
Extending LATEX’s color facilities: the xcolor

package

Dr. Uwe Kern

v2.00 (2004/07/04) ∗

Abstract

xcolor provides easy driver-independent access to several kinds of colors,
tints, shades, tones, and mixes of arbitrary colors by means of color expres-
sions like \color{red!50!green!20!blue}. It allows to select a document-
wide target color model and offers tools for automatic color schemes, conver-
sion between nine color models, alternating table row colors, color blending
and masking, and color separation.

Contents

1 Introduction 4
1.1 Purpose of this package . 4
1.2 Color tints, shades, tones, and complements 4
1.3 Color models . 5

2 The User Interface 5
2.1 Preparation . 5

2.1.1 Package installation . 5
2.1.2 Package options . 5
2.1.3 Executing additional initialisation commands 6

2.2 Color models . 6
2.2.1 Supported color models . 6
2.2.2 Changing the target color model within a document 8

2.3 Arguments and terminology . 9
2.3.1 Additional remarks and restrictions on arguments 9
2.3.2 Meaning of standard color expressions 12
2.3.3 Meaning of extended color expressions 12

2.4 Predefined colors . 13
2.4.1 Colors that are always available 13
2.4.2 Additional sets of colors . 14

2.5 Color definition . 14
2.5.1 Ordinary and named colors 14

∗This package can be downloaded from the CTAN mirrors: /macros/latex/contrib/xcolor/.
There is also an xcolor homepage: www.ukern.de/tex/xcolor.html. Please send error reports
and suggestions for improvements to the author: xcolor@ukern.de.

1

2.5.2 Color definition in xcolor . 16
2.5.3 Defining sets of colors . 16
2.5.4 Global color definitions . 17

2.6 Color application . 17
2.6.1 Using the current color . 18

2.7 Color blending . 18
2.8 Color masks and separation . 21
2.9 Color series . 22

2.9.1 Definition of a color series 23
2.9.2 Initialisation of a color series 24
2.9.3 Application of a color series 24
2.9.4 Differences between colors and color series 24

2.10 Border colors for hyperlinks . 24
2.11 Color in tables . 26
2.12 Color information . 27
2.13 Color conversion . 28

3 Technical Supplement 28
3.1 Color models supported by drivers 28
3.2 Behind the scenes: internal color representation 28
3.3 A remark on accuracy . 30

4 The Formulas 30
4.1 Color mixing . 30
4.2 Conversion between integer and real models 31

4.2.1 Real to integer conversion 31
4.2.2 Integer to real conversion 31

4.3 Color conversion and complements 33
4.3.1 The rgb model . 33
4.3.2 The cmy model . 36
4.3.3 The cmyk model . 37
4.3.4 The hsb model . 37
4.3.5 The gray model . 39
4.3.6 The RGB model . 40
4.3.7 The HTML model . 40
4.3.8 The HSB model . 40
4.3.9 The Gray model . 40

References 40

Acknowledgement 41

Known Issues 41

History 41

Index 45

2

List of Tables

1 Package loading order . 7
2 Package options . 7
3 Supported color models . 8
4 Arguments and terminology . 10
5 Drivers and color models . 28
6 Driver-dependent internal color representation 29
7 Color constants . 32
8 Color conversion pairs . 32

List of Figures

1 Target color model — Example . 9
2 Standard color expressions — Example 13
3 Standard color expressions — Box example 13
4 Colors defined by the dvipsnames option 14
5 Colors defined by the svgnames option 15
6 Color example: MyGreen . 18
7 Color example: MyGreen-cmy . 19
8 Color example: MyGreen-rgb . 19
9 Color example: MyGreen-hsb . 20
10 Color example: MyGreen-gray . 20
11 Current color — Example . 21
12 Color masking — Example . 22
13 Color series — Example . 25
14 Alternating row colors in tables: \rowcolors vs. \rowcolors* . . 27

3

1 Introduction

1.1 Purpose of this package

The color package provides a powerful tool for handling colors within (pdf)LATEX in
a consistent and driver-independent way, supporting several color models (slightly
less driver-independent).
Nevertheless, it is sometimes a bit clumsy to use, especially in cases where slight
color variations, color mixes or color conversions are involved: this usually implies
the usage of another program that calculates the necessary parameters, which are
then copied into a \definecolor command in LATEX. Quite often, also a pocket
calculator is involved in the treatment of issues like the following:

• My company has defined a corporate color, and the printing office tells me
how expensive it is to use more than two colors in our new brochure, whereas
all kinds of tints (e.g. a 75% version) of our color can be used at no extra
cost. But how to access these color variations in LATEX?

• My friend uses a nice color which I would like to apply in my own documents;
unfortunately, it is defined in the hsb model which is not supported in my
favorite application pdfLATEX. What to do now?

• How does a mixture of 40% green and 60% yellow look like?
(Answer: 40% + 60% =)

• And how does its complementary color look like? (Answer:)

• Now I want to mix three parts of the last color with two parts of its com-
plement and one part of red. How does that look?
(Answer: 3× +2× +1× =)

• My printing office wants all color definitions in my document to be trans-
formed into the cmyk model. How can I do the calculations efficiently?

• I have a table with 50 rows. How can I get alternating colors for entire rows
without copying 50 \rowcolor commands?

These are some of the issues solved by the xcolor package.

1.2 Color tints, shades, tones, and complements

According to [11] we define the terms

• tint: a color with white added,

• shade: a color with black added,

• tone: a color with gray added.

These are special cases of a general function mix(C,C ′, p) which constructs a new
color, consisting of p parts of color C and 1−p parts of color C ′, where 0 ≤ p ≤ 1.
Thus, we set

tint(C, p) := mix(C, white, p) (1)
shade(C, p) := mix(C, black, p) (2)
tone(C, p) := mix(C, gray, p) (3)

4

where white, black, and gray are model-specific constants, see table 7 on page 32.
Further we define the term

• complement: a color C∗ that yields white if superposed with the original
color C.

See section 4.3 on page 33 for details.

1.3 Color models

A color model is a tool to describe or represent a certain set of colors in a way
that is suitable for the desired target device, e.g. a screen or a printer. There
are proprietary models (like Pantone) that provide finite sets of colors, where the
user has to choose from without caring about parametrisations; on the other hand,
there are parameter-driven models like gray, rgb, and cmyk, that aim to represent
large finite or even (theoretically) infinite sets of colors, built on very small subsets
of base colors and rules, how to construct other colors from these base colors. For
example, a large range of colors can be constructed by linear combinations of the
base colors red, green, and blue.

2 The User Interface

2.1 Preparation

2.1.1 Package installation

First of all, put the file xcolor.sty to some place where (pdf)LATEX finds it. Then
simply use xcolor (instead of color) in your document. Thus, the general command
is \usepackage[〈options〉]{xcolor} in the document preamble. Table 1 on page 7
shows what has to be taken into account with respect to the package loading order.

2.1.2 Package options

In general, there are several types of options:

• options that determine the color driver as explained in [2] and [3] (cur-
rently: dvips, xdvi, dvipdf, dvipdfm, pdftex, dvipsone, dviwindo, emtex,
dviwin, oztex, textures, pctexps, pctexwin, pctexhp, pctex32, truetex,
tcidvi, vtex),

• options that determine the target color model1 (natural, rgb, cmy, cmyk,
hsb, gray, RGB, HTML, HSB, Gray) or disable colored output (monochrome),

• options that control whether certain sets of predefined colors are being loaded
(dvipsnames, svgnames),

• options that determine which other packages are to be loaded (pst2, table)
or supported (hyperref),

1Section 2.2.2 on page 8 explains how this setting can be overridden at any point in a docu-
ment.

2This option will soon become obsolete, since recent pstricks.sty versions do load xcolor,
whereas pstcol is no longer needed.

5

• options that determine the behaviour of other commands (showerrors,
hideerrors),

• obsolete options (override, usenames, nodvipsnames).

All available package options (except driver selection and obsolete options) are
listed in table 2 on the following page. In order to facilitate the co-operation with\GetGinDriver

\GinDriver the hyperref package, there is a command \GetGinDriver3 that grabs the driver
actually used and puts it into the command \GinDriver. The latter can then be
used within hyperref (or other packages), see the code example on page 6. If there
is no corresponding hyperref option, hypertex will be taken as default.
Warning: there is a substantial difference between xcolor and color regarding
how the dvips option is being handled. The color package implicitly invokes
the dvipsnames option, whenever one of the dvips, oztex, xdvi drivers is se-
lected. This makes documents less portable, since whenever one of these colors is
used without explicit dvipsnames option, other drivers like pdftex will issue error
messages because of unknown colors. Therefore, xcolor always requires an explicit
dvipsnames option to use these names — which then works for all drivers.

2.1.3 Executing additional initialisation commands

Here is a simple interface to pass commands that should be executed at the end\xcolorcmd

of the xcolor package (immediately before the initialising \color{black} is ex-
ecuted). Just say \def\xcolorcmd{〈commands〉} at some point before xcolor is
loaded.
Example: assuming that a.tex is a complete LATEX document, the command
latex \def\xcolorcmd{\colorlet{black}{red}}\input{a} at the console gen-
erates a file a.dvi with all occurences of black being replaced by red, without the
necessity to change the source file itself.

2.2 Color models

2.2.1 Supported color models

The list of supported color models is given in table 3 on page 8. We emphasize
that this color support is independent of the chosen driver.
‘Color model support’ also means that it is possible to specify colors directly with
their parameters, e.g. by saying \textcolor[cmy]{0.7,0.5,0.3}{foo} (foo) or
\textcolor[HTML]{AFFE90}{foo} (foo). It is noteworthy that the HTML model
accepts any combination of the characters 0–9, A–F, a–f, as long as the string has
a length of exactly 6 characters. However, outputs of conversions to HTML will
always consist of numbers and uppercase letters.
There is a special command to fine-tune the mechanisms of undercolor-removal\adjustUCRBG

and black-generation during conversion to the cmyk model, see section 4.3.2 on
page 36 for details.
For the integer models RGB, HSB, and Gray, the constants L,M,N of table 3\rangeRGB

\rangeHSB

\rangeGray

are defined via the commands \def\rangeRGB{〈L〉}, \def\rangeHSB{〈M 〉}, and
\def\rangeGray{〈N 〉}. Changes of these constants should be done before the
xcolor package is loaded, e.g.:

3This command is executed automatically if the package option hyperref is used.

6

Table 1: Package loading order

Action/Package color pstcol colortbl hyperref

load before xcolor no allowed1 allowed allowed
load with xcolor option — pst1 table —
load after xcolor no no allowed allowed

1 not recommended, better use recent pstricks.sty

Table 2: Package options

Option Description
natural (Default.) Keep all colors in their model, except RGB (converted

to rgb), HSB (converted to hsb), and Gray (converted to gray).
rgb Convert all colors to the rgb model.
cmy Convert all colors to the cmy model.
cmyk Convert all colors to the cmyk model.
hsb Convert all colors to the hsb model.
gray Convert all colors to the gray model. Especially useful to simu-

late how a black & white printer will output the document.
RGB Convert all colors to the RGB model (and afterwards to rgb).
HTML Convert all colors to the HTML model (and afterwards to rgb).
HSB Convert all colors to the HSB model (and afterwards to hsb).
Gray Convert all colors to the Gray model (and afterwards to gray).
pst Load the pstcol package, in order to use ‘normal’ color definitions

within pstricks macros (see footnote 2 on page 5).
table Load the colortbl package, in order to use the tools for coloring

rows, columns, and cells within tables.
hyperref Support the hyperref package in terms of color expressions by

defining additional keys (cf. section 2.10 on page 24).
dvipsnames Load a set of predefined colors as shown in figure 4 on page 14.
svgnames Load a set of predefined colors as shown in figure 5 on page 15.
showerrors (Default.) Display an error message if an undefined color is being

used (same behaviour as in the original color package).
hideerrors Display only a warning if an undefined color is being used, and

replace this color by black.

7

Table 3: Supported color models

Name Base colors/notions Parameter range Default
rgb red, green, blue [0, 1]3

cmy cyan, magenta, yellow [0, 1]3

cmyk cyan, magenta, yellow, black [0, 1]4

hsb hue, saturation, brightness [0, 1]3

gray gray [0, 1]
RGB Red, Green, Blue {0, 1, . . . , L}3 L = 255
HTML RRGGBB {000000, . . . , FFFFFF}
HSB Hue, Saturation, Brightness {0, 1, . . . , M}3 M = 240
Gray Gray {0, 1, . . . , N} N = 15

L,M, N are positive integers

\documentclass{article}

...

\def\rangeRGB{15}

\usepackage[dvips]{xcolor}

...

\GetGinDriver

\usepackage[\GinDriver]{hyperref}

...

\begin{document}

...

2.2.2 Changing the target color model within a document

{〈num model〉}\selectcolormodel

Sets the target model to 〈num model〉, where the latter is one of the model names
allowed as package option (i.e., natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML,
HSB, Gray), see figure 1 on the next page for an example. There are two possible
hooks, where the conversion to the target model can take place:

• at color definition time4 (i.e., within \definecolor and friends); this is\ifconvertcolorsD

controlled by the switch \ifconvertcolorsD;

• at time of color usage (immediately before a color is displayed, therefore\ifconvertcolorsU

covering colors that have been defined in other models or that are being
specified directly like \color[rgb]{.1,.2,.3}); this is controlled by the
switch \ifconvertcolorsU.

Both switches are set to ‘true’ by selecting any of the models, except natural,
which sets them to ‘false’. This applies for selection via a package option as
well as via \selectcolormodel. Why don’t we simply convert all colors at time
of usage? If many colors are involved, it can save some processing time when

4This means that all newly defined colors will be first converted to the target model, then
saved.

8

all conversions are already done during color definitions. Best performance can
be achieved by saying \usepackage[rgb,...]{xcolor}\convertcolorsUfalse,
which is actually the way how xcolor worked up to version 1.07.

Figure 1: Target color model — Example

\selectcolormodel

...{natural}

...{rgb}

...{cmy}

...{cmyk}

...{hsb}

...{gray}

2.3 Arguments and terminology

Before we describe xcolor’s color-related commands in detail, we define several ele-
ments or identifiers that appear repeatedly within arguments of those commands.
A general syntax overview is given in table 4 on the following page.

2.3.1 Additional remarks and restrictions on arguments

Basic strings and numbers These arguments do not need much explanation.〈empty〉
〈minus〉
〈plus〉
〈int〉
〈num〉
〈dec〉
〈pct〉
〈div〉

However, as far as numerical values are concerned, it is noteworthy that real
numbers in (La)TEX are — as long as they are to be used in the context of lengths,
dimensions, or skips — are restricted to a maximum absolute value < 16384.
Certainly, in a chain of numerical calculations, this constraint has also to be obeyed
for every single interim result, which usually implies further range restrictions.
Since xcolor makes extensive use of TEX’s internal dimension registers for most
types of calculations, this should be kept in mind whenever 〈ext expr〉 expressions
are to be used.

Color names A 〈name〉 denotes the declared name (or the name to be declared)〈name〉
of a color or a color series; it may be declared explicitly by one of the follow-
ing commands: \definecolor, \providecolor, \colorlet, \definecolorset,
\providecolorset, \definecolorseries. On the other hand, the reserved color
name ‘.’ is declared implicitly and denotes the current color. Actually, besides
letters and digits, certain other characters do also work for 〈name〉 declarations,
but the given restriction avoids misunderstandings and ensures compatibility with
future extensions of xcolor.
Examples: ‘red’, ‘MySpecialGreen1980’, ‘.’.

Color models The differentiation between core models (rgb, cmy, cmyk, hsb,〈core model〉
〈num model〉

〈model〉 gray), integer models (RGB, HTML, HSB, Gray), and pseudo models (currently
only ‘named’) has a simple reason: core models with their parameter ranges based
on the unit interval [0, 1] are best suited for all kinds of calculations, whereas
the purpose of the integer models is mainly to facilitate the input of parameters,
followed by some transformation into one of the core models. Finally, the pseudo

9

Table 4: Arguments and terminology

Element Replacement string
〈empty〉 → empty string ‘’
〈minus〉 → non-empty string consisting of one or more minus signs ‘-’
〈plus〉 → non-empty string consisting of one or more plus signs ‘+’
〈int〉 → integer number (integer)
〈num〉 → non-negative integer number (number)
〈dec〉 → real number (decimal)
〈div〉 → non-zero real number (divisor)
〈pct〉 → real number from the interval [0, 100] (percentage)
〈name〉 → non-empty string consisting of letters and digits (explicit name)

→ ‘.’ (implicit name)
〈core model〉 → ‘rgb’, ‘cmy’, ‘cmyk’, ‘hsb’, ‘gray’ (core models)
〈num model〉 → 〈core model〉

→ ‘RGB’, ‘HTML’, ‘HSB’, ‘Gray’ (integer models)
〈model〉 → 〈num model〉 (numerical models)

→ ‘named’ (pseudo model)
〈spec〉 → comma-separated list of numerical values (explicit specification)

→ name of a ‘named’ color (implicit specification)
〈type〉 → 〈empty〉

→ ‘named’
〈expr〉 → 〈prefix 〉〈name〉〈mix expr〉〈postfix 〉 (standard color expression)
〈prefix 〉 → 〈empty〉

→ 〈minus〉 (complement indicator)
〈mix expr〉 → !〈pct〉1!〈name〉1!〈pct〉2!〈name〉2!. . . !〈pct〉n!〈name〉n (complete mix expr.)

→ !〈pct〉1!〈name〉1!〈pct〉2!〈name〉2!. . . !〈pct〉n (incomplete mix expr.)
〈postfix 〉 → 〈empty〉

→ !!〈plus〉 (series step)
→ !![〈num〉] (series access)

〈ext expr〉 → 〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k
→ 〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

〈color〉 → 〈name〉
→ 〈expr〉
→ 〈ext expr〉

Remarks: Each → denotes a possible replacement string for the element in the left column;
however, further restrictions may apply — depending on the context. See main
text for details. A string ‘foo’ is always to be understood without the quotes.
n and k denote positive integers.

10

model ‘named’ has a special status, since it is ‘calculation-averse’: it is usually
only possible to convert such a color into one of the other models, but not the
other way round.

Color specifications The 〈spec〉 argument — which specifies the parameters〈spec〉
of a color — obviously depends on the underlying color model. We differentiate
between explicit and implicit specification, the former referring to numerical pa-
rameters as explained in table 3 on page 8, the latter — ideally — referring to
driver-provided names.
Examples: ‘.1,.2,.3’, ‘0.56789’, ‘89ABCD’, ‘ForestGreen’.

The type argument This is used only in the context of color defining com-〈type〉
mands, see the description of \definecolor and friends.

Standard color expressions These expressions serve as a tool to easily specify〈expr〉
〈prefix 〉

〈mix expr〉
〈postfix 〉

a certain form of cascaded color mixing which is described in detail in section 2.3.2
on the following page. The 〈prefix 〉 argument controls whether the color following
thereafter or its complement will be relevant: an odd number of minus signs
indicates that the color resulting from the remaining expression has to be converted
into its complementary color. An incomplete mix expression is just an abbreviation
for a complete mix expression with 〈name〉n = white, in order to save some
keystrokes in the case of tints. The 〈postfix 〉 string is usually empty, but it offers
some additional functionality in the case of a color series: the non-empty cases
require that

• 〈name〉 denotes the name of a color series,

• 〈mix expr〉 is a complete mix expression.

Examples: ‘red’, ‘-red’, ‘--red!50!green!12.345’, ‘red!50!green!20!blue’,
‘foo!!+’, ‘foo!![7]’, ‘foo!25!red!!+++’, ‘foo!25!red!70!green!![7]’.

Extended color expressions These expressions provide another method of〈ext expr〉
color mixing, see section 2.3.3 on the next page for details. The shorter form

〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

is an abbreviation for the special (and probably most used) case

〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

with the following definition (requiring a non-zero sum of all 〈dec〉κ coefficients):

〈div〉 := 〈dec〉1 + 〈dec〉2 + · · ·+ 〈dec〉k 6= 0.

Examples: ‘rgb:red,1’, ‘cmyk:red,1;-green!25!blue!60,11.25;blue,-2’.

Colors Finally, 〈color〉 is the ‘umbrella’ argument, covering the different con-〈color〉
cepts of specifying colors. This means, whenever there is a 〈color〉 argument, the
full range of names and expressions, as explained above, may be used.

11

2.3.2 Meaning of standard color expressions

We explain now how an expression

〈prefix 〉〈name〉!〈pct〉1!〈name〉1!〈pct〉2! . . . !〈pct〉n!〈name〉n〈postfix 〉

is being interpreted and processed:

1. First of all, the model and color parameters of 〈name〉 are extracted to
define a temporary color 〈temp〉. If 〈postfix 〉 has the form ‘!![〈num〉]’,
then 〈temp〉 will be the corresponding (direct-accessed) color 〈num〉 from
the series 〈name〉.

2. Then a color mix, consisting of 〈pct〉1% of color 〈temp〉 and (100− 〈pct〉1)%
of color 〈name〉1 is computed; this is the new temporary color 〈temp〉.

3. The previous step is being repeated for all remaining parameter pairs
(〈pct〉2,〈name〉2), . . . , (〈pct〉n,〈name〉n).

4. If 〈prefix 〉 consists of an odd number of minus signs ‘-’, then 〈temp〉 will be
changed into its complementary color.

5. If 〈postfix 〉 has the form ‘!!+’, ‘!!++’, ‘!!+++’, etc., a number of step com-
mands (= number of ‘+’ signs) are performed on the underlying color series
〈name〉. This has no consequences for the color 〈temp〉.

6. Now the color 〈temp〉 is being displayed or serves as an input for other
operations, depending on the invoking command.

Note that in a typical step 2 expression 〈temp〉!〈pct〉ν!〈name〉ν , if 〈pct〉ν=100
resp. 〈pct〉ν=0, the color 〈temp〉 resp. 〈name〉ν is used without further transfor-
mations. In the true mix case, 0 <〈pct〉ν< 100, the two involved colors may have
been defined in different color models, e.g. \definecolor{foo}{rgb}{...} and
\definecolor{bar}{cmyk}{...}. In general, the second color, 〈name〉ν , is trans-
formed into the model of the first color, 〈temp〉, then the mix is calculated within
that model. 5 Thus, 〈temp〉!〈pct〉ν!〈name〉ν and 〈name〉ν!〈100−pct〉ν!〈temp〉,
which should be equivalent theoretically, will not necessarily yield identical vi-
sual results.
Figures 2 to 3 on the following page show some first applications of colors and
expressions. More examples are given in figures 6 to 10 on pages 18–20. Over and
above that, a large set of color examples can be found in [6].

2.3.3 Meaning of extended color expressions

An extended color expression

〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k
mimes color mixing as painters do it: specify a list of colors, each with a 〈dec〉
factor attached to. For such an 〈ext expr〉, each standard color expression 〈expr〉κ

5Exception: in order to avoid strange results, this rule is being reversed if 〈temp〉 origins from
the gray model; in this case it is converted into the underlying model of 〈name〉ν .

12

Figure 2: Standard color expressions — Example

red -red

red!75 -red!75

red!75!green -red!75!green

red!75!green!50 -red!75!green!50

red!75!green!50!blue -red!75!green!50!blue

red!75!green!50!blue!25 -red!75!green!50!blue!25

red!75!green!50!blue!25!gray -red!75!green!50!blue!25!gray

Figure 3: Standard color expressions — Box example

\fboxrule6pt

\fcolorbox

{red!70!green}% outer frame

{yellow!30!blue}% outer background

{\fcolorbox

{-yellow!30!blue}% inner frame

{-red!70!green}% inner background

{Test\textcolor{red!72.75}{Test}\color{-green}Test}}

TestTestTest

will be converted to 〈core model〉, then the resulting vector is multiplied by
〈dec〉κ/〈div〉, where

〈div〉 := 〈dec〉1 + 〈dec〉2 + · · ·+ 〈dec〉k.

Afterwards the sum of all of these vectors is calculated.
Example: mixing 4 parts of red, 2 parts of green, and 1 part of
yellow , we get by saying \color{rgb:red,4;green,2;yellow,1}. Trying
the same with −1 parts of yellow instead, we get . Note that this mechanism
can also be used to display an individual color (expression) in a certain color
model: \color{rgb:yellow,1} results in such a conversion. The general form

〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k
does the same operation with the only difference that the divisor 〈div〉 is being
specified instead of calculated. In the above example, we get a shaded version

by saying \color{rgb,9:red,4;green,2;yellow,1}. Note that it is not
forbidden to specify a 〈div〉 argument which is smaller than the sum of all 〈dec〉κ,
such that one or more of the final color specification parameters could be outside
the interval [0, 1]. However, the mapping of equation (6) takes care of such cases.

2.4 Predefined colors

2.4.1 Colors that are always available

Within xcolor.sty, the following color names are defined: red, green,
blue, cyan, magenta, yellow , orange, violet, purple,
brown, black, darkgray , gray , lightgray , white.

This base set of colors can be used without restrictions in all kinds of color ex-
pressions, as explained in section 2.3 on page 9.

13

2.4.2 Additional sets of colors

There are also sets of color names that may be loaded by xcolor via package options:

• dvipsnames loads a set of 68 cmyk colors as defined in the dvips driver.
However, these colors may be used in all supported drivers. See figure 4.

• svgnames loads a set of 147 rgb color names6 according to the SVG 1.1
specification [12]7, see figure 5 on the next page.

Note that — due to some overlap in the names — the option order is important,
if you plan to use more than one of these sets. See also [6] for a systematic set of
color and mix examples.

Figure 4: Colors defined by the dvipsnames option

Apricot
Aquamarine
Bittersweet
Black
BlueGreen
BlueViolet
Blue
BrickRed
Brown
BurntOrange
CadetBlue
CarnationPink
Cerulean
CornflowerBlue
Cyan
Dandelion
DarkOrchid

Emerald
ForestGreen
Fuchsia
Goldenrod
Gray
GreenYellow
Green
JungleGreen
Lavender
LimeGreen
Magenta
Mahogany
Maroon
Melon
MidnightBlue
Mulberry
NavyBlue

OliveGreen
OrangeRed
Orange
Orchid
Peach
Periwinkle
PineGreen
Plum
ProcessBlue
Purple
RawSienna
RedOrange
RedViolet
Red
Rhodamine
RoyalBlue
RoyalPurple

RubineRed
Salmon
SeaGreen
Sepia
SkyBlue
SpringGreen
Tan
TealBlue
Thistle
Turquoise
VioletRed
Violet
White
WildStrawberry
YellowGreen
YellowOrange
Yellow

2.5 Color definition

2.5.1 Ordinary and named colors

In the color package there is a distinction between ‘colors’ (defined by the com-
mand \definecolor) and ‘named colors’ (defined by \DefineNamedColor, which
is allowed only in the preamble). Whenever an ordinary color is being used in
a document, it will be translated into a \special command that contains a —
driver-specific — numerical description of the color which is written to the dvi file.
On the other hand, named colors offer the opportunity to store numerical values
at a central place whereas during usage, colors may be identified by their names,
thus enabling post-processing if required by the output device. Unfortunately, this
concept is supported in quite a different way by different drivers, which leads to a
strange situation:

6In fact, these names represent 138 different colors.
7Actually, the cited specification lists only lowercase names, and the original definitions are

given in RGB parameters, converted to rgb by the author.

14

Figure 5: Colors defined by the svgnames option

AliceBlue
AntiqueWhite
Aqua
Aquamarine
Azure
Beige
Bisque
Black
BlanchedAlmond
Blue
BlueViolet
Brown
BurlyWood
CadetBlue
Chartreuse
Chocolate
Coral
CornflowerBlue
Cornsilk
Crimson
Cyan
DarkBlue
DarkCyan
DarkGoldenrod
DarkGray
DarkGreen
DarkGrey
DarkKhaki
DarkMagenta
DarkOliveGreen
DarkOrange
DarkOrchid
DarkRed
DarkSalmon
DarkSeaGreen
DarkSlateBlue
DarkSlateGray

DarkSlateGrey
DarkTurquoise
DarkViolet
DeepPink
DeepSkyBlue
DimGray
DimGrey
DodgerBlue
FireBrick
FloralWhite
ForestGreen
Fuchsia
Gainsboro
GhostWhite
Gold
Goldenrod
Gray
Grey
Green
GreenYellow
Honeydew
HotPink
IndianRed
Indigo
Ivory
Khaki
Lavender
LavenderBlush
LawnGreen
LemonChiffon
LightBlue
LightCoral
LightCyan
LightGoldenrodYellow
LightGray
LightGreen
LightGrey

LightPink
LightSalmon
LightSeaGreen
LightSkyBlue
LightSlateGray
LightSlateGrey
LightSteelBlue
LightYellow
Lime
LimeGreen
Linen
Magenta
Maroon
MediumAquamarine
MediumBlue
MediumOrchid
MediumPurple
MediumSeaGreen
MediumSlateBlue
MediumSpringGreen
MediumTurquoise
MediumVioletRed
MidnightBlue
MintCream
MistyRose
Moccasin
NavajoWhite
Navy
OldLace
Olive
OliveDrab
Orange
OrangeRed
Orchid
PaleGoldenrod
PaleGreen
PaleTurquoise

PaleVioletRed
PapayaWhip
PeachPuff
Peru
Pink
Plum
PowderBlue
Purple
Red
RosyBrown
RoyalBlue
SaddleBrown
Salmon
SandyBrown
SeaGreen
Seashell
Sienna
Silver
SkyBlue
SlateBlue
SlateGray
SlateGrey
Snow
SpringGreen
SteelBlue
Tan
Teal
Thistle
Tomato
Turquoise
Violet
Wheat
White
WhiteSmoke
Yellow
YellowGreen

Duplicate colors: Aqua = Cyan, Fuchsia = Magenta; Gray = Grey , DarkGray = DarkGrey ,
LightGray = LightGrey , SlateGray = SlateGrey , DarkSlateGray = DarkSlateGrey ,
LightSlateGray = LightSlateGrey , DimGray = DimGrey .

15

• the dvips driver, which supports the concept of named colors, restricts their
usage to the universe defined in dvipsnam.def (as shown in figure 4), any
other named colors have to be defined both in the document preamble and
in separate dvips header files, thus making documents less portable.

• the pdftex driver, which does not support the named color concept, allows
unrestricted definition and usage of named colors (although offering no added
value through this).

Conclusion: don’t use \DefineNamedColor unless you know exactly what you are
doing!

2.5.2 Color definition in xcolor

[〈type〉]{〈name〉}{〈model〉}{〈spec〉}8\definecolor

This is one of the commands that may be used to assign a 〈name〉 to a specific color.
Afterwards, this color is known to the system (in the current group) and may be
used in color expressions, as explained in section 2.3 on page 9. It replaces both
color’s \DefineNamedColor and \definecolor. Note that an already existing
color 〈name〉 will be overwritten. The variable \tracingcolors controls whether
such an overwriting will be logged or not (see section 2.12 on page 27 for details).
The arguments are described in section 2.3 on page 9. Hence, valid expressions
for color definitions are

• \definecolor{red}{rgb}{1,0,0},

• \definecolor[named]{Black}{cmyk}{0,0,0,1},

• \definecolor{myblack}{named}{Black},

where the last command is equivalent to \colorlet{myblack}{Black} (see be-
low).

[〈type〉]{〈name〉}{〈model〉}{〈spec〉}\providecolor

Similar to \definecolor, but the color 〈name〉 is only defined if it does not exist
already.

{〈name〉}[〈num model〉]{〈color〉}\colorlet

Copies the actual color which results from 〈color〉 to 〈name〉. If 〈num model〉
is non-empty, 〈color〉 is first transformed to the specified model, before 〈name〉
is being defined. The pseudo model ‘named’ is not allowed here. Note that an
already existing color 〈name〉 will be overwritten.
Example: we said \colorlet{tableheadcolor}{gray!25} in the preamble of
this document. In most of the tables we then formatted the first row by using the
command \rowcolor{tableheadcolor}.

2.5.3 Defining sets of colors

[〈type〉]{〈model〉}{〈head〉}{〈tail〉}{〈set spec〉}\definecolorset

This command facilitates the construction of color sets with common underlying
〈model〉 and 〈type〉. Here, 〈set spec〉 = 〈name〉1,〈spec〉1;. . . ;〈name〉l,〈spec〉l (l ≥ 1
name/specification pairs). Individual colors are being constructed by single

8Prior to version 2.00, this command was called \xdefinecolor, the latter name still being
available for compatibility reasons.

16

\definecolor[〈type〉]{〈head〉〈name〉λ〈tail〉}{〈model〉}{〈spec〉λ}
commands, λ = 1, . . . , l. For example,

• \definecolorset{rgb}{}{}{red,1,0,0;green,0,1,0;blue,0,0,1}
is used in xcolor to define the basic colors red, green, and blue;

• \definecolorset{rgb}{x}{10}{red,1,0,0;green,0,1,0;blue,0,0,1}
would define the colors xred10, xgreen10, and xblue10.

[〈type〉]{〈model〉}{〈head〉}{〈tail〉}{〈set spec〉}\providecolorset

Similar to \definecolorset, but based on \providecolor, thus the individual
colors are defined only if they do not exist already.

{〈type〉}{〈name〉}{〈model〉}{〈spec〉} is provided mainly for compatibility reasons,\DefineNamedColor

especially to support the predefined colors in dvipsnam.def. It is the same as
\definecolor[〈type〉]{〈name〉}{〈model〉}{〈spec〉}. Note that color’s restriction
to allow \DefineNamedColor only in the document preamble has been abolished
in xcolor.

2.5.4 Global color definitions

By default, definitions via \definecolor, \providecolor, . . . are available only\ifglobalcolors

within the current group. By setting \globalcolorstrue, all such definitions are
being made globally available — until the current group ends9. Another method\xglobal

to specify that an individual color definition is to be made global is to prefix it by
\xglobal, e.g., \xglobal\definecolor{foo}....

2.6 Color application

Here is the list of user-level color commands, as known from the color package,
but with an extended syntax for the colors:
{〈color〉}\color

[〈model〉]{〈spec〉}
{〈color〉}{〈text〉}\textcolor

[〈model〉]{〈spec〉}{〈text〉}
{〈color〉}{〈text〉}\colorbox

[〈model〉]{〈spec〉}{〈text〉}
{〈frame color〉}{〈background color〉}{〈text〉}\fcolorbox

[〈model〉]{〈frame spec〉}{〈background spec〉}{〈text〉}
{〈color〉}\pagecolor

[〈model〉]{〈spec〉}
Hence, the formal difference to the color package is that color expressions may be
used instead of pure color names. A previous section explains how color expres-
sions are constructed.
Remark: all of these commands except \color require that the 〈color〉 resp. 〈spec〉
arguments are put into curly braces {}, even if they are buried in macros.
For example, after \def\foo{red}, one may say \color\foo, but one should
always write \textcolor{\foo}{bar} instead of \textcolor\foo{bar} in order
to avoid unexpected results.

9The switch may also be set in the preamble in order to control the whole document.

17

Figure 6: Color example: MyGreen

Definition of base color:
{}{cmyk 0.92 0 0.87 0.09}{cmyk}{0.92,0,0.87,0.09}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen!P !C } 2\color{-MyGreen!P !C }

Note that color-specific commands from other packages may give unexpected re-
sults if directly confronted with color expressions (e.g. soul’s \sethlcolor and
friends). However, one can turn the expression into a name via \colorlet and
try to use that name instead.

2.6.1 Using the current color

Within a color expression, ‘.’ serves as a placeholder for the current color. See
figure 11 on page 21 for an example.
It is also possible to save the current color for later use, e.g., via the command
\colorlet{foo}{.}.
Note that in some cases the current color is of rather limited use, e.g., the con-
struction of an \fcolorbox implies that at the time when the 〈background color〉
is evaluated, the current color equals the 〈frame color〉; in this case ‘.’ does not
refer to the current color outside the box.

2.7 Color blending

The purpose of color blending is to add some mixing color (expression) to all
subsequent explicit color commands. Thus, it is possible to perform such a mix
(or blend) operation for many colors without touching the individual commands.

{〈mix expr〉}\blendcolors

{〈mix expr〉}\blendcolors*

Initialises all necessary parameters for color blending. The actual (completed)
color blend expression is stored in \colorblend. In the starred version, the argu-
ment will be appended to a previously defined blend expression. An empty 〈mix
expr〉 argument will switch blending off.

18

Figure 7: Color example: MyGreen-cmy

Definition of base color:
{}{cmyk 1 0.09 0.95999 0}{cmy}{1,0.09,0.95999}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-cmy!P !C } 2\color{-MyGreen-cmy!P !C }

Figure 8: Color example: MyGreen-rgb

Definition of base color:
{}{rgb 0 0.91 0.04001}{rgb}{0,0.91,0.04001}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-rgb!P !C } 2\color{-MyGreen-rgb!P !C }

19

Figure 9: Color example: MyGreen-hsb

Definition of base color:
{}{hsb 0.34065 1 0.91}{hsb}{0.34065,1,0.91}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-hsb!P !C } 2\color{-MyGreen-hsb!P !C }

Figure 10: Color example: MyGreen-gray

Definition of base color:
{}{gray 0.5383}{gray}{0.5383}

P/C white1 gray1 black1 red1 blue1 yellow1 white2 black2 yellow2

100:

90:

80:

70:

60:

50:

40:

30:

20:

10:

0:

1\color{MyGreen-gray!P !C } 2\color{-MyGreen-gray!P !C }

20

Figure 11: Current color — Example

\def\test{current, \textcolor{.!50}{50\%},

\textcolor{-.}{complement},

\textcolor{yellow!50!.}{mix}}

\textcolor{blue}{\test}\\

and \textcolor{red}{\test}\\

\def\Test{\color{.!80}Test}

\textcolor{blue}{\Test\Test\Test\Test\Test}\\

and \textcolor{red}{\Test\Test\Test\Test\Test}

current, 50%, complement, mix
and current, 50%, complement, mix

TestTestTestTestTest
and TestTestTestTestTest

Example: after \blendcolors{!50!yellow}, the colors are trans-
formed into , an additional \blendcolors*{!50} yields .
In order to achieve global scope, \blendcolors may be prefixed by \xglobal.\xglobal

Remark: color blending is applied only to explicit color commands, i.e. \color,
\fcolorbox and the like. In the previous example the frames are not being blended
because their color is set by an driver-internal command (switching back to the
‘current color’). Thus, to influence these implicit colors as well, we have to set
the current color after the blending: \blendcolors{!50!yellow}\color{black}
results in , an additional \blendcolors*{!50}\color{black} yields

.

2.8 Color masks and separation

The purpose of color separation is to represent all colors that appear in the doc-
ument as a combination of a finite subset of base colors and their tints. Most
prominent is cmyk separation, where the base colors are cyan, magenta, yellow ,
and black, as required by the printers. This can be done by choosing the pack-
age option cmyk, such that all colors will be converted in this model, and post-
processing the output file. We describe now another — and more general —
solution: color masking. How does it work? Color masking is based on a speci-
fied color model 〈m-model〉 and a parameter vector 〈m-spec〉. Whenever a color
is to be displayed in the document, it will first be converted to 〈m-model〉, af-
terwards each component of the resulting color vector will be multiplied by the
corresponding component of 〈m-spec〉. For example, let’s assume that 〈m-model〉
equals cmyk, and 〈m-spec〉 equals (µc, µm, µy, µk). Then an arbitrary color foo will
be transformed according to

foo 7→ (c,m, y, k) 7→ (µc · c, µm ·m,µy · y, µk · k) (4)

Obviously, color separation is a special case of masking by the vectors (1, 0, 0, 0),
(0, 1, 0, 0), etc. An interesting application is to shade or tint all colors by masking
them with (x, x, x) in the rgb or cmy model, see the last two rows in figure 12 on
the following page.

[〈num model〉]{〈color〉}\maskcolors

Initialises all necessary parameters for color masking: if 〈num model〉 is not spec-
ified (or empty), 〈m-model〉 will be set to the natural model of 〈color〉, other-
wise to 〈num model〉; the color specification of 〈color〉 is extracted to define
〈m-spec〉. Additionally, \maskcolorstrue is performed. Color masking can be\ifmaskcolors

21

switched off temporarily by \maskcolorsfalse, or — in a more radical way —
by \maskcolors{}, which in addition clears the initialisation parameters. In gen-\xglobal

eral, the scope of \maskcolors is the current group (unless it is prefixed by the
\xglobal command), but it may be used in the document preamble as well. The
final remark of the color blending section applies here similarly.
Now it is easy to separate a complete document without touching the source code:
latex \def\xcolorcmd{\maskcolors[cmyk]{cyan}}\input{a} will do the cyan
part of the job for a.tex.
Caution: xcolor has no idea about colors in files that are included via the command\colormask

\includegraphics, e.g. images of type eps, pdf, jpg, or png. Such files have to
be separated separately. Nevertheless, xcolor offers some basic support by storing
the mask color in \colormask, which can be used to decide which file is to be
included:

\def\temp{cyan}\ifx\colormask\temp \includegraphics{foo_c}\else

\def\temp{magenta}\ifx\colormask\temp \includegraphics{foo_m}\else

...

\fi\fi

Figure 12: Color masking — Example

\maskcolors

...{}

...[cmyk]{cyan}

...[cmyk]{magenta}

...[cmyk]{yellow}

...[cmyk]{black}

...[cmyk]{red}

...[cmyk]{green}

...[cmyk]{blue}

...[rgb]{red}

...[rgb]{green}

...[rgb]{blue}

...[hsb]{red}

...[hsb]{green}

...[hsb]{blue}

...[rgb]{gray}

...[cmy]{gray}

2.9 Color series

Automatic coloring may be useful in graphics or chart applications, where a —
potentially large and unspecified — number of colors are needed, and the user does
not want or is not able to specify each individual color. Therefore, we introduce
the term color series, which consists of a base color and a scheme, how the next
color is being constructed from the current color.

22

The practical application consists of three parts: definition of a color series (usu-
ally once in the document), initialisation of the series (potentially several times),
and application — with or without stepping — of the current color of the series
(potentially many times).

2.9.1 Definition of a color series

{〈name〉}{〈core model〉}{〈method〉}[〈b-model〉]{〈b-spec〉}[〈s-model〉]{〈s-spec〉}\definecolorseries

Defines a color series called 〈name〉, whose calculations are performed within the
color model 〈core model〉, where 〈method〉 selects the algorithm (one of step, grad,
last, see below). The method details are determined by the remaining arguments:

• [〈b-model〉]{〈b-spec〉} specifies the base (= first) color in the algorithm,
either directly, e.g. [rgb]{1,0.5,0.5}, or as a 〈color〉, e.g. {-yellow!50},
if the optional argument is missing.

• [〈s-model〉]{〈s-spec〉} specifies how the step vector is calculated in the al-
gorithm, according to the chosen 〈method〉:

– step, grad: the optional argument is meaningless, and 〈s-spec〉 is a
parameter vector whose dimension is determined by 〈core model〉, e.g.
{0.1,-0.2,0.3} in case of rgb, cmy, or hsb.

– last: the last color is specified either directly, e.g. [rgb]{1,0.5,0.5},
or as a 〈color〉, e.g. {-yellow!50}, if the optional argument is missing.

This is the general scheme:

color1 := base, colorn+1 := U
(
colorn + step

)
(5)

for n = 1, 2, . . . , where U maps arbitrary real m-vectors into the unit m-cube:

U(x1, . . . , xm) = (u(x1), . . . , u(xm)), u(x) =

{
1 if x = 1

x− [x] if x 6= 1
(6)

Thus, every step of the algorithm yields a valid color with parameters from the
interval [0, 1].

Now, the different methods use different schemes to calculate the step vector:

• step, grad: the last argument, {〈s-spec〉}, defines the directional vector grad.

• last: {〈s-spec〉} resp. [〈s-model〉]{〈s-spec〉} defines the color parameter vec-
tor last.

Then, during \resetcolorseries, the actual step vector is calculated:

step :=





grad if 〈method〉 = step
1

〈div〉 · grad if 〈method〉 = grad
1

〈div〉 · (last− base) if 〈method〉 = last

(7)

Please note that it is also possible to use the current color placeholder ‘.’ within the
definition of color series. Thus, \definecolorseries{foo}{rgb}{last}{.}{-.}
will set up a series that starts with the current color and ends with its complement.
Of course, similar to TEX’s \let primitive, the current definition of the current
color at the time of execution is used, there is no relation to current colors in any
later stage of the document.

23

2.9.2 Initialisation of a color series

[〈div〉]{〈name〉}\resetcolorseries

This command has to be applied at least once, in order to make use of the color
series 〈name〉. It resets the current color of the series to the base color and calcu-
lates the actual step vector according to the chosen 〈div〉, a non-zero real number,
for the methods grad and last, see equation (7). If the optional argument is\colorseriescycle

empty, the value stored in the macro \colorseriescycle is applied. Its default
value is 16, which can be changed by \def\colorseriescycle{〈div〉}, applied be-
fore the xcolor package is loaded (similar to \rangeRGB and friends). The optional
argument is ignored in case of the step method.

2.9.3 Application of a color series

There are two ways to display the current color of a color series: any of the
color expressions in section 2.3 on page 9 used within a \color, \textcolor,
. . . command will display this color according to the usual syntax of such ex-
pressions. However, in the cases when 〈postfix 〉 equals ‘!!+’, \color{〈name〉!!+}
etc., will not only display the color, but it will also perform a step operation.
Thus, the current color of the series will be changed in that case. An expres-
sion \color{〈name〉!![〈num〉]} enables direct access to an element of a series,
where 〈num〉 = 0, 1, 2, . . . , starting with 0 for the base color. See figure 13 on the
following page for a demonstration of different methods.

2.9.4 Differences between colors and color series

Although they behave similar if applied within color expressions, the objects
defined by \definecolor and \definecolorseries are fundamentally different
with respect to their scope/availability: like color’s original \definecolor com-
mand, \definecolor generates local colors, whereas \definecolorseries gener-
ates global objects (otherwise it would not be possible to use the stepping mech-
anism within tables or graphics conveniently). E.g., if we assume that bar is an
undefined color, then after saying

\begingroup

\definecolorseries{foo}{rgb}{last}{red}{blue}

\resetcolorseries[10]{foo}

\definecolor{bar}{rgb}{.6,.5,.4}

\endgroup

commands like \color{foo} or \color{foo!!+} may be used without restrictions,
whereas \color{bar} will give an error message. However, it is possible to say
\colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current
color of a series locally — with or without stepping.

2.10 Border colors for hyperlinks

The hyperref package offers all kinds of support for hyperlinks, pdfmarks etc. There
are two standard ways to make hyperlinks visible (see the package documentation
[10] for additional information on how to set up these features):

24

Figure 13: Color series — Example

S1 S2 G1 G2 L1 L2 L3 L4 L5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Individual definitions

S1 \definecolorseries{test}{rgb}{step}[rgb]{.95,.85,.55}{.17,.47,.37}

S2 \definecolorseries{test}{hsb}{step}[hsb]{.575,1,1}{.11,-.05,0}

G1 \definecolorseries{test}{rgb}{grad}[rgb]{.95,.85,.55}{3,11,17}

G2 \definecolorseries{test}{hsb}{grad}[hsb]{.575,1,1}{.987,-.234,0}

L1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}

L2 \definecolorseries{test}{hsb}{last}[hsb]{.575,1,1}[hsb]{-.425,.15,1}

L3 \definecolorseries{test}{rgb}{last}{yellow!50}{blue}

L4 \definecolorseries{test}{hsb}{last}{yellow!50}{blue}

L5 \definecolorseries{test}{cmy}{last}{yellow!50}{blue}

Common definitions

\resetcolorseries[12]{test}

\rowcolors[\hline]{1}{test!!+}{test!!+}

\begin{tabular}{c}

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\end{tabular}

25

• print hyperlinks in a different color than normal text, using the keys cite-
color , filecolor , linkcolor , menucolor , pagecolor , runcolor , urlcolor with color
expressions, e.g. \hypersetup{urlcolor=-green!50};

• display a colored border around hyperlinks, using the keys citebordercolor ,
filebordercolor , linkbordercolor , menubordercolor , pagebordercolor , runbor-
dercolor , urlbordercolor with explicit numerical rgb parameter specification,
e.g. \hypersetup{urlbordercolor={1 0.5 0.25}}.

Obviously, the second method is somewhat inconvenient since it does not al-
low for color names or even color expressions. Therefore, xcolor provides —
via the package option hyperref — a set of extended keys xcitebordercolor ,
xfilebordercolor , xlinkbordercolor , xmenubordercolor , xpagebordercolor , xrunborder-
color , xurlbordercolor which are being used in conjunction with color expressions,
e.g. \hypersetup{xurlbordercolor=-green!50}.
Another new key, xpdfborder , provides a way to deal with a dvips-related prob-
lem: for most of the drivers, a setting like pdfborder={0 0 1} will determine
the width of the border that is drawn around hyperlinks in points. However, in
the dvips case, the numerical parameters are interpreted in relation to the cho-
sen output resolution for processing the dvi file into a ps file. Unfortunately, at
the time when the dvi is constructed, nobody knows if and at which resolution
a transformation into ps will take place afterwards. Consequently, any default
value for pdfborder may be useful or not. Within hyperref, the default for dvips
is pdfborder={0 0 12}, which works fine for a resolution of 600 or 1200 dpi, but
which produces an invisible border for a resolution of 8000 dpi, as determined by
the command-line switch -Ppdf. On the other hand, setting pdfborder={0 0 80}
works fine for dvips at 8000 dpi, but makes a document unportable, since other
drivers (or even dvips in a low resolution) will draw very thick boxes in that case.
This is were the xpdfborder key comes in handy: it rescales its arguments for the
dvips case by a factor 80 (ready for 8000 dpi) and leaves everything unchanged
for other drivers. Thus one can say xpdfborder={0 0 1} in a driver-independent
way.

2.11 Color in tables

[〈commands〉]{〈row〉}{〈odd-row color〉}{〈even-row color〉}\rowcolors

[〈commands〉]{〈row〉}{〈odd-row color〉}{〈even-row color〉}\rowcolors*

One of these commands has to be executed before a table starts. 〈row〉 tells the
number of the first row which should be colored according to the 〈odd-row color〉
and 〈even-row color〉 scheme. Each of the color arguments may also be left empty
(= no color). In the starred version, 〈commands〉 are ignored in rows with inactive
rowcolors status (see below), whereas in the non-starred version, 〈commands〉 are
applied to every row of the table. Such optional commands may be \hline or
\noalign{〈stuff 〉}.
The rowcolors status is activated (i.e., use coloring scheme) by default and/or\showrowcolors

\hiderowcolors \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command
\hiderowcolors. The counter \rownum may be used within such a table to access\rownum

the current row number. An example is given in figure 14 on the next page. These
commands require the colortbl package.
Note that table coloring may be combined with color series. This method was
used to construct the examples in figure 13 on the preceding page.

26

Figure 14: Alternating row colors in tables: \rowcolors vs. \rowcolors*

\rowcolors[\hline]{3}{green!25}{yellow!50} \arrayrulecolor{red!75!gray}

\begin{tabular}{ll}

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

\arrayrulecolor{black}

test & row \number\rownum\\

test & row \number\rownum\\

\rowcolor{blue!25}

test & row \number\rownum\\

test & row \number\rownum\\

\hiderowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\showrowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\multicolumn{1}%

{>{\columncolor{red!12}}l}{test} & row \number\rownum\\

\end{tabular}

test row 1
test row 2
test row 3
test row 4
test row 5
test row 6
test row 7
test row 8
test row 9
test row 10
test row 11
test row 12
test row 13

test row 1
test row 2
test row 3
test row 4
test row 5
test row 6
test row 7
test row 8
test row 9
test row 10
test row 11
test row 12
test row 13

2.12 Color information

{〈color〉}{〈cmd〉}\extractcolorspec

Extracts the color specification of 〈color〉 and puts it into {〈cmd〉}; equivalent to
\def\cmd{{〈model〉}{〈spec〉}}.
=〈int〉\tracingcolors

Controls the amount of information that is written into the log file:

• 〈int〉 ≤ 0: no specific color logging.

• 〈int〉 ≥ 1: ignored color definitions due to \providecolor are logged.

• 〈int〉 ≥ 2: multiple (i.e. overwritten) color definitions are logged.

• 〈int〉 ≥ 3: every command that defines a color will be logged.

• 〈int〉 ≥ 4: every command that sets a color will be logged.

Like TEX’s \tracing... commands, this command may be used globally (in the
document preamble) or locally/block-wise. The package sets \tracingcolors=0
as default. Remark: since registers are limited and valuable, no counter is wasted
for this issue.
Note that whenever a color is used that has been defined via color’s \definecolor
command rather than xcolor’s new \definecolor and friends, a warning message
‘Incompatible color definition’ will be issued.10

10This should not happen since usually there is no reason to load color in parallel to xcolor.

27

2.13 Color conversion

{〈model〉}{〈spec〉}{〈target model〉}{〈cmd〉}\convertcolorspec

Converts a color, given by the 〈spec〉 in model 〈model〉, into 〈target model〉 and
stores the new color specification in \cmd. 〈target model〉 must be of type 〈num
model〉, whereas 〈model〉 may also be ‘named’, in which case 〈spec〉 is simply the
name of the color.

3 Technical Supplement

3.1 Color models supported by drivers

Since some of the drivers only pretend to support the hsb model, we included
some code to bypass this behaviour. The models actually added by xcolor are
shown in the log file. Table 5 lists the drivers that are part of current MiKTEX [8]
distributions and their color model support. Probably, other distributions behave
similarly.

Table 5: Drivers and color models

Driver Version rgb cmy cmyk hsb gray RGB HTML HSB Gray

dvipdf 1999/02/16 v3.0i d n d n d i n n n

dvips 1999/02/16 v3.0i d n d d d i n n n

dvipsone 1999/02/16 v3.0i d n d d d i n n n

pctex32 1999/02/16 v3.0i d n d d d i n n n

pctexps 1999/02/16 v3.0i d n d d d i n n n

pdftex 2002/06/19 v0.03k d n d n d i n n n

dvipdfm 1998/11/24 vx.x 1 d n d a d i n n n

dvipdfm 1999/9/6 vx.x 2 d n d a d i n n n

textures 1997/5/28 v0.3 d n d a i n n n n

vtex 1999/01/14 v6.3 d n d n i i n n n

tcidvi 1999/02/16 v3.0i i n i n i d n n n

truetex 1999/02/16 v3.0i i n i n i d n n n

dviwin 1999/02/16 v3.0i n n n n n n n n n

emtex 1999/02/16 v3.0i n n n n n n n n n

pctexhp 1999/02/16 v3.0i n n n n n n n n n

pctexwin 1999/02/16 v3.0i n n n n n n n n n

dviwindo = dvipsone; oztex = dvips; xdvi = dvips + monochrome
1 part of graphics package 2 additionally distributed with MiKTEX

Driver’s color model support: d = direct, i = indirect, a = alleged, n = none

3.2 Behind the scenes: internal color representation

Every definition of a color in order to access it by its name requires an internal
representation of the color, i.e. a macro that contains some bits of information
required by the driver to display the color properly.
color’s \definecolor{foo}{...}{...} generates a command \\color@foo11

11The double backslash is intentional.

28

which contains the color definition in a driver-dependent way; therefore it is pos-
sible but non-trivial to access the color model and parameters afterwards (see the
colorinfo package [9] for a solution).
color’s \DefineNamedColor{named}{foo}{...}{...} generates \col@foo12 which
again contains some driver-dependent information. In this case, an additional
\\color@foo will only be defined if the package option usecolors is active.
xcolor’s \definecolor{foo}{...}{...} generates13 a command \\color@foo as
well, which combines the features of the former commands and contains both
the driver-dependent and driver-independent information, thus making it possible
to access the relevant parameters in a standardised way. Although it has now
a different syntax, \\color@foo expands to the same expression as the original
command. On the other hand, \col@foo commands are no longer needed and
therefore not generated in the ‘named’ case: xcolor works with a single color data
structure (as described).
Table 6 shows some examples for the two most prominent drivers. See also figures
6 to 10 on pages 18–20; the lines immediately below the captions display the
definitions with respect to the driver that was used to process this document.

Table 6: Driver-dependent internal color representation

dvips driver

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) color

->rgb .5 0 1.

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {}{rgb 0.5 0 1}{rgb}{0.5,0,1}.

\col@Plum=macro: (\DefineNamedColor{Plum}{rgb}{.5,0,1}) color

->\@nil .

\\color@Plum=macro: (with option usenames)

-> Plum.

\\color@Plum=macro: (\definecolor[named]{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {\@nil }{ Plum}{rgb}{0.5,0,1}.

pdftex driver

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) color

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {}{0.5 0 1 rg 0.5 0 1 RG}{rgb}{0.5,0,1}.

\col@Plum=macro: (\DefineNamedColor{Plum}{rgb}{.5,0,1}) color

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (with option usenames)

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (\definecolor[named]{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {0.5 0 1 rg 0.5 0 1 RG}{0.5 0 1 rg 0.5 0 1 RG}{rgb}{0.5,0,1}.

12The single backslash is intentional.
13This was introduced in version 1.10; prior to that, a command \\xcolor@foo with a different

syntax was generated.

29

3.3 A remark on accuracy

Since the macros presented here require some computation, special efforts were
made to ensure a maximum of accuracy for conversion and mixing formulas — all
within TEX’s limited numerical capabilities.14 We decided to develop and include
a small set of commands to improve the quality of division and multiplication
results, instead of loading one of the packages that provide multi-digit arithmetic
and a lot more, like realcalc or fp. The marginal contribution of the latter packages
seems not to justify their usage for our purposes. Thus, we stay within a sort of
fixed-point arithmetic framework, providing at most 5 decimal digits via TEX’s
dimension registers.

4 The Formulas

4.1 Color mixing

In general, we use linear interpolation for color mixing:

mix(C, C ′, p) = p · C + (1− p) · C ′ (8)

Note that there is a special situation in the hsb case: if saturation = 0 then
the color equals a gray color of level brightness, independently of the hue value.
Therefore, to achieve smooth transitions of an arbitrary color to a specific gray
(like white or black), we actually use the formulas

tint hsb(C, p) = p · C + (1− p) · (hue, 0, 1
)

(9)

shade hsb(C, p) = p · C + (1− p) · (hue, 0, 0
)

(10)

tone hsb(C, p) = p · C + (1− p) · (hue, 0, 1
2

)
(11)

where C = (hue, saturation, brightness).
From equation (8) and the way how color expressions are being interpreted, as
described in section 2.3 on page 9, it is an easy proof by induction to verify that
a color expression

C0!P1!C1!P2! . . .!Pn!Cn (12)

with n ∈ {0, 1, 2, . . . }, colors C0, C1, . . . , Cn, and percentages P1, . . . , Pn ∈ [0, 100]
will result in a parameter vector

C =
n∑

ν=0

(
n∏

µ=ν+1

pµ

)
(1− pν) · Cν

= pn · · · p1 · C0

+ pn · · · p2(1− p1) · C1

+ pn · · · p3(1− p2) · C2

+ . . .

+ pn(1− pn−1) · Cn−1

+ (1− pn) · Cn

(13)

14For example, applying the ‘transformation’ \dimen0=0.〈int〉pt \the\dimen0 to all 5-digit
numbers 〈int〉 of the range 00000. . . 99999, exactly 34464 of these 100000 numbers don’t survive
unchanged. We are not talking about gobbled final zeros here . . .

30

where p0 := 0 and pν := Pν/100 for ν = 1, . . . , n. We note also a split formula:

C0!P1!C1! . . .!Pn+k!Cn+k = pn+k · · · pn+1 · C0!P1!C1! . . .!Pn!Cn

− pn+k · · · pn+1 · Cn

+ Cn!Pn+1!Cn+1! . . .!Pn+k!Cn+k

(14)

4.2 Conversion between integer and real models

We fix a positive integer n and define the sets In := {0, 1, . . . , n} and R := [0, 1].
The complement of ν ∈ In is n− ν, the complement of x ∈ R is 1− x.

4.2.1 Real to integer conversion

The straightforward mapping for this case is

Γn : R→ In, x 7→ round(n · x) =
⌊

1
2 + n · x⌋

(15)

This mapping nearly always preserves complements, as shown in the next lemma.

Lemma 1 (Preservation of complements). For x ∈ R,

Γn(x) + Γn(1− x) = n ⇐⇒ x /∈ R◦n :=
{

1
n

(
ν − 1

2

) ∣∣ ν = 1, 2, . . . , n
}

. (16)

Proof. Let ν := Γn(x), then from − 1
2 ≤ η := n · x− ν < 1

2 we conclude

Γn(1− x) = round(n(1− x)) = round(n− ν − η) =

{
n− ν if η 6= − 1

2

n− ν + 1 if η = − 1
2

Now, η = − 1
2 ⇐⇒ x = 1

n

(
ν − 1

2

) ⇐⇒ x ∈ I ′n.

Remark: the set R◦n is obviously identical to the set of points where Γn is not
continuous.

4.2.2 Integer to real conversion

The straightforward way in this case is the function

∆∗
n : In → R, ν 7→ ν

n
. (17)

This is, however, only one out of a variety of solutions: every function ∆n : In →R
that obeys the condition

ν ∈ In ⇒ Γn

(
∆n(ν)

)
= ν (18)

which is equivalent to

ν ∈ In ⇒ ν +
1
2

> n ·∆n(ν) ≥ ν − 1
2

(19)

does at least guarantee that all integers ν may be reconstructed from ∆n(ν) via
multiplication by n and rounding to the nearest integer. Preservation of comple-
ments means now

ν ∈ In ⇒ ∆n(ν) + ∆n(n− ν) = 1 (20)

31

Table 7: Color constants

model/constant white black gray

rgb (1, 1, 1) (0, 0, 0) (1
2 , 1

2 , 1
2)

cmy (0, 0, 0) (1, 1, 1) (1
2 , 1

2 , 1
2)

cmyk (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 1
2)

hsb (h, 0, 1) (h, 0, 0) (h, 0, 1
2)

gray 1 0 1
2

RGB (L,L,L) (0, 0, 0) (bL+1
2 c, bL+1

2 c, bL+1
2 c)

HTML FFFFFF 000000 808080

HSB (H, 0,M) (H, 0, 0) (H, 0, bM+1
2 c)

Gray N 0 bN+1
2 c

Table 8: Color conversion pairs

from/to rgb cmy cmyk hsb gray RGB HTML HSB Gray

rgb id ∗ (cmy) ∗ ∗ ∗ ∗ (hsb) (gray)

cmy ∗ id ∗ (rgb) ∗ (rgb) (rgb) (rgb) (gray)

cmyk (cmy) ∗ id (cmy) ∗ (cmy) (cmy) (cmy) (gray)

hsb ∗ (rgb) (rgb) id (rgb) (rgb) rgb ∗ (rgb)

gray ∗ ∗ ∗ ∗ id ∗ ∗ ∗ ∗
RGB ∗ (rgb) (rgb) (rgb) (rgb) id (rgb) (rgb) (rgb)

HTML ∗ (rgb) (rgb) (rgb) (rgb) (rgb) id (rgb) (rgb)

HSB (hsb) (hsb) (hsb) ∗ (hsb) (hsb) (hsb) id (hsb)

Gray (gray) (gray) (gray) (gray) ∗ (gray) (gray) (gray) id

id = identity function; ∗ = specific conversion function;

(model) = conversion via specified model

32

which is obviously the case for ∆n = ∆∗
n. If we consider, more generally, a

transformation

∆n(ν) =
ν + α

n + β
(21)

with β 6= −n, then the magic inequality (19) is equivalent to

1
2

>
αn− βν

n + β
≥ −1

2
(22)

which is obeyed by the function

∆′
n : In →R, ν 7→

{
ν

n+1 if ν ≤ n+1
2

ν+1
n+1 if ν > n+1

2

(23)

that has the nice feature ∆′
n

(
n+1

2

)
= 1

2 for odd n.

Lemma 2 (Preservation of complements). For odd n and each ν ∈ In,

∆′
n(ν) + ∆′

n(n− ν) = 1 ⇐⇒ ν /∈ I◦n :=
{

n−1
2 , n+1

2

}
. (24)

Proof. The assertion is a consequence of the following arguments:

• ν < n−1
2 ⇐⇒ n− ν > n+1

2 and n−1
2 + n+1

2 = n;

• ν < n−1
2 ⇒ ∆′

n(ν) + ∆′
n(n− ν) = ν

n+1 + n−ν+1
n+1 = 1;

• ν = n−1
2 ⇒ ∆′

n(ν) + ∆′
n(n− ν) = n−1

2(n+1) + 1
2 = n

n+1 6= 1.

For the time being, we choose ∆n := ∆∗
n as default transformation function.

4.3 Color conversion and complements

We collect here the specific conversion formulas between the supported color mod-
els. Table 8 on the preceding page gives an overwiew of how each conversion pair
is handled. In general, PostScript (as described in [1]) is used as a basis for most
of the calculations, since it supports the color models rgb, cmyk, hsb, and gray
natively. Furthermore, Smith’s paper [11] is cited in [1] as reference for hsb-related
formulas.
First, we define a constant which is being used throughout the conversion formulas:

E := (1, 1, 1) (25)

4.3.1 The rgb model

Conversion rgb to cmy Source: [1], p. 475.

(cyan,magenta, yellow) := E − (red, green, blue) (26)

33

Conversion rgb to hsb (1) We set

x := max{red, green, blue} (27)
y := med{red, green, blue} (28)
z := min{red, green, blue} (29)

(30)

where ‘med’ denotes the median of the values. Then,

brightness := x (31)

Case x = z:

saturation := 0 (32)
hue := 0 (33)

Case x 6= z:

saturation :=
x− z

x
(34)

f :=
x− y

x− z
(35)

hue :=
1
6
·





1− f if x = red ≥ green ≥ blue = z

1 + f if x = green ≥ red ≥ blue = z

3− f if x = green ≥ blue ≥ red = z

3 + f if x = blue ≥ green ≥ red = z

5− f if x = blue ≥ red ≥ green = z

5 + f if x = red ≥ blue > green = z

(36)

This is based on [11], RGB to HSV Algorithm (Hexcone Model), which reads
(slightly reformulated):

r :=
x− red
x− z

, g :=
x− green

x− z
, b :=

x− blue
x− z

(37)

hue :=
1
6
·





5 + b if red = x and green = z

1− g if red = x and green > z

1 + r if green = x and blue = z

3− b if green = x and blue > z

3 + g if blue = x and red = z

5− r if blue = x and red > z

(38)

Note that the singular case x = z is not covered completely in Smith’s original
algorithm; we stick here to PostScript’s behaviour in real life.
Because we need to sort three numbers in order to calculate x, y, z, several com-
parisons are involved in the algorithm. We present now a second method which is
more suited for TEX.

34

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression
as argument and returns 1 if the expression is true, 0 otherwise; set

i := 4 · β(red ≥ green) + 2 · β(green ≥ blue) + β(blue ≥ red), (39)

and

(hue, saturation, brightness) :=





Φ(blue, green, red, 3, 1) if i = 1

Φ(green, red, blue, 1, 1) if i = 2

Φ(green, blue, red, 3,−1) if i = 3

Φ(red, blue, green, 5, 1) if i = 4

Φ(blue, red, green, 5,−1) if i = 5

Φ(red, green, blue, 1,−1) if i = 6

(0, 0, blue) if i = 7

(40)

where

Φ(x, y, z, u, v) :=
(u · (x− z) + v · (x− y)

6(x− z)
,
x− z

x
, x

)
(41)

The singular case x = z, which is equivalent to red = green = blue, is covered here
by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous
method. The following table explains how the transition from equation (36) to
equation (40) works:

6 · hue Condition red ≥ green green ≥ blue blue ≥ red i

1− f red ≥ green ≥ blue 1 1 ∗ 6/7
1 + f green ≥ red ≥ blue ∗ 1 ∗ 2/3/6/7
3− f green ≥ blue ≥ red ∗ 1 1 3/7
3 + f blue ≥ green ≥ red ∗ ∗ 1 1/3/5/7
5− f blue ≥ red ≥ green 1 ∗ 1 5/7
5 + f red ≥ blue ≥ green 1 ∗ ∗ 4/5/6/7

Here, ∗ denotes possible 0 or 1 values. Bold i values mark the main cases where
all ∗ values of a row are zero. The slight difference to equation (36) in the last
inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

gray := 0.3 · red + 0.59 · green + 0.11 · blue (42)

Conversion rgb to RGB As described in section 4.2.1 on page 31.

Red := ΓL(red) (43)
Green := ΓL(green) (44)
Blue := ΓL(blue) (45)

35

Conversion rgb to HTML As described in section 4.2.1 on page 31. Convert
to hexadecimal afterwards.

RR := ΓL(red)hex (46)
GG := ΓL(green)hex (47)
BB := ΓL(blue)hex (48)

Complement of rgb color We simply take the complementary vector:

(red∗, green∗, blue∗) := E − (red, green, blue) (49)

4.3.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb → cmy case, cf.
section 4.3.1 on page 33.

(red, green, blue) := E − (cyan,magenta, yellow) (50)

Conversion cmy to cmyk This is probably the hardest of our conversion tasks:
many sources emphasize that there does not exist any universal conversion algo-
rithm for this case because of device-dependence. The following algorithm is an
extended version of the one given in [1], p. 476.

k := min{cyan,magenta, yellow} (51)
cyan := min{1, max{0, cyan−UCRc(k)}} (52)

magenta := min{1, max{0,magenta−UCRm(k)}} (53)
yellow := min{1, max{0, yellow−UCRy(k)}} (54)
black := BG(k) (55)

Here, four additional functions are required:

UCRc,UCRm,UCRy : [0, 1] → [−1, 1] undercolor-removal
BG : [0, 1] → [0, 1] black-generation

These functions are device-dependent, see the remarks in [1]. Although there are
some indications that they should be chosen as nonlinear functions, as long as we
have no further knowledge about the target device we define them linearly:

UCRc(k) := βc · k (56)
UCRm(k) := βm · k (57)
UCRy(k) := βy · k (58)

BG(k) := βk · k (59)

where the parameters are given by \def\adjustUCRBG{〈βc〉,〈βm〉,〈βy〉,〈βk〉} at\adjustUCRBG

any point in a document, defaulting to {1, 1, 1, 1}.

Conversion cmy to gray This is derived from the conversion chain cmy →
rgb → gray.

gray := 1− (0.3 · cyan + 0.59 ·magenta + 0.11 · yellow) (60)

36

Complement of cmy color We simply take the complementary vector:

(cyan∗,magenta∗, yellow∗) := E − (cyan,magenta, yellow) (61)

4.3.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with rgb → cmy
conversion.

cyan := min{1, cyan + black} (62)
magenta := min{1,magenta + black} (63)

yellow := min{1, yellow + black} (64)

Conversion cmyk to gray Source: [1], p. 475.

gray := 1−min{1, 0.3 · cyan + 0.59 ·magenta + 0.11 · yellow + black} (65)

Complement of cmyk color The simple vector complement does not yield
useful results. Therefore, we first convert C = (cyan,magenta, yellow, black) to
the cmy model, calculate the complement there, and convert back to cmyk.

4.3.4 The hsb model

Conversion hsb to rgb

(red, green, blue) := brightness · (E − saturation · F) (66)

with

i := b6 · huec , f := 6 · hue− i (67)

and

F :=





(0, 1− f, 1) if i = 0

(f, 0, 1) if i = 1

(1, 0, 1− f) if i = 2

(1, f, 0) if i = 3

(1− f, 1, 0) if i = 4

(0, 1, f) if i = 5

(0, 1, 1) if i = 6

(68)

This is based on [11], HSV to RGB Algorithm (Hexcone Model), which reads

37

(slightly reformulated):

m := 1− saturation (69)
n := 1− f · saturation (70)
k := 1− (1− f) · saturation (71)

(red, green, blue) := brightness ·





(1, k,m) if i = 0, 6

(n, 1, m) if i = 1

(m, 1, k) if i = 2

(m,n, 1) if i = 3

(k, m, 1) if i = 4

(1,m, n) if i = 5

(72)

Note that the case i = 6 (which results from hue = 1) is missing in Smith’s
algorithm. Because of

lim
f→1

(0, 1, f) = (0, 1, 1) = lim
f→0

(0, 1− f, 1) (73)

it is clear that there is only one way to define F for i = 6 in order to get a
continuous function, as shown in equation (68). This has been transformed back
to equation (72). A similar argument shows that F indeed is a continuous function
of hue over the whole range [0, 1].

Conversion hsb to HSB As described in section 4.2.1 on page 31. Convert to
hexadecimal afterwards.

Hue := ΓM (hue) (74)
Saturation := ΓM (saturation) (75)
Brightness := ΓM (brightness) (76)

Complement of hsb color We have not found a formula in the literature,
therefore we give a short proof afterwards.

Lemma 3. The hsb-complement can be calculated by the following formulas:

hue∗ :=





hue + 1
2 if hue < 1

2

hue− 1
2 if hue ≥ 1

2

(77)

brightness∗ := 1− brightness · (1− saturation) (78)

saturation∗ :=





0 if brightness∗ = 0

brightness · saturation
brightness∗

if brightness∗ 6= 0
(79)

Proof. Starting with the original color C = (h, s, b), we define color C∗ =
(h∗, s∗, b∗) by the given formulas, convert both C and C∗ to the rgb model and
show that

Crgb + C∗rgb = b · (E − s · F) + b∗ · (E − s′ · F ∗) != E, (80)

38

which means that Crgb is the complement of C∗rgb. First we note that the pa-
rameters of C∗ are in the legal range [0, 1]. This is obvious for h∗, b∗. From
b∗ = 1 − b · (1 − s) = 1 − b + b · s we derive b · s = b∗ − (1 − b) ≤ b∗, therefore
s∗ ∈ [0, 1], and

b∗ = 0 ⇔ s = 0 and b = 1.

Thus, equation (80) holds in the case b∗ = 0. Now we assume b∗ 6= 0, hence

Crgb + C∗rgb = b · (E − s · F) + b∗ ·
(
E − b · s

b∗
· F ∗

)

= b · E − b · s · F + b∗ · E − b · s · F ∗

= E − b · s · (F + F ∗ − E)

since b∗ = 1− b + bs. Therefore, it is sufficient to show that

F + F ∗ = E. (81)

From

h < 1
2 ⇒ h∗ = h + 1

2 ⇒ 6h∗ = 6h + 3 ⇒ i∗ = i + 3 and f∗ = f

it is easy to see from (68) that equation (81) holds for the cases i = 0, 1, 2.
Similarly,

h ≥ 1
2 ⇒ h∗ = h− 1

2 ⇒ 6h∗ = 6h− 3 ⇒ i∗ = i− 3 and f∗ = f

and again from (68) we derive (81) for the cases i = 3, 4, 5. Finally, if i = 6 then
f = 0 and F + F ∗ = (0, 1, 1) + (1, 0, 0) = E.

4.3.5 The gray model

Conversion gray to rgb Source: [1], p. 474.

(red, green, blue) := gray · E (82)

Conversion gray to cmy This is derived from the conversion chain gray →
rgb → cmy.

(cyan,magenta, yellow) := (1− gray) · E (83)

Conversion gray to cmyk Source: [1], p. 475.

(cyan,magenta, yellow, black) := (0, 0, 0, 1− gray) (84)

Conversion gray to hsb This is derived from the conversion chain gray →
rgb → hsb.

(hue, saturation, brightness) := (0, 0, gray) (85)

Conversion gray to Gray As described in section 4.2.1 on page 31.

Gray := ΓN (gray) (86)

39

Complement of gray color This is similar to the rgb case:

gray∗ := 1− gray (87)

4.3.6 The RGB model

Conversion RGB to rgb As described in section 4.2.2 on page 31.

(red, green, blue) :=
(
∆L(Red),∆L(Green), ∆L(Blue)

)
(88)

4.3.7 The HTML model

Conversion HTML to rgb As described in section 4.2.2 on page 31: starting
with RRGGBB set

(red, green, blue) :=
(
∆255(RRdec),∆255(GGdec), ∆255(BBdec)

)
(89)

4.3.8 The HSB model

Conversion HSB to hsb As described in section 4.2.2 on page 31.

(hue, saturation, brightness) :=
(
∆M (Hue), ∆M (Saturation),∆M (Brightness)

)
(90)

4.3.9 The Gray model

Conversion Gray to gray As described in section 4.2.2 on page 31.

gray := ∆N (Gray) (91)

References

[1] Adobe Systems Incorporated: “PostScript Language Reference Manual”.
Addison-Wesley, third edition, 1999.
www.adobe.com/products/postscript/pdfs/PLRM.pdf

[2] David P. Carlisle: “Packages in the ‘graphics’ bundle”, 1999.
CTAN/macros/latex/required/graphics/grfguide.tex

[3] David P. Carlisle: color package, “1999/02/16 v1.0i Standard LATEX Color”.
CTAN/macros/latex/required/graphics/color.*

[4] David P. Carlisle: colortbl package, “2001/02/13 v0.1j Color table columns”.
CTAN/macros/latex/contrib/carlisle/colortbl.*

[5] David P. Carlisle: pstcol package, “2001/06/20 v1.1 PSTricks color compati-
bility”. CTAN/macros/latex/required/graphics/pstcol.*

[6] Uwe Kern: “Chroma: a reference book of LATEX colors”.
CTAN/info/colour/chroma/
www.ukern.de/tex/chroma.html

40

[7] Uwe Kern: xcolor package, “LATEX color extensions”.
CTAN/macros/latex/contrib/xcolor/
www.ukern.de/tex/xcolor.html

[8] MiKTEX Project: http://www.miktex.org/

[9] Rolf Niepraschk: colorinfo package, “2003/05/04 v0.3c Info from defined col-
ors”. CTAN/macros/latex/contrib/colorinfo/

[10] Sebastian Rahtz: hyperref package, “2003/11/30 v6.74m Hypertext links for
LATEX”. CTAN/macros/latex/contrib/hyperref/

[11] Alvy Ray Smith: “Color Gamut Transform Pairs”. Computer Graphics (ACM
SIGGRAPH), Volume 12, Number 3, August 1978.
alvyray.com/Papers/PapersCG.htm

[12] World Wide Web Consortium: “Scalable Vector Graphics (SVG) 1.1 Specifi-
cation — Basic Data Types and Interfaces”.
www.w3.org/TR/SVG11/types.html#ColorKeywords

Acknowledgement

This package is based on and contains code copied from [3] (Copyright (C) 1994–
1999 David Carlisle), which is part of the Standard LATEX ‘Graphics Bundle’.
Although many commands and features have been added and most of the original
color commands have been rewritten or adapted within xcolor, the latter package
would not exist without color. Thus, the author is grateful to David Carlisle for
having created color and its accompanying files.

Known Issues

• Incompatibility with textures driver.

History

2004/07/04 v2.00

• New features:

– extended functionality for color expressions: mix colors like a painter;

– support for color blending: specify color mix expressions that are being
blended with every displayed color;

– \xglobal command for selective control of globality for color defini-
tions, blends, and masks;

– multiple step operations (e.g. \color{foo!!+++}) and access to indi-
vidual members (e.g. \color{foo!![7]}) in color series;

– \providecolor command to define only non-existent colors;

– \definecolorset and \providecolorset commands to facilitate the
construction of color sets with common underlying color model;

41

– additional 147 predefined color names according to SVG 1.1 specifica-
tion;

– xpdfborder key for setting the width of hyperlink borders in a more
driver-independent way if dvips is used.

• Changes:

– color package now completely integrated within xcolor;

– override, usenames, nodvipsnames options and \xdefinecolor com-
mand no longer needed;

– dvips and dvipsnames options now independent of each other;

– \tracingcolors’s behaviour changed to make it more versatile and
reduce log file size in standard cases;

– \rdivide’s syntax made more flexible (divide by numbers and/or di-
mensions);

– code restructured, some internal commands renamed;

– documentation rearranged and enhanced.

• Bugfixes:

– \definecolor{foo}{named}{bar} did not work (error introduced in
v1.11);

– more robust behaviour of conditionals within pstricks key-values.

2004/05/09 v1.11

• New features:

– switch \ifglobalcolors to control whether color definitions are global
or local;

– option hyperref provides color expression support for the border colors
of hyperlinks, e.g. \hypersetup{xurlbordercolor=red!50!yellow};

– internal hooks \XC@bcolor, \XC@mcolor, and \XC@ecolor for addi-
tional code that has to be executed immediately before/after the current
color is being displayed.

• Changes:

– \XC@logcolor renamed to \XC@display, which is now the core color
display command;

– improved interface to pstricks.

2004/03/27 v1.10

• New features:

– support for ‘named’ model;

– support for dvips colors (may now be used within color expressions);

42

– internal representation of ‘ordinary’ and ‘named’ colors merged into
unified data structure;

– allow multiple ‘-’ signs at the beginning of color expressions.

• Bugfixes:

– commands like \color[named]{foo} caused errors when color masking
or target model conversion were active;

– incompatibility with soul package: commands \hl, \ul, etc. could yield
unexpected results.

• Documentation:

– added formula for general color expressions;

– enhanced text and index;

– removed dependence of index generation on local configuration file.

2004/02/16 v1.09

• New features:

– color model HTML, a 24-bit hexadecimal RGB variant; allows to spec-
ify colors like \color[HTML]{AFFE90};

– color names orange, violet, purple, and brown added to the set of pre-
defined colors.

• New xcolor homepage: www.ukern.de/tex/xcolor.html

• Bugfix: \xdefinecolor sometimes did not normalise its parameters.

• Changes:

– slight improvements of the documentation;

– example file xcolor1.tex reorganised and abridged.

2004/02/04 v1.08

• New commands:

– \selectcolormodel to change the target model within a document;

– \adjustUCRBG to fine-tune undercolor-removal and black-generation
during conversion to cmyk.

• Bugfix: color expressions did not work correctly in connection with active
‘!’ character, e.g. in case of \usepackage[frenchb]{babel}.

• Code re-organisation:

– \XC@xdefinecolor merged into \xdefinecolor, making the first com-
mand obsolete;

– several internal commands improved/streamlined.

43

2004/01/20 v1.07

• New feature: support for color masking and color separation.

• New commands:

– \rmultiply to multiply a dimension register by a real number;

– \xcolorcmd to pass commands that are to be executed at the end of
the package.

• Changes:

– more consistent color handling: extended colors now always take prece-
dence over standard colors;

– several commands improved by using code from the LATEX kernel.

• Documentation: some minor changes.

• Example files: additional pstricks examples (file xcolor2.tex).

2003/12/15 v1.06

• New feature: extended color expressions, allowing for cascaded mix opera-
tions, e.g. \color{red!30!green!40!blue}.

• Documentation: new section on color expressions.

• Bugfix: color series stepping did not work correctly within non-displaying
commands like \extractcolorspec{foo!!+} (this bug was introduced in
v1.05).

• Renamed commands: \ukfileversion and similar internal constants re-
named to \XCfileversion etc.

• Removed commands: \ifXCpst and \ifXCtable made obsolete by a simple
trick.

2003/11/21 v1.05

• Bugfixes:

– package option hideerrors should now work as expected;

– usage of ‘.’ in the first color expression in a document caused an error
due to incorrect initialisation.

• Code re-organisation: \extractcolorspec now uses \XC@splitcolor, mak-
ing \XC@extract obsolete.

2003/11/09 v1.04

• New feature: easy access to current color within color expressions.

• New option: override to replace \definecolor by \xdefinecolor.

• New command: \tracingcolors for logging color-specific information.

44

2003/09/21 v1.03

• Change: bypass strange behaviour of some drivers.

• New feature: driver-sharing with hyperref.

2003/09/19 v1.02

• Change: \extractcolorspec and \colorlet now also accept color series
as arguments.

2003/09/15 v1.01

• New feature: \definecolorseries and friends.

• Documentation: removed some doc-related side-effects.

• Code re-organisation: all calculation-related tools put to one place.

• Bugfixes:

– \@rdivide: added \relax to fix problem with negative numerators;

– \rowc@l@rs: replaced \@ifempty by \@ifxempty.

2003/09/09 v1.00

• First published release.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

A
\adjustUCRBG 6, 36
arguments

〈color〉 10, 11
〈core model〉 . . 9, 10
〈dec〉 9, 10
〈div〉 9, 10
〈empty〉 9, 10
〈expr〉 10, 11
〈ext expr〉 . . . 10, 11
〈int〉 9, 10
〈minus〉 9, 10
〈mix expr〉 . . 10, 11
〈model〉 9, 10
〈name〉 9, 10
〈num model〉 . . 9, 10
〈num〉 9, 10
〈pct〉 9, 10
〈plus〉 9, 10

〈postfix 〉 10, 11
〈prefix 〉 10, 11
〈spec〉 10, 11
〈type〉 10, 11

B
\blendcolors 18
\blendcolors* 18

C
\color 17
color expression 16
color models

Gray
6–9, 28, 32, 39, 40

HSB
6–9, 28, 32, 38, 40

HTML 6–
9, 28, 32, 36, 40, 43

RGB 6–9, 14,
28, 32, 35, 40, 43

cmyk 4–
9, 14, 21, 28, 32,
33, 36, 37, 39, 43

cmy . 7–9, 21, 28,
32, 33, 36, 37, 39

gray 5,
7–9, 12, 28, 32,
33, 35–37, 39, 40

hsb . . . 4, 7–9, 28,
30, 32–35, 37–40

rgb . . . 5, 7–9, 14,
21, 26, 28, 32–40

‘named’ . 9, 11, 16, 42
color names

AliceBlue 15
AntiqueWhite . . . 15
Apricot 14

45

Aquamarine . 14, 15
Aqua 15
Azure 15
Beige 15
Bisque 15
Bittersweet 14
Black 14, 15
BlanchedAlmond . 15
BlueGreen 14
BlueViolet . . 14, 15
Blue 14, 15
BrickRed 14
Brown 14, 15
BurlyWood 15
BurntOrange 14
CadetBlue . . 14, 15
CarnationPink . . 14
Cerulean 14
Chartreuse 15
Chocolate 15
Coral 15
CornflowerBlue 14, 15
Cornsilk 15
Crimson 15
Cyan 14, 15
Dandelion 14
DarkBlue 15
DarkCyan 15
DarkGoldenrod . . 15
DarkGray 15
DarkGreen 15
DarkGrey 15
DarkKhaki 15
DarkMagenta . . . 15
DarkOliveGreen . 15
DarkOrange 15
DarkOrchid . . 14, 15
DarkRed 15
DarkSalmon 15
DarkSeaGreen . . . 15
DarkSlateBlue . . . 15
DarkSlateGray . . 15
DarkSlateGrey . . 15
DarkTurquoise . . 15
DarkViolet 15
DeepPink 15
DeepSkyBlue . . . 15
DimGray 15
DimGrey 15
DodgerBlue 15
Emerald 14
FireBrick 15
FloralWhite 15
ForestGreen . 14, 15

Fuchsia 14, 15
Gainsboro 15
GhostWhite 15
Goldenrod . . . 14, 15
Gold 15
Gray 14, 15
GreenYellow . 14, 15
Green 14, 15
Grey 15
Honeydew 15
HotPink 15
IndianRed 15
Indigo 15
Ivory 15
JungleGreen 14
Khaki 15
LavenderBlush . . 15
Lavender . . . 14, 15
LawnGreen 15
LemonChiffon . . . 15
LightBlue 15
LightCoral 15
LightCyan 15
LightGoldenrodYel-

low 15
LightGray 15
LightGreen 15
LightGrey 15
LightPink 15
LightSalmon 15
LightSeaGreen . . . 15
LightSkyBlue . . . 15
LightSlateGray . . 15
LightSlateGrey . . 15
LightSteelBlue . . 15
LightYellow 15
LimeGreen . . 14, 15
Lime 15
Linen 15
Magenta 14, 15
Mahogany 14
Maroon 14, 15
MediumAquama-

rine 15
MediumBlue 15
MediumOrchid . . 15
MediumPurple . . 15
MediumSeaGreen 15
MediumSlateBlue 15
MediumSpring-

Green 15
MediumTurquoise 15
MediumVioletRed 15
Melon 14

MidnightBlue 14, 15
MintCream 15
MistyRose 15
Moccasin 15
Mulberry 14
NavajoWhite 15
NavyBlue 14
Navy 15
OldLace 15
OliveDrab 15
OliveGreen 14
Olive 15
OrangeRed . . 14, 15
Orange 14, 15
Orchid 14, 15
PaleGoldenrod . . 15
PaleGreen 15
PaleTurquoise . . . 15
PaleVioletRed . . . 15
PapayaWhip 15
PeachPuff 15
Peach 14
Periwinkle 14
Peru 15
PineGreen 14
Pink 15
Plum 14, 15
PowderBlue 15
ProcessBlue 14
Purple 14, 15
RawSienna 14
RedOrange 14
RedViolet 14
Red 14, 15
Rhodamine 14
RosyBrown 15
RoyalBlue . . . 14, 15
RoyalPurple 14
RubineRed 14
SaddleBrown 15
Salmon 14, 15
SandyBrown 15
SeaGreen . . . 14, 15
Seashell 15
Sepia 14
Sienna 15
Silver 15
SkyBlue 14, 15
SlateBlue 15
SlateGray 15
SlateGrey 15
Snow 15
SpringGreen . 14, 15
SteelBlue 15

46

Tan 14, 15
TealBlue 14
Teal 15
Thistle 14, 15
Tomato 15
Turquoise . . . 14, 15
VioletRed 14
Violet 14, 15
Wheat 15
WhiteSmoke 15
White 14, 15
WildStrawberry . 14
YellowGreen . 14, 15
YellowOrange . . . 14
Yellow 14, 15
black

. 4, 6, 7, 13, 18–21
blue . . . 5, 13, 17–20
brown 13, 43
cyan 13, 21, 22
darkgray 13
foo 21
gray . . . 4, 13, 18–20
green . . . 4, 5, 13, 17
lightgray 13
magenta 13, 21
orange 13, 43
purple 13, 43
red . . 4–6, 13, 17–20
violet 13, 43
white 4, 5, 13, 18–20
yellow . . 4, 13, 18–21

color set 16
\colorbox 17
\colorlet 16
\colormask 22
\colorseriescycle . 24
\convertcolorspec . 28

D
\definecolor 16
\definecolorseries . 23
\definecolorset . . . 16
\DefineNamedColor . 17

E
\extractcolorspec . 27

F
\fcolorbox 17
files

dvipsnam.def 16, 17
eps 22
jpg 22

pdf 22
png 22
pstricks.sty . . 5, 7

G
\GetGinDriver 6
\GinDriver 6

H
\hiderowcolors 26

I
\ifconvertcolorsD . . 8
\ifconvertcolorsU . . 8
\ifglobalcolors . . . 17
\ifmaskcolors 21

K
keys

citebordercolor . . . 26
citecolor 26
filebordercolor . . . 26
filecolor 26
linkbordercolor . . . 26
linkcolor 26
menubordercolor . 26
menucolor 26
pagebordercolor . . 26
pagecolor 26
pdfborder 26
runbordercolor . . . 26
runcolor 26
urlbordercolor . . . 26
urlcolor 26
xcitebordercolor . . 26
xfilebordercolor . . 26
xlinkbordercolor . . 26
xmenubordercolor 26
xpagebordercolor . 26
xpdfborder . . . 26, 42
xrunbordercolor . . 26
xurlbordercolor . . 26

M
\maskcolors 21

P
package options

Gray 5, 7, 8
HSB 5, 7, 8
HTML 5, 7, 8
RGB 5, 7, 8
cmyk 5, 7, 8, 21
cmy 5, 7, 8
dvipdfm 5, 28

dvipdf 5, 28

dvipsnames
. 5–7, 14, 42

dvipsone 5, 28

dvips
5, 6, 16, 28, 29, 42

dviwindo 5, 28

dviwin 5, 28

emtex 5, 28

gray 5, 7, 8

hideerrors . 6, 7, 44

hsb 5, 7, 8

hyperref 5–7, 26, 42

hypertex 6

monochrome . . . 5, 28

natural 5, 7, 8

nodvipsnames . 6, 42

override . . 6, 42, 44

oztex 5, 28

pctex32 5, 28

pctexhp 5, 28

pctexps 5, 28

pctexwin 5, 28

pdftex . 5, 16, 28, 29

pst 5, 7

rgb 5, 7, 8

showerrors 6, 7

svgnames 5, 7, 14, 15

table 5, 7

tcidvi 5, 28

textures . . 5, 28, 41

truetex 5, 28

usecolors 29

usenames . . 6, 29, 42

vtex 5, 28

xdvi 5, 28

packages

colorinfo 29, 41

colortbl 7, 26, 40

color
4–7, 14, 16, 17,

24, 27–29, 40–42

doc 45

dvips 42

fp 30

graphics 28

hyperref
6, 7, 24, 26, 41, 45

pstcol 5, 7, 40

pstricks 7, 42, 44

realcalc 30

soul 18, 43

47

xcolor . . . 1, 4–7,
9, 14, 16, 17, 22,
24, 26–29, 41–43

\pagecolor 17
\providecolor 16
\providecolorset . . 17

R
\rangeGray 6
\rangeHSB 6

\rangeRGB 6
\resetcolorseries . 24
\rowcolors 26
\rowcolors* 26
\rownum 26

S
\selectcolormodel . . 8
shade 4
\showrowcolors 26

T

\textcolor 17

tint 4

tone 4

\tracingcolors 27

X

\xcolorcmd 6

\xglobal 17, 21, 22

48

