
TEXFOT(1) User Contributed Perl Documentation TEXFOT(1)

NAME
texfot - run TeX, filtering online transcript for interesting messages

SYNOPSIS
texfot [option]... texcmd [texarg...]

DESCRIPTION
texfot invokes texcmd with the given texarg arguments, filtering the online output for ``interesting''
messages. Its exit value is that of texcmd. Examples:

Sample basic invocation:
texfot pdflatex file.tex

Ordinarily the full output is copied to /tmp/fot.$UID before
filtering, but that can be omitted, or the filename changed:
texfot --tee=/dev/null lualatex file.tex

Example of more complex engine invocation:
texfot xelatex --recorder '\nonstopmode\input file'

Here is an example of what the output looks like (in its entirety) on an error-free run:

/path/to/texfot: invoking: pdflatex hello.ltx
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022) (preloaded format=pdflatex)
Output written on hello.pdf (1 page, 94415 bytes).

Aside from its own options, described below, texfot just runs the given command with the given
arguments (same approach to command line syntax as env, nice, timeout, etc.). Thus, texfot works
with any engine and any command line options.

texfot does not look at the log file or any other possible output file(s); it only looks at the standard output
and standard error from the command. stdout is processed first, then stderr. texfot writes all accepted
lines to its stdout.

The messages shown are intended to be those which likely need action by the author: error messages,
overfull and underfull boxes, undefined citations, missing characters from fonts, etc.

FLOW OF OPERATION
Here is the order in which lines of output are checked:

1. If the ``next line'' needs to be printed (see below), print it.

2. Otherwise, if the line matches any user-supplied list of regexps to accept (given with --accept, see
below), in that order, print it.

3. Otherwise, if the line matches the built-in list of regexps to ignore, or any user-supplied list of
regexps to ignore (given with --ignore, see below), in that order, ignore it.

4. Otherwise, if the line matches the list of regexps for which the next line (two lines in all) should be
shown, show this line and set the ``next line'' flag for the next time around the loop. Examples are the
common ! and filename:lineno: error messages, which are generally followed by a line with
specific detail about the error.

5. Otherwise, if the line matches the list of regexps to show, show it.

6. Otherwise, the default: if the line came from stdout, ignore it; if the line came from stderr, print it (to
stdout), with the prefix [stderr] . This distinction is made because TeX engines write relatively
few messages to stderr, and it's likely that any such should be considered.

Once a particular check matches, the program moves on to process the next line.

texfot matches exclusively line-by-line; however, TeX itself folds output lines, typically at column 79.
This means matches might fail because the text being matched was split over two lines. To work around
this, you can effectively turn off TeX's folding by setting the max_print_line parameter to a large
number, either in the environment or on the command:

perl v5.42.0 2026-01-05 1

TEXFOT(1) User Contributed Perl Documentation TEXFOT(1)

When errors are missed due to TeX's folding of lines:
texfot pdftex --cnf-line max_print_line=999 file.tex

Equivalently:
env max_print_line=999 texfot pdftex file.tex

Don't hesitate to peruse the source to the script, which is essentially a straightforward loop matching against
the different lists as above. You can see the exact regexps being matched in the different categories in the
source.

Incidentally, although nothing in this basic operation is specific to TeX engines, all the regular expressions
included in the program are specific to TeX. So in practice the program isn't useful except with TeX
engines, although it would be easy enough to adapt it (if there was anything else as verbose as TeX to make
that useful).

OPTIONS
The following are the options to texfot itself (not the TeX engine being invoked; consult the engine
documentation or --help output for that).

The first non-option terminates texfot's option parsing, and the remainder of the command line is
invoked as the TeX command, without further parsing. For example, texfot --debug tex --debug
will output debugging information from both texfot and tex. TeX engines, unlike many standard
programs, require that options be specified before the input filename or text.

Options may start with either - or --, and may be unambiguously abbreviated. It is best to use the full
option name in scripts, though, to avoid possible collisions with new options in the future.

--accept regexp
Accept lines in the TeX output matching (Perl) regexp. Can be repeated. This list is checked first, so
any and all matches will be shown, regardless of other options. These regexps are not automatically
anchored (or otherwise altered), simply used as-is.

--debug
--no-debug

Output (or not) what the program is doing to standard error; off by default.

--ignore regexp
Ignore lines in the TeX output matching (Perl) regexp. Can be repeated. Adds to the default set of
ignore regexps rather than replacing. Like the acceptance regexps, these are not automatically
anchored (or otherwise altered).

--interactive
--no-interactive

By default, standard input to the TeX process is closed so that TeX's interactive mode (waiting for
input upon error, the * prompt, etc.) is never entered. Giving --interactive allows interaction to
happen.

--quiet
--no-quiet

By default, the TeX command being invoked is reported on standard output; --quiet omits that
reporting. To get a completely silent run, redirect standard output: texfot ... >/dev/null.
(The only messages to standard error should be errors from texfot itself, so it shouldn't be necessary
to redirect that, but of course that could be done as well.)

--stderr
--no-stderr

The default is for texfot to report everything written to stderr by the TeX command (on stdout).
--no-stderr omits that reporting. (Some programs, dvisvgm is one, can be rather verbose on
stderr.)

perl v5.42.0 2026-01-05 2

TEXFOT(1) User Contributed Perl Documentation TEXFOT(1)

--tee file
By default, the output being filtered is tee-ed, before filtering, to make it easy to check the full
output in case of problems.

The default file is $TMPDIR/fot.uid; if TMPDIR is not set, TMP is used if set; if neither is set, the
default directory is /tmp. For example: /tmp/fot.1001. The uid suffix is the effective userid of
the process, appended for basic avoidance of collisions between different users on the same system.

This option allows specifying a different file. Use --tee /dev/null to discard the original output.

--version
Output version information and exit successfully.

--help
Display this help and exit successfully.

RATIONALE
I wrote this because, in my work as a TUGboat editor (<https://tug.org/TUGboat>, article submissions
always welcome!), I run and rerun many documents, many times each. It was easy to lose warnings I
needed to see in the mass of unvarying and uninteresting output from TeX, such as style files being read and
fonts being used. I wanted to see all and only those messages which needed some action by me.

I found some other programs of a similar nature, the LaTeX package silence, and plenty of other
(La)TeX wrappers, but it seemed none of them did what I wanted. Either they read the log file (I wanted to
look at only the online output), or they output more, or less, than I wanted, or they required invoking TeX
differently (I wanted to keep my build process exactly the same, most critically the TeX invocation, which
can get complicated). Hence I wrote this little script.

Here are some keywords if you want to explore other options: texloganalyser, pydflatex, logfilter, latexmk,
rubber, arara, and searching for log at <https://ctan.org/search>.

texfot is written in Perl, and runs on Unix. It may work on Windows if Perl and other software is
installed, but I don't use Windows and don't support texfot there.

The name comes from the trip.fot and trap.fot files that are part of Knuth's trip and trap torture
tests, which record the online output from the programs. I am not sure what "fot" stands for in trip and trap,
but I can pretend that it stands for "filter online transcript" in the present case :).

AUTHORS AND COPYRIGHT
This script and its documentation were written by Karl Berry and both are released to the public domain.
Email karl@freefriends.org with bug reports. It has no home page beyond the package page on
CTAN: <https://ctan.org/pkg/texfot>.

$Id: texfot,v 1.54 2026/01/05 17:14:08 karl Exp $

perl v5.42.0 2026-01-05 3

