
Using the GNU Compiler Collection

Richard M. Stallman

Last updated 30 December 2002

for GCC 3.3.6

For GCC Version 3.3.6

Published by the Free Software Foundation
59 Temple Place—Suite 330
Boston, MA 02111-1307, USA
Last printed April, 1998.
Printed copies are available for $50 each.

Copyright c© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License” and
“Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover
Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free
Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies published
by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

1 Compile C, C++, Objective-C, Ada, Fortran, Java, or treelang 3

2 Language Standards Supported by GCC . 5

3 GCC Command Options . 7

4 C Implementation-defined behavior . 149

5 Extensions to the C Language Family . 153

6 Extensions to the C++ Language . 245

7 GNU Objective-C runtime features . 255

8 Binary Compatibility . 261

9 gcov—a Test Coverage Program . 263

10 Known Causes of Trouble with GCC . 269

11 Reporting Bugs . 285

12 How To Get Help with GCC . 287

13 Contributing to GCC Development . 289

Funding Free Software . 291

The GNU Project and GNU/Linux . 293

GNU GENERAL PUBLIC LICENSE . 295

GNU Free Documentation License . 301

Contributors to GCC. 309

Option Index . 319

Keyword Index . 329

ii Using the GNU Compiler Collection (GCC)

iii

Table of Contents

Introduction . 1

1 Compile C, C++, Objective-C, Ada, Fortran, Java, or
treelang . 3

2 Language Standards Supported by GCC 5

3 GCC Command Options . 7
3.1 Option Summary . 7
3.2 Options Controlling the Kind of Output. 15
3.3 Compiling C++ Programs . 17
3.4 Options Controlling C Dialect . 17
3.5 Options Controlling C++ Dialect . 21
3.6 Options Controlling Objective-C Dialect . 27
3.7 Options to Control Diagnostic Messages Formatting . 28
3.8 Options to Request or Suppress Warnings . 28
3.9 Options for Debugging Your Program or GCC . 39
3.10 Options That Control Optimization. 46
3.11 Options Controlling the Preprocessor . 61
3.12 Passing Options to the Assembler . 68
3.13 Options for Linking . 68
3.14 Options for Directory Search . 71
3.15 Specifying subprocesses and the switches to pass to them 72
3.16 Specifying Target Machine and Compiler Version . 77
3.17 Hardware Models and Configurations . 78

3.17.1 M680x0 Options . 78
3.17.2 M68hc1x Options . 80
3.17.3 VAX Options . 81
3.17.4 SPARC Options . 81
3.17.5 ARM Options . 84
3.17.6 MN10200 Options . 88
3.17.7 MN10300 Options . 88
3.17.8 M32R/D Options . 89
3.17.9 M88K Options . 90
3.17.10 IBM RS/6000 and PowerPC Options . 93
3.17.11 Darwin Options . 100
3.17.12 IBM RT Options . 102
3.17.13 MIPS Options . 102
3.17.14 Intel 386 and AMD x86-64 Options . 106
3.17.15 HPPA Options . 112
3.17.16 Intel 960 Options . 115
3.17.17 DEC Alpha Options . 116
3.17.18 DEC Alpha/VMS Options . 119
3.17.19 H8/300 Options . 120
3.17.20 SH Options . 120
3.17.21 Options for System V . 121
3.17.22 TMS320C3x/C4x Options . 121

iv Using the GNU Compiler Collection (GCC)

3.17.23 V850 Options . 123
3.17.24 ARC Options . 124
3.17.25 NS32K Options . 125
3.17.26 AVR Options. 126
3.17.27 MCore Options . 127
3.17.28 IA-64 Options . 128
3.17.29 D30V Options . 129
3.17.30 S/390 and zSeries Options . 129
3.17.31 CRIS Options . 130
3.17.32 MMIX Options . 132
3.17.33 PDP-11 Options . 133
3.17.34 Xstormy16 Options . 134
3.17.35 FRV Options . 134
3.17.36 Xtensa Options . 136

3.18 Options for Code Generation Conventions . 139
3.19 Environment Variables Affecting GCC . 144
3.20 Running Protoize . 146

4 C Implementation-defined behavior 149
4.1 Translation . 149
4.2 Environment . 149
4.3 Identifiers. 149
4.4 Characters . 149
4.5 Integers . 150
4.6 Floating point . 150
4.7 Arrays and pointers . 150
4.8 Hints . 151
4.9 Structures, unions, enumerations, and bit-fields . 151
4.10 Qualifiers . 151
4.11 Preprocessing directives . 152
4.12 Library functions . 152
4.13 Architecture . 152
4.14 Locale-specific behavior . 152

5 Extensions to the C Language Family 153
5.1 Statements and Declarations in Expressions . 153
5.2 Locally Declared Labels. 154
5.3 Labels as Values . 154
5.4 Nested Functions . 155
5.5 Constructing Function Calls . 157
5.6 Referring to a Type with typeof . 158
5.7 Generalized Lvalues . 159
5.8 Conditionals with Omitted Operands . 160
5.9 Double-Word Integers . 160
5.10 Complex Numbers . 160
5.11 Hex Floats . 161
5.12 Arrays of Length Zero . 161
5.13 Structures With No Members . 163
5.14 Arrays of Variable Length. 163
5.15 Macros with a Variable Number of Arguments. 164
5.16 Slightly Looser Rules for Escaped Newlines . 164
5.17 Non-Lvalue Arrays May Have Subscripts . 165
5.18 Arithmetic on void- and Function-Pointers . 165

v

5.19 Non-Constant Initializers . 165
5.20 Compound Literals . 165
5.21 Designated Initializers . 166
5.22 Case Ranges . 167
5.23 Cast to a Union Type . 168
5.24 Mixed Declarations and Code . 168
5.25 Declaring Attributes of Functions . 168
5.26 Attribute Syntax . 177
5.27 Prototypes and Old-Style Function Definitions . 179
5.28 C++ Style Comments . 180
5.29 Dollar Signs in Identifier Names . 180
5.30 The Character 〈ESC〉 in Constants . 181
5.31 Inquiring on Alignment of Types or Variables . 181
5.32 Specifying Attributes of Variables . 181
5.33 Specifying Attributes of Types . 185
5.34 An Inline Function is As Fast As a Macro . 188
5.35 Assembler Instructions with C Expression Operands . 190

5.35.1 i386 floating point asm operands . 194
5.36 Constraints for asm Operands . 195

5.36.2 Simple Constraints . 195
5.36.3 Multiple Alternative Constraints . 197
5.36.4 Constraint Modifier Characters . 197
5.36.5 Constraints for Particular Machines . 198

5.37 Controlling Names Used in Assembler Code . 208
5.38 Variables in Specified Registers . 208

5.38.1 Defining Global Register Variables . 208
5.38.2 Specifying Registers for Local Variables . 210

5.39 Alternate Keywords . 210
5.40 Incomplete enum Types . 211
5.41 Function Names as Strings . 211
5.42 Getting the Return or Frame Address of a Function . 212
5.43 Using vector instructions through built-in functions . 212
5.44 Other built-in functions provided by GCC . 214
5.45 Built-in Functions Specific to Particular Target Machines 218

5.45.1 Alpha Built-in Functions . 218
5.45.2 X86 Built-in Functions . 219
5.45.3 PowerPC AltiVec Built-in Functions . 223

5.46 Pragmas Accepted by GCC . 240
5.46.1 ARM Pragmas . 240
5.46.2 RS/6000 and PowerPC Pragmas . 240
5.46.3 Darwin Pragmas . 240
5.46.4 Solaris Pragmas . 241
5.46.5 Tru64 Pragmas . 241

5.47 Unnamed struct/union fields within structs/unions. 241
5.48 Thread-Local Storage . 242

5.48.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage 242
5.48.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage 243

vi Using the GNU Compiler Collection (GCC)

6 Extensions to the C++ Language . 245
6.1 Minimum and Maximum Operators in C++ . 245
6.2 When is a Volatile Object Accessed? . 245
6.3 Restricting Pointer Aliasing . 246
6.4 Vague Linkage . 247
6.5 Declarations and Definitions in One Header . 248
6.6 Where’s the Template? . 249
6.7 Extracting the function pointer from a bound pointer to member function . . . 251
6.8 C++-Specific Variable, Function, and Type Attributes . 251
6.9 Java Exceptions . 252
6.10 Deprecated Features . 252
6.11 Backwards Compatibility . 253

7 GNU Objective-C runtime features. 255
7.1 +load: Executing code before main . 255

7.1.1 What you can and what you cannot do in +load 256
7.2 Type encoding . 256
7.3 Garbage Collection . 258
7.4 Constant string objects . 259
7.5 compatibility alias . 260

8 Binary Compatibility . 261

9 gcov—a Test Coverage Program . 263
9.1 Introduction to gcov . 263
9.2 Invoking gcov . 263
9.3 Using gcov with GCC Optimization . 266
9.4 Brief description of gcov data files . 267

10 Known Causes of Trouble with GCC 269
10.1 Actual Bugs We Haven’t Fixed Yet . 269
10.2 Cross-Compiler Problems . 269
10.3 Interoperation . 269
10.4 Problems Compiling Certain Programs . 272
10.5 Incompatibilities of GCC . 272
10.6 Fixed Header Files . 275
10.7 Standard Libraries . 276
10.8 Disappointments and Misunderstandings . 276
10.9 Common Misunderstandings with GNU C++ . 277

10.9.1 Declare and Define Static Members . 277
10.9.2 Temporaries May Vanish Before You Expect . 278
10.9.3 Implicit Copy-Assignment for Virtual Bases . 278

10.10 Caveats of using protoize . 279
10.11 Certain Changes We Don’t Want to Make . 280
10.12 Warning Messages and Error Messages . 283

11 Reporting Bugs . 285
11.1 Have You Found a Bug? . 285
11.2 How and where to Report Bugs . 285

12 How To Get Help with GCC. 287

vii

13 Contributing to GCC Development 289

Funding Free Software . 291

The GNU Project and GNU/Linux . 293

GNU GENERAL PUBLIC LICENSE . 295
Preamble . 295
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION . 295
How to Apply These Terms to Your New Programs . 300

GNU Free Documentation License. 301
ADDENDUM: How to use this License for your documents . 307

Contributors to GCC . 309

Option Index. 319

Keyword Index . 329

viii Using the GNU Compiler Collection (GCC)

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and incompati-
bilities, and how to report bugs. It corresponds to GCC version 3.3.6. The internals of the GNU
compilers, including how to port them to new targets and some information about how to write
front ends for new languages, are documented in a separate manual. See section “Introduction”
in GNU Compiler Collection (GCC) Internals.

2 Using the GNU Compiler Collection (GCC)

Chapter 1: Compile C, C++, Objective-C, Ada, Fortran, Java, or treelang 3

1 Compile C, C++, Objective-C, Ada, Fortran, Java,
or treelang

Several versions of the compiler (C, C++, Objective-C, Ada, Fortran, Java and treelang) are
integrated; this is why we use the name “GNU Compiler Collection”. GCC can compile programs
written in any of these languages. The Ada, Fortran, Java and treelang compilers are described
in separate manuals.

“GCC” is a common shorthand term for the GNU Compiler Collection. This is both the
most general name for the compiler, and the name used when the emphasis is on compiling C
programs (as the abbreviation formerly stood for “GNU C Compiler”).

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is
only one compiler, it is also accurate to call it “GCC” no matter what the language context;
however, the term “G++” is more useful when the emphasis is on compiling C++ programs.

Similarly, when we talk about Ada compilation, we usually call the compiler “GNAT”, for
the same reasons.

We use the name “GCC” to refer to the compilation system as a whole, and more specifically
to the language-independent part of the compiler. For example, we refer to the optimization
options as affecting the behavior of “GCC” or sometimes just “the compiler”.

Front ends for other languages, such as Mercury and Pascal exist but have not yet been
integrated into GCC. These front ends, like that for C++, are built in subdirectories of GCC
and link to it. The result is an integrated compiler that can compile programs written in C,
C++, Objective-C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers and
those of the GCC core. Consult the documentation of the other front ends for the options to
use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your
C++ program source. There is no intermediate C version of the program. (By contrast, for
example, some other implementations use a program that generates a C program from your C++
source.) Avoiding an intermediate C representation of the program means that you get better
object code, and better debugging information. The GNU debugger, GDB, works with this
information in the object code to give you comprehensive C++ source-level editing capabilities
(see section “C and C++” in Debugging with GDB).

4 Using the GNU Compiler Collection (GCC)

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with some
extensions.

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in both its
forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. The
ANSI standard, but not the ISO standard, also came with a Rationale document. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c89’ or ‘-std=iso9899:1990’; to
obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings). See Section 3.4
[Options Controlling C Dialect], page 18.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published in
1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added digraphs
and __STDC_VERSION__ to the language, but otherwise concerned the library. This amendment
is commonly known as AMD1; the amended standard is sometimes known as C94 or C95. To
select this standard in GCC, use the option ‘-std=iso9899:199409’ (with, as for other standard
versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999,
and is commonly known as C99. GCC has incomplete support for this standard version;
see http://gcc.gnu.org/gcc-3.3/c99status.html for details. To select this standard, use
‘-std=c99’ or ‘-std=iso9899:1999’. (While in development, drafts of this standard version
were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in a Technical Corrigendum published in
2001. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions conflict
with the C standard. See Chapter 5 [Extensions to the C Language Family], page 153. Use of the
‘-std’ options listed above will disable these extensions where they conflict with the C standard
version selected. You may also select an extended version of the C language explicitly with
‘-std=gnu89’ (for C89 with GNU extensions) or ‘-std=gnu99’ (for C99 with GNU extensions).
The default, if no C language dialect options are given, is ‘-std=gnu89’; this will change to
‘-std=gnu99’ in some future release when the C99 support is complete. Some features that are
part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMD1, also
those in <iso646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In addition,
complex types, added in C99, are not required for freestanding implementations. The stan-
dard also defines two environments for programs, a freestanding environment, required of all
implementations and which may not have library facilities beyond those required of freestanding
implementations, where the handling of program startup and termination are implementation-
defined, and a hosted environment, which is not required, in which all the library facilities are
provided and startup is through a function int main (void) or int main (int, char *[]). An

http://gcc.gnu.org/gcc-3.3/c99status.html

6 Using the GNU Compiler Collection (GCC)

OS kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘-ffreestanding’; it will then define __STDC_HOSTED__ to 0 and not make assumptions about
the meanings of function names from the standard library, with exceptions noted below. To
build an OS kernel, you may well still need to make your own arrangements for linking and
startup. See Section 3.4 [Options Controlling C Dialect], page 18.

GCC does not provide the library facilities required only of hosted implementations, nor yet
all the facilities required by C99 of freestanding implementations; to use the facilities of a hosted
environment, you will need to find them elsewhere (for example, in the GNU C library). See
Section 10.7 [Standard Libraries], page 276.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there are a
few exceptions. GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp. Some older ports of GCC are configured to use the BSD bcopy, bzero and bcmp
functions instead, but this is deprecated for new ports. Finally, if __builtin_trap is used, and
the target does not implement the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning the
history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C. The most authoritative manual is
“Object-Oriented Programming and the Objective-C Language”, available at a number of web
sites
• http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/ is a recent version
• http://www.toodarkpark.org/computers/objc/ is an older example
• http://www.gnustep.org has additional useful information

There is no standard for treelang, which is a sample language front end for GCC. Its only
purpose is as a sample for people wishing to write a new language for GCC. The language is
documented in ‘gcc/treelang/treelang.texi’ which can be turned into info or HTML format.

See section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See section “The GNU Fortran Language” in Using and Porting GNU Fortran, for details of
the Fortran language supported by GCC.

See section “Compatibility with the Java Platform” in GNU gcj, for details of compatibility
between gcj and the Java Platform.

http://gcc.gnu.org/readings.html
http://developer.apple.com/techpubs/macosx/Cocoa/ObjectiveC/
http://www.toodarkpark.org/computers/objc/
http://www.gnustep.org

Chapter 3: GCC Command Options 7

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The
“overall options” allow you to stop this process at an intermediate stage. For example, the
‘-c’ option says not to run the linker. Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor
and others the compiler itself. Yet other options control the assembler and linker; most of these
are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says so
explicitly. If the description for a particular option does not mention a source language, you can
use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs], page 17, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-letter
names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very different from
‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if you
specify ‘-L’ more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example, ‘-fforce-mem’,
‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative
forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of
these two forms, whichever one is not the default.

See [Option Index], page 319, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 15.

-c -S -E -o file -pipe -pass-exit-codes

-x language -v -### --help --target-help --version

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 18.

-ansi -std=standard -aux-info filename

-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fms-extensions

-trigraphs -no-integrated-cpp -traditional -traditional-cpp

-fallow-single-precision -fcond-mismatch

-fsigned-bitfields -fsigned-char

-funsigned-bitfields -funsigned-char

-fwritable-strings

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect], page 21.

-fabi-version=n -fno-access-control -fcheck-new

-fconserve-space -fno-const-strings -fdollars-in-identifiers

-fno-elide-constructors

-fno-enforce-eh-specs -fexternal-templates

-falt-external-templates

8 Using the GNU Compiler Collection (GCC)

-ffor-scope -fno-for-scope -fno-gnu-keywords

-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions

-fno-nonansi-builtins -fno-operator-names

-fno-optional-diags -fpermissive

-frepo -fno-rtti -fstats -ftemplate-depth-n

-fuse-cxa-atexit -fvtable-gc -fno-weak -nostdinc++

-fno-default-inline -Wabi -Wctor-dtor-privacy

-Wnon-virtual-dtor -Wreorder

-Weffc++ -Wno-deprecated

-Wno-non-template-friend -Wold-style-cast

-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C Language Options
See Section 3.6 [Options Controlling Objective-C Dialect], page 27.

-fconstant-string-class=class-name

-fgnu-runtime -fnext-runtime -gen-decls

-Wno-protocol -Wselector -Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting], page 28.

-fmessage-length=n

-fdiagnostics-show-location=[once|every-line]

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings], page 28.

-fsyntax-only -pedantic -pedantic-errors

-w -W -Wall -Waggregate-return

-Wcast-align -Wcast-qual -Wchar-subscripts -Wcomment

-Wconversion -Wno-deprecated-declarations

-Wdisabled-optimization -Wno-div-by-zero -Werror

-Wfloat-equal -Wformat -Wformat=2

-Wformat-nonliteral -Wformat-security

-Wimplicit -Wimplicit-int

-Wimplicit-function-declaration

-Werror-implicit-function-declaration

-Wimport -Winline -Wno-endif-labels

-Wlarger-than-len -Wlong-long

-Wmain -Wmissing-braces

-Wmissing-format-attribute -Wmissing-noreturn

-Wno-multichar -Wno-format-extra-args -Wno-format-y2k

-Wno-import -Wnonnull -Wpacked -Wpadded

-Wparentheses -Wpointer-arith -Wredundant-decls

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wstrict-aliasing

-Wswitch -Wswitch-default -Wswitch-enum

-Wsystem-headers -Wtrigraphs -Wundef -Wuninitialized

-Wunknown-pragmas -Wunreachable-code

-Wunused -Wunused-function -Wunused-label -Wunused-parameter

-Wunused-value -Wunused-variable -Wwrite-strings

C-only Warning Options
-Wbad-function-cast -Wmissing-declarations

-Wmissing-prototypes -Wnested-externs

-Wstrict-prototypes -Wtraditional

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 39.

-dletters -dumpspecs -dumpmachine -dumpversion

-fdump-unnumbered -fdump-translation-unit[-n]
-fdump-class-hierarchy[-n]
-fdump-tree-original[-n]
-fdump-tree-optimized[-n]

Chapter 3: GCC Command Options 9

-fdump-tree-inlined[-n]
-feliminate-dwarf2-dups -fmem-report

-fprofile-arcs -frandom-seed=n

-fsched-verbose=n -ftest-coverage -ftime-report

-g -glevel -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2

-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+

-p -pg -print-file-name=library -print-libgcc-file-name

-print-multi-directory -print-multi-lib

-print-prog-name=program -print-search-dirs -Q

-save-temps -time -fvar-tracking

Optimization Options
See Section 3.10 [Options that Control Optimization], page 46.

-falign-functions=n -falign-jumps=n

-falign-labels=n -falign-loops=n

-fbranch-probabilities -fcaller-saves -fcprop-registers

-fcse-follow-jumps -fcse-skip-blocks -fdata-sections

-fdelayed-branch -fdelete-null-pointer-checks

-fexpensive-optimizations -ffast-math -ffloat-store

-fforce-addr -fforce-mem -ffunction-sections

-fgcse -fgcse-lm -fgcse-sm -floop-optimize -fcrossjumping

-fif-conversion -fif-conversion2

-finline-functions -finline-limit=n -fkeep-inline-functions

-fkeep-static-consts -fmerge-constants -fmerge-all-constants

-fmove-all-movables -fnew-ra -fno-branch-count-reg

-fno-default-inline -fno-defer-pop

-fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2

-funsafe-math-optimizations -ffinite-math-only

-fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-register-move

-foptimize-sibling-calls -fprefetch-loop-arrays

-freduce-all-givs -fregmove -frename-registers

-freorder-blocks -freorder-functions

-frerun-cse-after-loop -frerun-loop-opt

-fschedule-insns -fschedule-insns2

-fno-sched-interblock -fno-sched-spec -fsched-spec-load

-fsched-spec-load-dangerous -fsignaling-nans

-fsingle-precision-constant -fssa -fssa-ccp -fssa-dce -fvrp

-fstrength-reduce -fstrict-aliasing -ftracer -fthread-jumps

-ftsp-ordering -funroll-all-loops -funroll-loops

--param name=value

-O -O0 -O1 -O2 -O3 -Os

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor], page 61.

-$ -Aquestion=answer

-A-question [=answer]
-C -dD -dI -dM -dN

-Dmacro [=defn] -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc -P -remap

-trigraphs -undef -Umacro -Wp,option

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 68.

-Wa,option

Linker Options
See Section 3.13 [Options for Linking], page 68.

object-file-name -llibrary

-nostartfiles -nodefaultlibs -nostdlib -pie

10 Using the GNU Compiler Collection (GCC)

-s -static -static-libgcc -shared -shared-libgcc -symbolic

-Wl,option -Xlinker option

-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 71.

-Bprefix -Idir -I- -Ldir -specs=file

Target Options
See Section 3.16 [Target Options], page 77.

-V version -b machine

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 78.
M680x0 Options

-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040

-m68060 -mcpu32 -m5200 -m68881 -mbitfield -mc68000 -mc68020

-mfpa -mnobitfield -mrtd -mshort -msoft-float -mpcrel

-malign-int -mstrict-align

M68hc1x Options
-m6811 -m6812 -m68hc11 -m68hc12 -m68hcs12

-mauto-incdec -minmax -mlong-calls -mshort

-msoft-reg-count=count

VAX Options
-mg -mgnu -munix

SPARC Options
-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-m32 -m64

-mapp-regs -mbroken-saverestore -mcypress

-mfaster-structs -mflat

-mfpu -mhard-float -mhard-quad-float

-mimpure-text -mlittle-endian -mlive-g0 -mno-app-regs

-mno-faster-structs -mno-flat -mno-fpu

-mno-impure-text -mno-stack-bias -mno-unaligned-doubles

-msoft-float -msoft-quad-float -msparclite -mstack-bias

-msupersparc -munaligned-doubles -mv8 -threads -pthreads

ARM Options
-mapcs-frame -mno-apcs-frame

-mapcs-26 -mapcs-32

-mapcs-stack-check -mno-apcs-stack-check

-mapcs-float -mno-apcs-float

-mapcs-reentrant -mno-apcs-reentrant

-msched-prolog -mno-sched-prolog

-mlittle-endian -mbig-endian -mwords-little-endian

-malignment-traps -mno-alignment-traps

-msoft-float -mhard-float -mfpe

-mthumb-interwork -mno-thumb-interwork

-mcpu=name -march=name -mfpe=name

-mstructure-size-boundary=n

-mabort-on-noreturn

-mlong-calls -mno-long-calls

-msingle-pic-base -mno-single-pic-base

-mpic-register=reg

-mnop-fun-dllimport

-mpoke-function-name

-mthumb -marm

-mtpcs-frame -mtpcs-leaf-frame

-mcaller-super-interworking -mcallee-super-interworking

MN10200 Options

Chapter 3: GCC Command Options 11

-mrelax

MN10300 Options
-mmult-bug -mno-mult-bug

-mam33 -mno-am33

-mno-crt0 -mrelax

M32R/D Options
-m32rx -m32r -mcode-model=model-type

-msdata=sdata-type -G num

M88K Options
-m88000 -m88100 -m88110 -mbig-pic

-mcheck-zero-division -mhandle-large-shift

-midentify-revision -mno-check-zero-division

-mno-ocs-debug-info -mno-ocs-frame-position

-mno-optimize-arg-area -mno-serialize-volatile

-mno-underscores -mocs-debug-info

-mocs-frame-position -moptimize-arg-area

-mserialize-volatile -mshort-data-num -msvr3

-msvr4 -mtrap-large-shift -muse-div-instruction

-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu-type

-mtune=cpu-type

-mpower -mno-power -mpower2 -mno-power2

-mpowerpc -mpowerpc64 -mno-powerpc

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mnew-mnemonics -mold-mnemonics

-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc

-m64 -m32 -mxl-call -mno-xl-call -mpe

-msoft-float -mhard-float -mmultiple -mno-multiple

-mstring -mno-string -mupdate -mno-update

-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align

-mstrict-align -mno-strict-align -mrelocatable

-mno-relocatable -mrelocatable-lib -mno-relocatable-lib

-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian

-mcall-aix -mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=altivec -mabi=no-altivec

-mabi=spe -mabi=no-spe

-misel=yes -misel=no

-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata

-msdata=opt -mvxworks -mwindiss -G num -pthread

Darwin Options
-all_load -allowable_client -arch -arch_errors_fatal

-arch_only -bind_at_load -bundle -bundle_loader

-client_name -compatibility_version -current_version

-dependency-file -dylib_file -dylinker_install_name

-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL

-force_flat_namespace -headerpad_max_install_names

-image_base -init -install_name -keep_private_externs

-multi_module -multiply_defined -multiply_defined_unused

-noall_load -nomultidefs -noprebind -noseglinkedit

-pagezero_size -prebind -prebind_all_twolevel_modules

-private_bundle -read_only_relocs -sectalign

-sectobjectsymbols -whyload -seg1addr

-sectcreate -sectobjectsymbols -sectorder

-seg_addr_table -seg_addr_table_filename -seglinkedit

-segprot -segs_read_only_addr -segs_read_write_addr

-single_module -static -sub_library -sub_umbrella

12 Using the GNU Compiler Collection (GCC)

-twolevel_namespace -umbrella -undefined

-unexported_symbols_list -weak_reference_mismatches -whatsloaded

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs

-mfull-fp-blocks -mhc-struct-return -min-line-mul

-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -march=cpu-type -mtune=cpu=type

-mcpu=cpu-type -membedded-data -muninit-const-in-rodata

-membedded-pic -mfp32 -mfp64 -mfused-madd -mno-fused-madd

-mgas -mgp32 -mgp64

-mgpopt -mhalf-pic -mhard-float -mint64 -mips1

-mips2 -mips3 -mips4 -mlong64 -mlong32 -mlong-calls -mmemcpy

-mmips-as -mmips-tfile -mno-abicalls

-mno-embedded-data -mno-uninit-const-in-rodata

-mno-embedded-pic -mno-gpopt -mno-long-calls

-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats

-mrnames -msoft-float

-m4650 -msingle-float -mmad

-mstats -EL -EB -G num -nocpp

-mabi=32 -mabi=n32 -mabi=64 -mabi=eabi

-mfix7000 -mno-crt0 -mflush-func=func -mno-flush-func

-mbranch-likely -mno-branch-likely

i386 and x86-64 Options
-mcpu=cpu-type -march=cpu-type

-mfpmath=unit -masm=dialect -mno-fancy-math-387

-mno-fp-ret-in-387 -msoft-float -msvr3-shlib

-mno-wide-multiply -mrtd -malign-double

-mpreferred-stack-boundary=num

-mmmx -msse -msse2 -msse3 -m3dnow

-mthreads -mno-align-stringops -minline-all-stringops

-mpush-args -maccumulate-outgoing-args -m128bit-long-double

-m96bit-long-double -mregparm=num -momit-leaf-frame-pointer

-mno-red-zone

-mcmodel=code-model

-m32 -m64

HPPA Options
-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing

-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld

-mjump-in-delay -mlinker-opt -mlong-calls

-mlong-load-store -mno-big-switch -mno-disable-fpregs

-mno-disable-indexing -mno-fast-indirect-calls -mno-gas

-mno-jump-in-delay -mno-long-load-store

-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0

-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime

-mschedule=cpu-type -mspace-regs -msio -mwsio

-nolibdld -static -threads

Intel 960 Options
-mcpu-type -masm-compat -mclean-linkage

-mcode-align -mcomplex-addr -mleaf-procedures

-mic-compat -mic2.0-compat -mic3.0-compat

-mintel-asm -mno-clean-linkage -mno-code-align

-mno-complex-addr -mno-leaf-procedures

-mno-old-align -mno-strict-align -mno-tail-call

-mnumerics -mold-align -msoft-float -mstrict-align

-mtail-call

DEC Alpha Options
-mno-fp-regs -msoft-float -malpha-as -mgas

-mieee -mieee-with-inexact -mieee-conformant

-mfp-trap-mode=mode -mfp-rounding-mode=mode

Chapter 3: GCC Command Options 13

-mtrap-precision=mode -mbuild-constants

-mcpu=cpu-type -mtune=cpu-type

-mbwx -mmax -mfix -mcix

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data

-mmemory-latency=time

DEC Alpha/VMS Options
-mvms-return-codes

H8/300 Options
-mrelax -mh -ms -mn -mint32 -malign-300

SH Options
-m1 -m2 -m3 -m3e

-m4-nofpu -m4-single-only -m4-single -m4

-m5-64media -m5-64media-nofpu

-m5-32media -m5-32media-nofpu

-m5-compact -m5-compact-nofpu

-mb -ml -mdalign -mrelax

-mbigtable -mfmovd -mhitachi -mnomacsave

-mieee -misize -mpadstruct -mspace

-mprefergot -musermode

System V Options
-Qy -Qn -YP,paths -Ym,dir

ARC Options
-EB -EL

-mmangle-cpu -mcpu=cpu -mtext=text-section

-mdata=data-section -mrodata=readonly-data-section

TMS320C3x/C4x Options
-mcpu=cpu -mbig -msmall -mregparm -mmemparm

-mfast-fix -mmpyi -mbk -mti -mdp-isr-reload

-mrpts=count -mrptb -mdb -mloop-unsigned

-mparallel-insns -mparallel-mpy -mpreserve-float

V850 Options
-mlong-calls -mno-long-calls -mep -mno-ep

-mprolog-function -mno-prolog-function -mspace

-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt

-mv850e

-mv850 -mbig-switch

NS32K Options
-m32032 -m32332 -m32532 -m32081 -m32381

-mmult-add -mnomult-add -msoft-float -mrtd -mnortd

-mregparam -mnoregparam -msb -mnosb

-mbitfield -mnobitfield -mhimem -mnohimem

AVR Options
-mmcu=mcu -msize -minit-stack=n -mno-interrupts

-mcall-prologues -mno-tablejump -mtiny-stack

MCore Options
-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates

-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields

-m4byte-functions -mno-4byte-functions -mcallgraph-data

-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim

-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MMIX Options
-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu

-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols

-melf -mbranch-predict -mno-branch-predict -mbase-addresses

-mno-base-addresses -msingle-exit -mno-single-exit

IA-64 Options

14 Using the GNU Compiler Collection (GCC)

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic

-mvolatile-asm-stop -mb-step -mregister-names -mno-sdata

-mconstant-gp -mauto-pic -minline-float-divide-min-latency

-minline-float-divide-max-throughput

-minline-int-divide-min-latency

-minline-int-divide-max-throughput -mno-dwarf2-asm

-mfixed-range=register-range

D30V Options
-mextmem -mextmemory -monchip -mno-asm-optimize

-masm-optimize -mbranch-cost=n -mcond-exec=n

S/390 and zSeries Options
-march=cpu-type -mtune=cpu-type

-mhard-float -msoft-float -mbackchain -mno-backchain

-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mesa -mzarch -mdebug -mno-debug

CRIS Options
-mcpu=cpu -march=cpu -mtune=cpu

-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects

-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt

-melf -maout -melinux -mlinux -sim -sim2

-mmul-bug-workaround -mno-mul-bug-workaround

PDP-11 Options
-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10

-mbcopy -mbcopy-builtin -mint32 -mno-int16

-mint16 -mno-int32 -mfloat32 -mno-float64

-mfloat64 -mno-float32 -mabshi -mno-abshi

-mbranch-expensive -mbranch-cheap

-msplit -mno-split -munix-asm -mdec-asm

Xstormy16 Options
-msim

Xtensa Options
-mbig-endian -mlittle-endian

-mdensity -mno-density

-mmac16 -mno-mac16

-mmul16 -mno-mul16

-mmul32 -mno-mul32

-mnsa -mno-nsa

-mminmax -mno-minmax

-msext -mno-sext

-mbooleans -mno-booleans

-mhard-float -msoft-float

-mfused-madd -mno-fused-madd

-mserialize-volatile -mno-serialize-volatile

-mtext-section-literals -mno-text-section-literals

-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64

-mhard-float -msoft-float -malloc-cc -mfixed-cc

-mdword -mno-dword -mdouble -mno-double

-mmedia -mno-media -mmuladd -mno-muladd -mlibrary-pic

-macc-4 -macc-8 -mpack -mno-pack -mno-eflags

-mcond-move -mno-cond-move -mscc -mno-scc

-mcond-exec -mno-cond-exec -mvliw-branch -mno-vliw-branch

-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec

-mno-nested-cond-exec -mtomcat-stats

-mcpu=cpu

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions], page 139.

Chapter 3: GCC Command Options 15

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -funwind-tables

-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions

-fno-common -fno-ident -fno-gnu-linker

-fpcc-struct-return -fpic -fPIC -fpie -fPIE

-freg-struct-return -fshared-data -fshort-enums

-fshort-double -fshort-wchar -fvolatile

-fvolatile-global -fvolatile-static

-fverbose-asm -fpack-struct -fstack-check

-fstack-limit-register=reg -fstack-limit-symbol=sym

-fargument-alias -fargument-noalias

-fargument-noalias-global -fleading-underscore

-ftls-model=model

-ftrapv -fbounds-check

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and
linking, always in that order. The first three stages apply to an individual source file, and end
by producing an object file; linking combines all the object files (those newly compiled, and
those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’ to
make an Objective-C program work.

file.mi Objective-C source code which should not be preprocessed.

file.h C header file (not to be compiled or linked).

file.cc
file.cp
file.cxx
file.cpp
file.c++
file.C C++ source code which must be preprocessed. Note that in ‘.cxx’, the last two

letters must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.f
file.for
file.FOR Fortran source code which should not be preprocessed.

file.F
file.fpp
file.FPP Fortran source code which must be preprocessed (with the traditional preprocessor).

file.r Fortran source code which must be preprocessed with a RATFOR preprocessor (not
included with GCC).

See section “Options Controlling the Kind of Output” in Using and Porting GNU
Fortran, for more details of the handling of Fortran input files.

16 Using the GNU Compiler Collection (GCC)

file.ads Ada source code file which contains a library unit declaration (a declaration of
a package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

file.adb Ada source code file containing a library unit body (a subprogram or package body).
Such files are also called bodies.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized suffix
is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting the
compiler choose a default based on the file name suffix). This option applies to all
following input files until the next ‘-x’ option. Possible values for language are:

c c-header cpp-output
c++ c++-cpp-output
objective-c objc-cpp-output
assembler assembler-with-cpp
ada
f77 f77-cpp-input ratfor
java
treelang

-x none Turn off any specification of a language, so that subsequent files are handled accord-
ing to their file name suffixes (as they are if ‘-x’ has not been used at all).

-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program will instead return with numerically highest error produced by any phase
that returned an error indication.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop.
Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do nothing at
all.

-c Compile or assemble the source files, but do not link. The linking stage simply is
not done. The ultimate output is in the form of an object file for each source file.
By default, the object file name for a source file is made by replacing the suffix ‘.c’,
‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in the
form of an assembler code file for each non-assembler input file specified.
By default, the assembler file name for a source file is made by replacing the suffix
‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is
in the form of preprocessed source code, which is sent to the standard output.
Input files which don’t require preprocessing are ignored.

Chapter 3: GCC Command Options 17

-o file Place output in file file. This applies regardless to whatever sort of output is be-
ing produced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

Since only one output file can be specified, it does not make sense to use ‘-o’ when
compiling more than one input file, unless you are producing an executable file as
output.

If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the object
file for ‘source.suffix ’ in ‘source.o’, its assembler file in ‘source.s’, and all
preprocessed C source on standard output.

-v Print (on standard error output) the commands executed to run the stages of com-
pilation. Also print the version number of the compiler driver program and of the
preprocessor and the compiler proper.

-### Like ‘-v’ except the commands are not executed and all command arguments are
quoted. This is useful for shell scripts to capture the driver-generated command
lines.

-pipe Use pipes rather than temporary files for communication between the various stages
of compilation. This fails to work on some systems where the assembler is unable
to read from a pipe; but the GNU assembler has no trouble.

--help Print (on the standard output) a description of the command line options understood
by gcc. If the ‘-v’ option is also specified then ‘--help’ will also be passed on to
the various processes invoked by gcc, so that they can display the command line
options they accept. If the ‘-W’ option is also specified then command line options
which have no documentation associated with them will also be displayed.

--target-help
Print (on the standard output) a description of target specific command line options
for each tool.

--version
Display the version number and copyrights of the invoked GCC.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.c++’, ‘.cp’, or ‘.cxx’;
preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these names and compiles
them as C++ programs even if you call the compiler the same way as for compiling C programs
(usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that understands
the C++ language—and under some circumstances, you might want to compile programs from
standard input, or otherwise without a suffix that flags them as C++ programs. g++ is a program
that calls GCC with the default language set to C++, and automatically specifies linking against
the C++ library. On many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line options
that you use for compiling programs in any language; or command-line options meaningful for
C and related languages; or options that are meaningful only for C++ programs. See Section 3.4
[Options Controlling C Dialect], page 18, for explanations of options for languages related to C.
See Section 3.5 [Options Controlling C++ Dialect], page 21, for explanations of options that are
meaningful only for C++ programs.

18 Using the GNU Compiler Collection (GCC)

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++ and
Objective-C) that the compiler accepts:

-ansi In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions
that conflict with ISO C++.
This turns off certain features of GCC that are incompatible with ISO C90 (when
compiling C code), or of standard C++ (when compiling C++ code), such as the asm
and typeof keywords, and predefined macros such as unix and vax that identify
the type of system you are using. It also enables the undesirable and rarely used
ISO trigraph feature. For the C compiler, it disables recognition of C++ style ‘//’
comments as well as the inline keyword.
The alternate keywords __asm__, __extension__, __inline__ and __typeof__
continue to work despite ‘-ansi’. You would not want to use them in an ISO C
program, of course, but it is useful to put them in header files that might be included
in compilations done with ‘-ansi’. Alternate predefined macros such as __unix__
and __vax__ are also available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ISO programs to be rejected gratuitously.
For that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.8 [Warning
Options], page 28.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used. Some
header files may notice this macro and refrain from declaring certain functions or
defining certain macros that the ISO standard doesn’t call for; this is to avoid
interfering with any programs that might use these names for other things.
Functions which would normally be built in but do not have semantics defined by
ISO C (such as alloca and ffs) are not built-in functions with ‘-ansi’ is used. See
Section 5.44 [Other built-in functions provided by GCC], page 214, for details of the
functions affected.

-std= Determine the language standard. This option is currently only supported when
compiling C or C++. A value for this option must be provided; possible values are

‘c89’
‘iso9899:1990’

ISO C90 (same as ‘-ansi’).

‘iso9899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x’
‘iso9899:1999’
‘iso9899:199x’

ISO C99. Note that this standard is not yet fully supported; see
http://gcc.gnu.org/gcc-3.3/c99status.html for more information.
The names ‘c9x’ and ‘iso9899:199x’ are deprecated.

‘gnu89’ Default, ISO C90 plus GNU extensions (including some C99 features).

‘gnu99’
‘gnu9x’ ISO C99 plus GNU extensions. When ISO C99 is fully implemented in

GCC, this will become the default. The name ‘gnu9x’ is deprecated.

‘c++98’ The 1998 ISO C++ standard plus amendments.

http://gcc.gnu.org/gcc-3.3/c99status.html

Chapter 3: GCC Command Options 19

‘gnu++98’ The same as ‘-std=c++98’ plus GNU extensions. This is the default for
C++ code.

Even when this option is not specified, you can still use some of the features of newer
standards in so far as they do not conflict with previous C standards. For example,
you may use __restrict__ even when ‘-std=c99’ is not specified.
The ‘-std’ options specifying some version of ISO C have the same effects as ‘-ansi’,
except that features that were not in ISO C90 but are in the specified version (for
example, ‘//’ comments and the inline keyword in ISO C99) are not disabled.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of these
standard versions.

-aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.
Besides declarations, the file indicates, in comments, the origin of each declaration
(source file and line), whether the declaration was implicit, prototyped or unproto-
typed (‘I’, ‘N’ for new or ‘O’ for old, respectively, in the first character after the line
number and the colon), and whether it came from a declaration or a definition (‘C’
or ‘F’, respectively, in the following character). In the case of function definitions,
a K&R-style list of arguments followed by their declarations is also provided, inside
comments, after the declaration.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so that code can use these
words as identifiers. You can use the keywords __asm__, __inline__ and __typeof_
_ instead. ‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since asm and inline are
standard keywords. You may want to use the ‘-fno-gnu-keywords’ flag instead,
which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’), this switch
only affects the asm and typeof keywords, since inline is a standard keyword in
ISO C99.

-fno-builtin
-fno-builtin-function

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 5.44 [Other built-in functions provided by GCC], page 214, for details of
the functions affected, including those which are not built-in functions when ‘-ansi’
or ‘-std’ options for strict ISO C conformance are used because they do not have
an ISO standard meaning.
GCC normally generates special code to handle certain built-in functions more ef-
ficiently; for instance, calls to alloca may become single instructions that adjust
the stack directly, and calls to memcpy may become inline copy loops. The resulting
code is often both smaller and faster, but since the function calls no longer appear
as such, you cannot set a breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.
With the ‘-fno-builtin-function ’ option only the built-in function function is
disabled. function must not begin with ‘__builtin_’. If a function is named this is
not built-in in this version of GCC, this option is ignored. There is no corresponding
‘-fbuiltin-function ’ option; if you wish to enable built-in functions selectively
when using ‘-fno-builtin’ or ‘-ffreestanding’, you may define macros such as:

#define abs(n) __builtin_abs ((n))

#define strcpy(d, s) __builtin_strcpy ((d), (s))

20 Using the GNU Compiler Collection (GCC)

-fhosted

Assert that compilation takes place in a hosted environment. This implies
‘-fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

-ffreestanding
Assert that compilation takes place in a freestanding environment. This implies
‘-fno-builtin’. A freestanding environment is one in which the standard library
may not exist, and program startup may not necessarily be at main. The most
obvious example is an OS kernel. This is equivalent to ‘-fno-hosted’.
See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.

-trigraphs
Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO C
conformance) implies ‘-trigraphs’.

-no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling. This option
allows a user supplied "cc1", "cc1plus", or "cc1obj" via the ‘-B’ option. The user
supplied compilation step can then add in an additional preprocessing step after
normal preprocessing but before compiling. The default is to use the integrated cpp
(internal cpp)
The semantics of this option will change if "cc1", "cc1plus", and "cc1obj" are
merged.

-traditional
-traditional-cpp

Formerly, these options caused GCC to attempt to emulate a pre-standard C com-
piler. They are now only supported with the ‘-E’ switch. The preprocessor continues
to support a pre-standard mode. See the GNU CPP manual for details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third argu-
ments. The value of such an expression is void. This option is not supported for
C++.

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.
Ideally, a portable program should always use signed char or unsigned char when
it depends on the signedness of an object. But many programs have been written
to use plain char and expect it to be signed, or expect it to be unsigned, depending
on the machines they were written for. This option, and its inverse, let you make
such a program work with the opposite default.
The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Chapter 3: GCC Command Options 21

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative form
of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equivalent to
‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the declaration
does not use either signed or unsigned. By default, such a bit-field is signed,
because this is consistent: the basic integer types such as int are signed types.

-fwritable-strings
Store string constants in the writable data segment and don’t uniquize them. This
is for compatibility with old programs which assume they can write into string
constants.
Writing into string constants is a very bad idea; “constants” should be constant.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs; but
you can also use most of the GNU compiler options regardless of what language your program
is in. For example, you might compile a file firstClass.C like this:

g++ -g -frepo -O -c firstClass.C

In this example, only ‘-frepo’ is an option meant only for C++ programs; you can use the other
options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 1 is the version of the C++ ABI that first
appeared in G++ 3.2. Version 0 will always be the version that conforms most
closely to the C++ ABI specification. Therefore, the ABI obtained using version 0
will change as ABI bugs are fixed.
The default is version 1.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around bugs
in the access control code.

-fcheck-new
Check that the pointer returned by operator new is non-null before attempting to
modify the storage allocated. This check is normally unnecessary because the C++
standard specifies that operator new will only return 0 if it is declared ‘throw()’,
in which case the compiler will always check the return value even without this
option. In all other cases, when operator new has a non-empty exception specifi-
cation, memory exhaustion is signalled by throwing std::bad_alloc. See also ‘new
(nothrow)’.

-fconserve-space
Put uninitialized or runtime-initialized global variables into the common segment, as
C does. This saves space in the executable at the cost of not diagnosing duplicate
definitions. If you compile with this flag and your program mysteriously crashes
after main() has completed, you may have an object that is being destroyed twice
because two definitions were merged.

22 Using the GNU Compiler Collection (GCC)

This option is no longer useful on most targets, now that support has been added
for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default,
G++ uses type const char * as required by the standard. Even if you use
‘-fno-const-strings’, you cannot actually modify the value of a string constant,
unless you also use ‘-fwritable-strings’.
This option might be removed in a future release of G++. For maximum portability,
you should structure your code so that it works with string constants that have type
const char *.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of ‘$’ with the option
‘-fno-dollars-in-identifiers’. (GNU C allows ‘$’ by default on most target
systems, but there are a few exceptions.) Traditional C allowed the character ‘$’ to
form part of identifiers. However, ISO C and C++ forbid ‘$’ in identifiers.

-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which
is only used to initialize another object of the same type. Specifying this option
disables that optimization, and forces G++ to call the copy constructor in all cases.

-fno-enforce-eh-specs
Don’t check for violation of exception specifications at runtime. This option violates
the C++ standard, but may be useful for reducing code size in production builds,
much like defining ‘NDEBUG’. The compiler will still optimize based on the exception
specifications.

-fexternal-templates
Cause ‘#pragma interface’ and ‘implementation’ to apply to template instantia-
tion; template instances are emitted or not according to the location of the template
definition. See Section 6.6 [Template Instantiation], page 249, for more information.
This option is deprecated.

-falt-external-templates
Similar to ‘-fexternal-templates’, but template instances are emitted or not ac-
cording to the place where they are first instantiated. See Section 6.6 [Template
Instantiation], page 249, for more information.
This option is deprecated.

-ffor-scope
-fno-for-scope

If ‘-ffor-scope’ is specified, the scope of variables declared in a for-init-statement is
limited to the ‘for’ loop itself, as specified by the C++ standard. If ‘-fno-for-scope’
is specified, the scope of variables declared in a for-init-statement extends to the end
of the enclosing scope, as was the case in old versions of G++, and other (traditional)
implementations of C++.
The default if neither flag is given to follow the standard, but to allow and give a
warning for old-style code that would otherwise be invalid, or have different behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as
an identifier. You can use the keyword __typeof__ instead. ‘-ansi’ implies
‘-fno-gnu-keywords’.

Chapter 3: GCC Command Options 23

-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e. by
use); only emit code for explicit instantiations. See Section 6.6 [Template Instanti-
ation], page 249, for more information.

-fno-implicit-inline-templates
Don’t emit code for implicit instantiations of inline templates, either. The default
is to handle inlines differently so that compiles with and without optimization will
need the same set of explicit instantiations.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by
‘#pragma implementation’. This will cause linker errors if these functions are not
inlined everywhere they are called.

-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int and
getting a pointer to member function via non-standard syntax.

-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO C.
These include ffs, alloca, _exit, index, bzero, conjf, and other related functions.

-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or and
xor as synonyms as keywords.

-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue. Cur-
rently, the only such diagnostic issued by G++ is the one for a name having multiple
meanings within a class.

-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warnings.
Thus, using ‘-fpermissive’ will allow some nonconforming code to compile.

-frepo Enable automatic template instantiation at link time. This option also implies
‘-fno-implicit-templates’. See Section 6.6 [Template Instantiation], page 249,
for more information.

-fno-rtti
Disable generation of information about every class with virtual functions for use
by the C++ runtime type identification features (‘dynamic_cast’ and ‘typeid’). If
you don’t use those parts of the language, you can save some space by using this
flag. Note that exception handling uses the same information, but it will generate
it as needed.

-fstats Emit statistics about front-end processing at the end of the compilation. This
information is generally only useful to the G++ development team.

-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on the tem-
plate instantiation depth is needed to detect endless recursions during template class
instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum
depth greater than 17.

-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_atexit
function rather than the atexit function. This option is required for fully standards-

24 Using the GNU Compiler Collection (GCC)

compliant handling of static destructors, but will only work if your C library supports
__cxa_atexit.

-fvtable-gc
Emit special relocations for vtables and virtual function references so that the linker
can identify unused virtual functions and zero out vtable slots that refer to them.
This is most useful with ‘-ffunction-sections’ and ‘-Wl,--gc-sections’, in order
to also discard the functions themselves.
This optimization requires GNU as and GNU ld. Not all systems support this
option. ‘-Wl,--gc-sections’ is ignored without ‘-static’.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By default, G++
will use weak symbols if they are available. This option exists only for testing, and
should not be used by end-users; it will result in inferior code and has no benefits.
This option may be removed in a future release of G++.

-nostdinc++
Do not search for header files in the standard directories specific to C++, but do still
search the other standard directories. (This option is used when building the C++
library.)

In addition, these optimization, warning, and code generation options have meanings only
for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class scope. See Section 3.10
[Options That Control Optimization], page 46. Note that these functions will have
linkage like inline functions; they just won’t be inlined by default.

-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the vendor-
neutral C++ ABI. Although an effort has been made to warn about all such cases,
there are probably some cases that are not warned about, even though G++ is
generating incompatible code. There may also be cases where warnings are emitted
even though the code that is generated will be compatible.
You should rewrite your code to avoid these warnings if you are concerned about the
fact that code generated by G++ may not be binary compatible with code generated
by other compilers.
The known incompatibilities at this point include:
• Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data

into the same byte as a base class. For example:
struct A { virtual void f(); int f1 : 1; };

struct B : public A { int f2 : 1; };

In this case, G++ will place B::f2 into the same byte asA::f1; other compilers
will not. You can avoid this problem by explicitly padding A so that its size
is a multiple of the byte size on your platform; that will cause G++ and other
compilers to layout B identically.

• Incorrect handling of tail-padding for virtual bases. G++ does not use tail
padding when laying out virtual bases. For example:

struct A { virtual void f(); char c1; };

struct B { B(); char c2; };

struct C : public A, public virtual B {};

In this case, G++ will not place B into the tail-padding for A; other compilers
will. You can avoid this problem by explicitly padding A so that its size is a

Chapter 3: GCC Command Options 25

multiple of its alignment (ignoring virtual base classes); that will cause G++
and other compilers to layout C identically.

• Incorrect handling of bit-fields with declared widths greater than that of their
underlying types, when the bit-fields appear in a union. For example:

union U { int i : 4096; };

Assuming that an int does not have 4096 bits, G++ will make the union too
small by the number of bits in an int.

• Empty classes can be placed at incorrect offsets. For example:
struct A {};

struct B {

A a;

virtual void f ();

};

struct C : public B, public A {};

G++ will place the A base class of C at a nonzero offset; it should be placed at
offset zero. G++ mistakenly believes that the A data member of B is already at
offset zero.

• Names of template functions whose types involve typename or template tem-
plate parameters can be mangled incorrectly.

template <typename Q>

void f(typename Q::X) {}

template <template <typename> class Q>

void f(typename Q<int>::X) {}

Instantiations of these templates may be mangled incorrectly.

-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors in
that class are private, and it has neither friends nor public static member functions.
This warning is enabled by default.

-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual destructor,
yet it declares a non-virtual one. This warning is enabled by ‘-Wall’.

-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match the
order in which they must be executed. For instance:

struct A {

int i;

int j;

A(): j (0), i (1) { }

};

The compiler will rearrange the member initializers for ‘i’ and ‘j’ to match the
declaration order of the members, emitting a warning to that effect. This warning
is enabled by ‘-Wall’.

The following ‘-W...’ options are not affected by ‘-Wall’.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers’ Effective
C++ book:
• Item 11: Define a copy constructor and an assignment operator for classes with

dynamically allocated memory.

26 Using the GNU Compiler Collection (GCC)

• Item 12: Prefer initialization to assignment in constructors.

• Item 14: Make destructors virtual in base classes.

• Item 15: Have operator= return a reference to *this.

• Item 23: Don’t try to return a reference when you must return an object.

Also warn about violations of the following style guidelines from Scott Meyers’ More
Effective C++ book:

• Item 6: Distinguish between prefix and postfix forms of increment and decre-
ment operators.

• Item 7: Never overload &&, ||, or ,.

When selecting this option, be aware that the standard library headers do not obey
all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Section 6.10 [Deprecated
Features], page 252.

-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a tem-
plate. Since the advent of explicit template specification support in G++, if the name
of the friend is an unqualified-id (i.e., ‘friend foo(int)’), the C++ language spec-
ification demands that the friend declare or define an ordinary, nontemplate func-
tion. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-
ids could be interpreted as a particular specialization of a templatized function.
Because this non-conforming behavior is no longer the default behavior for G++,
‘-Wnon-template-friend’ allows the compiler to check existing code for potential
trouble spots and is on by default. This new compiler behavior can be turned off
with ‘-Wno-non-template-friend’ which keeps the conformant compiler code but
disables the helpful warning.

-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++ program.
The new-style casts (‘static_cast’, ‘reinterpret_cast’, and ‘const_cast’) are
less vulnerable to unintended effects and much easier to search for.

-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For
example, in:

struct A {

virtual void f();

};

struct B: public A {

void f(int);

};

the A class version of f is hidden in B, and code like:
B* b;

b->f();

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a plain
pointer.

Chapter 3: GCC Command Options 27

-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumeral type
to a signed type, over a conversion to an unsigned type of the same size. Previous
versions of G++ would try to preserve unsignedness, but the standard mandates the
current behavior.

3.6 Options Controlling Objective-C Dialect

This section describes the command-line options that are only meaningful for Objective-C pro-
grams, but you can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file some_class.m like this:

gcc -g -fgnu-runtime -O -c some_class.m

In this example, ‘-fgnu-runtime’ is an option meant only for Objective-C programs; you can
use the other options with any language supported by GCC.

Here is a list of options that are only for compiling Objective-C programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string specified
with the syntax @"...". The default class name is NXConstantString.

-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime. This
is the default for most types of systems.

-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for NeXT-
based systems, including Darwin and Mac OS X. The macro __NEXT_RUNTIME__ is
predefined if (and only if) this option is used.

-gen-decls
Dump interface declarations for all classes seen in the source file to a file named
‘sourcename.decl’.

-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every method
in the protocol that is not implemented by the class. The default behavior is to
issue a warning for every method not explicitly implemented in the class, even if
a method implementation is inherited from the superclass. If you use the -Wno-
protocol option, then methods inherited from the superclass are considered to be
implemented, and no warning is issued for them.

-Wselector
Warn if multiple methods of different types for the same selector are found during
compilation. The check is performed on the list of methods in the final stage of
compilation. Additionally, a check is performed for each selector appearing in a
@selector(...) expression, and a corresponding method for that selector has been
found during compilation. Because these checks scan the method table only at the
end of compilation, these warnings are not produced if the final stage of compilation
is not reached, for example because an error is found during compilation, or because
the -fsyntax-only option is being used.

-Wundeclared-selector
Warn if a @selector(...) expression referring to an undeclared selector is found.
A selector is considered undeclared if no method with that name has been de-
clared before the @selector(...) expression, either explicitly in an @interface or

28 Using the GNU Compiler Collection (GCC)

@protocol declaration, or implicitly in an @implementation section. This option
always performs its checks as soon as a @selector(...) expression is found, while
-Wselector only performs its checks in the final stage of compilation. This also
enforces the coding style convention that methods and selectors must be declared
before being used.

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device’s aspect
(e.g. its width, . . .). The options described below can be used to control the diagnostic messages
formatting algorithm, e.g. how many characters per line, how often source location information
should be reported. Right now, only the C++ front end can honor these options. However it
is expected, in the near future, that the remaining front ends would be able to digest them
correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The
default is 72 characters for g++ and 0 for the rest of the front ends supported by
GCC. If n is zero, then no line-wrapping will be done; each error message will
appear on a single line.

-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter
to emit once source location information; that is, in case the message is too long
to fit on a single physical line and has to be wrapped, the source location won’t be
emitted (as prefix) again, over and over, in subsequent continuation lines. This is
the default behavior.

-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter
to emit the same source location information (as prefix) for physical lines that result
from the process of breaking a message which is too long to fit on a single line.

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.

The following options control the amount and kinds of warnings produced by GCC; for
further, language-specific options also refer to Section 3.5 [C++ Dialect Options], page 21 and
Section 3.6 [Objective-C Dialect Options], page 27.

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs
that use forbidden extensions, and some other programs that do not follow ISO C
and ISO C++. For ISO C, follows the version of the ISO C standard specified by
any ‘-std’ option used.

Chapter 3: GCC Command Options 29

Valid ISO C and ISO C++ programs should compile properly with or without this
option (though a rare few will require ‘-ansi’ or a ‘-std’ option specifying the
required version of ISO C). However, without this option, certain GNU extensions
and traditional C and C++ features are supported as well. With this option, they
are rejected.
‘-pedantic’ does not cause warning messages for use of the alternate keywords
whose names begin and end with ‘__’. Pedantic warnings are also disabled in the
expression that follows __extension__. However, only system header files should
use these escape routes; application programs should avoid them. See Section 5.39
[Alternate Keywords], page 210.
Some users try to use ‘-pedantic’ to check programs for strict ISO C conformance.
They soon find that it does not do quite what they want: it finds some non-ISO
practices, but not all—only those for which ISO C requires a diagnostic, and some
others for which diagnostics have been added.
A feature to report any failure to conform to ISO C might be useful in some instances,
but would require considerable additional work and would be quite different from
‘-pedantic’. We don’t have plans to support such a feature in the near future.
Where the standard specified with ‘-std’ represents a GNU extended dialect of C,
such as ‘gnu89’ or ‘gnu99’, there is a corresponding base standard, the version of
ISO C on which the GNU extended dialect is based. Warnings from ‘-pedantic’
are given where they are required by the base standard. (It would not make sense
for such warnings to be given only for features not in the specified GNU C dialect,
since by definition the GNU dialects of C include all features the compiler supports
with the given option, and there would be nothing to warn about.)

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error, as
programmers often forget that this type is signed on some machines.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or when-
ever a Backslash-Newline appears in a ‘//’ comment.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified, and that the conversions spec-
ified in the format string make sense. This includes standard functions, and others
specified by format attributes (see Section 5.25 [Function Attributes], page 169),
in the printf, scanf, strftime and strfmon (an X/Open extension, not in the C
standard) families.
The formats are checked against the format features supported by GNU libc version
2.2. These include all ISO C90 and C99 features, as well as features from the Single
Unix Specification and some BSD and GNU extensions. Other library implemen-
tations may not support all these features; GCC does not support warning about
features that go beyond a particular library’s limitations. However, if ‘-pedantic’
is used with ‘-Wformat’, warnings will be given about format features not in the
selected standard version (but not for strfmon formats, since those are not in any
version of the C standard). See Section 3.4 [Options Controlling C Dialect], page 18.

30 Using the GNU Compiler Collection (GCC)

Since ‘-Wformat’ also checks for null format arguments for several functions,
‘-Wformat’ also implies ‘-Wnonnull’.
‘-Wformat’ is included in ‘-Wall’. For more control over some aspects of
format checking, the options ‘-Wno-format-y2k’, ‘-Wno-format-extra-args’,
‘-Wno-format-zero-length’, ‘-Wformat-nonliteral’, ‘-Wformat-security’, and
‘-Wformat=2’ are available, but are not included in ‘-Wall’.

-Wno-format-y2k
If ‘-Wformat’ is specified, do not warn about strftime formats which may yield
only a two-digit year.

-Wno-format-extra-args
If ‘-Wformat’ is specified, do not warn about excess arguments to a printf or scanf
format function. The C standard specifies that such arguments are ignored.
Where the unused arguments lie between used arguments that are specified with ‘$’
operand number specifications, normally warnings are still given, since the imple-
mentation could not know what type to pass to va_arg to skip the unused argu-
ments. However, in the case of scanf formats, this option will suppress the warning
if the unused arguments are all pointers, since the Single Unix Specification says
that such unused arguments are allowed.

-Wno-format-zero-length
If ‘-Wformat’ is specified, do not warn about zero-length formats. The C standard
specifies that zero-length formats are allowed.

-Wformat-nonliteral
If ‘-Wformat’ is specified, also warn if the format string is not a string literal and
so cannot be checked, unless the format function takes its format arguments as a
va_list.

-Wformat-security
If ‘-Wformat’ is specified, also warn about uses of format functions that repre-
sent possible security problems. At present, this warns about calls to printf and
scanf functions where the format string is not a string literal and there are no
format arguments, as in printf (foo);. This may be a security hole if the format
string came from untrusted input and contains ‘%n’. (This is currently a subset of
what ‘-Wformat-nonliteral’ warns about, but in future warnings may be added
to ‘-Wformat-security’ that are not included in ‘-Wformat-nonliteral’.)

-Wformat=2
Enable ‘-Wformat’ plus format checks not included in ‘-Wformat’. Currently equiv-
alent to ‘-Wformat -Wformat-nonliteral -Wformat-security’.

-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null
value by the nonnull function attribute.
‘-Wnonnull’ is included in ‘-Wall’ and ‘-Wformat’. It can be disabled with the
‘-Wno-nonnull’ option.

-Wimplicit-int
Warn when a declaration does not specify a type.

-Wimplicit-function-declaration
-Werror-implicit-function-declaration

Give a warning (or error) whenever a function is used before being declared.

-Wimplicit
Same as ‘-Wimplicit-int’ and ‘-Wimplicit-function-declaration’.

Chapter 3: GCC Command Options 31

-Wmain Warn if the type of ‘main’ is suspicious. ‘main’ should be a function with external
linkage, returning int, taking either zero arguments, two, or three arguments of
appropriate types.

-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following
example, the initializer for ‘a’ is not fully bracketed, but that for ‘b’ is fully bracketed.

int a[2][2] = { 0, 1, 2, 3 };

int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an as-
signment in a context where a truth value is expected, or when operators are nested
whose precedence people often get confused about.
Also warn about constructions where there may be confusion to which if statement
an else branch belongs. Here is an example of such a case:

{

if (a)

if (b)

foo ();

else

bar ();

}

In C, every else branch belongs to the innermost possible if statement, which in
this example is if (b). This is often not what the programmer expected, as illus-
trated in the above example by indentation the programmer chose. When there is
the potential for this confusion, GCC will issue a warning when this flag is specified.
To eliminate the warning, add explicit braces around the innermost if statement
so there is no way the else could belong to the enclosing if. The resulting code
would look like this:

{

if (a)

{

if (b)

foo ();

else

bar ();

}

}

-Wsequence-point
Warn about code that may have undefined semantics because of violations of se-
quence point rules in the C standard.
The C standard defines the order in which expressions in a C program are evaluated
in terms of sequence points, which represent a partial ordering between the execu-
tion of parts of the program: those executed before the sequence point, and those
executed after it. These occur after the evaluation of a full expression (one which is
not part of a larger expression), after the evaluation of the first operand of a &&, ||,
? : or , (comma) operator, before a function is called (but after the evaluation of
its arguments and the expression denoting the called function), and in certain other
places. Other than as expressed by the sequence point rules, the order of evaluation
of subexpressions of an expression is not specified. All these rules describe only a
partial order rather than a total order, since, for example, if two functions are called
within one expression with no sequence point between them, the order in which the
functions are called is not specified. However, the standards committee have ruled
that function calls do not overlap.

32 Using the GNU Compiler Collection (GCC)

It is not specified when between sequence points modifications to the values of ob-
jects take effect. Programs whose behavior depends on this have undefined behav-
ior; the C standard specifies that “Between the previous and next sequence point
an object shall have its stored value modified at most once by the evaluation of
an expression. Furthermore, the prior value shall be read only to determine the
value to be stored.”. If a program breaks these rules, the results on any particular
implementation are entirely unpredictable.
Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and a[i++]
= i;. Some more complicated cases are not diagnosed by this option, and it may give
an occasional false positive result, but in general it has been found fairly effective
at detecting this sort of problem in programs.
The present implementation of this option only works for C programs. A future
implementation may also work for C++ programs.
The C standard is worded confusingly, therefore there is some debate over the precise
meaning of the sequence point rules in subtle cases. Links to discussions of the
problem, including proposed formal definitions, may be found on our readings page,
at http://gcc.gnu.org/readings.html.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int. Also
warn about any return statement with no return-value in a function whose return-
type is not void.
For C++, a function without return type always produces a diagnostic message, even
when ‘-Wno-return-type’ is specified. The only exceptions are ‘main’ and functions
defined in system headers.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a
case for one or more of the named codes of that enumeration. (The presence of a
default label prevents this warning.) case labels outside the enumeration range
also provoke warnings when this option is used.

-Wswitch-default
Warn whenever a switch statement does not have a default case.

-Wswitch-enum
Warn whenever a switch statement has an index of enumeral type and lacks a case
for one or more of the named codes of that enumeration. case labels outside the
enumeration range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the program
(trigraphs within comments are not warned about).

-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline static
function is unused.

-Wunused-label
Warn whenever a label is declared but not used.
To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 181).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.
To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 181).

http://gcc.gnu.org/readings.html

Chapter 3: GCC Command Options 33

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside from
its declaration
To suppress this warning use the ‘unused’ attribute (see Section 5.32 [Variable
Attributes], page 181).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used.
To suppress this warning cast the expression to ‘void’.

-Wunused All the above ‘-Wunused’ options combined.
In order to get a warning about an unused function parameter, you must either
specify ‘-W -Wunused’ or separately specify ‘-Wunused-parameter’.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a variable
may be clobbered by a setjmp call.
These warnings are possible only in optimizing compilation, because they require
data flow information that is computed only when optimizing. If you don’t specify
‘-O’, you simply won’t get these warnings.
These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose
address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not
occur for structures, unions or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used only to compute
a value that itself is never used, because such computations may be deleted by data
flow analysis before the warnings are printed.
These warnings are made optional because GCC is not smart enough to see all the
reasons why the code might be correct despite appearing to have an error. Here is
one example of how this can happen:

{

int x;

switch (y)

{

case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;

}

foo (x);

}

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn’t
know this. Here is another common case:

{

int save_y;

if (change_y) save_y = y, y = new_y;

...

if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
This option also warns when a non-volatile automatic variable might be changed by a
call to longjmp. These warnings as well are possible only in optimizing compilation.
The compiler sees only the calls to setjmp. It cannot know where longjmp will be
called; in fact, a signal handler could call it at any point in the code. As a result, you

34 Using the GNU Compiler Collection (GCC)

may get a warning even when there is in fact no problem because longjmp cannot
in fact be called at the place which would cause a problem.
Some spurious warnings can be avoided if you declare all the functions you use that
never return as noreturn. See Section 5.25 [Function Attributes], page 169.

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by GCC. If
this command line option is used, warnings will even be issued for unknown pragmas
in system header files. This is not the case if the warnings were only enabled by the
‘-Wall’ command line option.

-Wstrict-aliasing
This option is only active when ‘-fstrict-aliasing’ is active. It warns about code
which might break the strict aliasing rules that the compiler is using for optimization.
The warning does not catch all cases, but does attempt to catch the more common
pitfalls. It is included in ‘-Wall’.

-Wall All of the above ‘-W’ options combined. This enables all the warnings about construc-
tions that some users consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros. This also enables some
language-specific warnings described in Section 3.5 [C++ Dialect Options], page 21
and Section 3.6 [Objective-C Dialect Options], page 27.

The following ‘-W...’ options are not implied by ‘-Wall’. Some of them warn about con-
structions that users generally do not consider questionable, but which occasionally you might
wish to check for; others warn about constructions that are necessary or hard to avoid in some
cases, and there is no simple way to modify the code to suppress the warning.

-W Print extra warning messages for these events:
• A function can return either with or without a value. (Falling off the end of

the function body is considered returning without a value.) For example, this
function would evoke such a warning:

foo (a)

{

if (a > 0)

return a;

}

• An expression-statement or the left-hand side of a comma expression contains no
side effects. To suppress the warning, cast the unused expression to void. For ex-
ample, an expression such as ‘x[i,j]’ will cause a warning, but ‘x[(void)i,j]’
will not.

• An unsigned value is compared against zero with ‘<’ or ‘>=’.
• A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y ? 1 : 0) <=

z’, which is a different interpretation from that of ordinary mathematical no-
tation.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• The return type of a function has a type qualifier such as const. Such a type
qualifier has no effect, since the value returned by a function is not an lvalue.
(But don’t warn about the GNU extension of volatile void return types.
That extension will be warned about if ‘-pedantic’ is specified.)

• If ‘-Wall’ or ‘-Wunused’ is also specified, warn about unused arguments.
• A comparison between signed and unsigned values could produce an incorrect

result when the signed value is converted to unsigned. (But don’t warn if
‘-Wno-sign-compare’ is also specified.)

Chapter 3: GCC Command Options 35

• An aggregate has a partly bracketed initializer. For example, the following code
would evoke such a warning, because braces are missing around the initializer
for x.h:

struct s { int f, g; };

struct t { struct s h; int i; };

struct t x = { 1, 2, 3 };

• An aggregate has an initializer which does not initialize all members. For
example, the following code would cause such a warning, because x.h would be
implicitly initialized to zero:

struct s { int f, g, h; };

struct s x = { 3, 4 };

-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point division by
zero is not warned about, as it can be a legitimate way of obtaining infinities and
NaNs.

-Wsystem-headers
Print warning messages for constructs found in system header files. Warnings from
system headers are normally suppressed, on the assumption that they usually do
not indicate real problems and would only make the compiler output harder to read.
Using this command line option tells GCC to emit warnings from system headers
as if they occurred in user code. However, note that using ‘-Wall’ in conjunction
with this option will not warn about unknown pragmas in system headers—for that,
‘-Wunknown-pragmas’ must also be used.

-Wfloat-equal
Warn if floating point values are used in equality comparisons.
The idea behind this is that sometimes it is convenient (for the programmer) to
consider floating-point values as approximations to infinitely precise real numbers.
If you are doing this, then you need to compute (by analyzing the code, or in some
other way) the maximum or likely maximum error that the computation introduces,
and allow for it when performing comparisons (and when producing output, but
that’s a different problem). In particular, instead of testing for equality, you would
check to see whether the two values have ranges that overlap; and this is done with
the relational operators, so equality comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO C.
Also warn about ISO C constructs that have no traditional C equivalent, and/or
problematic constructs which should be avoided.
• Macro parameters that appear within string literals in the macro body. In

traditional C macro replacement takes place within string literals, but does not
in ISO C.

• In traditional C, some preprocessor directives did not exist. Traditional pre-
processors would only consider a line to be a directive if the ‘#’ appeared in
column 1 on the line. Therefore ‘-Wtraditional’ warns about directives that
traditional C understands but would ignore because the ‘#’ does not appear as
the first character on the line. It also suggests you hide directives like ‘#pragma’
not understood by traditional C by indenting them. Some traditional imple-
mentations would not recognize ‘#elif’, so it suggests avoiding it altogether.

• A function-like macro that appears without arguments.
• The unary plus operator.

36 Using the GNU Compiler Collection (GCC)

• The ‘U’ integer constant suffix, or the ‘F’ or ‘L’ floating point constant suffixes.
(Traditional C does support the ‘L’ suffix on integer constants.) Note, these
suffixes appear in macros defined in the system headers of most modern systems,
e.g. the ‘_MIN’/‘_MAX’ macros in <limits.h>. Use of these macros in user code
might normally lead to spurious warnings, however gcc’s integrated preprocessor
has enough context to avoid warning in these cases.

• A function declared external in one block and then used after the end of the
block.

• A switch statement has an operand of type long.
• A non-static function declaration follows a static one. This construct is not

accepted by some traditional C compilers.
• The ISO type of an integer constant has a different width or signedness from

its traditional type. This warning is only issued if the base of the constant is
ten. I.e. hexadecimal or octal values, which typically represent bit patterns, are
not warned about.

• Usage of ISO string concatenation is detected.
• Initialization of automatic aggregates.
• Identifier conflicts with labels. Traditional C lacks a separate namespace for

labels.
• Initialization of unions. If the initializer is zero, the warning is omitted. This

is done under the assumption that the zero initializer in user code appears
conditioned on e.g. __STDC__ to avoid missing initializer warnings and relies on
default initialization to zero in the traditional C case.

• Conversions by prototypes between fixed/floating point values and vice versa.
The absence of these prototypes when compiling with traditional C would cause
serious problems. This is a subset of the possible conversion warnings, for the
full set use ‘-Wconversion’.

• Use of ISO C style function definitions. This warning intentionally is not issued
for prototype declarations or variadic functions because these ISO C features
will appear in your code when using libiberty’s traditional C compatibility
macros, PARAMS and VPARAMS. This warning is also bypassed for nested func-
tions because that feature is already a gcc extension and thus not relevant to
traditional C compatibility.

-Wundef Warn if an undefined identifier is evaluated in an ‘#if’ directive.

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text.

-Wshadow Warn whenever a local variable shadows another local variable, parameter or global
variable or whenever a built-in function is shadowed.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void.
GNU C assigns these types a size of 1, for convenience in calculations with void *
pointers and pointers to functions.

-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example, warn
if int malloc() is cast to anything *.

Chapter 3: GCC Command Options 37

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target
type. For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target is
increased. For example, warn if a char * is cast to an int * on machines where
integers can only be accessed at two- or four-byte boundaries.

-Wwrite-strings
When compiling C, give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer will get a warning;
when compiling C++, warn about the deprecated conversion from string constants
to char *. These warnings will help you find at compile time code that can try
to write into a string constant, but only if you have been very careful about using
const in declarations and prototypes. Otherwise, it will just be a nuisance; this is
why we did not make ‘-Wall’ request these warnings.

-Wconversion
Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes conver-
sions of fixed point to floating and vice versa, and conversions changing the width or
signedness of a fixed point argument except when the same as the default promotion.
Also, warn if a negative integer constant expression is implicitly converted to an
unsigned type. For example, warn about the assignment x = -1 if x is unsigned.
But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an
incorrect result when the signed value is converted to unsigned. This warning is
enabled by ‘-W’, and by ‘-Wall’ in C++ only.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In
languages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types.
(An old-style function definition is permitted without a warning if preceded by a
declaration which specifies the argument types.)

-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration. This
warning is issued even if the definition itself provides a prototype. The aim is to
detect global functions that fail to be declared in header files.

-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even if
the definition itself provides a prototype. Use this option to detect global functions
that are not declared in header files.

-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note
these are only possible candidates, not absolute ones. Care should be taken to
manually verify functions actually do not ever return before adding the noreturn
attribute, otherwise subtle code generation bugs could be introduced. You will not
get a warning for main in hosted C environments.

38 Using the GNU Compiler Collection (GCC)

-Wmissing-format-attribute
If ‘-Wformat’ is enabled, also warn about functions which might be candidates for
format attributes. Note these are only possible candidates, not absolute ones. GCC
will guess that format attributes might be appropriate for any function that calls a
function like vprintf or vscanf, but this might not always be the case, and some
functions for which format attributes are appropriate may not be detected. This
option has no effect unless ‘-Wformat’ is enabled (possibly by ‘-Wall’).

-Wno-multichar
Do not warn if a multicharacter constant (‘’FOOF’’) is used. Usually they indicate
a typo in the user’s code, as they have implementation-defined values, and should
not be used in portable code.

-Wno-deprecated-declarations
Do not warn about uses of functions, variables, and types marked as deprecated by
using the deprecated attribute. (see Section 5.25 [Function Attributes], page 169,
see Section 5.32 [Variable Attributes], page 181, see Section 5.33 [Type Attributes],
page 185.)

-Wpacked Warn if a structure is given the packed attribute, but the packed attribute has no
effect on the layout or size of the structure. Such structures may be mis-aligned
for little benefit. For instance, in this code, the variable f.x in struct bar will be
misaligned even though struct bar does not itself have the packed attribute:

struct foo {

int x;

char a, b, c, d;

} __attribute__((packed));

struct bar {

char z;

struct foo f;

};

-Wpadded Warn if padding is included in a structure, either to align an element of the structure
or to align the whole structure. Sometimes when this happens it is possible to
rearrange the fields of the structure to reduce the padding and so make the structure
smaller.

-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases where
multiple declaration is valid and changes nothing.

-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.

-Wunreachable-code
Warn if the compiler detects that code will never be executed.
This option is intended to warn when the compiler detects that at least a whole line
of source code will never be executed, because some condition is never satisfied or
because it is after a procedure that never returns.
It is possible for this option to produce a warning even though there are circum-
stances under which part of the affected line can be executed, so care should be
taken when removing apparently-unreachable code.
For instance, when a function is inlined, a warning may mean that the line is un-
reachable in only one inlined copy of the function.
This option is not made part of ‘-Wall’ because in a debugging version of a program
there is often substantial code which checks correct functioning of the program and

Chapter 3: GCC Command Options 39

is, hopefully, unreachable because the program does work. Another common use of
unreachable code is to provide behavior which is selectable at compile-time.

-Winline Warn if a function can not be inlined and it was declared as inline. Even with
this option, the compiler will not warn about failures to inline functions declared in
system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a
function. For example, the compiler takes into account the size of the function being
inlined and the the amount of inlining that has already been done in the current
function. Therefore, seemingly insignificant changes in the source program can cause
the warnings produced by ‘-Winline’ to appear or disappear.

-Wlong-long
Warn if ‘long long’ type is used. This is default. To inhibit the warning messages,
use ‘-Wno-long-long’. Flags ‘-Wlong-long’ and ‘-Wno-long-long’ are taken into
account only when ‘-pedantic’ flag is used.

-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not generally
indicate that there is anything wrong with your code; it merely indicates that GCC’s
optimizers were unable to handle the code effectively. Often, the problem is that
your code is too big or too complex; GCC will refuse to optimize programs when
the optimization itself is likely to take inordinate amounts of time.

-Werror Make all warnings into errors.

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs,
COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging infor-
mation that only GDB can use; this extra information makes debugging work better
in GDB but will probably make other debuggers crash or refuse to read the pro-
gram. If you want to control for certain whether to generate the extra information,
use ‘-gstabs+’, ‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf-1+’, ‘-gdwarf-1’, or
‘-gvms’ (see below).

Unlike most other C compilers, GCC allows you to use ‘-g’ with ‘-O’. The shortcuts
taken by optimized code may occasionally produce surprising results: some variables
you declared may not exist at all; flow of control may briefly move where you did
not expect it; some statements may not be executed because they compute constant
results or their values were already at hand; some statements may execute in different
places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable
to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information for use by GDB. This means to use the most ex-
pressive format available (DWARF 2, stabs, or the native format if neither of those
are supported), including GDB extensions if at all possible.

40 Using the GNU Compiler Collection (GCC)

-gstabs Produce debugging information in stabs format (if that is supported), without GDB
extensions. This is the format used by DBX on most BSD systems. On MIPS, Alpha
and System V Release 4 systems this option produces stabs debugging output which
is not understood by DBX or SDB. On System V Release 4 systems this option
requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these exten-
sions is likely to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is supported). This is the
format used by SDB on most System V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This is
the format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these exten-
sions is likely to make other debuggers crash or refuse to read the program, and may
cause assemblers other than the GNU assembler (GAS) to fail with an error.

-gdwarf Produce debugging information in DWARF version 1 format (if that is supported).
This is the format used by SDB on most System V Release 4 systems.
This option is deprecated.

-gdwarf+ Produce debugging information in DWARF version 1 format (if that is supported),
using GNU extensions understood only by the GNU debugger (GDB). The use
of these extensions is likely to make other debuggers crash or refuse to read the
program.
This option is deprecated.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is supported).
This is the format used by DBX on IRIX 6.

-gvms Produce debugging information in VMS debug format (if that is supported). This
is the format used by DEBUG on VMS systems.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gvmslevel

Request debugging information and also use level to specify how much information.
The default level is 2.
Level 1 produces minimal information, enough for making backtraces in parts of the
program that you don’t plan to debug. This includes descriptions of functions and
external variables, but no information about local variables and no line numbers.
Level 3 includes extra information, such as all the macro definitions present in the
program. Some debuggers support macro expansion when you use ‘-g3’.
Note that in order to avoid confusion between DWARF1 debug level 2, and
DWARF2, neither ‘-gdwarf’ nor ‘-gdwarf-2’ accept a concatenated debug level.
Instead use an additional ‘-glevel ’ option to change the debug level for DWARF1
or DWARF2.

Chapter 3: GCC Command Options 41

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated information
about each symbol. This option only makes sense when generating DWARF2 de-
bugging information with ‘-gdwarf-2’.

-p Generate extra code to write profile information suitable for the analysis program
prof. You must use this option when compiling the source files you want data
about, and you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis program
gprof. You must use this option when compiling the source files you want data
about, and you must also use it when linking.

-Q Makes the compiler print out each function name as it is compiled, and print some
statistics about each pass when it finishes.

-ftime-report
Makes the compiler print some statistics about the time consumed by each pass
when it finishes.

-fmem-report
Makes the compiler print some statistics about permanent memory allocation when
it finishes.

-fprofile-arcs
Instrument arcs during compilation to generate coverage data or for profile-directed
block ordering. During execution the program records how many times each branch
is executed and how many times it is taken. When the compiled program exits
it saves this data to a file called ‘auxname.da’ for each source file. auxname is
generated from the name of the output file, if explicitly specified and it is not the
final executable, otherwise it is the basename of the source file. In both cases any
suffix is removed (e.g. ‘foo.da’ for input file ‘dir/foo.c’, or ‘dir/foo.da’ for
output file specified as ‘-o dir/foo.o’).

For profile-directed block ordering, compile the program with ‘-fprofile-arcs’
plus optimization and code generation options, generate the arc profile infor-
mation by running the program on a selected workload, and then compile the
program again with the same optimization and code generation options plus
‘-fbranch-probabilities’ (see Section 3.10 [Options that Control Optimization],
page 46).

The other use of ‘-fprofile-arcs’ is for use with gcov, when it is used with the
‘-ftest-coverage’ option.

With ‘-fprofile-arcs’, for each function of your program GCC creates a program
flow graph, then finds a spanning tree for the graph. Only arcs that are not on the
spanning tree have to be instrumented: the compiler adds code to count the number
of times that these arcs are executed. When an arc is the only exit or only entrance
to a block, the instrumentation code can be added to the block; otherwise, a new
basic block must be created to hold the instrumentation code.

42 Using the GNU Compiler Collection (GCC)

-ftest-coverage
Create data files for the gcov code-coverage utility (see Chapter 9 [gcov—a Test
Coverage Program], page 263). See ‘-fprofile-arcs’ option above for a description
of auxname.

auxname.bb
A mapping from basic blocks to line numbers, which gcov uses to asso-
ciate basic block execution counts with line numbers.

auxname.bbg
A list of all arcs in the program flow graph. This allows gcov to recon-
struct the program flow graph, so that it can compute all basic block
and arc execution counts from the information in the ‘auxname.da’ file.

Use ‘-ftest-coverage’ with ‘-fprofile-arcs’; the latter option adds instrumen-
tation to the program, which then writes execution counts to another data file:

auxname.da
Runtime arc execution counts, used in conjunction with the arc infor-
mation in the file ‘auxname.bbg’.

Coverage data will map better to the source files if ‘-ftest-coverage’ is used
without optimization.

-dletters
Says to make debugging dumps during compilation at times specified by letters.
This is used for debugging the compiler. The file names for most of the dumps are
made by appending a pass number and a word to the dumpname. dumpname is
generated from the name of the output file, if explicitly specified and it is not an
executable, otherwise it is the basename of the source file. In both cases any suffix
is removed (e.g. ‘foo.00.rtl’ or ‘foo.01.sibling’). Here are the possible letters
for use in letters, and their meanings:

‘A’ Annotate the assembler output with miscellaneous debugging informa-
tion.

‘b’ Dump after computing branch probabilities, to ‘file.14.bp’.

‘B’ Dump after block reordering, to ‘file.32.bbro’.

‘c’ Dump after instruction combination, to the file ‘file.19.combine’.

‘C’ Dump after the first if conversion, to the file ‘file.15.ce1’.

‘d’ Dump after delayed branch scheduling, to ‘file.34.dbr’.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

‘e’ Dump after SSA optimizations, to ‘file.04.ssa’ and ‘file.07.ussa’.

‘E’ Dump after the second if conversion, to ‘file.29.ce3’.

‘f’ Dump after control and data flow analysis, to ‘file.14.cfg’. Also
dump after life analysis, to ‘file.18.life’.

‘F’ Dump after purging ADDRESSOF codes, to ‘file.10.addressof’.

‘g’ Dump after global register allocation, to ‘file.24.greg’.

‘G’ Dump after GCSE, to ‘file.11.gcse’.

‘h’ Dump after finalization of EH handling code, to ‘file.02.eh’.

Chapter 3: GCC Command Options 43

‘i’ Dump after sibling call optimizations, to ‘file.01.sibling’.

‘j’ Dump after the first jump optimization, to ‘file.03.jump’.

‘k’ Dump after conversion from registers to stack, to ‘file.31.stack’.

‘l’ Dump after local register allocation, to ‘file.23.lreg’.

‘L’ Dump after loop optimization, to ‘file.12.loop’.

‘M’ Dump after performing the machine dependent reorganization pass, to
‘file.33.mach’.

‘n’ Dump after register renumbering, to ‘file.28.rnreg’.

‘N’ Dump after the register move pass, to ‘file.21.regmove’.

‘o’ Dump after post-reload optimizations, to ‘file.25.postreload’.

‘r’ Dump after RTL generation, to ‘file.00.rtl’.

‘R’ Dump after the second scheduling pass, to ‘file.30.sched2’.

‘s’ Dump after CSE (including the jump optimization that sometimes fol-
lows CSE), to ‘file.09.cse’.

‘S’ Dump after the first scheduling pass, to ‘file.22.sched’.

‘t’ Dump after the second CSE pass (including the jump optimization that
sometimes follows CSE), to ‘file.17.cse2’.

‘T’ Dump after running tracer, to ‘file.16.tracer’.

‘u’ Dump after null pointer elimination pass to ‘file.08.null’.

‘V’ Dump after value range propagation, to ‘file.11.vrp’.

‘w’ Dump after the second flow pass, to ‘file.26.flow2’.

‘W’ Dump after SSA conditional constant propagation, to
‘file.05.ssaccp’.

‘X’ Dump after SSA dead code elimination, to ‘file.06.ssadce’.

‘z’ Dump after the peephole pass, to ‘file.27.peephole2’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard
error.

‘p’ Annotate the assembler output with a comment indicating which pat-
tern and alternative was used. The length of each instruction is also
printed.

‘P’ Dump the RTL in the assembler output as a comment before each in-
struction. Also turns on ‘-dp’ annotation.

‘v’ For each of the other indicated dump files (except for ‘file.00.rtl’),
dump a representation of the control flow graph suitable for viewing
with VCG to ‘file.pass.vcg’.

‘V’ Dump after variable tracking, to ‘file.35.vartrack’.

‘x’ Just generate RTL for a function instead of compiling it. Usually used
with ‘r’.

‘y’ Dump debugging information during parsing, to standard error.

44 Using the GNU Compiler Collection (GCC)

‘Z’ Dump after web construction pass, to ‘file.10.web’.

-fdump-unnumbered
When doing debugging dumps (see ‘-d’ option above), suppress instruction numbers
and line number note output. This makes it more feasible to use diff on debugging
dumps for compiler invocations with different options, in particular with and without
‘-g’.

-fdump-translation-unit (C and C++ only)
-fdump-translation-unit-options (C and C++ only)

Dump a representation of the tree structure for the entire translation unit to a
file. The file name is made by appending ‘.tu’ to the source file name. If the
‘-options ’ form is used, options controls the details of the dump as described for
the ‘-fdump-tree’ options.

-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)

Dump a representation of each class’s hierarchy and virtual function table layout to
a file. The file name is made by appending ‘.class’ to the source file name. If the
‘-options ’ form is used, options controls the details of the dump as described for
the ‘-fdump-tree’ options.

-fdump-tree-switch (C++ only)
-fdump-tree-switch-options (C++ only)

Control the dumping at various stages of processing the intermediate language tree
to a file. The file name is generated by appending a switch specific suffix to the
source file name. If the ‘-options ’ form is used, options is a list of ‘-’ separated
options that control the details of the dump. Not all options are applicable to all
dumps, those which are not meaningful will be ignored. The following options are
available

‘address’ Print the address of each node. Usually this is not meaningful as it
changes according to the environment and source file. Its primary use
is for tying up a dump file with a debug environment.

‘slim’ Inhibit dumping of members of a scope or body of a function merely
because that scope has been reached. Only dump such items when they
are directly reachable by some other path.

‘all’ Turn on all options.

The following tree dumps are possible:

‘original’
Dump before any tree based optimization, to ‘file.original’.

‘optimized’
Dump after all tree based optimization, to ‘file.optimized’.

‘inlined’ Dump after function inlining, to ‘file.inlined’.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random
numbers. At present, this is used to generate certain symbol names that have to be
different in every compiled file.
The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of de-
bugging output the scheduler prints. This information is written to standard error,

Chapter 3: GCC Command Options 45

unless ‘-dS’ or ‘-dR’ is specified, in which case it is output to the usual dump listing
file, ‘.sched’ or ‘.sched2’ respectively. However for n greater than nine, the output
is always printed to standard error.
For n greater than zero, ‘-fsched-verbose’ outputs the same information as ‘-dRS’.
For n greater than one, it also output basic block probabilities, detailed ready list
information and unit/insn info. For n greater than two, it includes RTL at abort
point, control-flow and regions info. And for n over four, ‘-fsched-verbose’ also
includes dependence info.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the cur-
rent directory and name them based on the source file. Thus, compiling ‘foo.c’ with
‘-c -save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well as ‘foo.o’. This
creates a preprocessed ‘foo.i’ output file even though the compiler now normally
uses an integrated preprocessor.

-time Report the CPU time taken by each subprocess in the compilation sequence. For C
source files, this is the compiler proper and assembler (plus the linker if linking is
done). The output looks like this:

cc1 0.12 0.01

as 0.00 0.01

The first number on each line is the “user time,” that is time spent executing the
program itself. The second number is “system time,” time spent executing operating
system routines on behalf of the program. Both numbers are in seconds.

-fvar-tracking
Run variable tracking pass. It computes where variables are stored at each po-
sition in code. Better debugging information is then generated (if the debugging
information format supports this information).
It is enabled by default when compiling with optimization (‘-Os’, ‘-O’, ‘-O2’, ...),
debugging information (‘-g’) and the debug info format supports it.

-print-file-name=library
Print the full absolute name of the library file library that would be used when
linking—and don’t do anything else. With this option, GCC does not compile or
link anything; it just prints the file name.

-print-multi-directory
Print the directory name corresponding to the multilib selected by any other switches
present in the command line. This directory is supposed to exist in GCC_EXEC_
PREFIX.

-print-multi-lib
Print the mapping from multilib directory names to compiler switches that enable
them. The directory name is separated from the switches by ‘;’, and each switch
starts with an ‘@’ instead of the ‘-’, without spaces between multiple switches. This
is supposed to ease shell-processing.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’ but you do want to
link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name‘

46 Using the GNU Compiler Collection (GCC)

-print-search-dirs
Print the name of the configured installation directory and a list of program and
library directories gcc will search—and don’t do anything else.

This is useful when gcc prints the error message ‘installation problem, cannot
exec cpp0: No such file or directory’. To resolve this you either need to put
‘cpp0’ and the other compiler components where gcc expects to find them, or you
can set the environment variable GCC_EXEC_PREFIX to the directory where you in-
stalled them. Don’t forget the trailing ’/’. See Section 3.19 [Environment Variables],
page 144.

-dumpmachine
Print the compiler’s target machine (for example, ‘i686-pc-linux-gnu’)—and don’t
do anything else.

-dumpversion
Print the compiler version (for example, ‘3.0’)—and don’t do anything else.

-dumpspecs
Print the compiler’s built-in specs—and don’t do anything else. (This is used when
GCC itself is being built.) See Section 3.15 [Spec Files], page 72.

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler’s goal is to reduce the cost of compilation
and to make debugging produce the expected results. Statements are independent: if you stop
the program with a breakpoint between statements, you can then assign a new value to any
variable or change the program counter to any other statement in the function and get exactly
the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or
code size at the expense of compilation time and possibly the ability to debug the program.

Not all optimizations are controlled directly by a flag. Only optimizations that have a flag
are listed.

-O
-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more mem-

ory for a large function.

With ‘-O’, the compiler tries to reduce code size and execution time, without per-
forming any optimizations that take a great deal of compilation time.
‘-O’ turns on the following optimization flags:

-fdefer-pop

-fmerge-constants

-fthread-jumps

-floop-optimize

-fcrossjumping

-fif-conversion

-fif-conversion2

-fvrp

-fdelayed-branch

-fguess-branch-probability

-fcprop-registers

‘-O’ also turns on ‘-fomit-frame-pointer’ on machines where doing so does not
interfere with debugging.

Chapter 3: GCC Command Options 47

-O2 Optimize even more. GCC performs nearly all supported optimizations that do not
involve a space-speed tradeoff. The compiler does not perform loop unrolling or
function inlining when you specify ‘-O2’. As compared to ‘-O’, this option increases
both compilation time and the performance of the generated code.
‘-O2’ turns on all optimization flags specified by ‘-O’. It also turns on the following
optimization flags:

-fforce-mem

-foptimize-sibling-calls

-fstrength-reduce

-fcse-follow-jumps -fcse-skip-blocks

-frerun-cse-after-loop -frerun-loop-opt

-fgcse -fgcse-lm -fgcse-sm

-fdelete-null-pointer-checks

-fexpensive-optimizations

-fregmove

-fschedule-insns -fschedule-insns2

-fsched-interblock -fsched-spec

-fcaller-saves

-fpeephole2

-freorder-blocks -freorder-functions

-fstrict-aliasing

-falign-functions -falign-jumps

-falign-loops -falign-labels

Please note the warning under ‘-fgcse’ about invoking ‘-O2’ on programs that use
computed gotos.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified by ‘-O2’ and also
turns on the ‘-finline-functions’, ‘-fweb’, ‘-funit-at-a-time’, ‘-ftracer’,
‘-funswitch-loops’ and ‘-frename-registers’ options.

-O0 Do not optimize. This is the default.

-Os Optimize for size. ‘-Os’ enables all ‘-O2’ optimizations that do not typically increase
code size. It also performs further optimizations designed to reduce code size.
‘-Os’ disables the following optimization flags:

-falign-functions -falign-jumps -falign-loops

-falign-labels -freorder-blocks -fprefetch-loop-arrays

If you use multiple ‘-O’ options, with or without level numbers, the last such option
is the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most flags have both posi-
tive and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table below,
only one of the forms is listed—the one you typically will use. You can figure out the other form
by either removing ‘no-’ or adding it.

The following options control specific optimizations. They are either activated by ‘-O’ options
or are related to ones that are. You can use the following flags in the rare cases when “fine-
tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined
inside the class scope (C++ only). Otherwise, when you specify ‘-O’, member func-
tions defined inside class scope are compiled inline by default; i.e., you don’t need
to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns.
For machines which must pop arguments after a function call, the compiler normally
lets arguments accumulate on the stack for several function calls and pops them all
at once.

48 Using the GNU Compiler Collection (GCC)

Disabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on them.
This produces better code by making all memory references potential common
subexpressions. When they are not common subexpressions, instruction combi-
nation should eliminate the separate register-load.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fforce-addr
Force memory address constants to be copied into registers before doing arithmetic
on them. This may produce better code just as ‘-fforce-mem’ may.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that don’t need one. This
avoids the instructions to save, set up and restore frame pointers; it also makes an
extra register available in many functions. It also makes debugging impossible on
some machines.

On some machines, such as the VAX, this flag has no effect, because the stan-
dard calling sequence automatically handles the frame pointer and nothing is saved
by pretending it doesn’t exist. The machine-description macro FRAME_POINTER_
REQUIRED controls whether a target machine supports this flag. See section “Register
Usage” in GNU Compiler Collection (GCC) Internals.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fno-inline
Don’t pay attention to the inline keyword. Normally this option is used to keep the
compiler from expanding any functions inline. Note that if you are not optimizing,
no functions can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way.
If all calls to a given function are integrated, and the function is declared static,
then the function is normally not output as assembler code in its own right.
Enabled at level ‘-O3’.

-finline-limit=n
By default, gcc limits the size of functions that can be inlined. This flag allows the
control of this limit for functions that are explicitly marked as inline (i.e., marked
with the inline keyword or defined within the class definition in c++). n is the size
of functions that can be inlined in number of pseudo instructions (not counting
parameter handling). The default value of n is 600. Increasing this value can result
in more inlined code at the cost of compilation time and memory consumption.
Decreasing usually makes the compilation faster and less code will be inlined (which
presumably means slower programs). This option is particularly useful for programs
that use inlining heavily such as those based on recursive templates with C++.
Inlining is actually controlled by a number of parameters, which may be specified
individually by using ‘--param name=value ’. The ‘-finline-limit=n ’ option sets
some of these parameters as follows:

Chapter 3: GCC Command Options 49

max-inline-insns
is set to n.

max-inline-insns-single
is set to n/2.

max-inline-insns-auto
is set to n/2.

min-inline-insns
is set to 130 or n/4, whichever is smaller.

max-inline-insns-rtl
is set to n.

Using ‘-finline-limit=600’ thus results in the default settings for these parame-
ters. See below for a documentation of the individual parameters controlling inlining.
Note: pseudo instruction represents, in this particular context, an abstract measure-
ment of function’s size. In no way, it represents a count of assembly instructions
and as such its exact meaning might change from one release to an another.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared
static, nevertheless output a separate run-time callable version of the function.
This switch does not affect extern inline functions.

-fkeep-static-consts
Emit variables declared static const when optimization isn’t turned on, even if
the variables aren’t referenced.
GCC enables this option by default. If you want to force the compiler to check if
the variable was referenced, regardless of whether or not optimization is turned on,
use the ‘-fno-keep-static-consts’ option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point constants)
across compilation units.
This option is the default for optimized compilation if the assembler and linker
support it. Use ‘-fno-merge-constants’ to inhibit this behavior.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.
This option implies ‘-fmerge-constants’. In addition to ‘-fmerge-constants’ this
considers e.g. even constant initialized arrays or initialized constant variables with
integral or floating point types. Languages like C or C++ require each non-automatic
variable to have distinct location, so using this option will result in non-conforming
behavior.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead
generate a sequence of instructions that decrement a register, compare it against
zero, then branch based upon the result. This option is only meaningful on archi-
tectures that support such instructions, which include x86, PowerPC, IA-64 and
S/390.
The default is ‘-fbranch-count-reg’, enabled when ‘-fstrength-reduce’ is en-
abled.

50 Using the GNU Compiler Collection (GCC)

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a con-
stant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this option
is not used.

The default is ‘-ffunction-cse’

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are initial-
ized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on vari-
ables going to the data section. E.g., so that the resulting executable can find the
beginning of that section and/or make assumptions based on that.

The default is ‘-fzero-initialized-in-bss’.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of iteration
variables.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is redi-
rected to either the destination of the second branch or a point immediately following
it, depending on whether the condition is known to be true or false.

Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when the
target of the jump is not reached by any other path. For example, when CSE
encounters an if statement with an else clause, CSE will follow the jump when
the condition tested is false.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which
conditionally skip over blocks. When CSE encounters a simple if statement with
no else clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around the
body of the if.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been per-
formed.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-frerun-loop-opt
Run the loop optimizer twice.

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse Perform a global common subexpression elimination pass. This pass also performs
global constant and copy propagation.

Chapter 3: GCC Command Options 51

Note: When compiling a program using computed gotos, a GCC extension, you
may get better runtime performance if you disable the global common subexpression
elimination pass by adding ‘-fno-gcse’ to the command line.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fgcse-lm
When ‘-fgcse-lm’ is enabled, global common subexpression elimination will at-
tempt to move loads which are only killed by stores into themselves. This allows a
loop containing a load/store sequence to be changed to a load outside the loop, and
a copy/store within the loop.
Enabled by default when gcse is enabled.

-fgcse-sm
When ‘-fgcse-sm’ is enabled, A store motion pass is run after global common
subexpression elimination. This pass will attempt to move stores out of loops.
When used in conjunction with ‘-fgcse-lm’, loops containing a load/store sequence
can be changed to a load before the loop and a store after the loop.
Enabled by default when gcse is enabled.

-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify exit
test conditions and optionally do strength-reduction and loop unrolling as well.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent code
and save code size. The resulting code may or may not perform better than without
cross-jumping.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This include
use of conditional moves, min, max, set flags and abs instructions, and some tricks
doable by standard arithmetics. The use of conditional execution on chips where it
is available is controlled by if-conversion2.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fvrp Find out which range is a value of a register in. If the register may have no value
in some block the block is unreachable and is deleted. For example a printf call in
following code may be deleted:

if (i < 0)

{

if (i > 5)

printf ("foo");

}

Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null point-
ers. The compiler assumes that dereferencing a null pointer would have halted the

52 Using the GNU Compiler Collection (GCC)

program. If a pointer is checked after it has already been dereferenced, it cannot be
null.
In some environments, this assumption is not true, and programs can safely deref-
erence null pointers. Use ‘-fno-delete-null-pointer-checks’ to disable this op-
timization for programs which depend on that behavior.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-foptimize-register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of other
simple instructions in order to maximize the amount of register tying. This is
especially helpful on machines with two-operand instructions.
Note ‘-fregmove’ and ‘-foptimize-register-move’ are the same optimization.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit in-
struction slots available after delayed branch instructions.
Enabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate
execution stalls due to required data being unavailable. This helps machines that
have slow floating point or memory load instructions by allowing other instructions
to be issued until the result of the load or floating point instruction is required.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional pass of instruction
scheduling after register allocation has been done. This is especially useful on
machines with a relatively small number of registers and where memory load in-
structions take more than one cycle.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fno-sched-interblock
Don’t schedule instructions across basic blocks. This is normally enabled by default
when scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at ‘-O2’
or higher.

-fno-sched-spec
Don’t allow speculative motion of non-load instructions. This is normally enabled
by default when scheduling before register allocation, i.e. with ‘-fschedule-insns’
or at ‘-O2’ or higher.

-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense when
scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at ‘-O2’ or
higher.

-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense when
scheduling before register allocation, i.e. with ‘-fschedule-insns’ or at ‘-O2’ or
higher.

Chapter 3: GCC Command Options 53

-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise
be produced.
This option is always enabled by default on certain machines, usually those which
have no call-preserved registers to use instead.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fmove-all-movables
Forces all invariant computations in loops to be moved outside the loop.

-freduce-all-givs
Forces all general-induction variables in loops to be strength-reduced.
Note: When compiling programs written in Fortran, ‘-fmove-all-movables’ and
‘-freduce-all-givs’ are enabled by default when you use the optimizer.
These options may generate better or worse code; results are highly dependent on
the structure of loops within the source code.
These two options are intended to be removed someday, once they have helped
determine the efficacy of various approaches to improving loop optimizations.
Please let us (gcc@gcc.gnu.org and fortran@gnu.org) know how use of these
options affects the performance of your production code. We’re very interested in
code that runs slower when these options are enabled.

-fno-peephole
-fno-peephole2

Disable any machine-specific peephole optimizations. The difference between
‘-fno-peephole’ and ‘-fno-peephole2’ is in how they are implemented in the com-
piler; some targets use one, some use the other, a few use both.
‘-fpeephole’ is enabled by default. ‘-fpeephole2’ enabled at levels ‘-O2’, ‘-O3’,
‘-Os’.

-fno-guess-branch-probability
Do not guess branch probabilities using a randomized model.
Sometimes gcc will opt to use a randomized model to guess branch probabili-
ties, when none are available from either profiling feedback (‘-fprofile-arcs’)
or ‘__builtin_expect’. This means that different runs of the compiler on the same
program may produce different object code.
In a hard real-time system, people don’t want different runs of the compiler to pro-
duce code that has different behavior; minimizing non-determinism is of paramount
import. This switch allows users to reduce non-determinism, possibly at the expense
of inferior optimization.
The default is ‘-fguess-branch-probability’ at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of taken
branches and improve code locality.
Enabled at levels ‘-O2’, ‘-O3’.

-ftsp-ordering
In addition to heuristic used at ‘-freorder-blocks’, use also a more powerful
method based on the reduction to the Travelling Salesman Problem to determine
the good order of basic blocks in the function. This generally produces smaller and
faster programs, at the expense of longer compile times.

mailto:gcc@gcc.gnu.org
mailto:fortran@gnu.org

54 Using the GNU Compiler Collection (GCC)

-freorder-functions
Reorder basic blocks in the compiled function in order to reduce number of taken
branches and improve code locality. This is implemented by using special subsections
text.hot for most frequently executed functions and text.unlikely for unlikely
executed functions. Reordering is done by the linker so object file format must
support named sections and linker must place them in a reasonable way.
Also profile feedback must be available in to make this option effective. See
‘-fprofile-arcs’ for details.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the language
being compiled. For C (and C++), this activates optimizations based on the type of
expressions. In particular, an object of one type is assumed never to reside at the
same address as an object of a different type, unless the types are almost the same.
For example, an unsigned int can alias an int, but not a void* or a double. A
character type may alias any other type.
Pay special attention to code like this:

union a_union {
int i;
double d;

};

int f() {
a_union t;
t.d = 3.0;
return t.i;

}

The practice of reading from a different union member than the one most recently
written to (called “type-punning”) is common. Even with ‘-fstrict-aliasing’,
type-punning is allowed, provided the memory is accessed through the union type.
So, the code above will work as expected. However, this code might not:

int f() {
a_union t;
int* ip;
t.d = 3.0;
ip = &t.i;
return *ip;

}

Every language that wishes to perform language-specific alias analysis should define
a function that computes, given an tree node, an alias set for the node. Nodes in
different alias sets are not allowed to alias. For an example, see the C front-end
function c_get_alias_set.
Enabled at levels ‘-O2’, ‘-O3’, ‘-Os’.

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping up to
n bytes. For instance, ‘-falign-functions=32’ aligns functions to the next 32-byte
boundary, but ‘-falign-functions=24’ would align to the next 32-byte boundary
only if this can be done by skipping 23 bytes or less.

Chapter 3: GCC Command Options 55

‘-fno-align-functions’ and ‘-falign-functions=1’ are equivalent and mean that
functions will not be aligned.
Some assemblers only support this flag when n is a power of two; in that case, it is
rounded up.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes like
‘-falign-functions’. This option can easily make code slower, because it must
insert dummy operations for when the branch target is reached in the usual flow of
the code.
‘-fno-align-labels’ and ‘-falign-labels=1’ are equivalent and mean that labels
will not be aligned.
If ‘-falign-loops’ or ‘-falign-jumps’ are applicable and are greater than this
value, then their values are used instead.
If n is not specified or is zero, use a machine-dependent default which is very likely
to be ‘1’, meaning no alignment.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like
‘-falign-functions’. The hope is that the loop will be executed many times,
which will make up for any execution of the dummy operations.
‘-fno-align-loops’ and ‘-falign-loops=1’ are equivalent and mean that loops
will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-falign-jumps
-falign-jumps=n

Align branch targets to a power-of-two boundary, for branch targets where
the targets can only be reached by jumping, skipping up to n bytes like
‘-falign-functions’. In this case, no dummy operations need be executed.
‘-fno-align-jumps’ and ‘-falign-jumps=1’ are equivalent and mean that loops
will not be aligned.
If n is not specified or is zero, use a machine-dependent default.
Enabled at levels ‘-O2’, ‘-O3’.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers
left over after register allocation. This optimization will most benefit processors
with lots of registers. It can, however, make debugging impossible, since variables
will no longer stay in a “home register”.

-fweb Constructs webs as commonly used for register allocation purposes and assign each
web individual pseudo register. This allows our register allocation pass to operate
on pseudos directly, but also strengthens several other optimization passes, such as
CSE, loop optimizer and trivial dead code remover. It can, however, make debugging
impossible, since variables will no longer stay in a “home register”.

56 Using the GNU Compiler Collection (GCC)

Enabled at levels ‘-O3’.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we perform
a copy-propagation pass to try to reduce scheduling dependencies and occasionally
eliminate the copy.

Disabled at levels ‘-O’, ‘-O2’, ‘-O3’, ‘-Os’.

The following options control compiler behavior regarding floating point arithmetic. These
options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that
might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000
where the floating registers (of the 68881) keep more precision than a double is
supposed to have. Similarly for the x86 architecture. For most programs, the excess
precision does only good, but a few programs rely on the precise definition of IEEE
floating point. Use ‘-ffloat-store’ for such programs, after modifying them to
store all pertinent intermediate computations into variables.

-ffast-math
Sets ‘-fno-math-errno’, ‘-funsafe-math-optimizations’,
‘-fno-trapping-math’, ‘-ffinite-math-only’ and
‘-fno-signaling-nans’.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any ‘-O’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

-fno-math-errno
Do not set ERRNO after calling math functions that are executed with a single
instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error
handling may want to use this flag for speed while maintaining IEEE arithmetic
compatibility.

This option should never be turned on by any ‘-O’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

The default is ‘-fmath-errno’.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that arguments
and results are valid and (b) may violate IEEE or ANSI standards. When used
at link-time, it may include libraries or startup files that change the default FPU
control word or other similar optimizations.

This option should never be turned on by any ‘-O’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.

The default is ‘-fno-unsafe-math-optimizations’.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments and
results are not NaNs or +-Infs.

Chapter 3: GCC Command Options 57

This option should never be turned on by any ‘-O’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications.
The default is ‘-fno-finite-math-only’.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-visible
traps. These traps include division by zero, overflow, underflow, inexact result and
invalid operation. This option implies ‘-fno-signaling-nans’. Setting this option
may allow faster code if one relies on “non-stop” IEEE arithmetic, for example.
This option should never be turned on by any ‘-O’ option since it can result in
incorrect output for programs which depend on an exact implementation of IEEE
or ISO rules/specifications for math functions.
The default is ‘-ftrapping-math’.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible traps
during floating-point operations. Setting this option disables optimizations that may
change the number of exceptions visible with signaling NaNs. This option implies
‘-ftrapping-math’.
This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.
The default is ‘-fno-signaling-nans’.
This option is experimental and does not currently guarantee to disable all GCC
optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly con-
verting it to double precision constant.

The following options control optimizations that may improve performance, but are not
enabled by any ‘-O’ options. This section includes experimental options that may produce
broken code.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’ (see Section 3.9 [Options
for Debugging Your Program or gcc], page 39), you can compile it a second time
using ‘-fbranch-probabilities’, to improve optimizations based on the number of
times each branch was taken. When the program compiled with ‘-fprofile-arcs’
exits it saves arc execution counts to a file called ‘sourcename.da’ for each source file
The information in this data file is very dependent on the structure of the generated
code, so you must use the same source code and the same optimization options for
both compilations.
With ‘-fbranch-probabilities’, GCC puts a ‘REG_BR_PROB’ note on each
‘JUMP_INSN’ and ‘CALL_INSN’. These can be used to improve optimization.
Currently, they are only used in one place: in ‘reorg.c’, instead of guessing which
path a branch is mostly to take, the ‘REG_BR_PROB’ values are used to exactly
determine which path is taken more often.

-fnew-ra Use a graph coloring register allocator. Currently this option is meant only for
testing. Users should not specify this option, since it is not yet ready for production
use.

-ftracer Perform tail duplication to enlarge superblock size. This transformation simplifies
the control flow of the function allowing other optimizations to do better job.

58 Using the GNU Compiler Collection (GCC)

-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or
upon entry to the loop. ‘-funroll-loops’ implies both ‘-fstrength-reduce’ and
‘-frerun-cse-after-loop’. This option makes code larger, and may or may not
make it run faster.

-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is
entered. This usually makes programs run more slowly. ‘-funroll-all-loops’
implies the same options as ‘-funroll-loops’,

-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory to
improve the performance of loops that access large arrays.

Disabled at level ‘-Os’.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file if the target
supports arbitrary sections. The name of the function or the name of the data item
determines the section’s name in the output file.

Use these options on systems where the linker can perform optimizations to improve
locality of reference in the instruction space. Most systems using the ELF object for-
mat and SPARC processors running Solaris 2 have linkers with such optimizations.
AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When
you specify these options, the assembler and linker will create larger object and
executable files and will also be slower. You will not be able to use gprof on all
systems if you specify this option and you may have problems with debugging if you
specify both this option and ‘-g’.

-fssa Perform optimizations in static single assignment form. Each function’s flow graph
is translated into SSA form, optimizations are performed, and the flow graph is
translated back from SSA form. Users should not specify this option, since it is not
yet ready for production use.

-fssa-ccp
Perform Sparse Conditional Constant Propagation in SSA form. Requires ‘-fssa’.
Like ‘-fssa’, this is an experimental feature.

-fssa-dce
Perform aggressive dead-code elimination in SSA form. Requires ‘-fssa’. Like
‘-fssa’, this is an experimental feature.

--param name=value
In some places, GCC uses various constants to control the amount of optimization
that is done. For example, GCC will not inline functions that contain more that
a certain number of instructions. You can control some of these constants on the
command-line using the ‘--param’ option.

The names of specific parameters, and the meaning of the values, are tied to the
internals of the compiler, and are subject to change without notice in future releases.

In each case, the value is an integer. The allowable choices for name are given in
the following table:

Chapter 3: GCC Command Options 59

max-crossjump-edges
The maximum number of incoming edges to consider for crossjumping.
The algorithm used by ‘-fcrossjumping’ is O(N 2) in the number of
edges incoming to each block. Increasing values mean more aggressive
optimization, making the compile time increase with probably small
improvement in executable size.

max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an
instruction to fill a delay slot. If more than this arbitrary number of
instructions is searched, the time savings from filling the delay slot will
be minimal so stop searching. Increasing values mean more aggressive
optimization, making the compile time increase with probably small
improvement in executable run time.

max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to
consider when searching for a block with valid live register information.
Increasing this arbitrarily chosen value means more aggressive optimiza-
tion, increasing the compile time. This parameter should be removed
when the delay slot code is rewritten to maintain the control-flow graph.

max-gcse-memory
The approximate maximum amount of memory that will be allocated
in order to perform the global common subexpression elimination opti-
mization. If more memory than specified is required, the optimization
will not be done.

max-gcse-passes
The maximum number of passes of GCSE to run.

max-pending-list-length
The maximum number of pending dependencies scheduling will allow
before flushing the current state and starting over. Large functions with
few branches or calls can create excessively large lists which needlessly
consume memory and resources.

max-inline-insns-single
Several parameters control the tree inliner used in gcc. This number
sets the maximum number of instructions (counted in gcc’s internal
representation) in a single function that the tree inliner will consider
for inlining. This only affects functions declared inline and methods
implemented in a class declaration (C++). The default value is 120.

max-inline-insns-auto
When you use ‘-finline-functions’ (included in ‘-O3’), a lot of func-
tions that would otherwise not be considered for inlining by the compiler
will be investigated. To those functions, a different (more restrictive)
limit compared to functions declared inline can be applied. The default
value is 500.

max-inline-insns
The tree inliner does decrease the allowable size for single functions to
be inlined after we already inlined the number of instructions given here
by repeated inlining. This number should be a factor of two or more
larger than the single function limit. Higher numbers result in bet-
ter runtime performance, but incur higher compile-time resource (CPU

60 Using the GNU Compiler Collection (GCC)

time, memory) requirements and result in larger binaries. Very high val-
ues are not advisable, as too large binaries may adversely affect runtime
performance. The default value is 600.

max-inline-slope
After exceeding the maximum number of inlined instructions by re-
peated inlining, a linear function is used to decrease the allowable size
for single functions. The slope of that function is the negative reciprocal
of the number specified here. The default value is 32.

min-inline-insns
The repeated inlining is throttled more and more by the linear function
after exceeding the limit. To avoid too much throttling, a minimum for
this function is specified here to allow repeated inlining for very small
functions even when a lot of repeated inlining already has been done.
The default value is 130.

max-inline-insns-rtl
For languages that use the RTL inliner (this happens at a later stage
than tree inlining), you can set the maximum allowable size (counted in
RTL instructions) for the RTL inliner with this parameter. The default
value is 600.

max-unrolled-insns
The maximum number of instructions that a loop should have if that
loop is unrolled, and if the loop is unrolled, it determines how many
times the loop code is unrolled.

hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in
program given basic block needs to have to be considered hot.

hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block in
function given basic block needs to have to be considered hot

tracer-dynamic-coverage
tracer-dynamic-coverage-feedback

This value is used to limit superblock formation once the given percent-
age of executed instructions is covered. This limits unnecessary code
size expansion.

The ‘tracer-dynamic-coverage-feedback’ is used only when profile
feedback is available. The real profiles (as opposed to statically esti-
mated ones) are much less balanced allowing the threshold to be larger
value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage.
This is rather hokey argument, as most of the duplicates will be elim-
inated later in cross jumping, so it may be set to much higher values
than is the desired code growth.

tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less
than this threshold (in percent).

Chapter 3: GCC Command Options 61

tracer-min-branch-ratio
tracer-min-branch-ratio-feedback

Stop forward growth if the best edge do have probability lower than this
threshold.
Similarly to ‘tracer-dynamic-coverage’ two values are present, one for
compilation for profile feedback and one for compilation without. The
value for compilation with profile feedback needs to be more conservative
(higher) in order to make tracer effective.

ggc-min-expand
GCC uses a garbage collector to manage its own memory allocation.
This parameter specifies the minimum percentage by which the garbage
collector’s heap should be allowed to expand between collections. Tun-
ing this may improve compilation speed; it has no effect on code gener-
ation.
The default is 30% + 70% * (RAM/1GB) with an upper bound of
100% when RAM >= 1GB. If getrlimit is available, the notion of
"RAM" is the smallest of actual RAM, RLIMIT RSS, RLIMIT DATA
and RLIMIT AS. If GCC is not able to calculate RAM on a particular
platform, the lower bound of 30% is used. Setting this parameter and
‘ggc-min-heapsize’ to zero causes a full collection to occur at every
opportunity. This is extremely slow, but can be useful for debugging.

ggc-min-heapsize
Minimum size of the garbage collector’s heap before it begins bothering
to collect garbage. The first collection occurs after the heap expands by
‘ggc-min-expand’% beyond ‘ggc-min-heapsize’. Again, tuning this
may improve compilation speed, and has no effect on code generation.
The default is RAM/8, with a lower bound of 4096 (four megabytes) and
an upper bound of 131072 (128 megabytes). If getrlimit is available,
the notion of "RAM" is the smallest of actual RAM, RLIMIT RSS,
RLIMIT DATA and RLIMIT AS. If GCC is not able to calculate RAM
on a particular platform, the lower bound is used. Setting this pa-
rameter very large effectively disables garbage collection. Setting this
parameter and ‘ggc-min-expand’ to zero causes a full collection to occur
at every opportunity.

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options make
sense only together with ‘-E’ because they cause the preprocessor output to be unsuitable for
actual compilation.

You can use ‘-Wp,option ’ to bypass the compiler driver and pass option directly through
to the preprocessor. If option contains commas, it is split into multiple options at the commas.
However, many options are modified, translated or interpreted by the compiler driver before
being passed to the preprocessor, and ‘-Wp’ forcibly bypasses this phase. The preprocessor’s
direct interface is undocumented and subject to change, so whenever possible you should avoid
using ‘-Wp’ and let the driver handle the options instead.

-D name Predefine name as a macro, with definition 1.

62 Using the GNU Compiler Collection (GCC)

-D name=definition
Predefine name as a macro, with definition definition. There are no restrictions
on the contents of definition, but if you are invoking the preprocessor from a shell
or shell-like program you may need to use the shell’s quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax.
If you wish to define a function-like macro on the command line, write its argument
list with surrounding parentheses before the equals sign (if any). Parentheses are
meaningful to most shells, so you will need to quote the option. With sh and csh,
‘-D’name(args...)=definition’’ works.
‘-D’ and ‘-U’ options are processed in the order they are given on the command line.
All ‘-imacros file ’ and ‘-include file ’ options are processed after all ‘-D’ and
‘-U’ options.

-U name Cancel any previous definition of name, either built in or provided with a ‘-D’ option.

-undef Do not predefine any system-specific or GCC-specific macros. The standard prede-
fined macros remain defined.

-I dir Add the directory dir to the list of directories to be searched for header files. Di-
rectories named by ‘-I’ are searched before the standard system include directories.
If the directory dir is a standard system include directory, the option is ignored to
ensure that the default search order for system directories and the special treatment
of system headers are not defeated .

-o file Write output to file. This is the same as specifying file as the second non-option
argument to cpp. gcc has a different interpretation of a second non-option argument,
so you must use ‘-o’ to specify the output file.

-Wall Turns on all optional warnings which are desirable for normal code. At present this
is ‘-Wcomment’ and ‘-Wtrigraphs’. Note that many of the preprocessor’s warnings
are on by default and have no options to control them.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence ‘/*’ appears in a ‘/*’ comment, or when-
ever a backslash-newline appears in a ‘//’ comment. (Both forms have the same
effect.)

-Wtrigraphs
Warn if any trigraphs are encountered. This option used to take effect only if
‘-trigraphs’ was also specified, but now works independently. Warnings are not
given for trigraphs within comments, as they do not affect the meaning of the
program.

-Wtraditional
Warn about certain constructs that behave differently in traditional and ISO C. Also
warn about ISO C constructs that have no traditional C equivalent, and problematic
constructs which should be avoided.

-Wimport Warn the first time ‘#import’ is used.

-Wundef Warn whenever an identifier which is not a macro is encountered in an ‘#if’ directive,
outside of ‘defined’. Such identifiers are replaced with zero.

-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used if it
is expanded or tested for existence at least once. The preprocessor will also warn if
the macro has not been used at the time it is redefined or undefined.

Chapter 3: GCC Command Options 63

Built-in macros, macros defined on the command line, and macros defined in include
files are not warned about.
Note: If a macro is actually used, but only used in skipped conditional blocks, then
CPP will report it as unused. To avoid the warning in such a case, you might
improve the scope of the macro’s definition by, for example, moving it into the first
skipped block. Alternatively, you could provide a dummy use with something like:

#if defined the_macro_causing_the_warning

#endif

-Wendif-labels
Warn whenever an ‘#else’ or an ‘#endif’ are followed by text. This usually happens
in code of the form

#if FOO

...

#else FOO

...

#endif FOO

The second and third FOO should be in comments, but often are not in older pro-
grams. This warning is on by default.

-Werror Make all warnings into hard errors. Source code which triggers warnings will be
rejected.

-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in finding
bugs in your own code, therefore suppressed. If you are responsible for the system
library, you may want to see them.

-w Suppress all warnings, including those which GNU CPP issues by default.

-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are left
out by default, since they trigger frequently on harmless code.

-pedantic-errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics into er-
rors. This includes mandatory diagnostics that GCC issues without ‘-pedantic’
but treats as warnings.

-M Instead of outputting the result of preprocessing, output a rule suitable for make
describing the dependencies of the main source file. The preprocessor outputs one
make rule containing the object file name for that source file, a colon, and the
names of all the included files, including those coming from ‘-include’ or ‘-imacros’
command line options.
Unless specified explicitly (with ‘-MT’ or ‘-MQ’), the object file name consists of the
basename of the source file with any suffix replaced with object file suffix. If there
are many included files then the rule is split into several lines using ‘\’-newline. The
rule has no commands.
This option does not suppress the preprocessor’s debug output, such as ‘-dM’. To
avoid mixing such debug output with the dependency rules you should explicitly
specify the dependency output file with ‘-MF’, or use an environment variable like
DEPENDENCIES_OUTPUT (see Section 3.19 [Environment Variables], page 144). Debug
output will still be sent to the regular output stream as normal.
Passing ‘-M’ to the driver implies ‘-E’, and suppresses warnings with an implicit
‘-w’.

64 Using the GNU Compiler Collection (GCC)

-MM Like ‘-M’ but do not mention header files that are found in system header directories,
nor header files that are included, directly or indirectly, from such a header.
This implies that the choice of angle brackets or double quotes in an ‘#include’
directive does not in itself determine whether that header will appear in ‘-MM’ de-
pendency output. This is a slight change in semantics from GCC versions 3.0 and
earlier.

-MF file When used with ‘-M’ or ‘-MM’, specifies a file to write the dependencies to. If no
‘-MF’ switch is given the preprocessor sends the rules to the same place it would
have sent preprocessed output.
When used with the driver options ‘-MD’ or ‘-MMD’, ‘-MF’ overrides the default de-
pendency output file.

-MG In conjunction with an option such as ‘-M’ requesting dependency generation, ‘-MG’
assumes missing header files are generated files and adds them to the dependency
list without raising an error. The dependency filename is taken directly from the
#include directive without prepending any path. ‘-MG’ also suppresses preprocessed
output, as a missing header file renders this useless.
This feature is used in automatic updating of makefiles.

-MP This option instructs CPP to add a phony target for each dependency other than
the main file, causing each to depend on nothing. These dummy rules work around
errors make gives if you remove header files without updating the ‘Makefile’ to
match.
This is typical output:

test.o: test.c test.h

test.h:

-MT target

Change the target of the rule emitted by dependency generation. By default CPP
takes the name of the main input file, including any path, deletes any file suffix such
as ‘.c’, and appends the platform’s usual object suffix. The result is the target.
An ‘-MT’ option will set the target to be exactly the string you specify. If you want
multiple targets, you can specify them as a single argument to ‘-MT’, or use multiple
‘-MT’ options.
For example, ‘-MT ’$(objpfx)foo.o’’ might give

$(objpfx)foo.o: foo.c

-MQ target

Same as ‘-MT’, but it quotes any characters which are special to Make.
‘-MQ ’$(objpfx)foo.o’’ gives

$$(objpfx)foo.o: foo.c

The default target is automatically quoted, as if it were given with ‘-MQ’.

-MD ‘-MD’ is equivalent to ‘-M -MF file ’, except that ‘-E’ is not implied. The driver
determines file based on whether an ‘-o’ option is given. If it is, the driver uses its
argument but with a suffix of ‘.d’, otherwise it take the basename of the input file
and applies a ‘.d’ suffix.
If ‘-MD’ is used in conjunction with ‘-E’, any ‘-o’ switch is understood to specify the
dependency output file (but see [-MF], page 64), but if used without ‘-E’, each ‘-o’
is understood to specify a target object file.
Since ‘-E’ is not implied, ‘-MD’ can be used to generate a dependency output file as
a side-effect of the compilation process.

Chapter 3: GCC Command Options 65

-MMD Like ‘-MD’ except mention only user header files, not system -header files.

-x c
-x c++
-x objective-c
-x assembler-with-cpp

Specify the source language: C, C++, Objective-C, or assembly. This has nothing to
do with standards conformance or extensions; it merely selects which base syntax
to expect. If you give none of these options, cpp will deduce the language from the
extension of the source file: ‘.c’, ‘.cc’, ‘.m’, or ‘.S’. Some other common extensions
for C++ and assembly are also recognized. If cpp does not recognize the extension,
it will treat the file as C; this is the most generic mode.

Note: Previous versions of cpp accepted a ‘-lang’ option which selected both the
language and the standards conformance level. This option has been removed,
because it conflicts with the ‘-l’ option.

-std=standard
-ansi Specify the standard to which the code should conform. Currently CPP knows

about C and C++ standards; others may be added in the future.

standard may be one of:

iso9899:1990
c89 The ISO C standard from 1990. ‘c89’ is the customary shorthand for

this version of the standard.

The ‘-ansi’ option is equivalent to ‘-std=c89’.

iso9899:199409
The 1990 C standard, as amended in 1994.

iso9899:1999
c99
iso9899:199x
c9x The revised ISO C standard, published in December 1999. Before pub-

lication, this was known as C9X.

gnu89 The 1990 C standard plus GNU extensions. This is the default.

gnu99
gnu9x The 1999 C standard plus GNU extensions.

c++98 The 1998 ISO C++ standard plus amendments.

gnu++98 The same as ‘-std=c++98’ plus GNU extensions. This is the default for
C++ code.

-I- Split the include path. Any directories specified with ‘-I’ options before ‘-I-’ are
searched only for headers requested with #include "file"; they are not searched
for #include <file>. If additional directories are specified with ‘-I’ options after
the ‘-I-’, those directories are searched for all ‘#include’ directives.

In addition, ‘-I-’ inhibits the use of the directory of the current file directory as the
first search directory for #include "file".

-nostdinc
Do not search the standard system directories for header files. Only the directo-
ries you have specified with ‘-I’ options (and the directory of the current file, if
appropriate) are searched.

66 Using the GNU Compiler Collection (GCC)

-nostdinc++
Do not search for header files in the C++-specific standard directories, but do still
search the other standard directories. (This option is used when building the C++
library.)

-include file

Process file as if #include "file" appeared as the first line of the primary source
file. However, the first directory searched for file is the preprocessor’s working
directory instead of the directory containing the main source file. If not found
there, it is searched for in the remainder of the #include "..." search chain as
normal.
If multiple ‘-include’ options are given, the files are included in the order they
appear on the command line.

-imacros file

Exactly like ‘-include’, except that any output produced by scanning file is thrown
away. Macros it defines remain defined. This allows you to acquire all the macros
from a header without also processing its declarations.
All files specified by ‘-imacros’ are processed before all files specified by ‘-include’.

-idirafter dir

Search dir for header files, but do it after all directories specified with ‘-I’ and the
standard system directories have been exhausted. dir is treated as a system include
directory.

-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options. If the prefix
represents a directory, you should include the final ‘/’.

-iwithprefix dir

-iwithprefixbefore dir

Append dir to the prefix specified previously with ‘-iprefix’, and add the resulting
directory to the include search path. ‘-iwithprefixbefore’ puts it in the same
place ‘-I’ would; ‘-iwithprefix’ puts it where ‘-idirafter’ would.
Use of these options is discouraged.

-isystem dir

Search dir for header files, after all directories specified by ‘-I’ but before the stan-
dard system directories. Mark it as a system directory, so that it gets the same
special treatment as is applied to the standard system directories.

-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed. This
suppresses things like macro expansion, trigraph conversion, escaped newline splic-
ing, and processing of most directives. The preprocessor still recognizes and removes
comments, so that you can pass a file preprocessed with ‘-C’ to the compiler without
problems. In this mode the integrated preprocessor is little more than a tokenizer
for the front ends.
‘-fpreprocessed’ is implicit if the input file has one of the extensions ‘.i’, ‘.ii’
or ‘.mi’. These are the extensions that GCC uses for preprocessed files created by
‘-save-temps’.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct
column numbers in warnings or errors, even if tabs appear on the line. If the value
is less than 1 or greater than 100, the option is ignored. The default is 8.

Chapter 3: GCC Command Options 67

-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diagnostics
are being scanned by a program that does not understand the column numbers,
such as dejagnu.

-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This form
is preferred to the older form ‘-A predicate(answer)’, which is still supported,
because it does not use shell special characters.

-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.

-dCHARS CHARS is a sequence of one or more of the following characters, and must not
be preceded by a space. Other characters are interpreted by the compiler proper,
or reserved for future versions of GCC, and so are silently ignored. If you specify
characters whose behavior conflicts, the result is undefined.

‘M’ Instead of the normal output, generate a list of ‘#define’ directives
for all the macros defined during the execution of the preprocessor,
including predefined macros. This gives you a way of finding out what
is predefined in your version of the preprocessor. Assuming you have
no file ‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show all the predefined macros.

‘D’ Like ‘M’ except in two respects: it does not include the predefined
macros, and it outputs both the ‘#define’ directives and the result of
preprocessing. Both kinds of output go to the standard output file.

‘N’ Like ‘D’, but emit only the macro names, not their expansions.

‘I’ Output ‘#include’ directives in addition to the result of preprocessing.

-P Inhibit generation of linemarkers in the output from the preprocessor. This might
be useful when running the preprocessor on something that is not C code, and will
be sent to a program which might be confused by the linemarkers.

-C Do not discard comments. All comments are passed through to the output file,
except for comments in processed directives, which are deleted along with the di-
rective.
You should be prepared for side effects when using ‘-C’; it causes the preprocessor
to treat comments as tokens in their own right. For example, comments appearing
at the start of what would be a directive line have the effect of turning that line
into an ordinary source line, since the first token on the line is no longer a ‘#’.

-CC Do not discard comments, including during macro expansion. This is like ‘-C’, except
that comments contained within macros are also passed through to the output file
where the macro is expanded.
In addition to the side-effects of the ‘-C’ option, the ‘-CC’ option causes all C++-style
comments inside a macro to be converted to C-style comments. This is to prevent
later use of that macro from inadvertently commenting out the remainder of the
source line.
The ‘-CC’ option is generally used to support lint comments.

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C
preprocessors.

68 Using the GNU Compiler Collection (GCC)

-trigraphs
Process trigraph sequences. These are three-character sequences, all starting with
‘??’, that are defined by ISO C to stand for single characters. For example, ‘??/’
stands for ‘\’, so ‘’??/n’’ is a character constant for a newline. By default, GCC
ignores trigraphs, but in standard-conforming modes it converts them. See the
‘-std’ and ‘-ansi’ options.
The nine trigraphs and their replacements are

Trigraph: ??(??) ??< ??> ??= ??/ ??’ ??! ??-

Replacement: [] { } # \ ^ | ~

-remap Enable special code to work around file systems which only permit very short file
names, such as MS-DOS.

--help
--target-help

Print text describing all the command line options instead of preprocessing anything.

-v Verbose mode. Print out GNU CPP’s version number at the beginning of execution,
and report the final form of the include path.

-H Print the name of each header file used, in addition to other normal activities. Each
name is indented to show how deep in the ‘#include’ stack it is.

-version
--version

Print out GNU CPP’s version number. With one dash, proceed to preprocess as
normal. With two dashes, exit immediately.

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split
into multiple options at the commas.

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output file.
They are meaningless if the compiler is not doing a link step.

object-file-name

A file name that does not end in a special recognized suffix is considered to name
an object file or library. (Object files are distinguished from libraries by the linker
according to the file contents.) If linking is done, these object files are used as input
to the linker.

-c
-S
-E If any of these options is used, then the linker is not run, and object file names

should not be used as arguments. See Section 3.2 [Overall Options], page 15.

-llibrary
-l library

Search the library named library when linking. (The second alternative with the
library as a separate argument is only for POSIX compliance and is not recom-
mended.)

Chapter 3: GCC Command Options 69

It makes a difference where in the command you write this option; the linker searches
and processes libraries and object files in the order they are specified. Thus, ‘foo.o
-lz bar.o’ searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If ‘bar.o’ refers
to functions in ‘z’, those functions may not be loaded.
The linker searches a standard list of directories for the library, which is actually a
file named ‘liblibrary.a’. The linker then uses this file as if it had been specified
precisely by name.
The directories searched include several standard system directories plus any that
you specify with ‘-L’.
Normally the files found this way are library files—archive files whose members are
object files. The linker handles an archive file by scanning through it for members
which define symbols that have so far been referenced but not defined. But if the
file that is found is an ordinary object file, it is linked in the usual fashion. The
only difference between using an ‘-l’ option and specifying a file name is that ‘-l’
surrounds library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-l’ option in order to link an Objective-C program.

-nostartfiles
Do not use the standard system startup files when linking. The standard system
libraries are used normally, unless ‘-nostdlib’ or ‘-nodefaultlibs’ is used.

-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you specify
will be passed to the linker. The standard startup files are used normally, unless
‘-nostartfiles’ is used. The compiler may generate calls to memcmp, memset,
and memcpy for System V (and ISO C) environments or to bcopy and bzero for
BSD environments. These entries are usually resolved by entries in libc. These
entry points should be supplied through some other mechanism when this option is
specified.

-nostdlib
Do not use the standard system startup files or libraries when linking. No startup
files and only the libraries you specify will be passed to the linker. The compiler
may generate calls to memcmp, memset, and memcpy for System V (and ISO C)
environments or to bcopy and bzero for BSD environments. These entries are usually
resolved by entries in libc. These entry points should be supplied through some other
mechanism when this option is specified.
One of the standard libraries bypassed by ‘-nostdlib’ and ‘-nodefaultlibs’ is
‘libgcc.a’, a library of internal subroutines that GCC uses to overcome shortcom-
ings of particular machines, or special needs for some languages. (See section “In-
terfacing to GCC Output” in GNU Compiler Collection (GCC) Internals, for more
discussion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’ even when you want
to avoid other standard libraries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as well. This ensures that you
have no unresolved references to internal GCC library subroutines. (For example,
‘__main’, used to ensure C++ constructors will be called; see section “collect2” in
GNU Compiler Collection (GCC) Internals.)

-pie Produce a position independent executable on targets which support it. For pre-
dictable results, you must also specify the same set of options that were used to
generate code (‘-fpie’, ‘-fPIE’, or model suboptions) when you specify this option.

-s Remove all symbol table and relocation information from the executable.

70 Using the GNU Compiler Collection (GCC)

-static On systems that support dynamic linking, this prevents linking with the shared
libraries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to form an
executable. Not all systems support this option. For predictable results, you must
also specify the same set of options that were used to generate code (‘-fpic’, ‘-fPIC’,
or model suboptions) when you specify this option.1

-shared-libgcc
-static-libgcc

On systems that provide ‘libgcc’ as a shared library, these options force the use of
either the shared or static version respectively. If no shared version of ‘libgcc’ was
built when the compiler was configured, these options have no effect.
There are several situations in which an application should use the shared ‘libgcc’
instead of the static version. The most common of these is when the application
wishes to throw and catch exceptions across different shared libraries. In that case,
each of the libraries as well as the application itself should use the shared ‘libgcc’.
Therefore, the G++ and GCJ drivers automatically add ‘-shared-libgcc’ whenever
you build a shared library or a main executable, because C++ and Java programs
typically use exceptions, so this is the right thing to do.
If, instead, you use the GCC driver to create shared libraries, you may find that they
will not always be linked with the shared ‘libgcc’. If GCC finds, at its configuration
time, that you have a GNU linker that does not support option ‘--eh-frame-hdr’,
it will link the shared version of ‘libgcc’ into shared libraries by default. Otherwise,
it will take advantage of the linker and optimize away the linking with the shared
version of ‘libgcc’, linking with the static version of libgcc by default. This allows
exceptions to propagate through such shared libraries, without incurring relocation
costs at library load time.
However, if a library or main executable is supposed to throw or catch exceptions,
you must link it using the G++ or GCJ driver, as appropriate for the languages used
in the program, or using the option ‘-shared-libgcc’, such that it is linked with
the shared ‘libgcc’.

-symbolic
Bind references to global symbols when building a shared object. Warn about
any unresolved references (unless overridden by the link editor option ‘-Xlinker -z
-Xlinker defs’). Only a few systems support this option.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific
linker options which GCC does not know how to recognize.
If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to pass ‘-assert
definitions’, you must write ‘-Xlinker -assert -Xlinker definitions’. It does
not work to write ‘-Xlinker "-assert definitions"’, because this passes the en-
tire string as a single argument, which is not what the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas.

1 On some systems, ‘gcc -shared’ needs to build supplementary stub code for constructors to work. On multi-
libbed systems, ‘gcc -shared’ must select the correct support libraries to link against. Failing to supply the
correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous.

Chapter 3: GCC Command Options 71

-u symbol

Pretend the symbol symbol is undefined, to force linking of library modules to
define it. You can use ‘-u’ multiple times with different symbols to force loading of
additional library modules.

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idir Add the directory dir to the head of the list of directories to be searched for header
files. This can be used to override a system header file, substituting your own
version, since these directories are searched before the system header file directories.
However, you should not use this option to add directories that contain vendor-
supplied system header files (use ‘-isystem’ for that). If you use more than one
‘-I’ option, the directories are scanned in left-to-right order; the standard system
directories come after.
If a standard system include directory, or a directory specified with ‘-isystem’,
is also specified with ‘-I’, the ‘-I’ option will be ignored. The directory will still
be searched but as a system directory at its normal position in the system include
chain. This is to ensure that GCC’s procedure to fix buggy system headers and the
ordering for the include next directive are not inadvertently changed. If you really
need to change the search order for system directories, use the ‘-nostdinc’ and/or
‘-isystem’ options.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’ option are searched
only for the case of ‘#include "file"’; they are not searched for ‘#include
<file>’.
If additional directories are specified with ‘-I’ options after the ‘-I-’, these direc-
tories are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ directories are
used this way.)
In addition, the ‘-I-’ option inhibits the use of the current directory (where the
current input file came from) as the first search directory for ‘#include "file"’.
There is no way to override this effect of ‘-I-’. With ‘-I.’ you can specify searching
the directory which was current when the compiler was invoked. That is not exactly
the same as what the preprocessor does by default, but it is often satisfactory.
‘-I-’ does not inhibit the use of the standard system directories for header files.
Thus, ‘-I-’ and ‘-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries, include files, and data
files of the compiler itself.
The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’, ‘as’
and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with and
without ‘machine/version/’ (see Section 3.16 [Target Options], page 77).
For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if any.
If that name is not found, or if ‘-B’ was not specified, the driver tries two standard
prefixes, which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’. If neither of
those results in a file name that is found, the unmodified program name is searched
for using the directories specified in your PATH environment variable.
The compiler will check to see if the path provided by the ‘-B’ refers to a directory,
and if necessary it will add a directory separator character at the end of the path.

72 Using the GNU Compiler Collection (GCC)

‘-B’ prefixes that effectively specify directory names also apply to libraries in the
linker, because the compiler translates these options into ‘-L’ options for the linker.
They also apply to includes files in the preprocessor, because the compiler translates
these options into ‘-isystem’ options for the preprocessor. In this case, the compiler
appends ‘include’ to the prefix.
The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’ prefix,
if needed. If it is not found there, the two standard prefixes above are tried, and
that is all. The file is left out of the link if it is not found by those means.
Another way to specify a prefix much like the ‘-B’ prefix is to use the environment
variable GCC_EXEC_PREFIX. See Section 3.19 [Environment Variables], page 144.
As a special kludge, if the path provided by ‘-B’ is ‘[dir/]stageN/’, where N is a
number in the range 0 to 9, then it will be replaced by ‘[dir/]include’. This is to
help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard ‘specs’ file, in order to override
the defaults that the ‘gcc’ driver program uses when determining what switches
to pass to ‘cc1’, ‘cc1plus’, ‘as’, ‘ld’, etc. More than one ‘-specs=file ’ can be
specified on the command line, and they are processed in order, from left to right.

3.15 Specifying subprocesses and the switches to pass to them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do the
work of compiling, assembling and linking. GCC interprets its command-line parameters and
uses these to deduce which programs it should invoke, and which command-line options it ought
to place on their command lines. This behavior is controlled by spec strings. In most cases there
is one spec string for each program that GCC can invoke, but a few programs have multiple
spec strings to control their behavior. The spec strings built into GCC can be overridden by
using the ‘-specs=’ command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a
sequence of directives separated by blank lines. The type of directive is determined by the first
non-whitespace character on the line and it can be one of the following:

%command Issues a command to the spec file processor. The commands that can appear here
are:

%include <file>
Search for file and insert its text at the current point in the specs file.

%include_noerr <file>
Just like ‘%include’, but do not generate an error message if the include
file cannot be found.

%rename old_name new_name

Rename the spec string old name to new name.

*[spec_name]:
This tells the compiler to create, override or delete the named spec string. All lines
after this directive up to the next directive or blank line are considered to be the text
for the spec string. If this results in an empty string then the spec will be deleted.
(Or, if the spec did not exist, then nothing will happened.) Otherwise, if the spec
does not currently exist a new spec will be created. If the spec does exist then its
contents will be overridden by the text of this directive, unless the first character of
that text is the ‘+’ character, in which case the text will be appended to the spec.

Chapter 3: GCC Command Options 73

[suffix]:
Creates a new ‘[suffix] spec’ pair. All lines after this directive and up to the next
directive or blank line are considered to make up the spec string for the indicated
suffix. When the compiler encounters an input file with the named suffix, it will
processes the spec string in order to work out how to compile that file. For example:

.ZZ:

z-compile -input %i

This says that any input file whose name ends in ‘.ZZ’ should be passed to the pro-
gram ‘z-compile’, which should be invoked with the command-line switch ‘-input’
and with the result of performing the ‘%i’ substitution. (See below.)
As an alternative to providing a spec string, the text that follows a suffix directive
can be one of the following:

@language
This says that the suffix is an alias for a known language. This is similar
to using the ‘-x’ command-line switch to GCC to specify a language
explicitly. For example:

.ZZ:

@c++

Says that .ZZ files are, in fact, C++ source files.

#name This causes an error messages saying:
name compiler not installed on this system.

GCC already has an extensive list of suffixes built into it. This directive will add
an entry to the end of the list of suffixes, but since the list is searched from the end
backwards, it is effectively possible to override earlier entries using this technique.

GCC has the following spec strings built into it. Spec files can override these strings or create
their own. Note that individual targets can also add their own spec strings to this list.

asm Options to pass to the assembler

asm_final Options to pass to the assembler post-processor

cpp Options to pass to the C preprocessor

cc1 Options to pass to the C compiler

cc1plus Options to pass to the C++ compiler

endfile Object files to include at the end of the link

link Options to pass to the linker

lib Libraries to include on the command line to the linker

libgcc Decides which GCC support library to pass to the linker

linker Sets the name of the linker

predefines Defines to be passed to the C preprocessor

signed_char Defines to pass to CPP to say whether char is signed

by default

startfile Object files to include at the start of the link

Here is a small example of a spec file:
%rename lib old_lib

*lib:

--start-group -lgcc -lc -leval1 --end-group %(old_lib)

This example renames the spec called ‘lib’ to ‘old_lib’ and then overrides the previous
definition of ‘lib’ with a new one. The new definition adds in some extra command-line options
before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding program.
In addition, the spec strings can contain ‘%’-prefixed sequences to substitute variable text or to
conditionally insert text into the command line. Using these constructs it is possible to generate
quite complex command lines.

74 Using the GNU Compiler Collection (GCC)

Here is a table of all defined ‘%’-sequences for spec strings. Note that spaces are not generated
automatically around the results of expanding these sequences. Therefore you can concatenate
them together or combine them with constant text in a single argument.

%% Substitute one ‘%’ into the program name or argument.

%i Substitute the name of the input file being processed.

%b Substitute the basename of the input file being processed. This is the substring up
to (and not including) the last period and not including the directory.

%B This is the same as ‘%b’, but include the file suffix (text after the last period).

%d Marks the argument containing or following the ‘%d’ as a temporary file name, so
that that file will be deleted if GCC exits successfully. Unlike ‘%g’, this contributes
no text to the argument.

%gsuffix Substitute a file name that has suffix suffix and is chosen once per compilation, and
mark the argument in the same way as ‘%d’. To reduce exposure to denial-of-service
attacks, the file name is now chosen in a way that is hard to predict even when
previously chosen file names are known. For example, ‘%g.s ... %g.o ... %g.s’
might turn into ‘ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s’. suffix matches the regexp
‘[.A-Za-z]*’ or the special string ‘%O’, which is treated exactly as if ‘%O’ had been
preprocessed. Previously, ‘%g’ was simply substituted with a file name chosen once
per compilation, without regard to any appended suffix (which was therefore treated
just like ordinary text), making such attacks more likely to succeed.

%usuffix Like ‘%g’, but generates a new temporary file name even if ‘%usuffix ’ was already
seen.

%Usuffix Substitutes the last file name generated with ‘%usuffix ’, generating a new one if
there is no such last file name. In the absence of any ‘%usuffix ’, this is just like
‘%gsuffix ’, except they don’t share the same suffix space, so ‘%g.s ... %U.s ...
%g.s ... %U.s’ would involve the generation of two distinct file names, one for each
‘%g.s’ and another for each ‘%U.s’. Previously, ‘%U’ was simply substituted with a
file name chosen for the previous ‘%u’, without regard to any appended suffix.

%jsuffix Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and if
save-temps is off; otherwise, substitute the name of a temporary file, just like ‘%u’.
This temporary file is not meant for communication between processes, but rather
as a junk disposal mechanism.

%.SUFFIX Substitutes .SUFFIX for the suffixes of a matched switch’s args when it is subse-
quently output with ‘%*’. SUFFIX is terminated by the next space or %.

%w Marks the argument containing or following the ‘%w’ as the designated output file of
this compilation. This puts the argument into the sequence of arguments that ‘%o’
will substitute later.

%o Substitutes the names of all the output files, with spaces automatically placed
around them. You should write spaces around the ‘%o’ as well or the results are
undefined. ‘%o’ is for use in the specs for running the linker. Input files whose names
have no recognized suffix are not compiled at all, but they are included among the
output files, so they will be linked.

%O Substitutes the suffix for object files. Note that this is handled specially when it
immediately follows ‘%g, %u, or %U’, because of the need for those to form complete
file names. The handling is such that ‘%O’ is treated exactly as if it had already been
substituted, except that ‘%g, %u, and %U’ do not currently support additional suffix
characters following ‘%O’ as they would following, for example, ‘.o’.

Chapter 3: GCC Command Options 75

%p Substitutes the standard macro predefinitions for the current target machine. Use
this when running cpp.

%P Like ‘%p’, but puts ‘__’ before and after the name of each predefined macro, except
for macros that start with ‘__’ or with ‘_L ’, where L is an uppercase letter. This is
for ISO C.

%I Substitute any of ‘-iprefix’ (made from GCC_EXEC_PREFIX), ‘-isysroot’ (made
from TARGET_SYSTEM_ROOT), and ‘-isystem’ (made from COMPILER_PATH and ‘-B’
options) as necessary.

%s Current argument is the name of a library or startup file of some sort. Search for
that file in a standard list of directories and substitute the full name found.

%estr Print str as an error message. str is terminated by a newline. Use this when
inconsistent options are detected.

%| Output ‘-’ if the input for the current command is coming from a pipe.

%(name) Substitute the contents of spec string name at this point.

%[name] Like ‘%(...)’ but put ‘__’ around ‘-D’ arguments.

%x{option}
Accumulate an option for ‘%X’.

%X Output the accumulated linker options specified by ‘-Wl’ or a ‘%x’ spec string.

%Y Output the accumulated assembler options specified by ‘-Wa’.

%Z Output the accumulated preprocessor options specified by ‘-Wp’.

%v1 Substitute the major version number of GCC. (For version 2.9.5, this is 2.)

%v2 Substitute the minor version number of GCC. (For version 2.9.5, this is 9.)

%v3 Substitute the patch level number of GCC. (For version 2.9.5, this is 5.)

%a Process the asm spec. This is used to compute the switches to be passed to the
assembler.

%A Process the asm_final spec. This is a spec string for passing switches to an assem-
bler post-processor, if such a program is needed.

%l Process the link spec. This is the spec for computing the command line passed to
the linker. Typically it will make use of the ‘%L %G %S %D and %E’ sequences.

%D Dump out a ‘-L’ option for each directory that GCC believes might contain startup
files. If the target supports multilibs then the current multilib directory will be
prepended to each of these paths.

%M Output the multilib directory with directory separators replaced with ‘_’. If multilib
directories are not set, or the multilib directory is ‘.’ then this option emits nothing.

%L Process the lib spec. This is a spec string for deciding which libraries should be
included on the command line to the linker.

%G Process the libgcc spec. This is a spec string for deciding which GCC support
library should be included on the command line to the linker.

%S Process the startfile spec. This is a spec for deciding which object files should be
the first ones passed to the linker. Typically this might be a file named ‘crt0.o’.

%E Process the endfile spec. This is a spec string that specifies the last object files
that will be passed to the linker.

76 Using the GNU Compiler Collection (GCC)

%C Process the cpp spec. This is used to construct the arguments to be passed to the
C preprocessor.

%c Process the signed_char spec. This is intended to be used to tell cpp whether a
char is signed. It typically has the definition:

%{funsigned-char:-D__CHAR_UNSIGNED__}

%1 Process the cc1 spec. This is used to construct the options to be passed to the
actual C compiler (‘cc1’).

%2 Process the cc1plus spec. This is used to construct the options to be passed to the
actual C++ compiler (‘cc1plus’).

%* Substitute the variable part of a matched option. See below. Note that each comma
in the substituted string is replaced by a single space.

%:function(args)
Call the named function function, passing it args. args is first processed as a nested
spec string, then split into an argument vector in the usual fashion. The function
returns a string which is processed as if it had appeared literally as part of the
current spec.
The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute path-
name to a file. If the file exists, if-exists returns the pathname. Here
is a small example of its usage:

*startfile:

crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s

if-exists-else
The if-exists-else spec function is similar to the if-exists spec
function, except that it takes two arguments. The first argument is an
absolute pathname to a file. If the file exists, if-exists-else returns
the pathname. If it does not exist, it returns the second argument. This
way, if-exists-else can be used to select one file or another, based
on the existence of the first. Here is a small example of its usage:

*startfile:

crt0%O%s %:if-exists(crti%O%s) \

%:if-exists-else(crtbeginT%O%s crtbegin%O%s)

%{S} Substitutes the -S switch, if that switch was given to GCC. If that switch was not
specified, this substitutes nothing. Note that the leading dash is omitted when spec-
ifying this option, and it is automatically inserted if the substitution is performed.
Thus the spec string ‘%{foo}’ would match the command-line option ‘-foo’ and
would output the command line option ‘-foo’.

%W{S} Like %{S} but mark last argument supplied within as a file to be deleted on failure.

%{S*} Substitutes all the switches specified to GCC whose names start with -S, but which
also take an argument. This is used for switches like ‘-o’, ‘-D’, ‘-I’, etc. GCC
considers ‘-o foo’ as being one switch whose names starts with ‘o’. %{o*} would
substitute this text, including the space. Thus two arguments would be generated.

%{^S*} Like %{S*}, but don’t put a blank between a switch and its argument. Thus %{^o*}
would only generate one argument, not two.

%{S*&T*} Like %{S*}, but preserve order of S and T options (the order of S and T in the spec
is not significant). There can be any number of ampersand-separated variables; for
each the wild card is optional. Useful for CPP as ‘%{D*&U*&A*}’.

Chapter 3: GCC Command Options 77

%{<S} Remove all occurrences of -S from the command line. Note—this command is
position dependent. ‘%’ commands in the spec string before this option will see -S,
‘%’ commands in the spec string after this option will not.

%{S*:X} Substitutes X if one or more switches whose names start with -S are specified to
GCC. Note that the tail part of the -S option (i.e. the part matched by the ‘*’) will
be substituted for each occurrence of ‘%*’ within X.

%{S:X} Substitutes X, but only if the ‘-S’ switch was given to GCC.

%{!S:X} Substitutes X, but only if the ‘-S’ switch was not given to GCC.

%{|S:X} Like %{S:X}, but if no S switch, substitute ‘-’.

%{|!S:X} Like %{!S:X}, but if there is an S switch, substitute ‘-’.

%{.S:X} Substitutes X, but only if processing a file with suffix S.

%{!.S:X} Substitutes X, but only if not processing a file with suffix S.

%{S|P:X} Substitutes X if either -S or -P was given to GCC. This may be combined with ‘!’
and ‘.’ sequences as well, although they have a stronger binding than the ‘|’. For
example a spec string like this:

%{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}

will output the following command-line options from the following input command-
line options:

fred.c -foo -baz

jim.d -bar -boggle

-d fred.c -foo -baz -boggle

-d jim.d -bar -baz -boggle

The conditional text X in a %{S:X} or %{!S:X} construct may contain other nested ‘%’ con-
structs or spaces, or even newlines. They are processed as usual, as described above.

The ‘-O’, ‘-f’, ‘-m’, and ‘-W’ switches are handled specifically in these constructs. If another
value of ‘-O’ or the negated form of a ‘-f’, ‘-m’, or ‘-W’ switch is found later in the command
line, the earlier switch value is ignored, except with {S*} where S is just one letter, which passes
all matching options.

The character ‘|’ at the beginning of the predicate text is used to indicate that a command
should be piped to the following command, but only if ‘-pipe’ is specified.

It is built into GCC which switches take arguments and which do not. (You might think
it would be useful to generalize this to allow each compiler’s spec to say which switches take
arguments. But this cannot be done in a consistent fashion. GCC cannot even decide which
input files have been specified without knowing which switches take arguments, and it must
know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in ‘-l’ are to be treated as compiler
output files, and passed to the linker in their proper position among the other output files.

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called ‘gcc’, or ‘<machine>-gcc’ when
cross-compiling, or ‘<machine>-gcc-<version>’ to run a version other than the one that was
installed last. Sometimes this is inconvenient, so GCC provides options that will switch to
another cross-compiler or version.

-b machine

The argument machine specifies the target machine for compilation.

78 Using the GNU Compiler Collection (GCC)

The value to use for machine is the same as was specified as the machine type when
configuring GCC as a cross-compiler. For example, if a cross-compiler was configured
with ‘configure i386v’, meaning to compile for an 80386 running System V, then
you would specify ‘-b i386v’ to run that cross compiler.

-V version

The argument version specifies which version of GCC to run. This is useful when
multiple versions are installed. For example, version might be ‘2.0’, meaning to run
GCC version 2.0.

The ‘-V’ and ‘-b’ options work by running the ‘<machine>-gcc-<version>’ executable, so
there’s no real reason to use them if you can just run that directly.

3.17 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed compilers
for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting
with ‘-m’, to choose among various hardware models or configurations—for example, 68010 vs
68020, floating coprocessor or none. A single installed version of the compiler can compile for
any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for com-
patibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description. The
default for the options is also defined by that macro, which enables you to change the defaults.

3.17.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the defaults for
the most common choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the compiler is configured

for 68000-based systems.
Use this option for microcontrollers with a 68000 or EC000 core, including the 68008,
68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020 Generate output for a 68020. This is the default when the compiler is configured

for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the de-
fault for most 68020 systems unless ‘--nfp’ was specified when the compiler was
configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured
for 68040-based systems.
This option inhibits the use of 68881/68882 instructions that have to be emulated by
software on the 68040. Use this option if your 68040 does not have code to emulate
those instructions.

Chapter 3: GCC Command Options 79

-m68060 Generate output for a 68060. This is the default when the compiler is configured
for 68060-based systems.
This option inhibits the use of 68020 and 68881/68882 instructions that have to be
emulated by software on the 68060. Use this option if your 68060 does not have
code to emulate those instructions.

-mcpu32 Generate output for a CPU32. This is the default when the compiler is configured
for CPU32-based systems.
Use this option for microcontrollers with a CPU32 or CPU32+ core, including the
68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200 Generate output for a 520X “coldfire” family cpu. This is the default when the
compiler is configured for 520X-based systems.
Use this option for microcontroller with a 5200 core, including the MCF5202,
MCF5203, MCF5204 and MCF5202.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This results
in code which can run relatively efficiently on either a 68020/68881 or a 68030 or
a 68040. The generated code does use the 68881 instructions that are emulated on
the 68040.

-m68020-60
Generate output for a 68060, without using any of the new instructions. This results
in code which can run relatively efficiently on either a 68020/68881 or a 68030 or
a 68040. The generated code does use the 68881 instructions that are emulated on
the 68060.

-mfpa Generate output containing Sun FPA instructions for floating point.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite li-
braries are not available for all m68k targets. Normally the facilities of the machine’s
usual C compiler are used, but this can’t be done directly in cross-compilation. You
must make your own arrangements to provide suitable library functions for cross-
compilation. The embedded targets ‘m68k-*-aout’ and ‘m68k-*-coff’ do provide
software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’, ‘-mcpu32’ and ‘-m5200’ options
imply ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’. This
is the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return with the rtd instruction, which pops their arguments
while returning. This saves one instruction in the caller since there is no need to
pop the arguments there.
This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.

80 Using the GNU Compiler Collection (GCC)

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)
The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and
CPU32 processors, but not by the 68000 or 5200.

-malign-int
-mno-align-int

Control whether GCC aligns int, long, long long, float, double, and long
double variables on a 32-bit boundary (‘-malign-int’) or a 16-bit boundary
(‘-mno-align-int’). Aligning variables on 32-bit boundaries produces code that
runs somewhat faster on processors with 32-bit busses at the expense of more mem-
ory.
Warning: if you use the ‘-malign-int’ switch, GCC will align structures contain-
ing the above types differently than most published application binary interface
specifications for the m68k.

-mpcrel Use the pc-relative addressing mode of the 68000 directly, instead of using a global
offset table. At present, this option implies ‘-fpic’, allowing at most a 16-bit offset
for pc-relative addressing. ‘-fPIC’ is not presently supported with ‘-mpcrel’, though
this could be supported for 68020 and higher processors.

-mno-strict-align
-mstrict-align

Do not (do) assume that unaligned memory references will be handled by the system.

3.17.2 M68hc1x Options

These are the ‘-m’ options defined for the 68hc11 and 68hc12 microcontrollers. The default values
for these options depends on which style of microcontroller was selected when the compiler was
configured; the defaults for the most common choices are given below.

-m6811
-m68hc11 Generate output for a 68HC11. This is the default when the compiler is configured

for 68HC11-based systems.

-m6812
-m68hc12 Generate output for a 68HC12. This is the default when the compiler is configured

for 68HC12-based systems.

-m68S12
-m68hcs12

Generate output for a 68HCS12.

-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement address-
ing modes.

-minmax
-nominmax

Enable the use of 68HC12 min and max instructions.

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will use the call instruction to call a function and the rtc instruction for
returning.

Chapter 3: GCC Command Options 81

-mshort Consider type int to be 16 bits wide, like short int.

-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code generation.
The maximum number is 32. Using more pseudo-soft register may or may not result
in better code depending on the program. The default is 4 for 68HC11 and 2 for
68HC12.

3.17.3 VAX Options

These ‘-m’ options are defined for the VAX:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix assembler
for the VAX cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble with
the GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.17.4 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global registers 2 through 4,
which the SPARC SVR4 ABI reserves for applications. This is the default, except
on Solaris.
To be fully SVR4 ABI compliant at the cost of some performance loss, specify
‘-mno-app-regs’. You should compile libraries and system software with this option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point. Warning: the req-
uisite libraries are not available for all SPARC targets. Normally the facilities
of the machine’s usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide suitable li-
brary functions for cross-compilation. The embedded targets ‘sparc-*-aout’ and
‘sparclite-*-*’ do provide software floating point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘libgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating point
instructions. The functions called are those specified in the SPARC ABI. This is
the default.

82 Using the GNU Compiler Collection (GCC)

As of this writing, there are no sparc implementations that have hardware support
for the quad-word floating point instructions. They all invoke a trap handler for one
of these instructions, and then the trap handler emulates the effect of the instruction.
Because of the trap handler overhead, this is much slower than calling the ABI
library routines. Thus the ‘-msoft-quad-float’ option is the default.

-mno-flat
-mflat With ‘-mflat’, the compiler does not generate save/restore instructions and will

use a “flat” or single register window calling convention. This model uses %i7 as
the frame pointer and is compatible with the normal register window model. Code
from either may be intermixed. The local registers and the input registers (0–5) are
still treated as “call saved” registers and will be saved on the stack as necessary.
With ‘-mno-flat’ (the default), the compiler emits save/restore instructions (except
for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the default.
With ‘-munaligned-doubles’, GCC assumes that doubles have 8 byte alignment
only if they are contained in another type, or if they have an absolute address.
Otherwise, it assumes they have 4 byte alignment. Specifying this option avoids
some rare compatibility problems with code generated by other compilers. It is
not the default because it results in a performance loss, especially for floating point
code.

-mno-faster-structs
-mfaster-structs

With ‘-mfaster-structs’, the compiler assumes that structures should have 8 byte
alignment. This enables the use of pairs of ldd and std instructions for copies in
structure assignment, in place of twice as many ld and st pairs. However, the use
of this changed alignment directly violates the SPARC ABI. Thus, it’s intended
only for use on targets where the developer acknowledges that their resulting code
will not be directly in line with the rules of the ABI.

-mimpure-text
‘-mimpure-text’, used in addition to ‘-shared’, tells the compiler to not pass ‘-z
text’ to the linker when linking a shared object. Using this option, you can link
position-dependent code into a shared object.
‘-mimpure-text’ suppresses the “relocations remain against allocatable but non-
writable sections” linker error message. However, the necessary relocations will
trigger copy-on-write, and the shared object is not actually shared across processes.
Instead of using ‘-mimpure-text’, you should compile all source code with ‘-fpic’
or ‘-fPIC’.
This option is only available on SunOS and Solaris.

-mv8
-msparclite

These two options select variations on the SPARC architecture.
By default (unless specifically configured for the Fujitsu SPARClite), GCC generates
code for the v7 variant of the SPARC architecture.
‘-mv8’ will give you SPARC v8 code. The only difference from v7 code is that the
compiler emits the integer multiply and integer divide instructions which exist in
SPARC v8 but not in SPARC v7.

Chapter 3: GCC Command Options 83

‘-msparclite’ will give you SPARClite code. This adds the integer multiply, integer
divide step and scan (ffs) instructions which exist in SPARClite but not in SPARC
v7.
These options are deprecated and will be deleted in a future GCC release. They
have been replaced with ‘-mcpu=xxx’.

-mcypress
-msupersparc

These two options select the processor for which the code is optimized.
With ‘-mcypress’ (the default), the compiler optimizes code for the Cypress
CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is
also appropriate for the older SPARCStation 1, 2, IPX etc.
With ‘-msupersparc’ the compiler optimizes code for the SuperSPARC cpu, as used
in the SPARCStation 10, 1000 and 2000 series. This flag also enables use of the full
SPARC v8 instruction set.
These options are deprecated and will be deleted in a future GCC release. They
have been replaced with ‘-mcpu=xxx’.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for
machine type cpu type. Supported values for cpu type are ‘v7’, ‘cypress’,
‘v8’, ‘supersparc’, ‘sparclite’, ‘hypersparc’, ‘sparclite86x’, ‘f930’, ‘f934’,
‘sparclet’, ‘tsc701’, ‘v9’, ‘ultrasparc’, and ‘ultrasparc3’.
Default instruction scheduling parameters are used for values that select an archi-
tecture and not an implementation. These are ‘v7’, ‘v8’, ‘sparclite’, ‘sparclet’,
‘v9’.
Here is a list of each supported architecture and their supported implementations.

v7: cypress

v8: supersparc, hypersparc

sparclite: f930, f934, sparclite86x

sparclet: tsc701

v9: ultrasparc, ultrasparc3

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but do not
set the instruction set or register set that the option ‘-mcpu=cpu_type ’ would.
The same values for ‘-mcpu=cpu_type ’ can be used for ‘-mtune=cpu_type ’, but the
only useful values are those that select a particular cpu implementation. Those are
‘cypress’, ‘supersparc’, ‘hypersparc’, ‘f930’, ‘f934’, ‘sparclite86x’, ‘tsc701’,
‘ultrasparc’, and ‘ultrasparc3’.

These ‘-m’ switches are supported in addition to the above on the SPARCLET processor.

-mlittle-endian
Generate code for a processor running in little-endian mode.

-mlive-g0
Treat register %g0 as a normal register. GCC will continue to clobber it as necessary
but will not assume it always reads as 0.

-mbroken-saverestore
Generate code that does not use non-trivial forms of the save and restore instruc-
tions. Early versions of the SPARCLET processor do not correctly handle save
and restore instructions used with arguments. They correctly handle them used
without arguments. A save instruction used without arguments increments the

84 Using the GNU Compiler Collection (GCC)

current window pointer but does not allocate a new stack frame. It is assumed that
the window overflow trap handler will properly handle this case as will interrupt
handlers.

These ‘-m’ switches are supported in addition to the above on SPARC V9 processors in 64-bit
environments.

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available for
a few configurations and most notably not on Solaris.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,

long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and
pointer to 64 bits.

-mcmodel=medlow
Generate code for the Medium/Low code model: the program must be linked in the
low 32 bits of the address space. Pointers are 64 bits. Programs can be statically
or dynamically linked.

-mcmodel=medmid
Generate code for the Medium/Middle code model: the program must be linked in
the low 44 bits of the address space, the text segment must be less than 2G bytes,
and data segment must be within 2G of the text segment. Pointers are 64 bits.

-mcmodel=medany
Generate code for the Medium/Anywhere code model: the program may be linked
anywhere in the address space, the text segment must be less than 2G bytes, and
data segment must be within 2G of the text segment. Pointers are 64 bits.

-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems: as-
sume a 32-bit text and a 32-bit data segment, both starting anywhere (determined
at link time). Register %g4 points to the base of the data segment. Pointers are
still 64 bits. Programs are statically linked, PIC is not supported.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GCC assumes that the stack pointer, and frame pointer if
present, are offset by −2047 which must be added back when making stack frame
references. Otherwise, assume no such offset is present.

These switches are supported in addition to the above on Solaris:

-threads Add support for multithreading using the Solaris threads library. This option sets
flags for both the preprocessor and linker. This option does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with it.

-pthreads
Add support for multithreading using the POSIX threads library. This option sets
flags for both the preprocessor and linker. This option does not affect the thread
safety of object code produced by the compiler or that of libraries supplied with it.

3.17.5 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM) architectures:

Chapter 3: GCC Command Options 85

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Standard for
all functions, even if this is not strictly necessary for correct execution of the code.
Specifying ‘-fomit-frame-pointer’ with this option will cause the stack frames not
to be generated for leaf functions. The default is ‘-mno-apcs-frame’.

-mapcs This is a synonym for ‘-mapcs-frame’.

-mapcs-26
Generate code for a processor running with a 26-bit program counter, and con-
forming to the function calling standards for the APCS 26-bit option. This option
replaces the ‘-m2’ and ‘-m3’ options of previous releases of the compiler.

-mapcs-32
Generate code for a processor running with a 32-bit program counter, and con-
forming to the function calling standards for the APCS 32-bit option. This option
replaces the ‘-m6’ option of previous releases of the compiler.

-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction
sets. Without this option the two instruction sets cannot be reliably used inside
one program. The default is ‘-mno-thumb-interwork’, since slightly larger code is
generated when ‘-mthumb-interwork’ is specified.

-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of
those instruction with the instructions in the function’s body. This means that all
functions will start with a recognizable set of instructions (or in fact one of a choice
from a small set of different function prologues), and this information can be used
to locate the start if functions inside an executable piece of code. The default is
‘-msched-prolog’.

-mhard-float
Generate output containing floating point instructions. This is the default.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not available for all ARM targets. Normally the facilities of the
machine’s usual C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to provide suitable library
functions for cross-compilation.
‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘libgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default for
all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode; the default is to compile
code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian processors. Generate
code for a little-endian word order but a big-endian byte order. That is, a byte

86 Using the GNU Compiler Collection (GCC)

order of the form ‘32107654’. Note: this option should only be used if you require
compatibility with code for big-endian ARM processors generated by versions of the
compiler prior to 2.8.

-malignment-traps
Generate code that will not trap if the MMU has alignment traps enabled. On
ARM architectures prior to ARMv4, there were no instructions to access half-word
objects stored in memory. However, when reading from memory a feature of the
ARM architecture allows a word load to be used, even if the address is unaligned,
and the processor core will rotate the data as it is being loaded. This option tells the
compiler that such misaligned accesses will cause a MMU trap and that it should
instead synthesize the access as a series of byte accesses. The compiler can still use
word accesses to load half-word data if it knows that the address is aligned to a
word boundary.
This option is ignored when compiling for ARM architecture 4 or later, since these
processors have instructions to directly access half-word objects in memory.

-mno-alignment-traps
Generate code that assumes that the MMU will not trap unaligned accesses. This
produces better code when the target instruction set does not have half-word mem-
ory operations (i.e. implementations prior to ARMv4).
Note that you cannot use this option to access unaligned word objects, since the
processor will only fetch one 32-bit aligned object from memory.
The default setting for most targets is ‘-mno-alignment-traps’, since this produces
better code when there are no half-word memory instructions available.

-mshort-load-bytes
-mno-short-load-words

These are deprecated aliases for ‘-malignment-traps’.

-mno-short-load-bytes
-mshort-load-words

This are deprecated aliases for ‘-mno-alignment-traps’.

-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.
Permissible names are: ‘arm2’, ‘arm250’, ‘arm3’, ‘arm6’, ‘arm60’, ‘arm600’, ‘arm610’,
‘arm620’, ‘arm7’, ‘arm7m’, ‘arm7d’, ‘arm7dm’, ‘arm7di’, ‘arm7dmi’, ‘arm70’, ‘arm700’,
‘arm700i’, ‘arm710’, ‘arm710c’, ‘arm7100’, ‘arm7500’, ‘arm7500fe’, ‘arm7tdmi’,
‘arm8’, ‘strongarm’, ‘strongarm110’, ‘strongarm1100’, ‘arm8’, ‘arm810’, ‘arm9’,
‘arm9e’, ‘arm920’, ‘arm920t’, ‘arm940t’, ‘arm9tdmi’, ‘arm10tdmi’, ‘arm1020t’,
‘xscale’.

-mtune=name
This option is very similar to the ‘-mcpu=’ option, except that instead of specifying
the actual target processor type, and hence restricting which instructions can be
used, it specifies that GCC should tune the performance of the code as if the target
were of the type specified in this option, but still choosing the instructions that
it will generate based on the cpu specified by a ‘-mcpu=’ option. For some ARM
implementations better performance can be obtained by using this option.

-march=name
This specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code.

Chapter 3: GCC Command Options 87

This option can be used in conjunction with or instead of the ‘-mcpu=’ option. Per-
missible names are: ‘armv2’, ‘armv2a’, ‘armv3’, ‘armv3m’, ‘armv4’, ‘armv4t’, ‘armv5’,
‘armv5t’, ‘armv5te’.

-mfpe=number
-mfp=number

This specifies the version of the floating point emulation available on the target.
Permissible values are 2 and 3. ‘-mfp=’ is a synonym for ‘-mfpe=’, for compatibility
with older versions of GCC.

-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the number
of bits set by this option. Permissible values are 8 and 32. The default value varies
for different toolchains. For the COFF targeted toolchain the default value is 8.
Specifying the larger number can produce faster, more efficient code, but can also
increase the size of the program. The two values are potentially incompatible. Code
compiled with one value cannot necessarily expect to work with code or libraries
compiled with the other value, if they exchange information using structures or
unions.

-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It will be
executed if the function tries to return.

-mlong-calls
-mno-long-calls

Tells the compiler to perform function calls by first loading the address of the func-
tion into a register and then performing a subroutine call on this register. This
switch is needed if the target function will lie outside of the 64 megabyte addressing
range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls.
The heuristic is that static functions, functions which have the ‘short-call’ at-
tribute, functions that are inside the scope of a ‘#pragma no_long_calls’ directive
and functions whose definitions have already been compiled within the current com-
pilation unit, will not be turned into long calls. The exception to this rule is that
weak function definitions, functions with the ‘long-call’ attribute or the ‘section’
attribute, and functions that are within the scope of a ‘#pragma long_calls’ direc-
tive, will always be turned into long calls.

This feature is not enabled by default. Specifying ‘-mno-long-calls’ will restore
the default behavior, as will placing the function calls within the scope of a ‘#pragma
long_calls_off’ directive. Note these switches have no effect on how the compiler
generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the dllimport attribute.

-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading it in
the prologue for each function. The run-time system is responsible for initializing
this register with an appropriate value before execution begins.

-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless stack-
checking is enabled, when R9 is used.

88 Using the GNU Compiler Collection (GCC)

-mpoke-function-name
Write the name of each function into the text section, directly preceding the function
prologue. The generated code is similar to this:

t0

.ascii "arm_poke_function_name", 0

.align

t1

.word 0xff000000 + (t1 - t0)

arm_poke_function_name

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

When performing a stack backtrace, code can inspect the value of pc stored at fp
+ 0. If the trace function then looks at location pc - 12 and the top 8 bits are set,
then we know that there is a function name embedded immediately preceding this
location and has length ((pc[-3]) & 0xff000000).

-mthumb Generate code for the 16-bit Thumb instruction set. The default is to use the 32-bit
ARM instruction set.

-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all non-leaf functions. (A leaf function is one that does not call any other
functions.) The default is ‘-mno-tpcs-frame’.

-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard
for all leaf functions. (A leaf function is one that does not call any other functions.)
The default is ‘-mno-apcs-leaf-frame’.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruction
set header which switches to Thumb mode before executing the rest of the function.
This allows these functions to be called from non-interworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute correctly
regardless of whether the target code has been compiled for interworking or not.
There is a small overhead in the cost of executing a function pointer if this option
is enabled.

3.17.6 MN10200 Options

These ‘-m’ options are defined for Matsushita MN10200 architectures:

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to shorten
branches, calls and absolute memory addresses. This option only has an effect when
used on the command line for the final link step.
This option makes symbolic debugging impossible.

3.17.7 MN10300 Options

These ‘-m’ options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300 processors.
This is the default.

Chapter 3: GCC Command Options 89

-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300
processors.

-mam33 Generate code which uses features specific to the AM33 processor.

-mno-am33
Do not generate code which uses features specific to the AM33 processor. This is
the default.

-mno-crt0
Do not link in the C run-time initialization object file.

-mrelax Indicate to the linker that it should perform a relaxation optimization pass to shorten
branches, calls and absolute memory addresses. This option only has an effect when
used on the command line for the final link step.
This option makes symbolic debugging impossible.

3.17.8 M32R/D Options

These ‘-m’ options are defined for Mitsubishi M32R/D architectures:

-m32rx Generate code for the M32R/X.

-m32r Generate code for the M32R. This is the default.

-mcode-model=small
Assume all objects live in the lower 16MB of memory (so that their addresses can
be loaded with the ld24 instruction), and assume all subroutines are reachable with
the bl instruction. This is the default.
The addressability of a particular object can be set with the model attribute.

-mcode-model=medium
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume all subroutines
are reachable with the bl instruction.

-mcode-model=large
Assume objects may be anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and assume subroutines
may not be reachable with the bl instruction (the compiler will generate the much
slower seth/add3/jl instruction sequence).

-msdata=none
Disable use of the small data area. Variables will be put into one of ‘.data’, ‘bss’,
or ‘.rodata’ (unless the section attribute has been specified). This is the default.
The small data area consists of sections ‘.sdata’ and ‘.sbss’. Objects may be
explicitly put in the small data area with the section attribute using one of these
sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate special
code to reference them.

-msdata=use
Put small global and static data in the small data area, and generate special in-
structions to reference them.

90 Using the GNU Compiler Collection (GCC)

-G num Put global and static objects less than or equal to num bytes into the small data or
bss sections instead of the normal data or bss sections. The default value of num
is 8. The ‘-msdata’ option must be set to one of ‘sdata’ or ‘use’ for this option to
have any effect.
All modules should be compiled with the same ‘-G num ’ value. Compiling with
different values of num may or may not work; if it doesn’t the linker will give an
error message—incorrect code will not be generated.

3.17.9 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100 and the m88110.

-m88100 Generate code that works best for the m88100, but that also runs on the m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.

-mbig-pic
Obsolete option to be removed from the next revision. Use ‘-fPIC’.

-midentify-revision
Include an ident directive in the assembler output recording the source file name,
compiler name and version, timestamp, and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an underscore character at
the beginning of each name. The default is to use an underscore as prefix on each
name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in each
stack frame) as specified in the 88open Object Compatibility Standard, “OCS”.
This extra information allows debugging of code that has had the frame pointer
eliminated. The default for SVr4 and Delta 88 SVr3.2 is to include this information;
other 88k configurations omit this information by default.

-mocs-frame-position
When emitting COFF debugging information for automatic variables and parame-
ters stored on the stack, use the offset from the canonical frame address, which is the
stack pointer (register 31) on entry to the function. The SVr4 and Delta88 SVr3.2,
and BCS configurations use ‘-mocs-frame-position’; other 88k configurations have
the default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic variables and parame-
ters stored on the stack, use the offset from the frame pointer register (register 30).
When this option is in effect, the frame pointer is not eliminated when debugging
information is selected by the -g switch.

-moptimize-arg-area
Save space by reorganizing the stack frame. This option generates code that does
not agree with the 88open specifications, but uses less memory.

-mno-optimize-arg-area
Do not reorganize the stack frame to save space. This is the default. The generated
conforms to the specification, but uses more memory.

Chapter 3: GCC Command Options 91

-mshort-data-num
Generate smaller data references by making them relative to r0, which allows loading
a value using a single instruction (rather than the usual two). You control which
data references are affected by specifying num with this option. For example, if you
specify ‘-mshort-data-512’, then the data references affected are those involving
displacements of less than 512 bytes. ‘-mshort-data-num ’ is not effective for num
greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consistency of volatile memory
references. By default, consistency is guaranteed.
The order of memory references made by the MC88110 processor does not always
match the order of the instructions requesting those references. In particular, a
load instruction may execute before a preceding store instruction. Such reorder-
ing violates sequential consistency of volatile memory references, when there are
multiple processors. When consistency must be guaranteed, GCC generates special
instructions, as needed, to force execution in the proper order.
The MC88100 processor does not reorder memory references and so always provides
sequential consistency. However, by default, GCC generates the special instructions
to guarantee consistency even when you use ‘-m88100’, so that the code may be run
on an MC88110 processor. If you intend to run your code only on the MC88100
processor, you may use ‘-mno-serialize-volatile’.
The extra code generated to guarantee consistency may affect the performance of
your application. If you know that you can safely forgo this guarantee, you may use
‘-mno-serialize-volatile’.

-msvr4
-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions related to System V release

4 (SVr4). This controls the following:
1. Which variant of the assembler syntax to emit.
2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma weak’ that is used on

System V release 4.
3. ‘-msvr4’ makes GCC issue additional declaration directives used in SVr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 configuration. ‘-msvr3’ is the
default for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don’t, generate code to guarantee that integer division by zero will be de-
tected. By default, detection is guaranteed.
Some models of the MC88100 processor fail to trap upon integer division by zero
under certain conditions. By default, when compiling code that might be run
on such a processor, GCC generates code that explicitly checks for zero-valued
divisors and traps with exception number 503 when one is detected. Use of
‘-mno-check-zero-division’ suppresses such checking for code generated to run
on an MC88100 processor.
GCC assumes that the MC88110 processor correctly detects all instances of
integer division by zero. When ‘-m88110’ is specified, no explicit checks for

92 Using the GNU Compiler Collection (GCC)

zero-valued divisors are generated, and both ‘-mcheck-zero-division’ and
‘-mno-check-zero-division’ are ignored.

-muse-div-instruction
Use the div instruction for signed integer division on the MC88100 processor. By
default, the div instruction is not used.
On the MC88100 processor the signed integer division instruction div) traps to the
operating system on a negative operand. The operating system transparently com-
pletes the operation, but at a large cost in execution time. By default, when compil-
ing code that might be run on an MC88100 processor, GCC emulates signed integer
division using the unsigned integer division instruction divu), thereby avoiding the
large penalty of a trap to the operating system. Such emulation has its own, smaller,
execution cost in both time and space. To the extent that your code’s important
signed integer division operations are performed on two nonnegative operands, it
may be desirable to use the div instruction directly.
On the MC88110 processor the div instruction (also known as the divs instruc-
tion) processes negative operands without trapping to the operating system. When
‘-m88110’ is specified, ‘-muse-div-instruction’ is ignored, and the div instruction
is used for signed integer division.
Note that the result of dividing INT_MIN by −1 is undefined. In particular, the
behavior of such a division with and without ‘-muse-div-instruction’ may differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts
or emit code to handle them properly. By default GCC makes no special provision
for large bit shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or result. Structure-passing
conventions have changed during the evolution of the C language, and are often the
source of portability problems. By default, GCC issues no such warning.

Chapter 3: GCC Command Options 93

3.17.10 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpc64

GCC supports two related instruction set architectures for the RS/6000 and Pow-
erPC. The POWER instruction set are those instructions supported by the ‘rios’
chip set used in the original RS/6000 systems and the PowerPC instruction set is
the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
the IBM 4xx microprocessors.

Neither architecture is a subset of the other. However there is a large common
subset of instructions supported by both. An MQ register is included in processors
supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GCC. Specifying the ‘-mcpu=cpu_type ’ overrides the specification of these options.
We recommend you use the ‘-mcpu=cpu_type ’ option rather than the options listed
above.

The ‘-mpower’ option allows GCC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2’
implies ‘-power’ and also allows GCC to generate instructions that are present in
the POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc’ option allows GCC to generate instructions that are found only
in the 32-bit subset of the PowerPC architecture. Specifying ‘-mpowerpc-gpopt’
implies ‘-mpowerpc’ and also allows GCC to use the optional PowerPC architecture
instructions in the General Purpose group, including floating-point square root.
Specifying ‘-mpowerpc-gfxopt’ implies ‘-mpowerpc’ and also allows GCC to use
the optional PowerPC architecture instructions in the Graphics group, including
floating-point select.

The ‘-mpowerpc64’ option allows GCC to generate the additional 64-bit instructions
that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit,
doubleword quantities. GCC defaults to ‘-mno-powerpc64’.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GCC will use only the instruc-
tions in the common subset of both architectures plus some special AIX common-
mode calls, and will not use the MQ register. Specifying both ‘-mpower’ and
‘-mpowerpc’ permits GCC to use any instruction from either architecture and to
allow use of the MQ register; specify this for the Motorola MPC601.

94 Using the GNU Compiler Collection (GCC)

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code. With
‘-mnew-mnemonics’, GCC uses the assembler mnemonics defined for the PowerPC
architecture. With ‘-mold-mnemonics’ it uses the assembler mnemonics defined for
the POWER architecture. Instructions defined in only one architecture have only
one mnemonic; GCC uses that mnemonic irrespective of which of these options is
specified.
GCC defaults to the mnemonics appropriate for the architecture in use. Specifying
‘-mcpu=cpu_type ’ sometimes overrides the value of these option. Unless you are
building a cross-compiler, you should normally not specify either ‘-mnew-mnemonics’
or ‘-mold-mnemonics’, but should instead accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction schedul-
ing parameters for machine type cpu type. Supported values for cpu type are ‘401’,
‘403’, ‘405’, ‘405fp’, ‘440’, ‘440fp’, ‘505’, ‘601’, ‘602’, ‘603’, ‘603e’, ‘604’, ‘604e’,
‘620’, ‘630’, ‘740’, ‘7400’, ‘7450’, ‘750’, ‘801’, ‘821’, ‘823’, ‘860’, ‘970’, ‘common’,
‘ec603e’, ‘G3’, ‘G4’, ‘G5’, ‘power’, ‘power2’, ‘power3’, ‘power4’, ‘power5’, ‘powerpc’,
‘powerpc64’, ‘rios’, ‘rios1’, ‘rios2’, ‘rsc’, and ‘rs64a’.
‘-mcpu=common’ selects a completely generic processor. Code generated under this
option will run on any POWER or PowerPC processor. GCC will use only the
instructions in the common subset of both architectures, and will not use the MQ
register. GCC assumes a generic processor model for scheduling purposes.
‘-mcpu=power’, ‘-mcpu=power2’, ‘-mcpu=powerpc’, and ‘-mcpu=powerpc64’ specify
generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601), and 64-bit
PowerPC architecture machine types, with an appropriate, generic processor model
assumed for scheduling purposes.
The other options specify a specific processor. Code generated under those options
will run best on that processor, and may not run at all on others.
The ‘-mcpu’ options automatically enable or disable other ‘-m’ options as follows:

‘common’ ‘-mno-power’, ‘-mno-powerpc’

‘power’
‘power2’
‘rios1’
‘rios2’
‘rsc’ ‘-mpower’, ‘-mno-powerpc’, ‘-mno-new-mnemonics’

‘powerpc’
‘rs64a’
‘602’
‘603’
‘603e’
‘604’
‘620’
‘630’
‘740’
‘7400’
‘7450’
‘750’
‘505’ ‘-mno-power’, ‘-mpowerpc’, ‘-mnew-mnemonics’

Chapter 3: GCC Command Options 95

‘601’ ‘-mpower’, ‘-mpowerpc’, ‘-mnew-mnemonics’

‘403’
‘821’
‘860’ ‘-mno-power’, ‘-mpowerpc’, ‘-mnew-mnemonics’, ‘-msoft-float’

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu type, but do not set
the architecture type, register usage, or choice of mnemonics, as ‘-mcpu=cpu_type ’
would. The same values for cpu type are used for ‘-mtune’ as for ‘-mcpu’. If both
are specified, the code generated will use the architecture, registers, and mnemonics
set by ‘-mcpu’, but the scheduling parameters set by ‘-mtune’.

-maltivec
-mno-altivec

These switches enable or disable the use of built-in functions that allow access to
the AltiVec instruction set. You may also need to set ‘-mabi=altivec’ to adjust
the current ABI with AltiVec ABI enhancements.

-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the default
ABI, instead it adds the SPE ABI extensions to the current ABI.

-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.

-misel=yes/no
-misel This switch enables or disables the generation of ISEL instructions.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc’ option is selected by default. In that case, GCC
will allocate at least one TOC entry for each unique non-automatic variable reference
in your program. GCC will also place floating-point constants in the TOC. However,
only 16,384 entries are available in the TOC.
If you receive a linker error message that saying you have overflowed the avail-
able TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc’ and ‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents
GCC from putting floating-point constants in the TOC and ‘-mno-sum-in-toc’
forces GCC to generate code to calculate the sum of an address and a constant at
run-time instead of putting that sum into the TOC. You may specify one or both
of these options. Each causes GCC to produce very slightly slower and larger code
at the expense of conserving TOC space.
If you still run out of space in the TOC even when you specify both of these options,
specify ‘-mminimal-toc’ instead. This option causes GCC to make only one TOC
entry for every file. When you specify this option, GCC will produce code that is
slower and larger but which uses extremely little TOC space. You may wish to use
this option only on files that contain less frequently executed code.

-maix64
-maix32 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long type,

and the infrastructure needed to support them. Specifying ‘-maix64’ implies
‘-mpowerpc64’ and ‘-mpowerpc’, while ‘-maix32’ disables the 64-bit ABI and implies
‘-mno-powerpc64’. GCC defaults to ‘-maix32’.

96 Using the GNU Compiler Collection (GCC)

-mxl-call
-mno-xl-call

On AIX, pass floating-point arguments to prototyped functions beyond the regis-
ter save area (RSA) on the stack in addition to argument FPRs. The AIX calling
convention was extended but not initially documented to handle an obscure K&R
C case of calling a function that takes the address of its arguments with fewer ar-
guments than declared. AIX XL compilers access floating point arguments which
do not fit in the RSA from the stack when a subroutine is compiled without opti-
mization. Because always storing floating-point arguments on the stack is inefficient
and rarely needed, this option is not enabled by default and only is necessary when
calling subroutines compiled by AIX XL compilers without optimization.

-mpe Support IBM RS/6000 SP Parallel Environment (PE). Link an application written
to use message passing with special startup code to enable the application to run.
The system must have PE installed in the standard location (‘/usr/lpp/ppe.poe/’),
or the ‘specs’ file must be overridden with the ‘-specs=’ option to specify the
appropriate directory location. The Parallel Environment does not support threads,
so the ‘-mpe’ option and the ‘-pthread’ option are incompatible.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point register set. Software
floating point emulation is provided if you use the ‘-msoft-float’ option, and pass
the option to GCC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions and
the store multiple word instructions. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use ‘-mmultiple’
on little endian PowerPC systems, since those instructions do not work when the
processor is in little endian mode. The exceptions are PPC740 and PPC750 which
permit the instructions usage in little endian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instructions and the store
string word instructions to save multiple registers and do small block moves. These
instructions are generated by default on POWER systems, and not generated on
PowerPC systems. Do not use ‘-mstring’ on little endian PowerPC systems, since
those instructions do not work when the processor is in little endian mode. The
exceptions are PPC740 and PPC750 which permit the instructions usage in little
endian mode.

-mupdate
-mno-update

Generate code that uses (does not use) the load or store instructions that update the
base register to the address of the calculated memory location. These instructions
are generated by default. If you use ‘-mno-update’, there is a small window between
the time that the stack pointer is updated and the address of the previous frame
is stored, which means code that walks the stack frame across interrupts or signals
may get corrupted data.

Chapter 3: GCC Command Options 97

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accumulate
instructions. These instructions are generated by default if hardware floating is
used.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do) force structures and
unions that contain bit-fields to be aligned to the base type of the bit-field.
For example, by default a structure containing nothing but 8 unsigned bit-fields of
length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By using
‘-mno-bit-align’, the structure would be aligned to a 1 byte boundary and be one
byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that unaligned
memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow) the pro-
gram to be relocated to a different address at runtime. If you use ‘-mrelocatable’
on any module, all objects linked together must be compiled with ‘-mrelocatable’
or ‘-mrelocatable-lib’.

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled
with ‘-mrelocatable-lib’ can be linked with either modules compiled without
‘-mrelocatable’ and ‘-mrelocatable-lib’ or with modules compiled with the
‘-mrelocatable’ options.

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do) assume that register

2 contains a pointer to a global area pointing to the addresses used in the program.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor in
little endian mode. The ‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor in
big endian mode. The ‘-mbig-endian’ option is the same as ‘-mbig’.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling con-
ventions that adheres to the March 1995 draft of the System V Application Binary
Interface, PowerPC processor supplement. This is the default unless you configured
GCC using ‘powerpc-*-eabiaix’.

-mcall-sysv-eabi
Specify both ‘-mcall-sysv’ and ‘-meabi’ options.

98 Using the GNU Compiler Collection (GCC)

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv’ and ‘-mno-eabi’ options.

-mcall-aix
On System V.4 and embedded PowerPC systems compile code using calling conven-
tions that are similar to those used on AIX. This is the default if you configured
GCC using ‘powerpc-*-eabiaix’.

-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris oper-
ating system.

-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-based
GNU system.

-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-based
GNU system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD
operating system.

-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).

-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI).

-mabi=altivec
Extend the current ABI with AltiVec ABI extensions. This does not change the
default ABI, instead it adds the AltiVec ABI extensions to the current ABI.

-mabi=no-altivec
Disable AltiVec ABI extensions for the current ABI.

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to variable
argument functions are properly prototyped. Otherwise, the compiler must insert an
instruction before every non prototyped call to set or clear bit 6 of the condition code
register (CR) to indicate whether floating point values were passed in the floating
point registers in case the function takes a variable arguments. With ‘-mprototype’,
only calls to prototyped variable argument functions will set or clear the bit.

-msim On embedded PowerPC systems, assume that the startup module is called
‘sim-crt0.o’ and that the standard C libraries are ‘libsim.a’ and ‘libc.a’. This
is the default for ‘powerpc-*-eabisim’. configurations.

-mmvme On embedded PowerPC systems, assume that the startup module is called ‘crt0.o’
and the standard C libraries are ‘libmvme.a’ and ‘libc.a’.

-mads On embedded PowerPC systems, assume that the startup module is called ‘crt0.o’
and the standard C libraries are ‘libads.a’ and ‘libc.a’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called ‘crt0.o’
and the standard C libraries are ‘libyk.a’ and ‘libc.a’.

Chapter 3: GCC Command Options 99

-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling for
a VxWorks system.

-mwindiss
Specify that you are compiling for the WindISS simulation environment.

-memb On embedded PowerPC systems, set the PPC EMB bit in the ELF flags header to
indicate that ‘eabi’ extended relocations are used.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the Em-
bedded Applications Binary Interface (eabi) which is a set of modifications to the
System V.4 specifications. Selecting ‘-meabi’ means that the stack is aligned to an
8 byte boundary, a function __eabi is called to from main to set up the eabi envi-
ronment, and the ‘-msdata’ option can use both r2 and r13 to point to two separate
small data areas. Selecting ‘-mno-eabi’ means that the stack is aligned to a 16 byte
boundary, do not call an initialization function from main, and the ‘-msdata’ option
will only use r13 to point to a single small data area. The ‘-meabi’ option is on by
default if you configured GCC using one of the ‘powerpc*-*-eabi*’ options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const global
and static data in the ‘.sdata2’ section, which is pointed to by register r2. Put small
initialized non-const global and static data in the ‘.sdata’ section, which is pointed
to by register r13. Put small uninitialized global and static data in the ‘.sbss’
section, which is adjacent to the ‘.sdata’ section. The ‘-msdata=eabi’ option is
incompatible with the ‘-mrelocatable’ option. The ‘-msdata=eabi’ option also
sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘.sdata’ section, which is pointed to by register r13. Put small uninitialized
global and static data in the ‘.sbss’ section, which is adjacent to the ‘.sdata’ sec-
tion. The ‘-msdata=sysv’ option is incompatible with the ‘-mrelocatable’ option.

-msdata=default
-msdata On System V.4 and embedded PowerPC systems, if ‘-meabi’ is used, compile code

the same as ‘-msdata=eabi’, otherwise compile code the same as ‘-msdata=sysv’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘.sdata’ section. Put small uninitialized global and static data in the ‘.sbss’
section. Do not use register r13 to address small data however. This is the default
behavior unless other ‘-msdata’ options are used.

-msdata=none
-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in the
‘.data’ section, and all uninitialized data in the ‘.bss’ section.

-G num On embedded PowerPC systems, put global and static items less than or equal to
num bytes into the small data or bss sections instead of the normal data or bss
section. By default, num is 8. The ‘-G num ’ switch is also passed to the linker. All
modules should be compiled with the same ‘-G num ’ value.

100 Using the GNU Compiler Collection (GCC)

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems do (do not) emit register names
in the assembly language output using symbolic forms.

-mlongcall
-mno-longcall

Default to making all function calls via pointers, so that functions which reside
further than 64 megabytes (67,108,864 bytes) from the current location can be called.
This setting can be overridden by the shortcall function attribute, or by #pragma
longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue code on
the fly. On these systems, long calls are unnecessary and generate slower code. As
of this writing, the AIX linker can do this, as can the GNU linker for PowerPC/64.
It is planned to add this feature to the GNU linker for 32-bit PowerPC systems as
well.

In the future, we may cause GCC to ignore all longcall specifications when the linker
is known to generate glue.

-pthread Adds support for multithreading with the pthreads library. This option sets flags
for both the preprocessor and linker.

3.17.11 Darwin Options

These options are defined for all architectures running the Darwin operating system. They are
useful for compatibility with other Mac OS compilers.

-all_load
Loads all members of static archive libraries. See man ld(1) for more information.

-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be fatal.

-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all
undefined references when the file is loaded or launched.

-bundle Produce a Mach-o bundle format file. See man ld(1) for more information.

-bundle_loader executable

This specifies the executable that will be loading the build output file being linked.
See man ld(1) for more information.

Chapter 3: GCC Command Options 101

-allowable_client client_name

-arch_only
-client_name
-compatibility_version
-current_version
-dependency-file
-dylib_file
-dylinker_install_name
-dynamic
-dynamiclib
-exported_symbols_list
-filelist
-flat_namespace
-force_cpusubtype_ALL
-force_flat_namespace
-headerpad_max_install_names
-image_base
-init
-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-nomultidefs
-noprebind
-noseglinkedit
-pagezero_size
-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload
-seg1addr
-sectcreate
-sectobjectsymbols
-sectorder
-seg_addr_table
-seg_addr_table_filename
-seglinkedit
-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static
-sub_library
-sub_umbrella
-twolevel_namespace
-umbrella
-undefined
-unexported_symbols_list
-weak_reference_mismatches
-whatsloaded

This options are available for Darwin linker. Darwin linker man page describes them
in detail.

102 Using the GNU Compiler Collection (GCC)

3.17.12 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the minimum amount of
scratch space recommended by IBM. This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data blocks. This results in
smaller code, but slower execution, since scratch space must be allocated dynami-
cally.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling convention in which float-
ing point arguments are passed in floating point registers. Note that stdarg.h will
not work with floating point operands if this option is specified.

-mfp-arg-in-gregs
Use the normal calling convention for floating point arguments. This is the default.

-mhc-struct-return
Return structures of more than one word in memory, rather than in a register. This
provides compatibility with the MetaWare HighC (hc) compiler. Use the option
‘-fpcc-struct-return’ for compatibility with the Portable C Compiler (pcc).

-mnohc-struct-return
Return some structures of more than one word in registers, when convenient. This
is the default. For compatibility with the IBM-supplied compilers, use the option
‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

3.17.13 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-march=arch
Generate code that will run on arch, which can be the name of a generic MIPS
ISA, or the name of a particular processor. The ISA names are: ‘mips1’, ‘mips2’,
‘mips3’, ‘mips4’, ‘mips32’ and ‘mips64’. The processor names are: ‘r2000’, ‘r3000’,
‘r3900’, ‘r4000’, ‘vr4100’, ‘vr4300’, ‘r4400’, ‘r4600’, ‘r4650’, ‘vr5000’, ‘r6000’,
‘r8000’, ‘4kc’, ‘4kp’, ‘5kc’, ‘20kc’, ‘orion’, and ‘sb1’. The special value ‘from-abi’
selects the most compatible architecture for the selected ABI (that is, ‘mips1’ for
32-bit ABIs and ‘mips3’ for 64-bit ABIs).
In processor names, a final ‘000’ can be abbreviated as ‘k’ (for example,
‘-march=r2k’). Prefixes are optional, and ‘vr’ may be written ‘r’.
GCC defines two macros based on the value of this option. The first is ‘_MIPS_ARCH’,
which gives the name of target architecture, as a string. The second has the form
‘_MIPS_ARCH_foo ’, where foo is the capitalized value of ‘_MIPS_ARCH’. For ex-
ample, ‘-march=r2000’ will set ‘_MIPS_ARCH’ to ‘"r2000"’ and define the macro
‘_MIPS_ARCH_R2000’.

Chapter 3: GCC Command Options 103

Note that the ‘_MIPS_ARCH’ macro uses the processor names given above. In other
words, it will have the full prefix and will not abbreviate ‘000’ as ‘k’. In the
case of ‘from-abi’, the macro names the resolved architecture (either ‘"mips1"’
or ‘"mips3"’). It names the default architecture when no ‘-march’ option is given.

-mtune=arch
Optimize for arch. Among other things, this option controls the way instructions are
scheduled, and the perceived cost of arithmetic operations. The list of arch values
is the same as for ‘-march’.

When this option is not used, GCC will optimize for the processor specified by
‘-march’. By using ‘-march’ and ‘-mtune’ together, it is possible to generate code
that will run on a family of processors, but optimize the code for one particular
member of that family.

‘-mtune’ defines the macros ‘_MIPS_TUNE’ and ‘_MIPS_TUNE_foo ’, which work in
the same way as the ‘-march’ ones described above.

-mips1 Equivalent to ‘-march=mips1’.

-mips2 Equivalent to ‘-march=mips2’.

-mips3 Equivalent to ‘-march=mips3’.

-mips4 Equivalent to ‘-march=mips4’.

-mips32 Equivalent to ‘-march=mips32’.

-mips64 Equivalent to ‘-march=mips64’.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accumulate
instructions, when they are available. These instructions are generated by default if
they are available, but this may be undesirable if the extra precision causes problems
or on certain chips in the mode where denormals are rounded to zero where denor-
mals generated by multiply and accumulate instructions cause exceptions anyway.

-mfp32 Assume that floating point registers are 32 bits wide.

-mfp64 Assume that floating point registers are 64 bits wide.

-mgp32 Assume that general purpose registers are 32 bits wide.

-mgp64 Assume that general purpose registers are 64 bits wide.

-mint64 Force int and long types to be 64 bits wide. See ‘-mlong32’ for an explanation of
the default, and the width of pointers.

-mlong64 Force long types to be 64 bits wide. See ‘-mlong32’ for an explanation of the default,
and the width of pointers.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the supported
ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the 64-bit Cygnus
EABI; the others use 32-bit longs. Pointers are the same size as longs, or the same
size as integer registers, whichever is smaller.

104 Using the GNU Compiler Collection (GCC)

-mabi=32
-mabi=o64
-mabi=n32
-mabi=64
-mabi=eabi
-mabi=meabi

Generate code for the given ABI.

Note that there are two embedded ABIs: ‘-mabi=eabi’ selects the one defined by
Cygnus while ‘-meabi=meabi’ selects the one defined by MIPS. Both these ABIs
have 32-bit and 64-bit variants. Normally, GCC will generate 64-bit code when you
select a 64-bit architecture, but you can use ‘-mgp32’ to get 32-bit code instead.

-mmips-as
Generate code for the MIPS assembler, and invoke ‘mips-tfile’ to add normal
debug information. This is the default for all platforms except for the OSF/1 refer-
ence platform, using the OSF/rose object format. If the either of the ‘-gstabs’ or
‘-gstabs+’ switches are used, the ‘mips-tfile’ program will encapsulate the stabs
within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF/1 reference
platform, using the OSF/rose object format. Also, this is the default if the configure
option ‘--with-gnu-as’ is used.

-msplit-addresses
-mno-split-addresses

Generate code to load the high and low parts of address constants separately. This
allows GCC to optimize away redundant loads of the high order bits of addresses.
This optimization requires GNU as and GNU ld. This optimization is enabled by
default for some embedded targets where GNU as and GNU ld are standard.

-mrnames
-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS software names for the
registers, instead of the hardware names (ie, a0 instead of $4). The only known
assembler that supports this option is the Algorithmics assembler.

-mgpopt
-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations before the instructions
in the text section, this allows the MIPS assembler to generate one word memory
references instead of using two words for short global or static data items. This is
on by default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the ‘-mstats’ switch causes the compiler to
emit one line to the standard error file to print statistics about the program (number
of registers saved, stack size, etc.).

-mmemcpy
-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appropriate string function
(‘memcpy’ or ‘bcopy’) instead of possibly generating inline code.

Chapter 3: GCC Command Options 105

-mmips-tfile
-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not postprocess the object file
with the ‘mips-tfile’ program, after the MIPS assembler has generated it to add
debug support. If ‘mips-tfile’ is not run, then no local variables will be available to
the debugger. In addition, ‘stage2’ and ‘stage3’ objects will have the temporary
file names passed to the assembler embedded in the object file, which means the
objects will not compare the same. The ‘-mno-mips-tfile’ switch should only be
used when there are bugs in the ‘mips-tfile’ program that prevents compilation.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GCC. Normally the facilities of the machine’s usual C com-
piler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

-mhard-float
Generate output containing floating point instructions. This is the default if you
use the unmodified sources.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’, ‘.cpload’, and
‘.cprestore’ that some System V.4 ports use for position independent code.

-mlong-calls
-mno-long-calls

Do all calls with the ‘JALR’ instruction, which requires loading up a function’s ad-
dress into a register before the call. You need to use this switch, if you call outside
of the current 512 megabyte segment to functions that are not through pointers.

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and load them up, rather
than put the references in the text section.

-membedded-pic
-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All calls are made using
PC relative address, and all data is addressed using the $gp register. No more than
65536 bytes of global data may be used. This requires GNU as and GNU ld which
do most of the work. This currently only works on targets which use ECOFF; it
does not work with ELF.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possible, then next in the
small data section if possible, otherwise in data. This gives slightly slower code
than the default, but reduces the amount of RAM required when executing, and
thus may be preferred for some embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

When used together with ‘-membedded-data’, it will always store uninitialized const
variables in the read-only data section.

106 Using the GNU Compiler Collection (GCC)

-msingle-float
-mdouble-float

The ‘-msingle-float’ switch tells gcc to assume that the floating point copro-
cessor only supports single precision operations, as on the ‘r4650’ chip. The
‘-mdouble-float’ switch permits gcc to use double precision operations. This is
the default.

-mmad
-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on the ‘r4650’ chip.

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now, ‘-mcpu=r4650’.

-mips16
-mno-mips16

Enable 16-bit instructions.

-mentry Use the entry and exit pseudo ops. This option can only be used with ‘-mips16’.

-EL Compile code for the processor in little endian mode. The requisite libraries are
assumed to exist.

-EB Compile code for the processor in big endian mode. The requisite libraries are
assumed to exist.

-G num Put global and static items less than or equal to num bytes into the small data or
bss sections instead of the normal data or bss section. This allows the assembler
to emit one word memory reference instructions based on the global pointer (gp or
$28), instead of the normal two words used. By default, num is 8 when the MIPS
assembler is used, and 0 when the GNU assembler is used. The ‘-G num ’ switch is
also passed to the assembler and linker. All modules should be compiled with the
same ‘-G num ’ value.

-nocpp Tell the MIPS assembler to not run its preprocessor over user assembler files (with
a ‘.s’ suffix) when assembling them.

-mfix7000
Pass an option to gas which will cause nops to be inserted if the read of the destina-
tion register of an mfhi or mflo instruction occurs in the following two instructions.

-no-crt0 Do not include the default crt0.

-mflush-func=func
-mno-flush-func

Specifies the function to call to flush the I and D caches, or to not call any such
function. If called, the function must take the same arguments as the common _
flush_func(), that is, the address of the memory range for which the cache is being
flushed, the size of the memory range, and the number 3 (to flush both caches).
The default depends on the target gcc was configured for, but commonly is either
‘_flush_func’ or ‘__cpu_flush’.

-mbranch-likely
-mno-branch-likely

Enable or disable use of Branch Likely instructions, regardless of the default for the
selected architecture. By default, Branch Likely instructions may be generated if
they are supported by the selected architecture. An exception is for the MIPS32 and
MIPS64 architectures and processors which implement those architectures; for those,
Branch Likely instructions will not be generated by default because the MIPS32 and
MIPS64 architectures specifically deprecate their use.

Chapter 3: GCC Command Options 107

3.17.14 Intel 386 and AMD x86-64 Options

These ‘-m’ options are defined for the i386 and x86-64 family of computers:

-mcpu=cpu-type
Tune to cpu-type everything applicable about the generated code, except for the
ABI and the set of available instructions. The choices for cpu-type are:

i386 Original Intel’s i386 CPU.

i486 Intel’s i486 CPU. (No scheduling is implemented for this chip.)

i586, pentium
Intel Pentium CPU with no MMX support.

pentium-mmx
Intel PentiumMMX CPU based on Pentium core with MMX instruction
set support.

i686, pentiumpro
Intel PentiumPro CPU.

pentium2 Intel Pentium2 CPU based on PentiumPro core with MMX instruction
set support.

pentium3, pentium3m
Intel Pentium3 CPU based on PentiumPro core with MMX and SSE
instruction set support.

pentium-m
Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2
instruction set support. Used by Centrino notebooks.

pentium4, pentium4m
Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support.

prescott Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and
SSE3 instruction set support.

nocona Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX,
SSE, SSE2 and SSE3 instruction set support.

k6 AMD K6 CPU with MMX instruction set support.

k6-2, k6-3 Improved versions of AMD K6 CPU with MMX and 3dNOW! instruc-
tion set support.

athlon, athlon-tbird
AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW! and SSE
prefetch instructions support.

athlon-4, athlon-xp, athlon-mp
Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!
and full SSE instruction set support.

k8, opteron, athlon64, athlon-fx
AMD K8 core based CPUs with x86-64 instruction set support. (This
supersets MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW! and 64-bit
instruction set extensions.)

winchip-c6
IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX
instruction set support.

108 Using the GNU Compiler Collection (GCC)

winchip2 IDT Winchip2 CPU, dealt in same way as i486 with additional MMX
and 3dNOW! instruction set support.

c3 Via C3 CPU with MMX and 3dNOW! instruction set support. (No
scheduling is implemented for this chip.)

c3-2 Via C3-2 CPU with MMX and SSE instruction set support. (No
scheduling is implemented for this chip.)

While picking a specific cpu-type will schedule things appropriately for that par-
ticular chip, the compiler will not generate any code that does not run on the i386
without the ‘-march=cpu-type ’ option being used.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type
are the same as for ‘-mcpu’. Moreover, specifying ‘-march=cpu-type ’ implies
‘-mcpu=cpu-type ’.

-m386
-m486
-mpentium
-mpentiumpro

These options are synonyms for ‘-mcpu=i386’, ‘-mcpu=i486’, ‘-mcpu=pentium’, and
‘-mcpu=pentiumpro’ respectively. These synonyms are deprecated.

-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit are:

‘387’ Use the standard 387 floating point coprocessor present majority of
chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed in 80bit
precision instead of precision specified by the type resulting in slightly
different results compared to most of other chips. See ‘-ffloat-store’
for more detailed description.
This is the default choice for i386 compiler.

‘sse’ Use scalar floating point instructions present in the SSE instruction
set. This instruction set is supported by Pentium3 and newer chips, in
the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier
version of SSE instruction set supports only single precision arithmetics,
thus the double and extended precision arithmetics is still done using
387. Later version, present only in Pentium4 and the future AMD x86-
64 chips supports double precision arithmetics too.
For i387 you need to use ‘-march=cpu-type ’, ‘-msse’ or ‘-msse2’
switches to enable SSE extensions and make this option effective. For
x86-64 compiler, these extensions are enabled by default.
The resulting code should be considerably faster in the majority of cases
and avoid the numerical instability problems of 387 code, but may break
some existing code that expects temporaries to be 80bit.
This is the default choice for the x86-64 compiler.

‘sse,387’ Attempt to utilize both instruction sets at once. This effectively double
the amount of available registers and on chips with separate execution
units for 387 and SSE the execution resources too. Use this option with
care, as it is still experimental, because the gcc register allocator does
not model separate functional units well.

Chapter 3: GCC Command Options 109

-masm=dialect
Output asm instructions using selected dialect. Supported choices are ‘intel’ or
‘att’ (the default one).

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point comparisons. These
handle correctly the case where the result of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GCC. Normally the facilities of the machine’s usual C com-
piler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.
On machines where a function returns floating point results in the 80387 register
stack, some floating point opcodes may be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types float and double
in an FPU register, even if there is no FPU. The idea is that the operating system
should emulate an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary
CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the 387.
Specify this option to avoid generating those instructions. This option is the default
on FreeBSD, OpenBSD and NetBSD. This option is overridden when ‘-march’
indicates that the target cpu will always have an FPU and so the instruction will
not need emulation. As of revision 2.6.1, these instructions are not generated unless
you also use the ‘-funsafe-math-optimizations’ switch.

-malign-double
-mno-align-double

Control whether GCC aligns double, long double, and long long variables on a
two word boundary or a one word boundary. Aligning double variables on a two
word boundary will produce code that runs somewhat faster on a ‘Pentium’ at the
expense of more memory.
Warning: if you use the ‘-malign-double’ switch, structures containing the above
types will be aligned differently than the published application binary interface
specifications for the 386 and will not be binary compatible with structures in code
compiled without that switch.

-m96bit-long-double
-m128bit-long-double

These switches control the size of long double type. The i386 application binary
interface specifies the size to be 96 bits, so ‘-m96bit-long-double’ is the default in
32 bit mode.
Modern architectures (Pentium and newer) would prefer long double to be aligned
to an 8 or 16 byte boundary. In arrays or structures conforming to the ABI, this
would not be possible. So specifying a ‘-m128bit-long-double’ will align long
double to a 16 byte boundary by padding the long double with an additional 32
bit zero.

110 Using the GNU Compiler Collection (GCC)

In the x86-64 compiler, ‘-m128bit-long-double’ is the default choice as its ABI
specifies that long double is to be aligned on 16 byte boundary.
Notice that neither of these options enable any extra precision over the x87 standard
of 80 bits for a long double.
Warning: if you override the default value for your target ABI, the structures and
arrays containing long double variables will change their size as well as function
calling convention for function taking long double will be modified. Hence they
will not be binary compatible with arrays or structures in code compiled without
that switch.

-msvr3-shlib
-mno-svr3-shlib

Control whether GCC places uninitialized local variables into the bss or data seg-
ments. ‘-msvr3-shlib’ places them into bss. These options are meaningful only
on System V Release 3.

-mrtd Use a different function-calling convention, in which functions that take a fixed num-
ber of arguments return with the ret num instruction, which pops their arguments
while returning. This saves one instruction in the caller since there is no need to
pop the arguments there.
You can specify that an individual function is called with this calling sequence with
the function attribute ‘stdcall’. You can also override the ‘-mrtd’ option by using
the function attribute ‘cdecl’. See Section 5.25 [Function Attributes], page 169.
Warning: this calling convention is incompatible with the one normally used on
Unix, so you cannot use it if you need to call libraries compiled with the Unix
compiler.
Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no
registers are used to pass arguments, and at most 3 registers can be used. You
can control this behavior for a specific function by using the function attribute
‘regparm’. See Section 5.25 [Function Attributes], page 169.
Warning: if you use this switch, and num is nonzero, then you must build all modules
with the same value, including any libraries. This includes the system libraries and
startup modules.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary.
If ‘-mpreferred-stack-boundary’ is not specified, the default is 4 (16 bytes or 128
bits), except when optimizing for code size (‘-Os’), in which case the default is the
minimum correct alignment (4 bytes for x86, and 8 bytes for x86-64).
On Pentium and PentiumPro, double and long double values should be aligned
to an 8 byte boundary (see ‘-malign-double’) or suffer significant run time perfor-
mance penalties. On Pentium III, the Streaming SIMD Extension (SSE) data type
__m128 suffers similar penalties if it is not 16 byte aligned.
To ensure proper alignment of this values on the stack, the stack boundary must
be as aligned as that required by any value stored on the stack. Further, every

Chapter 3: GCC Command Options 111

function must be generated such that it keeps the stack aligned. Thus calling a
function compiled with a higher preferred stack boundary from a function compiled
with a lower preferred stack boundary will most likely misalign the stack. It is
recommended that libraries that use callbacks always use the default setting.
This extra alignment does consume extra stack space, and generally increases
code size. Code that is sensitive to stack space usage, such as embedded sys-
tems and operating system kernels, may want to reduce the preferred alignment
to ‘-mpreferred-stack-boundary=2’.

-mmmx
-mno-mmx

-msse
-mno-sse

-msse2
-mno-sse2
-msse3
-mno-sse3
-m3dnow
-mno-3dnow

These switches enable or disable the use of built-in functions that allow direct access
to the MMX, SSE, SSE2, SSE3 and 3Dnow extensions of the instruction set.
See Section 5.45.2 [X86 Built-in Functions], page 219, for details of the functions
enabled and disabled by these switches.
To have SSE/SSE2 instructions generated automatically from floating-point code,
see ‘-mfpmath=sse’.

-mpush-args
-mno-push-args

Use PUSH operations to store outgoing parameters. This method is shorter and
usually equally fast as method using SUB/MOV operations and is enabled by de-
fault. In some cases disabling it may improve performance because of improved
scheduling and reduced dependencies.

-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will be
computed in the function prologue. This is faster on most modern CPUs because of
reduced dependencies, improved scheduling and reduced stack usage when preferred
stack boundary is not equal to 2. The drawback is a notable increase in code size.
This switch implies ‘-mno-push-args’.

-mthreads
Support thread-safe exception handling on ‘Mingw32’. Code that relies on thread-
safe exception handling must compile and link all code with the ‘-mthreads’ option.
When compiling, ‘-mthreads’ defines ‘-D_MT’; when linking, it links in a special
thread helper library ‘-lmingwthrd’ which cleans up per thread exception handling
data.

-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code size
and improves performance in case the destination is already aligned, but gcc don’t
know about it.

-minline-all-stringops
By default GCC inlines string operations only when destination is known to be
aligned at least to 4 byte boundary. This enables more inlining, increase code size,

112 Using the GNU Compiler Collection (GCC)

but may improve performance of code that depends on fast memcpy, strlen and
memset for short lengths.

-momit-leaf-frame-pointer
Don’t keep the frame pointer in a register for leaf functions. This avoids the in-
structions to save, set up and restore frame pointers and makes an extra register
available in leaf functions. The option ‘-fomit-frame-pointer’ removes the frame
pointer for all functions which might make debugging harder.

These ‘-m’ switches are supported in addition to the above on AMD x86-64 processors in
64-bit environments.

-m32
-m64 Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int,

long and pointer to 32 bits and generates code that runs on any i386 system. The
64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates
code for AMD’s x86-64 architecture.

-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by
the x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that
will not be modified by signal or interrupt handlers and therefore can be used for
temporary data without adjusting the stack pointer. The flag ‘-mno-red-zone’
disables this red zone.

-mcmodel=small
Generate code for the small code model: the program and its symbols must be
linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs can
be statically or dynamically linked. This is the default code model.

-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB of
the address space. This model has to be used for Linux kernel code. In order to
match ABI used in Linux kernel, ‘-mno-red-zone’ is implied.

-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2 GB
of the address space but symbols can be located anywhere in the address space.
Programs can be statically or dynamically linked, but building of shared libraries
are not supported with the medium model.

-mcmodel=large
Generate code for the large model: This model makes no assumptions about ad-
dresses and sizes of sections. Currently GCC does not implement this model.

3.17.15 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type
are ‘1.0’ for PA 1.0, ‘1.1’ for PA 1.1, and ‘2.0’ for PA 2.0 processors. Refer to
‘/usr/lib/sched.models’ on an HP-UX system to determine the proper architec-
ture option for your machine. Code compiled for lower numbered architectures will
run on higher numbered architectures, but not the other way around.
PA 2.0 support currently requires gas snapshot 19990413 or later. The next release
of binutils (current is 2.9.1) will probably contain PA 2.0 support.

Chapter 3: GCC Command Options 113

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0

Synonyms for ‘-march=1.0’, ‘-march=1.1’, and ‘-march=2.0’ respectively.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modifying
the return pointer for the function call to be the target of the conditional jump.

-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is necessary for
compiling kernels which perform lazy context switching of floating point registers. If
you use this option and attempt to perform floating point operations, the compiler
will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some rather
obscure problems when compiling MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC to
generate faster indirect calls and use unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows GCC
to emit code which performs faster indirect calls.
This option will not work in the presence of shared libraries or nested functions.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the HP-
UX 10 linker. This is equivalent to the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.

-mgas Enable the use of assembler directives only GAS understands.

-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The
choices for cpu-type are ‘700’ ‘7100’, ‘7100LC’, ‘7200’, ‘7300’ and ‘8000’. Refer to
‘/usr/lib/sched.models’ on an HP-UX system to determine the proper scheduling
option for your machine. The default scheduling is ‘8000’.

-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic de-
bugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9 linkers in
which they give bogus error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point. Warning: the requi-
site libraries are not available for all HPPA targets. Normally the facilities of the
machine’s usual C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to provide suitable library

114 Using the GNU Compiler Collection (GCC)

functions for cross-compilation. The embedded target ‘hppa1.1-*-pro’ does pro-
vide software floating point support.
‘-msoft-float’ changes the calling convention in the output file; therefore, it is
only useful if you compile all of a program with this option. In particular, you need
to compile ‘libgcc.a’, the library that comes with GCC, with ‘-msoft-float’ in
order for this to work.

-msio Generate the predefine, _SIO, for server IO. The default is ‘-mwsio’. This generates
the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for workstation IO.
These options are available under HP-UX and HI-UX.

-mgnu-ld Use GNU ld specific options. This passes ‘-shared’ to ld when building a shared
library. It is the default when GCC is configured, explicitly or implicitly, with the
GNU linker. This option does not have any affect on which ld is called, it only
changes what parameters are passed to that ld. The ld that is called is deter-
mined by the ‘--with-ld’ configure option, gcc’s program search path, and finally
by the user’s PATH. The linker used by GCC can be printed using ‘which ‘gcc
-print-prog-name=ld‘’.

-mhp-ld Use HP ld specific options. This passes ‘-b’ to ld when building a shared library
and passes ‘+Accept TypeMismatch’ to ld on all links. It is the default when GCC
is configured, explicitly or implicitly, with the HP linker. This option does not have
any affect on which ld is called, it only changes what parameters are passed to that
ld. The ld that is called is determined by the ‘--with-ld’ configure option, gcc’s
program search path, and finally by the user’s PATH. The linker used by GCC can
be printed using ‘which ‘gcc -print-prog-name=ld‘’.

-mlong-calls
Generate code that uses long call sequences. This ensures that a call is always able
to reach linker generated stubs. The default is to generate long calls only when the
distance from the call site to the beginning of the function or translation unit, as
the case may be, exceeds a predefined limit set by the branch type being used. The
limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the PA 2.0
and PA 1.X architectures. Sibcalls are always limited at 240,000 bytes.
Distances are measured from the beginning of functions when using
the ‘-ffunction-sections’ option, or when using the ‘-mgas’ and
‘-mno-portable-runtime’ options together under HP-UX with the SOM linker.
It is normally not desirable to use this option as it will degrade performance. How-
ever, it may be useful in large applications, particularly when partial linking is used
to build the application.
The types of long calls used depends on the capabilities of the assembler and linker,
and the type of code being generated. The impact on systems that support long
absolute calls, and long pic symbol-difference or pc-relative calls should be relatively
small. However, an indirect call is used on 32-bit ELF systems in pic code and it is
quite long.

-nolibdld
Suppress the generation of link options to search libdld.sl when the ‘-static’ option
is specified on HP-UX 10 and later.

-static The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There
isn’t an archive version of libdld.sl. Thus, when the ‘-static’ option is specified,
special link options are needed to resolve this dependency.
On HP-UX 10 and later, the GCC driver adds the necessary options to link with
libdld.sl when the ‘-static’ option is specified. This causes the resulting binary to

Chapter 3: GCC Command Options 115

be dynamic. On the 64-bit port, the linkers generate dynamic binaries by default
in any case. The ‘-nolibdld’ option can be used to prevent the GCC driver from
adding these link options.

-threads Add support for multithreading with the dce thread library under HP-UX. This
option sets flags for both the preprocessor and linker.

3.17.16 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu-type
Assume the defaults for the machine type cpu-type for some of the other options,
including instruction scheduling, floating point support, and addressing modes. The
choices for cpu-type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is ‘kb’.

-mnumerics
-msoft-float

The ‘-mnumerics’ option indicates that the processor does support floating-point in-
structions. The ‘-msoft-float’ option indicates that floating-point support should
not be assumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction
as well as call. This will result in more efficient code for explicit calls when the
bal instruction can be substituted by the assembler or linker, but less efficient code
in other cases, such as calls via function pointers, or using a linker that doesn’t
support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the machine-independent
portions of the compiler) to optimize tail-recursive calls into branches. You may not
want to do this because the detection of cases where this is not valid is not totally
complete. The default is ‘-mno-tail-call’.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win on
this implementation of the i960. Complex addressing modes may not be worthwhile
on the K-series, but they definitely are on the C-series. The default is currently
‘-mcomplex-addr’ for all processors except the CB and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently
turned on by default for C-series implementations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

116 Using the GNU Compiler Collection (GCC)

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc release version 1.3 (based
on gcc 1.37). This option implies ‘-mstrict-align’.

-mlong-double-64
Implement type ‘long double’ as 64-bit floating point numbers. Without the option
‘long double’ is implemented by 80-bit floating point numbers. The only reason we
have it because there is no 128-bit ‘long double’ support in ‘fp-bit.c’ yet. So it
is only useful for people using soft-float targets. Otherwise, we should recommend
against use of it.

3.17.17 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point opera-
tions. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be used to
perform floating-point operations. Unless they are replaced by routines that emulate
the floating-point operations, or compiled in such a way as to call such emulations
routines, these routines will issue floating-point operations. If you are compiling
for an Alpha without floating-point operations, you must ensure that the library is
built so as not to call them.
Note that Alpha implementations without floating-point operations are required to
have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point register set.
‘-mno-fp-regs’ implies ‘-msoft-float’. If the floating-point register set is not
used, floating point operands are passed in integer registers as if they were integers
and floating-point results are passed in $0 instead of $f0. This is a non-standard
calling sequence, so any function with a floating-point argument or return value
called by code compiled with ‘-mno-fp-regs’ must also be compiled with that
option.
A typical use of this option is building a kernel that does not use, and hence need
not save and restore, any floating-point registers.

-mieee The Alpha architecture implements floating-point hardware optimized for maximum
performance. It is mostly compliant with the IEEE floating point standard. How-
ever, for full compliance, software assistance is required. This option generates code
fully IEEE compliant code except that the inexact-flag is not maintained (see be-
low). If this option is turned on, the preprocessor macro _IEEE_FP is defined during
compilation. The resulting code is less efficient but is able to correctly support denor-
malized numbers and exceptional IEEE values such as not-a-number and plus/minus
infinity. Other Alpha compilers call this option ‘-ieee_with_no_inexact’.

-mieee-with-inexact
This is like ‘-mieee’ except the generated code also maintains the IEEE inexact-flag.
Turning on this option causes the generated code to implement fully-compliant IEEE

Chapter 3: GCC Command Options 117

math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as a preprocessor macro.
On some Alpha implementations the resulting code may execute significantly slower
than the code generated by default. Since there is very little code that depends on
the inexact-flag, you should normally not specify this option. Other Alpha compilers
call this option ‘-ieee_with_inexact’.

-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha
compilers call this option ‘-fptm trap-mode ’. The trap mode can be set to one of
four values:

‘n’ This is the default (normal) setting. The only traps that are enabled
are the ones that cannot be disabled in software (e.g., division by zero
trap).

‘u’ In addition to the traps enabled by ‘n’, underflow traps are enabled as
well.

‘su’ Like ‘su’, but the instructions are marked to be safe for software com-
pletion (see Alpha architecture manual for details).

‘sui’ Like ‘su’, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option ‘-fprm
rounding-mode ’. The rounding-mode can be one of:

‘n’ Normal IEEE rounding mode. Floating point numbers are rounded to-
wards the nearest machine number or towards the even machine number
in case of a tie.

‘m’ Round towards minus infinity.

‘c’ Chopped rounding mode. Floating point numbers are rounded towards
zero.

‘d’ Dynamic rounding mode. A field in the floating point control register
(fpcr, see Alpha architecture reference manual) controls the rounding
mode in effect. The C library initializes this register for rounding to-
wards plus infinity. Thus, unless your program modifies the fpcr, ‘d’
corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means without
software assistance it is impossible to recover from a floating trap and program
execution normally needs to be terminated. GCC can generate code that can assist
operating system trap handlers in determining the exact location that caused a
floating point trap. Depending on the requirements of an application, different
levels of precisions can be selected:

‘p’ Program precision. This option is the default and means a trap handler
can only identify which program caused a floating point exception.

‘f’ Function precision. The trap handler can determine the function that
caused a floating point exception.

‘i’ Instruction precision. The trap handler can determine the exact in-
struction that caused a floating point exception.

Other Alpha compilers provide the equivalent options called ‘-scope_safe’ and
‘-resumption_safe’.

118 Using the GNU Compiler Collection (GCC)

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not
use this option unless you also specify ‘-mtrap-precision=i’ and either
‘-mfp-trap-mode=su’ or ‘-mfp-trap-mode=sui’. Its only effect is to emit the line
‘.eflag 48’ in the function prologue of the generated assembly file. Under DEC
Unix, this has the effect that IEEE-conformant math library routines will be linked
in.

-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct it
from smaller constants in two or three instructions. If it cannot, it will output the
constant as a literal and generate code to load it from the data segment at runtime.
Use this option to require GCC to construct all integer constants using code, even
if it takes more instructions (the maximum is six).
You would typically use this option to build a shared library dynamic loader. Itself
a shared library, it must relocate itself in memory before it can find the variables
and constants in its own data segment.

-malpha-as
-mgas Select whether to generate code to be assembled by the vendor-supplied assembler

(‘-malpha-as’) or by the GNU assembler ‘-mgas’.

-mbwx
-mno-bwx
-mcix
-mno-cix
-mfix
-mno-fix
-mmax
-mno-max Indicate whether GCC should generate code to use the optional BWX, CIX, FIX

and MAX instruction sets. The default is to use the instruction sets supported by
the CPU type specified via ‘-mcpu=’ option or that of the CPU on which GCC was
built if none was specified.

-mfloat-vax
-mfloat-ieee

Generate code that uses (does not use) VAX F and G floating point arithmetic
instead of IEEE single and double precision.

-mexplicit-relocs
-mno-explicit-relocs

Older Alpha assemblers provided no way to generate symbol relocations except via
assembler macros. Use of these macros does not allow optimal instruction schedul-
ing. GNU binutils as of version 2.12 supports a new syntax that allows the compiler
to explicitly mark which relocations should apply to which instructions. This op-
tion is mostly useful for debugging, as GCC detects the capabilities of the assembler
when it is built and sets the default accordingly.

-msmall-data
-mlarge-data

When ‘-mexplicit-relocs’ is in effect, static data is accessed via gp-relative relo-
cations. When ‘-msmall-data’ is used, objects 8 bytes long or smaller are placed
in a small data area (the .sdata and .sbss sections) and are accessed via 16-bit
relocations off of the $gp register. This limits the size of the small data area to
64KB, but allows the variables to be directly accessed via a single instruction.

Chapter 3: GCC Command Options 119

The default is ‘-mlarge-data’. With this option the data area is limited to just
below 2GB. Programs that require more than 2GB of data must use malloc or mmap
to allocate the data in the heap instead of in the program’s data segment.

When generating code for shared libraries, ‘-fpic’ implies ‘-msmall-data’ and
‘-fPIC’ implies ‘-mlarge-data’.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type
cpu type. You can specify either the ‘EV’ style name or the corresponding chip
number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family
of processors and will choose the default values for the instruction set from the pro-
cessor you specify. If you do not specify a processor type, GCC will default to the
processor on which the compiler was built.

Supported values for cpu type are

‘ev4’
‘ev45’
‘21064’ Schedules as an EV4 and has no instruction set extensions.

‘ev5’
‘21164’ Schedules as an EV5 and has no instruction set extensions.

‘ev56’
‘21164a’ Schedules as an EV5 and supports the BWX extension.

‘pca56’
‘21164pc’
‘21164PC’ Schedules as an EV5 and supports the BWX and MAX extensions.

‘ev6’
‘21264’ Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.

‘ev67’
‘21264a’ Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX

extensions.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu type. The
instruction set is not changed.

-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references as seen
by the application. This number is highly dependent on the memory access patterns
used by the application and the size of the external cache on the machine.

Valid options for time are

‘number ’ A decimal number representing clock cycles.

‘L1’
‘L2’
‘L3’
‘main’ The compiler contains estimates of the number of clock cycles for “typ-

ical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called
Dcache, Scache, and Bcache), as well as to main memory. Note that L3
is only valid for EV5.

120 Using the GNU Compiler Collection (GCC)

3.17.18 DEC Alpha/VMS Options

These ‘-m’ options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX style
condition (e.g. error) codes.

3.17.19 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possible; uses the linker option
‘-relax’. See section “ld and the H8/300” in Using ld, for a fuller description.

-mh Generate code for the H8/300H.

-ms Generate code for the H8S.

-mn Generate code for the H8S and H8/300H in the normal mode. This switch must be
used either with -mh or -ms.

-ms2600 Generate code for the H8S/2600. This switch must be used with ‘-ms’.

-mint32 Make int data 32 bits by default.

-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300. The
default for the H8/300H and H8S is to align longs and floats on 4 byte boundaries.
‘-malign-300’ causes them to be aligned on 2 byte boundaries. This option has no
effect on the H8/300.

3.17.20 SH Options

These ‘-m’ options are defined for the SH implementations:

-m1 Generate code for the SH1.

-m2 Generate code for the SH2.

-m3 Generate code for the SH3.

-m3e Generate code for the SH3e.

-m4-nofpu
Generate code for the SH4 without a floating-point unit.

-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-
precision arithmetic.

-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision
mode by default.

-m4 Generate code for the SH4.

-mb Compile code for the processor in big endian mode.

-ml Compile code for the processor in little endian mode.

Chapter 3: GCC Command Options 121

-mdalign Align doubles at 64-bit boundaries. Note that this changes the calling conventions,
and thus some functions from the standard C library will not work unless you
recompile it first with ‘-mdalign’.

-mrelax Shorten some address references at link time, when possible; uses the linker option
‘-relax’.

-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mfmovd Enable the use of the instruction fmovd.

-mhitachi
Comply with the calling conventions defined by Renesas.

-mnomacsave
Mark the MAC register as call-clobbered, even if ‘-mhitachi’ is given.

-mieee Increase IEEE-compliance of floating-point code.

-misize Dump instruction size and location in the assembly code.

-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is incom-
patible with the SH ABI.

-mspace Optimize for space instead of speed. Implied by ‘-Os’.

-mprefergot
When generating position-independent code, emit function calls using the Global
Offset Table instead of the Procedure Linkage Table.

-musermode
Generate a library function call to invalidate instruction cache entries, after fixing
up a trampoline. This library function call doesn’t assume it can write to the whole
memory address space. This is the default when the target is sh-*-linux*.

3.17.21 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-G Create a shared object. It is recommended that ‘-symbolic’ or ‘-shared’ be used
instead.

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler di-
rective in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this
option.

3.17.22 TMS320C3x/C4x Options

These ‘-m’ options are defined for TMS320C3x/C4x implementations:

122 Using the GNU Compiler Collection (GCC)

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for ma-
chine type cpu type. Supported values for cpu type are ‘c30’, ‘c31’, ‘c32’, ‘c40’,
and ‘c44’. The default is ‘c40’ to generate code for the TMS320C40.

-mbig-memory
-mbig
-msmall-memory
-msmall Generates code for the big or small memory model. The small memory model

assumed that all data fits into one 64K word page. At run-time the data page (DP)
register must be set to point to the 64K page containing the .bss and .data program
sections. The big memory model is the default and requires reloading of the DP
register for every direct memory access.

-mbk
-mno-bk Allow (disallow) allocation of general integer operands into the block count register

BK.

-mdb
-mno-db Enable (disable) generation of code using decrement and branch, DBcond(D), in-

structions. This is enabled by default for the C4x. To be on the safe side, this is
disabled for the C3x, since the maximum iteration count on the C3x is 223 + 1 (but
who iterates loops more than 223 times on the C3x?). Note that GCC will try to
reverse a loop so that it can utilize the decrement and branch instruction, but will
give up if there is more than one memory reference in the loop. Thus a loop where
the loop counter is decremented can generate slightly more efficient code, in cases
where the RPTB instruction cannot be utilized.

-mdp-isr-reload
-mparanoid

Force the DP register to be saved on entry to an interrupt service routine (ISR),
reloaded to point to the data section, and restored on exit from the ISR. This should
not be required unless someone has violated the small memory model by modifying
the DP register, say within an object library.

-mmpyi
-mno-mpyi

For the C3x use the 24-bit MPYI instruction for integer multiplies instead of a library
call to guarantee 32-bit results. Note that if one of the operands is a constant, then
the multiplication will be performed using shifts and adds. If the ‘-mmpyi’ option is
not specified for the C3x, then squaring operations are performed inline instead of
a library call.

-mfast-fix
-mno-fast-fix

The C3x/C4x FIX instruction to convert a floating point value to an integer value
chooses the nearest integer less than or equal to the floating point value rather than
to the nearest integer. Thus if the floating point number is negative, the result will
be incorrectly truncated an additional code is necessary to detect and correct this
case. This option can be used to disable generation of the additional code required
to correct the result.

-mrptb
-mno-rptb

Enable (disable) generation of repeat block sequences using the RPTB instruction
for zero overhead looping. The RPTB construct is only used for innermost loops

Chapter 3: GCC Command Options 123

that do not call functions or jump across the loop boundaries. There is no advantage
having nested RPTB loops due to the overhead required to save and restore the RC,
RS, and RE registers. This is enabled by default with ‘-O2’.

-mrpts=count
-mno-rpts

Enable (disable) the use of the single instruction repeat instruction RPTS. If a
repeat block contains a single instruction, and the loop count can be guaranteed to
be less than the value count, GCC will emit a RPTS instruction instead of a RPTB.
If no value is specified, then a RPTS will be emitted even if the loop count cannot
be determined at compile time. Note that the repeated instruction following RPTS
does not have to be reloaded from memory each iteration, thus freeing up the CPU
buses for operands. However, since interrupts are blocked by this instruction, it is
disabled by default.

-mloop-unsigned
-mno-loop-unsigned

The maximum iteration count when using RPTS and RPTB (and DB on the C40)
is 231 + 1 since these instructions test if the iteration count is negative to terminate
the loop. If the iteration count is unsigned there is a possibility than the 231 + 1
maximum iteration count may be exceeded. This switch allows an unsigned iteration
count.

-mti Try to emit an assembler syntax that the TI assembler (asm30) is happy with. This
also enforces compatibility with the API employed by the TI C3x C compiler. For
example, long doubles are passed as structures rather than in floating point registers.

-mregparm
-mmemparm

Generate code that uses registers (stack) for passing arguments to functions. By
default, arguments are passed in registers where possible rather than by pushing
arguments on to the stack.

-mparallel-insns
-mno-parallel-insns

Allow the generation of parallel instructions. This is enabled by default with ‘-O2’.

-mparallel-mpy
-mno-parallel-mpy

Allow the generation of MPY||ADD and MPY||SUB parallel instructions, pro-
vided ‘-mparallel-insns’ is also specified. These instructions have tight register
constraints which can pessimize the code generation of large functions.

3.17.23 V850 Options

These ‘-m’ options are defined for V850 implementations:

-mlong-calls
-mno-long-calls

Treat all calls as being far away (near). If calls are assumed to be far away, the
compiler will always load the functions address up into a register, and call indirect
through the pointer.

-mno-ep
-mep Do not optimize (do optimize) basic blocks that use the same index pointer 4 or

more times to copy pointer into the ep register, and use the shorter sld and sst
instructions. The ‘-mep’ option is on by default if you optimize.

124 Using the GNU Compiler Collection (GCC)

-mno-prolog-function
-mprolog-function

Do not use (do use) external functions to save and restore registers at the pro-
logue and epilogue of a function. The external functions are slower, but use less
code space if more than one function saves the same number of registers. The
‘-mprolog-function’ option is on by default if you optimize.

-mspace Try to make the code as small as possible. At present, this just turns on the ‘-mep’
and ‘-mprolog-function’ options.

-mtda=n Put static or global variables whose size is n bytes or less into the tiny data area
that register ep points to. The tiny data area can hold up to 256 bytes in total (128
bytes for byte references).

-msda=n Put static or global variables whose size is n bytes or less into the small data area
that register gp points to. The small data area can hold up to 64 kilobytes.

-mzda=n Put static or global variables whose size is n bytes or less into the first 32 kilobytes
of memory.

-mv850 Specify that the target processor is the V850.

-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assem-
bler/linker complain about out of range branches within a switch table.

-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler.
This setting is the default.

-mno-app-regs
This option will cause r2 and r5 to be treated as fixed registers.

-mv850e Specify that the target processor is the V850E. The preprocessor constant
‘__v850e__’ will be defined if this option is used.
If neither ‘-mv850’ nor ‘-mv850e’ are defined then a default target processor will be
chosen and the relevant ‘__v850*__’ preprocessor constant will be defined.
The preprocessor constants ‘__v850’ and ‘__v851__’ are always defined, regardless
of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e flavors
of the v850 architecture. The default is ‘-mno-disable-callt’ which allows the
CALLT instruction to be used.

3.17.24 ARC Options

These options are defined for ARC implementations:

-EL Compile code for little endian mode. This is the default.

-EB Compile code for big endian mode.

-mmangle-cpu
Prepend the name of the cpu to all public symbol names. In multiple-processor
systems, there are many ARC variants with different instruction and register set
characteristics. This flag prevents code compiled for one cpu to be linked with
code compiled for another. No facility exists for handling variants that are “almost
identical”. This is an all or nothing option.

Chapter 3: GCC Command Options 125

-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on the
configuration. All variants support ‘-mcpu=base’, this is the default.

-mtext=text-section
-mdata=data-section
-mrodata=readonly-data-section

Put functions, data, and readonly data in text-section, data-section, and readonly-
data-section respectively by default. This can be overridden with the section at-
tribute. See Section 5.32 [Variable Attributes], page 181.

3.17.25 NS32K Options

These are the ‘-m’ options defined for the 32000 series. The default values for these options
depends on which style of 32000 was selected when the compiler was configured; the defaults for
the most common choices are given below.

-m32032
-m32032 Generate output for a 32032. This is the default when the compiler is configured

for 32032 and 32016 based systems.

-m32332
-m32332 Generate output for a 32332. This is the default when the compiler is configured

for 32332-based systems.

-m32532
-m32532 Generate output for a 32532. This is the default when the compiler is configured

for 32532-based systems.

-m32081 Generate output containing 32081 instructions for floating point. This is the default
for all systems.

-m32381 Generate output containing 32381 instructions for floating point. This also implies
‘-m32081’. The 32381 is only compatible with the 32332 and 32532 cpus. This is
the default for the pc532-netbsd configuration.

-mmulti-add
Try and generate multiply-add floating point instructions polyF and dotF. This
option is only available if the ‘-m32381’ option is in effect. Using these instructions
requires changes to register allocation which generally has a negative impact on
performance. This option should only be enabled when compiling code particularly
likely to make heavy use of multiply-add instructions.

-mnomulti-add
Do not try and generate multiply-add floating point instructions polyF and dotF.
This is the default on all platforms.

-msoft-float
Generate output containing library calls for floating point. Warning: the requisite
libraries may not be available.

-mieee-compare
-mno-ieee-compare

Control whether or not the compiler uses IEEE floating point comparisons. These
handle correctly the case where the result of a comparison is unordered. Warning:
the requisite kernel support may not be available.

126 Using the GNU Compiler Collection (GCC)

-mnobitfield
Do not use the bit-field instructions. On some machines it is faster to use shifting
and masking operations. This is the default for the pc532.

-mbitfield
Do use the bit-field instructions. This is the default for all platforms except the
pc532.

-mrtd Use a different function-calling convention, in which functions that take a fixed
number of arguments return pop their arguments on return with the ret instruction.
This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that take variable num-
bers of arguments (including printf); otherwise incorrect code will be generated
for calls to those functions.
In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)
This option takes its name from the 680x0 rtd instruction.

-mregparam
Use a different function-calling convention where the first two arguments are passed
in registers.
This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.

-mnoregparam
Do not pass any arguments in registers. This is the default for all targets.

-msb It is OK to use the sb as an index register which is always loaded with zero. This
is the default for the pc532-netbsd target.

-mnosb The sb register is not available for use or has not been initialized to zero by the run
time system. This is the default for all targets except the pc532-netbsd. It is also
implied whenever ‘-mhimem’ or ‘-fpic’ is set.

-mhimem Many ns32000 series addressing modes use displacements of up to 512MB. If an
address is above 512MB then displacements from zero can not be used. This option
causes code to be generated which can be loaded above 512MB. This may be useful
for operating systems or ROM code.

-mnohimem
Assume code will be loaded in the first 512MB of virtual address space. This is the
default for all platforms.

3.17.26 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.
Instruction set avr1 is for the minimal AVR core, not supported by the C compiler,
only for assembler programs (MCU types: at90s1200, attiny10, attiny11, attiny12,
attiny15, attiny28).
Instruction set avr2 (default) is for the classic AVR core with up to 8K program
memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333, at90s2343,
at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Chapter 3: GCC Command Options 127

Instruction set avr3 is for the classic AVR core with up to 128K program memory
space (MCU types: atmega103, atmega603, at43usb320, at76c711).
Instruction set avr4 is for the enhanced AVR core with up to 8K program memory
space (MCU types: atmega8, atmega83, atmega85).
Instruction set avr5 is for the enhanced AVR core with up to 128K program mem-
ory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323,
atmega64, atmega128, at43usb355, at94k).

-msize Output instruction sizes to the asm file.

-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value, ‘__stack’
is the default.

-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be
smaller.

-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines. Code
size will be smaller.

-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.

-mtiny-stack
Change only the low 8 bits of the stack pointer.

3.17.27 MCore Options

These are the ‘-m’ options defined for the Motorola M*Core processors.

-mhardlit
-mno-hardlit

Inline constants into the code stream if it can be done in two instructions or less.

-mdiv
-mno-div Use the divide instruction. (Enabled by default).

-mrelax-immediate
-mno-relax-immediate

Allow arbitrary sized immediates in bit operations.

-mwide-bitfields
-mno-wide-bitfields

Always treat bit-fields as int-sized.

-m4byte-functions
-mno-4byte-functions

Force all functions to be aligned to a four byte boundary.

-mcallgraph-data
-mno-callgraph-data

Emit callgraph information.

-mslow-bytes
-mno-slow-bytes

Prefer word access when reading byte quantities.

128 Using the GNU Compiler Collection (GCC)

-mlittle-endian
-mbig-endian

Generate code for a little endian target.

-m210
-m340 Generate code for the 210 processor.

3.17.28 IA-64 Options

These are the ‘-m’ options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.

-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and Linux.

-mgnu-as
-mno-gnu-as

Generate (or don’t) code for the GNU assembler. This is the default.

-mgnu-ld
-mno-gnu-ld

Generate (or don’t) code for the GNU linker. This is the default.

-mno-pic Generate code that does not use a global pointer register. The result is not position
independent code, and violates the IA-64 ABI.

-mvolatile-asm-stop
-mno-volatile-asm-stop

Generate (or don’t) a stop bit immediately before and after volatile asm statements.

-mb-step Generate code that works around Itanium B step errata.

-mregister-names
-mno-register-names

Generate (or don’t) ‘in’, ‘loc’, and ‘out’ register names for the stacked registers.
This may make assembler output more readable.

-mno-sdata
-msdata Disable (or enable) optimizations that use the small data section. This may be

useful for working around optimizer bugs.

-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful when
compiling kernel code.

-mauto-pic
Generate code that is self-relocatable. This implies ‘-mconstant-gp’. This is useful
when compiling firmware code.

-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum latency
algorithm.

-minline-float-divide-max-throughput
Generate code for inline divides of floating point values using the maximum through-
put algorithm.

Chapter 3: GCC Command Options 129

-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency algo-
rithm.

-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum throughput
algorithm.

-mno-dwarf2-asm
-mdwarf2-asm

Don’t (or do) generate assembler code for the DWARF2 line number debugging info.
This may be useful when not using the GNU assembler.

-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed register
is one that the register allocator can not use. This is useful when compiling kernel
code. A register range is specified as two registers separated by a dash. Multiple
register ranges can be specified separated by a comma.

3.17.29 D30V Options

These ‘-m’ options are defined for D30V implementations:

-mextmem Link the ‘.text’, ‘.data’, ‘.bss’, ‘.strings’, ‘.rodata’, ‘.rodata1’, ‘.data1’ sec-
tions into external memory, which starts at location 0x80000000.

-mextmemory
Same as the ‘-mextmem’ switch.

-monchip Link the ‘.text’ section into onchip text memory, which starts at location 0x0.
Also link ‘.data’, ‘.bss’, ‘.strings’, ‘.rodata’, ‘.rodata1’, ‘.data1’ sections into
onchip data memory, which starts at location 0x20000000.

-mno-asm-optimize
-masm-optimize

Disable (enable) passing ‘-O’ to the assembler when optimizing. The assembler
uses the ‘-O’ option to automatically parallelize adjacent short instructions where
possible.

-mbranch-cost=n
Increase the internal costs of branches to n. Higher costs means that the compiler
will issue more instructions to avoid doing a branch. The default is 2.

-mcond-exec=n
Specify the maximum number of conditionally executed instructions that replace a
branch. The default is 4.

3.17.30 S/390 and zSeries Options

These are the ‘-m’ options defined for the S/390 and zSeries architecture.

-mhard-float
-msoft-float

Use (do not use) the hardware floating-point instructions and registers for floating-
point operations. When ‘-msoft-float’ is specified, functions in ‘libgcc.a’ will be
used to perform floating-point operations. When ‘-mhard-float’ is specified, the
compiler generates IEEE floating-point instructions. This is the default.

130 Using the GNU Compiler Collection (GCC)

-mbackchain
-mno-backchain

Generate (or do not generate) code which maintains an explicit backchain within
the stack frame that points to the caller’s frame. This may be needed to allow
debugging using tools that do not understand DWARF-2 call frame information.
The default is not to generate the backchain.

-msmall-exec
-mno-small-exec

Generate (or do not generate) code using the bras instruction to do subroutine
calls. This only works reliably if the total executable size does not exceed 64k. The
default is to use the basr instruction instead, which does not have this limitation.

-m64
-m31 When ‘-m31’ is specified, generate code compliant to the Linux for S/390 ABI. When

‘-m64’ is specified, generate code compliant to the Linux for zSeries ABI. This allows
GCC in particular to generate 64-bit instructions. For the ‘s390’ targets, the default
is ‘-m31’, while the ‘s390x’ targets default to ‘-m64’.

-mzarch
-mesa When ‘-mzarch’ is specified, generate code using the instructions available on

z/Architecture. When ‘-mesa’ is specified, generate code using the instructions
available on ESA/390. Note that ‘-mesa’ is not possible with ‘-m64’. When gen-
erating code compliant to the Linux for S/390 ABI, the default is ‘-mesa’. When
generating code compliant to the Linux for zSeries ABI, the default is ‘-mzarch’.

-mmvcle
-mno-mvcle

Generate (or do not generate) code using the mvcle instruction to perform block
moves. When ‘-mno-mvcle’ is specified, use a mvc loop instead. This is the default.

-mdebug
-mno-debug

Print (or do not print) additional debug information when compiling. The default
is to not print debug information.

-march=cpu-type
Generate code that will run on cpu-type, which is the name of a system representing
a certain processor type. Possible values for cpu-type are ‘g5’, ‘g6’, ‘z900’, and
‘z990’. When generating code using the instructions available on z/Architecture,
the default is ‘-march=z900’. Otherwise, the default is ‘-march=g5’.

-mtune=cpu-type
Tune to cpu-type everything applicable about the generated code, except for the
ABI and the set of available instructions. The list of cpu-type values is the same as
for ‘-march’. The default is the value used for ‘-march’.

3.17.31 CRIS Options

These options are defined specifically for the CRIS ports.

-march=architecture-type
-mcpu=architecture-type

Generate code for the specified architecture. The choices for architecture-type are
‘v3’, ‘v8’ and ‘v10’ for respectively ETRAX 4, ETRAX 100, and ETRAX 100 LX.
Default is ‘v0’ except for cris-axis-linux-gnu, where the default is ‘v10’.

Chapter 3: GCC Command Options 131

-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code, except
for the ABI and the set of available instructions. The choices for architecture-type
are the same as for ‘-march=architecture-type ’.

-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.

-melinux-stacksize=n
Only available with the ‘cris-axis-aout’ target. Arranges for indications in the
program to the kernel loader that the stack of the program should be set to n bytes.

-metrax4
-metrax100

The options ‘-metrax4’ and ‘-metrax100’ are synonyms for ‘-march=v3’ and
‘-march=v8’ respectively.

-mmul-bug-workaround
-mno-mul-bug-workaround

Work around a bug in the muls and mulu instructions for CPU models where it
applies. This option is active by default.

-mpdebug Enable CRIS-specific verbose debug-related information in the assembly code. This
option also has the effect to turn off the ‘#NO_APP’ formatted-code indicator to the
assembler at the beginning of the assembly file.

-mcc-init
Do not use condition-code results from previous instruction; always emit compare
and test instructions before use of condition codes.

-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-
increment.

-mstack-align
-mno-stack-align
-mdata-align
-mno-data-align
-mconst-align
-mno-const-align

These options (no-options) arranges (eliminate arrangements) for the stack-frame,
individual data and constants to be aligned for the maximum single data access size
for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI
details such as structure layout are not affected by these options.

-m32-bit
-m16-bit
-m8-bit Similar to the stack- data- and const-align options above, these options arrange for

stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit aligned.
The default is 32-bit alignment.

-mno-prologue-epilogue
-mprologue-epilogue

With ‘-mno-prologue-epilogue’, the normal function prologue and epilogue that
sets up the stack-frame are omitted and no return instructions or return sequences
are generated in the code. Use this option only together with visual inspection of
the compiled code: no warnings or errors are generated when call-saved registers
must be saved, or storage for local variable needs to be allocated.

132 Using the GNU Compiler Collection (GCC)

-mno-gotplt
-mgotplt With ‘-fpic’ and ‘-fPIC’, don’t generate (do generate) instruction sequences that

load addresses for functions from the PLT part of the GOT rather than (traditional
on other architectures) calls to the PLT. The default is ‘-mgotplt’.

-maout Legacy no-op option only recognized with the cris-axis-aout target.

-melf Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu
targets.

-melinux Only recognized with the cris-axis-aout target, where it selects a GNU/linux-like
multilib, include files and instruction set for ‘-march=v8’.

-mlinux Legacy no-op option only recognized with the cris-axis-linux-gnu target.

-sim This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link with
input-output functions from a simulator library. Code, initialized data and zero-
initialized data are allocated consecutively.

-sim2 Like ‘-sim’, but pass linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

3.17.32 MMIX Options

These options are defined for the MMIX:

-mlibfuncs
-mno-libfuncs

Specify that intrinsic library functions are being compiled, passing all values in
registers, no matter the size.

-mepsilon
-mno-epsilon

Generate floating-point comparison instructions that compare with respect to the
rE epsilon register.

-mabi=mmixware
-mabi=gnu

Generate code that passes function parameters and return values that (in the called
function) are seen as registers $0 and up, as opposed to the GNU ABI which uses
global registers $231 and up.

-mzero-extend
-mno-zero-extend

When reading data from memory in sizes shorter than 64 bits, use (do not use)
zero-extending load instructions by default, rather than sign-extending ones.

-mknuthdiv
-mno-knuthdiv

Make the result of a division yielding a remainder have the same sign as the divisor.
With the default, ‘-mno-knuthdiv’, the sign of the remainder follows the sign of the
dividend. Both methods are arithmetically valid, the latter being almost exclusively
used.

-mtoplevel-symbols
-mno-toplevel-symbols

Prepend (do not prepend) a ‘:’ to all global symbols, so the assembly code can be
used with the PREFIX assembly directive.

Chapter 3: GCC Command Options 133

-melf Generate an executable in the ELF format, rather than the default ‘mmo’ format
used by the mmix simulator.

-mbranch-predict
-mno-branch-predict

Use (do not use) the probable-branch instructions, when static branch prediction
indicates a probable branch.

-mbase-addresses
-mno-base-addresses

Generate (do not generate) code that uses base addresses. Using a base address
automatically generates a request (handled by the assembler and the linker) for a
constant to be set up in a global register. The register is used for one or more base
address requests within the range 0 to 255 from the value held in the register. The
generally leads to short and fast code, but the number of different data items that
can be addressed is limited. This means that a program that uses lots of static data
may require ‘-mno-base-addresses’.

-msingle-exit
-mno-single-exit

Force (do not force) generated code to have a single exit point in each function.

3.17.33 PDP-11 Options

These options are defined for the PDP-11:

-mfpu Use hardware FPP floating point. This is the default. (FIS floating point on the
PDP-11/40 is not supported.)

-msoft-float
Do not use hardware floating point.

-mac0 Return floating-point results in ac0 (fr0 in Unix assembler syntax).

-mno-ac0 Return floating-point results in memory. This is the default.

-m40 Generate code for a PDP-11/40.

-m45 Generate code for a PDP-11/45. This is the default.

-m10 Generate code for a PDP-11/10.

-mbcopy-builtin
Use inline movstrhi patterns for copying memory. This is the default.

-mbcopy Do not use inline movstrhi patterns for copying memory.

-mint16
-mno-int32

Use 16-bit int. This is the default.

-mint32
-mno-int16

Use 32-bit int.

-mfloat64
-mno-float32

Use 64-bit float. This is the default.

-mfloat32
-mno-float64

Use 32-bit float.

134 Using the GNU Compiler Collection (GCC)

-mabshi Use abshi2 pattern. This is the default.

-mno-abshi
Do not use abshi2 pattern.

-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code generation
only.

-mbranch-cheap
Do not pretend that branches are expensive. This is the default.

-msplit Generate code for a system with split I&D.

-mno-split
Generate code for a system without split I&D. This is the default.

-munix-asm
Use Unix assembler syntax. This is the default when configured for ‘pdp11-*-bsd’.

-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11
target other than ‘pdp11-*-bsd’.

3.17.34 Xstormy16 Options

These options are defined for Xstormy16:

-msim Choose startup files and linker script suitable for the simulator.

3.17.35 FRV Options

-mgpr-32

Only use the first 32 general purpose registers.

-mgpr-64

Use all 64 general purpose registers.

-mfpr-32

Use only the first 32 floating point registers.

-mfpr-64

Use all 64 floating point registers

-mhard-float
Use hardware instructions for floating point operations.

-msoft-float
Use library routines for floating point operations.

-malloc-cc
Dynamically allocate condition code registers.

-mfixed-cc
Do not try to dynamically allocate condition code registers, only use icc0 and fcc0.

-mdword

Change ABI to use double word insns.

Chapter 3: GCC Command Options 135

-mno-dword
Do not use double word instructions.

-mdouble

Use floating point double instructions.

-mno-double
Do not use floating point double instructions.

-mmedia

Use media instructions.

-mno-media
Do not use media instructions.

-mmuladd

Use multiply and add/subtract instructions.

-mno-muladd
Do not use multiply and add/subtract instructions.

-mlibrary-pic
Enable PIC support for building libraries

-macc-4

Use only the first four media accumulator registers.

-macc-8

Use all eight media accumulator registers.

-mpack

Pack VLIW instructions.

-mno-pack
Do not pack VLIW instructions.

-mno-eflags
Do not mark ABI switches in e flags.

-mcond-move
Enable the use of conditional-move instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-cond-move
Disable the use of conditional-move instructions.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mscc

Enable the use of conditional set instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-scc

Disable the use of conditional set instructions.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

136 Using the GNU Compiler Collection (GCC)

-mcond-exec
Enable the use of conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-cond-exec
Disable the use of conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.
This switch is mainly for debugging the compiler and will likely be removed in a
future version.

-mtomcat-stats
Cause gas to print out tomcat statistics.

-mcpu=cpu
Select the processor type for which to generate code. Possible values are ‘simple’,
‘tomcat’, ‘fr500’, ‘fr400’, ‘fr300’, ‘frv’.

3.17.36 Xtensa Options

The Xtensa architecture is designed to support many different configurations. The compiler’s
default options can be set to match a particular Xtensa configuration by copying a configuration
file into the GCC sources when building GCC. The options below may be used to override the
default options.

-mbig-endian
-mlittle-endian

Specify big-endian or little-endian byte ordering for the target Xtensa processor.

Chapter 3: GCC Command Options 137

-mdensity
-mno-density

Enable or disable use of the optional Xtensa code density instructions.

-mmac16
-mno-mac16

Enable or disable use of the Xtensa MAC16 option. When enabled, GCC will gen-
erate MAC16 instructions from standard C code, with the limitation that it will use
neither the MR register file nor any instruction that operates on the MR registers.
When this option is disabled, GCC will translate 16-bit multiply/accumulate oper-
ations to a combination of core instructions and library calls, depending on whether
any other multiplier options are enabled.

-mmul16
-mno-mul16

Enable or disable use of the 16-bit integer multiplier option. When enabled, the
compiler will generate 16-bit multiply instructions for multiplications of 16 bits or
smaller in standard C code. When this option is disabled, the compiler will either
use 32-bit multiply or MAC16 instructions if they are available or generate library
calls to perform the multiply operations using shifts and adds.

-mmul32
-mno-mul32

Enable or disable use of the 32-bit integer multiplier option. When enabled, the
compiler will generate 32-bit multiply instructions for multiplications of 32 bits or
smaller in standard C code. When this option is disabled, the compiler will generate
library calls to perform the multiply operations using either shifts and adds or 16-bit
multiply instructions if they are available.

-mnsa
-mno-nsa Enable or disable use of the optional normalization shift amount (NSA) instructions

to implement the built-in ffs function.

-mminmax
-mno-minmax

Enable or disable use of the optional minimum and maximum value instructions.

-msext
-mno-sext

Enable or disable use of the optional sign extend (SEXT) instruction.

-mbooleans
-mno-booleans

Enable or disable support for the boolean register file used by Xtensa coprocessors.
This is not typically useful by itself but may be required for other options that make
use of the boolean registers (e.g., the floating-point option).

-mhard-float
-msoft-float

Enable or disable use of the floating-point option. When enabled, GCC generates
floating-point instructions for 32-bit float operations. When this option is dis-
abled, GCC generates library calls to emulate 32-bit floating-point operations using
integer instructions. Regardless of this option, 64-bit double operations are always
emulated with calls to library functions.

138 Using the GNU Compiler Collection (GCC)

-mfused-madd
-mno-fused-madd

Enable or disable use of fused multiply/add and multiply/subtract instructions in
the floating-point option. This has no effect if the floating-point option is not also
enabled. Disabling fused multiply/add and multiply/subtract instructions forces the
compiler to use separate instructions for the multiply and add/subtract operations.
This may be desirable in some cases where strict IEEE 754-compliant results are
required: the fused multiply add/subtract instructions do not round the interme-
diate result, thereby producing results with more bits of precision than specified
by the IEEE standard. Disabling fused multiply add/subtract instructions also en-
sures that the program output is not sensitive to the compiler’s ability to combine
multiply and add/subtract operations.

-mserialize-volatile
-mno-serialize-volatile

When this option is enabled, GCC inserts MEMW instructions before volatile
memory references to guarantee sequential consistency. The default is
‘-mserialize-volatile’. Use ‘-mno-serialize-volatile’ to omit the MEMW
instructions.

-mtext-section-literals
-mno-text-section-literals

Control the treatment of literal pools. The default is
‘-mno-text-section-literals’, which places literals in a separate sec-
tion in the output file. This allows the literal pool to be placed in a data
RAM/ROM, and it also allows the linker to combine literal pools from
separate object files to remove redundant literals and improve code size. With
‘-mtext-section-literals’, the literals are interspersed in the text section in
order to keep them as close as possible to their references. This may be necessary
for large assembly files.

-mtarget-align
-mno-target-align

When this option is enabled, GCC instructs the assembler to automatically align
instructions to reduce branch penalties at the expense of some code density. The
assembler attempts to widen density instructions to align branch targets and the
instructions following call instructions. If there are not enough preceding safe den-
sity instructions to align a target, no widening will be performed. The default
is ‘-mtarget-align’. These options do not affect the treatment of auto-aligned
instructions like LOOP, which the assembler will always align, either by widening
density instructions or by inserting no-op instructions.

-mlongcalls
-mno-longcalls

When this option is enabled, GCC instructs the assembler to translate direct calls
to indirect calls unless it can determine that the target of a direct call is in the range
allowed by the call instruction. This translation typically occurs for calls to functions
in other source files. Specifically, the assembler translates a direct CALL instruction
into an L32R followed by a CALLX instruction. The default is ‘-mno-longcalls’.
This option should be used in programs where the call target can potentially be
out of range. This option is implemented in the assembler, not the compiler, so the
assembly code generated by GCC will still show direct call instructions—look at the
disassembled object code to see the actual instructions. Note that the assembler

Chapter 3: GCC Command Options 139

will use an indirect call for every cross-file call, not just those that really will be out
of range.

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.
Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be

‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

-fbounds-check
For front-ends that support it, generate additional code to check that indices used
to access arrays are within the declared range. This is currently only supported
by the Java and Fortran 77 front-ends, where this option defaults to true and false
respectively.

-ftrapv This option generates traps for signed overflow on addition, subtraction, multipli-
cation operations.

-fexceptions
Enable exception handling. Generates extra code needed to propagate exceptions.
For some targets, this implies GCC will generate frame unwind information for all
functions, which can produce significant data size overhead, although it does not
affect execution. If you do not specify this option, GCC will enable it by default
for languages like C++ which normally require exception handling, and disable it
for languages like C that do not normally require it. However, you may need to
enable this option when compiling C code that needs to interoperate properly with
exception handlers written in C++. You may also wish to disable this option if you
are compiling older C++ programs that don’t use exception handling.

-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that this
requires platform-specific runtime support that does not exist everywhere. More-
over, it only allows trapping instructions to throw exceptions, i.e. memory references
or floating point instructions. It does not allow exceptions to be thrown from arbi-
trary signal handlers such as SIGALRM.

-funwind-tables
Similar to ‘-fexceptions’, except that it will just generate any needed static data,
but will not affect the generated code in any other way. You will normally not enable
this option; instead, a language processor that needs this handling would enable it
on your behalf.

-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The table
is exact at each instruction boundary, so it can be used for stack unwinding from
asynchronous events (such as debugger or garbage collector).

-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather than
in registers. This convention is less efficient, but it has the advantage of allowing
intercallability between GCC-compiled files and files compiled with other compilers,
particularly the Portable C Compiler (pcc).
The precise convention for returning structures in memory depends on the target
configuration macros.

140 Using the GNU Compiler Collection (GCC)

Short structures and unions are those whose size and alignment match that of some
integer type.
Warning: code compiled with the ‘-fpcc-struct-return’ switch is not binary com-
patible with code compiled with the ‘-freg-struct-return’ switch. Use it to con-
form to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more efficient
for small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor ‘-freg-struct-return’, GCC
defaults to whichever convention is standard for the target. If there is no standard
convention, GCC defaults to ‘-fpcc-struct-return’, except on targets where GCC
is the principal compiler. In those cases, we can choose the standard, and we chose
the more efficient register return alternative.
Warning: code compiled with the ‘-freg-struct-return’ switch is not binary com-
patible with code compiled with the ‘-fpcc-struct-return’ switch. Use it to con-
form to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.
Warning: the ‘-fshort-enums’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

-fshort-double
Use the same size for double as for float.
Warning: the ‘-fshort-double’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

-fshort-wchar
Override the underlying type for ‘wchar_t’ to be ‘short unsigned int’ instead of
the default for the target. This option is useful for building programs to run under
WINE.
Warning: the ‘-fshort-wchar’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Use it to conform to a
non-default application binary interface.

-fshared-data
Requests that the data and non-const variables of this compilation be shared data
rather than private data. The distinction makes sense only on certain operating
systems, where shared data is shared between processes running the same program,
while private data exists in one copy per process.

-fno-common
In C, allocate even uninitialized global variables in the data section of the object
file, rather than generating them as common blocks. This has the effect that if the
same variable is declared (without extern) in two different compilations, you will
get an error when you link them. The only reason this might be useful is if you wish
to verify that the program will work on other systems which always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

Chapter 3: GCC Command Options 141

-fno-gnu-linker
Do not output global initializations (such as C++ constructors and destructors) in
the form used by the GNU linker (on systems where the GNU linker is the standard
method of handling them). Use this option when you want to use a non-GNU
linker, which also requires using the collect2 program to make sure the system
linker includes constructors and destructors. (collect2 is included in the GCC
distribution.) For systems which must use collect2, the compiler driver gcc is
configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else that would cause trouble
if the function is split in the middle, and the two halves are placed at locations far
apart in memory. This option is used when compiling ‘crtstuff.c’; you should not
need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assembly code to make it more
readable. This option is generally only of use to those who actually need to read
the generated assembly code (perhaps while debugging the compiler itself).
‘-fno-verbose-asm’, the default, causes the extra information to be omitted and is
useful when comparing two assembler files.

-fvolatile
Consider all memory references through pointers to be volatile.

-fvolatile-global
Consider all memory references to extern and global data items to be volatile. GCC
does not consider static data items to be volatile because of this switch.

-fvolatile-static
Consider all memory references to static data to be volatile.

-fpic Generate position-independent code (PIC) suitable for use in a shared library, if sup-
ported for the target machine. Such code accesses all constant addresses through a
global offset table (GOT). The dynamic loader resolves the GOT entries when the
program starts (the dynamic loader is not part of GCC; it is part of the operating
system). If the GOT size for the linked executable exceeds a machine-specific max-
imum size, you get an error message from the linker indicating that ‘-fpic’ does
not work; in that case, recompile with ‘-fPIC’ instead. (These maximums are 16k
on the m88k, 8k on the SPARC, and 32k on the m68k and RS/6000. The 386 has
no such limit.)
Position-independent code requires special support, and therefore works only on
certain machines. For the 386, GCC supports PIC for System V but not for the
Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC If supported for the target machine, emit position-independent code, suitable for
dynamic linking and avoiding any limit on the size of the global offset table. This
option makes a difference on the m68k, m88k, and the SPARC.
Position-independent code requires special support, and therefore works only on
certain machines.

-fpie
-fPIE These options are similar to ‘-fpic’ and ‘-fPIC’, but generated position independent

code can be only linked into executables. Usually these options are used when ‘-pie’
GCC option will be used during linking.

142 Using the GNU Compiler Collection (GCC)

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never refer
to it (except perhaps as a stack pointer, frame pointer or in some other fixed role).
reg must be the name of a register. The register names accepted are machine-specific
and are defined in the REGISTER_NAMES macro in the machine description macro file.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by function
calls. It may be allocated for temporaries or variables that do not live across a call.
Functions compiled this way will not save and restore the register reg.
It is an error to used this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model will produce disastrous results.
This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may
be allocated even for temporaries or variables that live across a call. Functions
compiled this way will save and restore the register reg if they use it.
It is an error to used this flag with the frame pointer or stack pointer. Use of this
flag for other registers that have fixed pervasive roles in the machine’s execution
model will produce disastrous results.
A different sort of disaster will result from the use of this flag for a register in which
function values may be returned.
This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct
Pack all structure members together without holes.
Warning: the ‘-fpack-struct’ switch causes GCC to generate code that is not
binary compatible with code generated without that switch. Additionally, it makes
the code suboptimal. Use it to conform to a non-default application binary interface.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after function
entry and just before function exit, the following profiling functions will be called
with the address of the current function and its call site. (On some platforms, __
builtin_return_address does not work beyond the current function, so the call
site information may not be available to the profiling functions otherwise.)

void __cyg_profile_func_enter (void *this_fn,
void *call_site);

void __cyg_profile_func_exit (void *this_fn,
void *call_site);

The first argument is the address of the start of the current function, which may be
looked up exactly in the symbol table.
This instrumentation is also done for functions expanded inline in other functions.
The profiling calls will indicate where, conceptually, the inline function is entered and
exited. This means that addressable versions of such functions must be available.
If all your uses of a function are expanded inline, this may mean an additional
expansion of code size. If you use ‘extern inline’ in your C code, an addressable
version of such functions must be provided. (This is normally the case anyways, but

Chapter 3: GCC Command Options 143

if you get lucky and the optimizer always expands the functions inline, you might
have gotten away without providing static copies.)
A function may be given the attribute no_instrument_function, in which case
this instrumentation will not be done. This can be used, for example, for the
profiling functions listed above, high-priority interrupt routines, and any functions
from which the profiling functions cannot safely be called (perhaps signal handlers,
if the profiling routines generate output or allocate memory).

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack.
You should specify this flag if you are running in an environment with multiple
threads, but only rarely need to specify it in a single-threaded environment since
stack overflow is automatically detected on nearly all systems if there is only one
stack.
Note that this switch does not actually cause checking to be done; the operating
system must do that. The switch causes generation of code to ensure that the
operating system sees the stack being extended.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit

Generate code to ensure that the stack does not grow beyond a certain value, either
the value of a register or the address of a symbol. If the stack would grow beyond
the value, a signal is raised. For most targets, the signal is raised before the stack
overruns the boundary, so it is possible to catch the signal without taking special
precautions.
For instance, if the stack starts at absolute address ‘0x80000000’ and grows
downwards, you can use the flags ‘-fstack-limit-symbol=__stack_limit’ and
‘-Wl,--defsym,__stack_limit=0x7ffe0000’ to enforce a stack limit of 128KB.
Note that this may only work with the GNU linker.

-fargument-alias
-fargument-noalias
-fargument-noalias-global

Specify the possible relationships among parameters and between parameters and
global data.
‘-fargument-alias’ specifies that arguments (parameters) may alias each other and
may alias global storage.
‘-fargument-noalias’ specifies that arguments do not alias each other, but may
alias global storage.
‘-fargument-noalias-global’ specifies that arguments do not alias each other and
do not alias global storage.
Each language will automatically use whatever option is required by the language
standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, ‘-fno-leading-underscore’, forcibly change the
way C symbols are represented in the object file. One use is to help link with legacy
assembly code.
Warning: the ‘-fleading-underscore’ switch causes GCC to generate code that is
not binary compatible with code generated without that switch. Use it to conform to
a non-default application binary interface. Not all targets provide complete support
for this switch.

144 Using the GNU Compiler Collection (GCC)

-ftls-model=model
Alter the thread-local storage model to be used (see Section 5.48 [Thread-Local],
page 242). The model argument should be one of global-dynamic, local-dynamic,
initial-exec or local-exec.
The default without ‘-fpic’ is initial-exec; with ‘-fpic’ the default is global-
dynamic.

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some of
them work by specifying directories or prefixes to use when searching for various kinds of files.
Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and ‘-L’ (see
Section 3.14 [Directory Options], page 71). These take precedence over places specified using
environment variables, which in turn take precedence over those specified by the configuration
of GCC. See section “Controlling the Compilation Driver ‘gcc’” in GNU Compiler Collection
(GCC) Internals.

LANG
LC_CTYPE
LC_MESSAGES
LC_ALL These environment variables control the way that GCC uses localization information

that allow GCC to work with different national conventions. GCC inspects the
locale categories LC_CTYPE and LC_MESSAGES if it has been configured to do so.
These locale categories can be set to any value supported by your installation. A
typical value is ‘en_UK’ for English in the United Kingdom.
The LC_CTYPE environment variable specifies character classification. GCC uses it
to determine the character boundaries in a string; this is needed for some multi-
byte encodings that contain quote and escape characters that would otherwise be
interpreted as a string end or escape.
The LC_MESSAGES environment variable specifies the language to use in diagnostic
messages.
If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and LC_
MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the LANG
environment variable. If none of these variables are set, GCC defaults to traditional
C English behavior.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses
temporary files to hold the output of one stage of compilation which is to be used
as input to the next stage: for example, the output of the preprocessor, which is the
input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms
executed by the compiler. No slash is added when this prefix is combined with the
name of a subprogram, but you can specify a prefix that ends with a slash if you
wish.
If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate prefix
to use based on the pathname it was invoked with.
If GCC cannot find the subprogram using the specified prefix, it tries looking in the
usual places for the subprogram.

Chapter 3: GCC Command Options 145

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc-lib/’ where prefix is
the value of prefix when you ran the ‘configure’ script.
Other prefixes specified with ‘-B’ take precedence over this prefix.
This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.
In addition, the prefix is used in an unusual way in finding the directories to search
for header files. For each of the standard directories whose name normally begins
with ‘/usr/local/lib/gcc-lib’ (more precisely, with the value of GCC_INCLUDE_
DIR), GCC tries replacing that beginning with the specified prefix to produce an
alternate directory name. Thus, with ‘-Bfoo/’, GCC will search ‘foo/bar’ where
it would normally search ‘/usr/local/lib/bar’. These alternate directories are
searched first; the standard directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.
GCC tries the directories thus specified when searching for subprograms, if it can’t
find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.
When configured as a native compiler, GCC tries the directories thus specified when
searching for special linker files, if it can’t find them using GCC_EXEC_PREFIX. Link-
ing using GCC also uses these directories when searching for ordinary libraries for
the ‘-l’ option (but directories specified with ‘-L’ come first).

LANG This variable is used to pass locale information to the compiler. One way in which
this information is used is to determine the character set to be used when character
literals, string literals and comments are parsed in C and C++. When the com-
piler is configured to allow multibyte characters, the following values for LANG are
recognized:

‘C-JIS’ Recognize JIS characters.

‘C-SJIS’ Recognize SJIS characters.

‘C-EUCJP’ Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use mblen
and mbtowc as defined by the default locale to recognize and translate multibyte
characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

Each variable’s value is a list of directories separated by a special character, much
like PATH, in which to look for header files. The special character, PATH_SEPARATOR,
is target-dependent and determined at GCC build time. For Windows-based targets
it is a semicolon, and for almost all other targets it is a colon.
CPATH specifies a list of directories to be searched as if specified with ‘-I’, but after
any paths given with ‘-I’ options on the command line. This environment variable
is used regardless of which language is being preprocessed.
The remaining environment variables apply only when preprocessing the particular
language indicated. Each specifies a list of directories to be searched as if specified

146 Using the GNU Compiler Collection (GCC)

with ‘-isystem’, but after any paths given with ‘-isystem’ options on the command
line.
In all these variables, an empty element instructs the compiler to search its current
working directory. Empty elements can appear at the beginning or end of a path.
For instance, if the value of CPATH is :/special/include, that has the same effect
as ‘-I. -I/special/include’.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make based
on the non-system header files processed by the compiler. System header files are
ignored in the dependency output.
The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make
rules are written to that file, guessing the target name from the source file name.
Or the value can have the form ‘file target ’, in which case the rules are written
to file file using target as the target name.
In other words, this environment variable is equivalent to combining the options
‘-MM’ and ‘-MF’ (see Section 3.11 [Preprocessor Options], page 61), with an optional
‘-MT’ switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_OUTPUT (see above), except that system
header files are not ignored, so it implies ‘-M’ rather than ‘-MM’. However, the de-
pendence on the main input file is omitted. See Section 3.11 [Preprocessor Options],
page 61.

3.20 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to
a program, thus converting the program to ISO C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line argu-
ments. The conversion programs start out by compiling these files to see what functions they
define. The information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted;
any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert
only source and header files in the current directory. You can specify additional directories
whose files should be converted with the ‘-d directory ’ option. You can also specify particular
files to exclude with the ‘-x file ’ option. A file is converted if it is eligible, its directory name
matches one of the specified directory names, and its name within the directory has not been
excluded.

Basic conversion with protoize consists of rewriting most function definitions and function
declarations to specify the types of the arguments. The only ones not rewritten are those for
varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make
them available for any calls that precede the function’s definition. Or it can insert prototype
declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove
any argument types, and rewriting function definitions to the old-style pre-ISO form.

Both conversion programs print a warning for any function declaration or definition that they
can’t convert. You can suppress these warnings with ‘-q’.

Chapter 3: GCC Command Options 147

The output from protoize or unprotoize replaces the original source file. The original file
is renamed to a name ending with ‘.save’ (for DOS, the saved filename ends in ‘.sav’ without
the original ‘.c’ suffix). If the ‘.save’ (‘.sav’ for DOS) file already exists, then the source file
is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GCC is
installed.

Here is a table of the options you can use with protoize and unprotoize. Each option
works with both programs unless otherwise stated.

-B directory

Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory (nor-
mally ‘/usr/local/lib’). This file contains prototype information about standard
system functions. This option applies only to protoize.

-c compilation-options

Use compilation-options as the options when running gcc to produce the ‘.X’ files.
The special option ‘-aux-info’ is always passed in addition, to tell gcc to write a
‘.X’ file.
Note that the compilation options must be given as a single argument to protoize
or unprotoize. If you want to specify several gcc options, you must quote the
entire set of compilation options to make them a single word in the shell.
There are certain gcc arguments that you cannot use, because they would produce
the wrong kind of output. These include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include
these in the compilation-options, they are ignored.

-C Rename files to end in ‘.C’ (‘.cc’ for DOS-based file systems) instead of ‘.c’. This
is convenient if you are converting a C program to C++. This option applies only to
protoize.

-g Add explicit global declarations. This means inserting explicit declarations at the
beginning of each source file for each function that is called in the file and was not
declared. These declarations precede the first function definition that contains a
call to an undeclared function. This option applies only to protoize.

-i string

Indent old-style parameter declarations with the string string. This option applies
only to protoize.
unprotoize converts prototyped function definitions to old-style function defini-
tions, where the arguments are declared between the argument list and the initial
‘{’. By default, unprotoize uses five spaces as the indentation. If you want to
indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a prototype declaration
for each function in each block which calls the function without any declaration.
This option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions that
would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option with
caution.

-p program

Use the program program as the compiler. Normally, the name ‘gcc’ is used.

148 Using the GNU Compiler Collection (GCC)

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then
you should generate that file’s ‘.X’ file specially, by running gcc on that source file with the
appropriate options and the option ‘-aux-info’. Then run protoize on the entire set of files.
protoize will use the existing ‘.X’ file because it is newer than the source file. For example:

gcc -Dfoo=bar file1.c -aux-info file1.X
protoize *.c

You need to include the special files along with the rest in the protoize command, even though
their ‘.X’ files already exist, because otherwise they won’t get converted.

See Section 10.10 [Protoize Caveats], page 279, for more information on how to use protoize
successfully.

Chapter 4: C Implementation-defined behavior 149

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in each
of the areas that are designated “implementation defined.” The following lists all such areas,
along with the section number from the ISO/IEC 9899:1999 standard.

4.1 Translation

• How a diagnostic is identified (3.10, 5.1.1.3).

Diagnostics consist of all the output sent to stderr by GCC.
• Whether each nonempty sequence of white-space characters other than new-line is retained

or replaced by one space character in translation phase 3 (5.1.1.2).

4.2 Environment

The behavior of these points are dependent on the implementation of the C library, and are not
defined by GCC itself.

4.3 Identifiers

• Which additional multibyte characters may appear in identifiers and their correspondence
to universal character names (6.4.2).

• The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

For internal names, all characters are significant. For external names, the number of signifi-
cant characters are defined by the linker; for almost all targets, all characters are significant.

4.4 Characters

• The number of bits in a byte (3.6).

• The values of the members of the execution character set (5.2.1).

• The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (5.2.2).

• The value of a char object into which has been stored any character other than a member
of the basic execution character set (6.2.5).

• Which of signed char or unsigned char has the same range, representation, and behavior
as “plain” char (6.2.5, 6.3.1.1).

• The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.4.4.4, 5.1.1.2).

• The value of an integer character constant containing more than one character or containing
a character or escape sequence that does not map to a single-byte execution character
(6.4.4.4).

• The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).

• The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a correspond-
ing wide character code (6.4.4.4).

150 Using the GNU Compiler Collection (GCC)

• The current locale used to convert a wide string literal into corresponding wide character
codes (6.4.5).

• The value of a string literal containing a multibyte character or escape sequence not repre-
sented in the execution character set (6.4.5).

4.5 Integers

• Any extended integer types that exist in the implementation (6.2.5).

• Whether signed integer types are represented using sign and magnitude, two’s complement,
or one’s complement, and whether the extraordinary value is a trap representation or an
ordinary value (6.2.6.2).

GCC supports only two’s complement integer types, and all bit patterns are ordinary values.

• The rank of any extended integer type relative to another extended integer type with the
same precision (6.3.1.1).

• The result of, or the signal raised by, converting an integer to a signed integer type when
the value cannot be represented in an object of that type (6.3.1.3).

• The results of some bitwise operations on signed integers (6.5).

4.6 Floating point

• The accuracy of the floating-point operations and of the library functions in <math.h> and
<complex.h> that return floating-point results (5.2.4.2.2).

• The rounding behaviors characterized by non-standard values of FLT_ROUNDS
(5.2.4.2.2).

• The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

• The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (6.3.1.4).

• The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.1.5).

• How the nearest representable value or the larger or smaller representable value immediately
adjacent to the nearest representable value is chosen for certain floating constants (6.4.4.2).

• Whether and how floating expressions are contracted when not disallowed by the FP_
CONTRACT pragma (6.5).

• The default state for the FENV_ACCESS pragma (7.6.1).

• Additional floating-point exceptions, rounding modes, environments, and classifications,
and their macro names (7.6, 7.12).

• The default state for the FP_CONTRACT pragma (7.12.2).

• Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementation
(F.9).

• Whether the “underflow” (and “inexact”) floating-point exception can be raised when a
result is tiny but not inexact in an IEC 60559 conformant implementation (F.9).

Chapter 4: C Implementation-defined behavior 151

4.7 Arrays and pointers

• The result of converting a pointer to an integer or vice versa (6.3.2.3).

A cast from pointer to integer discards most-significant bits if the pointer representation is
larger than the integer type, sign-extends1 if the pointer representation is smaller than the
integer type, otherwise the bits are unchanged.

A cast from integer to pointer discards most-significant bits if the pointer representation is
smaller than the integer type, extends according to the signedness of the integer type if the
pointer representation is larger than the integer type, otherwise the bits are unchanged.

When casting from pointer to integer and back again, the resulting pointer must reference
the same object as the original pointer, otherwise the behavior is undefined. That is, one
may not use integer arithmetic to avoid the undefined behavior of pointer arithmetic as
proscribed in 6.5.6/8.

• The size of the result of subtracting two pointers to elements of the same array (6.5.6).

4.8 Hints

• The extent to which suggestions made by using the register storage-class specifier are
effective (6.7.1).

The register specifier affects code generation only in these ways:

• When used as part of the register variable extension, see Section 5.38 [Explicit Reg
Vars], page 208.

• When ‘-O0’ is in use, the compiler allocates distinct stack memory for all variables that
do not have the register storage-class specifier; if register is specified, the variable
may have a shorter lifespan than the code would indicate and may never be placed in
memory.

• On some rare x86 targets, setjmp doesn’t save the registers in all circumstances. In
those cases, GCC doesn’t allocate any variables in registers unless they are marked
register.

• The extent to which suggestions made by using the inline function specifier are effective
(6.7.4).

GCC will not inline any functions if the ‘-fno-inline’ option is used or if ‘-O0’ is used.
Otherwise, GCC may still be unable to inline a function for many reasons; the ‘-Winline’
option may be used to determine if a function has not been inlined and why not.

4.9 Structures, unions, enumerations, and bit-fields

• Whether a “plain” int bit-field is treated as a signed int bit-field or as an unsigned int
bit-field (6.7.2, 6.7.2.1).

• Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).

• Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

• The order of allocation of bit-fields within a unit (6.7.2.1).

• The alignment of non-bit-field members of structures (6.7.2.1).

• The integer type compatible with each enumerated type (6.7.2.2).

1 Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on sign
extension.

152 Using the GNU Compiler Collection (GCC)

4.10 Qualifiers

• What constitutes an access to an object that has volatile-qualified type (6.7.3).

4.11 Preprocessing directives

• How sequences in both forms of header names are mapped to headers or external source
file names (6.4.7).

• Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(6.10.1).

• Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion may have a negative value (6.10.1).

• The places that are searched for an included ‘<>’ delimited header, and how the places are
specified or the header is identified (6.10.2).

• How the named source file is searched for in an included ‘""’ delimited header (6.10.2).

• The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.2).

• The nesting limit for #include processing (6.10.2).

GCC imposes a limit of 200 nested #includes.
• Whether the ‘#’ operator inserts a ‘\’ character before the ‘\’ character that begins a

universal character name in a character constant or string literal (6.10.3.2).

• The behavior on each recognized non-STDC #pragma directive (6.10.6).

• The definitions for __DATE__ and __TIME__ when respectively, the date and time of trans-
lation are not available (6.10.8).

If the date and time are not available, __DATE__ expands to "??? ?? ????" and __TIME__
expands to "??:??:??".

4.12 Library functions

The behavior of these points are dependent on the implementation of the C library, and are not
defined by GCC itself.

4.13 Architecture

• The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h> (5.2.4.2, 7.18.2, 7.18.3).

• The number, order, and encoding of bytes in any object (when not explicitly specified in
this International Standard) (6.2.6.1).

• The value of the result of the sizeof operator (6.5.3.4).

4.14 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are not
defined by GCC itself.

Chapter 5: Extensions to the C Language Family 153

5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The ‘-pedantic’
option directs GCC to print a warning message if any of these features is used.) To test for the
availability of these features in conditional compilation, check for a predefined macro __GNUC__,
which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in C++.
See Chapter 6 [Extensions to the C++ Language], page 245, for extensions that apply only to
C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted by
GCC in C89 mode and in C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This
allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this
construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the absolute value of
foo ().

The last thing in the compound statement should be an expression followed by a semicolon;
the value of this subexpression serves as the value of the entire construct. (If you use some other
kind of statement last within the braces, the construct has type void, and thus effectively no
value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate
each operand exactly once). For example, the “maximum” function is commonly defined as a
macro in standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side effects.
In GNU C, if you know the type of the operands (here let’s assume int), you can define the
macro safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an enu-
meration constant, the width of a bit-field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof
(see Section 5.6 [Typeof], page 158).

Statement expressions are not supported fully in G++, and their fate there is unclear. (It is
possible that they will become fully supported at some point, or that they will be deprecated,
or that the bugs that are present will continue to exist indefinitely.) Presently, statement
expressions do not work well as default arguments.

In addition, there are semantic issues with statement-expressions in C++. If you try to use
statement-expressions instead of inline functions in C++, you may be surprised at the way object
destruction is handled. For example:

154 Using the GNU Compiler Collection (GCC)

#define foo(a) ({int b = (a); b + 3; })

does not work the same way as:
inline int foo(int a) { int b = a; return b + 3; }

In particular, if the expression passed into foo involves the creation of temporaries, the destruc-
tors for those temporaries will be run earlier in the case of the macro than in the case of the
function.

These considerations mean that it is probably a bad idea to use statement-expressions of this
form in header files that are designed to work with C++. (Note that some versions of the GNU
C Library contained header files using statement-expression that lead to precisely this bug.)

5.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label is
simply an identifier; you can jump to it with an ordinary goto statement, but only from within
the statement expression it belongs to.

A local label declaration looks like this:
__label__ label;

or
__label__ label1, label2, /* . . . */;

Local label declarations must come at the beginning of the statement expression, right after
the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You must
do this in the usual way, with label:, within the statements of the statement expression.

The local label feature is useful because statement expressions are often used in macros. If
the macro contains nested loops, a goto can be useful for breaking out of them. However, an
ordinary label whose scope is the whole function cannot be used: if the macro can be expanded
several times in one function, the label will be multiply defined in that function. A local label
avoids this problem. For example:

#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \

value = -1; \
found: \
value; \

})

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function) with
the unary operator ‘&&’. The value has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

Chapter 5: Extensions to the C Language Family 155

void *ptr;
/* . . . */
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed
goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump
table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never
does that.

Such an array of label values serves a purpose much like that of the switch statement. The
switch statement is cleaner, so use that rather than an array unless the problem does not fit a
switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that,
totally unpredictable things will happen. The best way to avoid this is to store the label address
only in automatic variables and never pass it as an argument.

An alternate way to write the above example is

static const int array[] = { &&foo - &&foo, &&bar - &&foo,
&&hack - &&foo };

goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data to be read-only.

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is defined.
For example, here we define a nested function named square, and call it twice:

foo (double a, double b)
{
double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing function that are visible at
the point of its definition. This is called lexical scoping. For example, here we show a nested
function which uses an inherited variable named offset:

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where
one can do more than simply store label addresses in label variables.

156 Using the GNU Compiler Collection (GCC)

bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }

int i;
/* . . . */
for (i = 0; i < size; i++)
/* . . . */ access (array, i) /* . . . */

}

Nested function definitions are permitted within functions in the places where variable defi-
nitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing its
address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If
intermediate calls store, the arguments given to store are used to store into array. But
this technique works only so long as the containing function (hack, in this example) does not
exit.

If you try to call the nested function through its address after the containing function has
exited, all hell will break loose. If you try to call it after a containing scope level has exited, and
if it refers to some of the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to anything that has gone
out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called trampolines.
A paper describing them is available as

http://people.debian.org/~aaronl/Usenix88-lexic.pdf.

A nested function can jump to a label inherited from a containing function, provided the label
was explicitly declared in the containing function (see Section 5.2 [Local Labels], page 154). Such
a jump returns instantly to the containing function, exiting the nested function which did the
goto and any intermediate functions as well. Here is an example:

http://people.debian.org/~aaronl/Usenix88-lexic.pdf

Chapter 5: Extensions to the C Language Family 157

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;

return array[index + offset];
}

int i;
/* . . . */
for (i = 0; i < size; i++)
/* . . . */ access (array, i) /* . . . */

/* . . . */
return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with extern is erroneous. If you
need to declare the nested function before its definition, use auto (which is otherwise meaningless
for function declarations).

bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
/* . . . */
int access (int *array, int index)
{
if (index > size)
goto failure;

return array[index + offset];
}

/* . . . */
}

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function received,
and call another function with the same arguments, without knowing the number or types of
the arguments.

You can also record the return value of that function call, and later return that value, without
knowing what data type the function tried to return (as long as your caller expects that data
type).

[Built-in Function]void * __builtin_apply_args ()
This built-in function returns a pointer to data describing how to perform a call with the
same arguments as were passed to the current function.

158 Using the GNU Compiler Collection (GCC)

The function saves the arg pointer register, structure value address, and all registers that
might be used to pass arguments to a function into a block of memory allocated on the stack.
Then it returns the address of that block.

[Built-in Function]void * __builtin_apply (void (*function)(), void *arguments,
size_t size)

This built-in function invokes function with a copy of the parameters described by arguments
and size.
The value of arguments should be the value returned by __builtin_apply_args. The argu-
ment size specifies the size of the stack argument data, in bytes.
This function returns a pointer to data describing how to return whatever value was returned
by function. The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for size. The value is used by __builtin_
apply to compute the amount of data that should be pushed on the stack and copied from
the incoming argument area.

[Built-in Function]void __builtin_return (void *result)
This built-in function returns the value described by result from the containing function. You
should specify, for result, a value returned by __builtin_apply.

5.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of this
keyword looks like sizeof, but the construct acts semantically like a type name defined with
typedef.

There are two ways of writing the argument to typeof: with an expression or with a type.
Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the values
of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in ISO C programs, write

__typeof__ instead of typeof. See Section 5.39 [Alternate Keywords], page 210.
A typeof-construct can be used anywhere a typedef name could be used. For example, you

can use it in a declaration, in a cast, or inside of sizeof or typeof.
typeof is often useful in conjunction with the statements-within-expressions feature. Here

is how the two together can be used to define a safe “maximum” macro that operates on any
arithmetic type and evaluates each of its arguments exactly once:

#define max(a,b) \
({ typeof (a) _a = (a); \

typeof (b) _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid
conflicts with variable names that occur within the expressions that are substituted for a and
b. Eventually we hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a more reliable way to
prevent such conflicts.
Some more examples of the use of typeof:

Chapter 5: Extensions to the C Language Family 159

• This declares y with the type of what x points to.
typeof (*x) y;

• This declares y as an array of such values.
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way to
write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension which
permitted one to write

typedef T = expr;

with the effect of declaring T to have the type of the expression expr. This extension does not
work with GCC 3 (versions between 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code
which relies on it should be rewritten to use typeof:

typedef typeof(expr) T;

This will work with all versions of GCC.

5.7 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided their
operands are lvalues. This means that you can take their addresses or store values into them.

All these extensions are deprecated.
For example, a compound expression can be assigned, provided the last expression in the

sequence is an lvalue. These two expressions are equivalent:
(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions are
equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false branches
are both valid lvalues. For example, these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand side
is a cast works by converting the right-hand side first to the specified type, then to the type
of the inner left-hand side expression. After this is stored, the value is converted back to the
specified type to become the value of the assignment. Thus, if a has type char *, the following
two expressions are equivalent:

160 Using the GNU Compiler Collection (GCC)

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a cast performs the arith-
metic using the type resulting from the cast, and then continues as in the previous case. There-
fore, these two expressions are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not
work out coherently. Suppose that &(int)f were permitted, where f has type float. Then
the following statement would try to store an integer bit-pattern where a floating point number
belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to floating
point and store it. Rather than cause this inconsistency, we think it is better to prohibit use of
‘&’ on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.

5.8 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is
nonzero, its value is the value of the conditional expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain
a side effect. Then repeating the operand in the middle would perform the side effect twice.
Omitting the middle operand uses the value already computed without the undesirable effects
of recomputing it.

5.9 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension
GCC supports them in C89 mode and in C++. Simply write long long int for a signed integer,
or unsigned long long int for an unsigned integer. To make an integer constant of type long
long int, add the suffix ‘LL’ to the integer. To make an integer constant of type unsigned long
long int, add the suffix ‘ULL’ to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction,
and bitwise boolean operations on these types are open-coded on all types of machines. Mul-
tiplication is open-coded if the machine supports fullword-to-doubleword a widening multiply
instruction. Division and shifts are open-coded only on machines that provide special support.
The operations that are not open-coded use special library routines that come with GCC.

There may be pitfalls when you use long long types for function arguments, unless you
declare function prototypes. If a function expects type int for its argument, and you pass a
value of type long long int, confusion will result because the caller and the subroutine will
disagree about the number of bytes for the argument. Likewise, if the function expects long
long int and you pass int. The best way to avoid such problems is to use prototypes.

Chapter 5: Extensions to the C Language Family 161

5.10 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in C89
mode and in C++, and supports complex integer data types which are not part of ISO C99.
You can declare complex types using the keyword _Complex. As an extension, the older GNU
keyword __complex__ is also supported.

For example, ‘_Complex double x;’ declares x as a variable whose real part and imaginary
part are both of type double. ‘_Complex short int y;’ declares y to have real and imaginary
parts of type short int; this is not likely to be useful, but it shows that the set of complex
types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they are
equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex int. Such
a constant always has a pure imaginary value, but you can form any complex value you like by
adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming
C library (such as GNU libc), and want to construct complex constants of floating type, you
should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp . Likewise,
use __imag__ to extract the imaginary part. This is a GNU extension; for values of floating
type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag and cimagl,
declared in <complex.h> and also provided as built-in functions by GCC.

The operator ‘~’ performs complex conjugation when used on a value with a complex type.
This is a GNU extension; for values of floating type, you should use the ISO C99 functions
conjf, conj and conjl, declared in <complex.h> and also provided as built-in functions by
GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it’s even possible
for the real part to be in a register while the imaginary part is on the stack (or vice-versa).
Only the DWARF2 debug info format can represent this, so use of DWARF2 is recommended.
If you are using the stabs debug info format, GCC describes a noncontiguous complex variable
as if it were two separate variables of noncomplex type. If the variable’s actual name is foo, the
two fictitious variables are named foo$real and foo$imag. You can examine and set these two
fictitious variables with your debugger.

5.11 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation, such as
1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As a GNU extension,
GCC supports this in C89 mode (except in some cases when strictly conforming) and in C++.
In that format the ‘0x’ hex introducer and the ‘p’ or ‘P’ exponent field are mandatory. The
exponent is a decimal number that indicates the power of 2 by which the significant part will
be multiplied. Thus ‘0x1.f’ is 1 15

16
, ‘p3’ multiplies it by 8, and the value of 0x1.fp3 is the same

as 1.55e1.
Unlike for floating-point numbers in the decimal notation the exponent is always required in

the hexadecimal notation. Otherwise the compiler would not be able to resolve the ambiguity
of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since ‘f’ is also the extension for floating-point
constants of type float.

5.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure
which is really a header for a variable-length object:

162 Using the GNU Compiler Collection (GCC)

struct line {
int length;
char contents[0];

};

struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);

thisline->length = this_length;

In ISO C90, you would have to give contents a length of 1, which means either you waste
space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax and
semantics:
• Flexible array members are written as contents[] without the 0.
• Flexible array members have incomplete type, and so the sizeof operator may not be

applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates
to zero.

• Flexible array members may only appear as the last member of a struct that is otherwise
non-empty.

• A structure containing a flexible array member, or a union containing such a structure
(possibly recursively), may not be a member of a structure or an element of an array.
(However, these uses are permitted by GCC as extensions.)

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they were
flexible arrays. In addition to those cases that were useful, it also allowed initializations in
situations that would corrupt later data. Non-empty initialization of zero-length arrays is now
treated like any case where there are more initializer elements than the array holds, in that a
suitable warning about "excess elements in array" is given, and the excess elements (all of them,
in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to
defining a new structure containing the original structure followed by an array of sufficient size
to contain the data. I.e. in the following, f1 is constructed as if it were declared like f2.

struct f1 {
int x; int y[];

} f1 = { 1, { 2, 3, 4 } };

struct f2 {
struct f1 f1; int data[3];

} f2 = { { 1 }, { 2, 3, 4 } };

The convenience of this extension is that f1 has the desired type, eliminating the need to
consistently refer to f2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also written
with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-
level object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue
complication and confusion with initialization of deeply nested arrays, we simply disallow any
non-empty initialization except when the structure is the top-level object. For example:

struct foo { int x; int y[]; };
struct bar { struct foo z; };

struct foo a = { 1, { 2, 3, 4 } }; // Valid.

Chapter 5: Extensions to the C Language Family 163

struct bar b = { { 1, { 2, 3, 4 } } }; // Invalid.
struct bar c = { { 1, { } } }; // Valid.
struct foo d[1] = { { 1 { 2, 3, 4 } } }; // Invalid.

5.13 Structures With No Members

GCC permits a C structure to have no members:

struct empty {
};

The structure will have size zero. In C++, empty structures are part of the language. G++
treats empty structures as if they had a single member of type char.

5.14 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts
them in C89 mode and in C++. (However, GCC’s implementation of variable-length arrays does
not yet conform in detail to the ISO C99 standard.) These arrays are declared like any other
automatic arrays, but with a length that is not a constant expression. The storage is allocated
at the point of declaration and deallocated when the brace-level is exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping
into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The
function alloca is available in many other C implementations (but not in all). On the other
hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists
until the containing function returns. The space for a variable-length array is deallocated as
soon as the array name’s scope ends. (If you use both variable-length arrays and alloca in the
same function, deallocation of a variable-length array will also deallocate anything more recently
allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{
/* . . . */

}

The length of an array is computed once when the storage is allocated and is remembered
for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration
in the parameter list—another GNU extension.

164 Using the GNU Compiler Collection (GCC)

struct entry
tester (int len; char data[len][len], int len)
{
/* . . . */

}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the
purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list.
They can be separated by commas or semicolons, but the last one must end with a semicolon,
which is followed by the “real” parameter declarations. Each forward declaration must match
a “real” declaration in parameter name and data type. ISO C99 does not support parameter
forward declarations.

5.15 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of arguments
much as a function can. The syntax for defining the macro is similar to that of a function. Here
is an example:

#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)

Here ‘...’ is a variable argument. In the invocation of such a macro, it represents the zero
or more tokens until the closing parenthesis that ends the invocation, including any commas.
This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever it appears.
See the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that allowed you to
give a name to the variable arguments just like any other argument. Here is an example:

#define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable and
descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with
either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you are
allowed to pass an empty argument. For example, this invocation is invalid in ISO C, because
there is no comma after the string:

debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the above
examples, the compiler would complain, though since the expansion of the macro still has the
extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the token
paste operator, ‘##’. If instead you write

#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ‘##’ operator causes the preprocessor
to remove the comma before it. If you do provide some variable arguments in your macro invo-
cation, GNU CPP does not complain about the paste operation and instead places the variable
arguments after the comma. Just like any other pasted macro argument, these arguments are
not macro expanded.

Chapter 5: Extensions to the C Language Family 165

5.16 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the newline
had to immediately follow a backslash. The current implementation allows whitespace in the
form of spaces, horizontal and vertical tabs, and form feeds between the backslash and the
subsequent newline. The preprocessor issues a warning, but treats it as a valid escaped newline
and combines the two lines to form a single logical line. This works within comments and tokens,
as well as between tokens. Comments are not treated as whitespace for the purposes of this
relaxation, since they have not yet been replaced with spaces.

5.17 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted, although
they may not be modified or used after the next sequence point and the unary ‘&’ operator may
not be applied to them. As an extension, GCC allows such arrays to be subscripted in C89
mode, though otherwise they do not decay to pointers outside C99 mode. For example, this is
valid in GNU C though not valid in C89:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

5.18 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and
returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

5.19 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic
variable are not required to be constant expressions in GNU C. Here is an example of an
initializer with run-time varying elements:

foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
/* . . . */

}

5.20 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an initial-
izer. Its value is an object of the type specified in the cast, containing the elements specified in

166 Using the GNU Compiler Collection (GCC)

the initializer; it is an lvalue. As an extension, GCC supports compound literals in C89 mode
and in C++.

Usually, the specified type is a structure. Assume that struct foo and structure are
declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the compound literal are (made up of)
simple constant expressions, suitable for use in initializers of objects of static storage duration,
then the compound literal can be coerced to a pointer to its first element and used in such an
initializer, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are is also allowed, but then the compound
literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration by
compound literals (which is not possible in ISO C99, because the initializer is not a constant).
It is handled as if the object was initialized only with the bracket enclosed list if compound
literal’s and object types match. The initializer list of the compound literal must be constant. If
the object being initialized has array type of unknown size, the size is determined by compound
literal size.

static struct foo x = (struct foo) {1, ’a’, ’b’};
static int y[] = (int []) {1, 2, 3};
static int z[] = (int [3]) {1};

The above lines are equivalent to the following:
static struct foo x = {1, ’a’, ’b’};
static int y[] = {1, 2, 3};
static int z[] = {1, 0, 0};

5.21 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same as the
order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure
field names they apply to, and GNU C allows this as an extension in C89 mode as well. This
extension is not implemented in GNU C++.

To specify an array index, write ‘[index] =’ before the element value. For example,
int a[6] = { [4] = 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is automatic.
An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still accepts

is to write ‘[index]’ before the element value, with no ‘=’.

Chapter 5: Extensions to the C Language Family 167

To initialize a range of elements to the same value, write ‘[first ... last] = value ’. This
is a GNU extension. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initialized
field by the range initializer.

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with ‘.fieldname =’ before
the element value. For example, given the following structure,

struct point { int x, y; };

the following initialization

struct point p = { .y = yvalue, .x = xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning, obsolete since GCC 2.5, is ‘fieldname:’, as
shown here:

struct point p = { y: yvalue, x: xvalue };

The ‘[index]’ or ‘.fieldname ’ is known as a designator. You can also use a designator
(or the obsolete colon syntax) when initializing a union, to specify which element of the union
should be used. For example,

union foo { int i; double d; };

union foo f = { .d = 4 };

will convert 4 to a double to store it in the union using the second element. By contrast, casting
4 to type union foo would store it into the union as the integer i, since it is an integer. (See
Section 5.23 [Cast to Union], page 168.)

You can combine this technique of naming elements with ordinary C initialization of suc-
cessive elements. Each initializer element that does not have a designator applies to the next
consecutive element of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are characters
or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

You can also write a series of ‘.fieldname ’ and ‘[index]’ designators before an ‘=’ to specify
a nested subobject to initialize; the list is taken relative to the subobject corresponding to the
closest surrounding brace pair. For example, with the ‘struct point’ declaration above:

struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };

If the same field is initialized multiple times, it will have value from the last initialization. If any
such overridden initialization has side-effect, it is unspecified whether the side-effect happens or
not. Currently, gcc will discard them and issue a warning.

168 Using the GNU Compiler Collection (GCC)

5.22 Case Ranges

You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer
value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you
use it with integer values. For example, write this:

case 1 ... 5:

rather than this:
case 1...5:

5.23 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union is
actually a constructor though, not a cast, and hence does not yield an lvalue like normal casts.
(See Section 5.20 [Compound Literals], page 165.)

The types that may be cast to the union type are those of the members of the union. Thus,
given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable of union type is equivalent

to storing in a member of the union:
union foo u;
/* . . . */
u = (union foo) x ≡ u.i = x
u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:
void hack (union foo);
/* . . . */
hack ((union foo) x);

5.24 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound state-
ments. As an extension, GCC also allows this in C89 mode. For example, you could do:

int i;
/* . . . */
i++;
int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.

Chapter 5: Extensions to the C Language Family 169

5.25 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the
compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declara-
tion. This keyword is followed by an attribute specification inside double parentheses. The fol-
lowing attributes are currently defined for functions on all targets: noreturn, noinline, always_
inline, pure, const, nothrow, format, format_arg, no_instrument_function, section,
constructor, destructor, used, unused, deprecated, weak, malloc, alias, and nonnull.
Several other attributes are defined for functions on particular target systems. Other at-
tributes, including section are supported for variables declarations (see Section 5.32 [Variable
Attributes], page 181) and for types (see Section 5.33 [Type Attributes], page 185).

You may also specify attributes with ‘__’ preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may use __noreturn__ instead of noreturn.

See Section 5.26 [Attribute Syntax], page 177, for details of the exact syntax for using at-
tributes.

noreturn A few standard library functions, such as abort and exit, cannot return. GCC
knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For example,

void fatal () __attribute__ ((noreturn));

void

fatal (/* . . . */)

{

/* . . . */ /* Print error message. */ /* . . . */

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return. It
can then optimize without regard to what would happen if fatal ever did return.
This makes slightly better code. More importantly, it helps avoid spurious warnings
of uninitialized variables.
Do not assume that registers saved by the calling function are restored before calling
the noreturn function.
It does not make sense for a noreturn function to have a return type other than
void.
The attribute noreturn is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function does not return, which works in the current
version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

noinline This function attribute prevents a function from being considered for inlining.

always_inline
Generally, functions are not inlined unless optimization is specified. For functions
declared inline, this attribute inlines the function even if no optimization level was
specified.

pure Many functions have no effects except the return value and their return value de-
pends only on the parameters and/or global variables. Such a function can be sub-
ject to common subexpression elimination and loop optimization just as an arith-

170 Using the GNU Compiler Collection (GCC)

metic operator would be. These functions should be declared with the attribute
pure. For example,

int square (int) __attribute__ ((pure));

says that the hypothetical function square is safe to call fewer times than the
program says.
Some of common examples of pure functions are strlen or memcmp. Interesting
non-pure functions are functions with infinite loops or those depending on volatile
memory or other system resource, that may change between two consecutive calls
(such as feof in a multithreading environment).
The attribute pure is not implemented in GCC versions earlier than 2.96.

const Many functions do not examine any values except their arguments, and have no
effects except the return value. Basically this is just slightly more strict class than
the pure attribute above, since function is not allowed to read global memory.
Note that a function that has pointer arguments and examines the data pointed to
must not be declared const. Likewise, a function that calls a non-const function
usually must not be const. It does not make sense for a const function to return
void.
The attribute const is not implemented in GCC versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in the
current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies
that the ‘const’ must be attached to the return value.

nothrow The nothrow attribute is used to inform the compiler that a function cannot throw
an exception. For example, most functions in the standard C library can be guaran-
teed not to throw an exception with the notable exceptions of qsort and bsearch
that take function pointer arguments. The nothrow attribute is not implemented
in GCC versions earlier than 3.2.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime or
strfmon style arguments which should be type-checked against a format string. For
example, the declaration:

extern int

my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency
with the printf style format string argument my_format.
The parameter archetype determines how the format string is interpreted, and
should be printf, scanf, strftime or strfmon. (You can also use __printf__
, __scanf__, __strftime__ or __strfmon__.) The parameter string-index specifies
which argument is the format string argument (starting from 1), while first-to-check
is the number of the first argument to check against the format string. For functions
where the arguments are not available to be checked (such as vprintf), specify the
third parameter as zero. In this case the compiler only checks the format string
for consistency. For strftime formats, the third parameter is required to be zero.
Since non-static C++ methods have an implicit this argument, the arguments of
such methods should be counted from two, not one, when giving values for string-
index and first-to-check.

Chapter 5: Extensions to the C Language Family 171

In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so
the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format
strings as arguments, so that GCC can check the calls to these functions for er-
rors. The compiler always (unless ‘-ffreestanding’ is used) checks formats for
the standard library functions printf, fprintf, sprintf, scanf, fscanf, sscanf,
strftime, vprintf, vfprintf and vsprintf whenever such warnings are requested
(using ‘-Wformat’), so there is no need to modify the header file ‘stdio.h’. In C99
mode, the functions snprintf, vsnprintf, vscanf, vfscanf and vsscanf are also
checked. Except in strictly conforming C standard modes, the X/Open function
strfmon is also checked as are printf_unlocked and fprintf_unlocked. See Sec-
tion 3.4 [Options Controlling C Dialect], page 18.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for a
printf, scanf, strftime or strfmon style function and modifies it (for example, to
translate it into another language), so the result can be passed to a printf, scanf,
strftime or strfmon style function (with the remaining arguments to the format
function the same as they would have been for the unmodified string). For example,
the declaration:

extern char *

my_dgettext (char *my_domain, const char *my_format)

__attribute__ ((format_arg (2)));

causes the compiler to check the arguments in calls to a printf, scanf, strftime or
strfmon type function, whose format string argument is a call to the my_dgettext
function, for consistency with the format string argument my_format. If the format_
arg attribute had not been specified, all the compiler could tell in such calls to
format functions would be that the format string argument is not constant; this
would generate a warning when ‘-Wformat-nonliteral’ is used, but the calls could
not be checked without the attribute.

The parameter string-index specifies which argument is the format string argument
(starting from one). Since non-static C++ methods have an implicit this argument,
the arguments of such methods should be counted from two.

The format-arg attribute allows you to identify your own functions which modify
format strings, so that GCC can check the calls to printf, scanf, strftime or
strfmon type function whose operands are a call to one of your own function. The
compiler always treats gettext, dgettext, and dcgettext in this manner except
when strict ISO C support is requested by ‘-ansi’ or an appropriate ‘-std’ option, or
‘-ffreestanding’ is used. See Section 3.4 [Options Controlling C Dialect], page 18.

nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-null
pointers. For instance, the declaration:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

causes the compiler to check that, in calls to my_memcpy, arguments dest and src are
non-null. If the compiler determines that a null pointer is passed in an argument
slot marked as non-null, and the ‘-Wnonnull’ option is enabled, a warning is issued.
The compiler may also choose to make optimizations based on the knowledge that
certain function arguments will not be null.

172 Using the GNU Compiler Collection (GCC)

If no argument index list is given to the nonnull attribute, all pointer arguments
are marked as non-null. To illustrate, the following declaration is equivalent to the
previous example:

extern void *

my_memcpy (void *dest, const void *src, size_t len)

__attribute__((nonnull));

no_instrument_function
If ‘-finstrument-functions’ is given, profiling function calls will be generated at
entry and exit of most user-compiled functions. Functions with this attribute will
not be so instrumented.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes,
however, you need additional sections, or you need certain particular functions to
appear in special sections. The section attribute specifies that a function lives in
a particular section. For example, the declaration:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not
available on all platforms. If you need to map the entire contents of a module to a
particular section, consider using the facilities of the linker instead.

constructor
destructor

The constructor attribute causes the function to be called automatically before
execution enters main (). Similarly, the destructor attribute causes the function
to be called automatically after main () has completed or exit () has been called.
Functions with these attributes are useful for initializing data that will be used
implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.

unused This attribute, attached to a function, means that the function is meant to be
possibly unused. GCC will not produce a warning for this function. GNU C++ does
not currently support this attribute as definitions without parameters are valid in
C++.

used This attribute, attached to a function, means that code must be emitted for the
function even if it appears that the function is not referenced. This is useful, for
example, when the function is referenced only in inline assembly.

deprecated
The deprecated attribute results in a warning if the function is used anywhere in
the source file. This is useful when identifying functions that are expected to be
removed in a future version of a program. The warning also includes the location
of the declaration of the deprecated function, to enable users to easily find further
information about why the function is deprecated, or what they should do instead.
Note that the warnings only occurs for uses:

int old_fn () __attribute__ ((deprecated));

int old_fn ();

int (*fn_ptr)() = old_fn;

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Section 5.32
[Variable Attributes], page 181, see Section 5.33 [Type Attributes], page 185.)

Chapter 5: Extensions to the C Language Family 173

weak The weak attribute causes the declaration to be emitted as a weak symbol rather
than a global. This is primarily useful in defining library functions which can be
overridden in user code, though it can also be used with non-function declarations.
Weak symbols are supported for ELF targets, and also for a.out targets when using
the GNU assembler and linker.

malloc The malloc attribute is used to tell the compiler that a function may be treated as
if it were the malloc function. The compiler assumes that calls to malloc result in
pointers that cannot alias anything. This will often improve optimization.

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified. For instance,

void __f () { /* Do something. */; }

void f () __attribute__ ((weak, alias ("__f")));

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled name for the target
must be used.
Not all target machines support this attribute.

visibility ("visibility_type")
The visibility attribute on ELF targets causes the declaration to be emitted with
default, hidden, protected or internal visibility.

void __attribute__ ((visibility ("protected")))

f () { /* Do something. */; }

int i __attribute__ ((visibility ("hidden")));

See the ELF gABI for complete details, but the short story is:

default Default visibility is the normal case for ELF. This value is available for
the visibility attribute to override other options that may change the
assumed visibility of symbols.

hidden Hidden visibility indicates that the symbol will not be placed into the
dynamic symbol table, so no other module (executable or shared library)
can reference it directly.

protected Protected visibility indicates that the symbol will be placed in the dy-
namic symbol table, but that references within the defining module will
bind to the local symbol. That is, the symbol cannot be overridden by
another module.

internal Internal visibility is like hidden visibility, but with additional processor
specific semantics. Unless otherwise specified by the psABI, gcc defines
internal visibility to mean that the function is never called from another
module. Note that hidden symbols, while they cannot be referenced
directly by other modules, can be referenced indirectly via function
pointers. By indicating that a symbol cannot be called from outside the
module, gcc may for instance omit the load of a PIC register since it is
known that the calling function loaded the correct value.

Not all ELF targets support this attribute.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to number
integer arguments in registers EAX, EDX, and ECX instead of on the stack. Func-
tions that take a variable number of arguments will continue to be passed all of their
arguments on the stack.

174 Using the GNU Compiler Collection (GCC)

Beware that on some ELF systems this attribute is unsuitable for global functions
in shared libraries with lazy binding (which is the default). Lazy binding will send
the first call via resolving code in the loader, which might assume EAX, EDX and
ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected
by this. GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
safe since the loaders there save all registers. (Lazy binding can be disabled with
the linker or the loader if desired, to avoid the problem.)

stdcall On the Intel 386, the stdcall attribute causes the compiler to assume that the
called function will pop off the stack space used to pass arguments, unless it takes
a variable number of arguments.

cdecl On the Intel 386, the cdecl attribute causes the compiler to assume that the calling
function will pop off the stack space used to pass arguments. This is useful to
override the effects of the ‘-mrtd’ switch.

longcall/shortcall
On the RS/6000 and PowerPC, the longcall attribute causes the compiler to always
call this function via a pointer, just as it would if the ‘-mlongcall’ option had
been specified. The shortcall attribute causes the compiler not to do this. These
attributes override both the ‘-mlongcall’ switch and the #pragma longcall setting.

See Section 3.17.10 [RS/6000 and PowerPC Options], page 93, for more information
on whether long calls are necessary.

long_call/short_call
This attribute specifies how a particular function is called on ARM. Both attributes
override the ‘-mlong-calls’ (see Section 3.17.5 [ARM Options], page 84) command
line switch and #pragma long_calls settings. The long_call attribute causes the
compiler to always call the function by first loading its address into a register and
then using the contents of that register. The short_call attribute always places
the offset to the function from the call site into the ‘BL’ instruction directly.

function_vector
Use this attribute on the H8/300 and H8/300H to indicate that the specified func-
tion should be called through the function vector. Calling a function through the
function vector will reduce code size, however; the function vector has a limited size
(maximum 128 entries on the H8/300 and 64 entries on the H8/300H) and shares
space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute
to work correctly.

interrupt
Use this attribute on the ARM, AVR, M32R/D and Xstormy16 ports to indicate that
the specified function is an interrupt handler. The compiler will generate function
entry and exit sequences suitable for use in an interrupt handler when this attribute
is present.

Note, interrupt handlers for the H8/300, H8/300H and SH processors can be speci-
fied via the interrupt_handler attribute.

Note, on the AVR, interrupts will be enabled inside the function.

Note, for the ARM, you can specify the kind of interrupt to be handled by adding
an optional parameter to the interrupt attribute like this:

void f () __attribute__ ((interrupt ("IRQ")));

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.

Chapter 5: Extensions to the C Language Family 175

interrupt_handler
Use this attribute on the H8/300, H8/300H and SH to indicate that the specified
function is an interrupt handler. The compiler will generate function entry and exit
sequences suitable for use in an interrupt handler when this attribute is present.

sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should
switch to an alternate stack. It expects a string argument that names a global
variable holding the address of the alternate stack.

void *alt_stack;

void f () __attribute__ ((interrupt_handler,

sp_switch ("alt_stack")));

trap_exit
Use this attribute on the SH for an interrupt_handle to return using trapa instead
of rte. This attribute expects an integer argument specifying the trap number to
be used.

eightbit_data
Use this attribute on the H8/300 and H8/300H to indicate that the specified variable
should be placed into the eight bit data section. The compiler will generate more
efficient code for certain operations on data in the eight bit data area. Note the
eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute
to work correctly.

tiny_data
Use this attribute on the H8/300H to indicate that the specified variable should be
placed into the tiny data section. The compiler will generate more efficient code for
loads and stores on data in the tiny data section. Note the tiny data area is limited
to slightly under 32kbytes of data.

signal Use this attribute on the AVR to indicate that the specified function is a signal
handler. The compiler will generate function entry and exit sequences suitable for
use in a signal handler when this attribute is present. Interrupts will be disabled
inside the function.

naked Use this attribute on the ARM, AVR and IP2K ports to indicate that the specified
function does not need prologue/epilogue sequences generated by the compiler. It
is up to the programmer to provide these sequences.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object, and of the
code generated for a function. The identifier model-name is one of small, medium,
or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can
be loaded with the ld24 instruction), and are callable with the bl instruction.

Medium model objects may live anywhere in the 32-bit address space (the compiler
will generate seth/add3 instructions to load their addresses), and are callable with
the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler will
generate seth/add3 instructions to load their addresses), and may not be reachable
with the bl instruction (the compiler will generate the much slower seth/add3/jl
instruction sequence).

176 Using the GNU Compiler Collection (GCC)

far On 68HC11 and 68HC12 the far attribute causes the compiler to use a calling
convention that takes care of switching memory banks when entering and leaving a
function. This calling convention is also the default when using the ‘-mlong-calls’
option.

On 68HC12 the compiler will use the call and rtc instructions to call and return
from a function.

On 68HC11 the compiler will generate a sequence of instructions to invoke a board-
specific routine to switch the memory bank and call the real function. The board-
specific routine simulates a call. At the end of a function, it will jump to a board-
specific routine instead of using rts. The board-specific return routine simulates
the rtc.

near On 68HC11 and 68HC12 the near attribute causes the compiler to use the normal
calling convention based on jsr and rts. This attribute can be used to cancel the
effect of the ‘-mlong-calls’ option.

dllimport
On Windows targets, the dllimport attribute causes the compiler to reference a
function or variable via a global pointer to a pointer that is set up by the Windows
dll library. The pointer name is formed by combining _imp__ and the function or
variable name. The attribute implies extern storage.

Currently, the attribute is ignored for inlined functions. If the attribute is applied to
a symbol definition, an error is reported. If a symbol previously declared dllimport
is later defined, the attribute is ignored in subsequent references, and a warning is
emitted. The attribute is also overridden by a subsequent declaration as dllexport.

When applied to C++ classes, the attribute marks non-inlined member functions
and static data members as imports. However, the attribute is ignored for virtual
methods to allow creation of vtables using thunks.

On cygwin, mingw and arm-pe targets, __declspec(dllimport) is recognized as a
synonym for __attribute__ ((dllimport)) for compatibility with other Windows
compilers.

The use of the dllimport attribute on functions is not necessary, but provides
a small performance benefit by eliminating a thunk in the dll. The use of the
dllimport attribute on imported variables was required on older versions of GNU
ld, but can now be avoided by passing the ‘--enable-auto-import’ switch to ld.
As with functions, using the attribute for a variable eliminates a thunk in the dll.

One drawback to using this attribute is that a pointer to a function or variable
marked as dllimport cannot be used as a constant address. The attribute can be
disabled for functions by setting the ‘-mnop-fun-dllimport’ flag.

dllexport
On Windows targets the dllexport attribute causes the compiler to provide a
global pointer to a pointer in a dll, so that it can be referenced with the dllimport
attribute. The pointer name is formed by combining _imp__ and the function or
variable name.

Currently, the dllexportattribute is ignored for inlined functions, but export can be
forced by using the ‘-fkeep-inline-functions’ flag. The attribute is also ignored
for undefined symbols.

When applied to C++ classes. the attribute marks defined non-inlined member
functions and static data members as exports. Static consts initialized in-class are
not marked unless they are also defined out-of-class.

Chapter 5: Extensions to the C Language Family 177

On cygwin, mingw and arm-pe targets, __declspec(dllexport) is recognized as a
synonym for __attribute__ ((dllexport)) for compatibility with other Windows
compilers.
Alternative methods for including the symbol in the dll’s export table are to use a
.def file with an EXPORTS section or, with GNU ld, using the ‘--export-all’ linker
flag.

You can specify multiple attributes in a declaration by separating them by commas within the
double parentheses or by immediately following an attribute declaration with another attribute
declaration.

Some people object to the __attribute__ feature, suggesting that ISO C’s #pragma should
be used instead. At the time __attribute__ was designed, there were two reasons for not doing
this.
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for
#pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated from
macros. In addition, a #pragma GCC namespace is now in use for GCC-specific pragmas. How-
ever, it has been found convenient to use __attribute__ to achieve a natural attachment of
attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that
do not naturally form part of the grammar. See section “Miscellaneous Preprocessing Directives”
in The GNU C Preprocessor.

5.26 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the constructs
to which attribute specifiers bind, for the C language. Some details may vary for C++ and
Objective-C. Because of infelicities in the grammar for attributes, some forms described here
may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there are
no manglings for attributes, although they may affect code generation, so problems may arise
when attributed types are used in conjunction with templates or overloading. Similarly, typeid
does not distinguish between types with different attributes. Support for attributes in C++ may
be restricted in future to attributes on declarations only, but not on nested declarators.

See Section 5.25 [Function Attributes], page 169, for details of the semantics of attributes
applying to functions. See Section 5.32 [Variable Attributes], page 181, for details of the seman-
tics of attributes applying to variables. See Section 5.33 [Type Attributes], page 185, for details
of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute list
is a possibly empty comma-separated sequence of attributes, where each attribute is one of the
following:
• Empty. Empty attributes are ignored.
• A word (which may be an identifier such as unused, or a reserved word such as const).
• A word, followed by, in parentheses, parameters for the attribute. These parameters take

one of the following forms:
• An identifier. For example, mode attributes use this form.
• An identifier followed by a comma and a non-empty comma-separated list of expres-

sions. For example, format attributes use this form.

178 Using the GNU Compiler Collection (GCC)

• A possibly empty comma-separated list of expressions. For example, format_arg at-
tributes use this form with the list being a single integer constant expression, and alias
attributes use this form with the list being a single string constant.

An attribute specifier list is a sequence of one or more attribute specifiers, not separated by
any other tokens.

An attribute specifier list may appear after the colon following a label, other than a case or
default label. The only attribute it makes sense to use after a label is unused. This feature is
intended for code generated by programs which contains labels that may be unused but which is
compiled with ‘-Wall’. It would not normally be appropriate to use in it human-written code,
though it could be useful in cases where the code that jumps to the label is contained within an
#ifdef conditional.

An attribute specifier list may appear as part of a struct, union or enum specifier. It may
go either immediately after the struct, union or enum keyword, or after the closing brace. It is
ignored if the content of the structure, union or enumerated type is not defined in the specifier
in which the attribute specifier list is used—that is, in usages such as struct __attribute_
_((foo)) bar with no following opening brace. Where attribute specifiers follow the closing
brace, they are considered to relate to the structure, union or enumerated type defined, not to
any enclosing declaration the type specifier appears in, and the type defined is not complete
until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations of
unnamed parameters and type names, and relates to that declaration (which may be nested
in another declaration, for example in the case of a parameter declaration), or to a particular
declarator within a declaration. Where an attribute specifier is applied to a parameter declared
as a function or an array, it should apply to the function or array rather than the pointer to
which the parameter is implicitly converted, but this is not yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute spec-
ifiers, whether or not such a list may in that context contain storage class specifiers. (Some
attributes, however, are essentially in the nature of storage class specifiers, and only make sense
where storage class specifiers may be used; for example, section.) There is one necessary lim-
itation to this syntax: the first old-style parameter declaration in a function definition cannot
begin with an attribute specifier, because such an attribute applies to the function instead by
syntax described below (which, however, is not yet implemented in this case). In some other
cases, attribute specifiers are permitted by this grammar but not yet supported by the compiler.
All attribute specifiers in this place relate to the declaration as a whole. In the obsolescent
usage where a type of int is implied by the absence of type specifiers, such a list of specifiers
and qualifiers may be an attribute specifier list with no other specifiers or qualifiers.

An attribute specifier list may appear immediately before a declarator (other than the first)
in a comma-separated list of declarators in a declaration of more than one identifier using a
single list of specifiers and qualifiers. Such attribute specifiers apply only to the identifier before
whose declarator they appear. For example, in

__attribute__((noreturn)) void d0 (void),

__attribute__((format(printf, 1, 2))) d1 (const char *, ...),

d2 (void)

the noreturn attribute applies to all the functions declared; the format attribute only applies
to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon ter-
minating the declaration of an identifier other than a function definition. At present, such
attribute specifiers apply to the declared object or function, but in future they may attach to
the outermost adjacent declarator. In simple cases there is no difference, but, for example, in

void (****f)(void) __attribute__((noreturn));

Chapter 5: Extensions to the C Language Family 179

at present the noreturn attribute applies to f, which causes a warning since f is not a function,
but in future it may apply to the function ****f. The precise semantics of what attributes in
such cases will apply to are not yet specified. Where an assembler name for an object or function
is specified (see Section 5.37 [Asm Labels], page 208), at present the attribute must follow the
asm specification; in future, attributes before the asm specification may apply to the adjacent
declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in a
function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a parameter
array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which
the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array,
but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present, there
are some limitations in this usage: the attributes correctly apply to the declarator, but for most
individual attributes the semantics this implies are not implemented. When attribute specifiers
follow the * of a pointer declarator, they may be mixed with any type qualifiers present. The
following describes the formal semantics of this syntax. It will make the most sense if you are
familiar with the formal specification of declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains decla-
ration specifiers that specify a type Type (such as int) and D1 is a declarator that contains an
identifier ident. The type specified for ident for derived declarators whose type does not include
an attribute specifier is as in the ISO C standard.

If D1 has the form (attribute-specifier-list D), and the declaration T D specifies
the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-
declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the declara-
tion T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 specifies the
type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type” for ident.

For example,
void (__attribute__((noreturn)) ****f) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function returning
void”. As another example,

char *__attribute__((aligned(8))) *f;

specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not
work with most attributes; for example, the usage of ‘aligned’ and ‘noreturn’ attributes given
above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement
attributes on nested declarators, some laxity is allowed in the placing of attributes. If an
attribute that only applies to types is applied to a declaration, it will be treated as applying to
the type of that declaration. If an attribute that only applies to declarations is applied to the
type of a declaration, it will be treated as applying to that declaration; and, for compatibility
with code placing the attributes immediately before the identifier declared, such an attribute
applied to a function return type will be treated as applying to the function type, and such an
attribute applied to an array element type will be treated as applying to the array type. If an
attribute that only applies to function types is applied to a pointer-to-function type, it will be
treated as applying to the pointer target type; if such an attribute is applied to a function return
type that is not a pointer-to-function type, it will be treated as applying to the function type.

180 Using the GNU Compiler Collection (GCC)

5.27 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-prototype
definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#ifdef __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{
return x == 0;

}

Suppose the type uid_t happens to be short. ISO C does not allow this example, because
subword arguments in old-style non-prototype definitions are promoted. Therefore in this ex-
ample the function definition’s argument is really an int, which does not match the prototype
argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C
compilers, because the programmer does not know whether the uid_t type is short, int,
or long. Therefore, in cases like these GNU C allows a prototype to override a later old-
style definition. More precisely, in GNU C, a function prototype argument type overrides the
argument type specified by a later old-style definition if the former type is the same as the latter
type before promotion. Thus in GNU C the above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{
return x == 0;

}

GNU C++ does not support old-style function definitions, so this extension is irrelevant.

5.28 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’ and continue until the end
of the line. Many other C implementations allow such comments, and they are included in the
1999 C standard. However, C++ style comments are not recognized if you specify an ‘-std’
option specifying a version of ISO C before C99, or ‘-ansi’ (equivalent to ‘-std=c89’).

Chapter 5: Extensions to the C Language Family 181

5.29 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many tra-
ditional C implementations allow such identifiers. However, dollar signs in identifiers are not
supported on a few target machines, typically because the target assembler does not allow them.

5.30 The Character 〈ESC〉 in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII character
〈ESC〉.

5.31 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum
alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte
boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On more
traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type even
at an odd address. For these machines, __alignof__ reports the recommended alignment of a
type.

If the operand of __alignof__ is an lvalue rather than a type, its value is the required
alignment for its type, taking into account any minimum alignment specified with GCC’s __
attribute__ extension (see Section 5.32 [Variable Attributes], page 181). For example, after
this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 1, even though its actual alignment is probably 2 or 4,
the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.

5.32 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses. Some
attributes are currently defined generically for variables. Other attributes are defined for vari-
ables on particular target systems. Other attributes are available for functions (see Section 5.25
[Function Attributes], page 169) and for types (see Section 5.33 [Type Attributes], page 185).
Other front ends might define more attributes (see Chapter 6 [Extensions to the C++ Language],
page 245).

You may also specify attributes with ‘__’ preceding and following each keyword. This allows
you to use them in header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

See Section 5.26 [Attribute Syntax], page 177, for details of the exact syntax for using at-
tributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field,
measured in bytes. For example, the declaration:

182 Using the GNU Compiler Collection (GCC)

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On
a 68040, this could be used in conjunction with an asm expression to access the
move16 instruction which requires 16-byte aligned operands.
You can also specify the alignment of structure fields. For example, to create a
double-word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces the
union to be double-word aligned.
As in the preceding examples, you can explicitly specify the alignment (in bytes) that
you wish the compiler to use for a given variable or structure field. Alternatively,
you can leave out the alignment factor and just ask the compiler to align a variable
or field to the maximum useful alignment for the target machine you are compiling
for. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification,
the compiler automatically sets the alignment for the declared variable or field to
the largest alignment which is ever used for any data type on the target machine you
are compiling for. Doing this can often make copy operations more efficient, because
the compiler can use whatever instructions copy the biggest chunks of memory when
performing copies to or from the variables or fields that you have aligned this way.
The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be limited by inherent limita-
tions in your linker. On many systems, the linker is only able to arrange for variables
to be aligned up to a certain maximum alignment. (For some linkers, the maximum
supported alignment may be very very small.) If your linker is only able to align
variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an
__attribute__ will still only provide you with 8 byte alignment. See your linker
documentation for further information.

cleanup (cleanup_function)
The cleanup attribute runs a function when the variable goes out of scope. This
attribute can only be applied to auto function scope variables; it may not be applied
to parameters or variables with static storage duration. The function must take one
parameter, a pointer to a type compatible with the variable. The return value of
the function (if any) is ignored.
If ‘-fexceptions’ is enabled, then cleanup function will be run during the stack
unwinding that happens during the processing of the exception. Note that the
cleanup attribute does not allow the exception to be caught, only to perform an
action. It is undefined what happens if cleanup function does not return normally.

common
nocommon The common attribute requests GCC to place a variable in “common” storage. The

nocommon attribute requests the opposite – to allocate space for it directly.
These attributes override the default chosen by the ‘-fno-common’ and ‘-fcommon’
flags respectively.

deprecated
The deprecated attribute results in a warning if the variable is used anywhere in
the source file. This is useful when identifying variables that are expected to be
removed in a future version of a program. The warning also includes the location

Chapter 5: Extensions to the C Language Family 183

of the declaration of the deprecated variable, to enable users to easily find further
information about why the variable is deprecated, or what they should do instead.
Note that the warning only occurs for uses:

extern int old_var __attribute__ ((deprecated));

extern int old_var;

int new_fn () { return old_var; }

results in a warning on line 3 but not line 2.
The deprecated attribute can also be used for functions and types (see Section 5.25
[Function Attributes], page 169, see Section 5.33 [Type Attributes], page 185.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type corre-
sponds to the mode mode. This in effect lets you request an integer or floating
point type according to its width.
You may also specify a mode of ‘byte’ or ‘__byte__’ to indicate the mode corre-
sponding to a one-byte integer, ‘word’ or ‘__word__’ for the mode of a one-word
integer, and ‘pointer’ or ‘__pointer__’ for the mode used to represent pointers.

packed The packed attribute specifies that a variable or structure field should have the
smallest possible alignment—one byte for a variable, and one bit for a field, unless
you specify a larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it immediately follows a:

struct foo
{
char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and bss.
Sometimes, however, you need additional sections, or you need certain particular
variables to appear in special sections, for example to map to special hardware. The
section attribute specifies that a variable (or function) lives in a particular section.
For example, this small program uses several specific section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };

struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };

int init_data __attribute__ ((section ("INITDATA"))) = 0;

main()

{

/* Initialize stack pointer */

init_sp (stack + sizeof (stack));

/* Initialize initialized data */

memcpy (&init_data, &data, &edata - &data);

/* Turn on the serial ports */

init_duart (&a);

init_duart (&b);

}

Use the section attribute with an initialized definition of a global variable, as shown
in the example. GCC issues a warning and otherwise ignores the section attribute
in uninitialized variable declarations.
You may only use the section attribute with a fully initialized global definition
because of the way linkers work. The linker requires each object be defined once,

184 Using the GNU Compiler Collection (GCC)

with the exception that uninitialized variables tentatively go in the common (or bss)
section and can be multiply “defined”. You can force a variable to be initialized
with the ‘-fno-common’ flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute is not
available on all platforms. If you need to map the entire contents of a module to a
particular section, consider using the facilities of the linker instead.

shared On Windows, in addition to putting variable definitions in a named section, the
section can also be shared among all running copies of an executable or DLL. For
example, this small program defines shared data by putting it in a named section
shared and marking the section shareable:

int foo __attribute__((section ("shared"), shared)) = 0;

int

main()

{

/* Read and write foo. All running

copies see the same value. */

return 0;

}

You may only use the shared attribute along with section attribute with a fully
initialized global definition because of the way linkers work. See section attribute
for more information.

The shared attribute is only available on Windows.

tls_model ("tls_model")
The tls_model attribute sets thread-local storage model (see Section 5.48 [Thread-
Local], page 242) of a particular __thread variable, overriding -ftls-model= com-
mand line switch on a per-variable basis. The tls model argument should be one of
global-dynamic, local-dynamic, initial-exec or local-exec.

Not all targets support this attribute.

transparent_union
This attribute, attached to a function parameter which is a union, means that the
corresponding argument may have the type of any union member, but the argument
is passed as if its type were that of the first union member. For more details see
See Section 5.33 [Type Attributes], page 185. You can also use this attribute on a
typedef for a union data type; then it applies to all function parameters with that
type.

unused This attribute, attached to a variable, means that the variable is meant to be possibly
unused. GCC will not produce a warning for this variable.

vector_size (bytes)
This attribute specifies the vector size for the variable, measured in bytes. For
example, the declaration:

int foo __attribute__ ((vector_size (16)));

causes the compiler to set the mode for foo, to be 16 bytes, divided into int sized
units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corresponding mode
of foo will be V4SI.

This attribute is only applicable to integral and float scalars, although arrays, point-
ers, and function return values are allowed in conjunction with this construct.

Aggregates with this attribute are invalid, even if they are of the same size as a
corresponding scalar. For example, the declaration:

Chapter 5: Extensions to the C Language Family 185

struct S { int a; };

struct S __attribute__ ((vector_size (16))) foo;

is invalid even if the size of the structure is the same as the size of the int.

weak The weak attribute is described in See Section 5.25 [Function Attributes], page 169.

model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The
identifier model-name is one of small, medium, or large, representing each of the
code models.
Small model objects live in the lower 16MB of memory (so that their addresses can
be loaded with the ld24 instruction).
Medium and large model objects may live anywhere in the 32-bit address space (the
compiler will generate seth/add3 instructions to load their addresses).

dllimport
The dllimport attribute is described in See Section 5.25 [Function Attributes],
page 169.

dlexport The dllexport attribute is described in See Section 5.25 [Function Attributes],
page 169.

To specify multiple attributes, separate them by commas within the double parentheses: for
example, ‘__attribute__ ((aligned (16), packed))’.

5.33 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union types
when you define such types. This keyword is followed by an attribute specification inside double
parentheses. Six attributes are currently defined for types: aligned, packed, transparent_
union, unused, deprecated and may_alias. Other attributes are defined for functions (see
Section 5.25 [Function Attributes], page 169) and for variables (see Section 5.32 [Variable At-
tributes], page 181).

You may also specify any one of these attributes with ‘__’ preceding and following its keyword.
This allows you to use these attributes in header files without being concerned about a possible
macro of the same name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes either in a typedef dec-
laration or just past the closing curly brace of a complete enum, struct or union type definition
and the packed attribute only past the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag and the name of the
type rather than after the closing brace.

See Section 5.26 [Attribute Syntax], page 177, for details of the exact syntax for using at-
tributes.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the specified
type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8)));

typedef int more_aligned_int __attribute__ ((aligned (8)));

force the compiler to insure (as far as it can) that each variable whose type is struct
S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary.
On a SPARC, having all variables of type struct S aligned to 8-byte boundaries
allows the compiler to use the ldd and std (doubleword load and store) instructions

186 Using the GNU Compiler Collection (GCC)

when copying one variable of type struct S to another, thus improving run-time
efficiency.

Note that the alignment of any given struct or union type is required by the ISO
C standard to be at least a perfect multiple of the lowest common multiple of the
alignments of all of the members of the struct or union in question. This means
that you can effectively adjust the alignment of a struct or union type by attaching
an aligned attribute to any one of the members of such a type, but the notation
illustrated in the example above is a more obvious, intuitive, and readable way to
request the compiler to adjust the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes)
that you wish the compiler to use for a given struct or union type. Alternatively,
you can leave out the alignment factor and just ask the compiler to align a type to
the maximum useful alignment for the target machine you are compiling for. For
example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification,
the compiler automatically sets the alignment for the type to the largest alignment
which is ever used for any data type on the target machine you are compiling for.
Doing this can often make copy operations more efficient, because the compiler
can use whatever instructions copy the biggest chunks of memory when performing
copies to or from the variables which have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the entire
struct S type is 6 bytes. The smallest power of two which is greater than or equal
to that is 8, so the compiler sets the alignment for the entire struct S type to 8
bytes.

Note that although you can ask the compiler to select a time-efficient alignment
for a given type and then declare only individual stand-alone objects of that type,
the compiler’s ability to select a time-efficient alignment is primarily useful only
when you plan to create arrays of variables having the relevant (efficiently aligned)
type. If you declare or use arrays of variables of an efficiently-aligned type, then it
is likely that your program will also be doing pointer arithmetic (or subscripting,
which amounts to the same thing) on pointers to the relevant type, and the code
that the compiler generates for these pointer arithmetic operations will often be
more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limita-
tions in your linker. On many systems, the linker is only able to arrange for variables
to be aligned up to a certain maximum alignment. (For some linkers, the maximum
supported alignment may be very very small.) If your linker is only able to align
variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an
__attribute__ will still only provide you with 8 byte alignment. See your linker
documentation for further information.

packed This attribute, attached to an enum, struct, or union type definition, specifies that
the minimum required memory be used to represent the type.

Specifying this attribute for struct and union types is equivalent to specifying
the packed attribute on each of the structure or union members. Specifying the
‘-fshort-enums’ flag on the line is equivalent to specifying the packed attribute on
all enum definitions.

Chapter 5: Extensions to the C Language Family 187

You may only specify this attribute after a closing curly brace on an enum definition,
not in a typedef declaration, unless that declaration also contains the definition of
the enum.

transparent_union
This attribute, attached to a union type definition, indicates that any function
parameter having that union type causes calls to that function to be treated in a
special way.
First, the argument corresponding to a transparent union type can be of any type
in the union; no cast is required. Also, if the union contains a pointer type, the
corresponding argument can be a null pointer constant or a void pointer expression;
and if the union contains a void pointer type, the corresponding argument can be
any pointer expression. If the union member type is a pointer, qualifiers like const
on the referenced type must be respected, just as with normal pointer conversions.
Second, the argument is passed to the function using the calling conventions of
the first member of the transparent union, not the calling conventions of the union
itself. All members of the union must have the same machine representation; this
is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that have multiple interfaces
for compatibility reasons. For example, suppose the wait function must accept
either a value of type int * to comply with Posix, or a value of type union wait *
to comply with the 4.1BSD interface. If wait’s parameter were void *, wait would
accept both kinds of arguments, but it would also accept any other pointer type and
this would make argument type checking less useful. Instead, <sys/wait.h> might
define the interface as follows:

typedef union

{

int *__ip;

union wait *__up;

} wait_status_ptr_t __attribute__ ((__transparent_union__));

pid_t wait (wait_status_ptr_t);

This interface allows either int * or union wait * arguments to be passed, using
the int * calling convention. The program can call wait with arguments of either
type:

int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }

With this interface, wait’s implementation might look like this:
pid_t wait (wait_status_ptr_t p)
{
return waitpid (-1, p.__ip, 0);

}

unused When attached to a type (including a union or a struct), this attribute means that
variables of that type are meant to appear possibly unused. GCC will not produce
a warning for any variables of that type, even if the variable appears to do nothing.
This is often the case with lock or thread classes, which are usually defined and
then not referenced, but contain constructors and destructors that have nontrivial
bookkeeping functions.

deprecated
The deprecated attribute results in a warning if the type is used anywhere in the
source file. This is useful when identifying types that are expected to be removed in a

188 Using the GNU Compiler Collection (GCC)

future version of a program. If possible, the warning also includes the location of the
declaration of the deprecated type, to enable users to easily find further information
about why the type is deprecated, or what they should do instead. Note that the
warnings only occur for uses and then only if the type is being applied to an identifier
that itself is not being declared as deprecated.

typedef int T1 __attribute__ ((deprecated));

T1 x;

typedef T1 T2;

T2 y;

typedef T1 T3 __attribute__ ((deprecated));

T3 z __attribute__ ((deprecated));

results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is issued
for line 4 because T2 is not explicitly deprecated. Line 5 has no warning because
T3 is explicitly deprecated. Similarly for line 6.
The deprecated attribute can also be used for functions and variables (see Sec-
tion 5.25 [Function Attributes], page 169, see Section 5.32 [Variable Attributes],
page 181.)

may_alias
Accesses to objects with types with this attribute are not subjected to type-based
alias analysis, but are instead assumed to be able to alias any other type of objects,
just like the char type. See ‘-fstrict-aliasing’ for more information on aliasing
issues.
Example of use:

typedef short __attribute__((__may_alias__)) short_a;

int

main (void)

{

int a = 0x12345678;

short_a *b = (short_a *) &a;

b[1] = 0;

if (a == 0x12345678)

abort();

exit(0);

}

If you replaced short_a with short in the variable declaration, the above program
would abort when compiled with ‘-fstrict-aliasing’, which is on by default at
‘-O2’ or above in recent GCC versions.

To specify multiple attributes, separate them by commas within the double parentheses: for
example, ‘__attribute__ ((aligned (16), packed))’.

5.34 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to integrate that function’s code into the
code for its callers. This makes execution faster by eliminating the function-call overhead; in
addition, if any of the actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s code needs to be included.
The effect on code size is less predictable; object code may be larger or smaller with function
inlining, depending on the particular case. Inlining of functions is an optimization and it really
“works” only in optimizing compilation. If you don’t use ‘-O’, no function is really inline.

Chapter 5: Extensions to the C Language Family 189

Inline functions are included in the ISO C99 standard, but there are currently substantial
differences between what GCC implements and what the ISO C99 standard requires.

To declare a function inline, use the inline keyword in its declaration, like this:
inline int
inc (int *a)
{
(*a)++;

}

(If you are writing a header file to be included in ISO C programs, write __inline__ instead
of inline. See Section 5.39 [Alternate Keywords], page 210.) You can also make all “simple
enough” functions inline with the option ‘-finline-functions’.

Note that certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable sized data types (see
Section 5.14 [Variable Length], page 163), use of computed goto (see Section 5.3 [Labels as
Values], page 154), use of nonlocal goto, and nested functions (see Section 5.4 [Nested Functions],
page 155). Using ‘-Winline’ will warn when a function marked inline could not be substituted,
and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyword does not affect the linkage
of the function.

GCC automatically inlines member functions defined within the class body of C++
programs even if they are not explicitly declared inline. (You can override this with
‘-fno-default-inline’; see Section 3.5 [Options Controlling C++ Dialect], page 21.)

When a function is both inline and static, if all calls to the function are integrated into
the caller, and the function’s address is never used, then the function’s own assembler code is
never referenced. In this case, GCC does not actually output assembler code for the function,
unless you specify the option ‘-fkeep-inline-functions’. Some calls cannot be integrated for
various reasons (in particular, calls that precede the function’s definition cannot be integrated,
and neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled as usual if
the program refers to its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume that there may be
calls from other source files; since a global symbol can be defined only once in any program, the
function must not be defined in the other source files, so the calls therein cannot be integrated.
Therefore, a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used
only for inlining. In no case is the function compiled on its own, not even if you refer to its
address explicitly. Such an address becomes an external reference, as if you had only declared
the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it
is to put a function definition in a header file with these keywords, and put another copy of the
definition (lacking inline and extern) in a library file. The definition in the header file will
cause most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

Since GCC eventually will implement ISO C99 semantics for inline functions, it is best to use
static inline only to guarantee compatibility. (The existing semantics will remain available
when ‘-std=gnu89’ is specified, but eventually the default will be ‘-std=gnu99’ and that will
implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing unless you specify the
‘always_inline’ attribute for the function, like this:

190 Using the GNU Compiler Collection (GCC)

/* Prototype. */
inline void foo (const char) __attribute__((always_inline));

5.35 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction using C
expressions. This means you need not guess which registers or memory locations will contain
the data you want to use.

You must specify an assembler instruction template much like what appears in a machine
description, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output operand.
Each has ‘"f"’ as its operand constraint, saying that a floating point register is required. The
‘=’ in ‘=f’ indicates that the operand is an output; all output operands’ constraints must use
‘=’. The constraints use the same language used in the machine description (see Section 5.36
[Constraints], page 195).

Each operand is described by an operand-constraint string followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand and another
separates the last output operand from the first input, if any. Commas separate the operands
within each group. The total number of operands is currently limited to 30; this limitation may
be lifted in some future version of GCC.

If there are no output operands but there are input operands, you must place two consecutive
colons surrounding the place where the output operands would go.

As of GCC version 3.1, it is also possible to specify input and output operands using symbolic
names which can be referenced within the assembler code. These names are specified inside
square brackets preceding the constraint string, and can be referenced inside the assembler code
using %[name] instead of a percentage sign followed by the operand number. Using named
operands the above example could look like:

asm ("fsinx %[angle],%[output]"
: [output] "=f" (result)
: [angle] "f" (angle));

Note that the symbolic operand names have no relation whatsoever to other C identifiers. You
may use any name you like, even those of existing C symbols, but you must ensure that no two
operands within the same assembler construct use the same symbolic name.

Output operand expressions must be lvalues; the compiler can check this. The input operands
need not be lvalues. The compiler cannot check whether the operands have data types that
are reasonable for the instruction being executed. It does not parse the assembler instruction
template and does not know what it means or even whether it is valid assembler input. The
extended asm feature is most often used for machine instructions the compiler itself does not
know exist. If the output expression cannot be directly addressed (for example, it is a bit-field),
your constraint must allow a register. In that case, GCC will use the register as the output of
the asm, and then store that register into the output.

The ordinary output operands must be write-only; GCC will assume that the values in these
operands before the instruction are dead and need not be generated. Extended asm supports
input-output or read-write operands. Use the constraint character ‘+’ to indicate such an operand
and list it with the output operands.

When the constraints for the read-write operand (or the operand in which only some of
the bits are to be changed) allows a register, you may, as an alternative, logically split its

Chapter 5: Extensions to the C Language Family 191

function into two separate operands, one input operand and one write-only output operand.
The connection between them is expressed by constraints which say they need to be in the same
location when the instruction executes. You can use the same C expression for both operands,
or different expressions. For example, here we write the (fictitious) ‘combine’ instruction with
bar as its read-only source operand and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0. A
number in constraint is allowed only in an input operand and it must refer to an output operand.

Only a number in the constraint can guarantee that one operand will be in the same place
as another. The mere fact that foo is the value of both operands is not enough to guarantee
that they will be in the same place in the generated assembler code. The following would not
work reliably:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;
GCC knows no reason not to do so. For example, the compiler might find a copy of the value
of foo in one register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address). Of course, since the register for operand 1
is not even mentioned in the assembler code, the result will not work, but GCC can’t tell that.

As of GCC version 3.1, one may write [name] instead of the operand number for a matching
constraint. For example:

asm ("cmoveq %1,%2,%[result]"
: [result] "=r"(result)
: "r" (test), "r"(new), "[result]"(old));

Some instructions clobber specific hard registers. To describe this, write a third colon after
the input operands, followed by the names of the clobbered hard registers (given as strings).
Here is a realistic example for the VAX:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

You may not write a clobber description in a way that overlaps with an input or output
operand. For example, you may not have an operand describing a register class with one member
if you mention that register in the clobber list. Variables declared to live in specific registers
(see Section 5.38 [Explicit Reg Vars], page 208), and used as asm input or output operands must
have no part mentioned in the clobber description. There is no way for you to specify that an
input operand is modified without also specifying it as an output operand. Note that if all the
output operands you specify are for this purpose (and hence unused), you will then also need to
specify volatile for the asm construct, as described below, to prevent GCC from deleting the
asm statement as unused.

If you refer to a particular hardware register from the assembler code, you will probably have
to list the register after the third colon to tell the compiler the register’s value is modified. In
some assemblers, the register names begin with ‘%’; to produce one ‘%’ in the assembler code,
you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list of
clobbered registers. GCC on some machines represents the condition codes as a specific hardware
register; ‘cc’ serves to name this register. On other machines, the condition code is handled
differently, and specifying ‘cc’ has no effect. But it is valid no matter what the machine.

If your assembler instructions access memory in an unpredictable fashion, add ‘memory’ to the
list of clobbered registers. This will cause GCC to not keep memory values cached in registers

192 Using the GNU Compiler Collection (GCC)

across the assembler instruction and not optimize stores or loads to that memory. You will also
want to add the volatile keyword if the memory affected is not listed in the inputs or outputs
of the asm, as the ‘memory’ clobber does not count as a side-effect of the asm. If you know how
large the accessed memory is, you can add it as input or output but if this is not known, you
should add ‘memory’. As an example, if you access ten bytes of a string, you can use a memory
input like:

{"m"(({ struct { char x[10]; } *p = (void *)ptr ; *p; }))}.

Note that in the following example the memory input is necessary, otherwise GCC might
optimize the store to x away:

int foo ()
{
int x = 42;
int *y = &x;
int result;
asm ("magic stuff accessing an ’int’ pointed to by ’%1’"

"=&d" (r) : "a" (y), "m" (*y));
return result;

}

You can put multiple assembler instructions together in a single asm template, separated by
the characters normally used in assembly code for the system. A combination that works in
most places is a newline to break the line, plus a tab character to move to the instruction field
(written as ‘\n\t’). Sometimes semicolons can be used, if the assembler allows semicolons as a
line-breaking character. Note that some assembler dialects use semicolons to start a comment.
The input operands are guaranteed not to use any of the clobbered registers, and neither will
the output operands’ addresses, so you can read and write the clobbered registers as many times
as you like. Here is an example of multiple instructions in a template; it assumes the subroutine
_foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GCC may allocate it in the same
register as an unrelated input operand, on the assumption the inputs are consumed before the
outputs are produced. This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use ‘&’ for each output operand that may not overlap
an input. See Section 5.36.4 [Modifiers], page 197.

If you want to test the condition code produced by an assembler instruction, you must include
a branch and a label in the asm construct, as follows:

asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix as-
semblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s opti-
mizers do not know about these jumps, and therefore they cannot take account of them when
deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in
macros that look like functions. For example,

#define sin(x) \

Chapter 5: Extensions to the C Language Family 193

({ double __value, __arg = (x); \
asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper double
value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast
in the asm. This is different from using a variable __arg in that it converts more different types.
For example, if the desired type were int, casting the argument to int would accept a pointer
with no complaint, while assigning the argument to an int variable named __arg would warn
about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction has
no side effects except to change the output operands. This does not mean instructions with
a side effect cannot be used, but you must be careful, because the compiler may eliminate
them if the output operands aren’t used, or move them out of loops, or replace two with one if
they constitute a common subexpression. Also, if your instruction does have a side effect on a
variable that otherwise appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined, by
writing the keyword volatile after the asm. For example:

#define get_and_set_priority(new) \
({ int __old; \

asm volatile ("get_and_set_priority %0, %1" \
: "=g" (__old) : "g" (new)); \

__old; })

If you write an asm instruction with no outputs, GCC will know the instruction has side-effects
and will not delete the instruction or move it outside of loops.

The volatile keyword indicates that the instruction has important side-effects. GCC will
not delete a volatile asm if it is reachable. (The instruction can still be deleted if GCC can prove
that control-flow will never reach the location of the instruction.) In addition, GCC will not
reschedule instructions across a volatile asm instruction. For example:

*(volatile int *)addr = foo;
asm volatile ("eieio" : :);

Assume addr contains the address of a memory mapped device register. The PowerPC eieio
instruction (Enforce In-order Execution of I/O) tells the CPU to make sure that the store to
that device register happens before it issues any other I/O.

Note that even a volatile asm instruction can be moved in ways that appear insignificant
to the compiler, such as across jump instructions. You can’t expect a sequence of volatile asm
instructions to remain perfectly consecutive. If you want consecutive output, use a single asm.
Also, GCC will perform some optimizations across a volatile asm instruction; GCC does not
“forget everything” when it encounters a volatile asm instruction the way some other compilers
do.

An asm instruction without any operands or clobbers (an “old style” asm) will be treated
identically to a volatile asm instruction.

It is a natural idea to look for a way to give access to the condition code left by the assembler
instruction. However, when we attempted to implement this, we found no way to make it work
reliably. The problem is that output operands might need reloading, which would result in
additional following “store” instructions. On most machines, these instructions would alter the
condition code before there was time to test it. This problem doesn’t arise for ordinary “test”
and “compare” instructions because they don’t have any output operands.

194 Using the GNU Compiler Collection (GCC)

For reasons similar to those described above, it is not possible to give an assembler instruction
access to the condition code left by previous instructions.

If you are writing a header file that should be includable in ISO C programs, write __asm__
instead of asm. See Section 5.39 [Alternate Keywords], page 210.

5.35.1 i386 floating point asm operands

There are several rules on the usage of stack-like regs in asm operands insns. These rules apply
only to the operands that are stack-like regs:

1. Given a set of input regs that die in an asm operands, it is necessary to know which are
implicitly popped by the asm, and which must be explicitly popped by gcc.

An input reg that is implicitly popped by the asm must be explicitly clobbered, unless it is
constrained to match an output operand.

2. For any input reg that is implicitly popped by an asm, it is necessary to know how to adjust
the stack to compensate for the pop. If any non-popped input is closer to the top of the
reg-stack than the implicitly popped reg, it would not be possible to know what the stack
looked like—it’s not clear how the rest of the stack “slides up”.

All implicitly popped input regs must be closer to the top of the reg-stack than any input
that is not implicitly popped.

It is possible that if an input dies in an insn, reload might use the input reg for an output
reload. Consider this example:

asm ("foo" : "=t" (a) : "f" (b));

This asm says that input B is not popped by the asm, and that the asm pushes a result
onto the reg-stack, i.e., the stack is one deeper after the asm than it was before. But, it
is possible that reload will think that it can use the same reg for both the input and the
output, if input B dies in this insn.

If any input operand uses the f constraint, all output reg constraints must use the & early-
clobber.

The asm above would be written as

asm ("foo" : "=&t" (a) : "f" (b));

3. Some operands need to be in particular places on the stack. All output operands fall in this
category—there is no other way to know which regs the outputs appear in unless the user
indicates this in the constraints.

Output operands must specifically indicate which reg an output appears in after an asm.
=f is not allowed: the operand constraints must select a class with a single reg.

4. Output operands may not be “inserted” between existing stack regs. Since no 387 opcode
uses a read/write operand, all output operands are dead before the asm operands, and
are pushed by the asm operands. It makes no sense to push anywhere but the top of the
reg-stack.

Output operands must start at the top of the reg-stack: output operands may not “skip” a
reg.

5. Some asm statements may need extra stack space for internal calculations. This can be
guaranteed by clobbering stack registers unrelated to the inputs and outputs.

Here are a couple of reasonable asms to want to write. This asm takes one input, which is
internally popped, and produces two outputs.

asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

Chapter 5: Extensions to the C Language Family 195

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces them
with one output. The user must code the st(1) clobber for reg-stack.c to know that fyl2xp1
pops both inputs.

asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");

5.36 Constraints for asm Operands

Here are specific details on what constraint letters you can use with asm operands. Constraints
can say whether an operand may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address; whether the operand may be
an immediate constant, and which possible values it may have. Constraints can also require two
operands to match.

5.36.2 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of
operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except the
first. This enables each alternative for different operands to be visually aligned
in the machine description even if they have different number of constraints and
modifiers.

‘m’ A memory operand is allowed, with any kind of address that the machine supports
in general.

‘o’ A memory operand is allowed, but only if the address is offsettable. This means that
adding a small integer (actually, the width in bytes of the operand, as determined
by its machine mode) may be added to the address and the result is also a valid
memory address.
For example, an address which is constant is offsettable; so is an address that is
the sum of a register and a constant (as long as a slightly larger constant is also
within the range of address-offsets supported by the machine); but an autoincrement
or autodecrement address is not offsettable. More complicated indirect/indexed
addresses may or may not be offsettable depending on the other addressing modes
that the machine supports.
Note that in an output operand which can be matched by another operand, the
constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the target ma-
chine has predecrement addressing) and ‘>’ (if the target machine has preincrement
addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would fit
the ‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or post-
decrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either preincrement or postin-
crement) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

‘i’ An immediate integer operand (one with constant value) is allowed. This includes
symbolic constants whose values will be known only at assembly time.

196 Using the GNU Compiler Collection (GCC)

‘n’ An immediate integer operand with a known numeric value is allowed. Many sys-
tems cannot support assembly-time constants for operands less than a word wide.
Constraints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in specified
ranges. For example, on the 68000, ‘I’ is defined to stand for the range of values 1
to 8. This is the range permitted as a shift count in the shift instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but only
if the target floating point format is the same as that of the host machine (on which
the compiler is running).

‘F’ An immediate floating operand (expression code const_double or const_vector)
is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not
known at compile time, it certainly must allow any known value. So why use ‘s’
instead of ‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate
operand; but if the immediate value is between −128 and 127, better code results
from loading the value into a register and using the register. This is because the
load into the register can be done with a ‘moveq’ instruction. We arrange for this
to happen by defining the letter ‘K’ to mean “any integer outside the range −128 to
127”, and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for registers
that are not general registers.

‘X’ Any operand whatsoever is allowed.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is allowed. If a digit is used
together with letters within the same alternative, the digit should come last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There is
scant chance for ambiguity, since to-date it has never been desirable that ‘10’ be
interpreted as matching either operand 1 or operand 0. Should this be desired, one
can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the assembler
has only a single operand that fills two roles which asm distinguishes. For example,
an add instruction uses two input operands and an output operand, but on most
CISC machines an add instruction really has only two operands, one of them an
input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of the
operand that uses it in the constraint.

Chapter 5: Extensions to the C Language Family 197

‘p’ An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.
‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the match_
operand as the mode of the memory reference for which the address would be valid.

other-letters
Other letters can be defined in machine-dependent fashion to stand for particular
classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’ are defined on
the 68000/68020 to stand for data, address and floating point registers.

5.36.3 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example,
on the 68000, a logical-or instruction can combine register or an immediate value into memory, or
it can combine any kind of operand into a register; but it cannot combine one memory location
into another.

These constraints are represented as multiple alternatives. An alternative can be described
by a series of letters for each operand. The overall constraint for an operand is made from the
letters for this operand from the first alternative, a comma, the letters for this operand from
the second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If two
alternatives need the same amount of copying, the one that comes first is chosen. These choices
can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no alter-
native applies exactly. The compiler regards this alternative as one unit more costly
for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can still
be used if it fits without reloading, but if reloading is needed, some other alternative
will be used.

5.36.4 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.
When the compiler fixes up the operands to satisfy the constraints, it needs to know
which operands are inputs to the instruction and which are outputs from it. ‘=’
identifies an output; ‘+’ identifies an operand that is both input and output; all
other operands are assumed to be input only.
If you specify ‘=’ or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘&’ Means (in a particular alternative) that this operand is an earlyclobber operand,
which is modified before the instruction is finished using the input operands. There-
fore, this operand may not lie in a register that is used as an input operand or as
part of any memory address.

198 Using the GNU Compiler Collection (GCC)

‘&’ applies only to the alternative in which it is written. In constraints with multiple
alternatives, sometimes one alternative requires ‘&’ while others do not. See, for
example, the ‘movdf’ insn of the 68000.
An input operand can be tied to an earlyclobber operand if its only use as an input
occurs before the early result is written. Adding alternatives of this form often
allows GCC to produce better code when only some of the inputs can be affected
by the earlyclobber. See, for example, the ‘mulsi3’ insn of the ARM.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if that
is the cheapest way to make all operands fit the constraints. GCC can only handle
one commutative pair in an asm; if you use more, the compiler may fail.

‘#’ Says that all following characters, up to the next comma, are to be ignored as a
constraint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register prefer-
ences. ‘*’ has no effect on the meaning of the constraint as a constraint, and no
effect on reloading.

5.36.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use the
constraint letters that usually have very similar meanings across architectures. The most com-
monly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers respectively;
see Section 5.36.2 [Simple Constraints], page 195), and ‘I’, usually the letter indicating the most
common immediate-constant format.

For each machine architecture, the ‘config/machine/machine.h’ file defines additional con-
straints. These constraints are used by the compiler itself for instruction generation, as well as
for asm statements; therefore, some of the constraints are not particularly interesting for asm.
The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size or
smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for constants of
greater than word size precision (usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only defined
for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best way to
be certain you have the right constraints. However, here is a summary of the machine-dependent
constraints available on some particular machines.

ARM family—‘arm.h’
f Floating-point register

Chapter 5: Extensions to the C Language Family 199

F One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or 10.0

G Floating-point constant that would satisfy the constraint ‘F’ if it were
negated

I Integer that is valid as an immediate operand in a data processing in-
struction. That is, an integer in the range 0 to 255 rotated by a multiple
of 2

J Integer in the range −4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted (ones complement)

L Integer that satisfies constraint ‘I’ when negated (twos complement)

M Integer in the range 0 to 32

Q A memory reference where the exact address is in a single register (“m’’
is preferable for asm statements)

R An item in the constant pool

S A symbol in the text segment of the current file

AVR family—‘avr.h’
l Registers from r0 to r15

a Registers from r16 to r23

d Registers from r16 to r31

w Registers from r24 to r31. These registers can be used in ‘adiw’ com-
mand

e Pointer register (r26–r31)

b Base pointer register (r28–r31)

q Stack pointer register (SPH:SPL)

t Temporary register r0

x Register pair X (r27:r26)

y Register pair Y (r29:r28)

z Register pair Z (r31:r30)

I Constant greater than −1, less than 64

J Constant greater than −64, less than 1

K Constant integer 2

L Constant integer 0

M Constant that fits in 8 bits

N Constant integer −1

O Constant integer 8, 16, or 24

P Constant integer 1

G A floating point constant 0.0

IBM RS6000—‘rs6000.h’
b Address base register

200 Using the GNU Compiler Collection (GCC)

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

z ‘FPMEM’ stack memory for FPR-GPR transfers

I Signed 16-bit constant

J Unsigned 16-bit constant shifted left 16 bits (use ‘L’ instead for SImode
constants)

K Unsigned 16-bit constant

L Signed 16-bit constant shifted left 16 bits

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16-bit constant

G Floating point constant that can be loaded into a register with one
instruction per word

Q Memory operand that is an offset from a register (‘m’ is preferable for
asm statements)

R AIX TOC entry

S Constant suitable as a 64-bit mask operand

T Constant suitable as a 32-bit mask operand

U System V Release 4 small data area reference

Intel 386—‘i386.h’
q ‘a’, b, c, or d register for the i386. For x86-64 it is equivalent to ‘r’

class. (for 8-bit instructions that do not use upper halves)

Q ‘a’, b, c, or d register. (for 8-bit instructions, that do use upper halves)

R Legacy register—equivalent to r class in i386 mode. (for non-8-bit reg-
isters used together with 8-bit upper halves in a single instruction)

A Specifies the ‘a’ or ‘d’ registers. This is primarily useful for 64-bit inte-
ger values (when in 32-bit mode) intended to be returned with the ‘d’
register holding the most significant bits and the ‘a’ register holding the
least significant bits.

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

Chapter 5: Extensions to the C Language Family 201

b ‘b’ register

c ‘c’ register

C Specifies constant that can be easily constructed in SSE register without
loading it from memory.

d ‘d’ register

D ‘di’ register

S ‘si’ register

x ‘xmm’ SSE register

y MMX register

I Constant in range 0 to 31 (for 32-bit shifts)

J Constant in range 0 to 63 (for 64-bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

N Constant in range 0 to 255 (for out instruction)

Z Constant in range 0 to 0xffffffff or symbolic reference known to fit
specified range. (for using immediates in zero extending 32-bit to 64-bit
x86-64 instructions)

e Constant in range −2147483648 to 2147483647 or symbolic reference
known to fit specified range. (for using immediates in 64-bit x86-64
instructions)

G Standard 80387 floating point constant

Intel 960—‘i960.h’
f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from −31 to 0

G Floating point 0

H Floating point 1

Intel IA-64—‘ia64.h’
a General register r0 to r3 for addl instruction

b Branch register

c Predicate register (‘c’ as in “conditional”)

d Application register residing in M-unit

e Application register residing in I-unit

202 Using the GNU Compiler Collection (GCC)

f Floating-point register

m Memory operand. Remember that ‘m’ allows postincrement and post-
decrement which require printing with ‘%Pn’ on IA-64. Use ‘S’ to disal-
low postincrement and postdecrement.

G Floating-point constant 0.0 or 1.0

I 14-bit signed integer constant

J 22-bit signed integer constant

K 8-bit signed integer constant for logical instructions

L 8-bit adjusted signed integer constant for compare pseudo-ops

M 6-bit unsigned integer constant for shift counts

N 9-bit signed integer constant for load and store postincrements

O The constant zero

P 0 or -1 for dep instruction

Q Non-volatile memory for floating-point loads and stores

R Integer constant in the range 1 to 4 for shladd instruction

S Memory operand except postincrement and postdecrement

FRV—‘frv.h’
a Register in the class ACC_REGS (acc0 to acc7).

b Register in the class EVEN_ACC_REGS (acc0 to acc7).

c Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).

d Register in the class GPR_REGS (gr0 to gr63).

e Register in the class EVEN_REGS (gr0 to gr63). Odd registers are ex-
cluded not in the class but through the use of a machine mode larger
than 4 bytes.

f Register in the class FPR_REGS (fr0 to fr63).

h Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are ex-
cluded not in the class but through the use of a machine mode larger
than 4 bytes.

l Register in the class LR_REG (the lr register).

q Register in the class QUAD_REGS (gr2 to gr63). Register numbers not
divisible by 4 are excluded not in the class but through the use of a
machine mode larger than 8 bytes.

t Register in the class ICC_REGS (icc0 to icc3).

u Register in the class FCC_REGS (fcc0 to fcc3).

v Register in the class ICR_REGS (cc4 to cc7).

w Register in the class FCR_REGS (cc0 to cc3).

x Register in the class QUAD_FPR_REGS (fr0 to fr63). Register numbers
not divisible by 4 are excluded not in the class but through the use of
a machine mode larger than 8 bytes.

Chapter 5: Extensions to the C Language Family 203

z Register in the class SPR_REGS (lcr and lr).

A Register in the class QUAD_ACC_REGS (acc0 to acc7).

B Register in the class ACCG_REGS (accg0 to accg7).

C Register in the class CR_REGS (cc0 to cc7).

G Floating point constant zero

I 6-bit signed integer constant

J 10-bit signed integer constant

L 16-bit signed integer constant

M 16-bit unsigned integer constant

N 12-bit signed integer constant that is negative—i.e. in the range of−2048
to −1

O Constant zero

P 12-bit signed integer constant that is greater than zero—i.e. in the range
of 1 to 2047.

IP2K—‘ip2k.h’
a ‘DP’ or ‘IP’ registers (general address)

f ‘IP’ register

j ‘IPL’ register

k ‘IPH’ register

b ‘DP’ register

y ‘DPH’ register

z ‘DPL’ register

q ‘SP’ register

c ‘DP’ or ‘SP’ registers (offsettable address)

d Non-pointer registers (not ‘SP’, ‘DP’, ‘IP’)

u Non-SP registers (everything except ‘SP’)

R Indirect thru ‘IP’ - Avoid this except for QImode, since we can’t access
extra bytes

S Indirect thru ‘SP’ or ‘DP’ with short displacement (0..127)

T Data-section immediate value

I Integers from −255 to −1

J Integers from 0 to 7—valid bit number in a register

K Integers from 0 to 127—valid displacement for addressing mode

L Integers from 1 to 127

M Integer −1

N Integer 1

O Zero

204 Using the GNU Compiler Collection (GCC)

P Integers from 0 to 255

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

I Signed 16-bit constant (for arithmetic instructions)

J Zero

K Zero-extended 16-bit constant (for logic instructions)

L Constant with low 16 bits zero (can be loaded with lui)

M 32-bit constant which requires two instructions to load (a constant which
is not ‘I’, ‘K’, or ‘L’)

N Negative 16-bit constant

O Exact power of two

P Positive 16-bit constant

G Floating point zero

Q Memory reference that can be loaded with more than one instruction
(‘m’ is preferable for asm statements)

R Memory reference that can be loaded with one instruction (‘m’ is prefer-
able for asm statements)

S Memory reference in external OSF/rose PIC format (‘m’ is preferable
for asm statements)

Motorola 680x0—‘m68k.h’
a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16-bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range −8 to −1

M Signed number whose magnitude is greater than 0x100

G Floating point constant that is not a 68881 constant

H Floating point constant that can be used by Sun FPA

Chapter 5: Extensions to the C Language Family 205

Motorola 68HC11 & 68HC12 families—‘m68hc11.h’
a Register ’a’

b Register ’b’

d Register ’d’

q An 8-bit register

t Temporary soft register .tmp

u A soft register .d1 to .d31

w Stack pointer register

x Register ’x’

y Register ’y’

z Pseudo register ’z’ (replaced by ’x’ or ’y’ at the end)

A An address register: x, y or z

B An address register: x or y

D Register pair (x:d) to form a 32-bit value

L Constants in the range −65536 to 65535

M Constants whose 16-bit low part is zero

N Constant integer 1 or −1

O Constant integer 16

P Constants in the range −8 to 2

SPARC—‘sparc.h’
f Floating-point register on the SPARC-V8 architecture and lower

floating-point register on the SPARC-V9 architecture.

e Floating-point register. It is equivalent to ‘f’ on the SPARC-V8 archi-
tecture and contains both lower and upper floating-point registers on
the SPARC-V9 architecture.

c Floating-point condition code register.

d Lower floating-point register. It is only valid on the SPARC-V9 archi-
tecture when the Visual Instruction Set is available.

b Floating-point register. It is only valid on the SPARC-V9 architecture
when the Visual Instruction Set is available.

h 64-bit global or out register for the SPARC-V8+ architecture.

I Signed 13-bit constant

J Zero

K 32-bit constant with the low 12 bits clear (a constant that can be loaded
with the sethi instruction)

L A constant in the range supported by movcc instructions

M A constant in the range supported by movrcc instructions

N Same as ‘K’, except that it verifies that bits that are not in the lower
32-bit range are all zero. Must be used instead of ‘K’ for modes wider
than SImode

206 Using the GNU Compiler Collection (GCC)

O The constant 4096

G Floating-point zero

H Signed 13-bit constant, sign-extended to 32 or 64 bits

Q Floating-point constant whose integral representation can be moved into
an integer register using a single sethi instruction

R Floating-point constant whose integral representation can be moved into
an integer register using a single mov instruction

S Floating-point constant whose integral representation can be moved into
an integer register using a high/lo sum instruction sequence

T Memory address aligned to an 8-byte boundary

U Even register

W Memory address for ‘e’ constraint registers.

TMS320C3x/C4x—‘c4x.h’
a Auxiliary (address) register (ar0-ar7)

b Stack pointer register (sp)

c Standard (32-bit) precision integer register

f Extended (40-bit) precision register (r0-r11)

k Block count register (bk)

q Extended (40-bit) precision low register (r0-r7)

t Extended (40-bit) precision register (r0-r1)

u Extended (40-bit) precision register (r2-r3)

v Repeat count register (rc)

x Index register (ir0-ir1)

y Status (condition code) register (st)

z Data page register (dp)

G Floating-point zero

H Immediate 16-bit floating-point constant

I Signed 16-bit constant

J Signed 8-bit constant

K Signed 5-bit constant

L Unsigned 16-bit constant

M Unsigned 8-bit constant

N Ones complement of unsigned 16-bit constant

O High 16-bit constant (32-bit constant with 16 LSBs zero)

Q Indirect memory reference with signed 8-bit or index register displace-
ment

R Indirect memory reference with unsigned 5-bit displacement

S Indirect memory reference with 1 bit or index register displacement

Chapter 5: Extensions to the C Language Family 207

T Direct memory reference

U Symbolic address

S/390 and zSeries—‘s390.h’
a Address register (general purpose register except r0)

d Data register (arbitrary general purpose register)

f Floating-point register

I Unsigned 8-bit constant (0–255)

J Unsigned 12-bit constant (0–4095)

K Signed 16-bit constant (−32768–32767)

L Unsigned 16-bit constant (0–65535)

Q Memory reference without index register

S Symbolic constant suitable for use with the larl instruction

Xstormy16—‘stormy16.h’
a Register r0.

b Register r1.

c Register r2.

d Register r8.

e Registers r0 through r7.

t Registers r0 and r1.

y The carry register.

z Registers r8 and r9.

I A constant between 0 and 3 inclusive.

J A constant that has exactly one bit set.

K A constant that has exactly one bit clear.

L A constant between 0 and 255 inclusive.

M A constant between −255 and 0 inclusive.

N A constant between −3 and 0 inclusive.

O A constant between 1 and 4 inclusive.

P A constant between −4 and −1 inclusive.

Q A memory reference that is a stack push.

R A memory reference that is a stack pop.

S A memory reference that refers to a constant address of known value.

T The register indicated by Rx (not implemented yet).

U A constant that is not between 2 and 15 inclusive.

Xtensa—‘xtensa.h’
a General-purpose 32-bit register

b One-bit boolean register

208 Using the GNU Compiler Collection (GCC)

A MAC16 40-bit accumulator register

I Signed 12-bit integer constant, for use in MOVI instructions

J Signed 8-bit integer constant, for use in ADDI instructions

K Integer constant valid for BccI instructions

L Unsigned constant valid for BccUI instructions

5.37 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by
writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should be
‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name of a C function or vari-
able, this feature allows you to define names for the linker that do not start with an underscore.

It does not make sense to use this feature with a non-static local variable since such variables
do not have assembler names. If you are trying to put the variable in a particular register, see
Section 5.38 [Explicit Reg Vars], page 208. GCC presently accepts such code with a warning,
but will probably be changed to issue an error, rather than a warning, in the future.

You cannot use asm in this way in a function definition; but you can get the same effect by
writing a declaration for the function before its definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

/* . . . */

It is up to you to make sure that the assembler names you choose do not conflict with any
other assembler symbols. Also, you must not use a register name; that would produce completely
invalid assembler code. GCC does not as yet have the ability to store static variables in registers.
Perhaps that will be added.

5.38 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can also
specify the register in which an ordinary register variable should be allocated.
• Global register variables reserve registers throughout the program. This may be useful in

programs such as programming language interpreters which have a couple of global variables
that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The compiler’s data
flow analysis is capable of determining where the specified registers contain live values, and
where they are available for other uses. Stores into local register variables may be deleted
when they appear to be dead according to dataflow analysis. References to local register
variables may be deleted or moved or simplified.
These local variables are sometimes convenient for use with the extended asm feature (see
Section 5.35 [Extended Asm], page 190), if you want to write one output of the assembler
instruction directly into a particular register. (This will work provided the register you
specify fits the constraints specified for that operand in the asm.)

Chapter 5: Extensions to the C Language Family 209

5.38.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is normally
saved and restored by function calls on your machine, so that library routines will not clobber
it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your
program according to cpu type. The register a5 would be a good choice on a 68000 for a
variable of pointer type. On machines with register windows, be sure to choose a “global”
register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems call
this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but
first we need to figure out how it should choose and how to enable you to guide the choice. No
solution is evident.

Defining a global register variable in a certain register reserves that register entirely for this
use, at least within the current compilation. The register will not be allocated for any other
purpose in the functions in the current compilation. The register will not be saved and restored
by these functions. Stores into this register are never deleted even if they would appear to be
dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than
one thread of control, because the system library routines may temporarily use the register for
other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function
foo by way of a third function lose that was compiled without knowledge of this variable (i.e.
in a different source file in which the variable wasn’t declared). This is because lose might save
the register and put some other value there. For example, you can’t expect a global register
variable to be available in the comparison-function that you pass to qsort, since qsort might
have put something else in that register. (If you are prepared to recompile qsort with the same
global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global
register variable, so that they will not use that register for any other purpose, then it suffices
to specify the compiler option ‘-ffixed-reg ’. You need not actually add a global register
declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called from
a function compiled without this variable, because it could clobber the value the caller expects
to find there on return. Therefore, the function which is the entry point into the part of the
program that uses the global register variable must explicitly save and restore the value which
belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had at
the time of the setjmp. On some machines, however, longjmp will not change the value of
global register variables. To be portable, the function that called setjmp should make other
arrangements to save the values of the global register variables, and to restore them in a longjmp.
This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a decla-
ration could appear after function definitions, the declaration would be too late to prevent the
register from being used for other purposes in the preceding functions.

210 Using the GNU Compiler Collection (GCC)

Global register variables may not have initial values, because an executable file has no means
to supply initial contents for a register.

On the SPARC, there are reports that g3 . . . g7 are suitable registers, but certain library
functions, such as getwd, as well as the subroutines for division and remainder, modify g3 and
g4. g1 and g2 are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not do to
use more than a few of those.

5.38.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax used
for defining global register variables, but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific registers
are most often useful with explicit assembler instructions (see Section 5.35 [Extended Asm],
page 190). Both of these things generally require that you conditionalize your program according
to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems call
this register %a5.

Defining such a register variable does not reserve the register; it remains available for other
uses in places where flow control determines the variable’s value is not live. However, these
registers are made unavailable for use in the reload pass; excessive use of this feature leaves the
compiler too few available registers to compile certain functions.

This option does not guarantee that GCC will generate code that has this variable in the
register you specify at all times. You may not code an explicit reference to this register in an
asm statement and assume it will always refer to this variable.

Stores into local register variables may be deleted when they appear to be dead according to
dataflow analysis. References to local register variables may be deleted or moved or simplified.

5.39 Alternate Keywords

‘-ansi’ and the various ‘-std’ options disable certain keywords. This causes trouble when you
want to use GNU C extensions, or a general-purpose header file that should be usable by all
programs, including ISO C programs. The keywords asm, typeof and inline are not available in
programs compiled with ‘-ansi’ or ‘-std’ (although inline can be used in a program compiled
with ‘-std=c99’). The ISO C99 keyword restrict is only available when ‘-std=gnu99’ (which
will eventually be the default) or ‘-std=c99’ (or the equivalent ‘-std=iso9899:1999’) is used.

The way to solve these problems is to put ‘__’ at the beginning and end of each problematical
keyword. For example, use __asm__ instead of asm, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with
another compiler, you can define the alternate keywords as macros to replace them with the
customary keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

Chapter 5: Extensions to the C Language Family 211

‘-pedantic’ and other options cause warnings for many GNU C extensions. You can pre-
vent such warnings within one expression by writing __extension__ before the expression.
__extension__ has no effect aside from this.

5.40 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incomplete
type, much like what you get if you write struct foo without describing the elements. A later
declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However, you
can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent
with the way struct and union are handled.

This extension is not supported by GNU C++.

5.41 Function Names as Strings

GCC predefines two magic identifiers to hold the name of the current function. The identifier
__FUNCTION__ holds the name of the function as it appears in the source. The identifier __
PRETTY_FUNCTION__ holds the name of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++ function they may be different.
For example, this program:

extern "C" {

extern int printf (char *, ...);

}

class a {

public:

sub (int i)

{

printf ("__FUNCTION__ = %s\n", __FUNCTION__);

printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}

};

int

main (void)

{

a ax;

ax.sub (0);

return 0;

}

gives this output:
__FUNCTION__ = sub

__PRETTY_FUNCTION__ = int a::sub (int)

The compiler automagically replaces the identifiers with a string literal containing the ap-
propriate name. Thus, they are neither preprocessor macros, like __FILE__ and __LINE__, nor
variables. This means that they catenate with other string literals, and that they can be used
to initialize char arrays. For example

char here[] = "Function " __FUNCTION__ " in " __FILE__;

On the other hand, ‘#ifdef __FUNCTION__’ does not have any special meaning inside a
function, since the preprocessor does not do anything special with the identifier __FUNCTION__.

212 Using the GNU Compiler Collection (GCC)

Note that these semantics are deprecated, and that GCC 3.2 will handle __FUNCTION__ and
__PRETTY_FUNCTION__ the same way as __func__. __func__ is defined by the ISO standard
C99:

The identifier __func__ is implicitly declared by the translator
as if, immediately following the opening brace of each function
definition, the declaration

static const char __func__[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing
function. This name is the unadorned name of the function.

By this definition, __func__ is a variable, not a string literal. In particular, __func__ does
not catenate with other string literals.

In C++, __FUNCTION__ and __PRETTY_FUNCTION__ are variables, declared in the same way as
__func__.

5.42 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

[Built-in Function]void * __builtin_return_address (unsigned int level)
This function returns the return address of the current function, or of one of its callers. The
level argument is number of frames to scan up the call stack. A value of 0 yields the return
address of the current function, a value of 1 yields the return address of the caller of the
current function, and so forth. When inlining the expected behavior is that the function will
return the address of the function that will be returned to. To work around this behavior
use the noinline function attribute.

The level argument must be a constant integer.

On some machines it may be impossible to determine the return address of any function
other than the current one; in such cases, or when the top of the stack has been reached, this
function will return 0 or a random value. In addition, __builtin_frame_address may be
used to determine if the top of the stack has been reached.

This function should only be used with a nonzero argument for debugging purposes.

[Built-in Function]void * __builtin_frame_address (unsigned int level)
This function is similar to __builtin_return_address, but it returns the address of the
function frame rather than the return address of the function. Calling __builtin_frame_
address with a value of 0 yields the frame address of the current function, a value of 1 yields
the frame address of the caller of the current function, and so forth.

The frame is the area on the stack which holds local variables and saved registers. The frame
address is normally the address of the first word pushed on to the stack by the function.
However, the exact definition depends upon the processor and the calling convention. If
the processor has a dedicated frame pointer register, and the function has a frame, then
__builtin_frame_address will return the value of the frame pointer register.

On some machines it may be impossible to determine the frame address of any function other
than the current one; in such cases, or when the top of the stack has been reached, this
function will return 0 if the first frame pointer is properly initialized by the startup code.

This function should only be used with a nonzero argument for debugging purposes.

Chapter 5: Extensions to the C Language Family 213

5.43 Using vector instructions through built-in functions

On some targets, the instruction set contains SIMD vector instructions that operate on multiple
values contained in one large register at the same time. For example, on the i386 the MMX,
3Dnow! and SSE extensions can be used this way.

The first step in using these extensions is to provide the necessary data types. This should
be done using an appropriate typedef:

typedef int v4si __attribute__ ((mode(V4SI)));

The base type int is effectively ignored by the compiler, the actual properties of the new
type v4si are defined by the __attribute__. It defines the machine mode to be used; for vector
types these have the form VnB ; n should be the number of elements in the vector, and B should
be the base mode of the individual elements. The following can be used as base modes:

QI An integer that is as wide as the smallest addressable unit, usually 8 bits.

HI An integer, twice as wide as a QI mode integer, usually 16 bits.

SI An integer, four times as wide as a QI mode integer, usually 32 bits.

DI An integer, eight times as wide as a QI mode integer, usually 64 bits.

SF A floating point value, as wide as a SI mode integer, usually 32 bits.

DF A floating point value, as wide as a DI mode integer, usually 64 bits.

Specifying a combination that is not valid for the current architecture will cause gcc to
synthesize the instructions using a narrower mode. For example, if you specify a variable of
type V4SI and your architecture does not allow for this specific SIMD type, gcc will produce
code that uses 4 SIs.

The types defined in this manner can be used with a subset of normal C operations. Currently,
gcc will allow using the following operators on these types: +, -, *, /, unary minus.

The operations behave like C++ valarrays. Addition is defined as the addition of the
corresponding elements of the operands. For example, in the code below, each of the 4 elements
in a will be added to the corresponding 4 elements in b and the resulting vector will be stored
in c.

typedef int v4si __attribute__ ((mode(V4SI)));

v4si a, b, c;

c = a + b;

Subtraction, multiplication, and division operate in a similar manner. Likewise, the result
of using the unary minus operator on a vector type is a vector whose elements are the negative
value of the corresponding elements in the operand.

You can declare variables and use them in function calls and returns, as well as in assignments
and some casts. You can specify a vector type as a return type for a function. Vector types
can also be used as function arguments. It is possible to cast from one vector type to another,
provided they are of the same size (in fact, you can also cast vectors to and from other datatypes
of the same size).

You cannot operate between vectors of different lengths or different signedness without a
cast.

A port that supports hardware vector operations, usually provides a set of built-in functions
that can be used to operate on vectors. For example, a function to add two vectors and multiply
the result by a third could look like this:

214 Using the GNU Compiler Collection (GCC)

v4si f (v4si a, v4si b, v4si c)
{
v4si tmp = __builtin_addv4si (a, b);
return __builtin_mulv4si (tmp, c);

}

5.44 Other built-in functions provided by GCC

GCC provides a large number of built-in functions other than the ones mentioned above. Some
of these are for internal use in the processing of exceptions or variable-length argument lists and
will not be documented here because they may change from time to time; we do not recommend
general use of these functions.

The remaining functions are provided for optimization purposes.

GCC includes built-in versions of many of the functions in the standard C library. The
versions prefixed with __builtin_ will always be treated as having the same meaning as the
C library function even if you specify the ‘-fno-builtin’ option. (see Section 3.4 [C Dialect
Options], page 18) Many of these functions are only optimized in certain cases; if they are not
optimized in a particular case, a call to the library function will be emitted.

The functions abort, exit, _Exit and _exit are recognized and presumed not to return, but
otherwise are not built in. _exit is not recognized in strict ISO C mode (‘-ansi’, ‘-std=c89’
or ‘-std=c99’). _Exit is not recognized in strict C89 mode (‘-ansi’ or ‘-std=c89’). All these
functions have corresponding versions prefixed with __builtin_, which may be used even in
strict C89 mode.

Outside strict ISO C mode, the functions alloca, bcmp, bzero, index, rindex, ffs, fputs_
unlocked, printf_unlocked and fprintf_unlocked may be handled as built-in functions. All
these functions have corresponding versions prefixed with __builtin_, which may be used even
in strict C89 mode.

The ISO C99 functions conj, conjf, conjl, creal, crealf, creall, cimag, cimagf, cimagl,
imaxabs, llabs, snprintf, vscanf, vsnprintf and vsscanf are handled as built-in functions
except in strict ISO C90 mode. There are also built-in versions of the ISO C99 functions cosf,
cosl, expf, expl, fabsf, fabsl, logf, logl, sinf, sinl, sqrtf, and sqrtl, that are recognized
in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them.
All these functions have corresponding versions prefixed with __builtin_.

The ISO C90 functions abs, cos, exp, fabs, fprintf, fputs, labs, log, memcmp, memcpy,
memset, printf, putchar, puts, scanf, sin, snprintf, sprintf, sqrt, sscanf, strcat,
strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk, strrchr,
strspn, strstr, vprintf and vsprintf are all recognized as built-in functions unless
‘-fno-builtin’ is specified (or ‘-fno-builtin-function ’ is specified for an individual
function). All of these functions have corresponding versions prefixed with __builtin_.

GCC provides built-in versions of the ISO C99 floating point comparison macros that avoid
raising exceptions for unordered operands. They have the same names as the standard macros (
isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered) , with
__builtin_ prefixed. We intend for a library implementor to be able to simply #define each
standard macro to its built-in equivalent.

[Built-in Function]int __builtin_types_compatible_p (type1, type2)
You can use the built-in function __builtin_types_compatible_p to determine whether
two types are the same.

Chapter 5: Extensions to the C Language Family 215

This built-in function returns 1 if the unqualified versions of the types type1 and type2 (which
are types, not expressions) are compatible, 0 otherwise. The result of this built-in function
can be used in integer constant expressions.
This built-in function ignores top level qualifiers (e.g., const, volatile). For example, int
is equivalent to const int.
The type int[] and int[5] are compatible. On the other hand, int and char * are not
compatible, even if the size of their types, on the particular architecture are the same. Also,
the amount of pointer indirection is taken into account when determining similarity. Conse-
quently, short * is not similar to short **. Furthermore, two types that are typedefed are
considered compatible if their underlying types are compatible.
An enum type is considered to be compatible with another enum type. For example, enum
{foo, bar} is similar to enum {hot, dog}.
You would typically use this function in code whose execution varies depending on the argu-
ments’ types. For example:

#define foo(x) \

({ \

typeof (x) tmp; \

if (__builtin_types_compatible_p (typeof (x), long double)) \

tmp = foo_long_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), double)) \

tmp = foo_double (tmp); \

else if (__builtin_types_compatible_p (typeof (x), float)) \

tmp = foo_float (tmp); \

else \

abort (); \

tmp; \

})

Note: This construct is only available for C.

[Built-in Function]type __builtin_choose_expr (const_exp, exp1, exp2)
You can use the built-in function __builtin_choose_expr to evaluate code depending on
the value of a constant expression. This built-in function returns exp1 if const exp, which
is a constant expression that must be able to be determined at compile time, is nonzero.
Otherwise it returns 0.
This built-in function is analogous to the ‘? :’ operator in C, except that the expression
returned has its type unaltered by promotion rules. Also, the built-in function does not
evaluate the expression that was not chosen. For example, if const exp evaluates to true,
exp2 is not evaluated even if it has side-effects.
This built-in function can return an lvalue if the chosen argument is an lvalue.
If exp1 is returned, the return type is the same as exp1’s type. Similarly, if exp2 is returned,
its return type is the same as exp2.
Example:

#define foo(x) \

__builtin_choose_expr (\

__builtin_types_compatible_p (typeof (x), double), \

foo_double (x), \

__builtin_choose_expr (\

__builtin_types_compatible_p (typeof (x), float), \

foo_float (x), \

/* The void expression results in a compile-time error \

when assigning the result to something. */ \

(void)0))

Note: This construct is only available for C. Furthermore, the unused expression (exp1 or
exp2 depending on the value of const exp) may still generate syntax errors. This may change
in future revisions.

216 Using the GNU Compiler Collection (GCC)

[Built-in Function]int __builtin_constant_p (exp)
You can use the built-in function __builtin_constant_p to determine if a value is known to
be constant at compile-time and hence that GCC can perform constant-folding on expressions
involving that value. The argument of the function is the value to test. The function returns
the integer 1 if the argument is known to be a compile-time constant and 0 if it is not known to
be a compile-time constant. A return of 0 does not indicate that the value is not a constant,
but merely that GCC cannot prove it is a constant with the specified value of the ‘-O’ option.

You would typically use this function in an embedded application where memory was a critical
resource. If you have some complex calculation, you may want it to be folded if it involves
constants, but need to call a function if it does not. For example:

#define Scale_Value(X) \

(__builtin_constant_p (X) \

? ((X) * SCALE + OFFSET) : Scale (X))

You may use this built-in function in either a macro or an inline function. However, if you
use it in an inlined function and pass an argument of the function as the argument to the
built-in, GCC will never return 1 when you call the inline function with a string constant
or compound literal (see Section 5.20 [Compound Literals], page 165) and will not return 1
when you pass a constant numeric value to the inline function unless you specify the ‘-O’
option.

You may also use __builtin_constant_p in initializers for static data. For instance, you
can write

static const int table[] = {

__builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,

/* . . . */

};

This is an acceptable initializer even if EXPRESSION is not a constant expression. GCC
must be more conservative about evaluating the built-in in this case, because it has no
opportunity to perform optimization.

Previous versions of GCC did not accept this built-in in data initializers. The earliest version
where it is completely safe is 3.0.1.

[Built-in Function]long __builtin_expect (long exp, long c)
You may use __builtin_expect to provide the compiler with branch prediction information.
In general, you should prefer to use actual profile feedback for this (‘-fprofile-arcs’),
as programmers are notoriously bad at predicting how their programs actually perform.
However, there are applications in which this data is hard to collect.

The return value is the value of exp, which should be an integral expression. The value of c
must be a compile-time constant. The semantics of the built-in are that it is expected that
exp == c. For example:

if (__builtin_expect (x, 0))

foo ();

would indicate that we do not expect to call foo, since we expect x to be zero. Since you are
limited to integral expressions for exp, you should use constructions such as

if (__builtin_expect (ptr != NULL, 1))

error ();

when testing pointer or floating-point values.

[Built-in Function]void __builtin_prefetch (const void *addr, ...)
This function is used to minimize cache-miss latency by moving data into a cache before
it is accessed. You can insert calls to __builtin_prefetch into code for which you know
addresses of data in memory that is likely to be accessed soon. If the target supports them,

Chapter 5: Extensions to the C Language Family 217

data prefetch instructions will be generated. If the prefetch is done early enough before the
access then the data will be in the cache by the time it is accessed.
The value of addr is the address of the memory to prefetch. There are two optional arguments,
rw and locality. The value of rw is a compile-time constant one or zero; one means that the
prefetch is preparing for a write to the memory address and zero, the default, means that the
prefetch is preparing for a read. The value locality must be a compile-time constant integer
between zero and three. A value of zero means that the data has no temporal locality, so it
need not be left in the cache after the access. A value of three means that the data has a
high degree of temporal locality and should be left in all levels of cache possible. Values of
one and two mean, respectively, a low or moderate degree of temporal locality. The default
is three.

for (i = 0; i < n; i++)

{

a[i] = a[i] + b[i];

__builtin_prefetch (&a[i+j], 1, 1);

__builtin_prefetch (&b[i+j], 0, 1);

/* . . . */

}

Data prefetch does not generate faults if addr is invalid, but the address expression itself
must be valid. For example, a prefetch of p->next will not fault if p->next is not a valid
address, but evaluation will fault if p is not a valid address.
If the target does not support data prefetch, the address expression is evaluated if it includes
side effects but no other code is generated and GCC does not issue a warning.

[Built-in Function]double __builtin_huge_val (void)
Returns a positive infinity, if supported by the floating-point format, else DBL_MAX. This
function is suitable for implementing the ISO C macro HUGE_VAL.

[Built-in Function]float __builtin_huge_valf (void)
Similar to __builtin_huge_val, except the return type is float.

[Built-in Function]long double __builtin_huge_vall (void)
Similar to __builtin_huge_val, except the return type is long double.

[Built-in Function]double __builtin_inf (void)
Similar to __builtin_huge_val, except a warning is generated if the target floating-point
format does not support infinities. This function is suitable for implementing the ISO C99
macro INFINITY.

[Built-in Function]float __builtin_inff (void)
Similar to __builtin_inf, except the return type is float.

[Built-in Function]long double __builtin_infl (void)
Similar to __builtin_inf, except the return type is long double.

[Built-in Function]double __builtin_nan (const char *str)
This is an implementation of the ISO C99 function nan.
Since ISO C99 defines this function in terms of strtod, which we do not implement, a
description of the parsing is in order. The string is parsed as by strtol; that is, the base is
recognized by leading ‘0’ or ‘0x’ prefixes. The number parsed is placed in the significand such
that the least significant bit of the number is at the least significant bit of the significand.
The number is truncated to fit the significand field provided. The significand is forced to be
a quiet NaN.
This function, if given a string literal, is evaluated early enough that it is considered a
compile-time constant.

218 Using the GNU Compiler Collection (GCC)

[Built-in Function]float __builtin_nanf (const char *str)
Similar to __builtin_nan, except the return type is float.

[Built-in Function]long double __builtin_nanl (const char *str)
Similar to __builtin_nan, except the return type is long double.

[Built-in Function]double __builtin_nans (const char *str)
Similar to __builtin_nan, except the significand is forced to be a signaling NaN. The nans
function is proposed by WG14 N965.

[Built-in Function]float __builtin_nansf (const char *str)
Similar to __builtin_nans, except the return type is float.

[Built-in Function]long double __builtin_nansl (const char *str)
Similar to __builtin_nans, except the return type is long double.

5.45 Built-in Functions Specific to Particular Target Machines

On some target machines, GCC supports many built-in functions specific to those machines.
Generally these generate calls to specific machine instructions, but allow the compiler to schedule
those calls.

5.45.1 Alpha Built-in Functions

These built-in functions are available for the Alpha family of processors, depending on the
command-line switches used.

The following built-in functions are always available. They all generate the machine instruc-
tion that is part of the name.

long __builtin_alpha_implver (void)
long __builtin_alpha_rpcc (void)
long __builtin_alpha_amask (long)
long __builtin_alpha_cmpbge (long, long)
long __builtin_alpha_extbl (long, long)
long __builtin_alpha_extwl (long, long)
long __builtin_alpha_extll (long, long)
long __builtin_alpha_extql (long, long)
long __builtin_alpha_extwh (long, long)
long __builtin_alpha_extlh (long, long)
long __builtin_alpha_extqh (long, long)
long __builtin_alpha_insbl (long, long)
long __builtin_alpha_inswl (long, long)
long __builtin_alpha_insll (long, long)
long __builtin_alpha_insql (long, long)
long __builtin_alpha_inswh (long, long)
long __builtin_alpha_inslh (long, long)
long __builtin_alpha_insqh (long, long)
long __builtin_alpha_mskbl (long, long)
long __builtin_alpha_mskwl (long, long)
long __builtin_alpha_mskll (long, long)
long __builtin_alpha_mskql (long, long)
long __builtin_alpha_mskwh (long, long)
long __builtin_alpha_msklh (long, long)

http://std.dkuug.dk/JTC1/SC22/WG14/www/docs/n965.htm

Chapter 5: Extensions to the C Language Family 219

long __builtin_alpha_mskqh (long, long)
long __builtin_alpha_umulh (long, long)
long __builtin_alpha_zap (long, long)
long __builtin_alpha_zapnot (long, long)

The following built-in functions are always with ‘-mmax’ or ‘-mcpu=cpu ’ where cpu is pca56
or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_pklb (long)
long __builtin_alpha_pkwb (long)
long __builtin_alpha_unpkbl (long)
long __builtin_alpha_unpkbw (long)
long __builtin_alpha_minub8 (long, long)
long __builtin_alpha_minsb8 (long, long)
long __builtin_alpha_minuw4 (long, long)
long __builtin_alpha_minsw4 (long, long)
long __builtin_alpha_maxub8 (long, long)
long __builtin_alpha_maxsb8 (long, long)
long __builtin_alpha_maxuw4 (long, long)
long __builtin_alpha_maxsw4 (long, long)
long __builtin_alpha_perr (long, long)

The following built-in functions are always with ‘-mcix’ or ‘-mcpu=cpu ’ where cpu is ev67
or later. They all generate the machine instruction that is part of the name.

long __builtin_alpha_cttz (long)
long __builtin_alpha_ctlz (long)
long __builtin_alpha_ctpop (long)

The following builtins are available on systems that use the OSF/1 PALcode. Normally they
invoke the rduniq and wruniq PAL calls, but when invoked with ‘-mtls-kernel’, they invoke
rdval and wrval.

void *__builtin_thread_pointer (void)
void __builtin_set_thread_pointer (void *)

5.45.2 X86 Built-in Functions

These built-in functions are available for the i386 and x86-64 family of computers, depending
on the command-line switches used.

The following machine modes are available for use with MMX built-in functions (see Sec-
tion 5.43 [Vector Extensions], page 213): V2SI for a vector of two 32-bit integers, V4HI for a
vector of four 16-bit integers, and V8QI for a vector of eight 8-bit integers. Some of the built-in
functions operate on MMX registers as a whole 64-bit entity, these use DI as their mode.

If 3Dnow extensions are enabled, V2SF is used as a mode for a vector of two 32-bit floating
point values.

If SSE extensions are enabled, V4SF is used for a vector of four 32-bit floating point values.
Some instructions use a vector of four 32-bit integers, these use V4SI. Finally, some instructions
operate on an entire vector register, interpreting it as a 128-bit integer, these use mode TI.

The following built-in functions are made available by ‘-mmmx’. All of them generate the
machine instruction that is part of the name.

v8qi __builtin_ia32_paddb (v8qi, v8qi)
v4hi __builtin_ia32_paddw (v4hi, v4hi)
v2si __builtin_ia32_paddd (v2si, v2si)
v8qi __builtin_ia32_psubb (v8qi, v8qi)

220 Using the GNU Compiler Collection (GCC)

v4hi __builtin_ia32_psubw (v4hi, v4hi)
v2si __builtin_ia32_psubd (v2si, v2si)
v8qi __builtin_ia32_paddsb (v8qi, v8qi)
v4hi __builtin_ia32_paddsw (v4hi, v4hi)
v8qi __builtin_ia32_psubsb (v8qi, v8qi)
v4hi __builtin_ia32_psubsw (v4hi, v4hi)
v8qi __builtin_ia32_paddusb (v8qi, v8qi)
v4hi __builtin_ia32_paddusw (v4hi, v4hi)
v8qi __builtin_ia32_psubusb (v8qi, v8qi)
v4hi __builtin_ia32_psubusw (v4hi, v4hi)
v4hi __builtin_ia32_pmullw (v4hi, v4hi)
v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
di __builtin_ia32_pand (di, di)
di __builtin_ia32_pandn (di,di)
di __builtin_ia32_por (di, di)
di __builtin_ia32_pxor (di, di)
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
v2si __builtin_ia32_pcmpeqd (v2si, v2si)
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
v2si __builtin_ia32_pcmpgtd (v2si, v2si)
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
v2si __builtin_ia32_punpckhdq (v2si, v2si)
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
v2si __builtin_ia32_punpckldq (v2si, v2si)
v8qi __builtin_ia32_packsswb (v4hi, v4hi)
v4hi __builtin_ia32_packssdw (v2si, v2si)
v8qi __builtin_ia32_packuswb (v4hi, v4hi)

The following built-in functions are made available either with ‘-msse’, or with a combination
of ‘-m3dnow’ and ‘-march=athlon’. All of them generate the machine instruction that is part of
the name.

v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
v8qi __builtin_ia32_pavgb (v8qi, v8qi)
v4hi __builtin_ia32_pavgw (v4hi, v4hi)
v4hi __builtin_ia32_psadbw (v8qi, v8qi)
v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
v8qi __builtin_ia32_pminub (v8qi, v8qi)
v4hi __builtin_ia32_pminsw (v4hi, v4hi)
int __builtin_ia32_pextrw (v4hi, int)
v4hi __builtin_ia32_pinsrw (v4hi, int, int)
int __builtin_ia32_pmovmskb (v8qi)
void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
void __builtin_ia32_movntq (di *, di)
void __builtin_ia32_sfence (void)

The following built-in functions are available when ‘-msse’ is used. All of them generate the
machine instruction that is part of the name.

int __builtin_ia32_comieq (v4sf, v4sf)

Chapter 5: Extensions to the C Language Family 221

int __builtin_ia32_comineq (v4sf, v4sf)
int __builtin_ia32_comilt (v4sf, v4sf)
int __builtin_ia32_comile (v4sf, v4sf)
int __builtin_ia32_comigt (v4sf, v4sf)
int __builtin_ia32_comige (v4sf, v4sf)
int __builtin_ia32_ucomieq (v4sf, v4sf)
int __builtin_ia32_ucomineq (v4sf, v4sf)
int __builtin_ia32_ucomilt (v4sf, v4sf)
int __builtin_ia32_ucomile (v4sf, v4sf)
int __builtin_ia32_ucomigt (v4sf, v4sf)
int __builtin_ia32_ucomige (v4sf, v4sf)
v4sf __builtin_ia32_addps (v4sf, v4sf)
v4sf __builtin_ia32_subps (v4sf, v4sf)
v4sf __builtin_ia32_mulps (v4sf, v4sf)
v4sf __builtin_ia32_divps (v4sf, v4sf)
v4sf __builtin_ia32_addss (v4sf, v4sf)
v4sf __builtin_ia32_subss (v4sf, v4sf)
v4sf __builtin_ia32_mulss (v4sf, v4sf)
v4sf __builtin_ia32_divss (v4sf, v4sf)
v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
v4si __builtin_ia32_cmpltps (v4sf, v4sf)
v4si __builtin_ia32_cmpleps (v4sf, v4sf)
v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
v4si __builtin_ia32_cmpordps (v4sf, v4sf)
v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
v4si __builtin_ia32_cmpltss (v4sf, v4sf)
v4si __builtin_ia32_cmpless (v4sf, v4sf)
v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
v4si __builtin_ia32_cmpnless (v4sf, v4sf)
v4si __builtin_ia32_cmpordss (v4sf, v4sf)
v4sf __builtin_ia32_maxps (v4sf, v4sf)
v4sf __builtin_ia32_maxss (v4sf, v4sf)
v4sf __builtin_ia32_minps (v4sf, v4sf)
v4sf __builtin_ia32_minss (v4sf, v4sf)
v4sf __builtin_ia32_andps (v4sf, v4sf)
v4sf __builtin_ia32_andnps (v4sf, v4sf)
v4sf __builtin_ia32_orps (v4sf, v4sf)
v4sf __builtin_ia32_xorps (v4sf, v4sf)
v4sf __builtin_ia32_movss (v4sf, v4sf)
v4sf __builtin_ia32_movhlps (v4sf, v4sf)
v4sf __builtin_ia32_movlhps (v4sf, v4sf)
v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
v4sf __builtin_ia32_unpcklps (v4sf, v4sf)

222 Using the GNU Compiler Collection (GCC)

v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
v2si __builtin_ia32_cvtps2pi (v4sf)
int __builtin_ia32_cvtss2si (v4sf)
v2si __builtin_ia32_cvttps2pi (v4sf)
int __builtin_ia32_cvttss2si (v4sf)
v4sf __builtin_ia32_rcpps (v4sf)
v4sf __builtin_ia32_rsqrtps (v4sf)
v4sf __builtin_ia32_sqrtps (v4sf)
v4sf __builtin_ia32_rcpss (v4sf)
v4sf __builtin_ia32_rsqrtss (v4sf)
v4sf __builtin_ia32_sqrtss (v4sf)
v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
void __builtin_ia32_movntps (float *, v4sf)
int __builtin_ia32_movmskps (v4sf)

The following built-in functions are available when ‘-msse’ is used.

v4sf __builtin_ia32_loadaps (float *)
Generates the movaps machine instruction as a load from memory.

void __builtin_ia32_storeaps (float *, v4sf)
Generates the movaps machine instruction as a store to memory.

v4sf __builtin_ia32_loadups (float *)
Generates the movups machine instruction as a load from memory.

void __builtin_ia32_storeups (float *, v4sf)
Generates the movups machine instruction as a store to memory.

v4sf __builtin_ia32_loadsss (float *)
Generates the movss machine instruction as a load from memory.

void __builtin_ia32_storess (float *, v4sf)
Generates the movss machine instruction as a store to memory.

v4sf __builtin_ia32_loadhps (v4sf, v2si *)
Generates the movhps machine instruction as a load from memory.

v4sf __builtin_ia32_loadlps (v4sf, v2si *)
Generates the movlps machine instruction as a load from memory

void __builtin_ia32_storehps (v4sf, v2si *)
Generates the movhps machine instruction as a store to memory.

void __builtin_ia32_storelps (v4sf, v2si *)
Generates the movlps machine instruction as a store to memory.

The following built-in functions are available when ‘-msse3’ is used. All of them generate
the machine instruction that is part of the name.

v2df __builtin_ia32_addsubpd (v2df, v2df)
v2df __builtin_ia32_addsubps (v2df, v2df)
v2df __builtin_ia32_haddpd (v2df, v2df)
v2df __builtin_ia32_haddps (v2df, v2df)
v2df __builtin_ia32_hsubpd (v2df, v2df)
v2df __builtin_ia32_hsubps (v2df, v2df)
v16qi __builtin_ia32_lddqu (char const *)
void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
v2df __builtin_ia32_movddup (v2df)

Chapter 5: Extensions to the C Language Family 223

v4sf __builtin_ia32_movshdup (v4sf)
v4sf __builtin_ia32_movsldup (v4sf)
void __builtin_ia32_mwait (unsigned int, unsigned int)

The following built-in functions are available when ‘-msse3’ is used.

v2df __builtin_ia32_loadddup (double const *)
Generates the movddup machine instruction as a load from memory.

The following built-in functions are available when ‘-m3dnow’ is used. All of them generate
the machine instruction that is part of the name.

void __builtin_ia32_femms (void)
v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
v2si __builtin_ia32_pf2id (v2sf)
v2sf __builtin_ia32_pfacc (v2sf, v2sf)
v2sf __builtin_ia32_pfadd (v2sf, v2sf)
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
v2sf __builtin_ia32_pfmax (v2sf, v2sf)
v2sf __builtin_ia32_pfmin (v2sf, v2sf)
v2sf __builtin_ia32_pfmul (v2sf, v2sf)
v2sf __builtin_ia32_pfrcp (v2sf)
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
v2sf __builtin_ia32_pfrsqrt (v2sf)
v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
v2sf __builtin_ia32_pfsub (v2sf, v2sf)
v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
v2sf __builtin_ia32_pi2fd (v2si)
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)

The following built-in functions are available when both ‘-m3dnow’ and ‘-march=athlon’ are
used. All of them generate the machine instruction that is part of the name.

v2si __builtin_ia32_pf2iw (v2sf)
v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
v2sf __builtin_ia32_pi2fw (v2si)
v2sf __builtin_ia32_pswapdsf (v2sf)
v2si __builtin_ia32_pswapdsi (v2si)

5.45.3 PowerPC AltiVec Built-in Functions

These built-in functions are available for the PowerPC family of computers, depending on the
command-line switches used.

The following machine modes are available for use with AltiVec built-in functions (see Sec-
tion 5.43 [Vector Extensions], page 213): V4SI for a vector of four 32-bit integers, V4SF for a
vector of four 32-bit floating point numbers, V8HI for a vector of eight 16-bit integers, and V16QI
for a vector of sixteen 8-bit integers.

The following functions are made available by including <altivec.h> and using ‘-maltivec’
and ‘-mabi=altivec’. The functions implement the functionality described in Motorola’s Al-
tiVec Programming Interface Manual.

There are a few differences from Motorola’s documentation and GCC’s implementation. Vec-
tor constants are done with curly braces (not parentheses). Vector initializers require no casts if

224 Using the GNU Compiler Collection (GCC)

the vector constant is of the same type as the variable it is initializing. The vector bool type is
deprecated and will be discontinued in further revisions. Use vector signed instead. If signed
or unsigned is omitted, the vector type will default to signed. Lastly, all overloaded functions
are implemented with macros for the C implementation. So code the following example will not
work:

vec_add ((vector signed int){1, 2, 3, 4}, foo);

Since vec add is a macro, the vector constant in the above example will be treated as four
different arguments. Wrap the entire argument in parentheses for this to work. The C++
implementation does not use macros.

Note: Only the <altivec.h> interface is supported. Internally, GCC uses built-in functions
to achieve the functionality in the aforementioned header file, but they are not supported and
are subject to change without notice.

vector signed char vec_abs (vector signed char, vector signed char);

vector signed short vec_abs (vector signed short, vector signed short);

vector signed int vec_abs (vector signed int, vector signed int);

vector signed float vec_abs (vector signed float, vector signed float);

vector signed char vec_abss (vector signed char, vector signed char);

vector signed short vec_abss (vector signed short, vector signed short);

vector signed char vec_add (vector signed char, vector signed char);

vector unsigned char vec_add (vector signed char, vector unsigned char);

vector unsigned char vec_add (vector unsigned char, vector signed char);

vector unsigned char vec_add (vector unsigned char,

vector unsigned char);

vector signed short vec_add (vector signed short, vector signed short);

vector unsigned short vec_add (vector signed short,

vector unsigned short);

vector unsigned short vec_add (vector unsigned short,

vector signed short);

vector unsigned short vec_add (vector unsigned short,

vector unsigned short);

vector signed int vec_add (vector signed int, vector signed int);

vector unsigned int vec_add (vector signed int, vector unsigned int);

vector unsigned int vec_add (vector unsigned int, vector signed int);

vector unsigned int vec_add (vector unsigned int, vector unsigned int);

vector float vec_add (vector float, vector float);

vector unsigned int vec_addc (vector unsigned int, vector unsigned int);

vector unsigned char vec_adds (vector signed char,

vector unsigned char);

vector unsigned char vec_adds (vector unsigned char,

vector signed char);

vector unsigned char vec_adds (vector unsigned char,

vector unsigned char);

vector signed char vec_adds (vector signed char, vector signed char);

vector unsigned short vec_adds (vector signed short,

vector unsigned short);

vector unsigned short vec_adds (vector unsigned short,

vector signed short);

vector unsigned short vec_adds (vector unsigned short,

vector unsigned short);

vector signed short vec_adds (vector signed short, vector signed short);

vector unsigned int vec_adds (vector signed int, vector unsigned int);

vector unsigned int vec_adds (vector unsigned int, vector signed int);

vector unsigned int vec_adds (vector unsigned int, vector unsigned int);

Chapter 5: Extensions to the C Language Family 225

vector signed int vec_adds (vector signed int, vector signed int);

vector float vec_and (vector float, vector float);

vector float vec_and (vector float, vector signed int);

vector float vec_and (vector signed int, vector float);

vector signed int vec_and (vector signed int, vector signed int);

vector unsigned int vec_and (vector signed int, vector unsigned int);

vector unsigned int vec_and (vector unsigned int, vector signed int);

vector unsigned int vec_and (vector unsigned int, vector unsigned int);

vector signed short vec_and (vector signed short, vector signed short);

vector unsigned short vec_and (vector signed short,

vector unsigned short);

vector unsigned short vec_and (vector unsigned short,

vector signed short);

vector unsigned short vec_and (vector unsigned short,

vector unsigned short);

vector signed char vec_and (vector signed char, vector signed char);

vector unsigned char vec_and (vector signed char, vector unsigned char);

vector unsigned char vec_and (vector unsigned char, vector signed char);

vector unsigned char vec_and (vector unsigned char,

vector unsigned char);

vector float vec_andc (vector float, vector float);

vector float vec_andc (vector float, vector signed int);

vector float vec_andc (vector signed int, vector float);

vector signed int vec_andc (vector signed int, vector signed int);

vector unsigned int vec_andc (vector signed int, vector unsigned int);

vector unsigned int vec_andc (vector unsigned int, vector signed int);

vector unsigned int vec_andc (vector unsigned int, vector unsigned int);

vector signed short vec_andc (vector signed short, vector signed short);

vector unsigned short vec_andc (vector signed short,

vector unsigned short);

vector unsigned short vec_andc (vector unsigned short,

vector signed short);

vector unsigned short vec_andc (vector unsigned short,

vector unsigned short);

vector signed char vec_andc (vector signed char, vector signed char);

vector unsigned char vec_andc (vector signed char,

vector unsigned char);

vector unsigned char vec_andc (vector unsigned char,

vector signed char);

vector unsigned char vec_andc (vector unsigned char,

vector unsigned char);

vector unsigned char vec_avg (vector unsigned char,

vector unsigned char);

vector signed char vec_avg (vector signed char, vector signed char);

vector unsigned short vec_avg (vector unsigned short,

vector unsigned short);

vector signed short vec_avg (vector signed short, vector signed short);

vector unsigned int vec_avg (vector unsigned int, vector unsigned int);

vector signed int vec_avg (vector signed int, vector signed int);

vector float vec_ceil (vector float);

vector signed int vec_cmpb (vector float, vector float);

vector signed char vec_cmpeq (vector signed char, vector signed char);

vector signed char vec_cmpeq (vector unsigned char,

vector unsigned char);

vector signed short vec_cmpeq (vector signed short,

226 Using the GNU Compiler Collection (GCC)

vector signed short);

vector signed short vec_cmpeq (vector unsigned short,

vector unsigned short);

vector signed int vec_cmpeq (vector signed int, vector signed int);

vector signed int vec_cmpeq (vector unsigned int, vector unsigned int);

vector signed int vec_cmpeq (vector float, vector float);

vector signed int vec_cmpge (vector float, vector float);

vector signed char vec_cmpgt (vector unsigned char,

vector unsigned char);

vector signed char vec_cmpgt (vector signed char, vector signed char);

vector signed short vec_cmpgt (vector unsigned short,

vector unsigned short);

vector signed short vec_cmpgt (vector signed short,

vector signed short);

vector signed int vec_cmpgt (vector unsigned int, vector unsigned int);

vector signed int vec_cmpgt (vector signed int, vector signed int);

vector signed int vec_cmpgt (vector float, vector float);

vector signed int vec_cmple (vector float, vector float);

vector signed char vec_cmplt (vector unsigned char,

vector unsigned char);

vector signed char vec_cmplt (vector signed char, vector signed char);

vector signed short vec_cmplt (vector unsigned short,

vector unsigned short);

vector signed short vec_cmplt (vector signed short,

vector signed short);

vector signed int vec_cmplt (vector unsigned int, vector unsigned int);

vector signed int vec_cmplt (vector signed int, vector signed int);

vector signed int vec_cmplt (vector float, vector float);

vector float vec_ctf (vector unsigned int, const char);

vector float vec_ctf (vector signed int, const char);

vector signed int vec_cts (vector float, const char);

vector unsigned int vec_ctu (vector float, const char);

void vec_dss (const char);

void vec_dssall (void);

void vec_dst (void *, int, const char);

void vec_dstst (void *, int, const char);

void vec_dststt (void *, int, const char);

void vec_dstt (void *, int, const char);

vector float vec_expte (vector float, vector float);

vector float vec_floor (vector float, vector float);

vector float vec_ld (int, vector float *);

vector float vec_ld (int, float *):

vector signed int vec_ld (int, int *);

vector signed int vec_ld (int, vector signed int *);

vector unsigned int vec_ld (int, vector unsigned int *);

vector unsigned int vec_ld (int, unsigned int *);

vector signed short vec_ld (int, short *, vector signed short *);

vector unsigned short vec_ld (int, unsigned short *,

vector unsigned short *);

Chapter 5: Extensions to the C Language Family 227

vector signed char vec_ld (int, signed char *);

vector signed char vec_ld (int, vector signed char *);

vector unsigned char vec_ld (int, unsigned char *);

vector unsigned char vec_ld (int, vector unsigned char *);

vector signed char vec_lde (int, signed char *);

vector unsigned char vec_lde (int, unsigned char *);

vector signed short vec_lde (int, short *);

vector unsigned short vec_lde (int, unsigned short *);

vector float vec_lde (int, float *);

vector signed int vec_lde (int, int *);

vector unsigned int vec_lde (int, unsigned int *);

void float vec_ldl (int, float *);

void float vec_ldl (int, vector float *);

void signed int vec_ldl (int, vector signed int *);

void signed int vec_ldl (int, int *);

void unsigned int vec_ldl (int, unsigned int *);

void unsigned int vec_ldl (int, vector unsigned int *);

void signed short vec_ldl (int, vector signed short *);

void signed short vec_ldl (int, short *);

void unsigned short vec_ldl (int, vector unsigned short *);

void unsigned short vec_ldl (int, unsigned short *);

void signed char vec_ldl (int, vector signed char *);

void signed char vec_ldl (int, signed char *);

void unsigned char vec_ldl (int, vector unsigned char *);

void unsigned char vec_ldl (int, unsigned char *);

vector float vec_loge (vector float);

vector unsigned char vec_lvsl (int, void *, int *);

vector unsigned char vec_lvsr (int, void *, int *);

vector float vec_madd (vector float, vector float, vector float);

vector signed short vec_madds (vector signed short, vector signed short,

vector signed short);

vector unsigned char vec_max (vector signed char, vector unsigned char);

vector unsigned char vec_max (vector unsigned char, vector signed char);

vector unsigned char vec_max (vector unsigned char,

vector unsigned char);

vector signed char vec_max (vector signed char, vector signed char);

vector unsigned short vec_max (vector signed short,

vector unsigned short);

vector unsigned short vec_max (vector unsigned short,

vector signed short);

vector unsigned short vec_max (vector unsigned short,

vector unsigned short);

vector signed short vec_max (vector signed short, vector signed short);

vector unsigned int vec_max (vector signed int, vector unsigned int);

vector unsigned int vec_max (vector unsigned int, vector signed int);

vector unsigned int vec_max (vector unsigned int, vector unsigned int);

vector signed int vec_max (vector signed int, vector signed int);

vector float vec_max (vector float, vector float);

vector signed char vec_mergeh (vector signed char, vector signed char);

vector unsigned char vec_mergeh (vector unsigned char,

vector unsigned char);

vector signed short vec_mergeh (vector signed short,

vector signed short);

vector unsigned short vec_mergeh (vector unsigned short,

228 Using the GNU Compiler Collection (GCC)

vector unsigned short);

vector float vec_mergeh (vector float, vector float);

vector signed int vec_mergeh (vector signed int, vector signed int);

vector unsigned int vec_mergeh (vector unsigned int,

vector unsigned int);

vector signed char vec_mergel (vector signed char, vector signed char);

vector unsigned char vec_mergel (vector unsigned char,

vector unsigned char);

vector signed short vec_mergel (vector signed short,

vector signed short);

vector unsigned short vec_mergel (vector unsigned short,

vector unsigned short);

vector float vec_mergel (vector float, vector float);

vector signed int vec_mergel (vector signed int, vector signed int);

vector unsigned int vec_mergel (vector unsigned int,

vector unsigned int);

vector unsigned short vec_mfvscr (void);

vector unsigned char vec_min (vector signed char, vector unsigned char);

vector unsigned char vec_min (vector unsigned char, vector signed char);

vector unsigned char vec_min (vector unsigned char,

vector unsigned char);

vector signed char vec_min (vector signed char, vector signed char);

vector unsigned short vec_min (vector signed short,

vector unsigned short);

vector unsigned short vec_min (vector unsigned short,

vector signed short);

vector unsigned short vec_min (vector unsigned short,

vector unsigned short);

vector signed short vec_min (vector signed short, vector signed short);

vector unsigned int vec_min (vector signed int, vector unsigned int);

vector unsigned int vec_min (vector unsigned int, vector signed int);

vector unsigned int vec_min (vector unsigned int, vector unsigned int);

vector signed int vec_min (vector signed int, vector signed int);

vector float vec_min (vector float, vector float);

vector signed short vec_mladd (vector signed short, vector signed short,

vector signed short);

vector signed short vec_mladd (vector signed short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mladd (vector unsigned short,

vector signed short,

vector signed short);

vector unsigned short vec_mladd (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector signed short vec_mradds (vector signed short,

vector signed short,

vector signed short);

vector unsigned int vec_msum (vector unsigned char,

vector unsigned char,

vector unsigned int);

vector signed int vec_msum (vector signed char, vector unsigned char,

vector signed int);

vector unsigned int vec_msum (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_msum (vector signed short, vector signed short,

Chapter 5: Extensions to the C Language Family 229

vector signed int);

vector unsigned int vec_msums (vector unsigned short,

vector unsigned short,

vector unsigned int);

vector signed int vec_msums (vector signed short, vector signed short,

vector signed int);

void vec_mtvscr (vector signed int);

void vec_mtvscr (vector unsigned int);

void vec_mtvscr (vector signed short);

void vec_mtvscr (vector unsigned short);

void vec_mtvscr (vector signed char);

void vec_mtvscr (vector unsigned char);

vector unsigned short vec_mule (vector unsigned char,

vector unsigned char);

vector signed short vec_mule (vector signed char, vector signed char);

vector unsigned int vec_mule (vector unsigned short,

vector unsigned short);

vector signed int vec_mule (vector signed short, vector signed short);

vector unsigned short vec_mulo (vector unsigned char,

vector unsigned char);

vector signed short vec_mulo (vector signed char, vector signed char);

vector unsigned int vec_mulo (vector unsigned short,

vector unsigned short);

vector signed int vec_mulo (vector signed short, vector signed short);

vector float vec_nmsub (vector float, vector float, vector float);

vector float vec_nor (vector float, vector float);

vector signed int vec_nor (vector signed int, vector signed int);

vector unsigned int vec_nor (vector unsigned int, vector unsigned int);

vector signed short vec_nor (vector signed short, vector signed short);

vector unsigned short vec_nor (vector unsigned short,

vector unsigned short);

vector signed char vec_nor (vector signed char, vector signed char);

vector unsigned char vec_nor (vector unsigned char,

vector unsigned char);

vector float vec_or (vector float, vector float);

vector float vec_or (vector float, vector signed int);

vector float vec_or (vector signed int, vector float);

vector signed int vec_or (vector signed int, vector signed int);

vector unsigned int vec_or (vector signed int, vector unsigned int);

vector unsigned int vec_or (vector unsigned int, vector signed int);

vector unsigned int vec_or (vector unsigned int, vector unsigned int);

vector signed short vec_or (vector signed short, vector signed short);

vector unsigned short vec_or (vector signed short,

vector unsigned short);

vector unsigned short vec_or (vector unsigned short,

vector signed short);

vector unsigned short vec_or (vector unsigned short,

vector unsigned short);

vector signed char vec_or (vector signed char, vector signed char);

vector unsigned char vec_or (vector signed char, vector unsigned char);

vector unsigned char vec_or (vector unsigned char, vector signed char);

vector unsigned char vec_or (vector unsigned char,

vector unsigned char);

vector signed char vec_pack (vector signed short, vector signed short);

vector unsigned char vec_pack (vector unsigned short,

vector unsigned short);

vector signed short vec_pack (vector signed int, vector signed int);

230 Using the GNU Compiler Collection (GCC)

vector unsigned short vec_pack (vector unsigned int,

vector unsigned int);

vector signed short vec_packpx (vector unsigned int,

vector unsigned int);

vector unsigned char vec_packs (vector unsigned short,

vector unsigned short);

vector signed char vec_packs (vector signed short, vector signed short);

vector unsigned short vec_packs (vector unsigned int,

vector unsigned int);

vector signed short vec_packs (vector signed int, vector signed int);

vector unsigned char vec_packsu (vector unsigned short,

vector unsigned short);

vector unsigned char vec_packsu (vector signed short,

vector signed short);

vector unsigned short vec_packsu (vector unsigned int,

vector unsigned int);

vector unsigned short vec_packsu (vector signed int, vector signed int);

vector float vec_perm (vector float, vector float,

vector unsigned char);

vector signed int vec_perm (vector signed int, vector signed int,

vector unsigned char);

vector unsigned int vec_perm (vector unsigned int, vector unsigned int,

vector unsigned char);

vector signed short vec_perm (vector signed short, vector signed short,

vector unsigned char);

vector unsigned short vec_perm (vector unsigned short,

vector unsigned short,

vector unsigned char);

vector signed char vec_perm (vector signed char, vector signed char,

vector unsigned char);

vector unsigned char vec_perm (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector float vec_re (vector float);

vector signed char vec_rl (vector signed char, vector unsigned char);

vector unsigned char vec_rl (vector unsigned char,

vector unsigned char);

vector signed short vec_rl (vector signed short, vector unsigned short);

vector unsigned short vec_rl (vector unsigned short,

vector unsigned short);

vector signed int vec_rl (vector signed int, vector unsigned int);

vector unsigned int vec_rl (vector unsigned int, vector unsigned int);

vector float vec_round (vector float);

vector float vec_rsqrte (vector float);

vector float vec_sel (vector float, vector float, vector signed int);

vector float vec_sel (vector float, vector float, vector unsigned int);

vector signed int vec_sel (vector signed int, vector signed int,

vector signed int);

vector signed int vec_sel (vector signed int, vector signed int,

vector unsigned int);

vector unsigned int vec_sel (vector unsigned int, vector unsigned int,

vector signed int);

vector unsigned int vec_sel (vector unsigned int, vector unsigned int,

vector unsigned int);

Chapter 5: Extensions to the C Language Family 231

vector signed short vec_sel (vector signed short, vector signed short,

vector signed short);

vector signed short vec_sel (vector signed short, vector signed short,

vector unsigned short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector signed short);

vector unsigned short vec_sel (vector unsigned short,

vector unsigned short,

vector unsigned short);

vector signed char vec_sel (vector signed char, vector signed char,

vector signed char);

vector signed char vec_sel (vector signed char, vector signed char,

vector unsigned char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector signed char);

vector unsigned char vec_sel (vector unsigned char,

vector unsigned char,

vector unsigned char);

vector signed char vec_sl (vector signed char, vector unsigned char);

vector unsigned char vec_sl (vector unsigned char,

vector unsigned char);

vector signed short vec_sl (vector signed short, vector unsigned short);

vector unsigned short vec_sl (vector unsigned short,

vector unsigned short);

vector signed int vec_sl (vector signed int, vector unsigned int);

vector unsigned int vec_sl (vector unsigned int, vector unsigned int);

vector float vec_sld (vector float, vector float, const char);

vector signed int vec_sld (vector signed int, vector signed int,

const char);

vector unsigned int vec_sld (vector unsigned int, vector unsigned int,

const char);

vector signed short vec_sld (vector signed short, vector signed short,

const char);

vector unsigned short vec_sld (vector unsigned short,

vector unsigned short, const char);

vector signed char vec_sld (vector signed char, vector signed char,

const char);

vector unsigned char vec_sld (vector unsigned char,

vector unsigned char,

const char);

vector signed int vec_sll (vector signed int, vector unsigned int);

vector signed int vec_sll (vector signed int, vector unsigned short);

vector signed int vec_sll (vector signed int, vector unsigned char);

vector unsigned int vec_sll (vector unsigned int, vector unsigned int);

vector unsigned int vec_sll (vector unsigned int,

vector unsigned short);

vector unsigned int vec_sll (vector unsigned int, vector unsigned char);

vector signed short vec_sll (vector signed short, vector unsigned int);

vector signed short vec_sll (vector signed short,

vector unsigned short);

vector signed short vec_sll (vector signed short, vector unsigned char);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned int);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned short);

vector unsigned short vec_sll (vector unsigned short,

vector unsigned char);

232 Using the GNU Compiler Collection (GCC)

vector signed char vec_sll (vector signed char, vector unsigned int);

vector signed char vec_sll (vector signed char, vector unsigned short);

vector signed char vec_sll (vector signed char, vector unsigned char);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned int);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned short);

vector unsigned char vec_sll (vector unsigned char,

vector unsigned char);

vector float vec_slo (vector float, vector signed char);

vector float vec_slo (vector float, vector unsigned char);

vector signed int vec_slo (vector signed int, vector signed char);

vector signed int vec_slo (vector signed int, vector unsigned char);

vector unsigned int vec_slo (vector unsigned int, vector signed char);

vector unsigned int vec_slo (vector unsigned int, vector unsigned char);

vector signed short vec_slo (vector signed short, vector signed char);

vector signed short vec_slo (vector signed short, vector unsigned char);

vector unsigned short vec_slo (vector unsigned short,

vector signed char);

vector unsigned short vec_slo (vector unsigned short,

vector unsigned char);

vector signed char vec_slo (vector signed char, vector signed char);

vector signed char vec_slo (vector signed char, vector unsigned char);

vector unsigned char vec_slo (vector unsigned char, vector signed char);

vector unsigned char vec_slo (vector unsigned char,

vector unsigned char);

vector signed char vec_splat (vector signed char, const char);

vector unsigned char vec_splat (vector unsigned char, const char);

vector signed short vec_splat (vector signed short, const char);

vector unsigned short vec_splat (vector unsigned short, const char);

vector float vec_splat (vector float, const char);

vector signed int vec_splat (vector signed int, const char);

vector unsigned int vec_splat (vector unsigned int, const char);

vector signed char vec_splat_s8 (const char);

vector signed short vec_splat_s16 (const char);

vector signed int vec_splat_s32 (const char);

vector unsigned char vec_splat_u8 (const char);

vector unsigned short vec_splat_u16 (const char);

vector unsigned int vec_splat_u32 (const char);

vector signed char vec_sr (vector signed char, vector unsigned char);

vector unsigned char vec_sr (vector unsigned char,

vector unsigned char);

vector signed short vec_sr (vector signed short, vector unsigned short);

vector unsigned short vec_sr (vector unsigned short,

vector unsigned short);

vector signed int vec_sr (vector signed int, vector unsigned int);

vector unsigned int vec_sr (vector unsigned int, vector unsigned int);

vector signed char vec_sra (vector signed char, vector unsigned char);

vector unsigned char vec_sra (vector unsigned char,

vector unsigned char);

vector signed short vec_sra (vector signed short,

Chapter 5: Extensions to the C Language Family 233

vector unsigned short);

vector unsigned short vec_sra (vector unsigned short,

vector unsigned short);

vector signed int vec_sra (vector signed int, vector unsigned int);

vector unsigned int vec_sra (vector unsigned int, vector unsigned int);

vector signed int vec_srl (vector signed int, vector unsigned int);

vector signed int vec_srl (vector signed int, vector unsigned short);

vector signed int vec_srl (vector signed int, vector unsigned char);

vector unsigned int vec_srl (vector unsigned int, vector unsigned int);

vector unsigned int vec_srl (vector unsigned int,

vector unsigned short);

vector unsigned int vec_srl (vector unsigned int, vector unsigned char);

vector signed short vec_srl (vector signed short, vector unsigned int);

vector signed short vec_srl (vector signed short,

vector unsigned short);

vector signed short vec_srl (vector signed short, vector unsigned char);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned int);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned short);

vector unsigned short vec_srl (vector unsigned short,

vector unsigned char);

vector signed char vec_srl (vector signed char, vector unsigned int);

vector signed char vec_srl (vector signed char, vector unsigned short);

vector signed char vec_srl (vector signed char, vector unsigned char);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned int);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned short);

vector unsigned char vec_srl (vector unsigned char,

vector unsigned char);

vector float vec_sro (vector float, vector signed char);

vector float vec_sro (vector float, vector unsigned char);

vector signed int vec_sro (vector signed int, vector signed char);

vector signed int vec_sro (vector signed int, vector unsigned char);

vector unsigned int vec_sro (vector unsigned int, vector signed char);

vector unsigned int vec_sro (vector unsigned int, vector unsigned char);

vector signed short vec_sro (vector signed short, vector signed char);

vector signed short vec_sro (vector signed short, vector unsigned char);

vector unsigned short vec_sro (vector unsigned short,

vector signed char);

vector unsigned short vec_sro (vector unsigned short,

vector unsigned char);

vector signed char vec_sro (vector signed char, vector signed char);

vector signed char vec_sro (vector signed char, vector unsigned char);

vector unsigned char vec_sro (vector unsigned char, vector signed char);

vector unsigned char vec_sro (vector unsigned char,

vector unsigned char);

void vec_st (vector float, int, float *);

void vec_st (vector float, int, vector float *);

void vec_st (vector signed int, int, int *);

void vec_st (vector signed int, int, unsigned int *);

void vec_st (vector unsigned int, int, unsigned int *);

void vec_st (vector unsigned int, int, vector unsigned int *);

void vec_st (vector signed short, int, short *);

void vec_st (vector signed short, int, vector unsigned short *);

void vec_st (vector signed short, int, vector signed short *);

234 Using the GNU Compiler Collection (GCC)

void vec_st (vector unsigned short, int, unsigned short *);

void vec_st (vector unsigned short, int, vector unsigned short *);

void vec_st (vector signed char, int, signed char *);

void vec_st (vector signed char, int, unsigned char *);

void vec_st (vector signed char, int, vector signed char *);

void vec_st (vector unsigned char, int, unsigned char *);

void vec_st (vector unsigned char, int, vector unsigned char *);

void vec_ste (vector signed char, int, unsigned char *);

void vec_ste (vector signed char, int, signed char *);

void vec_ste (vector unsigned char, int, unsigned char *);

void vec_ste (vector signed short, int, short *);

void vec_ste (vector signed short, int, unsigned short *);

void vec_ste (vector unsigned short, int, void *);

void vec_ste (vector signed int, int, unsigned int *);

void vec_ste (vector signed int, int, int *);

void vec_ste (vector unsigned int, int, unsigned int *);

void vec_ste (vector float, int, float *);

void vec_stl (vector float, int, vector float *);

void vec_stl (vector float, int, float *);

void vec_stl (vector signed int, int, vector signed int *);

void vec_stl (vector signed int, int, int *);

void vec_stl (vector signed int, int, unsigned int *);

void vec_stl (vector unsigned int, int, vector unsigned int *);

void vec_stl (vector unsigned int, int, unsigned int *);

void vec_stl (vector signed short, int, short *);

void vec_stl (vector signed short, int, unsigned short *);

void vec_stl (vector signed short, int, vector signed short *);

void vec_stl (vector unsigned short, int, unsigned short *);

void vec_stl (vector unsigned short, int, vector signed short *);

void vec_stl (vector signed char, int, signed char *);

void vec_stl (vector signed char, int, unsigned char *);

void vec_stl (vector signed char, int, vector signed char *);

void vec_stl (vector unsigned char, int, unsigned char *);

void vec_stl (vector unsigned char, int, vector unsigned char *);

vector signed char vec_sub (vector signed char, vector signed char);

vector unsigned char vec_sub (vector signed char, vector unsigned char);

vector unsigned char vec_sub (vector unsigned char, vector signed char);

vector unsigned char vec_sub (vector unsigned char,

vector unsigned char);

vector signed short vec_sub (vector signed short, vector signed short);

vector unsigned short vec_sub (vector signed short,

vector unsigned short);

vector unsigned short vec_sub (vector unsigned short,

vector signed short);

vector unsigned short vec_sub (vector unsigned short,

vector unsigned short);

vector signed int vec_sub (vector signed int, vector signed int);

vector unsigned int vec_sub (vector signed int, vector unsigned int);

vector unsigned int vec_sub (vector unsigned int, vector signed int);

vector unsigned int vec_sub (vector unsigned int, vector unsigned int);

vector float vec_sub (vector float, vector float);

vector unsigned int vec_subc (vector unsigned int, vector unsigned int);

vector unsigned char vec_subs (vector signed char,

vector unsigned char);

vector unsigned char vec_subs (vector unsigned char,

vector signed char);

vector unsigned char vec_subs (vector unsigned char,

vector unsigned char);

Chapter 5: Extensions to the C Language Family 235

vector signed char vec_subs (vector signed char, vector signed char);

vector unsigned short vec_subs (vector signed short,

vector unsigned short);

vector unsigned short vec_subs (vector unsigned short,

vector signed short);

vector unsigned short vec_subs (vector unsigned short,

vector unsigned short);

vector signed short vec_subs (vector signed short, vector signed short);

vector unsigned int vec_subs (vector signed int, vector unsigned int);

vector unsigned int vec_subs (vector unsigned int, vector signed int);

vector unsigned int vec_subs (vector unsigned int, vector unsigned int);

vector signed int vec_subs (vector signed int, vector signed int);

vector unsigned int vec_sum4s (vector unsigned char,

vector unsigned int);

vector signed int vec_sum4s (vector signed char, vector signed int);

vector signed int vec_sum4s (vector signed short, vector signed int);

vector signed int vec_sum2s (vector signed int, vector signed int);

vector signed int vec_sums (vector signed int, vector signed int);

vector float vec_trunc (vector float);

vector signed short vec_unpackh (vector signed char);

vector unsigned int vec_unpackh (vector signed short);

vector signed int vec_unpackh (vector signed short);

vector signed short vec_unpackl (vector signed char);

vector unsigned int vec_unpackl (vector signed short);

vector signed int vec_unpackl (vector signed short);

vector float vec_xor (vector float, vector float);

vector float vec_xor (vector float, vector signed int);

vector float vec_xor (vector signed int, vector float);

vector signed int vec_xor (vector signed int, vector signed int);

vector unsigned int vec_xor (vector signed int, vector unsigned int);

vector unsigned int vec_xor (vector unsigned int, vector signed int);

vector unsigned int vec_xor (vector unsigned int, vector unsigned int);

vector signed short vec_xor (vector signed short, vector signed short);

vector unsigned short vec_xor (vector signed short,

vector unsigned short);

vector unsigned short vec_xor (vector unsigned short,

vector signed short);

vector unsigned short vec_xor (vector unsigned short,

vector unsigned short);

vector signed char vec_xor (vector signed char, vector signed char);

vector unsigned char vec_xor (vector signed char, vector unsigned char);

vector unsigned char vec_xor (vector unsigned char, vector signed char);

vector unsigned char vec_xor (vector unsigned char,

vector unsigned char);

vector signed int vec_all_eq (vector signed char, vector unsigned char);

vector signed int vec_all_eq (vector signed char, vector signed char);

vector signed int vec_all_eq (vector unsigned char, vector signed char);

vector signed int vec_all_eq (vector unsigned char,

vector unsigned char);

vector signed int vec_all_eq (vector signed short,

vector unsigned short);

236 Using the GNU Compiler Collection (GCC)

vector signed int vec_all_eq (vector signed short, vector signed short);

vector signed int vec_all_eq (vector unsigned short,

vector signed short);

vector signed int vec_all_eq (vector unsigned short,

vector unsigned short);

vector signed int vec_all_eq (vector signed int, vector unsigned int);

vector signed int vec_all_eq (vector signed int, vector signed int);

vector signed int vec_all_eq (vector unsigned int, vector signed int);

vector signed int vec_all_eq (vector unsigned int, vector unsigned int);

vector signed int vec_all_eq (vector float, vector float);

vector signed int vec_all_ge (vector signed char, vector unsigned char);

vector signed int vec_all_ge (vector unsigned char, vector signed char);

vector signed int vec_all_ge (vector unsigned char,

vector unsigned char);

vector signed int vec_all_ge (vector signed char, vector signed char);

vector signed int vec_all_ge (vector signed short,

vector unsigned short);

vector signed int vec_all_ge (vector unsigned short,

vector signed short);

vector signed int vec_all_ge (vector unsigned short,

vector unsigned short);

vector signed int vec_all_ge (vector signed short, vector signed short);

vector signed int vec_all_ge (vector signed int, vector unsigned int);

vector signed int vec_all_ge (vector unsigned int, vector signed int);

vector signed int vec_all_ge (vector unsigned int, vector unsigned int);

vector signed int vec_all_ge (vector signed int, vector signed int);

vector signed int vec_all_ge (vector float, vector float);

vector signed int vec_all_gt (vector signed char, vector unsigned char);

vector signed int vec_all_gt (vector unsigned char, vector signed char);

vector signed int vec_all_gt (vector unsigned char,

vector unsigned char);

vector signed int vec_all_gt (vector signed char, vector signed char);

vector signed int vec_all_gt (vector signed short,

vector unsigned short);

vector signed int vec_all_gt (vector unsigned short,

vector signed short);

vector signed int vec_all_gt (vector unsigned short,

vector unsigned short);

vector signed int vec_all_gt (vector signed short, vector signed short);

vector signed int vec_all_gt (vector signed int, vector unsigned int);

vector signed int vec_all_gt (vector unsigned int, vector signed int);

vector signed int vec_all_gt (vector unsigned int, vector unsigned int);

vector signed int vec_all_gt (vector signed int, vector signed int);

vector signed int vec_all_gt (vector float, vector float);

vector signed int vec_all_in (vector float, vector float);

vector signed int vec_all_le (vector signed char, vector unsigned char);

vector signed int vec_all_le (vector unsigned char, vector signed char);

vector signed int vec_all_le (vector unsigned char,

vector unsigned char);

Chapter 5: Extensions to the C Language Family 237

vector signed int vec_all_le (vector signed char, vector signed char);

vector signed int vec_all_le (vector signed short,

vector unsigned short);

vector signed int vec_all_le (vector unsigned short,

vector signed short);

vector signed int vec_all_le (vector unsigned short,

vector unsigned short);

vector signed int vec_all_le (vector signed short, vector signed short);

vector signed int vec_all_le (vector signed int, vector unsigned int);

vector signed int vec_all_le (vector unsigned int, vector signed int);

vector signed int vec_all_le (vector unsigned int, vector unsigned int);

vector signed int vec_all_le (vector signed int, vector signed int);

vector signed int vec_all_le (vector float, vector float);

vector signed int vec_all_lt (vector signed char, vector unsigned char);

vector signed int vec_all_lt (vector unsigned char, vector signed char);

vector signed int vec_all_lt (vector unsigned char,

vector unsigned char);

vector signed int vec_all_lt (vector signed char, vector signed char);

vector signed int vec_all_lt (vector signed short,

vector unsigned short);

vector signed int vec_all_lt (vector unsigned short,

vector signed short);

vector signed int vec_all_lt (vector unsigned short,

vector unsigned short);

vector signed int vec_all_lt (vector signed short, vector signed short);

vector signed int vec_all_lt (vector signed int, vector unsigned int);

vector signed int vec_all_lt (vector unsigned int, vector signed int);

vector signed int vec_all_lt (vector unsigned int, vector unsigned int);

vector signed int vec_all_lt (vector signed int, vector signed int);

vector signed int vec_all_lt (vector float, vector float);

vector signed int vec_all_nan (vector float);

vector signed int vec_all_ne (vector signed char, vector unsigned char);

vector signed int vec_all_ne (vector signed char, vector signed char);

vector signed int vec_all_ne (vector unsigned char, vector signed char);

vector signed int vec_all_ne (vector unsigned char,

vector unsigned char);

vector signed int vec_all_ne (vector signed short,

vector unsigned short);

vector signed int vec_all_ne (vector signed short, vector signed short);

vector signed int vec_all_ne (vector unsigned short,

vector signed short);

vector signed int vec_all_ne (vector unsigned short,

vector unsigned short);

vector signed int vec_all_ne (vector signed int, vector unsigned int);

vector signed int vec_all_ne (vector signed int, vector signed int);

vector signed int vec_all_ne (vector unsigned int, vector signed int);

vector signed int vec_all_ne (vector unsigned int, vector unsigned int);

vector signed int vec_all_ne (vector float, vector float);

vector signed int vec_all_nge (vector float, vector float);

vector signed int vec_all_ngt (vector float, vector float);

238 Using the GNU Compiler Collection (GCC)

vector signed int vec_all_nle (vector float, vector float);

vector signed int vec_all_nlt (vector float, vector float);

vector signed int vec_all_numeric (vector float);

vector signed int vec_any_eq (vector signed char, vector unsigned char);

vector signed int vec_any_eq (vector signed char, vector signed char);

vector signed int vec_any_eq (vector unsigned char, vector signed char);

vector signed int vec_any_eq (vector unsigned char,

vector unsigned char);

vector signed int vec_any_eq (vector signed short,

vector unsigned short);

vector signed int vec_any_eq (vector signed short, vector signed short);

vector signed int vec_any_eq (vector unsigned short,

vector signed short);

vector signed int vec_any_eq (vector unsigned short,

vector unsigned short);

vector signed int vec_any_eq (vector signed int, vector unsigned int);

vector signed int vec_any_eq (vector signed int, vector signed int);

vector signed int vec_any_eq (vector unsigned int, vector signed int);

vector signed int vec_any_eq (vector unsigned int, vector unsigned int);

vector signed int vec_any_eq (vector float, vector float);

vector signed int vec_any_ge (vector signed char, vector unsigned char);

vector signed int vec_any_ge (vector unsigned char, vector signed char);

vector signed int vec_any_ge (vector unsigned char,

vector unsigned char);

vector signed int vec_any_ge (vector signed char, vector signed char);

vector signed int vec_any_ge (vector signed short,

vector unsigned short);

vector signed int vec_any_ge (vector unsigned short,

vector signed short);

vector signed int vec_any_ge (vector unsigned short,

vector unsigned short);

vector signed int vec_any_ge (vector signed short, vector signed short);

vector signed int vec_any_ge (vector signed int, vector unsigned int);

vector signed int vec_any_ge (vector unsigned int, vector signed int);

vector signed int vec_any_ge (vector unsigned int, vector unsigned int);

vector signed int vec_any_ge (vector signed int, vector signed int);

vector signed int vec_any_ge (vector float, vector float);

vector signed int vec_any_gt (vector signed char, vector unsigned char);

vector signed int vec_any_gt (vector unsigned char, vector signed char);

vector signed int vec_any_gt (vector unsigned char,

vector unsigned char);

vector signed int vec_any_gt (vector signed char, vector signed char);

vector signed int vec_any_gt (vector signed short,

vector unsigned short);

vector signed int vec_any_gt (vector unsigned short,

vector signed short);

vector signed int vec_any_gt (vector unsigned short,

vector unsigned short);

vector signed int vec_any_gt (vector signed short, vector signed short);

Chapter 5: Extensions to the C Language Family 239

vector signed int vec_any_gt (vector signed int, vector unsigned int);

vector signed int vec_any_gt (vector unsigned int, vector signed int);

vector signed int vec_any_gt (vector unsigned int, vector unsigned int);

vector signed int vec_any_gt (vector signed int, vector signed int);

vector signed int vec_any_gt (vector float, vector float);

vector signed int vec_any_le (vector signed char, vector unsigned char);

vector signed int vec_any_le (vector unsigned char, vector signed char);

vector signed int vec_any_le (vector unsigned char,

vector unsigned char);

vector signed int vec_any_le (vector signed char, vector signed char);

vector signed int vec_any_le (vector signed short,

vector unsigned short);

vector signed int vec_any_le (vector unsigned short,

vector signed short);

vector signed int vec_any_le (vector unsigned short,

vector unsigned short);

vector signed int vec_any_le (vector signed short, vector signed short);

vector signed int vec_any_le (vector signed int, vector unsigned int);

vector signed int vec_any_le (vector unsigned int, vector signed int);

vector signed int vec_any_le (vector unsigned int, vector unsigned int);

vector signed int vec_any_le (vector signed int, vector signed int);

vector signed int vec_any_le (vector float, vector float);

vector signed int vec_any_lt (vector signed char, vector unsigned char);

vector signed int vec_any_lt (vector unsigned char, vector signed char);

vector signed int vec_any_lt (vector unsigned char,

vector unsigned char);

vector signed int vec_any_lt (vector signed char, vector signed char);

vector signed int vec_any_lt (vector signed short,

vector unsigned short);

vector signed int vec_any_lt (vector unsigned short,

vector signed short);

vector signed int vec_any_lt (vector unsigned short,

vector unsigned short);

vector signed int vec_any_lt (vector signed short, vector signed short);

vector signed int vec_any_lt (vector signed int, vector unsigned int);

vector signed int vec_any_lt (vector unsigned int, vector signed int);

vector signed int vec_any_lt (vector unsigned int, vector unsigned int);

vector signed int vec_any_lt (vector signed int, vector signed int);

vector signed int vec_any_lt (vector float, vector float);

vector signed int vec_any_nan (vector float);

vector signed int vec_any_ne (vector signed char, vector unsigned char);

vector signed int vec_any_ne (vector signed char, vector signed char);

vector signed int vec_any_ne (vector unsigned char, vector signed char);

vector signed int vec_any_ne (vector unsigned char,

vector unsigned char);

vector signed int vec_any_ne (vector signed short,

vector unsigned short);

vector signed int vec_any_ne (vector signed short, vector signed short);

240 Using the GNU Compiler Collection (GCC)

vector signed int vec_any_ne (vector unsigned short,

vector signed short);

vector signed int vec_any_ne (vector unsigned short,

vector unsigned short);

vector signed int vec_any_ne (vector signed int, vector unsigned int);

vector signed int vec_any_ne (vector signed int, vector signed int);

vector signed int vec_any_ne (vector unsigned int, vector signed int);

vector signed int vec_any_ne (vector unsigned int, vector unsigned int);

vector signed int vec_any_ne (vector float, vector float);

vector signed int vec_any_nge (vector float, vector float);

vector signed int vec_any_ngt (vector float, vector float);

vector signed int vec_any_nle (vector float, vector float);

vector signed int vec_any_nlt (vector float, vector float);

vector signed int vec_any_numeric (vector float);

vector signed int vec_any_out (vector float, vector float);

5.46 Pragmas Accepted by GCC

GCC supports several types of pragmas, primarily in order to compile code originally written for
other compilers. Note that in general we do not recommend the use of pragmas; See Section 5.25
[Function Attributes], page 169, for further explanation.

5.46.1 ARM Pragmas

The ARM target defines pragmas for controlling the default addition of long_call and short_
call attributes to functions. See Section 5.25 [Function Attributes], page 169, for information
about the effects of these attributes.

long_calls
Set all subsequent functions to have the long_call attribute.

no_long_calls
Set all subsequent functions to have the short_call attribute.

long_calls_off
Do not affect the long_call or short_call attributes of subsequent functions.

5.46.2 RS/6000 and PowerPC Pragmas

The RS/6000 and PowerPC targets define one pragma for controlling whether or not the
longcall attribute is added to function declarations by default. This pragma overrides the
‘-mlongcall’ option, but not the longcall and shortcall attributes. See Section 3.17.10
[RS/6000 and PowerPC Options], page 93, for more information about when long calls are and
are not necessary.

longcall (1)
Apply the longcall attribute to all subsequent function declarations.

longcall (0)
Do not apply the longcall attribute to subsequent function declarations.

Chapter 5: Extensions to the C Language Family 241

5.46.3 Darwin Pragmas

The following pragmas are available for all architectures running the Darwin operating system.
These are useful for compatibility with other Mac OS compilers.

mark tokens...
This pragma is accepted, but has no effect.

options align=alignment
This pragma sets the alignment of fields in structures. The values of alignment may
be mac68k, to emulate m68k alignment, or power, to emulate PowerPC alignment.
Uses of this pragma nest properly; to restore the previous setting, use reset for the
alignment.

segment tokens...
This pragma is accepted, but has no effect.

unused (var [, var]...)
This pragma declares variables to be possibly unused. GCC will not produce warn-
ings for the listed variables. The effect is similar to that of the unused attribute,
except that this pragma may appear anywhere within the variables’ scopes.

5.46.4 Solaris Pragmas

For compatibility with the SunPRO compiler, the following pragma is supported.

redefine_extname oldname newname

This pragma gives the C function oldname the assembler label newname. The
pragma must appear before the function declaration. This pragma is equivalent to
the asm labels extension (see Section 5.37 [Asm Labels], page 208). The preprocessor
defines __PRAGMA_REDEFINE_EXTNAME if the pragma is available.

5.46.5 Tru64 Pragmas

For compatibility with the Compaq C compiler, the following pragma is supported.

extern_prefix string

This pragma renames all subsequent function and variable declarations such that
string is prepended to the name. This effect may be terminated by using another
extern_prefix pragma with the empty string.
This pragma is similar in intent to to the asm labels extension (see Section 5.37 [Asm
Labels], page 208) in that the system programmer wants to change the assembly-level
ABI without changing the source-level API. The preprocessor defines __PRAGMA_
EXTERN_PREFIX if the pragma is available.

5.47 Unnamed struct/union fields within structs/unions.

For compatibility with other compilers, GCC allows you to define a structure or union that
contains, as fields, structures and unions without names. For example:

struct {
int a;
union {
int b;

242 Using the GNU Compiler Collection (GCC)

float c;
};
int d;

} foo;

In this example, the user would be able to access members of the unnamed union with code
like ‘foo.b’. Note that only unnamed structs and unions are allowed, you may not have, for
example, an unnamed int.

You must never create such structures that cause ambiguous field definitions. For example,
this structure:

struct {
int a;
struct {
int a;

};
} foo;

It is ambiguous which a is being referred to with ‘foo.a’. Such constructs are not supported
and must be avoided. In the future, such constructs may be detected and treated as compilation
errors.

5.48 Thread-Local Storage

Thread-local storage (tls) is a mechanism by which variables are allocated such that there is
one instance of the variable per extant thread. The run-time model GCC uses to implement this
originates in the IA-64 processor-specific ABI, but has since been migrated to other processors
as well. It requires significant support from the linker (ld), dynamic linker (ld.so), and system
libraries (‘libc.so’ and ‘libpthread.so’), so it is not available everywhere.

At the user level, the extension is visible with a new storage class keyword: __thread. For
example:

__thread int i;
extern __thread struct state s;
static __thread char *p;

The __thread specifier may be used alone, with the extern or static specifiers, but with
no other storage class specifier. When used with extern or static, __thread must appear
immediately after the other storage class specifier.

The __thread specifier may be applied to any global, file-scoped static, function-scoped
static, or static data member of a class. It may not be applied to block-scoped automatic or
non-static data member.

When the address-of operator is applied to a thread-local variable, it is evaluated at run-time
and returns the address of the current thread’s instance of that variable. An address so obtained
may be used by any thread. When a thread terminates, any pointers to thread-local variables
in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

In C++, if an initializer is present for a thread-local variable, it must be a constant-expression,
as defined in 5.19.2 of the ANSI/ISO C++ standard.

See ELF Handling For Thread-Local Storage for a detailed explanation of the four thread-
local storage addressing models, and how the run-time is expected to function.

http://people.redhat.com/drepper/tls.pdf

Chapter 5: Extensions to the C Language Family 243

5.48.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact
semantics of the language extension.

• 5.1.2 Execution environments

Add new text after paragraph 1
Within either execution environment, a thread is a flow of control within a
program. It is implementation defined whether or not there may be more than
one thread associated with a program. It is implementation defined how threads
beyond the first are created, the name and type of the function called at thread
startup, and how threads may be terminated. However, objects with thread
storage duration shall be initialized before thread startup.

• 6.2.4 Storage durations of objects

Add new text before paragraph 3
An object whose identifier is declared with the storage-class specifier __thread
has thread storage duration. Its lifetime is the entire execution of the thread,
and its stored value is initialized only once, prior to thread startup.

• 6.4.1 Keywords

Add __thread.
• 6.7.1 Storage-class specifiers

Add __thread to the list of storage class specifiers in paragraph 1.
Change paragraph 2 to

With the exception of __thread, at most one storage-class specifier may be
given [. . .]. The __thread specifier may be used alone, or immediately following
extern or static.

Add new text after paragraph 6
The declaration of an identifier for a variable that has block scope that specifies
__thread shall also specify either extern or static.
The __thread specifier shall be used only with variables.

5.48.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 14882:1998 (aka C++98) that document the exact
semantics of the language extension.

• [intro.execution]

New text after paragraph 4
A thread is a flow of control within the abstract machine. It is implementation
defined whether or not there may be more than one thread.

New text after paragraph 7
It is unspecified whether additional action must be taken to ensure when and
whether side effects are visible to other threads.

• [lex.key]

Add __thread.
• [basic.start.main]

Add after paragraph 5

244 Using the GNU Compiler Collection (GCC)

The thread that begins execution at the main function is called the main thread.
It is implementation defined how functions beginning threads other than the
main thread are designated or typed. A function so designated, as well as the
main function, is called a thread startup function. It is implementation defined
what happens if a thread startup function returns. It is implementation defined
what happens to other threads when any thread calls exit.

• [basic.start.init]

Add after paragraph 4
The storage for an object of thread storage duration shall be statically initialized
before the first statement of the thread startup function. An object of thread
storage duration shall not require dynamic initialization.

• [basic.start.term]

Add after paragraph 3
The type of an object with thread storage duration shall not have a non-trivial
destructor, nor shall it be an array type whose elements (directly or indirectly)
have non-trivial destructors.

• [basic.stc]

Add “thread storage duration” to the list in paragraph 1.
Change paragraph 2

Thread, static, and automatic storage durations are associated with objects
introduced by declarations [. . .].

Add __thread to the list of specifiers in paragraph 3.
• [basic.stc.thread]

New section before [basic.stc.static]

The keyword __thread applied to a non-local object gives the object thread
storage duration.
A local variable or class data member declared both static and __thread gives
the variable or member thread storage duration.

• [basic.stc.static]

Change paragraph 1
All objects which have neither thread storage duration, dynamic storage dura-
tion nor are local [. . .].

• [dcl.stc]

Add __thread to the list in paragraph 1.
Change paragraph 1

With the exception of __thread, at most one storage-class-specifier shall appear
in a given decl-specifier-seq. The __thread specifier may be used alone, or
immediately following the extern or static specifiers. [. . .]

Add after paragraph 5
The __thread specifier can be applied only to the names of objects and to
anonymous unions.

• [class.mem]

Add after paragraph 6
Non-static members shall not be __thread.

Chapter 6: Extensions to the C++ Language 245

6 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use most of
the C language extensions in your C++ programs). If you want to write code that checks whether
these features are available, you can test for the GNU compiler the same way as for C programs:
check for a predefined macro __GNUC__. You can also use __GNUG__ to test specifically for GNU
C++ (see section “Predefined Macros” in The GNU C Preprocessor).

6.1 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum” of two
arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the numeric values a and b;

a >? b is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return the
minimum of two things in C++, as in the following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum value of variables i and
j.

However, side effects in X or Y may cause unintended behavior. For example, MIN (i++, j++)
will fail, incrementing the smaller counter twice. The GNU C typeof extension allows you to
write safe macros that avoid this kind of problem (see Section 5.6 [Typeof], page 158). However,
writing MIN and MAX as macros also forces you to use function-call notation for a fundamental
arithmetic operation. Using GNU C++ extensions, you can write ‘int min = i <? j;’ instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-effects;
‘int min = i++ <? j++;’ works correctly.

6.2 When is a Volatile Object Accessed?

Both the C and C++ standard have the concept of volatile objects. These are normally accessed
by pointers and used for accessing hardware. The standards encourage compilers to refrain
from optimizations concerning accesses to volatile objects that it might perform on non-volatile
objects. The C standard leaves it implementation defined as to what constitutes a volatile
access. The C++ standard omits to specify this, except to say that C++ should behave in a
similar manner to C with respect to volatiles, where possible. The minimum either standard
specifies is that at a sequence point all previous accesses to volatile objects have stabilized and
no subsequent accesses have occurred. Thus an implementation is free to reorder and combine
volatile accesses which occur between sequence points, but cannot do so for accesses across a
sequence point. The use of volatiles does not allow you to violate the restriction on updating
objects multiple times within a sequence point.

In most expressions, it is intuitively obvious what is a read and what is a write. For instance
volatile int *dst = somevalue;
volatile int *src = someothervalue;
*dst = *src;

will cause a read of the volatile object pointed to by src and stores the value into the volatile
object pointed to by dst. There is no guarantee that these reads and writes are atomic, especially
for objects larger than int.

Less obvious expressions are where something which looks like an access is used in a void
context. An example would be,

246 Using the GNU Compiler Collection (GCC)

volatile int *src = somevalue;
*src;

With C, such expressions are rvalues, and as rvalues cause a read of the object, GCC interprets
this as a read of the volatile being pointed to. The C++ standard specifies that such expressions
do not undergo lvalue to rvalue conversion, and that the type of the dereferenced object may
be incomplete. The C++ standard does not specify explicitly that it is this lvalue to rvalue
conversion which is responsible for causing an access. However, there is reason to believe that it
is, because otherwise certain simple expressions become undefined. However, because it would
surprise most programmers, G++ treats dereferencing a pointer to volatile object of complete
type in a void context as a read of the object. When the object has incomplete type, G++ issues
a warning.

struct S;
struct T {int m;};
volatile S *ptr1 = somevalue;
volatile T *ptr2 = somevalue;
*ptr1;
*ptr2;

In this example, a warning is issued for *ptr1, and *ptr2 causes a read of the object pointed
to. If you wish to force an error on the first case, you must force a conversion to rvalue with,
for instance a static cast, static_cast<S>(*ptr1).

When using a reference to volatile, G++ does not treat equivalent expressions as accesses
to volatiles, but instead issues a warning that no volatile is accessed. The rationale for this is
that otherwise it becomes difficult to determine where volatile access occur, and not possible to
ignore the return value from functions returning volatile references. Again, if you wish to force
a read, cast the reference to an rvalue.

6.3 Restricting Pointer Aliasing

As with gcc, g++ understands the C99 feature of restricted pointers, specified with the __
restrict__, or __restrict type qualifier. Because you cannot compile C++ by specifying the
‘-std=c99’ language flag, restrict is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted references, which indi-
cate that the reference is not aliased in the local context.

void fn (int *__restrict__ rptr, int &__restrict__ rref)
{
/* . . . */

}

In the body of fn, rptr points to an unaliased integer and rref refers to a (different) unaliased
integer.

You may also specify whether a member function’s this pointer is unaliased by using __
restrict__ as a member function qualifier.

void T::fn () __restrict__
{
/* . . . */

}

Within the body of T::fn, this will have the effective definition T *__restrict__ const this.
Notice that the interpretation of a __restrict__ member function qualifier is different to that
of const or volatile qualifier, in that it is applied to the pointer rather than the object. This
is consistent with other compilers which implement restricted pointers.

Chapter 6: Extensions to the C++ Language 247

As with all outermost parameter qualifiers, __restrict__ is ignored in function definition
matching. This means you only need to specify __restrict__ in a function definition, rather
than in a function prototype as well.

6.4 Vague Linkage

There are several constructs in C++ which require space in the object file but are not clearly tied
to a single translation unit. We say that these constructs have “vague linkage”. Typically such
constructs are emitted wherever they are needed, though sometimes we can be more clever.

Inline Functions
Inline functions are typically defined in a header file which can be included in many
different compilations. Hopefully they can usually be inlined, but sometimes an
out-of-line copy is necessary, if the address of the function is taken or if inlining
fails. In general, we emit an out-of-line copy in all translation units where one is
needed. As an exception, we only emit inline virtual functions with the vtable, since
it will always require a copy.
Local static variables and string constants used in an inline function are also con-
sidered to have vague linkage, since they must be shared between all inlined and
out-of-line instances of the function.

VTables C++ virtual functions are implemented in most compilers using a lookup table,
known as a vtable. The vtable contains pointers to the virtual functions provided
by a class, and each object of the class contains a pointer to its vtable (or vtables, in
some multiple-inheritance situations). If the class declares any non-inline, non-pure
virtual functions, the first one is chosen as the “key method” for the class, and the
vtable is only emitted in the translation unit where the key method is defined.
Note: If the chosen key method is later defined as inline, the vtable will still be
emitted in every translation unit which defines it. Make sure that any inline virtuals
are declared inline in the class body, even if they are not defined there.

type info objects
C++ requires information about types to be written out in order to implement
‘dynamic_cast’, ‘typeid’ and exception handling. For polymorphic classes (classes
with virtual functions), the type info object is written out along with the vtable so
that ‘dynamic_cast’ can determine the dynamic type of a class object at runtime.
For all other types, we write out the type info object when it is used: when apply-
ing ‘typeid’ to an expression, throwing an object, or referring to a type in a catch
clause or exception specification.

Template Instantiations
Most everything in this section also applies to template instantiations, but there are
other options as well. See Section 6.6 [Where’s the Template?], page 249.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or Solaris
2, or on Microsoft Windows, duplicate copies of these constructs will be discarded at link time.
This is known as COMDAT support.

On targets that don’t support COMDAT, but do support weak symbols, GCC will use them.
This way one copy will override all the others, but the unused copies will still take up space in
the executable.

For targets which do not support either COMDAT or weak symbols, most entities with
vague linkage will be emitted as local symbols to avoid duplicate definition errors from the
linker. This will not happen for local statics in inlines, however, as having multiple copies will
almost certainly break things.

248 Using the GNU Compiler Collection (GCC)

See Section 6.5 [Declarations and Definitions in One Header], page 248, for another way to
control placement of these constructs.

6.5 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need two kinds
of things for each object that you use across more than one source file. First, you need an
interface specification, describing its structure with type declarations and function prototypes.
Second, you need the implementation itself. It can be tedious to maintain a separate interface
description in a header file, in parallel to the actual implementation. It is also dangerous, since
separate interface and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.
Warning: The mechanism to specify this is in transition. For the nonce, you must
use one of two #pragma commands; in a future release of GNU C++, an alternative
mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with ‘#pragma interface’ in the
source code. This allows the compiler to use the header file only as an interface specification
when ordinary source files incorporate it with #include. In the single source file where the full
implementation belongs, you can use either a naming convention or ‘#pragma implementation’
to indicate this alternate use of the header file.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to save space in most of
the object files that use those classes. Normally, local copies of certain information
(backup copies of inline member functions, debugging information, and the internal
tables that implement virtual functions) must be kept in each object file that in-
cludes class definitions. You can use this pragma to avoid such duplication. When
a header file containing ‘#pragma interface’ is included in a compilation, this aux-
iliary information will not be generated (unless the main input source file itself uses
‘#pragma implementation’). Instead, the object files will contain references to be
resolved at link time.
The second form of this directive is useful for the case where you have multiple
headers with the same name in different directories. If you use this form, you must
specify the same string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output from included
header files to be generated (and made globally visible). The included header file,
in turn, should use ‘#pragma interface’. Backup copies of inline member functions,
debugging information, and the internal tables used to implement virtual functions
are all generated in implementation files.
If you use ‘#pragma implementation’ with no argument, it applies to an include file
with the same basename1 as your source file. For example, in ‘allclass.cc’, giving
just ‘#pragma implementation’ by itself is equivalent to ‘#pragma implementation
"allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was treated as an implemen-
tation file whenever you would include it from ‘allclass.cc’ even if you never

1 A file’s basename was the name stripped of all leading path information and of trailing suffixes, such as ‘.h’
or ‘.C’ or ‘.cc’.

Chapter 6: Extensions to the C++ Language 249

specified ‘#pragma implementation’. This was deemed to be more trouble than it
was worth, however, and disabled.
If you use an explicit ‘#pragma implementation’, it must appear in your source file
before you include the affected header files.
Use the string argument if you want a single implementation file to include code
from multiple header files. (You must also use ‘#include’ to include the header file;
‘#pragma implementation’ only specifies how to use the file—it doesn’t actually
include it.)
There is no way to split up the contents of a single header file into multiple imple-
mentation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function inlining.
If you define a class in a header file marked with ‘#pragma interface’, the effect on a function

defined in that class is similar to an explicit extern declaration—the compiler emits no code at
all to define an independent version of the function. Its definition is used only for inlining with
its callers.

Conversely, when you include the same header file in a main source file that declares it as
‘#pragma implementation’, the compiler emits code for the function itself; this defines a version
of the function that can be found via pointers (or by callers compiled without inlining). If all
calls to the function can be inlined, you can avoid emitting the function by compiling with
‘-fno-implement-inlines’. If any calls were not inlined, you will get linker errors.

6.6 Where’s the Template?

C++ templates are the first language feature to require more intelligence from the environment
than one usually finds on a UNIX system. Somehow the compiler and linker have to make sure
that each template instance occurs exactly once in the executable if it is needed, and not at all
otherwise. There are two basic approaches to this problem, which I will refer to as the Borland
model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by adding the code equiva-
lent of common blocks to their linker; the compiler emits template instances in each
translation unit that uses them, and the linker collapses them together. The advan-
tage of this model is that the linker only has to consider the object files themselves;
there is no external complexity to worry about. This disadvantage is that compila-
tion time is increased because the template code is being compiled repeatedly. Code
written for this model tends to include definitions of all templates in the header file,
since they must be seen to be instantiated.

Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem by
creating the notion of a template repository, an automatically maintained place
where template instances are stored. A more modern version of the repository works
as follows: As individual object files are built, the compiler places any template
definitions and instantiations encountered in the repository. At link time, the link
wrapper adds in the objects in the repository and compiles any needed instances
that were not previously emitted. The advantages of this model are more optimal
compilation speed and the ability to use the system linker; to implement the Borland
model a compiler vendor also needs to replace the linker. The disadvantages are
vastly increased complexity, and thus potential for error; for some code this can
be just as transparent, but in practice it can been very difficult to build multiple

250 Using the GNU Compiler Collection (GCC)

programs in one directory and one program in multiple directories. Code written
for this model tends to separate definitions of non-inline member templates into a
separate file, which should be compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or
Solaris 2, or on Microsoft Windows, g++ supports the Borland model. On other systems, g++
implements neither automatic model.

A future version of g++ will support a hybrid model whereby the compiler will emit any
instantiations for which the template definition is included in the compile, and store template
definitions and instantiation context information into the object file for the rest. The link
wrapper will extract that information as necessary and invoke the compiler to produce the
remaining instantiations. The linker will then combine duplicate instantiations.

In the mean time, you have the following options for dealing with template instantiations:
1. Compile your template-using code with ‘-frepo’. The compiler will generate files with the

extension ‘.rpo’ listing all of the template instantiations used in the corresponding object
files which could be instantiated there; the link wrapper, ‘collect2’, will then update the
‘.rpo’ files to tell the compiler where to place those instantiations and rebuild any affected
object files. The link-time overhead is negligible after the first pass, as the compiler will
continue to place the instantiations in the same files.
This is your best option for application code written for the Borland model, as it will just
work. Code written for the Cfront model will need to be modified so that the template
definitions are available at one or more points of instantiation; usually this is as simple as
adding #include <tmethods.cc> to the end of each template header.
For library code, if you want the library to provide all of the template instantiations it needs,
just try to link all of its object files together; the link will fail, but cause the instantiations
to be generated as a side effect. Be warned, however, that this may cause conflicts if
multiple libraries try to provide the same instantiations. For greater control, use explicit
instantiation as described in the next option.

2. Compile your code with ‘-fno-implicit-templates’ to disable the implicit generation of
template instances, and explicitly instantiate all the ones you use. This approach requires
more knowledge of exactly which instances you need than do the others, but it’s less mys-
terious and allows greater control. You can scatter the explicit instantiations throughout
your program, perhaps putting them in the translation units where the instances are used
or the translation units that define the templates themselves; you can put all of the explicit
instantiations you need into one big file; or you can create small files like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;
template ostream& operator <<

(ostream&, const Foo<int>&);

for each of the instances you need, and create a template instantiation library from those.
If you are using Cfront-model code, you can probably get away with not using
‘-fno-implicit-templates’ when compiling files that don’t ‘#include’ the member
template definitions.
If you use one big file to do the instantiations, you may want to compile it without
‘-fno-implicit-templates’ so you get all of the instances required by your explicit in-
stantiations (but not by any other files) without having to specify them as well.
g++ has extended the template instantiation syntax given in the ISO standard to allow
forward declaration of explicit instantiations (with extern), instantiation of the compiler

Chapter 6: Extensions to the C++ Language 251

support data for a template class (i.e. the vtable) without instantiating any of its members
(with inline), and instantiation of only the static data members of a template class, without
the support data or member functions (with (static):

extern template int max (int, int);
inline template class Foo<int>;
static template class Foo<int>;

3. Do nothing. Pretend g++ does implement automatic instantiation management. Code
written for the Borland model will work fine, but each translation unit will contain instances
of each of the templates it uses. In a large program, this can lead to an unacceptable amount
of code duplication.
See Section 6.5 [Declarations and Definitions in One Header], page 248, for more discussion
of these pragmas.

6.7 Extracting the function pointer from a bound pointer to
member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts
to handle all the possible call mechanisms; the PMF needs to store information about how to
adjust the ‘this’ pointer, and if the function pointed to is virtual, where to find the vtable, and
where in the vtable to look for the member function. If you are using PMFs in an inner loop,
you should really reconsider that decision. If that is not an option, you can extract the pointer
to the function that would be called for a given object/PMF pair and call it directly inside the
inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a function pointer; on most
modern architectures, such a call defeats the branch prediction features of the CPU. This is
also true of normal virtual function calls.

The syntax for this extension is
extern A a;
extern int (A::*fp)();
typedef int (*fptr)(A *);

fptr p = (fptr)(a.*fp);

For PMF constants (i.e. expressions of the form ‘&Klasse::Member’), no object is needed to
obtain the address of the function. They can be converted to function pointers directly:

fptr p1 = (fptr)(&A::foo);

You must specify ‘-Wno-pmf-conversions’ to use this extension.

6.8 C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

init_priority (priority)
In Standard C++, objects defined at namespace scope are guaranteed to be initialized
in an order in strict accordance with that of their definitions in a given translation
unit. No guarantee is made for initializations across translation units. However,
GNU C++ allows users to control the order of initialization of objects defined at
namespace scope with the init_priority attribute by specifying a relative priority,
a constant integral expression currently bounded between 101 and 65535 inclusive.
Lower numbers indicate a higher priority.

252 Using the GNU Compiler Collection (GCC)

In the following example, A would normally be created before B, but the init_
priority attribute has reversed that order:

Some_Class A __attribute__ ((init_priority (2000)));

Some_Class B __attribute__ ((init_priority (543)));

Note that the particular values of priority do not matter; only their relative ordering.

java_interface
This type attribute informs C++ that the class is a Java interface. It may only
be applied to classes declared within an extern "Java" block. Calls to methods
declared in this interface will be dispatched using GCJ’s interface table mechanism,
instead of regular virtual table dispatch.

6.9 Java Exceptions

The Java language uses a slightly different exception handling model from C++. Normally, GNU
C++ will automatically detect when you are writing C++ code that uses Java exceptions, and
handle them appropriately. However, if C++ code only needs to execute destructors when Java
exceptions are thrown through it, GCC will guess incorrectly. Sample problematic code is:

struct S { ~S(); };

extern void bar(); // is written in Java, and may throw exceptions

void foo()

{

S s;

bar();

}

The usual effect of an incorrect guess is a link failure, complaining of a missing routine called
‘__gxx_personality_v0’.

You can inform the compiler that Java exceptions are to be used in a translation unit,
irrespective of what it might think, by writing ‘#pragma GCC java_exceptions’ at the head of
the file. This ‘#pragma’ must appear before any functions that throw or catch exceptions, or
run destructors when exceptions are thrown through them.

You cannot mix Java and C++ exceptions in the same translation unit. It is believed to be
safe to throw a C++ exception from one file through another file compiled for the Java exception
model, or vice versa, but there may be bugs in this area.

6.10 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at a time
when the C++ language was still evolving. Now that the C++ standard is complete, some of
those features are superseded by superior alternatives. Using the old features might cause a
warning in some cases that the feature will be dropped in the future. In other cases, the feature
might be gone already.

While the list below is not exhaustive, it documents some of the options that are now dep-
recated:

-fexternal-templates
-falt-external-templates

These are two of the many ways for g++ to implement template instantiation. See
Section 6.6 [Template Instantiation], page 249. The C++ standard clearly defines
how template definitions have to be organized across implementation units. g++
has an implicit instantiation mechanism that should work just fine for standard-
conforming code.

Chapter 6: Extensions to the C++ Language 253

-fstrict-prototype
-fno-strict-prototype

Previously it was possible to use an empty prototype parameter list to indicate
an unspecified number of parameters (like C), rather than no parameters, as C++
demands. This feature has been removed, except where it is required for backwards
compatibility See Section 6.11 [Backwards Compatibility], page 253.

The named return value extension has been deprecated, and is now removed from g++.
The use of initializer lists with new expressions has been deprecated, and is now removed

from g++.
Floating and complex non-type template parameters have been deprecated, and are now

removed from g++.
The implicit typename extension has been deprecated and will be removed from g++ at some

point. In some cases g++ determines that a dependent type such as TPL<T>::X is a type without
needing a typename keyword, contrary to the standard.

6.11 Backwards Compatibility

Now that there is a definitive ISO standard C++, G++ has a specification to adhere to. The C++
language evolved over time, and features that used to be acceptable in previous drafts of the
standard, such as the ARM [Annotated C++ Reference Manual], are no longer accepted. In order
to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities.
All such backwards compatibility features are liable to disappear in future versions of G++. They
should be considered deprecated See Section 6.10 [Deprecated Features], page 252.

For scope If a variable is declared at for scope, it used to remain in scope until the end of
the scope which contained the for statement (rather than just within the for scope).
G++ retains this, but issues a warning, if such a variable is accessed outside the for
scope.

Implicit C language
Old C system header files did not contain an extern "C" {...} scope to set the
language. On such systems, all header files are implicitly scoped inside a C language
scope. Also, an empty prototype () will be treated as an unspecified number of
arguments, rather than no arguments, as C++ demands.

254 Using the GNU Compiler Collection (GCC)

Chapter 7: GNU Objective-C runtime features 255

7 GNU Objective-C runtime features

This document is meant to describe some of the GNU Objective-C runtime features. It is not in-
tended to teach you Objective-C, there are several resources on the Internet that present the lan-
guage. Questions and comments about this document to Ovidiu Predescu ovidiu@cup.hp.com.

7.1 +load: Executing code before main

The GNU Objective-C runtime provides a way that allows you to execute code before the
execution of the program enters the main function. The code is executed on a per-class and a
per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed by
the program directly, without sending a message to the class first. The usual way to initialize
global variables, in the +initialize method, might not be useful because +initialize is only
called when the first message is sent to a class object, which in some cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and Stderr
as global variables, like below:

FileStream *Stdin = nil;
FileStream *Stdout = nil;
FileStream *Stderr = nil;

@implementation FileStream

+ (void)initialize
{

Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];

}

/* Other methods here */
@end

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs too
late. The programmer can send a message to one of these objects before the variables are
actually initialized, thus sending messages to the nil object. The +initialize method which
actually initializes the global variables is not invoked until the first message is sent to the class
object. The solution would require these variables to be initialized just before entering main.

The correct solution of the above problem is to use the +load method instead of +initialize:

@implementation FileStream

+ (void)load
{

Stdin = [[FileStream new] initWithFd:0];
Stdout = [[FileStream new] initWithFd:1];
Stderr = [[FileStream new] initWithFd:2];

}

mailto:ovidiu@cup.hp.com

256 Using the GNU Compiler Collection (GCC)

/* Other methods here */
@end

The +load is a method that is not overridden by categories. If a class and a category of it
both implement +load, both methods are invoked. This allows some additional initializations
to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be aware
of its limitations when you decide to use it instead of +initialize.

7.1.1 What you can and what you cannot do in +load

The +load implementation in the GNU runtime guarantees you the following things:
• you can write whatever C code you like;
• you can send messages to Objective-C constant strings (@"this is a constant string");
• you can allocate and send messages to objects whose class is implemented in the same file;
• the +load implementation of all super classes of a class are executed before the +load of

that class is executed;
• the +load implementation of a class is executed before the +load implementation of any

category.

In particular, the following things, even if they can work in a particular case, are not guar-
anteed:
• allocation of or sending messages to arbitrary objects;
• allocation of or sending messages to objects whose classes have a category implemented in

the same file;

You should make no assumptions about receiving +load in sibling classes when you write
+load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this matters. If
you don’t allocate objects inside +load, it is guaranteed that +load is called before +initialize.
If you create an object inside +load the +initialize method of object’s class is invoked even if
+load was not invoked. Note if you explicitly call +load on a class, +initialize will be called
first. To avoid possible problems try to implement only one of these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running
program. This happens automatically without any intervening operation from you. When you
write bundles and you need to write +load you can safely create and send messages to objects
whose classes already exist in the running program. The same restrictions as above apply to
classes defined in bundle.

7.2 Type encoding

The Objective-C compiler generates type encodings for all the types. These type encodings are
used at runtime to find out information about selectors and methods and about objects and
classes.

The types are encoded in the following way:
char c
unsigned char C
short s
unsigned short S

Chapter 7: GNU Objective-C runtime features 257

int i
unsigned int I
long l
unsigned long L
long long q
unsigned long long Q
float f
double d
void v
id @
Class #
SEL :
char* *
unknown type ?
bit-fields b followed by the starting position of the bit-field, the type of the bit-

field and the size of the bit-field (the bit-fields encoding was changed
from the NeXT’s compiler encoding, see below)

The encoding of bit-fields has changed to allow bit-fields to be properly handled by the
runtime functions that compute sizes and alignments of types that contain bit-fields. The
previous encoding contained only the size of the bit-field. Using only this information it is not
possible to reliably compute the size occupied by the bit-field. This is very important in the
presence of the Boehm’s garbage collector because the objects are allocated using the typed
memory facility available in this collector. The typed memory allocation requires information
about where the pointers are located inside the object.

The position in the bit-field is the position, counting in bits, of the bit closest to the beginning
of the structure.

The non-atomic types are encoded as follows:

pointers ‘^’ followed by the pointed type.
arrays ‘[’ followed by the number of elements in the array followed by the type

of the elements followed by ‘]’
structures ‘{’ followed by the name of the structure (or ‘?’ if the structure is un-

named), the ‘=’ sign, the type of the members and by ‘}’
unions ‘(’ followed by the name of the structure (or ‘?’ if the union is unnamed),

the ‘=’ sign, the type of the members followed by ‘)’
Here are some types and their encodings, as they are generated by the compiler on an i386

machine:

Objective-C type Compiler encoding
int a[10]; [10i]

struct {
int i;
float f[3];
int a:3;
int b:2;
char c;

}

{?=i[3f]b128i3b131i2c}

In addition to the types the compiler also encodes the type specifiers. The table below
describes the encoding of the current Objective-C type specifiers:

258 Using the GNU Compiler Collection (GCC)

Specifier Encoding
const r
in n
inout N
out o
bycopy O
oneway V

The type specifiers are encoded just before the type. Unlike types however, the type specifiers
are only encoded when they appear in method argument types.

7.3 Garbage Collection

Support for a new memory management policy has been added by using a powerful conservative
garbage collector, known as the Boehm-Demers-Weiser conservative garbage collector. It is
available from http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

To enable the support for it you have to configure the compiler using an additional argument,
‘--enable-objc-gc’. You need to have garbage collector installed before building the compiler.
This will build an additional runtime library which has several enhancements to support the
garbage collector. The new library has a new name, ‘libobjc_gc.a’ to not conflict with the
non-garbage-collected library.

When the garbage collector is used, the objects are allocated using the so-called typed memory
allocation mechanism available in the Boehm-Demers-Weiser collector. This mode requires
precise information on where pointers are located inside objects. This information is computed
once per class, immediately after the class has been initialized.

There is a new runtime function class_ivar_set_gcinvisible() which can be used to
declare a so-called weak pointer reference. Such a pointer is basically hidden for the garbage
collector; this can be useful in certain situations, especially when you want to keep track of the
allocated objects, yet allow them to be collected. This kind of pointers can only be members of
objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer
type can be declared a weak pointer, including id, Class and SEL.

Here is an example of how to use this feature. Suppose you want to implement a class whose
instances hold a weak pointer reference; the following class does this:

@interface WeakPointer : Object
{

const void* weakPointer;
}

- initWithPointer:(const void*)p;
- (const void*)weakPointer;
@end

@implementation WeakPointer

+ (void)initialize
{
class_ivar_set_gcinvisible (self, "weakPointer", YES);

}

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Chapter 7: GNU Objective-C runtime features 259

- initWithPointer:(const void*)p
{
weakPointer = p;
return self;

}

- (const void*)weakPointer
{
return weakPointer;

}

@end

Weak pointers are supported through a new type character specifier represented by the ‘!’
character. The class_ivar_set_gcinvisible() function adds or removes this specifier to the
string type description of the instance variable named as argument.

7.4 Constant string objects

GNU Objective-C provides constant string objects that are generated directly by the compiler.
You declare a constant string object by prefixing a C constant string with the character ‘@’:

id myString = @"this is a constant string object";

The constant string objects are by default instances of the NXConstantString class which is
provided by the GNU Objective-C runtime. To get the definition of this class you must include
the ‘objc/NXConstStr.h’ header file.

User defined libraries may want to implement their own constant string class. To be
able to support them, the GNU Objective-C compiler provides a new command line options
‘-fconstant-string-class=class-name ’. The provided class should adhere to a strict struc-
ture, the same as NXConstantString’s structure:

@interface MyConstantStringClass
{
Class isa;
char *c_string;
unsigned int len;

}
@end

NXConstantString inherits from Object; user class libraries may choose to inherit the cus-
tomized constant string class from a different class than Object. There is no requirement in the
methods the constant string class has to implement, but the final ivar layout of the class must
be the compatible with the given structure.

When the compiler creates the statically allocated constant string object, the c_string field
will be filled by the compiler with the string; the length field will be filled by the compiler
with the string length; the isa pointer will be filled with NULL by the compiler, and it will later
be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the
class which was set by the ‘-fconstant-string-class’ option when the object file is loaded (if
you wonder how it works behind the scenes, the name of the class to use, and the list of static

260 Using the GNU Compiler Collection (GCC)

objects to fixup, are stored by the compiler in the object file in a place where the GNU runtime
library will find them at runtime).

As a result, when a file is compiled with the ‘-fconstant-string-class’ option, all the
constant string objects will be instances of the class specified as argument to this option. It is
possible to have multiple compilation units referring to different constant string classes, neither
the compiler nor the linker impose any restrictions in doing this.

7.5 compatibility alias

This is a feature of the Objective-C compiler rather than of the runtime, anyway since it is
documented nowhere and its existence was forgotten, we are documenting it here.

The keyword @compatibility_alias allows you to define a class name as equivalent to
another class name. For example:

@compatibility_alias WOApplication GSWApplication;

tells the compiler that each time it encounters WOApplication as a class name, it should
replace it with GSWApplication (that is, WOApplication is just an alias for GSWApplication).

There are some constraints on how this can be used—
• WOApplication (the alias) must not be an existing class;
• GSWApplication (the real class) must be an existing class.

Chapter 8: Binary Compatibility 261

8 Binary Compatibility

Binary compatibility encompasses several related concepts:

application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with binary
representations of a program, including compilers, assemblers, linkers, and language
runtime support. Some ABIs are formal with a written specification, possibly de-
signed by multiple interested parties. Others are simply the way things are actually
done by a particular set of tools.

ABI conformance
A compiler conforms to an ABI if it generates code that follows all of the specifica-
tions enumerated by that ABI. A library conforms to an ABI if it is implemented
according to that ABI. An application conforms to an ABI if it is built using tools
that conform to that ABI and does not contain source code that specifically changes
behavior specified by the ABI.

calling conventions
Calling conventions are a subset of an ABI that specify of how arguments are passed
and function results are returned.

interoperability
Different sets of tools are interoperable if they generate files that can be used in
the same program. The set of tools includes compilers, assemblers, linkers, libraries,
header files, startup files, and debuggers. Binaries produced by different sets of tools
are not interoperable unless they implement the same ABI. This applies to different
versions of the same tools as well as tools from different vendors.

intercallability
Whether a function in a binary built by one set of tools can call a function in a
binary built by a different set of tools is a subset of interoperability.

implementation-defined features
Language standards include lists of implementation-defined features whose behavior
can vary from one implementation to another. Some of these features are normally
covered by a platform’s ABI and others are not. The features that are not covered
by an ABI generally affect how a program behaves, but not intercallability.

compatibility
Conformance to the same ABI and the same behavior of implementation-defined
features are both relevant for compatibility.

The application binary interface implemented by a C or C++ compiler affects code generation
and runtime support for:
• size and alignment of data types
• layout of structured types
• calling conventions
• register usage conventions
• interfaces for runtime arithmetic support
• object file formats

In addition, the application binary interface implemented by a C++ compiler affects code
generation and runtime support for:
• name mangling

262 Using the GNU Compiler Collection (GCC)

• exception handling
• invoking constructors and destructors
• layout, alignment, and padding of classes
• layout and alignment of virtual tables

Some GCC compilation options cause the compiler to generate code that does not conform to
the platform’s default ABI. Other options cause different program behavior for implementation-
defined features that are not covered by an ABI. These options are provided for consistency
with other compilers that do not follow the platform’s default ABI or the usual behavior of
implementation-defined features for the platform. Be very careful about using such options.

Most platforms have a well-defined ABI that covers C code, but ABIs that cover C++ func-
tionality are not yet common.

Starting with GCC 3.2, GCC binary conventions for C++ are based on a written, vendor-
neutral C++ ABI that was designed to be specific to 64-bit Itanium but also includes generic
specifications that apply to any platform. This C++ ABI is also implemented by other compiler
vendors on some platforms, notably GNU/Linux and BSD systems. We have tried hard to pro-
vide a stable ABI that will be compatible with future GCC releases, but it is possible that we
will encounter problems that make this difficult. Such problems could include different inter-
pretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation
of the ABI in different compilers. GCC’s -Wabi switch warns when G++ generates code that is
probably not compatible with the C++ ABI.

The C++ library used with a C++ compiler includes the Standard C++ Library, with func-
tionality defined in the C++ Standard, plus language runtime support. The runtime support is
included in a C++ ABI, but there is no formal ABI for the Standard C++ Library. Two imple-
mentations of that library are interoperable if one follows the de-facto ABI of the other and if
they are both built with the same compiler, or with compilers that conform to the same ABI
for C++ compiler and runtime support.

When G++ and another C++ compiler conform to the same C++ ABI, but the implementations
of the Standard C++ Library that they normally use do not follow the same ABI for the Standard
C++ Library, object files built with those compilers can be used in the same program only if
they use the same C++ library. This requires specifying the location of the C++ library header
files when invoking the compiler whose usual library is not being used. The location of GCC’s
C++ header files depends on how the GCC build was configured, but can be seen by using the
G++ ‘-v’ option. With default configuration options for G++ 3.3 the compile line for a different
C++ compiler needs to include

-Igcc_install_directory/include/c++/3.3

Similarly, compiling code with G++ that must use a C++ library other than the GNU C++
library requires specifying the location of the header files for that other library.

The most straightforward way to link a program to use a particular C++ library is to use
a C++ driver that specifies that C++ library by default. The g++ driver, for example, tells the
linker where to find GCC’s C++ library (‘libstdc++’) plus the other libraries and startup files
it needs, in the proper order.

If a program must use a different C++ library and it’s not possible to do the final link using
a C++ driver that uses that library by default, it is necessary to tell g++ the location and name
of that library. It might also be necessary to specify different startup files and other runtime
support libraries, and to suppress the use of GCC’s support libraries with one or more of the
options ‘-nostdlib’, ‘-nostartfiles’, and ‘-nodefaultlibs’.

Chapter 9: gcov—a Test Coverage Program 263

9 gcov—a Test Coverage Program

gcov is a tool you can use in conjunction with GCC to test code coverage in your programs.

9.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GCC to analyze your programs to help
create more efficient, faster running code and to discover untested parts of your program. You
can use gcov as a profiling tool to help discover where your optimization efforts will best affect
your code. You can also use gcov along with the other profiling tool, gprof, to assess which
parts of your code use the greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a profiler such as gcov or
gprof, you can find out some basic performance statistics, such as:

• how often each line of code executes

• what lines of code are actually executed

• how much computing time each section of code uses

Once you know these things about how your code works when compiled, you can look at each
module to see which modules should be optimized. gcov helps you determine where to work on
optimization.

Software developers also use coverage testing in concert with testsuites, to make sure software
is actually good enough for a release. Testsuites can verify that a program works as expected; a
coverage program tests to see how much of the program is exercised by the testsuite. Developers
can then determine what kinds of test cases need to be added to the testsuites to create both
better testing and a better final product.

You should compile your code without optimization if you plan to use gcov because the
optimization, by combining some lines of code into one function, may not give you as much
information as you need to look for ‘hot spots’ where the code is using a great deal of com-
puter time. Likewise, because gcov accumulates statistics by line (at the lowest resolution), it
works best with a programming style that places only one statement on each line. If you use
complicated macros that expand to loops or to other control structures, the statistics are less
helpful—they only report on the line where the macro call appears. If your complex macros
behave like functions, you can replace them with inline functions to solve this problem.

gcov creates a logfile called ‘sourcefile.gcov’ which indicates how many times each line of
a source file ‘sourcefile.c’ has executed. You can use these logfiles along with gprof to aid
in fine-tuning the performance of your programs. gprof gives timing information you can use
along with the information you get from gcov.

gcov works only on code compiled with GCC. It is not compatible with any other profiling
or test coverage mechanism.

9.2 Invoking gcov

gcov [options] sourcefile

gcov accepts the following options:

-h
--help Display help about using gcov (on the standard output), and exit without doing

any further processing.

264 Using the GNU Compiler Collection (GCC)

-v
--version

Display the gcov version number (on the standard output), and exit without doing
any further processing.

-b
--branch-probabilities

Write branch frequencies to the output file, and write branch summary info to the
standard output. This option allows you to see how often each branch in your
program was taken.

-c
--branch-counts

Write branch frequencies as the number of branches taken, rather than the percent-
age of branches taken.

-n
--no-output

Do not create the gcov output file.

-l
--long-file-names

Create long file names for included source files. For example, if the header file ‘x.h’
contains code, and was included in the file ‘a.c’, then running gcov on the file ‘a.c’
will produce an output file called ‘a.c##x.h.gcov’ instead of ‘x.h.gcov’. This can
be useful if ‘x.h’ is included in multiple source files.

-p
--preserve-paths

Preserve complete path information in the names of generated ‘.gcov’ files. Without
this option, just the filename component is used. With this option, all directories
are used, with ’/’ characters translated to ’#’ characters, ’.’ directory components
removed and ’..’ components renamed to ’^’. This is useful if sourcefiles are in
several different directories. It also affects the ‘-l’ option.

-f
--function-summaries

Output summaries for each function in addition to the file level summary.

-o directory|file
--object-directory directory

--object-file file

Specify either the directory containing the gcov data files, or the object path name.
The ‘.bb’, ‘.bbg’, and ‘.da’ data files are searched for using this option. If a directory
is specified, the data files are in that directory and named after the source file name,
without its extension. If a file is specified here, the data files are named after that
file, without its extension. If this option is not supplied, it defaults to the current
directory.

gcov should be run with the current directory the same as that when you invoked the
compiler. Otherwise it will not be able to locate the source files. gcov produces files called
‘mangledname.gcov’ in the current directory. These contain the coverage information of the
source file they correspond to. One ‘.gcov’ file is produced for each source file containing code,
which was compiled to produce the data files. The ‘.gcov’ files contain the ’:’ separated fields
along with program source code. The format is

execution_count:line_number:source line text

Chapter 9: gcov—a Test Coverage Program 265

Additional block information may succeed each line, when requested by command line option.
The execution count is ‘-’ for lines containing no code and ‘#####’ for lines which were never
executed. Some lines of information at the start have line number of zero.

When printing percentages, 0% and 100% are only printed when the values are exactly 0%
and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are
instead printed as the nearest non-boundary value.

When using gcov, you must first compile your program with two special GCC options:
‘-fprofile-arcs -ftest-coverage’. This tells the compiler to generate additional information
needed by gcov (basically a flow graph of the program) and also includes additional code in the
object files for generating the extra profiling information needed by gcov. These additional files
are placed in the directory where the object file is located.

Running the program will cause profile output to be generated. For each source file compiled
with ‘-fprofile-arcs’, an accompanying ‘.da’ file will be placed in the object file directory.

Running gcov with your program’s source file names as arguments will now produce a listing
of the code along with frequency of execution for each line. For example, if your program is
called ‘tmp.c’, this is what you see when you use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c

$ a.out

$ gcov tmp.c

90.00% of 10 source lines executed in file tmp.c

Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
-: 0:Source:tmp.c

-: 0:Object:tmp.bb

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

#####: 13: printf ("Failure\n");

-: 14: else

1: 15: printf ("Success\n");

1: 16: return 0;

1: 17:}

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c

90.00% of 10 source lines executed in file tmp.c

80.00% of 5 branches executed in file tmp.c

80.00% of 5 branches taken at least once in file tmp.c

50.00% of 2 calls executed in file tmp.c

Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
-: 0:Source:tmp.c

-: 0:Object:tmp.bb

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

266 Using the GNU Compiler Collection (GCC)

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

branch 0: taken 90%

branch 1: taken 100%

branch 2: taken 100%

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

branch 0: taken 100%

#####: 13: printf ("Failure\n");

call 0: never executed

branch 1: never executed

-: 14: else

1: 15: printf ("Success\n");

call 0: returns 100%

1: 16: return 0;

1: 17:}

For each basic block, a line is printed after the last line of the basic block describing the
branch or call that ends the basic block. There can be multiple branches and calls listed for
a single source line if there are multiple basic blocks that end on that line. In this case, the
branches and calls are each given a number. There is no simple way to map these branches
and calls back to source constructs. In general, though, the lowest numbered branch or call will
correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number of
times the branch was taken divided by the number of times the branch was executed will be
printed. Otherwise, the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating the number of times
the call returned divided by the number of times the call was executed will be printed. This will
usually be 100%, but may be less for functions call exit or longjmp, and thus may not return
every time they are called.

The execution counts are cumulative. If the example program were executed again without
removing the ‘.da’ file, the count for the number of times each line in the source was executed
would be added to the results of the previous run(s). This is potentially useful in several ways.
For example, it could be used to accumulate data over a number of program runs as part of a
test verification suite, or to provide more accurate long-term information over a large number
of program runs.

The data in the ‘.da’ files is saved immediately before the program exits. For each source
file compiled with ‘-fprofile-arcs’, the profiling code first attempts to read in an existing
‘.da’ file; if the file doesn’t match the executable (differing number of basic block counts) it will
ignore the contents of the file. It then adds in the new execution counts and finally writes the
data to the file.

9.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first compile your program with
two special GCC options: ‘-fprofile-arcs -ftest-coverage’. Aside from that, you can use
any other GCC options; but if you want to prove that every single line in your program was
executed, you should not compile with optimization at the same time. On some machines the
optimizer can eliminate some simple code lines by combining them with other lines. For example,
code like this:

if (a != b)

c = 1;

else

Chapter 9: gcov—a Test Coverage Program 267

c = 0;

can be compiled into one instruction on some machines. In this case, there is no way for gcov
to calculate separate execution counts for each line because there isn’t separate code for each
line. Hence the gcov output looks like this if you compiled the program with optimization:

100: 12:if (a != b)

100: 13: c = 1;

100: 14:else

100: 15: c = 0;

The output shows that this block of code, combined by optimization, executed 100 times. In
one sense this result is correct, because there was only one instruction representing all four of
these lines. However, the output does not indicate how many times the result was 0 and how
many times the result was 1.

9.4 Brief description of gcov data files

gcov uses three files for doing profiling. The names of these files are derived from the original
source file by substituting the file suffix with either ‘.bb’, ‘.bbg’, or ‘.da’. All of these files are
placed in the same directory as the source file, and contain data stored in a platform-independent
method.

The ‘.bb’ and ‘.bbg’ files are generated when the source file is compiled with the GCC
‘-ftest-coverage’ option. The ‘.bb’ file contains a list of source files (including headers),
functions within those files, and line numbers corresponding to each basic block in the source
file.

The ‘.bb’ file format consists of several lists of 4-byte integers which correspond to the line
numbers of each basic block in the file. Each list is terminated by a line number of 0. A line
number of −1 is used to designate that the source file name (padded to a 4-byte boundary and
followed by another −1) follows. In addition, a line number of −2 is used to designate that the
name of a function (also padded to a 4-byte boundary and followed by a −2) follows.

The ‘.bbg’ file is used to reconstruct the program flow graph for the source file. It contains a
list of the program flow arcs (possible branches taken from one basic block to another) for each
function which, in combination with the ‘.bb’ file, enables gcov to reconstruct the program flow.

In the ‘.bbg’ file, the format is:
name of function #0

checksum of function #0

number of basic blocks for function #0 (4-byte number)

total number of arcs for function #0 (4-byte number)

count of arcs in basic block #0 (4-byte number)

destination basic block of arc #0 (4-byte number)

flag bits (4-byte number)

destination basic block of arc #1 (4-byte number)

flag bits (4-byte number)

...

destination basic block of arc #N (4-byte number)

flag bits (4-byte number)

count of arcs in basic block #1 (4-byte number)

destination basic block of arc #0 (4-byte number)

flag bits (4-byte number)

...

A −1 (stored as a 4-byte number) is used to separate each function’s list of basic blocks, and
to verify that the file has been read correctly.

The function name is stored as a −1 (4 bytes), the length (4 bytes), the name itself (padded
to 4-byte boundary) followed by a −1 (4 bytes).

The flags are defined as follows:

268 Using the GNU Compiler Collection (GCC)

• bit0 On function spanning tree
• bit1 Is a fake edge
• bit2 Is the fall through edge from one block to its immediate successor.
• bit3-bit31 For future expansion

The ‘.da’ file is generated when a program containing object files built with the GCC
‘-fprofile-arcs’ option is executed. A separate ‘.da’ file is created for each source file com-
piled with this option, and the name of the ‘.da’ file is stored as an absolute pathname in the
resulting object file. This path name is derived from the object file name by substituting a ‘.da’
suffix.

The ‘.da’ consists of one or more blocks with the following structure:
"magic" number −123 (4-byte number)

number of functions (4-byte number)

length of the "extension block" in bytes

extension block (variable length)

name of function #0 (the same format as in .bbg file)

checksum of function #0

number of instrumented arcs (4-byte number)

count of arc #0 (8-byte number)

count of arc #1 (8-byte number)

...

count of arc #M_0 (8-byte number)

name of function #1 (the same format as in .bbg file)

checksum of function #1

...

Multiple program runs might merge data into a single block, or might append a new block.
The current structure of the extension block is as follows:

number of instrumented arcs in whole program (4-byte number)

sum all of instrumented arcs in whole program (8-byte number)

maximal value of counter in whole program (8-byte number)

number of instrumented arcs in the object file (4-byte number)

sum all of instrumented arcs in the object file (8-byte number)

maximal value of counter in the object file (8-byte number)

All three of these files use the functions in ‘gcov-io.h’ to store integers; the functions in
this header provide a machine-independent mechanism for storing and retrieving data from a
stream.

Chapter 10: Known Causes of Trouble with GCC 269

10 Known Causes of Trouble with GCC

This section describes known problems that affect users of GCC. Most of these are not GCC
bugs per se—if they were, we would fix them. But the result for a user may be like the result of
a bug.

Some of these problems are due to bugs in other software, some are missing features that are
too much work to add, and some are places where people’s opinions differ as to what is best.

10.1 Actual Bugs We Haven’t Fixed Yet

• The fixincludes script interacts badly with automounters; if the directory of system
header files is automounted, it tends to be unmounted while fixincludes is running. This
would seem to be a bug in the automounter. We don’t know any good way to work around
it.

• The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp
functions that reference the jmp_buf type before that type is defined. To work around this,
edit the offending file and place the typedef in front of the prototypes.

• When ‘-pedantic-errors’ is specified, GCC will incorrectly give an error message when a
function name is specified in an expression involving the comma operator.

10.2 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several reasons.
• Cross compilation can run into trouble for certain machines because some target machines’

assemblers require floating point numbers to be written as integer constants in certain
contexts.
The compiler writes these integer constants by examining the floating point value as an
integer and printing that integer, because this is simple to write and independent of the
details of the floating point representation. But this does not work if the compiler is running
on a different machine with an incompatible floating point format, or even a different byte-
ordering.
In addition, correct constant folding of floating point values requires representing them in
the target machine’s format. (The C standard does not quite require this, but in practice
it is the only way to win.)
It is now possible to overcome these problems by defining macros such as REAL_VALUE_TYPE.
But doing so is a substantial amount of work for each target machine. See section “Cross
Compilation and Floating Point” in GNU Compiler Collection (GCC) Internals.

• At present, the program ‘mips-tfile’ which adds debug support to object files on MIPS
systems does not work in a cross compile environment.

10.3 Interoperation

This section lists various difficulties encountered in using GCC together with other compilers or
with the assemblers, linkers, libraries and debuggers on certain systems.
• On many platforms, GCC supports a different ABI for C++ than do other compilers, so the

object files compiled by GCC cannot be used with object files generated by another C++
compiler.
An area where the difference is most apparent is name mangling. The use of different name
mangling is intentional, to protect you from more subtle problems. Compilers differ as to

270 Using the GNU Compiler Collection (GCC)

many internal details of C++ implementation, including: how class instances are laid out,
how multiple inheritance is implemented, and how virtual function calls are handled. If the
name encoding were made the same, your programs would link against libraries provided
from other compilers—but the programs would then crash when run. Incompatible libraries
are then detected at link time, rather than at run time.

• Older GDB versions sometimes fail to read the output of GCC version 2. If you have
trouble, get GDB version 4.4 or later.

• DBX rejects some files produced by GCC, though it accepts similar constructs in output
from PCC. Until someone can supply a coherent description of what is valid DBX input
and what is not, there is nothing I can do about these problems. You are on your own.

• The GNU assembler (GAS) does not support PIC. To generate PIC code, you must use
some other assembler, such as ‘/bin/as’.

• On some BSD systems, including some versions of Ultrix, use of profiling causes static
variable destructors (currently used only in C++) not to be run.

• On some SGI systems, when you use ‘-lgl_s’ as an option, it gets translated magically to
‘-lgl_s -lX11_s -lc_s’. Naturally, this does not happen when you use GCC. You must
specify all three options explicitly.

• On a SPARC, GCC aligns all values of type double on an 8-byte boundary, and it ex-
pects every double to be so aligned. The Sun compiler usually gives double values 8-byte
alignment, with one exception: function arguments of type double may not be aligned.
As a result, if a function compiled with Sun CC takes the address of an argument of
type double and passes this pointer of type double * to a function compiled with GCC,
dereferencing the pointer may cause a fatal signal.
One way to solve this problem is to compile your entire program with GCC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument into
a local variable; local variables are always properly aligned. A third solution is to modify the
function that uses the pointer to dereference it via the following function access_double
instead of directly with ‘*’:

inline double

access_double (double *unaligned_ptr)

{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;

union d2i u;

u.i[0] = p->i[0];

u.i[1] = p->i[1];

return u.d;

}

Storing into the pointer can be done likewise with the same union.
• On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory that is

only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte aligned, this
may result in a fatal signal if doubles are stored in memory allocated by the ‘libmalloc.a’
library.
The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related
functions from ‘libc.a’; they do not have this problem.

• Sun forgot to include a static version of ‘libdl.a’ with some versions of SunOS (mainly 4.1).
This results in undefined symbols when linking static binaries (that is, if you use ‘-static’).
If you see undefined symbols _dlclose, _dlsym or _dlopen when linking, compile and link
against the file ‘mit/util/misc/dlsym.c’ from the MIT version of X windows.

Chapter 10: Known Causes of Trouble with GCC 271

• The 128-bit long double format that the SPARC port supports currently works by using the
architecturally defined quad-word floating point instructions. Since there is no hardware
that supports these instructions they must be emulated by the operating system. Long
doubles do not work in Sun OS versions 4.0.3 and earlier, because the kernel emulator uses
an obsolete and incompatible format. Long doubles do not work in Sun OS version 4.1.1
due to a problem in a Sun library. Long doubles do work on Sun OS versions 4.1.2 and
higher, but GCC does not enable them by default. Long doubles appear to work in Sun OS
5.x (Solaris 2.x).

• On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GCC correctly.
We do not yet know why. However, GCC compiled on earlier HP-UX versions works properly
on HP-UX 9.01 and can compile itself properly on 9.01.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with GCC.
Specifically, it fails to work on functions that use alloca or variable-size arrays. This is
because GCC doesn’t generate HP-UX unwind descriptors for such functions. It may even
be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the preliminary
GNU tools.

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS for
the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will not work when
using the HP assembler. There simply is no way for GCC to specify what registers hold
arguments for static functions when using the HP assembler. GAS for the PA does not have
this problem.

• In extremely rare cases involving some very large functions you may receive errors from the
HP linker complaining about an out of bounds unconditional branch offset. This used to
occur more often in previous versions of GCC, but is now exceptionally rare. If you should
run into it, you can work around by making your function smaller.

• GCC compiled code sometimes emits warnings from the HP-UX assembler of the form:
(warning) Use of GR3 when

frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
• On the IBM RS/6000, compiling code of the form

extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although this behavior differs
from most other systems, it is not a bug because redefining an extern variable as static
is undefined in ISO C.

• In extremely rare cases involving some very large functions you may receive errors from the
AIX Assembler complaining about a displacement that is too large. If you should run into
it, you can work around by making your function smaller.

• The ‘libstdc++.a’ library in GCC relies on the SVR4 dynamic linker semantics which
merges global symbols between libraries and applications, especially necessary for C++
streams functionality. This is not the default behavior of AIX shared libraries and dynamic
linking. ‘libstdc++.a’ is built on AIX with “runtime-linking” enabled so that symbol
merging can occur. To utilize this feature, the application linked with ‘libstdc++.a’ must
include the ‘-Wl,-brtl’ flag on the link line. G++ cannot impose this because this option
may interfere with the semantics of the user program and users may not always use ‘g++’

272 Using the GNU Compiler Collection (GCC)

to link his or her application. Applications are not required to use the ‘-Wl,-brtl’ flag on
the link line—the rest of the ‘libstdc++.a’ library which is not dependent on the symbol
merging semantics will continue to function correctly.

• An application can interpose its own definition of functions for functions invoked by
‘libstdc++.a’ with “runtime-linking” enabled on AIX. To accomplish this the applica-
tion must be linked with “runtime-linking” option and the functions explicitly must be
exported by the application (‘-Wl,-brtl,-bE:exportfile’).

• AIX on the RS/6000 provides support (NLS) for environments outside of the United States.
Compilers and assemblers use NLS to support locale-specific representations of various
objects including floating-point numbers (‘.’ vs ‘,’ for separating decimal fractions). There
have been problems reported where the library linked with GCC does not produce the same
floating-point formats that the assembler accepts. If you have this problem, set the LANG
environment variable to ‘C’ or ‘En_US’.

• Even if you specify ‘-fdollars-in-identifiers’, you cannot successfully use ‘$’ in iden-
tifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these
identifiers.

• On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function calls.
However, the C compiler uses conventions compatible with BSD Unix: registers 2 through
5 may be clobbered by function calls.
GCC uses the same convention as the Ultrix C compiler. You can use these options to
produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

• On the Alpha, you may get assembler errors about invalid syntax as a result of floating
point constants. This is due to a bug in the C library functions ecvt, fcvt and gcvt.
Given valid floating point numbers, they sometimes print ‘NaN’.

10.4 Problems Compiling Certain Programs

Certain programs have problems compiling.
• Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of prob-

lems in DEC’s versions of the X11 header files ‘X11/Xlib.h’ and ‘X11/Xutil.h’. People
recommend adding ‘-I/usr/include/mit’ to use the MIT versions of the header files, or
fixing the header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

• On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX,
you may get error messages about running out of virtual memory while compiling certain
programs.
You can prevent this problem by linking GCC with the GNU malloc (which thus replaces
the malloc that comes with the system). GNU malloc is available as a separate package,
and also in the file ‘src/gmalloc.c’ in the GNU Emacs 19 distribution.
If you have installed GNU malloc as a separate library package, use this option when you
relink GCC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy the object file to
‘gmalloc.o’ and use this option when you relink GCC:

MALLOC=gmalloc.o

Chapter 10: Known Causes of Trouble with GCC 273

10.5 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and K&R (non-ISO) versions
of C.

• GCC normally makes string constants read-only. If several identical-looking string constants
are used, GCC stores only one copy of the string.
One consequence is that you cannot call mktemp with a string constant argument. The
function mktemp always alters the string its argument points to.
Another consequence is that sscanf does not work on some systems when passed a string
constant as its format control string or input. This is because sscanf incorrectly tries to
write into the string constant. Likewise fscanf and scanf.
The best solution to these problems is to change the program to use char-array variables
with initialization strings for these purposes instead of string constants. But if this is not
possible, you can use the ‘-fwritable-strings’ flag, which directs GCC to handle string
constants the same way most C compilers do.

• -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following the ISO C rules) its
data type is unsigned long int. Negating this value yields 2147483648 again.

• GCC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GCC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
• When you use setjmp and longjmp, the only automatic variables guaranteed to remain

valid are those declared volatile. This is a consequence of automatic register allocation.
Consider this function:

jmp_buf j;

foo ()
{
int a, b;

a = fun1 ();
if (setjmp (j))
return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is
allocated in a register, then its first value is restored; otherwise, it keeps the last value
stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GCC thinks
such a problem might be possible.

• Programs that use preprocessing directives in the middle of macro arguments do not work
with GCC. For example, a program like this will not work:

foobar (
#define luser

hack)

274 Using the GNU Compiler Collection (GCC)

ISO C does not permit such a construct.

• K&R compilers allow comments to cross over an inclusion boundary (i.e. started in an
include file and ended in the including file). I think this would be quite ugly and can’t
imagine it could be needed.

• Declarations of external variables and functions within a block apply only to the block con-
taining the declaration. In other words, they have the same scope as any other declaration
in the same place.

In some other C compilers, a extern declaration affects all the rest of the file even if it
happens within a block.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:

typedef int foo;
typedef long foo bar;

In ISO C, this is not allowed: long and other type modifiers require an explicit int.

• PCC allows typedef names to be used as function parameters.

• Traditional C allows the following erroneous pair of declarations to appear together in a
given scope:

typedef int foo;
typedef foo foo;

• GCC treats all characters of identifiers as significant. According to K&R-1 (2.2), “No more
than the first eight characters are significant, although more may be used.”. Also according
to K&R-1 (2.2), “An identifier is a sequence of letters and digits; the first character must
be a letter. The underscore counts as a letter.”, but GCC also allows dollar signs in
identifiers.

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’. GCC,
following the ISO standard, does not allow this.

• GCC complains about unterminated character constants inside of preprocessing condition-
als that fail. Some programs have English comments enclosed in conditionals that are
guaranteed to fail; if these comments contain apostrophes, GCC will probably report an
error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited
by ‘/*...*/’.

• Many user programs contain the declaration ‘long time ();’. In the past, the system
header files on many systems did not actually declare time, so it did not matter what type
your program declared it to return. But in systems with ISO C headers, time is declared
to return time_t, and if that is not the same as long, then ‘long time ();’ is erroneous.

The solution is to change your program to use appropriate system headers (<time.h> on
systems with ISO C headers) and not to declare time if the system header files declare it,
or failing that to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GCC actually
returns a float. If you are concerned with PCC compatibility, you should declare your
functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GCC output code normally uses
a method different from that used on most versions of Unix. As a result, code compiled
with GCC cannot call a structure-returning function compiled with PCC, and vice versa.

Chapter 10: Known Causes of Trouble with GCC 275

The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8 bytes
long is returned like a scalar. A structure or union with any other size is stored into an
address supplied by the caller (usually in a special, fixed register, but on some machines
it is passed on the stack). The machine-description macros STRUCT_VALUE and STRUCT_
INCOMING_VALUE tell GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by
copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. GCC does not use this method because it is slower
and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union
returning. GCC on most of these machines uses a compatible convention when returning
structures and unions in memory, but still returns small structures and unions in registers.

You can tell GCC to use a compatible convention for all structure and union returning with
the option ‘-fpcc-struct-return’.

• GCC complains about program fragments such as ‘0x74ae-0x4000’ which appear to be two
hexadecimal constants separated by the minus operator. Actually, this string is a single
preprocessing token. Each such token must correspond to one token in C. Since this does
not, GCC prints an error message. Although it may appear obvious that what is meant is
an operator and two values, the ISO C standard specifically requires that this be treated
as erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed by
letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, ‘E-’, ‘p+’, ‘p-’, ‘P+’, or ‘P-’ character
sequences. (In strict C89 mode, the sequences ‘p+’, ‘p-’, ‘P+’ and ‘P-’ cannot appear in
preprocessing numbers.)

To make the above program fragment valid, place whitespace in front of the minus sign.
This whitespace will end the preprocessing number.

10.6 Fixed Header Files

GCC needs to install corrected versions of some system header files. This is because most target
systems have some header files that won’t work with GCC unless they are changed. Some have
bugs, some are incompatible with ISO C, and some depend on special features of other compilers.

Installing GCC automatically creates and installs the fixed header files, by running a program
called fixincludes (or for certain targets an alternative such as fixinc.svr4). Normally, you
don’t need to pay attention to this. But there are cases where it doesn’t do the right thing
automatically.

• If you update the system’s header files, such as by installing a new system version, the fixed
header files of GCC are not automatically updated. The easiest way to update them is to
reinstall GCC. (If you want to be clever, look in the makefile and you can find a shortcut.)

• On some systems, in particular SunOS 4, header file directories contain machine-specific
symbolic links in certain places. This makes it possible to share most of the header files
among hosts running the same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this special way of using symbolic
links; therefore, the directory of fixed header files is good only for the machine model used
to build it.

In SunOS 4, only programs that look inside the kernel will notice the difference between
machine models. Therefore, for most purposes, you need not be concerned about this.

276 Using the GNU Compiler Collection (GCC)

It is possible to make separate sets of fixed header files for the different machine models,
and arrange a structure of symbolic links so as to use the proper set, but you’ll have to do
this by hand.

• On Lynxos, GCC by default does not fix the header files. This is because bugs in the shell
cause the fixincludes script to fail.
This means you will encounter problems due to bugs in the system header files. It may be
no comfort that they aren’t GCC’s fault, but it does mean that there’s nothing for us to do
about them.

10.7 Standard Libraries

GCC by itself attempts to be a conforming freestanding implementation. See Chapter 2 [Lan-
guage Standards Supported by GCC], page 5, for details of what this means. Beyond the library
facilities required of such an implementation, the rest of the C library is supplied by the ven-
dor of the operating system. If that C library doesn’t conform to the C standards, then your
programs might get warnings (especially when using ‘-Wall’) that you don’t expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard says
that sprintf returns an int. The fixincludes program could make the prototype for this
function match the Standard, but that would be wrong, since the function will still return char
*.

If you need a Standard compliant library, then you need to find one, as GCC does not provide
one. The GNU C library (called glibc) provides ISO C, POSIX, BSD, SystemV and X/Open
compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports
other systems, though some very old versions did. Version 2.2 of the GNU C library includes
nearly complete C99 support. You could also ask your operating system vendor if newer libraries
are available.

10.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.

• Certain local variables aren’t recognized by debuggers when you compile with optimization.
This occurs because sometimes GCC optimizes the variable out of existence. There is no
way to tell the debugger how to compute the value such a variable “would have had”,
and it is not clear that would be desirable anyway. So GCC simply does not mention the
eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the executable and your
source code, when you use optimization.

• Users often think it is a bug when GCC reports an error for code like this:
int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in the prototype is limited
to the argument list containing it. It does not refer to the struct mumble defined with file
scope immediately below—they are two unrelated types with similar names in different
scopes.

Chapter 10: Known Causes of Trouble with GCC 277

But in the definition of foo, the file-scope type is used because that is available to be
inherited. Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ISO standard specifies. It is easy enough
for you to make your code work by moving the definition of struct mumble above the
prototype. It’s not worth being incompatible with ISO C just to avoid an error for the
example shown above.

• Accesses to bit-fields even in volatile objects works by accessing larger objects, such as a
byte or a word. You cannot rely on what size of object is accessed in order to read or write
the bit-field; it may even vary for a given bit-field according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but do
not use bit-fields.

• GCC comes with shell scripts to fix certain known problems in system header files. They
install corrected copies of various header files in a special directory where only GCC will
normally look for them. The scripts adapt to various systems by searching all the system
header files for the problem cases that we know about.

If new system header files are installed, nothing automatically arranges to update the cor-
rected header files. You will have to reinstall GCC to fix the new header files. More specifi-
cally, go to the build directory and delete the files ‘stmp-fixinc’ and ‘stmp-headers’, and
the subdirectory include; then do ‘make install’ again.

• On 68000 and x86 systems, for instance, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can find that a floating point
value which is not a NaN is not equal to itself. This results from the fact that the floating
point registers hold a few more bits of precision than fit in a double in memory. Compiled
code moves values between memory and floating point registers at its convenience, and
moving them into memory truncates them.

You can partially avoid this problem by using the ‘-ffloat-store’ option (see Section 3.10
[Optimize Options], page 46).

• On AIX and other platforms without weak symbol support, templates need to be instanti-
ated explicitly and symbols for static members of templates will not be generated.

• On AIX, GCC scans object files and library archives for static constructors and destructors
when linking an application before the linker prunes unreferenced symbols. This is necessary
to prevent the AIX linker from mistakenly assuming that static constructor or destructor
are unused and removing them before the scanning can occur. All static constructors and
destructors found will be referenced even though the modules in which they occur may not
be used by the program. This may lead to both increased executable size and unexpected
symbol references.

10.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ISO C++
standard) was only recently completed. As a result, your C++ compiler may occasionally surprise
you, even when its behavior is correct. This section discusses some areas that frequently give
rise to questions of this sort.

10.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you must
also define it. For example:

278 Using the GNU Compiler Collection (GCC)

class Foo
{
...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a mem-
ber function named Foo::method. But you still need to define both method and bar elsewhere.
According to the ISO standard, you must supply an initializer in one (and only one) source file,
such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result, when
you switch to g++ from one of these compilers, you may discover that a program that appeared
to work correctly in fact does not conform to the standard: g++ reports as undefined symbols
any static data members that lack definitions.

10.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler
may very well delete the object before you expect it to, leaving a pointer to garbage. The
most common place where this problem crops up is in classes like string classes, especially ones
that define a conversion function to type char * or const char *—which is one reason why the
standard string class requires you to call the c_str member function. However, any class that
returns a pointer to some internal structure is potentially subject to this problem.

For example, a program may use a function strfunc that returns string objects, and another
function charfunc that operates on pointers to char:

string strfunc ();
void charfunc (const char *);

void
f ()
{
const char *p = strfunc().c_str();
...
charfunc (p);
...
charfunc (p);

}

In this situation, it may seem reasonable to save a pointer to the C string returned by the c_str
member function and use that rather than call c_str repeatedly. However, the temporary string
created by the call to strfunc is destroyed after p is initialized, at which point p is left pointing
to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete cfront-
based compilers that delete temporaries along with normal local variables. However, the GNU
C++ behavior is standard-conforming, so if your program depends on late destruction of tempo-
raries it is not portable.

The safe way to write such code is to give the temporary a name, which forces it to remain
until the end of the scope of the name. For example:

const string& tmp = strfunc ();
charfunc (tmp.c_str ());

Chapter 10: Known Causes of Trouble with GCC 279

10.9.3 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full object.
Also, the constructors and destructors are invoked only once, and called from the most-derived
class. However, such objects behave unspecified when being assigned. For example:

struct Base{
char *name;
Base(char *n) : name(strdup(n)){}
Base& operator= (const Base& other){
free (name);
name = strdup (other.name);
}

};

struct A:virtual Base{
int val;
A():Base("A"){}

};

struct B:virtual Base{
int bval;
B():Base("B"){}

};

struct Derived:public A, public B{
Derived():Base("Derived"){}

};

void func(Derived &d1, Derived &d2)
{
d1 = d2;

}

The C++ standard specifies that ‘Base::Base’ is only called once when constructing or copy-
constructing a Derived object. It is unspecified whether ‘Base::operator=’ is called more than
once when the implicit copy-assignment for Derived objects is invoked (as it is inside ‘func’ in
the example).

g++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases, then
assign all members. In that algorithm, the virtual base subobject can be encountered more
than once. In the example, copying proceeds in the following order: ‘val’, ‘name’ (via strdup),
‘bval’, and ‘name’ again.

If application code relies on copy-assignment, a user-defined copy-assignment operator re-
moves any uncertainties. With such an operator, the application can define whether and how
the virtual base subobject is assigned.

10.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in a
way that won’t work unless you rearrange it.
• protoize can insert references to a type name or type tag before the definition, or in a file

where they are not defined.

280 Using the GNU Compiler Collection (GCC)

If this happens, compiler error messages should show you where the new references are, so
fixing the file by hand is straightforward.

• There are some C constructs which protoize cannot figure out. For example, it can’t
determine argument types for declaring a pointer-to-function variable; this you must do by
hand. protoize inserts a comment containing ‘???’ each time it finds such a variable; so
you can find all such variables by searching for this string. ISO C does not require declaring
the argument types of pointer-to-function types.

• Using unprotoize can easily introduce bugs. If the program relied on prototypes to bring
about conversion of arguments, these conversions will not take place in the program without
prototypes. One case in which you can be sure unprotoize is safe is when you are removing
prototypes that were made with protoize; if the program worked before without any
prototypes, it will work again without them.
You can find all the places where this problem might occur by compiling the program with
the ‘-Wconversion’ option. It prints a warning whenever an argument is converted.

• Both conversion programs can be confused if there are macro calls in and around the text
to be converted. In other words, the standard syntax for a declaration or definition must
not result from expanding a macro. This problem is inherent in the design of C and cannot
be fixed. If only a few functions have confusing macro calls, you can easily convert them
manually.

• protoize cannot get the argument types for a function whose definition was not actually
compiled due to preprocessing conditionals. When this happens, protoize changes nothing
in regard to such a function. protoize tries to detect such instances and warn about them.
You can generally work around this problem by using protoize step by step, each time
specifying a different set of ‘-D’ options for compilation, until all of the functions have been
converted. There is no automatic way to verify that you have got them all, however.

• Confusion may result if there is an occasion to convert a function declaration or definition
in a region of source code where there is more than one formal parameter list present. Thus,
attempts to convert code containing multiple (conditionally compiled) versions of a single
function header (in the same vicinity) may not produce the desired (or expected) results.
If you plan on converting source files which contain such code, it is recommended that you
first make sure that each conditionally compiled region of source code which contains an
alternative function header also contains at least one additional follower token (past the
final right parenthesis of the function header). This should circumvent the problem.

• unprotoize can become confused when trying to convert a function definition or declaration
which contains a declaration for a pointer-to-function formal argument which has the same
name as the function being defined or declared. We recommend you avoid such choices of
formal parameter names.

• You might also want to correct some of the indentation by hand and break long lines. (The
conversion programs don’t write lines longer than eighty characters in any case.)

10.11 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because we
think GCC is better without them.

• Checking the number and type of arguments to a function which has an old-fashioned
definition and no prototype.
Such a feature would work only occasionally—only for calls that appear in the same file as
the called function, following the definition. The only way to check all calls reliably is to

Chapter 10: Known Causes of Trouble with GCC 281

add a prototype for the function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.

• Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about this
would cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more annoyance
than good.

• Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something dangerous
about discarding a value. There are functions that return values which some callers may
find useful; it makes no sense to clutter the program with a cast to void whenever the value
isn’t useful.

• Making ‘-fshort-enums’ the default.

This would cause storage layout to be incompatible with most other C compilers. And it
doesn’t seem very important, given that you can get the same result in other ways. The
case where it matters most is when the enumeration-valued object is inside a structure, and
in that case you can specify a field width explicitly.

• Making bit-fields unsigned by default on particular machines where “the ABI standard”
says to do so.

The ISO C standard leaves it up to the implementation whether a bit-field declared plain
int is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. However,
this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bit-fields signed, because this is simplest. Since
int is the same as signed int in every other context, it is cleanest for them to be the same
in bit-fields as well.

Some computer manufacturers have published Application Binary Interface standards which
specify that plain bit-fields should be unsigned. It is a mistake, however, to say anything
about this issue in an ABI. This is because the handling of plain bit-fields distinguishes two
dialects of C. Both dialects are meaningful on every type of machine. Whether a particular
object file was compiled using signed bit-fields or unsigned is of no concern to other object
files, even if they access the same bit-fields in the same data structures.

A given program is written in one or the other of these two dialects. The program stands a
chance to work on most any machine if it is compiled with the proper dialect. It is unlikely
to work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is
uniform across machines. These users would be inconvenienced if the compiler treated
plain bit-fields differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these
occasions, the users would benefit if the GNU C compiler were to support by default the
same dialect as the other compilers on that machine. But such applications are rare. And
users writing a program to run on more than one type of machine cannot possibly benefit
from this kind of compatibility.

This is why GCC does and will treat plain bit-fields in the same fashion on all types of
machines (by default).

282 Using the GNU Compiler Collection (GCC)

There are some arguments for making bit-fields unsigned by default on all machines. If, for
example, this becomes a universal de facto standard, it would make sense for GCC to go
along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each
bit-field whether it is signed or not. In this way, they write programs which have the same
meaning in both C dialects.)

• Undefining __STDC__ when ‘-ansi’ is not used.

Currently, GCC defines __STDC__ unconditionally. This provides good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use certain
features of ISO C, such as function prototypes or ISO token concatenation. Since plain gcc
supports all the features of ISO C, the correct answer to these questions is “yes”.

Some users try to use __STDC__ to check for the availability of certain library facilities. This
is actually incorrect usage in an ISO C program, because the ISO C standard says that a
conforming freestanding implementation should define __STDC__ even though it does not
have the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding implemen-
tation, and it is therefore required to define __STDC__, even though it does not come with
an ISO C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely con-
form to the ISO C standard somehow violates the standard. This is illogical. The standard
is a standard for compilers that claim to support ISO C, such as ‘gcc -ansi’—not for other
compilers such as plain gcc. Whatever the ISO C standard says is relevant to the design of
plain gcc without ‘-ansi’ only for pragmatic reasons, not as a requirement.

GCC normally defines __STDC__ to be 1, and in addition defines __STRICT_ANSI__ if you
specify the ‘-ansi’ option, or a ‘-std’ option for strict conformance to some version of
ISO C. On some hosts, system include files use a different convention, where __STDC__ is
normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC follows
the host convention when processing system include files, but when processing user files it
follows the usual GNU C convention.

• Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that
goes with the C compiler that is subsequently used. These programs must test __STDC__ to
determine what kind of C preprocessor that compiler uses: whether they should concatenate
tokens in the ISO C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not work
otherwise.

In addition, many header files are written to provide prototypes in ISO C but not in
traditional C. Many of these header files can work without change in C++ provided __
STDC__ is defined. If __STDC__ is not defined, they will all fail, and will all need to be
changed to test explicitly for C++ as well.

• Deleting “empty” loops.

Historically, GCC has not deleted “empty” loops under the assumption that the most likely
reason you would put one in a program is to have a delay, so deleting them will not make
real programs run any faster.

However, the rationale here is that optimization of a nonempty loop cannot produce an
empty one, which holds for C but is not always the case for C++.

Moreover, with ‘-funroll-loops’ small “empty” loops are already removed, so the current
behavior is both sub-optimal and inconsistent and will change in the future.

Chapter 10: Known Causes of Trouble with GCC 283

• Making side effects happen in the same order as in some other compiler.
It is never safe to depend on the order of evaluation of side effects. For example, a function
call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen first.
func might get the arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

• Not allowing structures with volatile fields in registers.
Strictly speaking, there is no prohibition in the ISO C standard against allowing structures
with volatile fields in registers, but it does not seem to make any sense and is probably not
what you wanted to do. So the compiler will give an error message in this case.

• Making certain warnings into errors by default.
Some ISO C testsuites report failure when the compiler does not produce an error message
for a certain program.
ISO C requires a “diagnostic” message for certain kinds of invalid programs, but a warning
is defined by GCC to count as a diagnostic. If GCC produces a warning but not an error,
that is correct ISO C support. If test suites call this “failure”, they should be run with the
GCC option ‘-pedantic-errors’, which will turn these warnings into errors.

10.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind has
a different purpose:

Errors report problems that make it impossible to compile your program. GCC reports
errors with the source file name and line number where the problem is apparent.
Warnings report other unusual conditions in your code that may indicate a problem, al-
though compilation can (and does) proceed. Warning messages also report the source file
name and line number, but include the text ‘warning:’ to distinguish them from error
messages.

Warnings may indicate danger points where you should check to make sure that your program
really does what you intend; or the use of obsolete features; or the use of nonstandard features
of GNU C or C++. Many warnings are issued only if you ask for them, with one of the ‘-W’
options (for instance, ‘-Wall’ requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a program
whose meaning is clear merely because (for instance) it fails to conform to a standard. In some
cases, however, the C and C++ standards specify that certain extensions are forbidden, and a
diagnostic must be issued by a conforming compiler. The ‘-pedantic’ option tells GCC to issue
warnings in such cases; ‘-pedantic-errors’ says to make them errors instead. This does not
mean that all non-ISO constructs get warnings or errors.

See Section 3.8 [Options to Request or Suppress Warnings], page 28, for more detail on these
and related command-line options.

284 Using the GNU Compiler Collection (GCC)

Chapter 11: Reporting Bugs 285

11 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.
When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 10 [Trouble], page 269. If it isn’t known, then you should report the problem.

11.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug. Reliable
compilers never crash.

• If the compiler produces invalid assembly code, for any input whatever (except an asm
statement), that is a compiler bug, unless the compiler reports errors (not just warnings)
which would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input
source code, that is a compiler bug.
However, you must double-check to make sure, because you may have a program whose
behavior is undefined, which happened by chance to give the desired results with another
C or C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a function
instead of ‘return x;’, with the same results. But the value of the function is undefined if
return is omitted; it is not a bug when GCC produces different results.
Problems often result from expressions with two increment operators, as in f (*p++, *p++).
Your previous compiler might have interpreted that expression the way you intended; GCC
might interpret it another way. Neither compiler is wrong. The bug is in your code.
After you have localized the error to a single source line, it should be easy to check for these
things. If your program is correct and well defined, you have found a compiler bug.

• If the compiler produces an error message for valid input, that is a compiler bug.
• If the compiler does not produce an error message for invalid input, that is a compiler

bug. However, you should note that your idea of “invalid input” might be my idea of “an
extension” or “support for traditional practice”.

• If you are an experienced user of one of the languages GCC supports, your suggestions for
improvement of GCC are welcome in any case.

11.2 How and where to Report Bugs

Bugs should be reported to our bug database. Please refer to http://gcc.gnu.org/bugs.html
for up-to-date instructions how to submit bug reports. Copies of this file in HTML (‘bugs.html’)
and plain text (‘BUGS’) are also part of GCC releases.

http://gcc.gnu.org/bugs.html

286 Using the GNU Compiler Collection (GCC)

Chapter 12: How To Get Help with GCC 287

12 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to find it:
• Send a message to a suitable network mailing list. First try gcc-help@gcc.gnu.org (for

help installing or using GCC), and if that brings no response, try gcc@gcc.gnu.org. For
help changing GCC, ask gcc@gcc.gnu.org. If you think you have found a bug in GCC,
please report it following the instructions at see Section 11.2 [Bug Reporting], page 285.

• Look in the service directory for someone who might help you for a fee. The service directory
is found at http://www.gnu.org/prep/service.html.

For further information, see http://gcc.gnu.org/faq.html#support.

mailto:gcc-help@gcc.gnu.org
mailto:gcc@gcc.gnu.org
mailto:gcc@gcc.gnu.org
http://www.gnu.org/prep/service.html
http://gcc.gnu.org/faq.html#support

288 Using the GNU Compiler Collection (GCC)

Chapter 13: Contributing to GCC Development 289

13 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, our current develop-
ment sources are available by CVS (see http://gcc.gnu.org/cvs.html). Source and binary
snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:
http://gcc.gnu.org/contribute.html

http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Suggested
projects are listed at http://gcc.gnu.org/projects/.

http://gcc.gnu.org/cvs.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/

290 Using the GNU Compiler Collection (GCC)

Funding Free Software 291

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help
encourage people to contribute funds for its development. The most effective approach known
is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee
distributors to donate part of their selling price to free software developers—the Free Software
Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied with
a vague promise, such as “A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone
honest, you need to inquire how much they do, and what kind. Some kinds of development make
much more long-term difference than others. For example, maintaining a separate version of a
program contributes very little; maintaining the standard version of a program for the whole
community contributes much. Easy new ports contribute little, since someone else would surely
do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute
more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do”
when distributing free software for a fee, we can assure a steady flow of resources into making
more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

292 Using the GNU Compiler Collection (GCC)

The GNU Project and GNU/Linux 293

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system which
is free software: the GNU system. (GNU is a recursive acronym for “GNU’s Not Unix”; it is
pronounced “guh-NEW”.) Variants of the GNU operating system, which use the kernel Linux,
are now widely used; though these systems are often referred to as “Linux”, they are more
accurately called GNU/Linux systems.

For more information, see:
http://www.gnu.org/

http://www.gnu.org/gnu/linux-and-gnu.html

http://www.gnu.org/
http://www.gnu.org/gnu/linux-and-gnu.html

294 Using the GNU Compiler Collection (GCC)

GNU GENERAL PUBLIC LICENSE 295

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

296 Using the GNU Compiler Collection (GCC)

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,

GNU GENERAL PUBLIC LICENSE 297

a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by

298 Using the GNU Compiler Collection (GCC)

public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

GNU GENERAL PUBLIC LICENSE 299

END OF TERMS AND CONDITIONS

300 Using the GNU Compiler Collection (GCC)

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

GNU Free Documentation License 301

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

302 Using the GNU Compiler Collection (GCC)

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, sgml or xml using a publicly available dtd,
and standard-conforming simple html, PostScript or pdf designed for human modification.
Examples of transparent image formats include png, xcf and jpg. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, sgml
or xml for which the dtd and/or processing tools are not generally available, and the
machine-generated html, PostScript or pdf produced by some word processors for output
purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

GNU Free Documentation License 303

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

304 Using the GNU Compiler Collection (GCC)

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

GNU Free Documentation License 305

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warrany Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

306 Using the GNU Compiler Collection (GCC)

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 307

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

308 Using the GNU Compiler Collection (GCC)

Contributors to GCC 309

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project would
not have been nearly as successful as it has been. Any omissions in this list are accidental. Feel
free to contact law@redhat.com or gerald@pfeifer.com if you have been left out or some of
your contributions are not listed. Please keep this list in alphabetical order.
• Analog Devices helped implement the support for complex data types and iterators.
• John David Anglin for threading-related fixes and improvements to libstdc++-v3, and the

HP-UX port.
• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register

stack.
• Alasdair Baird for various bug fixes.
• Giovanni Bajo for analyzing lots of complicated C++ problem reports.
• Gerald Baumgartner added the signature extension to the C++ front end.
• Godmar Back for his Java improvements and encouragement.
• Scott Bambrough for help porting the Java compiler.
• Wolfgang Bangerth for processing tons of bug reports.
• Jon Beniston for his Windows port of Java.
• Daniel Berlin for better DWARF2 support, faster/better optimizations, improved alias anal-

ysis, plus migrating us to Bugzilla.
• Geoff Berry for his Java object serialization work and various patches.
• Eric Blake for helping to make GCJ and libgcj conform to the specifications.
• Segher Boessenkool for various fixes.
• Hans-J. Boehm for his garbage collector, IA-64 libffi port, and other Java work.
• Neil Booth for work on cpplib, lang hooks, debug hooks and other miscellaneous clean-ups.
• Eric Botcazou for fixing middle- and backend bugs left and right.
• Per Bothner for his direction via the steering committee and various improvements to

our infrastructure for supporting new languages. Chill front end implementation. Initial
implementations of cpplib, fix-header, config.guess, libio, and past C++ library (libg++)
maintainer. Dreaming up, designing and implementing much of GCJ.

• Devon Bowen helped port GCC to the Tahoe.
• Don Bowman for mips-vxworks contributions.
• Dave Brolley for work on cpplib and Chill.
• Robert Brown implemented the support for Encore 32000 systems.
• Christian Bruel for improvements to local store elimination.
• Herman A.J. ten Brugge for various fixes.
• Joerg Brunsmann for Java compiler hacking and help with the GCJ FAQ.
• Joe Buck for his direction via the steering committee.
• Craig Burley for leadership of the Fortran effort.
• Stephan Buys for contributing Doxygen notes for libstdc++.
• Paolo Carlini for libstdc++ work: lots of efficiency improvements to the string class, hard

detective work on the frustrating localization issues, and keeping up with the problem
reports.

• John Carr for his alias work, SPARC hacking, infrastructure improvements, previous con-
tributions to the steering committee, loop optimizations, etc.

mailto:law@redhat.com
mailto:gerald@pfeifer.com
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

310 Using the GNU Compiler Collection (GCC)

• Stephane Carrez for 68HC11 and 68HC12 ports.
• Steve Chamberlain for support for the Renesas SH and H8 processors and the PicoJava

processor, and for GCJ config fixes.
• Glenn Chambers for help with the GCJ FAQ.
• John-Marc Chandonia for various libgcj patches.
• Scott Christley for his Objective-C contributions.
• Eric Christopher for his Java porting help and clean-ups.
• Branko Cibej for more warning contributions.
• The GNU Classpath project for all of their merged runtime code.
• Nick Clifton for arm, mcore, fr30, v850, m32r work, ‘--help’, and other random hacking.
• Michael Cook for libstdc++ cleanup patches to reduce warnings.
• Ralf Corsepius for SH testing and minor bugfixing.
• Stan Cox for care and feeding of the x86 port and lots of behind the scenes hacking.
• Alex Crain provided changes for the 3b1.
• Ian Dall for major improvements to the NS32k port.
• Dario Dariol contributed the four varieties of sample programs that print a copy of their

source.
• Russell Davidson for fstream and stringstream fixes in libstdc++.
• Mo DeJong for GCJ and libgcj bug fixes.
• DJ Delorie for the DJGPP port, build and libiberty maintenance, and various bug fixes.
• Gabriel Dos Reis for contributions to g++, contributions and maintenance of GCC diagnos-

tics infrastructure, libstdc++-v3, including valarray<>, complex<>, maintaining the numerics
library (including that pesky <limits> :-) and keeping up-to-date anything to do with num-
bers.

• Ulrich Drepper for his work on glibc, testing of GCC using glibc, ISO C99 support, CFG
dumping support, etc., plus support of the C++ runtime libraries including for all kinds of C
interface issues, contributing and maintaining complex<>, sanity checking and disbursement,
configuration architecture, libio maintenance, and early math work.

• Zdenek Dvorak for a new loop unroller and various fixes.
• Richard Earnshaw for his ongoing work with the ARM.
• David Edelsohn for his direction via the steering committee, ongoing work with the

RS6000/PowerPC port, help cleaning up Haifa loop changes, doing the entire AIX port
of libstdc++ with his bare hands, and for ensuring GCC properly keeps working on AIX.

• Kevin Ediger for the floating point formatting of num put::do put in libstdc++.
• Phil Edwards for libstdc++ work including configuration hackery, documentation maintainer,

chief breaker of the web pages, the occasional iostream bug fix, and work on shared library
symbol versioning.

• Paul Eggert for random hacking all over GCC.
• Mark Elbrecht for various DJGPP improvements, and for libstdc++ configuration support

for locales and fstream-related fixes.
• Vadim Egorov for libstdc++ fixes in strings, streambufs, and iostreams.
• Christian Ehrhardt for dealing with bug reports.
• Ben Elliston for his work to move the Objective-C runtime into its own subdirectory and

for his work on autoconf.
• Marc Espie for OpenBSD support.

http://www.gnu.org/software/classpath/

Contributors to GCC 311

• Doug Evans for much of the global optimization framework, arc, m32r, and SPARC work.
• Christopher Faylor for his work on the Cygwin port and for caring and feeding the

gcc.gnu.org box and saving its users tons of spam.
• Fred Fish for BeOS support and Ada fixes.
• Ivan Fontes Garcia for the Portugese translation of the GCJ FAQ.
• Peter Gerwinski for various bug fixes and the Pascal front end.
• Kaveh Ghazi for his direction via the steering committee, amazing work to make ‘-W -Wall’

useful, and continuously testing GCC on a plethora of platforms.
• John Gilmore for a donation to the FSF earmarked improving GNU Java.
• Judy Goldberg for c++ contributions.
• Torbjorn Granlund for various fixes and the c-torture testsuite, multiply- and divide-by-

constant optimization, improved long long support, improved leaf function register alloca-
tion, and his direction via the steering committee.

• Anthony Green for his ‘-Os’ contributions and Java front end work.
• Stu Grossman for gdb hacking, allowing GCJ developers to debug our code.
• Michael K. Gschwind contributed the port to the PDP-11.
• Ron Guilmette implemented the protoize and unprotoize tools, the support for Dwarf

symbolic debugging information, and much of the support for System V Release 4. He has
also worked heavily on the Intel 386 and 860 support.

• Bruno Haible for improvements in the runtime overhead for EH, new warnings and assorted
bug fixes.

• Andrew Haley for his amazing Java compiler and library efforts.
• Chris Hanson assisted in making GCC work on HP-UX for the 9000 series 300.
• Michael Hayes for various thankless work he’s done trying to get the c30/c40 ports func-

tional. Lots of loop and unroll improvements and fixes.
• Dara Hazeghi for wading through myriads of target-specific bug reports.
• Kate Hedstrom for staking the g77 folks with an initial testsuite.
• Richard Henderson for his ongoing SPARC, alpha, ia32, and ia64 work, loop opts, and

generally fixing lots of old problems we’ve ignored for years, flow rewrite and lots of further
stuff, including reviewing tons of patches.

• Aldy Hernandez for working on the PowerPC port, SIMD support, and various fixes.
• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the

Sony NEWS machine.
• Kazu Hirata for caring and feeding the Renesas H8/300 port and various fixes.
• Manfred Hollstein for his ongoing work to keep the m88k alive, lots of testing and bug

fixing, particularly of our configury code.
• Steve Holmgren for MachTen patches.
• Jan Hubicka for his x86 port improvements.
• Falk Hueffner for working on C and optimization bug reports.
• Christian Iseli for various bug fixes.
• Kamil Iskra for general m68k hacking.
• Lee Iverson for random fixes and MIPS testing.
• Andreas Jaeger for testing and benchmarking of GCC and various bug fixes.
• Jakub Jelinek for his SPARC work and sibling call optimizations as well as lots of bug fixes

and test cases, and for improving the Java build system.

312 Using the GNU Compiler Collection (GCC)

• Janis Johnson for ia64 testing and fixes, her quality improvement sidetracks, and web page
maintenance.

• Kean Johnston for SCO OpenServer support and various fixes.
• Tim Josling for the sample language treelang based originally on Richard Kenner’s "“toy”

language".
• Nicolai Josuttis for additional libstdc++ documentation.
• Klaus Kaempf for his ongoing work to make alpha-vms a viable target.
• David Kashtan of SRI adapted GCC to VMS.
• Ryszard Kabatek for many, many libstdc++ bug fixes and optimizations of strings, especially

member functions, and for auto ptr fixes.
• Geoffrey Keating for his ongoing work to make the PPC work for GNU/Linux and his

automatic regression tester.
• Brendan Kehoe for his ongoing work with g++ and for a lot of early work in just about

every part of libstdc++.
• Oliver M. Kellogg of Deutsche Aerospace contributed the port to the MIL-STD-1750A.
• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the

machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM
RS/6000 as well as the support for instruction attributes. He also made changes to better
support RISC processors including changes to common subexpression elimination, strength
reduction, function calling sequence handling, and condition code support, in addition to
generalizing the code for frame pointer elimination and delay slot scheduling. Richard
Kenner was also the head maintainer of GCC for several years.

• Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintain-
ing binary releases for Windows hosts, and for massive libstdc++ porting work to Cyg-
win/Mingw32.

• Robin Kirkham for cpu32 support.
• Mark Klein for PA improvements.
• Thomas Koenig for various bug fixes.
• Bruce Korb for the new and improved fixincludes code.
• Benjamin Kosnik for his g++ work and for leading the libstdc++-v3 effort.
• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.
• Jeff Law for his direction via the steering committee, coordinating the entire egcs project

and GCC 2.95, rolling out snapshots and releases, handling merges from GCC2, reviewing
tons of patches that might have fallen through the cracks else, and random but extensive
hacking.

• Marc Lehmann for his direction via the steering committee and helping with analysis and
improvements of x86 performance.

• Ted Lemon wrote parts of the RTL reader and printer.
• Kriang Lerdsuwanakij for C++ improvements including template as template parameter

support, and many C++ fixes.
• Warren Levy for tremendous work on libgcj (Java Runtime Library) and random work on

the Java front end.
• Alain Lichnewsky ported GCC to the MIPS CPU.
• Oskar Liljeblad for hacking on AWT and his many Java bug reports and patches.
• Robert Lipe for OpenServer support, new testsuites, testing, etc.
• Weiwen Liu for testing and various bug fixes.

Contributors to GCC 313

• Dave Love for his ongoing work with the Fortran front end and runtime libraries.

• Martin von Löwis for internal consistency checking infrastructure, various C++ improve-
ments including namespace support, and tons of assistance with libstdc++/compiler merges.

• H.J. Lu for his previous contributions to the steering committee, many x86 bug reports,
prototype patches, and keeping the GNU/Linux ports working.

• Greg McGary for random fixes and (someday) bounded pointers.

• Andrew MacLeod for his ongoing work in building a real EH system, various code generation
improvements, work on the global optimizer, etc.

• Vladimir Makarov for hacking some ugly i960 problems, PowerPC hacking improvements
to compile-time performance, overall knowledge and direction in the area of instruction
scheduling, and design and implementation of the automaton based instruction scheduler.

• Bob Manson for his behind the scenes work on dejagnu.

• Philip Martin for lots of libstdc++ string and vector iterator fixes and improvements, and
string clean up and testsuites.

• All of the Mauve project contributors, for Java test code.

• Bryce McKinlay for numerous GCJ and libgcj fixes and improvements.

• Adam Megacz for his work on the Windows port of GCJ.

• Michael Meissner for LRS framework, ia32, m32r, v850, m88k, MIPS, powerpc, haifa,
ECOFF debug support, and other assorted hacking.

• Jason Merrill for his direction via the steering committee and leading the g++ effort.

• David Miller for his direction via the steering committee, lots of SPARC work, improvements
in jump.c and interfacing with the Linux kernel developers.

• Gary Miller ported GCC to Charles River Data Systems machines.

• Alfred Minarik for libstdc++ string and ios bug fixes, and turning the entire libstdc++
testsuite namespace-compatible.

• Mark Mitchell for his direction via the steering committee, mountains of C++ work,
load/store hoisting out of loops, alias analysis improvements, ISO C restrict support,
and serving as release manager for GCC 3.x.

• Alan Modra for various GNU/Linux bits and testing.

• Toon Moene for his direction via the steering committee, Fortran maintenance, and his
ongoing work to make us make Fortran run fast.

• Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org
(formerly egcs.cygnus.com) machine—mail, web services, ftp services, etc etc. Doing all
this work on scrap paper and the backs of envelopes would have been... difficult.

• Catherine Moore for fixing various ugly problems we have sent her way, including the haifa
bug which was killing the Alpha & PowerPC Linux kernels.

• Mike Moreton for his various Java patches.

• David Mosberger-Tang for various Alpha improvements.

• Stephen Moshier contributed the floating point emulator that assists in cross-compilation
and permits support for floating point numbers wider than 64 bits and for ISO C99 support.

• Bill Moyer for his behind the scenes work on various issues.

• Philippe De Muyter for his work on the m68k port.

• Joseph S. Myers for his work on the PDP-11 port, format checking and ISO C99 support,
and continuous emphasis on (and contributions to) documentation.

http://sources.redhat.com/cgi-bin/cvsweb.cgi/~checkout~/mauve/THANKS?rev=1.2&cvsroot=mauve&only_with_tag=HEAD

314 Using the GNU Compiler Collection (GCC)

• Nathan Myers for his work on libstdc++-v3: architecture and authorship through the first
three snapshots, including implementation of locale infrastructure, string, shadow C head-
ers, and the initial project documentation (DESIGN, CHECKLIST, and so forth). Later,
more work on MT-safe string and shadow headers.

• Felix Natter for documentation on porting libstdc++.
• Nathanael Nerode for cleaning up the configuration/build process.
• NeXT, Inc. donated the front end that supports the Objective-C language.
• Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the search engine

setup, various documentation fixes and other small fixes.
• Geoff Noer for this work on getting cygwin native builds working.
• Diego Novillo for his SPEC performance tracking web pages and assorted fixes in the middle

end and various back ends.
• David O’Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, FreeBSD/ARM,

FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related infrastructure
improvements.

• Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing
work, including keeping libtool issues sane and happy.

• Melissa O’Neill for various NeXT fixes.
• Rainer Orth for random MIPS work, including improvements to our o32 ABI support,

improvements to dejagnu’s MIPS support, Java configuration clean-ups and porting work,
etc.

• Hartmut Penner for work on the s390 port.
• Paul Petersen wrote the machine description for the Alliant FX/8.
• Alexandre Petit-Bianco for implementing much of the Java compiler and continued Java

maintainership.
• Matthias Pfaller for major improvements to the NS32k port.
• Gerald Pfeifer for his direction via the steering committee, pointing out lots of problems we

need to solve, maintenance of the web pages, and taking care of documentation maintenance
in general.

• Andrew Pinski for processing bug reports by the dozen.
• Ovidiu Predescu for his work on the Objective-C front end and runtime libraries.
• Ken Raeburn for various improvements to checker, MIPS ports and various cleanups in the

compiler.
• Rolf W. Rasmussen for hacking on AWT.
• David Reese of Sun Microsystems contributed to the Solaris on PowerPC port.
• Volker Reichelt for keeping up with the problem reports.
• Joern Rennecke for maintaining the sh port, loop, regmove & reload hacking.
• Loren J. Rittle for improvements to libstdc++-v3 including the FreeBSD port, threading

fixes, thread-related configury changes, critical threading documentation, and solutions to
really tricky I/O problems, as well as keeping GCC properly working on FreeBSD and
continuous testing.

• Craig Rodrigues for processing tons of bug reports.
• Gavin Romig-Koch for lots of behind the scenes MIPS work.
• Ken Rose for fixes to our delay slot filling code.
• Paul Rubin wrote most of the preprocessor.

Contributors to GCC 315

• Chip Salzenberg for libstdc++ patches and improvements to locales, traits, Makefiles, libio,
libtool hackery, and “long long” support.

• Juha Sarlin for improvements to the H8 code generator.
• Greg Satz assisted in making GCC work on HP-UX for the 9000 series 300.
• Roger Sayle for improvements to constant folding and GCC’s RTL optimizers as well as for

fixing numerous bugs.
• Bradley Schatz for his work on the GCJ FAQ.
• Peter Schauer wrote the code to allow debugging to work on the Alpha.
• William Schelter did most of the work on the Intel 80386 support.
• Bernd Schmidt for various code generation improvements and major work in the reload pass

as well a serving as release manager for GCC 2.95.3.
• Peter Schmid for constant testing of libstdc++ – especially application testing, going above

and beyond what was requested for the release criteria – and libstdc++ header file tweaks.
• Jason Schroeder for jcf-dump patches.
• Andreas Schwab for his work on the m68k port.
• Joel Sherrill for his direction via the steering committee, RTEMS contributions and RTEMS

testing.
• Nathan Sidwell for many C++ fixes/improvements.
• Jeffrey Siegal for helping RMS with the original design of GCC, some code which handles

the parse tree and RTL data structures, constant folding and help with the original VAX
& m68k ports.

• Kenny Simpson for prompting libstdc++ fixes due to defect reports from the LWG (thereby
keeping us in line with updates from the ISO).

• Franz Sirl for his ongoing work with making the PPC port stable for linux.
• Andrey Slepuhin for assorted AIX hacking.
• Christopher Smith did the port for Convex machines.
• Danny Smith for his major efforts on the Mingw (and Cygwin) ports.
• Randy Smith finished the Sun FPA support.
• Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries.
• Brad Spencer for contributions to the GLIBCPP FORCE NEW technique.
• Richard Stallman, for writing the original gcc and launching the GNU project.
• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of

the 32000 machine description.
• Nigel Stephens for various mips16 related fixes/improvements.
• Jonathan Stone wrote the machine description for the Pyramid computer.
• Graham Stott for various infrastructure improvements.
• John Stracke for his Java HTTP protocol fixes.
• Mike Stump for his Elxsi port, g++ contributions over the years and more recently his

vxworks contributions
• Jeff Sturm for Java porting help, bug fixes, and encouragement.
• Shigeya Suzuki for this fixes for the bsdi platforms.
• Ian Lance Taylor for his mips16 work, general configury hacking, fixincludes, etc.
• Holger Teutsch provided the support for the Clipper CPU.
• Gary Thomas for his ongoing work to make the PPC work for GNU/Linux.

316 Using the GNU Compiler Collection (GCC)

• Philipp Thomas for random bug fixes throughout the compiler
• Jason Thorpe for thread support in libstdc++ on NetBSD.
• Kresten Krab Thorup wrote the run time support for the Objective-C language and the

fantastic Java bytecode interpreter.
• Michael Tiemann for random bug fixes, the first instruction scheduler, initial C++ sup-

port, function integration, NS32k, SPARC and M88k machine description work, delay slot
scheduling.

• Andreas Tobler for his work porting libgcj to Darwin.
• Teemu Torma for thread safe exception handling support.
• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of the

VAX machine description.
• Tom Tromey for internationalization support and for his many Java contributions and libgcj

maintainership.
• Lassi Tuura for improvements to config.guess to determine HP processor types.
• Petter Urkedal for libstdc++ CXXFLAGS, math, and algorithms fixes.
• Brent Verner for work with the libstdc++ cshadow files and their associated configure steps.
• Todd Vierling for contributions for NetBSD ports.
• Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance.
• Dean Wakerley for converting the install documentation from HTML to texinfo in time for

GCC 3.0.
• Krister Walfridsson for random bug fixes.
• Stephen M. Webb for time and effort on making libstdc++ shadow files work with the tricky

Solaris 8+ headers, and for pushing the build-time header tree.
• John Wehle for various improvements for the x86 code generator, related infrastructure

improvements to help x86 code generation, value range propagation and other work, WE32k
port.

• Ulrich Weigand for work on the s390 port.
• Zack Weinberg for major work on cpplib and various other bug fixes.
• Matt Welsh for help with Linux Threads support in GCJ.
• Urban Widmark for help fixing java.io.
• Mark Wielaard for new Java library code and his work integrating with Classpath.
• Dale Wiles helped port GCC to the Tahoe.
• Bob Wilson from Tensilica, Inc. for the Xtensa port.
• Jim Wilson for his direction via the steering committee, tackling hard problems in various

places that nobody else wanted to work on, strength reduction and other loop optimizations.
• Carlo Wood for various fixes.
• Tom Wood for work on the m88k port.
• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the

Tron architecture (specifically, the Gmicro).
• Kevin Zachmann helped ported GCC to the Tahoe.
• Gilles Zunino for help porting Java to Irix.

In addition to the above, all of which also contributed time and energy in testing GCC, we
would like to thank the following for their contributions to testing:
• Michael Abd-El-Malek
• Thomas Arend

Contributors to GCC 317

• Bonzo Armstrong
• Steven Ashe
• Chris Baldwin
• David Billinghurst
• Jim Blandy
• Stephane Bortzmeyer
• Horst von Brand
• Frank Braun
• Rodney Brown
• Sidney Cadot
• Bradford Castalia
• Ralph Doncaster
• Richard Emberson
• Levente Farkas
• Graham Fawcett
• Robert A. French
• Jörgen Freyh
• Mark K. Gardner
• Charles-Antoine Gauthier
• Yung Shing Gene
• David Gilbert
• Simon Gornall
• Fred Gray
• John Griffin
• Patrik Hagglund
• Phil Hargett
• Amancio Hasty
• Bryan W. Headley
• Kevin B. Hendricks
• Joep Jansen
• Christian Joensson
• David Kidd
• Tobias Kuipers
• Anand Krishnaswamy
• llewelly
• Damon Love
• Brad Lucier
• Matthias Klose
• Martin Knoblauch
• Jesse Macnish
• Stefan Morrell
• Anon A. Mous
• Matthias Mueller

318 Using the GNU Compiler Collection (GCC)

• Pekka Nikander
• Jon Olson
• Magnus Persson
• Chris Pollard
• Richard Polton
• David Rees
• Paul Reilly
• Tom Reilly
• Torsten Rueger
• Danny Sadinoff
• Marc Schifer
• David Schuler
• Vin Shelton
• Tim Souder
• Adam Sulmicki
• George Talbot
• Gregory Warnes
• David E. Young
• And many others

And finally we’d like to thank everyone who uses the compiler, submits bug reports and
generally reminds us why we’re doing this work in the first place.

Option Index 319

Option Index

GCC’s command line options are indexed here without any initial ‘-’ or ‘--’. Where an option
has both positive and negative forms (such as ‘-foption ’ and ‘-fno-option ’), relevant entries
in the manual are indexed under the most appropriate form; it may sometimes be useful to look
up both forms.

#
. 17

A
A . 67
all_load . 100
allowable_client . 101
ansi . 5, 18, 65, 214, 282
arch_errors_fatal . 100
arch_only . 101
aux-info . 19

B
b . 77
B . 71
bcopy-builtin . 133
bind_at_load. 100
bundle . 100
bundle_loader . 100

C
c . 16, 68
C . 67
client_name . 101
compatibility_version . 101
crossjumping . 51
current_version . 101

D
d . 42
D . 61
da . 43
dA . 42
db . 42
dB . 42
dc . 42
dC . 42
dd . 42
dD . 42, 67
de . 42
dE . 42
dependency-file . 101
df . 42
dF . 42
dg . 42
dG . 42
dh . 42
di . 43
dI . 67
dj . 43
dk . 43

dl . 43
dL . 43
dm . 43
dM . 43, 67
dn . 43
dN . 43, 67
do . 43
dp . 43
dP . 43
dr . 43
dR . 43
ds . 43
dS . 43
dt . 43
dT . 43
du . 43
dumpmachine . 46
dumpspecs . 46
dumpversion . 46
dv . 43
dV . 43
dw . 43
dW . 43
dx . 43
dX . 43
dy . 43
dylib_file . 101
dylinker_install_name . 101
dynamic . 101
dynamiclib . 101
dz . 43
dZ . 44

E
E . 16, 68
EB . 106, 124
EL . 106, 124
exported_symbols_list . 101

F
fabi-version . 21
falign-functions . 54
falign-jumps . 55
falign-labels. 55
falign-loops . 55
falt-external-templates . 22
fargument-alias . 143
fargument-noalias . 143
fargument-noalias-global . 143
fbounds-check . 139
fbranch-probabilities . 57
fcall-saved . 142, 272
fcall-used . 142

320 Using the GNU Compiler Collection (GCC)

fcaller-saves. 53
fcheck-new . 21
fcommon . 182
fcond-mismatch . 20
fconserve-space . 21
fconstant-string-class . 27
fcse-follow-jumps . 50
fcse-skip-blocks . 50
fdata-sections . 58
fdelayed-branch . 52
fdelete-null-pointer-checks 51
fdiagnostics-show-location 28
fdollars-in-identifiers 22, 272
fdump-class-hierarchy . 44
fdump-translation-unit . 44
fdump-tree . 44
fdump-unnumbered . 44
feliminate-dwarf2-dups . 41
fexceptions . 139
fexpensive-optimizations . 52
fexternal-templates . 22
ffast-math . 56
ffinite-math-only . 56
ffixed . 142
ffloat-store . 56, 277
ffor-scope . 22
fforce-addr . 48
fforce-mem . 48
ffreestanding . 6, 20, 171
ffunction-sections . 58
fgcse . 50
fgcse-lm . 51
fgcse-sm . 51
fgnu-runtime . 27
fhosted . 20
filelist . 101
finhibit-size-directive . 141
finline-functions . 48
finline-limit. 48
finstrument-functions 142, 172
fkeep-inline-functions 49, 189
fkeep-static-consts . 49
flat_namespace . 101
fleading-underscore . 143
floop-optimize . 51
fmem-report . 41
fmessage-length . 28
fmove-all-movables . 53
fms-extensions . 20, 23
fnew-ra . 57
fnext-runtime. 27
fno-access-control . 21
fno-asm . 19
fno-branch-count-reg . 49
fno-builtin . 19, 214
fno-common . 140, 182
fno-const-strings . 22
fno-cprop-registers . 56
fno-default-inline 24, 47, 189
fno-defer-pop. 47
fno-elide-constructors . 22
fno-enforce-eh-specs . 22
fno-for-scope. 22
fno-function-cse . 50
fno-gnu-keywords . 22

fno-gnu-linker . 141
fno-guess-branch-probability 53
fno-ident . 140
fno-implement-inlines 23, 249
fno-implicit-inline-templates 23
fno-implicit-templates 23, 250
fno-inline . 48
fno-math-errno . 56
fno-nonansi-builtins . 23
fno-operator-names . 23
fno-optional-diags . 23
fno-peephole . 53
fno-peephole2. 53
fno-rtti . 23
fno-sched-interblock . 52
fno-sched-spec . 52
fno-show-column . 67
fno-signed-bitfields . 21
fno-stack-limit . 143
fno-trapping-math . 57
fno-unsigned-bitfields . 21
fno-weak . 24
fno-zero-initialized-in-bss 50
fnon-call-exceptions . 139
fomit-frame-pointer . 48
foptimize-register-move . 52
foptimize-sibling-calls . 48
force_cpusubtype_ALL . 101
force_flat_namespace . 101
fpack-struct. 142
fpcc-struct-return . 139, 275
fpermissive . 23
fpic . 141
fPIC . 141
fpie . 141
fPIE . 141
fprefetch-loop-arrays . 58
fpreprocessed. 66
fprofile-arcs . 41, 216
frandom-string . 44
freduce-all-givs . 53
freg-struct-return . 140
fregmove . 52
frename-registers . 55
freorder-blocks . 53
freorder-functions . 54
frepo . 23, 250
frerun-cse-after-loop . 50
frerun-loop-opt . 50
fsched-spec-load . 52
fsched-spec-load-dangerous 52
fsched-verbose . 44
fschedule-insns . 52
fschedule-insns2 . 52
fshared-data. 140
fshort-double . 140
fshort-enums . 140, 186, 281
fshort-wchar. 140
fsignaling-nans . 57
fsigned-bitfields . 21, 281
fsigned-char . 20
fsingle-precision-constant 57
fssa . 58
fssa-ccp . 58
fssa-dce . 58

Option Index 321

fstack-check. 143
fstack-limit-register . 143
fstack-limit-symbol . 143
fstats . 23
fstrength-reduce . 50
fstrict-aliasing . 54
fsyntax-only . 28
ftabstop . 66
ftemplate-depth . 23
ftest-coverage . 42
fthread-jumps. 50
ftime-report . 41
ftracer . 57
ftrapv . 139
ftsp-ordering. 53
funroll-all-loops . 58
funroll-loops . 58, 282
funsafe-math-optimizations 56
funsigned-bitfields . 21, 281
funsigned-char . 20
funwind-tables . 139
fuse-cxa-atexit . 23
fvar-tracking. 45
fverbose-asm. 141
fvolatile . 141
fvolatile-global . 141
fvolatile-static . 141
fvrp . 51
fvtable-gc . 24
fweb . 55
fwritable-strings . 21, 273

G
g . 39
G . 90, 99, 106, 121
gcoff . 40
gdwarf . 40
gdwarf+ . 40
gdwarf-2 . 40
gen-decls . 27
ggdb . 39
gnu-ld . 114
gstabs . 40
gstabs+ . 40
gvms . 40
gxcoff . 40
gxcoff+ . 40

H
H . 68
headerpad_max_install_names 101
help . 17, 68
hp-ld . 114

I
I . 62, 71
I- . 65, 71
idirafter . 66
if-conversion. 51
if-conversion2 . 51
imacros . 66

image_base . 101
include . 66
init . 101
install_name. 101
iprefix . 66
isystem . 66
iwithprefix . 66
iwithprefixbefore . 66

K
keep_private_externs . 101

L
l . 68
L . 71
lobjc . 69

M
M . 63
m1 . 120
m10 . 133
m128bit-long-double . 109
m16-bit . 131
m2 . 120
m210 . 128
m3 . 120
m31 . 130
m32 . 84, 112
m32-bit . 131
m32032 . 125
m32081 . 125
m32332 . 125
m32381 . 125
m32532 . 125
m32r . 89
m32rx . 89
m340 . 128
m386 . 108
m3dnow . 111
m3e . 120
m4 . 120
m4-nofpu . 120
m4-single . 120
m4-single-only . 120
m40 . 133
m45 . 133
m4650 . 106
m486 . 108
m4byte-functions . 127
m5200 . 79
m64 . 84, 112, 130
m68000 . 78
m68020 . 78
m68020-40 . 79
m68020-60 . 79
m68030 . 78
m68040 . 78
m68060 . 79
m6811 . 80
m6812 . 80
m68881 . 78

322 Using the GNU Compiler Collection (GCC)

m68hc11 . 80
m68hc12 . 80
m68hcs12 . 80
m68S12 . 80
m8-bit . 131
m88000 . 90
m88100 . 90
m88110 . 90
m96bit-long-double . 109
mabi-mmixware . 132
mabi=32 . 104
mabi=64 . 104
mabi=altivec . 98
mabi=eabi . 104
mabi=gnu . 132
mabi=meabi . 104
mabi=n32 . 104
mabi=no-altivec . 98
mabi=no-spe . 95
mabi=o64 . 104
mabi=spe . 95
mabicalls . 105
mabort-on-noreturn . 87
mabshi . 134
mac0 . 133
macc-4 . 135
macc-8 . 135
maccumulate-outgoing-args 111
mads . 98
maix-struct-return . 98
maix32 . 95
maix64 . 95
malign-300 . 120
malign-double . 109
malign-int . 80
malignment-traps . 86
malloc-cc . 134
malpha-as . 118
maltivec . 95
mam33 . 89
maout . 132
mapcs . 85
mapcs-26 . 85
mapcs-32 . 85
mapcs-frame . 85
mapp-regs . 81, 124
march . 86, 102, 108, 112, 130
masm-compat . 115
masm-optimize . 129
masm=dialect . 109
mauto-incdec . 80
mauto-pic . 128
mb . 120
mb-step . 128
mbackchain . 130
mbase-addresses . 133
mbcopy . 133
mbig . 97, 122
mbig-endian . 85, 97, 128, 136
mbig-memory . 122
mbig-pic . 90
mbig-switch . 113, 124
mbigtable . 121
mbit-align . 97
mbitfield . 79, 126

mbk . 122
mbooleans . 137
mbranch-cheap . 134
mbranch-cost. 129
mbranch-expensive . 134
mbranch-likely . 106
mbranch-predict . 133
mbroken-saverestore . 83
mbuild-constants . 118
mbwx . 118
mc68000 . 78
mc68020 . 78
mca . 115
mcall-aix . 98
mcall-gnu . 98
mcall-lib-mul . 102
mcall-linux . 98
mcall-netbsd . 98
mcall-prologues . 127
mcall-solaris. 98
mcall-sysv . 97
mcall-sysv-eabi . 97
mcall-sysv-noeabi . 98
mcallee-super-interworking 88
mcaller-super-interworking 88
mcallgraph-data . 127
mcc-init . 131
mcf . 115
mcheck-zero-division . 91
mcix . 118
mcmodel=embmedany . 84
mcmodel=kernel . 112
mcmodel=large . 112
mcmodel=medany . 84
mcmodel=medium . 112
mcmodel=medlow . 84
mcmodel=medmid . 84
mcmodel=small . 112
mcode-align . 115
mcode-model=large . 89
mcode-model=medium . 89
mcode-model=small . 89
mcomplex-addr . 115
mcond-exec . 129, 136
mcond-move . 135
mconst-align. 131
mconstant-gp. 128
mcpu 83, 86, 94, 107, 119, 122, 125, 130, 136
mcpu32 . 79
mcypress . 83
MD . 64
mdalign . 121
mdata . 125
mdata-align . 131
mdb . 122
mdebug . 130
mdec-asm . 134
mdensity . 137
mdisable-callt . 124
mdisable-fpregs . 113
mdisable-indexing . 113
mdiv . 127
mdouble . 135
mdouble-float . 106
mdp-isr-reload . 122

Option Index 323

mdwarf2-asm . 129
mdword . 134
meabi . 99
melf . 132, 133
melinux . 132
melinux-stacksize . 131
memb . 99
membedded-data . 105
membedded-pic . 105
mentry . 106
mep . 123
mepsilon . 132
mesa . 130
metrax100 . 131
metrax4 . 131
mexplicit-relocs . 118
mextmem . 129
mextmemory . 129
MF . 64
mfast-fix . 122
mfast-indirect-calls . 113
mfaster-structs . 82
mfix . 118
mfix7000 . 106
mfixed-cc . 134
mfixed-range. 129
mflat . 82
mfloat-ieee . 118
mfloat-vax . 118
mfloat32 . 133
mfloat64 . 133
mflush-func . 106
mfmovd . 121
mfp . 87
mfp-arg-in-fpregs . 102
mfp-arg-in-gregs . 102
mfp-reg . 116
mfp-rounding-mode . 117
mfp-trap-mode . 117
mfp32 . 103
mfp64 . 103
mfpa . 79
mfpe . 87
mfpr-32 . 134
mfpr-64 . 134
mfpu . 81, 133
mfull-fp-blocks . 102
mfull-toc . 95
mfused-madd . 97, 103, 138
mg . 81
MG . 64
mgas . 104, 113, 118
mgnu . 81
mgnu-as . 128
mgnu-ld . 128
mgotplt . 132
mgp32 . 103
mgp64 . 103
mgpopt . 104
mgpr-32 . 134
mgpr-64 . 134
mh . 120
mhalf-pic . 105
mhandle-large-shift . 92
mhard-float 81, 85, 96, 105, 129, 134, 137

mhard-quad-float . 81
mhardlit . 127
mhc-struct-return . 102
mhimem . 126
mhitachi . 121
mic-compat . 115
mic2.0-compat . 115
mic3.0-compat . 115
midentify-revision . 90
mieee . 116, 121
mieee-compare . 125
mieee-conformant . 118
mieee-fp . 109
mieee-with-inexact . 116
mimpure-text . 82
min-line-mul. 102
minit-stack . 127
minline-all-stringops . 111
minline-float-divide-max-throughput 128
minline-float-divide-min-latency 128
minline-int-divide-max-throughput 129
minline-int-divide-min-latency 129
minmax . 80
mint16 . 133
mint32 . 120, 133
mint64 . 103
mintel-asm . 115
mips1 . 103
mips16 . 106
mips2 . 103
mips3 . 103
mips32 . 103
mips4 . 103
mips64 . 103
misel . 95
misize . 121
mjump-in-delay . 113
mka . 115
mkb . 115
mknuthdiv . 132
ml . 120
mlarge-data . 118
mleaf-procedures . 115
mlibfuncs . 132
mlibrary-pic. 135
mlinker-opt . 113
mlinux . 132
mlittle . 97
mlittle-endian 83, 84, 85, 97, 128, 136
mlive-g0 . 83
mlong-calls . 80, 87, 105, 123
mlong-double-64 . 116
mlong-load-store . 113
mlong32 . 103
mlong64 . 103
mlongcall . 100
mlongcalls . 138
mloop-unsigned . 123
MM . 64
mmac16 . 137
mmad . 106
mmangle-cpu . 124
mmax . 118
mmax-stack-frame . 131
mmc . 115

324 Using the GNU Compiler Collection (GCC)

mmcu . 126
MMD . 65
mmedia . 135
mmemcpy . 104
mmemory-latency . 119
mmemparm . 123
mminimal-toc . 95
mminimum-fp-blocks . 102
mminmax . 137
mmips-as . 104
mmips-tfile . 105
mmmx . 111
mmpyi . 122
mmul-bug-workaround . 131
mmul16 . 137
mmul32 . 137
mmuladd . 135
mmult-bug . 88
mmulti-add . 125
mmulti-cond-exec . 136
mmultiple . 96
mmvcle . 130
mmvme . 98
mn . 120
mnested-cond-exec . 136
mnew-mnemonics . 94
mno-3dnow . 111
mno-4byte-functions . 127
mno-abicalls. 105
mno-abshi . 134
mno-ac0 . 133
mno-align-double . 109
mno-align-int. 80
mno-align-stringops . 111
mno-alignment-traps . 86
mno-altivec . 95
mno-am33 . 89
mno-app-regs . 81, 124
mno-asm-optimize . 129
mno-backchain . 130
mno-base-addresses . 133
mno-bit-align. 97
mno-bk . 122
mno-booleans. 137
mno-branch-likely . 106
mno-branch-predict . 133
mno-bwx . 118
mno-callgraph-data . 127
mno-check-zero-division . 91
mno-cix . 118
mno-code-align . 115
mno-complex-addr . 115
mno-cond-exec . 136
mno-cond-move . 135
mno-const-align . 131
mno-crt0 . 89
mno-data-align . 131
mno-db . 122
mno-debug . 130
mno-density . 137
mno-div . 127
mno-double . 135
mno-dwarf2-asm . 129
mno-dword . 135
mno-eabi . 99

mno-eflags . 135
mno-embedded-data . 105
mno-embedded-pic . 105
mno-ep . 123
mno-epsilon . 132
mno-explicit-relocs . 118
mno-fancy-math-387 . 109
mno-fast-fix. 122
mno-faster-structs . 82
mno-fix . 118
mno-flat . 82
mno-float32 . 133
mno-float64 . 133
mno-fp-in-toc. 95
mno-fp-regs . 116
mno-fp-ret-in-387 . 109
mno-fpu . 81
mno-fused-madd. 97, 103, 138
mno-gnu-as . 128
mno-gnu-ld . 128
mno-gotplt . 132
mno-gpopt . 104
mno-half-pic. 105
mno-hardlit . 127
mno-ieee-compare . 125
mno-ieee-fp . 109
mno-int16 . 133
mno-int32 . 133
mno-interrupts . 127
mno-knuthdiv. 132
mno-leaf-procedures . 115
mno-libfuncs. 132
mno-long-calls 80, 87, 105, 114, 123
mno-longcall. 100
mno-longcalls . 138
mno-loop-unsigned . 123
mno-mac16 . 137
mno-mad . 106
mno-max . 118
mno-media . 135
mno-memcpy . 104
mno-minmax . 137
mno-mips-tfile . 105
mno-mips16 . 106
mno-mmx . 111
mno-mpyi . 122
mno-mul-bug-workaround . 131
mno-mul16 . 137
mno-mul32 . 137
mno-muladd . 135
mno-mult-bug . 89
mno-multi-cond-exec . 136
mno-multiple . 96
mno-mvcle . 130
mno-nested-cond-exec . 136
mno-nsa . 137
mno-ocs-debug-info . 90
mno-ocs-frame-position . 90
mno-optimize-arg-area . 90
mno-pack . 135
mno-parallel-insns . 123
mno-parallel-mpy . 123
mno-pic . 128
mno-power . 93
mno-power2 . 93

Option Index 325

mno-powerpc . 93
mno-powerpc-gfxopt . 93
mno-powerpc-gpopt . 93
mno-powerpc64. 93
mno-prolog-function . 124
mno-prologue-epilogue . 131
mno-prototype. 98
mno-push-args . 111
mno-register-names . 128
mno-regnames. 100
mno-relax-immediate . 127
mno-relocatable . 97
mno-relocatable-lib . 97
mno-rnames . 104
mno-rptb . 122
mno-rpts . 123
mno-scc . 135
mno-sched-prolog . 85
mno-sdata . 99, 128
mno-serialize-volatile 91, 138
mno-sext . 137
mno-short-load-bytes . 86
mno-short-load-words . 86
mno-side-effects . 131
mno-single-exit . 133
mno-slow-bytes . 127
mno-small-exec . 130
mno-soft-float . 116
mno-space-regs . 113
mno-split . 134
mno-split-addresses . 104
mno-sse . 111
mno-stack-align . 131
mno-stack-bias . 84
mno-stats . 104
mno-strict-align . 80, 97, 116
mno-string . 96
mno-sum-in-toc . 95
mno-svr3-shlib . 110
mno-tablejump . 127
mno-tail-call . 115
mno-target-align . 138
mno-text-section-literals 138
mno-toc . 97
mno-toplevel-symbols . 132
mno-unaligned-doubles . 82
mno-underscores . 90
mno-uninit-const-in-rodata 105
mno-update . 96
mno-vliw-branch . 136
mno-volatile-asm-stop . 128
mno-wide-bitfields . 127
mno-xl-call . 96
mno-zero-extend . 132
mnobitfield . 79, 126
mnohc-struct-return . 102
mnohimem . 126
mnomacsave . 121
mnominmax . 80
mnomulti-add. 125
mnop-fun-dllimport . 87
mnoregparam . 126
mnosb . 126
mnsa . 137
mnumerics . 115

mocs-debug-info . 90
mocs-frame-position . 90
mold-align . 116
mold-mnemonics . 94
momit-leaf-frame-pointer . 112
monchip . 129
moptimize-arg-area . 90
MP . 64
mpa-risc-1-0. 113
mpa-risc-1-1. 113
mpa-risc-2-0. 113
mpack . 135
mpadstruct . 121
mparallel-insns . 123
mparallel-mpy . 123
mparanoid . 122
mpcrel . 80
mpdebug . 131
mpe . 96
mpentium . 108
mpentiumpro . 108
mpic-register. 87
mpoke-function-name . 88
mportable-runtime . 113
mpower . 93
mpower2 . 93
mpowerpc . 93
mpowerpc-gfxopt . 93
mpowerpc-gpopt . 93
mpowerpc64 . 93
mprefergot . 121
mpreferred-stack-boundary 110
mprolog-function . 124
mprologue-epilogue . 131
mprototype . 98
mpush-args . 111
MQ . 64
mregister-names . 128
mregnames . 100
mregparam . 126
mregparm . 110, 123
mrelax . 88, 89, 120, 121
mrelax-immediate . 127
mrelocatable . 97
mrelocatable-lib . 97
mrnames . 104
mrodata . 125
mrptb . 122
mrpts . 123
mrtd . 79, 110, 126, 174
ms . 120
ms2600 . 120
msa . 115
msb . 115, 126
mscc . 135
mschedule . 113
msda . 124
msdata . 99, 128
msdata-data . 99
msdata=default . 99
msdata=eabi . 99
msdata=none . 89, 99
msdata=sdata . 89
msdata=sysv . 99
msdata=use . 89

326 Using the GNU Compiler Collection (GCC)

mserialize-volatile . 91, 138
msext . 137
mshort . 79, 81
mshort-data . 91
mshort-load-bytes . 86
mshort-load-words . 86
msim . 98, 134
msingle-exit. 133
msingle-float . 106
msingle-pic-base . 87
msio . 114
msize . 127
mslow-bytes . 127
msmall . 122
msmall-data . 118
msmall-exec . 130
msmall-memory . 122
msoft-float . . 79, 81, 85, 96, 105, 109, 113, 115, 116,

125, 129, 133, 134, 137
msoft-quad-float . 81
msoft-reg-count . 81
mspace . 121, 124
msparclite . 82
msplit . 134
msplit-addresses . 104
msse . 111
mstack-align. 131
mstack-bias . 84
mstats . 104
mstrict-align . 80, 97, 116
mstring . 96
mstructure-size-boundary . 87
msupersparc . 83
msvr3 . 91
msvr3-shlib . 110
msvr4 . 91
msvr4-struct-return . 98
MT . 64
mtail-call . 115
mtarget-align . 138
mtda . 124
mtext . 125
mtext-section-literals . 138
mthreads . 111
mthumb . 88
mthumb-interwork . 85
mti . 123
mtiny-stack . 127
mtoc . 97
mtomcat-stats . 136
mtoplevel-symbols . 132
mtpcs-frame . 88
mtpcs-leaf-frame . 88
mtrap-large-shift . 92
mtrap-precision . 117
mtune 83, 86, 95, 103, 119, 130, 131
multi_module. 101
multiply_defined . 101
multiply_defined_unused . 101
munaligned-doubles . 82
muninit-const-in-rodata . 105
munix . 81
munix-asm . 134
mupdate . 96
muse-div-instruction . 92

musermode . 121
mv8 . 82
mv850 . 124
mv850e . 124
mversion-03.00 . 91
mvliw-branch. 136
mvms-return-codes . 120
mvolatile-asm-stop . 128
mvxworks . 99
mwarn-passed-structs . 92
mwide-bitfields . 127
mwindiss . 99
mwords-little-endian . 85
mxl-call . 96
myellowknife . 98
mzarch . 130
mzda . 124
mzero-extend. 132

N
no-crt0 . 106
no-integrated-cpp . 20
no-red-zone . 112
noall_load . 101
nocpp . 106
nodefaultlibs. 69
nolibdld . 114
nomultidefs . 101
noprebind . 101
noseglinkedit . 101
nostartfiles . 69
nostdinc . 65
nostdinc++ . 24, 66
nostdlib . 69

O
o . 17, 62
O . 46
O0 . 47
O1 . 46
O2 . 47
O3 . 47
Os . 47

P
p . 41
P . 67
pagezero_size . 101
param . 58
pass-exit-codes . 16
pedantic 5, 28, 63, 153, 210, 283
pedantic-errors 5, 29, 63, 269, 283
pg . 41
pie . 69
pipe . 17
prebind . 101
prebind_all_twolevel_modules 101
print-file-name . 45
print-libgcc-file-name . 45
print-multi-directory . 45
print-multi-lib . 45
print-prog-name . 45

Option Index 327

print-search-dirs . 46
private_bundle . 101
pthread . 100
pthreads . 84

Q
Q . 41
Qn . 121
Qy . 121

R
read_only_relocs . 101
remap . 68

S
s . 69
S . 16, 68
save-temps . 45
sectalign . 101
sectcreate . 101
sectobjectsymbols . 101
sectorder . 101
seg_addr_table . 101
seg_addr_table_filename . 101
seg1addr . 101
seglinkedit . 101
segprot . 101
segs_read_only_addr . 101
segs_read_write_addr . 101
shared . 70
shared-libgcc. 70
sim . 132
sim2 . 132
single_module . 101
specs . 72
static . 70, 101, 114
static-libgcc. 70
std . 5, 18, 214, 282
std= . 65
sub_library . 101
sub_umbrella. 101
symbolic . 70

T
target-help . 17, 68
threads. 84, 115
time . 45
traditional . 20, 273
traditional-cpp . 20, 67
trigraphs . 20, 68
twolevel_namespace . 101

U
u . 71
U . 62
umbrella . 101
undef . 62
undefined . 101
unexported_symbols_list . 101

V
v . 17, 68
V . 78
version . 17, 68

W
w . 29, 63
W . 34, 273
Wa . 68
Wabi . 24
Waggregate-return . 37
Wall . 34, 62, 276
Wbad-function-cast . 36
Wcast-align . 37
Wcast-qual . 37
Wchar-subscripts . 29
Wcomment. 29, 62
Wcomments . 62
Wconversion . 37, 280
Wctor-dtor-privacy . 25
Wdisabled-optimization . 39
Wdiv-by-zero . 35
weak_reference_mismatches 101
Weffc++ . 25
Wendif-labels . 36, 63
Werror . 39, 63
Werror-implicit-function-declaration 30
Wfloat-equal . 35
Wformat . 29, 38, 170
Wformat-nonliteral . 30, 171
Wformat-security . 30
Wformat=2 . 30
whatsloaded . 101
whyload . 101
Wimplicit . 30
Wimplicit-function-declaration 30
Wimplicit-int. 30
Wimport . 62
Winline. 39, 189
Wl . 70
Wlarger-than . 36
Wlong-long . 39
Wmain . 31
Wmissing-braces . 31
Wmissing-declarations . 37
Wmissing-format-attribute . 38
Wmissing-noreturn . 37
Wmissing-prototypes . 37
Wmultichar . 38
Wnested-externs . 38
Wno-deprecated . 26
Wno-deprecated-declarations 38
Wno-div-by-zero . 35
Wno-format-extra-args . 30
Wno-format-y2k . 30
Wno-format-zero-length . 30
Wno-import . 29
Wno-long-long. 39
Wno-multichar. 38
Wno-non-template-friend . 26
Wno-pmf-conversions . 26, 251
Wno-protocol . 27
Wnon-virtual-dtor . 25

328 Using the GNU Compiler Collection (GCC)

Wnonnull . 30
Wold-style-cast . 26
Woverloaded-virtual . 26
Wp . 61
Wpacked . 38
Wpadded . 38
Wparentheses . 31
Wpointer-arith . 36, 165
Wredundant-decls . 38
Wreorder . 25
Wreturn-type . 32
Wselector . 27
Wsequence-point . 31
Wshadow . 36
Wsign-compare. 37
Wsign-promo . 27
Wstrict-aliasing . 34
Wstrict-prototypes . 37
Wswitch . 32
Wswitch-enum . 32
Wswitch-switch . 32
Wsystem-headers . 35, 63
Wtraditional . 35, 62
Wtrigraphs . 32, 62

Wundeclared-selector . 27
Wundef . 36, 62
Wuninitialized . 33
Wunknown-pragmas . 34
Wunreachable-code . 38
Wunused . 33
Wunused-function . 32
Wunused-label. 32
Wunused-macros . 62
Wunused-parameter . 32
Wunused-value. 33
Wunused-variable . 33
Wwrite-strings . 37

X
x . 16, 65
Xlinker . 70

Y
Ym . 121
YP . 121

Keyword Index 329

Keyword Index

!
‘!’ in constraint . 197

#
‘#’ in constraint . 198
#pragma . 240
#pragma implementation . 248
#pragma implementation, implied 248
#pragma interface. 248
#pragma, reason for not using 177

$
$. 181

%
‘%’ in constraint . 198
%include . 72
%include noerr . 72
%rename . 72

&
‘&’ in constraint . 197

’
’ . 274

*
‘*’ in constraint . 198

+
‘+’ in constraint . 197

-
‘-lgcc’, use with ‘-nodefaultlibs’ 69
‘-lgcc’, use with ‘-nostdlib’ 69
‘-nodefaultlibs’ and unresolved references 69
‘-nostdlib’ and unresolved references 69

.

.sdata/.sdata2 references (PowerPC) 99

/
// . 180

<
‘<’ in constraint . 195
<? . 245

=
‘=’ in constraint . 197

>
‘>’ in constraint . 195
>? . 245

?
‘?’ in constraint . 197
?: extensions . 159, 160
?: side effect . 160

‘_’ in variables in macros . 158
__builtin_apply . 158
__builtin_apply_args . 157
__builtin_choose_expr . 215
__builtin_constant_p . 216
__builtin_expect . 216
__builtin_frame_address . 212
__builtin_huge_val . 217
__builtin_huge_valf . 217
__builtin_huge_vall . 217
__builtin_inf . 217
__builtin_inff . 217
__builtin_infl . 217
__builtin_isgreater . 214
__builtin_isgreaterequal . 214
__builtin_isless . 214
__builtin_islessequal . 214
__builtin_islessgreater . 214
__builtin_isunordered . 214
__builtin_nan . 217
__builtin_nanf . 218
__builtin_nanl . 218
__builtin_nans . 218
__builtin_nansf . 218
__builtin_nansl . 218
__builtin_prefetch . 216
__builtin_return . 158
__builtin_return_address . 212
__builtin_types_compatible_p 214
__complex__ keyword . 161
__declspec(dllexport) . 176
__declspec(dllimport) . 176
__extension__ . 210
__func__ identifier . 211
__FUNCTION__ identifier . 211
__imag__ keyword. 161
__PRETTY_FUNCTION__ identifier 211
__real__ keyword. 161
__STDC_HOSTED__ . 5

thread . 242
_Complex keyword. 161
_exit . 214
_Exit . 214

330 Using the GNU Compiler Collection (GCC)

0
‘0’ in constraint . 196

A
ABI . 261
abort . 214
abs . 214
accessing volatiles . 245
Ada . 3
address constraints . 196
address of a label . 154
address_operand . 197
alias attribute . 173
aliasing of parameters . 143
aligned attribute . 181, 185
alignment . 181
alloca . 214
alloca vs variable-length arrays 163
alternate keywords . 210
always_inline function attribute 169
AMD x86-64 Options . 107
AMD1 . 5
ANSI C . 5
ANSI C standard . 5
ANSI C89 . 5
ANSI support . 18
ANSI X3.159-1989 . 5
apostrophes . 274
application binary interface . 261
ARC Options . 124
arguments in frame (88k) . 90
ARM [Annotated C++ Reference Manual] 253
ARM options . 84
arrays of length zero . 161
arrays of variable length . 163
arrays, non-lvalue . 165
asm constraints . 195
asm expressions . 190
assembler instructions . 190
assembler names for identifiers 208
assembler syntax, 88k . 91
assembly code, invalid . 285
attribute of types . 185
attribute of variables . 181
attribute syntax . 177
autoincrement/decrement addressing 195
automatic inline for C++ member fns 189
AVR Options . 126

B
Backwards Compatibility . 253
bcmp . 214
binary compatibility . 261
bit shift overflow (88k) . 92
bound pointer to member function 251
bug criteria . 285
bugs . 285
bugs, known . 269
built-in functions . 19, 214
bzero . 214

C
C compilation options . 7
C intermediate output, nonexistent 3
C language extensions . 153
C language, traditional . 20
C standard . 5
C standards . 5
c++ . 17
C++ . 3
C++ comments . 180
C++ compilation options . 7
C++ interface and implementation headers 248
C++ language extensions . 245
C++ member fns, automatically inline 189
C++ misunderstandings . 277
C++ options, command line . 21
C++ pragmas, effect on inlining 249
C++ source file suffixes . 17
C++ static data, declaring and defining 277
C_INCLUDE_PATH . 145
C89 . 5
C90 . 5
C94 . 5
C95 . 5
C99 . 5
C9X . 5
calling functions through the function vector on the

H8/300 processors . 174
case labels in initializers . 166
case ranges . 168
cast to a union . 168
casts as lvalues. 159
cimag . 214
cimagf . 214
cimagl . 214
cleanup attribute . 182
code generation conventions . 139
code, mixed with declarations 168
command options . 7
comments, C++ style . 180
common attribute . 182
comparison of signed and unsigned values, warning

. 37
compiler bugs, reporting . 285
compiler compared to C++ preprocessor 3
compiler options, C++ . 21
compiler options, Objective-C 27
compiler version, specifying . 77
COMPILER_PATH . 145
complex conjugation . 161
complex numbers . 161
compound expressions as lvalues 159
compound literals . 165
computed gotos . 154
conditional expressions as lvalues 159
conditional expressions, extensions 160
conflicting types . 276
conj . 214
conjf . 214
conjl . 214
const applied to function . 169
const function attribute . 170
constants in constraints . 195
constraint modifier characters 197

Keyword Index 331

constraint, matching . 196
constraints, asm . 195
constraints, machine specific 198
constructing calls . 157
constructor expressions . 165
constructor function attribute 172
contributors . 309
core dump . 285
cos . 214
cosf . 214
cosl . 214
CPATH . 145
CPLUS_INCLUDE_PATH . 145
creal . 214
crealf . 214
creall . 214
CRIS Options . 130
cross compiling . 77

D
D30V Options . 129
Darwin options . 100
DBX . 270
deallocating variable length arrays 163
debugging information options 39
debugging, 88k OCS . 90
declaration scope . 274
declarations inside expressions 153
declarations, mixed with code 168
declaring attributes of functions 169
declaring static data in C++ . 277
defining static data in C++ . 277
dependencies for make as output 146
dependencies, make . 63
DEPENDENCIES_OUTPUT . 146
deprecated attribute . 182
deprecated attribute. 172
designated initializers . 166
designator lists . 167
designators . 167
destructor function attribute 172
diagnostic messages . 28
dialect options . 18
digits in constraint . 196
directory options . 71
divide instruction, 88k . 92
dollar signs in identifier names 181
double-word arithmetic . 160
downward funargs . 155

E
‘E’ in constraint . 196
earlyclobber operand . 197
eight bit data on the H8/300 and H8/300H 175
empty structures . 163
environment variables . 144
error messages . 283
escaped newlines . 165
exclamation point . 197
exit . 214
exp . 214
expf . 214

expl . 214
explicit register variables . 208
expressions containing statements 153
expressions, compound, as lvalues 159
expressions, conditional, as lvalues 159
expressions, constructor . 165
extended asm . 190
extensible constraints . 197
extensions, ?: . 159, 160
extensions, C language . 153
extensions, C++ language . 245
external declaration scope . 274

F
‘F’ in constraint . 196
fabs . 214
fabsf . 214
fabsl . 214
fatal signal . 285
FDL, GNU Free Documentation License 301
ffs . 214
file name suffix . 15
file names . 68
flexible array members . 161
float as function value type 274
floating point precision . 56, 277
format function attribute . 170
format_arg function attribute 171
Fortran . 3
forwarding calls . 157
fprintf . 214
fprintf_unlocked . 214
fputs . 214
fputs_unlocked . 214
freestanding environment . 5
freestanding implementation . 5
FRV Options . 134
fscanf, and constant strings 273
function addressability on the M32R/D 175
function attributes . 169
function pointers, arithmetic 165
function prototype declarations 180
function without a prologue/epilogue code 175
function, size of pointer to . 165
functions called via pointer on the RS/6000 and

PowerPC . 174
functions in arbitrary sections 169
functions that are passed arguments in registers on

the 386 . 169, 173
functions that behave like malloc 169
functions that do not pop the argument stack on the

386 . 169
functions that do pop the argument stack on the 386

. 174
functions that have no side effects 169
functions that never return . 169
functions that pop the argument stack on the 386

. 169, 174
functions which do not handle memory bank

switching on 68HC11/68HC12 176
functions which handle memory bank switching . . 176
functions with non-null pointer arguments 169

332 Using the GNU Compiler Collection (GCC)

functions with printf, scanf, strftime or strfmon

style arguments . 169

G
‘g’ in constraint . 196
‘G’ in constraint . 196
g++ . 17
G++ . 3
GCC . 3
GCC command options . 7
GCC_EXEC_PREFIX . 144
generalized lvalues . 159
global offset table . 141
global register after longjmp 209
global register variables . 209
GNAT . 3
goto with computed label . 154
gp-relative references (MIPS) 106
gprof . 41
grouping options . 7

H
‘H’ in constraint . 196
hardware models and configurations, specifying . . . 78
hex floats . 161
hosted environment . 5, 20
hosted implementation. 5
HPPA Options . 112

I
‘i’ in constraint . 195
‘I’ in constraint . 196
i386 Options . 107
IA-64 Options . 128
IBM RS/6000 and PowerPC Options 93
IBM RT options . 102
identifier names, dollar signs in 181
identifiers, names in assembler code 208
identifying source, compiler (88k). 90
imaxabs . 214
implementation-defined behavior, C language 149
implied #pragma implementation 248
incompatibilities of GCC . 273
increment operators . 285
index . 214
indirect calls on ARM . 174
init priority attribute. 251
initializations in expressions . 165
initializers with labeled elements 166
initializers, non-constant . 165
inline automatic for C++ member fns 189
inline functions . 188
inline functions, omission of . 189
inlining and C++ pragmas . 249
installation trouble . 269
integrating function code . 188
Intel 386 Options . 107
interface and implementation headers, C++ 248
intermediate C version, nonexistent 3
interrupt handler functions . 174

interrupt handler functions on the H8/300 and SH
processors . 175

introduction . 1

invalid assembly code . 285

invalid input . 285

invoking g++ . 17

ISO 9899 . 5

ISO C . 5

ISO C standard . 5

ISO C90 . 5

ISO C94 . 5

ISO C95 . 5

ISO C99 . 5

ISO C9X . 5

ISO support . 18

ISO/IEC 9899 . 5

J
Java . 3

java interface attribute . 252

K
keywords, alternate . 210

known causes of trouble . 269

L
labeled elements in initializers 166

labels as values . 154

labs . 214

LANG . 144, 145

language dialect options . 18

large bit shifts (88k) . 92

LC_ALL . 144

LC_CTYPE . 144

LC_MESSAGES . 144

length-zero arrays . 161

Libraries . 68

LIBRARY_PATH. 145

link options . 68

LL integer suffix . 160

llabs . 214

load address instruction . 196

local labels . 154

local variables in macros . 158

local variables, specifying registers 210

locale . 144

locale definition . 145

log . 214

logf . 214

logl . 214

long long data types . 160

longjmp . 209

longjmp incompatibilities . 273

longjmp warnings . 33

lvalues, generalized . 159

Keyword Index 333

M
‘m’ in constraint . 195

M32R/D options . 89

M680x0 options . 78

M68hc1x options . 80

M88k options . 90

machine dependent options . 78

machine specific constraints . 198

macro with variable arguments 164

macros containing asm . 192

macros, inline alternative . 188

macros, local labels . 154

macros, local variables in . 158

macros, statements in expressions 153

macros, types of arguments . 158

make . 63

malloc attribute . 173

matching constraint . 196

maximum operator . 245

MCore options . 127

member fns, automatically inline 189

memcmp . 214

memcpy . 214

memory references in constraints 195

memset . 214

message formatting . 28

messages, warning . 28

messages, warning and error 283

middle-operands, omitted . 160

minimum operator . 245

MIPS options . 102

misunderstandings in C++ . 277

mixed declarations and code 168

mktemp, and constant strings 273

MMIX Options . 132

MN10200 options . 88

MN10300 options . 88

mode attribute . 183

modifiers in constraints . 197

multiple alternative constraints 197

multiprecision arithmetic . 160

N
‘n’ in constraint . 195

names used in assembler code 208

naming convention, implementation headers 248

nested functions . 155

newlines (escaped) . 165

no_instrument_function function attribute. 172

nocommon attribute . 182

noinline function attribute . 169

non-constant initializers . 165

non-static inline function . 189

nonnull function attribute . 171

noreturn function attribute . 169

nothrow function attribute . 170

NS32K options . 125

O
‘o’ in constraint . 195
OBJC_INCLUDE_PATH . 145
Objective-C. 3
Objective-C options, command line 27
OCS (88k) . 90
offsettable address . 195
old-style function definitions 180
omitted middle-operands . 160
open coding . 188
operand constraints, asm . 195
optimize options . 46
options to control diagnostics formatting 28
options to control warnings . 28
options, C++ . 21
options, code generation . 139
options, debugging . 39
options, dialect . 18
options, directory search . 71
options, GCC command . 7
options, grouping . 7
options, linking . 68
options, Objective-C . 27
options, optimization . 46
options, order . 7
options, preprocessor . 61
order of evaluation, side effects 283
order of options . 7
other register constraints . 197
output file option . 16
overloaded virtual fn, warning 26

P
‘p’ in constraint . 196
packed attribute . 183
parameter forward declaration 164
parameters, aliased . 143
PDP-11 Options . 133
PIC . 141
pmf . 251
pointer arguments . 170
pointer to member function . 251
portions of temporary objects, pointers to 278
pragma, extern prefix . 241
pragma, long calls . 240
pragma, long calls off . 240
pragma, longcall . 240
pragma, mark. 241
pragma, no long calls . 240
pragma, options align . 241
pragma, reason for not using 177
pragma, redefine extname . 241
pragma, segment . 241
pragma, unused . 241
pragmas . 240
pragmas in C++, effect on inlining 249
pragmas, interface and implementation 248
pragmas, warning of unknown 34
preprocessing numbers. 275
preprocessing tokens . 275
preprocessor options . 61
printf . 214
printf_unlocked . 214

334 Using the GNU Compiler Collection (GCC)

prof . 41
promotion of formal parameters 180
pure function attribute . 169
push address instruction . 196
putchar . 214
puts . 214

Q
qsort, and global register variables 209
question mark . 197

R
‘r’ in constraint . 195
r0-relative references (88k) . 91
ranges in case statements . 168
read-only strings . 273
register positions in frame (88k) 90
register variable after longjmp 209
registers . 190
registers for local variables . 210
registers in constraints . 195
registers, global allocation . 208
registers, global variables in . 209
regparm attribute . 173
reordering, warning . 25
reporting bugs . 285
rest argument (in macro) . 164
restricted pointers . 246
restricted references . 246
restricted this pointer . 246
rindex . 214
RS/6000 and PowerPC Options 93
RT options . 102
RTTI . 247
run-time options . 139

S
‘s’ in constraint . 196
S/390 and zSeries Options . 129
scanf . 214
scanf, and constant strings . 273
scope of a variable length array 163
scope of declaration . 276
scope of external declarations 274
search path . 71
section function attribute . 172
section variable attribute . 183
sequential consistency on 88k 91
setjmp . 209
setjmp incompatibilities . 273
shared strings . 273
shared variable attribute . 184
side effect in ?: . 160
side effects, macro argument 153
side effects, order of evaluation 283
signal handler functions on the AVR processors . . 175
signed and unsigned values, comparison warning . . 37
simple constraints . 195
sin . 214
sinf . 214
sinl . 214

sizeof . 158
smaller data references . 90
smaller data references (88k) . 91
smaller data references (MIPS) 106
smaller data references (PowerPC) 99
snprintf . 214
SPARC options . 81
Spec Files . 72
specified registers . 208
specifying compiler version and target machine . . . 77
specifying hardware config . 78
specifying machine version . 77
specifying registers for local variables 210
sprintf . 214
sqrt . 214
sqrtf . 214
sqrtl . 214
sscanf . 214
sscanf, and constant strings 273
statements inside expressions. 153
static data in C++, declaring and defining 277
‘stdarg.h’ and RT PC . 102
strcat . 214
strchr . 214
strcmp . 214
strcpy . 214
strcspn . 214
string constants . 273
strlen . 214
strncat . 214
strncmp . 214
strncpy . 214
strpbrk . 214
strrchr . 214
strspn . 214
strstr . 214
struct . 241
structure passing (88k) . 92
structures . 274
structures, constructor expression 165
submodel options . 78
subscripting . 165
subscripting and function values 165
suffixes for C++ source . 17
SUNPRO_DEPENDENCIES . 146
suppressing warnings . 28
surprises in C++ . 277
SVr4 . 91
syntax checking . 28
system headers, warnings from 35

T
target machine, specifying . 77
target options . 77
TC1 . 5
TC2 . 5
Technical Corrigenda . 5
Technical Corrigendum 1 . 5
Technical Corrigendum 2 . 5
template instantiation . 249
temporaries, lifetime of . 278
Thread-Local Storage . 242
thunks . 155

Keyword Index 335

tiny data section on the H8/300H 175
tls . 242
tls_model attribute . 184
TMPDIR . 144
TMS320C3x/C4x Options . 121
traditional C language . 20
treelang . 3, 6
type alignment . 181
type attributes . 185
type info . 247
typedef names as function parameters 274
typeof . 158

U
ULL integer suffix . 160
Ultrix calling convention . 272
undefined behavior . 285
undefined function value . 285
underscores in variables in macros 158
underscores, avoiding (88k) . 90
union . 241
union, casting to a . 168
unions . 274
unknown pragmas, warning . 34
unresolved references and ‘-nodefaultlibs’ 69
unresolved references and ‘-nostdlib’ 69
unused attribute. 172
used attribute. 172

V
‘V’ in constraint . 195
V850 Options . 123
vague linkage . 247
value after longjmp . 209
variable addressability on the M32R/D 185
variable alignment . 181
variable attributes . 181
variable number of arguments 164
variable-length array scope . 163
variable-length arrays . 163
variables in specified registers 208
variables, local, in macros . 158

variadic macros . 164
VAX calling convention . 272
VAX options . 81
visibility attribute . 173
VLAs . 163
void pointers, arithmetic . 165
void, size of pointer to . 165
volatile access . 245
volatile applied to function 169
volatile read . 245
volatile write . 245
vprintf . 214
vscanf . 214
vsnprintf . 214
vsprintf . 214
vsscanf . 214
vtable . 247

W
warning for comparison of signed and unsigned values

. 37
warning for overloaded virtual fn 26
warning for reordering of member initializers 25
warning for unknown pragmas 34
warning messages . 28
warnings from system headers 35
warnings vs errors . 283
weak attribute . 173
whitespace . 274

X
‘X’ in constraint . 196
X3.159-1989 . 5
x86-64 Options . 107
Xstormy16 Options . 134
Xtensa Options . 136

Z
zero division on 88k . 91
zero-length arrays . 161
zero-size structures . 163

336 Using the GNU Compiler Collection (GCC)

	Introduction
	Compile C, C++, Objective-C, Ada, Fortran, Java, or treelang
	Language Standards Supported by GCC
	GCC Command Options
	Option Summary
	Options Controlling the Kind of Output
	Compiling C++ Programs
	Options Controlling C Dialect
	Options Controlling C++ Dialect
	Options Controlling Objective-C Dialect
	Options to Control Diagnostic Messages Formatting
	Options to Request or Suppress Warnings
	Options for Debugging Your Program or GCC
	Options That Control Optimization
	Options Controlling the Preprocessor
	Passing Options to the Assembler
	Options for Linking
	Options for Directory Search
	Specifying subprocesses and the switches to pass to them
	Specifying Target Machine and Compiler Version
	Hardware Models and Configurations
	M680x0 Options
	M68hc1x Options
	VAX Options
	SPARC Options
	ARM Options
	MN10200 Options
	MN10300 Options
	M32R/D Options
	M88K Options
	IBM RS/6000 and PowerPC Options
	Darwin Options
	IBM RT Options
	MIPS Options
	Intel 386 and AMD x86-64 Options
	HPPA Options
	Intel 960 Options
	DEC Alpha Options
	DEC Alpha/VMS Options
	H8/300 Options
	SH Options
	Options for System V
	TMS320C3x/C4x Options
	V850 Options
	ARC Options
	NS32K Options
	AVR Options
	MCore Options
	IA-64 Options
	D30V Options
	S/390 and zSeries Options
	CRIS Options
	MMIX Options
	PDP-11 Options
	Xstormy16 Options
	FRV Options
	Xtensa Options

	Options for Code Generation Conventions
	Environment Variables Affecting GCC
	Running Protoize

	C Implementation-defined behavior
	Translation
	Environment
	Identifiers
	Characters
	Integers
	Floating point
	Arrays and pointers
	Hints
	Structures, unions, enumerations, and bit-fields
	Qualifiers
	Preprocessing directives
	Library functions
	Architecture
	Locale-specific behavior

	Extensions to the C Language Family
	Statements and Declarations in Expressions
	Locally Declared Labels
	Labels as Values
	Nested Functions
	Constructing Function Calls
	Referring to a Type with typeof
	Generalized Lvalues
	Conditionals with Omitted Operands
	Double-Word Integers
	Complex Numbers
	Hex Floats
	Arrays of Length Zero
	Structures With No Members
	Arrays of Variable Length
	Macros with a Variable Number of Arguments.
	Slightly Looser Rules for Escaped Newlines
	Non-Lvalue Arrays May Have Subscripts
	Arithmetic on void- and Function-Pointers
	Non-Constant Initializers
	Compound Literals
	Designated Initializers
	Case Ranges
	Cast to a Union Type
	Mixed Declarations and Code
	Declaring Attributes of Functions
	Attribute Syntax
	Prototypes and Old-Style Function Definitions
	C++ Style Comments
	Dollar Signs in Identifier Names
	The Character ESC in Constants
	Inquiring on Alignment of Types or Variables
	Specifying Attributes of Variables
	Specifying Attributes of Types
	An Inline Function is As Fast As a Macro
	Assembler Instructions with C Expression Operands
	i386 floating point asm operands

	Constraints for asm Operands
	Simple Constraints
	Multiple Alternative Constraints
	Constraint Modifier Characters
	Constraints for Particular Machines

	Controlling Names Used in Assembler Code
	Variables in Specified Registers
	Defining Global Register Variables
	Specifying Registers for Local Variables

	Alternate Keywords
	Incomplete enum Types
	Function Names as Strings
	Getting the Return or Frame Address of a Function
	Using vector instructions through built-in functions
	Other built-in functions provided by GCC
	Built-in Functions Specific to Particular Target Machines
	Alpha Built-in Functions
	X86 Built-in Functions
	PowerPC AltiVec Built-in Functions

	Pragmas Accepted by GCC
	ARM Pragmas
	RS/6000 and PowerPC Pragmas
	Darwin Pragmas
	Solaris Pragmas
	Tru64 Pragmas

	Unnamed struct/union fields within structs/unions.
	Thread-Local Storage
	ISO/IEC 9899:1999 Edits for Thread-Local Storage
	ISO/IEC 14882:1998 Edits for Thread-Local Storage

	Extensions to the C++ Language
	Minimum and Maximum Operators in C++
	When is a Volatile Object Accessed?
	Restricting Pointer Aliasing
	Vague Linkage
	Declarations and Definitions in One Header
	Where's the Template?
	Extracting the function pointer from a bound pointer to member function
	C++-Specific Variable, Function, and Type Attributes
	Java Exceptions
	Deprecated Features
	Backwards Compatibility

	GNU Objective-C runtime features
	+load: Executing code before main
	What you can and what you cannot do in +load

	Type encoding
	Garbage Collection
	Constant string objects
	compatibility_alias

	Binary Compatibility
	gcov---a Test Coverage Program
	Introduction to gcov
	Invoking gcov
	Using gcov with GCC Optimization
	Brief description of gcov data files

	Known Causes of Trouble with GCC
	Actual Bugs We Haven't Fixed Yet
	Cross-Compiler Problems
	Interoperation
	Problems Compiling Certain Programs
	Incompatibilities of GCC
	Fixed Header Files
	Standard Libraries
	Disappointments and Misunderstandings
	Common Misunderstandings with GNU C++
	Declare and Define Static Members
	Temporaries May Vanish Before You Expect
	Implicit Copy-Assignment for Virtual Bases

	Caveats of using protoize
	Certain Changes We Don't Want to Make
	Warning Messages and Error Messages

	Reporting Bugs
	Have You Found a Bug?
	How and where to Report Bugs

	How To Get Help with GCC
	Contributing to GCC Development
	Funding Free Software
	The GNU Project and GNU/Linux
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING,@hfil @penalty -@@M @hbox {}@ignorespaces DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	Contributors to GCC
	Option Index
	Keyword Index

