
Ratfiv((4)) Fortran Ratfiv((4))

NAME
RATFIV PRIMER

Ratfiv is a preprocessor for Fortran. Its primary purpose is to encourage readable and well-
structured code while taking advantage of the universality, portability, and efficiency of Fortran. With mod-
est effort Fortran-based programmers can increase their productivity by using a language that provides them
with the control structures and cosmetic features essential for structured programming design. Debugging
and subsequent revision times are much faster than the equivalent efforts in Fortran, mainly because the
code can be easily read. Thus it becomes easier to write code that is readable, reliable, and even estheti-
cally pleasing, as well as being portable to other environments.

Ratfiv allows for all the features of normal Fortran, plus makes available these control struc-
tures:

"if"-"else" conditionals
"while", "for", "do", and "repeat"-"until" looping constructs
"switch" case statement
"break" and "next" for exiting loops
statement grouping with braces

The cosmetic aspects of Ratfiv have been designed to make it concise, eay to maintain, and
pleasing to the eye:

"include" statement for including source files
"return value" statement in functions
formats specified within read, write, encode, and decode statements
"string" statement for initialization of character arrays
specification of numbers in bases 2-36
free form input
unobtrusive comment convention
translation of >, <=, etc. into .GT., .LE., etc.
quoted character strings
conditional compilation

In addition, Ratfiv provides a sophisticated macro processor for the definition of symbolic con-
stants as well as macros with arguments.

Ratfiv is implemented as a preprocessor which translates the above features into Fortran
(optionally VAX Fortran 77), which can then be fed into almost any Fortran compiler. Ratfiv programs
may be written using upper or lower case, however Ratfiv keywords (such as "if", "else", etc.) must appear
entirely in upper or lower case, e.g. "If" is not recognized as an "if" statement. The section of this docu-
ment titled "Using Ratfiv" tells how to inv oke Ratfiv on your system.

Each of the Ratfiv features will now be discussed in more detail. In the following, a "state-
ment" is any leg al statement in Fortran: assignment, declaration, subroutine call, I/O, etc., or any of the Rat-
fiv statements themselves. Any Fortran or Ratfiv statement or group of these can be enclosed in braces-- {
} --or brackets-- [] --to make it a compound statement, which is then equivalent to a single statement and
usable anywhere a single statement can be used.

primer Ratfiv 1

Ratfiv((4)) Fortran Ratfiv((4))

IF-ELSE

Ratfiv provides the "if" and "else" statements to handle the construction "if a condition is true,
do this thing, otherwise do that thing". The syntax is

if (legal Fortran condition)
statement(s)

else
statement(s)

where the else part is optional. The "legal Fortran condition" is anything that can legally go into a Fortran
logical IF. The Ratfiv statements may be one or more valid Ratfiv or Fortran statements of any kind. If
more than one statement is desired, the statements must be enclosed by braces. For example,

if (a > b)
{
k = 1
call remark (...)

}
else if (a < b)
{
k = 2
call remark (...)

}
else
return

primer Ratfiv 2

Ratfiv((4)) Fortran Ratfiv((4))

WHILE

Ratfiv provides a while statement, which is simply a loop: "while some condition is true, repeat
this group of statements". The syntax is

while (legal Fortran condition)
statement(s)

As with the if, "legal Fortran condition" is something that can go into a Fortran logical IF. The condition is
tested before execution of any of the Ratfiv statements, so if the condition is not met, the loop will be
executed zero times. Also, as with the IF, the Ratfiv statements can be any valid Ratfiv or Fortran con-
structs. If more than one statement is desired, the statements must be enclosed by braces. For example,

WHILE (GETC(C) != EOF) [
C = CNVT(C)
CALL PUTC(C)
]

Note that upper case is perfectly acceptable to Ratfiv, and that brackets ([]) may be used instead of braces
({}).

primer Ratfiv 3

Ratfiv((4)) Fortran Ratfiv((4))

FOR

The "for" statement is similar to the "while" except that it allows explicit initialization and
increment steps as part of the statement. The syntax is

for (init clause; condition; increment clause)
statement(s)

where "clause" means a single Fortran statement or else a group of Fortran statements enclosed in brackets
and separated by semi-colons. The "init clause" is executed once before the loop begins. The "increment
clause" is executed at the end of each pass through the loop, before the test. "Condition" is again anything
that is legal in a logical IF. As with the "while" statement, the condition is tested before execution of any of
the Ratfiv statements, so if the condition is not met, the loop will be executed zero times. Any of init, con-
dition, and increment may be omitted, although the semicolons must remain. A non-existent condition is
treated as always true, so "for(; ;)" is an indefinite repeat. The "for" statement is particularly useful for
chaining along lists, loops that might be done zero times, and similar things which are hard to express with
a DO statement. Here are two examples of "for" loops:

for ({ nch = 0; i = 1 }; getarg(i, file, MAXLINE) != EOF; i = i+1)
{
int = open (file, READ)
while (getlin (line, int) != EOF)
for (j = length(line); j > 0; { j = j-1; nch = nch+1 })
call putc (line(j))

call close (int)
}

The above code reads from a list of files and writes each line from each file out backwards. The variable "i"
keeps track of the number of files read and the variable "nch" keeps track of the number of characters writ-
ten out. The "!=" means .NE.

primer Ratfiv 4

Ratfiv((4)) Fortran Ratfiv((4))

DO

The "do" statement is like the Fortran do-loop. The syntax is:

do Fortran do-part
statement(s)

The Fortran do-part is whatever Fortran will accept after a do, with the exception of the statement label. If
more than one statement is desired, they must be enclosed in brackets. For example:

do i = 1, 4
{
do j = 1, 4
x(i,j) = 0.0
x(i,i) = 1.0

}

This example initializes a 4 by 4 matrix to the identity matrix.

primer Ratfiv 5

Ratfiv((4)) Fortran Ratfiv((4))

REPEAT-UNTIL

The "repeat" and "until" statements allow for repetition of a group of statements until a specified condition
is met. The syntax is:

repeat
statement(s)

until (condition)

The "until (condition)" is optional. "Condition" is again anything that is legal in a logical IF. The "condi-
tion" is tested at the end of the loop, so that at least one pass through the loop will be made. If the "until
(condition)" part is omitted, the result is an infinite loop which must be broken with a "break" or "next"
statement (see below). Once again, if more than one statement is desired, the statements must be enclosed
by brackets. An example of a repeat-until loop is:

repeat
{
call putc (BLANK)
col = col + 1

}
until (col >= tabpos)

The example always puts at least one BLANK.

primer Ratfiv 6

Ratfiv((4)) Fortran Ratfiv((4))

SWITCH

The switch statement is a multi-way decision maker that allows selection of one path of execu-
tion from among many based on the value of an expression. The syntax is:

switch (legal fortran expression)
{
case expression(s):
statement(s)
.....

default:
statement(s)

}

The legal fortran expression in parentheses is evaluated and then tested to determine which of the constant
expression(s) in each case statement it matches; when a matching value is found, execution is started at that
case. Once the statements at the matching case have been executed, execution continues after the "switch"
statement. The case labelled "default" is executed if none of the other cases match. The "default" is
optional; if omitted and none of the cases match, no action is taken and execution falls through to the end of
the case statement. "Expression(s)" may be a list of constants separated by commas, a single constant, or a
range of constant values separated by a "-" (minus) character. Constants must be integers, character con-
stants of the form ’c’ or "c", or an escaped character constant. (See the section on the "string" statement for
a description of escaped character constants.) In addition, """" stands for a literal double quote, and ’’’’
stands for a literal single quote. Cases and defaults may occur in any order, and must be different. Note
that enclosing brackets are necessary after the "switch (legal Fortran expression)" and at the end of the
"switch" statement. Brackets are NOT necessary after a "case" or "default". Following is an example of
the "switch" statement:

switch (lin(i))
{
case 0: return # end of line
case "0"-"9":
j = ctoi(lin, i) # convert to number
k = max(j, k)

case "A"-"Z", "a"-"z":
.... # do something
.... #

default:
write(5, (’ error at lin(’,i3,’)’)) i

}

Ratfiv is able to determine whether a given "switch" statement is best implemented as a Fortran
computed goto or as successive logical if tests. There is one possible problem with the "switch" statement;
it generates a variable beginning with the letter "i". If variables beginning with "i" are implicitly declared
other than integer (by an "implicit real (a - z)" statement, for instance) then the "switch" statement will not
work properly in some cases.

primer Ratfiv 7

Ratfiv((4)) Fortran Ratfiv((4))

BREAK and NEXT

Ratfiv provides statements for leaving a loop early and for beginning the next iteration.

"Break" causes an immediate exit from whatever loop (which may be a "while", "for", "do", or
"repeat") it is contained in . Control resumes with the next statement after the loop. If "break" is followed
by a number, then that many enclosing loops are exited, otherwise the loop in which the "break" appears is
exited. For example:

repeat
{
if (getc(c) == EOF) break
....

}

"Next" is a branch to the bottom of a loop, so it causes the next iteration to be done. "Next"
goes to the condition part of a "while" or "until", to the top of an infinite "repeat" loop, to the increment part
of a "for", and to the next iteration of a "do". If a number is specified after the "next", then control is given
to the loop which is that many nested loops out from the "next", otherwise control is given to the enclosing
loop. For example:

for (i = 1; i < 10; i = i+1)
{
if (array(i) == BLANK) next
....

}

The "next" causes a branch to the increment part of the "for" loop, which adds 1 to "i".

primer Ratfiv 8

Ratfiv((4)) Fortran Ratfiv((4))

RETURN

The "return" statement may be used as usual. However, in a function subprogram the function
value may be implicitly assigned before returning using the following syntax:

return value

Here "value" is the value of the function subprogram. For example:

integer function index(char,strng)
byte strng(80), char

for (i = 1; i <= 80; i = i+1)
if (strng(i) == char)

return i
return 0
end

primer Ratfiv 9

Ratfiv((4)) Fortran Ratfiv((4))

FORMAT STATEMENTS

Format specifications may be included in read, write, encode, and decode statements by includ-
ing the specification, surrounded by parentheses, in the same position in the statement as the format state-
ment number would normally appear. For example:

write(5, (’$FILE? ’))
read(5, (80a1), end=99) file

Formats may be specified in the usual way by specifying a normal statement number instead of a parenthe-
sized format specification. For example:

read(5, 10, end=99) file
10 format(80a1)

primer Ratfiv 10

Ratfiv((4)) Fortran Ratfiv((4))

STRING

The "string" statement defines the size and contents of a character array. The syntax is:

string name "character string"
or

string name(size) "character string"

The first form of the string statement defines "name" to be a character (default byte on DEC
systems) array big enough to accommodate all the characters in the character string plus a terminating end
of string character (default 0 (nul) on DEC systems).

The second form allocates "size" characters for "name" and initializes it to the specified char-
acter string with the EOS character. "size" must be large enough to hold the entire string plus the termina-
tor, and may be larger.

Single quotes may be used instead of double quotes to delimit the character string. As with
quoted literals, two adjacent double quotes occurring within a double-quoted string are interpreted as a lit-
eral double quote, and two adjacent single quotes within a single quoted string are interpreted as a literal
single quote.

The character "@" in a string has a special meaning. It and the character following it are
replaced by one of the special characters shown below depending on the character following the "@":

@@ is replaced by an @
@B or @b is replaced by a backspace
@E or @e is replaced by an end-of-string (default 0 on DEC systems)
@F or @f is replaced by a form feed
@G or @g is replaced by a bell
@L or @l is replaced by a line feed
@N or @n is replaced by a NEWLINE (default line feed on DEC systems)
@R or @r is replaced by a carriage return
@T or @t is replaced by a tab
@V or @v is replaced by a vertical tab
@$ is replaced by an escape
@digits is replaced by the octal value of "digits".

An "@" followed by any character not listed above is replaced by the character following the "@". The
exception is when "@" is before the terminating quote character; in this case the "@" is interpreted literally
as an "@", and has no special meaning.

All string statements must appear together after all normal Fortran declarations and before any
DATA statements. More than one string may be declared in a string statement if the declarations are sepa-
rated by commas.

Examples:

string error ’@gError reading file. Execution terminated.’
string infile(FILENAMESIZE) "TI:", outfil(FILENAMESIZE) "TO:"
string del "@177" # octal 177 is the ASCII "delete" character

primer Ratfiv 11

Ratfiv((4)) Fortran Ratfiv((4))

Notes for advanced users:

The default values used to replace "@e" and "@n" in strings (see above) are 0 and 10 on DEC
systems. These defaults may be overridden by defining the symbols EOS and NEWLINE, respectively, to
be either an integer or a quoted character which will then be used instead of the default value.

Similarly, the default data type for strings (byte on DEC systems) and the default terminating
character (0 on DEC systems) may be changed by redefining the symbols EOS and character, respectively.

Example:

define(character,integer)
define(EOS,-1)

....
string comnds "READ@eWRITE"

defines comnds as an integer array of length 11 and produces data statements which initialize it. Comnds(5)
is initialized to -1, as is comnds(11).

It is legal to giv e a value for a string which is not quoted. In this case the first non-blank token
after the name (and optional size) declaration is used as the string value. This is useful when defining a
string which must take on the value of a macro, for example:

define(character,byte)
....

string chrdef character

initializes the string chrdef to be "byte".

primer Ratfiv 12

Ratfiv((4)) Fortran Ratfiv((4))

INCLUDE

Files may be inserted into the input stream via the "include" statement. The statement

include filename
or

include "filename"
or

include ’filename’

inserts the file found on input file "filename" into the Ratfiv input in place of the include statement. This is
especially useful in inserting common blocks. For example,

function exampl (x)
include "comblk.cmn"
exampl = x + z
return
end

might translate into

function exampl (x)
common /comblk/ q, r, z
real q, r, z
exampl = x + z
return
end

The form of the include statement which uses single or double quotes around the file name is preferred, and
is necessary if the file name has funny characters in it such as comma.

primer Ratfiv 13

Ratfiv((4)) Fortran Ratfiv((4))

STATEMENT GROUPING AND NULL STATEMENTS

Ratfiv allows a group of statements to be treated as a unit by enclosing them in braces -- { and
} or [and]. This is true throughout the language: wherever a single statement can be used, there could also
be several enclosed in braces. For example:

if (x > 100)
{
call error (...)
err = 1
return

}

If curly braces are not valid characters in the local operating system, or if you wish to use upper case only,
the characters "[" and "]" may be used instead of "{" and "}" respectively.

Ratfiv also allows for null statements, most useful after "for" and "while" statements. A semi-
colon alone indicates a null statement. For instance,

while (getlin(line, int) != EOF)
;

would read lines from a file until the end-of-file was reached and

for (i=1; line(i) == BLANK; i=i+1)
;

positions "i" after leading blanks in a line.

primer Ratfiv 14

Ratfiv((4)) Fortran Ratfiv((4))

FREE-FORM INPUT

Statements may be placed anywhere on a line and several may appear on one line if they are
separated by semicolons, however it is not necessary to separate statements that begin with Ratfiv keywords
with a semicolon. No semicolon is needed at the end of each line because Ratfiv assumes there is one state-
ment per line unless told otherwise. Ratfiv will, however, continue lines when it seems obvious that they
are not yet done, or if the line explicitly ends with an underline ("_"). Note that the underline is not
included in the Fortran output of Ratfiv. Do not attempt to use a continuation character in column 6 to con-
tinue a line.

Any statement that begins with an all-numeric field is assumed to be a Fortran label and is
placed in columns 1-5 upon output. Ratfiv generates labels starting at 2000 and increasing by intervals of
10, so try to use labels under 2000 for your own uses.

Statements may be passed through the Ratfiv compiler unaltered in two ways; if the toggle
character "%" appears on a line by itself before and after the lines desired to be literal, the lines will be
passed through unaltered to Fortran. However if the line on which the "%" character appears has other non-
blank characters after the "%" character, those characters will be passed to Fortran and a matching "%"
character is not needed. This is a convenient way to pass regular Fortran code through the Ratfiv compiler.
Note that the "%" at the beginning of the line does not count as a Fortran column, so that code must be
indented 6 spaces after the "%", or a tab character may be used if it is legal with your Fortran.

primer Ratfiv 15

Ratfiv((4)) Fortran Ratfiv((4))

COMMENTS

A sharp character "#" in a line marks the beginning of a comment and the rest of the line is
considered to be that comment. Comments and code can co-exist on the same line. For example,

function dummy (x)
I made up this function to show some comments
dummy = x #I am simply returning the parameter
return
end

primer Ratfiv 16

Ratfiv((4)) Fortran Ratfiv((4))

CHARACTER TRANSLATION

Sometimes the characters >, <=, etc. are easier to read in Fortran condition statements than the
standard Fortran .EQ., .LT., etc. Ratfiv allows either convention. If the special characters are used, they are
translated in the following manner:

== .EQ.
!= or ˆ= or ˜= .NE.
< .LT .
> .GT.
<= .LE.
>= .GE.
| or .OR.
& .AND.
! or ˆ or ˜ .NOT.

For example,

for (i = 1; i <= 5; i = i+1)
...

if (j != 100)
...

primer Ratfiv 17

Ratfiv((4)) Fortran Ratfiv((4))

SPECIFYING NUMBERS IN BASES OTHER THAN BASE TEN

Numbers may be specified in any of the bases 2-36. Base ten is the default base. Numbers in
other bases are specified as n%dddd... where ’n’ is a decimal number indicating the base and ’dddd...’ are
digits in that base. Digits above 9 are specified by the letters a-z (A-Z), where For example,

16%ff stands for 255 base 10
8%100000 stands for -32768 base 10 on a PDP11
8%100000 stands for +32768 base 10 on a VAX

primer Ratfiv 18

Ratfiv((4)) Fortran Ratfiv((4))

QUOTED CHARACTER STRINGS

Character strings may be enclosed in single or double quotes. To specify a single quote inside
a single quoted string, repeat the single quote twice, for example:

write(5, (’ can’’t open file’))

Similarly, to include a double quote character inside a double quoted string, place two double quotes in a
row within the string.

Octal constants which are defined by a preceding double quote as in DEC Fortran will be
passed successfully through Ratfiv if only one octal constant appears per line; otherwise Ratfiv will assume
that a quoted string was desired. It is recommended that Ratfiv’s method for specifying bases other than
decimal be used, however (see above).

Similarly, direct access read and write statements which have a single quote before the record
number will also be successfully passed through Ratfiv if only one single quote appears on the line. For
example,

write(5’n) x, y, z

is passed to Fortran as

WRITE(5’N) X, Y, Z

however

write(5’n, (’ATOM ’3f10.5)) x, y, z

will not be correctly interpreted because of the mismatched quotes.

primer Ratfiv 19

Ratfiv((4)) Fortran Ratfiv((4))

DEFINING MACROS

The "define" statement allows you to extend the syntax of Ratfiv with macro definitions. A
macro is an alpha-numeric symbol which has a definition associated with it; whenever that symbol appears
in the input, it is replaced by its definition. The replacement process is called "macro expansion". The sim-
plest use of "define" is to define a symbolic constant; thereafter, whenever that symbolic constant occurs in
the input it is replaced by the definition of that constant. "define" could be used to make these symbolic
constants:

define(ROW,10)
define(COLUMN,25)

dimension array (ROW, COLUMN)
and

define(EOF,-10)
if (getlin(line, int) == EOF)

....

A macro such as ROW is useful because its name is more meaningful than the number "10". In addition, it
is far easier to modify programs which use symbolic constants; if ROW were used consistently throughout
a program, then only the definition of ROW would need to be changed when more (or less) rows are needed
in "array".

Definitions may be included anywhere in the code, as long as they appear before the macro is
referenced. Defined names may contain letters, digits, and the underscore (_) and dollar ($) characters.
Case is significant, so that upper case names are different from lower case names.

primer Ratfiv 20

Ratfiv((4)) Fortran Ratfiv((4))

Macros with arguments

It is also possible to define macros with arguments. For instance:

define(bump,$1 = $1+1)

defines a macro which may be used to increment a variable by 1; when

bump(i)

appears in the input, it is expanded to:

i = i+1

The "$1" in the macro definition is a placeholder for the first argument to the macro. When the macro is
expanded, all occurrences of "$1" are replaced by the actual first argument, in this case "i". Up to nine
macro arguments are allowed, not counting argument 0, which refers to the macro name. Here is another
example:

define(write_buf,if ($3 > 0)
write($1,(1x,<$3>a1)) ($2(ii),ii=1,$3))

defines a macro which when referenced by:

write_buf(5, buf, n)

expands to:

if (n > 0)
write(5, (1x,<n>a1)) (buf(ii), ii=1,n)

"write_buf" has three arguments; argument one is the unit number, argument two is the buffer to be written
out, and argument three is the number of elements in the buffer to be written. The arguments are delimited
by commas when the macro is referenced.

The following macro does a prompt to the terminal, then a read:

define(read_prompt,{ write(5,($1)); read(5,($2)) $3 })

When read_prompt is referenced by:

read_prompt(’$Enter X, Y, and Z: ’, 3F10.5, (x, y, z))

it expands to:

{ write(5,(’$Enter X, Y, and Z: ’)); read(5,(3F10.5)) (x, y, z) }

The parentheses around "x, y, z" are needed to group "x, y, z" as argument 3; otherwise it would be passed
as arguments 3, 4, and 5, since the commas would act as argument separators. The braces ("{" and "}") in

primer Ratfiv 21

Ratfiv((4)) Fortran Ratfiv((4))

the definition are not necessary in most cases, but allow read_prompt to be used after structured statements
as if it was a single statement. For example:

if (unit == 5)
read_prompt(’$Output file? ’, 80a1, buf)

primer Ratfiv 22

Ratfiv((4)) Fortran Ratfiv((4))

Pre-defined macros

In addition to "define", there are a number of other built-in macros:

_macro(x,y) equivalent to "define(x,y)".

_undef(x) undoes the most recent definition of "x". If "x" had been defined
twice, "_undef(x)" would pop "x" back to it’s
first definition.

_repdef(x,y) replaces the current definition of "x" (if any) with "y". Equivalent to
the sequence "_undef(x) _macro(x,y)".

_incr(x) converts "x" to a number and adds one to it.

_arith(x1,op1,x2[,op2,x3,...])
performs integer arithmetic (-,+,/,*) specified
by "op1", "op2", etc. on "x1", "x2", etc.
Evaluation is from left to right. Up to 9
arguments (5 operands and 4 operators) may
be passed to "_arith".

_len(x) returns the length of string "x". The string may have commas in it.

_substr(s,m,n) returns the substring of "s" which starts at location "m" and is "n"
long. If "n" is not specified or is too large,
"_substr" returns the rest of the string start-
ing at "m". If "m" is not specified, the whole
string "s" is returned.

_index(s,c) returns the index in string "s" of character "c". If _len(c) is more
than 1, the index of the first character in "c"
is returned. If "c" doesn’t occur in "s", 0 is
returned.

_ifelse(a,b,c,d)
expands "a" and "b"; if "a" equals "b" as a
character string, "c" is expanded and
returned, else "d" is expanded and returned.
Note that "d" is not expanded if "a" equals
"b", and "c" is not expanded if "a" does not
equal "b". "_ifelse" may be used to check
for an optional macro argument;
"_ifelse($2,,A,B)" checks if argument 2 is
null; if so, it expands to "A", else "B".

_include(file) equivalent to the include facility described above.

primer Ratfiv 23

Ratfiv((4)) Fortran Ratfiv((4))

Macro arguments

There are two ways to pass an argument to a macro when it is
being expanded; with and without macro expansion of the argument. For instance, the arguments to the
"define" builtin macro are not expanded before they are passed to it; this allows you to redefine a macro that
was previously defined. For instance if "X" had been defined as "Y" (by "define(X,Y)"), then the result of

define(X,Z)

would be to redefine "X" as "Z". If the arguments to "define" were expanded before being passed to it, then
the result of "define(X,Z)" would be to define "Y" as "Z", since the expansion of "X" is "Y".

When you write a macro, you can specify whether or not each argument is expanded before it
is passed to your macro. Arguments specified as "$n" are expanded before being passed to the macro (these
are called "eval" arguments), while arguments specified as "%n" are not expanded before being passed to
the macro (these are called "noeval" arguments). For example,

define(set,define(%1,$2))

defines a macro, "set", which is like the "define" builtin macro except that the second argument, $2, is
expanded before becoming the definition of the first argument, which is NOT expanded. In most cases the
expansion of the second argument at definition time makes no difference; however the macro "set" lets you
define macros which may be used as macro "variables", which can communicate state information between
macros. An example of communication between macros through macro variables is given below in the sec-
tion titled, "Example macros".

For most purposes the eval ($) form of specifying macro arguments is preferred. Noeval argu-
ments are particularly useful in macros which define or undefine other macros, or which test whether
another macro is defined.

A giv en argument (argument 1 for example) may not be both an eval and a noeval type, thus
"$1" and "%1" could not both appear in a macro definition.

primer Ratfiv 24

Ratfiv((4)) Fortran Ratfiv((4))

The special arguments "$&" and "%&"

When "$&" or "%&" appear in a macro definition, they are placeholders for all the arguments
which are passed to the macro, including the commas which separate them. "$&" is the eval form of the
arguments, and "%&" is the noeval form. "$&" and "%&" cannot both appear in the same macro definition,
and macros with "$&" or "%&" in their definitions cannot also have numeric arguments such as "$1",
"%2", etc.

Example:

define(macro,define(%&))

defines "macro" as being equivalent to "define", since "define" does not expand it’s arguments and it allows
commas in definitions.

primer Ratfiv 25

Ratfiv((4)) Fortran Ratfiv((4))

Example macros

Below is an example of macros which implement "while" and "endwhile" statements.
Although this is not terribly useful given that Ratfiv has the "while" statement, it does illustrate some
advanced techniques for writing macros. The first macro is "push":

define(push,define(_stack,$1)_stack)

"Push" pushes a new definition on top of the old definition of a macro named "_stack", then returns the new
value of "_stack". "_stack" is used here as a macro variable, ie. its function is to save information between
macro invocations. Specifying "$1" instead of "%1" insures that the definition being pushed onto "_stack"
is completely expanded before it is pushed.

define(pop,_stack _undef(_stack))

"Pop" returns the current value of "_stack", then undefines it back to it’s previous value. Now we can define
"while" and "endwhile":

define(while,
push(_incr(_stack)) if (.not.($1)) goto push(_incr(_stack)))

define(endwhile, goto _arith(pop,-,1)
_incr(pop) continue)

With "while" and "endwhile" defined, the sequence:

while (x < y)
y = y/2

endwhile

expands to:

1 if (.not. (x < y)) goto 2
y = y/2
goto 1

2 continue

Of course the Ratfiv output would look different; the above output is the macro expansion
before Ratfiv converts it to Fortran.

primer Ratfiv 26

Ratfiv((4)) Fortran Ratfiv((4))

PASSING LITERAL STRINGS THROUGH RATFIV

A string may be passed literally through Ratfiv without being expanded or interpreted as a Rat-
fiv keyword by enclosing it in accent characters (‘). Thus the string

‘define(X,Y)‘

is passed to the output as

define(X,Y)

and is not expanded. Accented literal strings may appear within macro definitions as well, however occur-
rences of argument replacement strings ($n or %n) within accents are still replaced by their corresponding
arguments.

To specify a literal accent character, place two of them in a row within enclosing accent characters.

primer Ratfiv 27

Ratfiv((4)) Fortran Ratfiv((4))

CONDITIONAL CODE EXPANSION

Code may be conditionally bypassed depending on whether or not a macro is defined. The
statement

_ifdef(x)

tests if x is defined as a macro. If so, then processing continues normally until the occurrence of an _elsedef
or _enddef macro. If x is not defined, then all code following the _ifdef is bypassed completely until the
occurrence of an _elsedef or _enddef macro.

For example:

define(PDP11)

....

_ifdef(PDP11)

define(INTEGER_SIZE,2)
define(MAXINT,32767)

_elsedef

define(INTEGER_SIZE,4)
define(MAXINT,16%7FFFFFFF)

_enddef

The statements:

_ifnotdef(x)

and

_ifndef(x)

are like _ifdef, except that the following code is expanded if x is NOT defined. "_ifnotdef" is the preferred
form.

Nesting of _ifdefs, _ifnotdefs, _elsedefs, and _enddefs is permitted.

primer Ratfiv 28

Ratfiv((4)) Fortran Ratfiv((4))

USING RATFIV

Ratfiv expects one or more input files on the command line and one output file preceded by a
">". For example:

RAT FILE1.RAT FILE2.RAT >FILE.FTN

The above command would cause the files FILE1.RAT and FILE2.RAT to be compiled to FILE.FTN by
Ratfiv. If the Ratfiv compiler detects an error in the Ratfiv code, an error message will be printed to the ter-
minal and to the Fortran output file at the point where the error occurred. After pre-proccessing by Ratfiv,
the Fortran compiler should be invoked, producing FILE.OBJ. Many Fortran errors cannot be detected by
Ratfiv; when these occur, check the Fortran listing file for the error message. It is usually not too hard to
figure out where in the Ratfiv source the error is, once it has been found in the Fortran source.

Ratfiv has several switches. Switches must be placed after the RAT command only, and may
not be placed on file names. All the switches may be abbreviated to one or more letters.

The /SYMBOLS switch causes Ratfiv to look on your directory for a file named "SYMBOLS."; this file is
opened and read as a prefix file to the other files on your command line. If "SYMBOLS." is not on your
directory, Ratfiv looks on a system-dependent directory for the "SYMBOLS." file, which normally would
have some standard defines on it, such as EOS, EOF, etc.

The /F77 switch causes Ratfiv to produce VAX Fortran 77 output instead of "standard" Fortran.
The Fortran 77 output is compatible with Digital Equipment Corporation VAX Fortran 77; it is not ANSII
Fortran 77, as it uses the DO WHILE and END DO statements.

The /HOLLERITH switch causes Ratfiv to put out hollerith strings instead of quoted strings.
This switch is included mainly for compatibility with versions of Ratfor which put out hollerith strings. So
far, this switch has been needed only when compiling routines which call DEC VAX macro routines which
expect hollerith strings for their arguments instead of character descriptors. Since Ratfiv normally produces
quoted strings, Fortran "open" statements and other statements which require quoted strings may be used in
Ratfiv programs.

primer Ratfiv 29

Ratfiv((4)) Fortran Ratfiv((4))

EXAMPLE

The following is a sample Ratfiv program designed to show some of the commonly-used Ratfiv
statements. The routine reads through a list of files, counting the lines as it goes. The subroutines and
functions which are used but not defined here are available in the Ratfiv library. The symbols such as EOF,
ERR, MAXLINE, and READ are defined in the file "SYMBOLS." which is included with Ratfiv. The
example will not compile correctly unless the "SYMBOLS." file is read. (See "USING RATFIV" above.)

main calling routine for count

call initr4
call count
call endr4
end

count - counts lines in files

subroutine count
include comblk # this file contains a common block which

contains an integer variable "linect"

character file(FILENAMESIZE), line(MAXLINE)
integer i, f, getarg, open, getlin, itoc

loop through the list of files

linect = 0
for (i = 1; getarg(i, file, FILENAMESIZE) != EOF; i = i+1)
{
f = open (file, READ) # open the file
if (f == ERR)
{ # file could not be located
call putlin(file, ERROUT)
call remark (": can’t open file.")
next

}
else # read lines from the file
while (getlin(line, f) != EOF)
linect = linect + 1

call close(f) # close the file
}

i = itoc(linect, line, MAXLINE) # convert linect to character
call putlin(line, STDOUT) # write out value of linect
call putch(NEWLINE, STDOUT) # flush the output buffer
return
end

primer Ratfiv 30

Ratfiv((4)) Fortran Ratfiv((4))

BOX

The command BOX is a very convenient way to undersdand the structure of of a source pro-
gram.

BOX EXAMPLE.RAT

will produce:

main calling routine for count

call initr4
call count
call endr4
end

count - counts lines in files

subroutine count
include comblk # this file contains a common block which

contains an integer variable "linect"

character file(FILENAMESIZE), line(MAXLINE)
integer i, f, getarg, open, getlin, itoc

loop through the list of files

linect = 0
for (i = 1; getarg(i, file, FILENAMESIZE) != EOF; i = i+1)
+--+
| f = open (file, READ) # open the file |
| if (f == ERR) |
| +--+ |
	call putlin(file, ERROUT)	
	call remark (": can’t open file.")	
	next	
+--+		
else # read lines from the file		
while (getlin(line, f) != EOF)		
linect = linect + 1		
call close(f) # close the file		
+--+

i = itoc(linect, line, MAXLINE) # convert linect to character
call putlin(line, STDOUT) # write out value of linect
call putch(NEWLINE, STDOUT) # flush the output buffer
return
end

primer Ratfiv 31

Ratfiv((4)) Fortran Ratfiv((4))

EXAMPLE OF FORTRAN OUTPUT

Followings are four identical subroutines, the first is the original, uncomprehensive, the second is a RAT-
FIV structured program, the third is the fortran/77 output (ratfiv command0, the fourth the hollerith stan-
dard fortran, the fifth the boxed structure which may be published rather than the first one which has been
published.

primer Ratfiv 32

Ratfiv((4)) Fortran Ratfiv((4))

C/////////////////////////////// S P A D VERSION DU 01.04.83
C$OPTIONS NOLIST
C++ FSPAD1 ++
C FORTRAN PRINCIPAL POUR APPEL DES ETAPES DE S.P.A.D. +
C SUBROUTINE SPAD1, LISTP. +
C+++

SUBROUTINE SPAD1 (Q , MOTS)
C==01.04.83
C *
C PROGRAMME SELECTIONNANT LES ETAPES DE * SPAD * A EXECUTER *
C DEFINITION DES NUMEROS DE FICHIERS EN DATA, *
C ET DES UNITES DE LECTURE (LECA) ET D-IMPRESSION (IMP). *
C CREATION DU FICHIER (LEC) DES PARAMETRES DE COMMANDE. *
C L-ARGUMENT MEMOT SERT DE TEST POUR LA POURSUITE DU PROGRAMME *
C *

DIMENSION Q(MOTS),LETAP(25) ,KART(20)
COMMON / VAL / TEST
COMMON /ENSOR/ LEC, IMP
DATA NDICA/1/, NDONA/2/,
1 NDIC /8/, NDON /9/, NLEG/10/, NGUS/11/, NGRI/12/, NGRO/13/,
2 NSAV/14/, NBAND/15/,NBFOR/16/
DATA LETAP /4HDONN,4HDPLU,4HLILE,4HCOMP,4HCORB,
1 4HMULT,4HMULD,4HAPLU,4HGRAP,4HECLA,4HSEMI,4HTAMI,
2 4HGRAF,4HCLAI,4HMCRE,4HTABU,4HTRIH,4HAGRA,4HARCH,
3 4HECRI,4HCODA,4HRECI,4HTRAN,4HLIST,4HSTOP/

C........... LECA= LECTEUR DE CARTES, IMP= IMPRIMANTE
C LEC = FICHIER AUXILIAIRE DE COPIE DES PARAMETRES

LECA = 5
LEC = 19
IMP = 6

C............. NOMBRE D-ETAPES ACTIVES DANS SPAD (AJOUTER LISTP,STOP)
NETAP = 23 + 2
N1 = NETAP - 1

C........... CREATION DU FICHIER DES PARAMETRES SUR LEC
REWIND LEC
KLIST = 0

1111 READ (LECA,5000) (KART(J),J=1,20)
WRITE (LEC,5000) (KART(J),J=1,20)
IF (KART(1) .EQ. LETAP(N1)) KLIST = 1
IF (KART(1) .EQ. LETAP(NETAP)) GO TO 1112

GO TO 1111
1112 REWIND LEC

IF (KLIST .EQ. 1) CALL LISTP (BID)
C APPEL DES ETAPES SUCCESSIVES

REWIND LEC
MEMOT = 0

1113 IF (MEMOT .EQ. 0) GO TO 1114
WRITE (IMP,4000)

RETURN
1114 READ(LEC,1000) METAP , M1

primer Ratfiv 33

Ratfiv((4)) Fortran Ratfiv((4))

KETAP = 0
DO 1115 I = 1,NETAP
IF(METAP .EQ. LETAP(I)) KETAP = I

1115 CONTINUE
IF (KETAP .EQ. N1) GO TO 1114
IF (KETAP .EQ. 0) GO TO 100
IF (KETAP .EQ. NETAP) GO TO 200

C CHOIX DE L ETAPE DEMANDEE
C

GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
1 19,20,21,22,23,200) , KETAP

C
C.... LECTURE DES DONNEES ET CREATION DU FICHIER-ARCHIVE NDONA

1 CALL DONNE (Q, MOTS, MEMOT, NDONA)
C

GO TO 1113
C.... CREATION DE NLEG (TABLEAU DE CORRESP.LEGERE)

2 CALL DPLUM (Q, MOTS, MEMOT, NLEG, NBAND)
C

GO TO 1113
C.... LECTURE DU DICO-ARCHIVE NDICA, CREATION DE NDIC ET NDON

3 CALL LILEX (Q, MOTS , MEMOT, NDICA , NDONA , NDIC , NDON ,
1 NBAND, NBFOR)

GO TO 1113
C.... COMPOSANTES PRINCIPALES. CREATION DE NGUS

4 CALL COMPL (Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND , NSAV)
C

GO TO 1113
C.... CORRESPONDANCES SIMPLES. CREATION DE NGUS

5 CALL CORBI (Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)
C

GO TO 1113
C.... CORRESP.MULTIPLES (MEMOIRE CENTRALE). CREATION NGUS

6 CALL MULTC (Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)
C

GO TO 1113
C.... CORRESP.MULTIPLES (LECTURE DIRECTE). CREATION NGUS

7 CALL MULDI (Q, MOTS , MEMOT, NDIC , NDON , NGUS , NBAND , NSAV)
C

GO TO 1113
C.... CORRESP.LEGERE SUR NLEG. CREATION DE NGUS

8 CALL APLUM (Q, MOTS, MEMOT, NLEG, NGUS, NBAND, NSAV)
C

GO TO 1113
C.... APPELS DES GRAPHIQUES (VARIABLES ET INDIVIDUS)

9 CALL GRAPH (Q, MOTS , MEMOT, NGUS , NBAND)
C

GO TO 1113
C.... CLASSIFICATION (CENTRES MOBILES) PUIS ARBRE HIERARCHIQUE

10 CALL ECLAT (Q, MOTS, MEMOT, NDIC, NDON, NGRI, NBAND, NBFOR)

primer Ratfiv 34

Ratfiv((4)) Fortran Ratfiv((4))

C
GO TO 1113

C.... CLASSIFICATION SUR FACTEURS. CREATION DE NGRI
11 CALL SEMIS (Q, MOTS , MEMOT, NGUS , NGRI , NBFOR)

C
GO TO 1113

C.... COUPURE DE L-ARBRE ET DESCRIPTION DES CLASSES
12 CALL TAMIS (Q, MOTS , MEMOT, NDIC , NDON , NGRI , NGRO ,
1 NLEG , NBFOR)

GO TO 1113
C.... GRAPHIQUES POUR LA CLASSIFICATION (CENTRES ET DENSITE)

13 CALL GRAFK (Q, MOTS , MEMOT, NGUS , NGRO , NDON , NBAND , NBFOR)
C

GO TO 1113
C.... EDITION EN CLAIR DES FACTEURS (POUR COMPL ET CORBI)

14 CALL CLAIR (Q, MOTS, MEMOT, NDIC, NGUS)
C

GO TO 1113
C.... REGRESSION, ANAVAR ET ANACOV

15 CALL MCREG (Q, MOTS, MEMOT, NDIC, NDON)
C

GO TO 1113
C.... TABULATIONS

16 CALL TABUL (Q, MOTS, MEMOT,
1 NDICA, NDONA, NDIC, NDON, NBAND, NBFOR)

GO TO 1113
C.... TRIS-A-PLAT, HISTOGRAMMES

17 CALL TRIHI (Q, MOTS, MEMOT, NDIC, NDON)
GO TO 1113

C.... CLASSIFICATION SUR UN GRAPHE
18 CALL AGRAF (Q, MOTS, MEMOT, NGUS,NGRO,NBAND,NSAV,NBFOR)

C
GO TO 1113

C.... ARCHIVAGE DE COORDONNEES ET/OU CLASSIFICATIONS
19 CALL ARCHI (Q, MOTS, MEMOT,NDICA,NDONA,NGUS,NGRO,NBAND,NSAV)

C
GO TO 1113

C.... GESTION DE DICTIONNAIRE
20 CALL ECRIT (Q, MOTS, MEMOT, NDICA)

C
GO TO 1113

C.... APUREMENT DES VALEURS HORS-PLAGE
21 CALL CODAJ (Q, MOTS, MEMOT, NDICA,NDONA,NBFOR)

C
GO TO 1113

C CLASSIFICATION ASCENDENTE HIERARCHIQUE
22 CALL RECIP (Q, MOTS, MEMOT, NGUS, NGRI, NBAND, NBFOR)

C
GO TO 1113

C..... CREATION DES FICHIERS NDIC ET NDON A PARTIR DE NLEG

primer Ratfiv 35

Ratfiv((4)) Fortran Ratfiv((4))

23 CALL TRANS (Q, MOTS, MEMOT, NLEG, NDIC, NDON)
C

GO TO 1113
100 WRITE (IMP,2000) METAP,M1

RETURN
200 WRITE (IMP,3000) METAP,M1
1000 FORMAT (A4,A1)
2000 FORMAT (1H ,//,35H ERREUR SUR LE NOM D ETAPE ,A4,A1,/)
3000 FORMAT (1H0,65X,3H** ,A4,A1,3H **/1H0,62X,

1 16HFIN DE L-ANALYSE /1H0,130(1H-))
4000 FORMAT (1H1,131(1H-)//,30X,33HERREUR FAT ALE : DEFAUT DE MEMOIRE)
5000 FORMAT (20A4)

RETURN
END

primer Ratfiv 36

Ratfiv((4)) Fortran Ratfiv((4))

#/////////////////////////////// s p a d version du 01.04.83
#++ fspad1 ++
fortran principal pour appel des etapes de s.p.a.d. +
subroutine spad1, listp. +
#+++

subroutine spad1 (q , mots)

#==13.02.84 Version ecrite en RATFOR (Rationnal Fortran
de Software-Tools via Ratfiv de Institute of Cancer Research)
par N.Brouard (Institut National d’Etudes Demographiques)

*
programme selectionnant les etapes de * spad * a executer *
definition des numeros de fichiers en data, *
et des unites de lecture (leca) et d-impression (imp). *
creation du fichier (lec) des parametres de commande. *
l-argument memot sert de test pour la poursuite du programme *
*
define (YES,1)
define (NO,0)
define (MAXA4READER,33)
define (ASSEZ_MEMOIRE,0)
define (ETAPE_INCONNUE,0)

dimension q(mots),letap(25) ,kart(MAXA4READER)

common / val / test
common /ensor/ lec, imp

data ndica/1/, ndona/2/,
ndic /8/, ndon /9/, nleg/10/, ngus/11/, ngri/12/, ngro/13/,
nsav/14/, nband/15/,nbfor/16/

data letap /4hdonn,4hdplu,4hlile,4hcomp,4hcorb,
4hmult,4hmuld,4haplu,4hgrap,4hecla,4hsemi,4htami,
4hgraf,4hclai,4hmcre,4htabu,4htrih,4hagra,4harch,
4hecri,4hcoda,4hreci,4htran,4hlist,4hstop/

leca = 5 #........... leca= lecteur de cartes
lec = 19 # lec = fichier auxiliaire de copie des parametres
imp = 6 # imp = imprimante
netap = 23 + 2 #..... nombre d-etapes actives dans spad (ajouter listp,stop)
n1 = netap - 1

rewind lec #........... creation du fichier des parametres sur lec
klist = NO

repeat
{

primer Ratfiv 37

Ratfiv((4)) Fortran Ratfiv((4))

read (leca,500) (kart(j),j=1,MAXA4READER)
write (lec,500) (kart(j),j=1,MAXA4READER)
if (kart(1) == letap(n1)) klist = YES

}
until (kart(1) == letap(netap))

rewind lec
if (klist == YES)
{
call listp (bid)
rewind lec

}
memot = ASSEZ_MEMOIRE
list = netap - 1
ifin = netap

.......... appel des etapes successives
for(; ;)
{
read(lec,100) metap , m1
ketap = 0
do i = 1,netap
{
if(metap .eq. letap(i)) ketap = i

}

Interruption de la boucle des etapes
if(ketap == ETAPE_INCONNUE | memot != ASSEZ_MEMOIRE | ketap == ifin) break
if(ketap == list) next

switch (ketap) # choix de l etape demandee
{

#.... lecture des donnees et creation du fichier-archive ndon
case 1: call donne (q, mots, memot, ndona)

#.... creation de nleg (tableau de corresp.legere)
case 2: call dplum (q, mots, memot, nleg, nband)

#.... lecture du dico-archive ndica, creation de ndic et ndon
case 3: call lilex (q, mots , memot, ndica , ndona , ndic , ndon ,

nband, nbfor)
#.... composantes principales. creation de ngus

case 4: call compl (q, mots, memot, ndic, ndon, ngus, nband , nsav)
#.... correspondances simples. creation de ngus

case 5: call corbi (q, mots, memot, ndic, ndon, ngus, nband, nsav)
#.... corresp.multiples (memoire centrale). creation ngus

case 6: call multc (q, mots, memot, ndic, ndon, ngus, nband, nsav)
#.... corresp.multiples (lecture directe). creation ngus

case 7: call muldi (q, mots , memot, ndic , ndon , ngus , nband , nsav)
#.... corresp.legere sur nleg. creation de ngus

case 8: call aplum (q, mots, memot, nleg, ngus, nband, nsav)

primer Ratfiv 38

Ratfiv((4)) Fortran Ratfiv((4))

#.... appels des graphiques (variables et individus)
case 9: call graph (q, mots , memot, ngus , nband)

#.... classification (centres mobiles) puis arbre hierarchique
case 10: call eclat (q, mots, memot, ndic, ndon, ngri, nband, nbfor)

#.... classification sur facteurs. creation de ngri
case 11: call semis (q, mots , memot, ngus , ngri , nbfor)

#.... coupure de l-arbre et description des classes
case 12: call tamis (q, mots , memot, ndic , ndon , ngri , ngro ,

nleg , nbfor)
#.... graphiques pour la classification (centres et densite)

case 13: call grafk (q, mots , memot, ngus , ngro , ndon , nband ,nbfor)
#.... edition en clair des facteurs (pour compl et corbi)

case 14: call clair (q, mots, memot, ndic, ngus)
#.... regression, anavar et anacov

case 15: call mcreg (q, mots, memot, ndic, ndon)
#.... tabulations

case 16: call tabul (q, mots, memot,
ndica, ndona, ndic, ndon, nband, nbfor)

#.... tris-a-plat, histogrammes
case 17: call trihi (q, mots, memot, ndic, ndon)

#.... classification sur un graphe
case 18: call agraf (q, mots, memot, ngus,ngro,nband,nsav,nbfor)

#.... archivage de coordonnees et/ou classifications
case 19: call archi (q, mots, memot,ndica,ndona,ngus,ngro,nband,nsav)

#.... gestion de dictionnaire
case 20: call ecrit (q, mots, memot, ndica)

#.... apurement des valeurs hors-plage
case 21: call codaj (q, mots, memot, ndica,ndona,nbfor)

#.... classification ascendente hierarchique
case 22: call recip (q, mots, memot, ngus, ngri, nband, nbfor)

#..... creation des fichiers ndic et ndon a partir de nleg
case 23: call trans (q, mots, memot, nleg, ndic, ndon)

}
}

if(ketap == ifin) write (imp,(1h0,65x,’** ’,a4,a1,’** ’/1h0,62x,
’fin de l-analyse ’/1h0,130(’-’)))

else if(memot != ASSEZ_MEMOIRE)
write(imp,(1h1,131(’-’)//,30x,’erreur fatale : defaut de memoire’)) metap, m1

else
write(imp,(1h ,//," erreur sur le nom d etape ",a4,a1,/))metap, m1

100 format (a4,a1)

500 format (MAXA4READER a4)

return
end

primer Ratfiv 39

Ratfiv((4)) Fortran Ratfiv((4))

C/////////////////////////////// s p a d version du 01.04.83
C++ fspad1 ++
C fortran principal pour appel des etapes de s.p.a.d. +
C subroutine spad1, listp. +
C+++

SUBROUTINE SPAD1(Q, MOTS)
C==13.02.84 Version ecrite en RATFOR (Rationnal Fortran
C de Software-Tools via Ratfiv de Institute of Cancer Research)
C par N.Brouard (Institut National d’Etudes Demographiques)
C *
C programme selectionnant les etapes de * spad * a executer *
C definition des numeros de fichiers en data, *
C et des unites de lecture (leca) et d-impression (imp). *
C creation du fichier (lec) des parametres de commande. *
C l-argument memot sert de test pour la poursuite du programme *
C *

DIMENSION Q(MOTS), LETAP(25), KART(33)
COMMON/VAL/TEST
COMMON/ENSOR/LEC, IMP
DATA NDICA/1/, NDONA/2/, NDIC/8/, NDON/9/, NLEG/10/, NGUS/11/, NGR
*I/12/, NGRO/13/, NSAV/14/, NBAND/15/, NBFOR/16/
DATA LETAP/4HDONN, 4HDPLU, 4HLILE, 4HCOMP, 4HCORB, 4HMULT, 4HMULD,
* 4HAPLU, 4HGRAP, 4HECLA, 4HSEMI, 4HTAMI, 4HGRAF, 4HCLAI, 4HMCRE, 4
*HTABU, 4HTRIH, 4HAGRA, 4HARCH, 4HECRI, 4HCODA, 4HRECI, 4HTRAN, 4HL
*IST, 4HSTOP/

C........... leca= lecteur de cartes
LECA = 5

C lec = fichier auxiliaire de copie des parametres
LEC = 19

C imp = imprimante
IMP = 6

C..... nombre d-etapes actives dans spad (ajouter listp,stop)
NETAP = 23 + 2
N1 = NETAP - 1

C........... creation du fichier des parametres sur lec
REWIND LEC
KLIST = 0

2000 CONTINUE
READ(LECA, 500) (KART(J), J = 1, 33)
WRITE(LEC, 500) (KART(J), J = 1, 33)
IF (.NOT.(KART(1) .EQ. LETAP(N1))) GOTO 2030
KLIST = 1

2030 CONTINUE
2010 IF (.NOT.(KART(1) .EQ. LETAP(NETAP))) GOTO 2000

REWIND LEC
IF (.NOT.(KLIST .EQ. 1)) GOTO 2050
CALL LISTP(BID)
REWIND LEC

2050 CONTINUE
MEMOT = 0

primer Ratfiv 40

Ratfiv((4)) Fortran Ratfiv((4))

LIST = NETAP - 1
IFIN = NETAP

C appel des etapes successives
2070 CONTINUE

READ(LEC, 100) METAP, M1
KETAP = 0
DO 2100 I = 1, NETAP
IF (.NOT.(METAP.EQ.LETAP(I))) GOTO 2120
KETAP = I

2120 CONTINUE
C Interruption de la boucle des etapes
2100 CONTINUE

IF (.NOT.(KETAP .EQ. 0 .OR. MEMOT .NE. 0 .OR. KETAP .EQ. IFIN))
*GOTO 2140

GOTO 2090
2140 CONTINUE

IF (.NOT.(KETAP .EQ. LIST)) GOTO 2160
GOTO 2080

2160 CONTINUE
I2180 = (KETAP)
GOTO 2180

C choix de l etape demandee
C.... lecture des donnees et creation du fichier-archive ndon
2200 CONTINUE

CALL DONNE(Q, MOTS, MEMOT, NDONA)
C.... creation de nleg (tableau de corresp.legere)

GOTO 2190
2210 CONTINUE

CALL DPLUM(Q, MOTS, MEMOT, NLEG, NBAND)
C.... lecture du dico-archive ndica, creation de ndic et ndon

GOTO 2190
2220 CONTINUE

CALL LILEX(Q, MOTS, MEMOT, NDICA, NDONA, NDIC, NDON, NBAND, NB
*FOR)

C.... composantes principales. creation de ngus
GOTO 2190

2230 CONTINUE
CALL COMPL(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... correspondances simples. creation de ngus
GOTO 2190

2240 CONTINUE
CALL CORBI(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... corresp.multiples (memoire centrale). creation ngus
GOTO 2190

2250 CONTINUE
CALL MULTC(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... corresp.multiples (lecture directe). creation ngus
GOTO 2190

2260 CONTINUE
CALL MULDI(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

primer Ratfiv 41

Ratfiv((4)) Fortran Ratfiv((4))

C.... corresp.legere sur nleg. creation de ngus
GOTO 2190

2270 CONTINUE
CALL APLUM(Q, MOTS, MEMOT, NLEG, NGUS, NBAND, NSAV)

C.... appels des graphiques (variables et individus)
GOTO 2190

2280 CONTINUE
CALL GRAPH(Q, MOTS, MEMOT, NGUS, NBAND)

C.... classification (centres mobiles) puis arbre hierarchique
GOTO 2190

2290 CONTINUE
CALL ECLAT(Q, MOTS, MEMOT, NDIC, NDON, NGRI, NBAND, NBFOR)

C.... classification sur facteurs. creation de ngri
GOTO 2190

2300 CONTINUE
CALL SEMIS(Q, MOTS, MEMOT, NGUS, NGRI, NBFOR)

C.... coupure de l-arbre et description des classes
GOTO 2190

2310 CONTINUE
CALL TAMIS(Q, MOTS, MEMOT, NDIC, NDON, NGRI, NGRO, NLEG, NBFOR

*)
C.... graphiques pour la classification (centres et densite)

GOTO 2190
2320 CONTINUE

CALL GRAFK(Q, MOTS, MEMOT, NGUS, NGRO, NDON, NBAND, NBFOR)
C.... edition en clair des facteurs (pour compl et corbi)

GOTO 2190
2330 CONTINUE

CALL CLAIR(Q, MOTS, MEMOT, NDIC, NGUS)
C.... regression, anavar et anacov

GOTO 2190
2340 CONTINUE

CALL MCREG(Q, MOTS, MEMOT, NDIC, NDON)
C.... tabulations

GOTO 2190
2350 CONTINUE

CALL TABUL(Q, MOTS, MEMOT, NDICA, NDONA, NDIC, NDON, NBAND, NB
*FOR)

C.... tris-a-plat, histogrammes
GOTO 2190

2360 CONTINUE
CALL TRIHI(Q, MOTS, MEMOT, NDIC, NDON)

C.... classification sur un graphe
GOTO 2190

2370 CONTINUE
CALL AGRAF(Q, MOTS, MEMOT, NGUS, NGRO, NBAND, NSAV, NBFOR)

C.... archivage de coordonnees et/ou classifications
GOTO 2190

2380 CONTINUE
CALL ARCHI(Q, MOTS, MEMOT, NDICA, NDONA, NGUS, NGRO, NBAND, NS

primer Ratfiv 42

Ratfiv((4)) Fortran Ratfiv((4))

*AV)
C.... gestion de dictionnaire

GOTO 2190
2390 CONTINUE

CALL ECRIT(Q, MOTS, MEMOT, NDICA)
C.... apurement des valeurs hors-plage

GOTO 2190
2400 CONTINUE

CALL CODAJ(Q, MOTS, MEMOT, NDICA, NDONA, NBFOR)
C.... classification ascendente hierarchique

GOTO 2190
2410 CONTINUE

CALL RECIP(Q, MOTS, MEMOT, NGUS, NGRI, NBAND, NBFOR)
C..... creation des fichiers ndic et ndon a partir de nleg

GOTO 2190
2420 CONTINUE

CALL TRANS(Q, MOTS, MEMOT, NLEG, NDIC, NDON)
GOTO 2190

2180 CONTINUE
IF (I2180 .LT. 1 .OR. I2180 .GT. 23) GOTO 2190
GOTO (2200,2210,2220,2230,2240,2250,2260,2270,2280,2290,2300,231

*0,2320,2330,2340,2350,2360,2370,2380,2390,2400,2410,2420), I2180
2190 CONTINUE
2080 GOTO 2070
2090 CONTINUE

IF (.NOT.(KETAP .EQ. IFIN)) GOTO 2430
WRITE(IMP, 2450)

2450 FORMAT(1H0,65X,3H** ,A4,A1,3H** /1H0,62X,17Hfin de l-analyse /
*1H0,130(1H-))

GOTO 2440
2430 CONTINUE

IF (.NOT.(MEMOT .NE. 0)) GOTO 2460
WRITE(IMP, 2480) METAP, M1

2480 FORMAT(1H1,131(1H-)//,30X,33Herreur fatale : defaut de memoire
*)

GOTO 2440
2460 CONTINUE

WRITE(IMP, 2490) METAP, M1
2490 FORMAT(1H,//,35H erreur sur le nom d etape ,A4,A1,/)
2440 CONTINUE
100 FORMAT(A4, A1)
500 FORMAT(33A4)

RETURN
END

primer Ratfiv 43

Ratfiv((4)) Fortran Ratfiv((4))

C/////////////////////////////// s p a d version du 01.04.83
C++ fspad1 ++
C fortran principal pour appel des etapes de s.p.a.d. +
C subroutine spad1, listp. +
C+++

SUBROUTINE SPAD1(Q, MOTS)
C==13.02.84 Version ecrite en RATFOR (Rationnal Fortran
C de Software-Tools via Ratfiv de Institute of Cancer Research)
C par N.Brouard (Institut National d’Etudes Demographiques)
C *
C programme selectionnant les etapes de * spad * a executer *
C definition des numeros de fichiers en data, *
C et des unites de lecture (leca) et d-impression (imp). *
C creation du fichier (lec) des parametres de commande. *
C l-argument memot sert de test pour la poursuite du programme *
C *

DIMENSION Q(MOTS), LETAP(25), KART(33)
COMMON/VAL/TEST
COMMON/ENSOR/LEC, IMP
DATA NDICA/1/, NDONA/2/, NDIC/8/, NDON/9/, NLEG/10/, NGUS/11/, NGR
*I/12/, NGRO/13/, NSAV/14/, NBAND/15/, NBFOR/16/
DATA LETAP/4HDONN, 4HDPLU, 4HLILE, 4HCOMP, 4HCORB, 4HMULT, 4HMULD,
* 4HAPLU, 4HGRAP, 4HECLA, 4HSEMI, 4HTAMI, 4HGRAF, 4HCLAI, 4HMCRE, 4
*HTABU, 4HTRIH, 4HAGRA, 4HARCH, 4HECRI, 4HCODA, 4HRECI, 4HTRAN, 4HL
*IST, 4HSTOP/

C........... leca= lecteur de cartes
LECA = 5

C lec = fichier auxiliaire de copie des parametres
LEC = 19

C imp = imprimante
IMP = 6

C..... nombre d-etapes actives dans spad (ajouter listp,stop)
NETAP = 23 + 2
N1 = NETAP - 1

C........... creation du fichier des parametres sur lec
REWIND LEC
KLIST = 0

2000 CONTINUE
READ(LECA, 500) (KART(J), J = 1, 33)
WRITE(LEC, 500) (KART(J), J = 1, 33)
IF (KART(1) .EQ. LETAP(N1)) THEN
KLIST = 1

END IF
2010 IF (.NOT.(KART(1) .EQ. LETAP(NETAP))) GOTO 2000

REWIND LEC
IF (KLIST .EQ. 1) THEN
CALL LISTP(BID)
REWIND LEC

END IF
MEMOT = 0

primer Ratfiv 44

Ratfiv((4)) Fortran Ratfiv((4))

LIST = NETAP - 1
IFIN = NETAP

C appel des etapes successives
DO WHILE (.TRUE.)
READ(LEC, 100) METAP, M1
KETAP = 0
DO 2060 I = 1, NETAP
IF (METAP.EQ.LETAP(I)) THEN
KETAP = I

END IF
C Interruption de la boucle des etapes
2060 CONTINUE

IF (KETAP .EQ. 0 .OR. MEMOT .NE. 0 .OR. KETAP .EQ. IFIN) THEN
GOTO 2050

END IF
IF (KETAP .EQ. LIST) THEN
GOTO 2040

END IF
I2080 = (KETAP)
GOTO 2080

C choix de l etape demandee
C.... lecture des donnees et creation du fichier-archive ndon
2100 CONTINUE

CALL DONNE(Q, MOTS, MEMOT, NDONA)
C.... creation de nleg (tableau de corresp.legere)

GOTO 2090
2110 CONTINUE

CALL DPLUM(Q, MOTS, MEMOT, NLEG, NBAND)
C.... lecture du dico-archive ndica, creation de ndic et ndon

GOTO 2090
2120 CONTINUE

CALL LILEX(Q, MOTS, MEMOT, NDICA, NDONA, NDIC, NDON, NBAND, NB
*FOR)

C.... composantes principales. creation de ngus
GOTO 2090

2130 CONTINUE
CALL COMPL(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... correspondances simples. creation de ngus
GOTO 2090

2140 CONTINUE
CALL CORBI(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... corresp.multiples (memoire centrale). creation ngus
GOTO 2090

2150 CONTINUE
CALL MULTC(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... corresp.multiples (lecture directe). creation ngus
GOTO 2090

2160 CONTINUE
CALL MULDI(Q, MOTS, MEMOT, NDIC, NDON, NGUS, NBAND, NSAV)

C.... corresp.legere sur nleg. creation de ngus

primer Ratfiv 45

Ratfiv((4)) Fortran Ratfiv((4))

GOTO 2090
2170 CONTINUE

CALL APLUM(Q, MOTS, MEMOT, NLEG, NGUS, NBAND, NSAV)
C.... appels des graphiques (variables et individus)

GOTO 2090
2180 CONTINUE

CALL GRAPH(Q, MOTS, MEMOT, NGUS, NBAND)
C.... classification (centres mobiles) puis arbre hierarchique

GOTO 2090
2190 CONTINUE

CALL ECLAT(Q, MOTS, MEMOT, NDIC, NDON, NGRI, NBAND, NBFOR)
C.... classification sur facteurs. creation de ngri

GOTO 2090
2200 CONTINUE

CALL SEMIS(Q, MOTS, MEMOT, NGUS, NGRI, NBFOR)
C.... coupure de l-arbre et description des classes

GOTO 2090
2210 CONTINUE

CALL TAMIS(Q, MOTS, MEMOT, NDIC, NDON, NGRI, NGRO, NLEG, NBFOR
*)

C.... graphiques pour la classification (centres et densite)
GOTO 2090

2220 CONTINUE
CALL GRAFK(Q, MOTS, MEMOT, NGUS, NGRO, NDON, NBAND, NBFOR)

C.... edition en clair des facteurs (pour compl et corbi)
GOTO 2090

2230 CONTINUE
CALL CLAIR(Q, MOTS, MEMOT, NDIC, NGUS)

C.... regression, anavar et anacov
GOTO 2090

2240 CONTINUE
CALL MCREG(Q, MOTS, MEMOT, NDIC, NDON)

C.... tabulations
GOTO 2090

2250 CONTINUE
CALL TABUL(Q, MOTS, MEMOT, NDICA, NDONA, NDIC, NDON, NBAND, NB

*FOR)
C.... tris-a-plat, histogrammes

GOTO 2090
2260 CONTINUE

CALL TRIHI(Q, MOTS, MEMOT, NDIC, NDON)
C.... classification sur un graphe

GOTO 2090
2270 CONTINUE

CALL AGRAF(Q, MOTS, MEMOT, NGUS, NGRO, NBAND, NSAV, NBFOR)
C.... archivage de coordonnees et/ou classifications

GOTO 2090
2280 CONTINUE

CALL ARCHI(Q, MOTS, MEMOT, NDICA, NDONA, NGUS, NGRO, NBAND, NS
*AV)

primer Ratfiv 46

Ratfiv((4)) Fortran Ratfiv((4))

C.... gestion de dictionnaire
GOTO 2090

2290 CONTINUE
CALL ECRIT(Q, MOTS, MEMOT, NDICA)

C.... apurement des valeurs hors-plage
GOTO 2090

2300 CONTINUE
CALL CODAJ(Q, MOTS, MEMOT, NDICA, NDONA, NBFOR)

C.... classification ascendente hierarchique
GOTO 2090

2310 CONTINUE
CALL RECIP(Q, MOTS, MEMOT, NGUS, NGRI, NBAND, NBFOR)

C..... creation des fichiers ndic et ndon a partir de nleg
GOTO 2090

2320 CONTINUE
CALL TRANS(Q, MOTS, MEMOT, NLEG, NDIC, NDON)
GOTO 2090

2080 CONTINUE
GOTO (2100,2110,2120,2130,2140,2150,2160,2170,2180,2190,2200,221

*0,2220,2230,2240,2250,2260,2270,2280,2290,2300,2310,2320), I2080
2090 CONTINUE
2040 CONTINUE

END DO
2050 CONTINUE

IF (KETAP .EQ. IFIN) THEN
WRITE(IMP, 2330)

2330 FORMAT(1H0,65X,’** ’,A4,A1,’** ’/1H0,62X,’fin de l-analyse ’/1
*H0,130(’-’))
ELSE IF (MEMOT .NE. 0) THEN
WRITE(IMP, 2340) METAP, M1

2340 FORMAT(1H1,131(’-’)//,30X,’erreur fatale : defaut de memoire’)
ELSE
WRITE(IMP, 2350) METAP, M1

2350 FORMAT(1H,//,’ erreur sur le nom d etape ’,A4,A1,/)
END IF

100 FORMAT(A4, A1)
500 FORMAT(33A4)

RETURN
END

primer Ratfiv 47

Ratfiv((4)) Fortran Ratfiv((4))

#/////////////////////////////// s p a d version du 01.04.83
#++ fspad1 ++
fortran principal pour appel des etapes de s.p.a.d. +
subroutine spad1, listp. +
#+++

subroutine spad1 (q , mots)

#==13.02.84 Version ecrite en RATFOR (Rationnal Fortran
de Software-Tools via Ratfiv de Institute of Cancer Research)
par N.Brouard (Institut National d’Etudes Demographiques)

*
programme selectionnant les etapes de * spad * a executer *
definition des numeros de fichiers en data, *
et des unites de lecture (leca) et d-impression (imp). *
creation du fichier (lec) des parametres de commande. *
l-argument memot sert de test pour la poursuite du programme *
*
define (YES,1)
define (NO,0)
define (MAXA4READER,33)
define (ASSEZ_MEMOIRE,0)
define (ETAPE_INCONNUE,0)

dimension q(mots),letap(25) ,kart(MAXA4READER)

common / val / test
common /ensor/ lec, imp

data ndica/1/, ndona/2/,
ndic /8/, ndon /9/, nleg/10/, ngus/11/, ngri/12/, ngro/13/,
nsav/14/, nband/15/,nbfor/16/

data letap /4hdonn,4hdplu,4hlile,4hcomp,4hcorb,
4hmult,4hmuld,4haplu,4hgrap,4hecla,4hsemi,4htami,
4hgraf,4hclai,4hmcre,4htabu,4htrih,4hagra,4harch,
4hecri,4hcoda,4hreci,4htran,4hlist,4hstop/

leca = 5 #........... leca= lecteur de cartes
lec = 19 # lec = fichier auxiliaire de copie des parametres
imp = 6 # imp = imprimante
netap = 23 + 2 #..... nombre d-etapes actives dans spad (ajouter listp,stop)
n1 = netap - 1

rewind lec #........... creation du fichier des parametres sur lec
klist = NO

repeat
+---+

primer Ratfiv 48

Ratfiv((4)) Fortran Ratfiv((4))

| read (leca,500) (kart(j),j=1,MAXA4READER) |
| write (lec,500) (kart(j),j=1,MAXA4READER) |
| if (kart(1) == letap(n1)) klist = YES |
| |
+---+
until (kart(1) == letap(netap))

rewind lec
if (klist == YES)
+--+
| call listp (bid) |
| rewind lec |
+--+
memot = ASSEZ_MEMOIRE
list = netap - 1
ifin = netap

.......... appel des etapes successives
for(; ;)
+---+
| read(lec,100) metap , m1 |
| ketap = 0 |
| do i = 1,netap |
| +---+ |
| | if(metap .eq. letap(i)) ketap = i | |
| +---+ |
| |
| # Interruption de la boucle des etapes |
| if(ketap == ETAPE_INCONNUE | memot != ASSEZ_MEMOIRE | ketap == ifin) break |
| if(ketap == list) next |
| |
| switch (ketap) # choix de l etape demandee |
| +---+ |
	#.... lecture des donnees et creation du fichier-archive ndon	
	case 1: call donne (q, mots, memot, ndona)	
	#.... creation de nleg (tableau de corresp.legere)	
	case 2: call dplum (q, mots, memot, nleg, nband)	
	#.... lecture du dico-archive ndica, creation de ndic et ndon	
	case 3: call lilex (q, mots , memot, ndica , ndona , ndic , ndon ,	
	nband, nbfor)	
	#.... composantes principales. creation de ngus	
	case 4: call compl (q, mots, memot, ndic, ndon, ngus, nband , nsav)	
	#.... correspondances simples. creation de ngus	
	case 5: call corbi (q, mots, memot, ndic, ndon, ngus, nband, nsav)	
	#.... corresp.multiples (memoire centrale). creation ngus	
	case 6: call multc (q, mots, memot, ndic, ndon, ngus, nband, nsav)	
	#.... corresp.multiples (lecture directe). creation ngus	
	case 7: call muldi (q, mots , memot, ndic , ndon , ngus , nband , nsav)	
	#.... corresp.legere sur nleg. creation de ngus	
	case 8: call aplum (q, mots, memot, nleg, ngus, nband, nsav)	

primer Ratfiv 49

Ratfiv((4)) Fortran Ratfiv((4))

	#.... appels des graphiques (variables et individus)	
	case 9: call graph (q, mots , memot, ngus , nband)	
	#.... classification (centres mobiles) puis arbre hierarchique	
	case 10: call eclat (q, mots, memot, ndic, ndon, ngri, nband, nbfor)	
	#.... classification sur facteurs. creation de ngri	
	case 11: call semis (q, mots , memot, ngus , ngri , nbfor)	
	#.... coupure de l-arbre et description des classes	
	case 12: call tamis (q, mots , memot, ndic , ndon , ngri , ngro ,	
	nleg , nbfor)	
	#.... graphiques pour la classification (centres et densite)	
	case 13: call grafk (q, mots , memot, ngus , ngro , ndon , nband ,nbfor)	
	#.... edition en clair des facteurs (pour compl et corbi)	
	case 14: call clair (q, mots, memot, ndic, ngus)	
	#.... regression, anavar et anacov	
	case 15: call mcreg (q, mots, memot, ndic, ndon)	
	#.... tabulations	
	case 16: call tabul (q, mots, memot,	
	ndica, ndona, ndic, ndon, nband, nbfor)	
	#.... tris-a-plat, histogrammes	
	case 17: call trihi (q, mots, memot, ndic, ndon)	
	#.... classification sur un graphe	
	case 18: call agraf (q, mots, memot, ngus,ngro,nband,nsav,nbfor)	
	#.... archivage de coordonnees et/ou classifications	
	case 19: call archi (q, mots, memot,ndica,ndona,ngus,ngro,nband,nsav)	
	#.... gestion de dictionnaire	
	case 20: call ecrit (q, mots, memot, ndica)	
	#.... apurement des valeurs hors-plage	
	case 21: call codaj (q, mots, memot, ndica,ndona,nbfor)	
	#.... classification ascendente hierarchique	
	case 22: call recip (q, mots, memot, ngus, ngri, nband, nbfor)	
	#..... creation des fichiers ndic et ndon a partir de nleg	
	case 23: call trans (q, mots, memot, nleg, ndic, ndon)	
+---+		
+---+

if(ketap == ifin) write (imp,(1h0,65x,’** ’,a4,a1,’** ’/1h0,62x,
’fin de l-analyse ’/1h0,130(’-’)))

else if(memot != ASSEZ_MEMOIRE)
write(imp,(1h1,131(’-’)//,30x,’erreur fatale : defaut de memoire’)) metap, m1

else
write(imp,(1h ,//," erreur sur le nom d etape ",a4,a1,/))metap, m1

100 format (a4,a1)

500 format (MAXA4READER a4)

return
end

primer Ratfiv 50

Ratfiv((4)) Fortran Ratfiv((4))

DIAGNOSTICS

Unfortunately some error messages are not discussed here.

can’t open symbols file
The special symbols file containing general purpose ratfiv definitions could
not be opened. Possibly the user did not have access to the particular library
the preprocessor expected to read.

can’t open included file
File to be included was not found.

definition too long
The number of characters in the name to be defined exceeded Ratfiv’s internal
array size (current maximum is 500 characters per definition)

for clause too long
the reinit clause of a for clause was was too long. This is a fatal error.

format too long
A format specification in a read, write, encode, or decode statement was too
long (current maximum is 600 characters)

illegal break
Break did not occur inside a valid "while", "for", "do", or "repeat" loop.

illegal case or default
a case or default statement occurred while not inside a switch statement

illegal else
Else clause probably did not follow an "if" clause

illegal next
"Next" did not occur inside a valid "for", "while", "do", or "repeat" loop

illegal right brace
A right brace was found without a matching left brace

includes nested too deeply
At the present, includes may only be nested 4 files deep, counting the current
input file

invalid for clause
The "for" clause did not contain a valid init, condition, and/or increment sec-
tion

missing left paren
A parenthesis was expected, probably in an "if" statement, but not found

missing parenthesis in condition
A right parenthesis was expected, probably in an "if" statement, but not found

missing quote
an expected quote was not found

missing right paren
A right parenthesis was expected in a Fortran (as opposed to Ratfiv) state-
ment but not found

illegal macro name
Macro names must not begin with a digit and must contain only alphanu-
meric characters or the underscore (_) and dollar ($) characters

stack overflow in parser
Statements were nested at too deep a level. Current maximum is 100 state-
ments nested at a time. This is a fatal error.

primer Ratfiv 51

Ratfiv((4)) Fortran Ratfiv((4))

token too long
A token (word) in the sourcecode was too long to fit into one of Ratfiv’s inter-
nal arrays. (Current maximum word size is 200 characters.)

too many characters pushed back
The source code has illegally specified a Ratfiv command, or has used a
keyword or macro in an illegal manner, and the parser has attempted but
failed to make sense out of it. This is a fatal error.

too many definitions
Ratfiv’s internal arrays could not hold all the definitions.

unbalanced parentheses
Unbalanced parentheses detected in a Fortran (as opposed to Ratfiv) state-
ment

unexpected EOF
An end-of-file was reached unexpectedly. Often this is caused by unmatched
braces somewhere deep in the sourcecode.

warning possible label conflict
This message is printed when the user has labeled a statement with a label in
the 2000 and up range if the label is divisible by 10. Ratfiv statements are
assigned in this range and a user-defined one may conflict with a Ratfiv-gen-
erated one.

file: can’t open
Ratfiv could not open an input file specified by the user.

primer Ratfiv 52

Ratfiv((4)) Fortran Ratfiv((4))

IMPLEMENTATION

Ratfiv generates code by reading input files and translating any Ratfiv keywords into standard
Fortran. Ratfiv does not know any Fortran and thus does not handle any Fortran error detection. Errors in
Ratfiv keyword syntax are noted by a message to the user’s terminal and to the Fortran output file along
with an indication of the source line number which caused the problem.

This compiler was originally written by B. Kernighan and P. J. Plauger, with rewrites and
enhancements by David Hanson and friends (U. of Arizona), Joe Sventek and Debbie Scherrer (Lawrence
Berkely Laboratory), and William Wood (Institute For Cancer Research).

For information, comments, or bug reports, please contact:

William Wood
The Institute For Cancer Research
7701 Burholme Ave.
Philadelphia, Pa. 19111
(215) 728 2760

primer Ratfiv 53

Ratfiv((4)) Fortran Ratfiv((4))

SEE ALSO

1) Kernighan, Brian W., "Ratfor--a Preprocessor for a Rational Fortran". Bell Laboratories publication.
Also available from the UC Berkeley Computer Science library.

2) Kernighan, Brian W. and P. J. Plauger, "Software Tools". Addison-Wesley Publishing Company, Read-
ing, Mass., 1976.

3) The rat4 user and design documents; the rc user document.

4) The Unix command "rc" in the Unix Manual (RC(I))

primer Ratfiv 54

