Class Hierarchy on the Same Table (table per hierarchy)
	5.5.9.2.2.1 Implement your own Discriminator Handling

	5.5.9.2.3 Mapping Each Subclass to a Distinct Table (table per subclass)
	5.5.9.2.3.1 Table Per Subclass via Foreign Key

	5.5.9.3 Using interfaces with OJB
	5.5.9.4 Change PersistentField Class
	5.5.9.5 How do anonymous keys work?
	5.5.9.6 Using Rowreader
	5.5.9.6.1 Rowreader Example

	5.5.9.7 Nested Objects
	5.5.9.8 Instance Callbacks
	5.5.9.9 Manageable Collection
	5.5.9.9.1 Types Allowed for Implementing 1:n and m:n Associations
	5.5.9.9.2 Which collection-class type should be used?

	5.5.9.10 Customizing collection queries
	5.5.9.11 Metadata runtime changes

	5.5.10 OJB Queries
	5.5.10.1 Introduction
	5.5.10.2 Query by Criteria
	5.5.10.2.1 Query Criteria
	5.5.10.2.1.1 in / not in
	5.5.10.2.1.2 and / or
	5.5.10.2.1.3 negating the criteria

	5.5.10.2.2 ordering and grouping
	5.5.10.2.3 subqueries
	5.5.10.2.4 joins
	5.5.10.2.5 user defined alias
	5.5.10.2.6 class hints
	5.5.10.2.7 prefetched relationships
	5.5.10.2.8 querying for objects
	5.5.10.2.9 Report Queries
	5.5.10.2.9.1 Limitations of Report Queries

	5.5.10.3 ODMG OQL
	5.5.10.4 JDO queries

	5.5.11 Metadata handling
	5.5.11.1 Introduction
	5.5.11.2 When does OJB read metadata
	5.5.11.3 Connection metadata
	5.5.11.3.1 Load and merge connection metadata

	5.5.11.4 Persistent object metadata
	5.5.11.4.1 Load and merge object metadata
	5.5.11.4.2 Global object metadata changes
	5.5.11.4.3 Per thread metadata changes
	5.5.11.4.4 Object metadata profiles
	5.5.11.4.5 Reference runtime changes on per query basis
	5.5.11.4.6 Pitfalls

	5.5.11.5 Questions
	5.5.11.5.1 Start OJB without a repository file?
	5.5.11.5.2 Connect to database at runtime?
	5.5.11.5.3 Add new persistent objects metadata (class-descriptor) at runtime?

	5.5.12 Deployment
	5.5.12.1 Introduction
	5.5.12.2 Things needed for deploying OJB
	5.5.12.2.1 1. The OJB binary jar archive
	5.5.12.2.2 2. Configuration data
	5.5.12.2.3 3. External dependencies that do not come with OJB
	5.5.12.2.4 4. Optional jar archives that come with OJB
	5.5.12.2.5 5. Don't forget the JDBC driver

	5.5.12.3 Deployment in standalone applications
	5.5.12.4 Deployment in servlet based applications
	5.5.12.5 Deployment in managed environment (e.g. EJB based)
	5.5.12.5.1 Configure OJB for managed environments considering as JBoss example
	5.5.12.5.1.1 1. Adapt OJB.properties file
	5.5.12.5.1.2 2. Declare datasource in the repository (repository_database) file and do additional configuration
	5.5.12.5.1.3 [2b. How to deploy ojb test hsqldb database to jboss]
	5.5.12.5.1.4 3. Include all OJB configuration files in classpath
	5.5.12.5.1.5 4. Enclose all libraries OJB depend on
	5.5.12.5.1.6 5. Take care of caching
	5.5.12.5.1.7 6. Take care of locking
	5.5.12.5.1.8 7. Put all together
	5.5.12.5.1.9 7b. Example: Deployable jar
	5.5.12.5.1.10 8. How to access OJB API?
	5.5.12.5.1.11 9. OJB logging within JBoss

	5.5.12.5.2 Example Session Beans
	5.5.12.5.2.1 Introduction
	5.5.12.5.2.2 Generate the sample session beans
	5.5.12.5.2.3 How to run test clients for PB / ODMG - api

	5.5.12.5.3 Packing an .ear file
	5.5.12.5.3.1 The Package Structure
	5.5.12.5.3.2 Make OJB API Resources available

	5.5.12.5.4 Make OJB accessible via JNDI
	5.5.12.5.4.1 JBoss
	5.5.12.5.4.2 Other Application Server

	5.5.12.5.5 Instructions for Weblogic

	5.5.13 Connection Handling
	5.5.13.1 Introduction
	5.5.13.2 ConnectionFactory
	5.5.13.2.1 ConnectionFactoryPooledImpl
	5.5.13.2.2 ConnectionFactoryNotPooledImpl
	5.5.13.2.3 ConnectionFactoryManagedImpl
	5.5.13.2.4 ConnectionFactoryDBCPImpl

	5.5.13.3 ConnectionManager
	5.5.13.4 Questions and Answers
	5.5.13.4.1 How does OJB handle connection pooling?
	5.5.13.4.2 Can I directly obtain a java.sql.Connection within OJB?
	5.5.13.4.3 When does OJB open/close a connection

	5.5.14 The Object Cache
	5.5.14.1 Introduction
	5.5.14.2 Why a cache and how it works?
	5.5.14.3 How to declare and change the used ObjectCache implementation
	5.5.14.3.1 Priority of Cache Level
	5.5.14.3.2 Exclude classes from being cached
	5.5.14.3.3 Exclude packages from being cached
	5.5.14.3.4 Turn off caching

	5.5.14.4 Shipped cache implementations:
	5.5.14.4.1 ObjectCacheDefaultImpl
	5.5.14.4.2 ObjectCacheTwoLevelImpl
	5.5.14.4.3 ObjectCachePerBrokerImpl
	5.5.14.4.4 ObjectCacheEmptyImpl
	5.5.14.4.5 ObjectCacheJCSImpl
	5.5.14.4.6 ObjectCacheOSCacheImpl
	5.5.14.4.7 More implementations ...

	5.5.14.5 Distributed ObjectCache?
	5.5.14.6 Implement your own cache
	5.5.14.7 Future prospects

	5.5.15 Sequence Manager
	5.5.15.1 The OJB Sequence Manager
	5.5.15.1.1 Automatical assignment of unique values
	5.5.15.1.2 Force computation of unique values
	5.5.15.1.3 How to change the sequence manager?
	5.5.15.1.4 SequenceManager implementations
	5.5.15.1.4.1 High/Low sequence manager
	5.5.15.1.4.2 In-Memory sequence manager
	5.5.15.1.4.3 Database sequences based implementation
	5.5.15.1.4.4 Database sequences based high/low implementation
	5.5.15.1.4.5 Database Identity-column based sequence manager
	5.5.15.1.4.6 Stored Procedures based (Oracle-style) sequencing
	5.5.15.1.4.7 Microsoft SQL Server 'uniqueidentifier' type (GUID) sequencing

	5.5.15.1.5 The sequence-name attribute
	5.5.15.1.6 The autoNaming property
	5.5.15.1.7 How to write my own sequence manager?
	5.5.15.1.8 Questions
	5.5.15.1.8.1 When using sequence-name attribute in field-descriptor?
	5.5.15.1.8.2 What to hell does extent aware mean?
	5.5.15.1.8.3 How could I prevent auto-build of the sequence-name?
	5.5.15.1.8.4 Sequence manager handling using multiple databases
	5.5.15.1.8.5 One sequence manager with multiple databases?
	5.5.15.1.8.6 Can I get direct access to the sequence manager?
	5.5.15.1.8.7 Any known pitfalls?

	5.5.16 OJB logging configuration
	5.5.16.1 Logging in OJB
	5.5.16.2 Logging configuration within OJB
	5.5.16.2.1 How and when OJB determines what kind of logging to use
	5.5.16.2.2 Configuration of logging for the individual components

	5.5.16.3 Logging configuration via configuration files
	5.5.16.3.1 OJB-logging.properties
	5.5.16.3.2 commons-logging.properties
	5.5.16.3.3 log4j.properties
	5.5.16.3.4 Where to put the configuration files

	5.5.16.4 Logging configuration at runtime
	5.5.16.5 Defining your own logger

	5.5.17 Locking
	5.5.17.1 Introduction
	5.5.17.2 Optimistic Locking
	5.5.17.3 Pessimistic-Locking
	5.5.17.3.1 Supported Isolation Levels
	5.5.17.3.2 How to specify locking isolation level
	5.5.17.3.3 Specify the LockManager Implementation
	5.5.17.3.4 The LockManager Implementations
	5.5.17.3.4.1 LockManagerInMemoryImpl
	5.5.17.3.4.2 LockManagerCommonsImpl
	5.5.17.3.4.3 LockManagerRemoteImpl

	5.5.17.4 ODMG-api Locking
	5.5.17.4.1 What it does

	5.5.17.5 Locking in distributed environment
	5.5.17.6 Pluggin own locking classes

	5.5.18 XDoclet OJB module documentation
	5.5.18.1 Acquiring and building
	5.5.18.1.1 Building with a XDoclet source distribution
	5.5.18.1.2 Building with a XDoclet CVS checkout
	5.5.18.1.3 Other build options

	5.5.18.2 Usage
	5.5.18.3 Tag reference
	5.5.18.4 Interfaces and Classes
	5.5.18.4.1 ojb.class
	5.5.18.4.2 ojb.extent-class
	5.5.18.4.3 ojb.modify-inherited
	5.5.18.4.4 ojb.object-cache
	5.5.18.4.5 ojb.index
	5.5.18.4.6 ojb.delete-procedure
	5.5.18.4.7 ojb.insert-procedure
	5.5.18.4.8 ojb.update-procedure
	5.5.18.4.9 ojb.constant-argument
	5.5.18.4.10 ojb.runtime-argument

	5.5.18.5 Fields and Bean properties
	5.5.18.5.1 ojb.field

	5.5.18.6 References
	5.5.18.6.1 ojb.reference

	5.5.18.7 Collections
	5.5.18.7.1 ojb.collection

	5.5.18.8 Nested objects
	5.5.18.8.1 ojb.nested
	5.5.18.8.2 ojb.modify-nested

	5.5.19 OJB Performance
	5.5.19.1 Introduction
	5.5.19.2 The Performance Test Suite
	5.5.19.2.1 Interpreting test results
	5.5.19.2.2 How OJB compares to native JDBC programming - single-threaded
	5.5.19.2.3 OJB performance in multi-threaded environments

	5.5.19.3 How OJB compares to other O/R mapping tools?
	5.5.19.4 What are the best settings for maximal performance?

	5.6 Howto's
	5.6.1 Howto's Summary
	5.6.2 HOWTO - Build O/R Mapping Files
	5.6.2.1 How to build O/R mapping files
	5.6.2.2 classification of O/R related transformations
	5.6.2.3 Forward engineering from XMI
	5.6.2.4 Forward engineering from Torque
	5.6.2.5 Forward engineering from repository.xml
	5.6.2.6 XDoclet transformation from Java code
	5.6.2.7 Reverse engineering from database

	5.6.3 HOWTO - Use Anonymous Keys
	5.6.3.1 Why Do We Need Anonymous Keys?
	5.6.3.2 How it works
	5.6.3.3 Using Anonymous Keys
	5.6.3.3.1 The Code
	5.6.3.3.2 The Database
	5.6.3.3.3 The Repository Configuration

	5.6.3.4 Benefits and Drawbacks

	5.6.4 HOWTO - Use DB Sequences
	5.6.4.1 Introduction
	5.6.4.2 The Sample Database
	5.6.4.3 Using OJB
	5.6.4.3.1 The Database Repository Descriptor
	5.6.4.3.2 Defining a Thingie Class
	5.6.4.3.3 Using Thingie

	5.6.5 HOWTO - Work with LOB Data Types
	5.6.5.1 Using Oracle LOB Data Types with OJB
	5.6.5.1.1 Introduction

	5.6.5.2 Backgrounder: Large objects in databases
	5.6.5.2.1 Your database: The most expensive file system?
	5.6.5.2.2 Oracle LARGE versus LOB datatypes

	5.6.5.3 Large Objects in OJB
	5.6.5.3.1 Strategy 1: Using streams for LOB I/O
	5.6.5.3.2 Strategy 2: Embedding OJB content in Java objects
	5.6.5.3.3 Querying CLOB content

	5.6.6 HOWTO - Use OJB in clustered environments
	5.6.6.1 How to use OJB in clustered environments
	5.6.6.2 Three steps to clustering your OJB application
	5.6.6.2.1 First: Take care of the sequence manager
	5.6.6.2.1.1 Handling sequence names

	5.6.6.2.2 Second: Enable optimistic locking
	5.6.6.2.3 Do The Cache

	5.6.6.3 Notes

	5.6.7 HOWTO - Stored Procedure Support
	5.6.7.1 Introduction
	5.6.7.2 Repository entries
	5.6.7.3 Common attributes
	5.6.7.4 insert-procedure
	5.6.7.5 update-procedure
	5.6.7.6 delete-procedure
	5.6.7.7 Argument descriptors
	5.6.7.7.1 runtime-argument descriptors
	5.6.7.7.2 constant-argument descriptors

	5.6.7.8 A simple example
	5.6.7.8.1 The basic requirements
	5.6.7.8.2 The database objects
	5.6.7.8.3 The CUSTOMER table
	5.6.7.8.4 The sequence
	5.6.7.8.5 The insert and update triggers
	5.6.7.8.6 The package
	5.6.7.8.7 The implementation

	5.6.7.9 A complex example

	5.6.8 HOWTO - Spring with OJB
	5.6.8.1 Spring with OJB
	5.6.8.1.1 Spring, OJB, and Struts, getting started
	5.6.8.1.2 Spring, OJB, and Struts. Version 2 with DAO.
	5.6.8.1.3 Spring, OJB, and Struts. Version 3: JNDI Datasources and Caching

	5.7 Testing
	5.7.1 Testing Summary
	5.7.2 JUnit Test Suite
	5.7.2.1 Introduction
	5.7.2.1.1 Where can I find the test sources?

	5.7.2.2 How to run the Test Suite
	5.7.2.2.1 How to run the test-suite with a different database than OJB default DB

	5.7.2.3 What about known issues?
	5.7.2.4 Donate own tests for OJB Test Suite

	5.7.3 Write Tests
	5.7.3.1 Introduction
	5.7.3.2 How to write a new Test
	5.7.3.2.1 The Test Class
	5.7.3.2.2 Persistent Objects used by Test
	5.7.3.2.3 Test Class Metadata

