
yquant.sty package documentation
Typesetting quantum circuits in a human-readable language

Benjamin Desef

January 3, 2026

This manual introduces yquant, a LATEX-only package that outputs
quantum circuits. They are entered using a human-readable language
that, even from the source code, allows for a fluent understanding of
the logic that underlies the circuit. yquant internally builds on TikZ
and can be easily combined with arbitrary LATEX code. Almost one
hundred pages of examples complement the formal manual.

1

Contents

1 Introduction 5
1.1 How to read the manual . 5
1.2 Installation . 5
1.3 Purpose of yquant, alternatives 6
1.4 License . 7

2 Basic elements of yquant 8
2.1 General usage . 8
2.2 Starred vs. unstarred environment 9
2.3 Formal syntax . 10
2.4 Registers . 11
2.5 Arguments . 14
2.6 Controls . 15
2.7 Highlighting parts of a circuit . 15
2.8 Importing circuit from files . 32
2.9 Defining own gates . 33
2.10 The flow of time: horizontal and vertical layout 36

3 Configuration 37
3.1 Circuit layout . 37
3.2 Register creation . 39
3.3 Register outputs . 42
3.4 General styling . 42
3.5 Styles for operators . 48

4 Doing the impossible 54
4.1 Mixing yquant and TikZ code . 54
4.2 Accessing gates in TikZ . 54
4.3 Shapes and the drawing pipeline 55
4.4 Overwriting the height and depth calculation 57

5 Reference: Gates and operations 60
5.1 addstyle . 60
5.2 align . 60
5.3 barrier . 60
5.4 box . 61
5.5 cbit . 61
5.6 correlate . 61

2

5.7 cnot . 61
5.8 discard . 61
5.9 dmeter . 62
5.10 h . 62
5.11 hspace . 62
5.12 init . 63
5.13 inspect . 63
5.14 iswap . 64
5.15 measure . 64
5.16 nobit . 65
5.17 not . 65
5.18 output . 65
5.19 phase . 66
5.20 qubit . 66
5.21 qubits . 67
5.22 setstyle . 67
5.23 settype . 68
5.24 setwire . 68
5.25 slash . 68
5.26 subcircuit . 69
5.27 swap . 70
5.28 text . 70
5.29 x . 70
5.30 xx . 71
5.31 y . 71
5.32 z . 71
5.33 zz . 71

6 Examples 72
6.1 qasm documentation . 72
6.2 qcircuit documentation . 83
6.3 quantikz documentation . 98
6.4 qpic documentation . 121

7 Foreign language support and extensions 162
7.1 groups . 162
7.2 qasm . 168

8 Integration with other packages 174
8.1 TikZ . 175

3

8.2 beamer . 175

9 Changelog 178

4

1 Introduction

This document outlines the scope and usage of the yquant package. It contains
both a reference and a huge number of examples. yquant is a package that makes
typesetting quantum circuits easy; the package is available on CTAN. This beta
version 0.9 should be stable and interfaces are not very likely to change in an
incompatible way in the future. Sometimes, backwards-incompatible changes are
required or advisable, in which case a compatibility setting will allow to revert
back to the old behavior (rather, to maximize compatibility, this is an opt-in setting:
unless you choose the new behavior, you will get the old one). Please do report all
issues and desirable additions on GitHub.

1.1 How to read themanual

The probably fastest way to start using yquant is by just scanning through the
examples in section 6. A more formal description of the yquant grammar and its
fundamental concepts can be found in section 2. If your desire is to change the
appearance of yquant elements, use the configuration reference in section 3. The
full list of all available gates is provided in section 5. Finally, you may find that
yquant almost does what you want, but there is some final tweak that you cannot
achieve…. Then, have a look at section 4 (or section 1.3).

1.2 Installation

The recommended way of installation is through CTAN. A direct installation from
the Git repository to obtain the latest additions and features is be possible by just
cloning it to a path visible to your TEX compiler. For example, you may put the
source files in the same directory as your document (if you just want to give a
try), or you may extract them to tex/latex/yquant in your local texmf (followed
by an update of the file name database). While the repository may contain new
additions, they are not thoroughly tested until they end up on CTAN; features that
are not documented in this manual are entirely unreliable.

The CTAN repository reflects the most current version tag on Git; the Releases
section on GitHub additionally provides a single-file version of the main package,
which can for example conveniently be included in arXiv submissions. Note that
the arXiv currently provides yquant 0.7.4 out-of-the-box.

5

https://github.com/projekter/yquant/issues
https://github.com/projekter/yquant/releases

1.3 Purpose of yquant, alternatives

yquant is the acronym for “yet another quantum circuit package.” This highlights
the fact that nothing that this package provides cannot be achieved by other means.
In particular, there are at least the following methods to typeset quantum circuits
in TEX.

• Use some external program to draw them and include the output via
\includegraphics.

• Use either TEX’s own drawing capabilities (the picture environment) or
other drawing packages such as TikZ or pstricks.

• Use a package specifically designed to draw quantum circuits (if you feel
some other package should be mentioned here, please file an issue):

– qasm is probably the first of them (in terms of age). It was developed
to typeset the circuits found in Nielsen and Chuang’s famous Quan-
tum Computation and Quantum Information book. qasm consists of
a Python 2 script (qasm2circ) that reads a quantum circuit written
in a very intuitive language: declare names for your qubits, perform
gates on them in each line. qasm2circ converts those circuits into TEX
files that internally make use of the xy package to display the output.
Consequently, the user is restricted to the set of features that qasm
directly offers (which is small). Changes to the output, while possible,
will be overwritten if qasm2circ is run again. qasm output often looks
sub-optimal do to the fact that, e.g., rectangles are made up of four
lines that do not properly connect and give a crumbly general feeling.

Note that since version 0.3, yquant understands qasm syntax, see
section 7.2.

Maintenance status: last update of qasm in 2005. Also, xy was last
updated in 2013, and the script is not compatible out-of-the-box with
Python 3, though an automatic conversion should work.

– qcircuit is probably the most-widely used package. It provides com-
mands that make it much easier to create quantum circuits using the xy
package. Its syntax therefore is grid-oriented; inferring what a circuit
does or locating a gate in the code can be tough. This is particularly
true for multi-qubit gates. Additionally, the \xymatrix syntax is also
somewhat cryptic. qcircuit provides some flexibility within the limits
of xy as to configuring the output.

6

Maintenance status: active (GitHub); but remember this is xy based,
with last update in 2013.

– quantikz is a relatively recent package that, following the same grid-
based approach as qcircuit, instead builds on TikZ as a backend. As
a consequence, it provides the full flexibility of customization that TikZ
offers, where hardly anything cannot be done. It also reduces burdens
of the xy syntax. However, the disadvantages of the grid-based syntax
still remain.

Maintenance status: last update in 2023; the underlying TikZ is actively
maintained again by now.

– qpic follows the approach of qasm: It makes use of an external Python
program that reads the quantum circuits in an own language and
converts them into TikZ commands. The language qpic follows is much
more powerful than qasm’s. The disadvantage that modifications in the
output code will not remain after running the Python script again is
mitigated by the possibility to define own TEXmacros. Being an external
program, qpic’s intrinsic set of features (including, e.g., vertically
set circuits) are huge. However, the language qpic uses cannot be
understood without a detailed study of the manual, it appears to have
been designed with the aim to minimize the length of command names.
A disadvantage of external programs is that the amount of space gates
need is not accessible by the script; hence, manual intervention may
be required.

Maintenance status: last update in 2023; the underlying TikZ is actively
maintained, and the script is compatible with Python 3.

1.4 License

This work may be distributed and/or modified under the conditions of the LATEX
Project Public License, either version 1.3c of this license or (at your option) any
later version. The latest version of this license is in

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of LaTeX version 2005/12/01
or later.

7

https://github.com/CQuIC/qcircuit
http://www.latex-project.org/lppl.txt

2 Basic elements of yquant

yquant, as some of the aforementioned packages, builds on TikZ. Its basic syntax
is similar to pgfplots: Start a tikzpicture environment (perhaps passing some
options); inside, start a yquant environment.

Inside the yquant environment, TEXwill now understand the yquant language—
so yquant falls into the same category as qasm and qpic, providing a human-
readable language for the specification of the circuit that is not fixed to the actual
layout.

However, yquant is a TEX-only package (actually, LATEX2𝜀, but not LATEX3) that
requires no external script to run—so it also falls into the same category as
qcircuit and quantikz.

Since it runs entirely within TEX, you can at any time interject yquant code
with arbitrary TEX or TikZ code (though if it is “too arbitrary,” you may need to
restart the yquant interpreter).

2.1 General usage

% preamble: \usepackage[compat=<version>]{yquant}
\begin{tikzpicture}% tikz options possible

% tikz commands go here
\begin{yquant}% yquant options possible. Watch the newlines!

% yquant and tikz commands go here
\end{yquant}
% tikz commands go here

\end{tikzpicture}

Note that yquant depends on etoolbox, TikZ, trimspaces, and xkeyval. Ad-
ditionally, it requires a moderately recent version of LATEX2𝜀, using either LuaLATEX;
or (untested) pdfLATEX or X ELATEX.

Optional arguments

The optional arguments for the yquant environment have to appear on the
same line as the environment itself. If you want to put the arguments into a
new line, it is crucial to mask the line break by putting a comment symbol
after the environment: \begin{yquant}% . Without this comment, yquant will
detect your line break (this is one of the few places in TEX where line breaks
and spaces are different) and assume that the expression in square brackets
instead provides arguments for the following operation!
Finally note that in (non-fragile) beamer frames, this discrimination between

8

spaces and new lines does not work; the optional arguments will always be
counted for the environment, not for the gate. In this case, you can either
declare the frame as fragile or (recommended) introduce a blank line between
the environment and the options for the first gate.

Compatibility mode

Sometimes, continued development shows that certain choices of interfaces,
configuration, or behavior are less ideal than originally thought. In other cases,
bugs are detected and fixed. Both may lead to a change in the look of circuits
developed with a previous version of yquant or even—though this should
rarely, if ever, happen, and should be filed as a bug—prevent compilation in
the new version.
For this reason, yquant offers a compatibility key that is highly recommended to
be specified as a package option. This allows certain features that are expected
to break old layout or functionality to revert to their previous behavior. Every
feature affected by the compat key is documented in this manual. Once a
compatibility version is selected in a document, it cannot be changed any
more. Compatibility versions will include the major and minor, but not the
patch level version number (though not every major or minor version will
necessarily introduce new compatibility versions). Bugs that clearly violated
behavior described in this manual will be fixed without a possibility to revert
back. Changes that are not supposed to result in a (more than marginally)
different result will not be included in the compatibility layer. If you find this
to be wrong in a particular case, please file a bug report.
When starting a new document, it is recommended to leave out the compatibil-
ity key at first compilation. yquant will then issue a warning from which you
can infer the recommended setting, corresponding to the current version. You
should then pass the appropriate version to the \usepackage command. For
example, this manual corresponds to \usepackage[compat=0.8]{yquant}.
Allowed values for compat are newest (discouraged), which equals 0.8, 0.6,
0.4, and 0.3 (default).

2.2 Starred vs. unstarred environment

You may choose to use either the yquant or the yquant* environment. The former
one requires you to define all your registers before you use them (though you may
decide to define a register after some operations on different registers, but before
its first usage).

9

The starred form additionally supports the use of undeclared registers: it basi-
cally declares a registers upon its first usage. This will always be a qubit register;
but if you use the corresponding attribute and the first usage is an init command,
you may overwrite this.

Subcircuits always use the unstarred form.
Additionally, if you refer to the index 𝑖 of a vector register of length 𝐿 < 𝑖, this

register will automatically be enlarged to 𝑖 ≔ 𝐿. It is also possible to convert a
scalar register into a vector register in this manner. To enlarge a register in the
unstarred environment, you must precede the number of registers to be added
in the second declaration by a plus sign. Note that in this manner, you may even
create discontiguous vectors.

This might be a good point to proceed to the examples section 6.

2.3 Formal syntax

Every yquant command has the same structure (described here in EBNF syntax):

Command = { Arguments }, ?command?, [Value], [RegisterList], Controls,
";";↪

Arguments = "[", ?pgfkeys?, "]";
Value = "{", ?TeX code?, "}";
Controls = ["|", [RegisterSingleList]], ["~", [RegisterSingleList]];

RegisterList = (RegisterSingle | RegisterMulti), [",", RegisterList];
RegisterSingleList = RegisterSingle, [",", RegisterSingleList];

RegisterSingle = RegisterSingleNoRange | RegisterRange;
RegisterSingleNoRange = ?name?, ["[", IndexMultiList, "]"];
RegisterMulti = "(", (RegisterMultiNoRange | ["*"], RegisterRange), ")";
RegisterMultiNoRange = ["*"], ?name?, ["[", IndexSingleMainList, "]"];
RegisterRange = [RegisterUnique], "-", [RegisterUnique];
RegisterUnique = ?name?, ["[", ?number?, "]"];

IndexMultiList = IndexMulti, [",", IndexMultiList];
IndexSingleList = IndexSingle, [",", IndexSingleList];
IndexSingleMainList = ["*"], IndexSingle, [",", IndexSingleMainList];
IndexMulti = IndexSingle | ("(", IndexSingle, ")");
IndexSingle = ?number? | ([?number?], "-", [?number?]);

Note that yquant is quite tolerant with respect to whitespaces. Virtually every
comma in the EBNF notation may consist of an arbitrary (including zero) number
of whitespaces. Not all combinations that can be constructed by this grammar
are actually allowed semantically; but it would make the grammar too verbose to
spell this out in detail. Deviations are noted in this manual.

10

Valid values for ?command? (case-insensitive) are documented in a section 5.
We use ?pgfkeys? to describe any valid content passed to the \pgfkeys macro
(rather, \yquantset is invoked with some subtleties); and by ?name? we denote
any valid register name. Register names must not contain any of the control literals
used before (semicolon, comma, parentheses, square brackets, dash, pipe, tilde,
beginning star); and you should avoid using special TEX characters. Note that for
performance reasons, yquant does not check whether a register name is valid or
not, but expect to either see unintended output or not-so-helpful error messages
if you choose an invalid name. ?number? is a decimal integer larger or equal to
zero (in the context of register creation, strictly larger; in this context, it may also
contain a leading "+").

2.4 Registers

Every quantum circuit is structured by means of registers. A register has a type
that specifies how its wire is drawn, and that may even change during its lifetime.
At the moment, yquant supports four types:

1. qubit is the most common type, used for a quantum register. It corresponds
to a single line.

2. cbit is a classical register, which can be either declared from the beginning
or arises by using measurements. It corresponds to a double line.

3. qubits is a “quantum bundle,” i.e., a bunch of quantum registers that are
always addressed in a group as a single register. Operations between bundles
of the same length should be interpreted as transversal. It corresponds to a
triple line. An alternative (and more common) representation is to use the
qubit type and a slash gate at its very beginning.

4. nobit is the most obscure type, corresponding to a non-existing wire. Mostly,
this register type arises by using the discard command. However, it can
also be directly declared, which on rare occasions might be necessary (its
type can then be changed by means of an init or setwire pseudo-gate). If
you want to declare a register only at a certain horizontal position in the
circuit, consider using the [after] argument instead.

Registers must be declared before they can be used (though in the yquant*
environment, this declaration may be implicit, creating a qubit register).

Registers can have a vector character, i.e., not only a name, but also an index
(or, in the declaration, a length). The index (zero-based) or length is specified

11

in square brackets following the name, which closely mimics the OpenQASM
language.

Vector registers may be non-contiguous: Whenever you create a bunch of reg-
isters, it is put at the bottom of the circuit. If you later on again create registers
of the same name—either implicitly in the yquant* environment, or explicitly
by preceding the length of the vectors entries to be added by a plus, as in qubit
a[+3];—they will be put to what is now the bottom of the circuit, even if some
other registers are interspersed.

Registers are referenced—i.e., used in operations—by their name and index.
If the latter is omitted, all indices of the register are targeted. Multiple registers
can be referenced by joining their names in a comma-separated list, or by means
of a range specifier: give the name of the first (topmost), a dash, and the last
(bottom-most) register. Both are inclusive. In a range specifier, omitting the start
name means that the range begins at the first known register; omitting the end
name means that the range ends at the last known (at the moment of its use)
register. Omitting both indicates a range over all known registers.

It is also possible to use comma-separated lists and ranges within the indices
themselves, so that, e.g., a[0, 2, 5-], b[-2] will target the zeroth and second
index of a; the remaining indices of a starting from five; and the first three indices
of b. However, if you use an outer range (i.e., a range between indices of registers
with different names), the initial and final register of the range must be unique,
i.e., either you omit the index (targeting the first or last register with the given
name) or specify a single one.

Ranges and discontiguous registers

Assume a configuration in which the vector register a begins with one qubit,
then the single register b follows, and after that a is continued with another
qubit.
The range a-b will target a[0] and b[0], but not a[1]. As a is used as the
initial register in the range without an explicit index specification, yquant
automatically translates this into a[0], while b, being used as the final register,
is automatically translated into the last register of name b (which here happens
to be b[0]). Ranges between different register names (outer ranges) are visual
ranges, i.e., they refer to the top-to-bottom order that is visible. Consequently,
the register a[1] is left out since it is visually below the others.
Likewise, the range b-a will target b[0] and a[1].
Ranges within indices are logical ranges. Hence, a, a[-], a[0-], a[-1], and
a[0-1] are all equivalent: they all refer to the registers a[0] and a[1], but
never to b, regardless of any visual position.

12

All that was said so far refers to the operation being carried out on each of
the registers individually, i.e., producing several copies of the operation. This is
different from using the operation multiple times on the individual single registers
only with regard to the horizontal positioning: if specified as a register list with one
operation, all copies of the operation will be aligned at the same horizontal middle
axis (for gates with the same width on each register, this is the same as issuing an
align command before performing the operations individually).

It is forbidden (in the sense of “not useful and giving unexpected output,”
but yquant does not check for this) to list the same register multiple times
(explicitly or via ranges) in one operation.

Instead of copies of single-register operations, one might want to carry out a
multi-register operation. In this case, the desired list of registers (comma separated,
range, or both) must be surrounded by parentheses. It is possible to mix single-
and multi-register operations arbitrarily. In an index list, you may also choose to
surround only certain indices with parenthesis, provided the whole register is not
already a multi-register.

Note that some gates, such as the swap gate, always require (semantically,
not grammatically) multi-register operations. The number of constituents is
not stipulated; while a swap gate with more than two targets is no longer
well-defined, other registers such as zzmay still be useful. yquant will prevent
you from using a gate in a multi-qubit setting when it may only be used for
single registers.

Typically, multi-register operations should only be carried out on adjacent registers—
but sometimes, one might want to carry out a multi-qubit operation on a visually
discontiguous set of registers (which, due to a particular quantum computer
topology, might even be physically feasible). yquant supports these discontiguous
operations explicitly. It will draw a main part of the gate at the first contiguous
slice of registers in the target list—you may select another register for this part
by preceding the name or index with a star (which, contrary to the simplified
grammar, may only occur once in a target specification). All other contiguous slices
of target registers will be drawn in a subordinate style for this gate. Finally, all
slices will be connected by a single vertical line with the style /yquant/every
multi line. Subcircuits will always span the full region from the first to the last
register specified in a multi-qubit gate. This is due to the fact that they may contain
arbitrary ancilla registers which may be positioned somewhere in between the
parts that actually constitute the subcircuit—surrounding this with a scattered set
of connected boxes would look quite unpleasant.

13

Discontiguous targets and control lines

A control line extends from the very first to the very last affected register in
an operation. A sub-gate line that is used for discontiguous registers will only
span the range of a multi-register. This distinction becomes crucial if you want
to carry out a controlled operation on more than one multi-register, where at
least one is discontiguous. Without the controls, the separate multi-registers
could be identified, since no connecting vertical line extends between them
(unless, which you should strictly avoid, they are intertwined). However, with
the controls, the control line will make it hard (for some gates, impossible) to
visually distinguish the connected parts. yquant will kindly provide a warning
in this case. You may choose to suppress this warning using the boolean key
/yquant/operator/multi warning.

There is no established style for discontiguous gates. Note that at the moment,
main and subordinate style coincide for all gates except for the measure
gate with a value. In order to still make it possible to visually distinguish
discontiguous multi-register gates operating on slices of a single register from
just a bunch of single-register gates that are executed in a parallel manner if
controls are present, yquant’s default vertical line style for the former case is a
wavy line instead of a straight one. Still, the meaning of this should probably be
explained. Please feel free to submit issues or pull requests with propositions
of how default styles or alternative subordinate gate shapes may additionally
help to mitigate the problem.

2.5 Arguments

Every command may take one or multiple arguments. Those are specified in square
brackets that precede the command itself. The content of those square brackets
is essentially fed to a \pgfkeys-like macro. The default path is set appropriately
such that the arguments of the command can be accessed without path specifiers.
If the key is not a valid argument for the command or a global argument and it is
not given by an absolute path, it is searched for in the /yquant namespace. If it
cannot be found there, it is passed to /yquant/operator style.

Note that commands may have required arguments. If a required argument is
missing, an error will be issued.

The value attribute can alternatively be given inside curly brackets after the
command name and before the register specification. This has the advantage that
special characters such as a closing square bracket need not be escaped. If both

14

alternatives are present, the value inside curly brackets takes precedence and a
warning is issued.

2.6 Controls

Lots of gates may have controls, i.e., they are only to be executed if some other
gate is set or unset. The former case is called a positive control, the latter one a
negative control. Those are indicated by filled and empty circles on the control
registers and a vertical line that joins the registers that belong together.

The gate specification is followed by the list of target registers. By then writing a
pipe (“|”), the list of positive controls is introduced; this mimics the mathematical
syntax “conditioned on” for probabilities or “given” for sets. If there are no positive
controls, the list may be empty or, together with the pipe, omitted. Preceded by
a tilde (“~”), the list of negative controls then follows; this mimics the syntax of
many programming languages that denote logical negation by a tilde. If there are
no negative controls, the list may be empty or, together with the tilde, omitted.

2.7 Highlighting parts of a circuit

Sometimes, there are certain parts of a circuit that deserve special attention. This is
often accomplished by framing them in a box or putting some kind of background
on them, then adding some text at the boundary of this region. While this can
be accomplished in yquant using various options, starting from version 0.9, the
enclose functionality aims to do this most conveniently. Note that this is not part
of the yquant language specification itself, but uses TEX macros instead, for a very
simple reason: Sometimes, you might want to highlight only a certain part of a
gate, while other parts should stick out of it. This means that you cannot isolate
the part that is to be highlighted as you would do it with subcircuits; instead,
something with a purely visual meaning, but no intrinsic part of the circuit, is
required.

There are several ways to access the enclose functionality.

2.7.1 \encloseall[<options>]{<content>}

This should be the choice whenever you want to highlight the gates <content>,
while the region should span from the very first to the very last register in the
circuit. It is basically a restricted version of the \enclose macro, but at the same
time, it is much faster to process, as TEX doesn’t have to figure out which registers
are involved.

15

The <options> allow you to specify any TikZ option which is attached to
the enclosing rectangle. None of the advanced options mentioned for \enclose
are allowed here—the configuration for \encloseall always corresponds to
spacing=register, shape=rectangle, so see the details for the configuration
options on how this manifests. However, the bracing options may very well be
used (and indeed, they are probably best used with \encloseall).

2.7.2 \enclose[<options>]{<content>}

This should be used whenever you need more flexibility and the enclosing region
is not from the first to the last register in the whole circuit.

By default, the region will span from the first to the last register that is mentioned
within <content>. However, you can overwrite this by using the option keys
from=<register> and to=<register>. If you specify a vector register, this will
correspond to the first index for from and to the last for to. Note that it is allowed
to specify a register which does not exist yet—however, it has to be created at
some point during the execution of <content>. Further note that the register
has to be one in the same circuit in which \enclose is placed—it cannot be in a
subcircuit. However, you can achieve this functionality in a different way using
named enclosures.

/yquant/enclose/name default:
You may use the name=<name> option to give the enclosing region a name (this
is not a TikZ node name, it is only valid in the context of enclosing options).
Then, when creating the register in a subcircuit, you may specify the attribute
enclose/set from=<name> or enclose/set to=<name> to make clear that the
region <name> should start at this register.

It is possible to let an \enclose start from multiple different registers—just
think of various subcircuits with ancillas that cannot be put in a particular ordering
with respect to each other. Specify the attribute for all of the registers that should
be included and yquant will make sure that the region covers all of them.

16

Using \enclosewith explicit range specifications

q[0]
q[1]

q[2]
q[3]

𝑋
𝑋

𝑋
𝑋

𝐻
anc[0]
io[0]
io[1]

anc[1]
anc[2]
anc[3]

𝑋
𝑋

𝑋
𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[4];
x -;
\enclose[name=region, to={q[2]}, shade] {

h q[2];
subcircuit {

[ancilla, enclose/set from=region] qubit anc;
qubit io[2];
[ancilla, enclose/set to=region] qubit anc[+2];
[ancilla] qubit anc[+1];
zz (-);

} (q[2, 3]);
cnot q[0] | q[3];

}
x -;

\end{yquant}
\end{tikzpicture}

The example shows nicely how, semantically, set from is no different than
specifying from: as soon as one “from” (or “to”) specification is present, the
start or end of the range is no longer calculated automatically based on the
registers addressed in the region (for then, q[0] from the cnot would have
to be in the region), but defined as the least possible value that still encloses
everything that was explicitly requested.

/yquant/enclose/shape default: rectangle
Defines how the region that encloses certain gates looks like.

• rectangle
The enclosing region will by default be a rectangle from the top-/leftmost to
the bottom/-rightmost gate. Note that this will implicitly put an align gate

17

on all the registers that are involved before and after the enclosing—else, it
would be possible to have a gate that is not part of the region, but still ends
up visually in it. Just the act of creating a register (without a text) will never
by itself be part of an enclosing region. If the register creation with value or
the first initialization is within an enclose block, the block will also cover the
label. Note that the alignment due to the rectangular shape may prevent an
initialization from extending to the left of the circuit if some other registers
already contain gates.

• polygon (default)
yquant will draw a polygon that tries to tightly cover all the gates within
the region. No alignment is performed.

Using \enclosewith polygon shape

q[0]
q[1]
q[2]
q[3]
q[4]

𝑋
𝑋
𝑋
𝑋
𝑋

𝑋
𝑋

𝑋

𝑋

𝐻
𝐻

𝐻
𝐻
𝐻
𝐻

𝐻
𝐻
𝐻

𝐻

𝑋
𝑋

𝑋

𝑋
𝑋
𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[5];
x -;
x q[0, 1, 4];
x q[0];
\enclose[shape=polygon,

fill=yellow]{↪

h q[2, 3];
h q[1-];
h q[0-2];
h q[1];

}
x q[3, 4];
x q[0, 2-4];

\end{yquant}
\end{tikzpicture}

Consider the output of the same circuit, using the rectangular shape:

q[0]
q[1]
q[2]
q[3]
q[4]

𝑋
𝑋
𝑋
𝑋
𝑋

𝑋
𝑋

𝑋

𝑋

𝐻
𝐻

𝐻
𝐻
𝐻
𝐻

𝐻
𝐻
𝐻

𝐻

𝑋
𝑋

𝑋

𝑋
𝑋
𝑋

A final question is how large the enclosing region will be in space-like direction
(i.e., between the registers).

18

/yquant/enclose/spacing default: gate or local register
Defines how the extents of the enclosed registers are calculated. Possible values:

• gate
The enclosing region will be as large as all the gates within this region.
Note that you could run into trouble with multi-register gates using this
option.

Using \enclosewith gate spacing

q 𝑋

\begin{tikzpicture}
\begin{yquant}[enclose/spacing=gate, enclose/style={draw=none}]

qubit q;
\enclose[fill=red!20!white] { slash q; }
\enclose[fill=yellow]{ x q; }
\enclose[fill=blue!20!white]{ not q; }

\end{yquant}
\end{tikzpicture}

• register
The enclosing region will be as large as the final register height/depth,
which consists of all gates that were ever present on the corresponding
registers.

Using \enclosewith register spacing

q 𝑋

\begin{tikzpicture}
\begin{yquant}[enclose/spacing=register,

enclose/style={draw=none}]↪

qubit q;
\enclose[fill=red!20!white] { slash q; }
\enclose[fill=yellow]{ x q; }
\enclose[fill=blue!20!white]{ not q; }

\end{yquant}
\end{tikzpicture}

However, this is problematic due to the way subcircuits are handled by
yquant. If you have a subcircuit which has ancillas, during the calculation
of the final positioning, yquant will accumulate their extents and add it to

19

the closest connected register, so you might suddently end up with a very
large enclosing region which you did not expect.

Unexpected behavior of register spacing with subcircuits

before

q

after

𝑋

𝑋

a
q
b

𝑋

\begin{tikzpicture}
\begin{yquant}[enclose/style={draw=none,

fill=yellow}]↪

qubit before;
qubit q;
qubit after;
x before, after;
subcircuit {

[ancilla] qubit a;
qubit q;
swap (-);
[ancilla] qubit b;
swap (a, b);

} q;
\enclose[spacing=register]{ x q; }

\end{yquant}
\end{tikzpicture}

• spacing=gate or local register (default)
Takes into account the minimum of the global register extent before subcircuit
ancillas are added, but at least the extent of all gates within the region1.
This is not a perfect solution either, a good compromise: Adding the ancillas
is the very first step in the calculation of positions; and the very last step is
the distribution of multi-register gates, so we could still run into trouble with
multi-register gates; but likely, both points of view help each other.

Using \enclosewith default gate or local register spacing

before

q

after

𝑋

𝑋

a
q
b gate

1Note that here, the “at least” part is almost superfluous—however, it makes sure that the overlay
attribute, which can exclude a gate from taking part in the register extent calculation, is
disregarded for enclosings.

20

\begin{tikzpicture}
\begin{yquant}

qubit before;
qubit q;
qubit after;
x before, after;
subcircuit {

[ancilla] qubit a;
qubit q;
swap (-);
[ancilla] qubit b;
swap (a, b);

} q;
\enclose[draw=none, fill=yellow]{

box {gate} (q, after);
[overlay] box {\vrule height 18mm} q;

}
\end{yquant}

\end{tikzpicture}

Let’s also quickly show the output of this example both with the gate (left) and
register (right) spacing:

before

q

after

𝑋

𝑋

a
q
b gate

before

q

after

𝑋

𝑋

a
q
b gate

2.7.3 \startenclose[<options>]{<name>} and \stopenclose{<name>}

While the \enclose macro is already very flexible, it requires the whole content
of the enclosing region to be passed as a single TEX group. This makes it impossible
to interleave regions; but still, yquant can do it for you. You must now use the
\startenclose macro instead, which requires a mandatory name—given explic-
itly instead of via the options, but it is indeed the same thing and can therefore be
used with enclose/set from and enclose/set to. The content of the enclose
is then simply everything that follows until a corresponding \stopenclose with
the same name is found. This can be arbitrarily mixed with the group-delimited
\enclose macro.

21

Interleaving enclosing regions

q[0]
q[1]
q[2]
q[3]

𝐻

𝐻
𝐻

𝑍
𝑍
𝑍
𝑍

𝑍
𝑌

𝑋 𝑋

𝐻

% \usetikzlibrary{patterns}
\begin{tikzpicture}

\begin{yquant}[enclose/style={draw=none},
enclose/shape=polygon]↪

qubit q[4];
h q[0, 2, 3];
\startenclose[pattern=north east lines, pattern

color=green!60!white]{region1}↪

z q[1];
z q[-2];
z q[1];

\startenclose[red, pattern=north west lines,
pattern color=red]{region2}↪

y q[2];
\stopenclose{region1}
x q[3];
x q[3];
\stopenclose{region2}
h q[0];

\end{yquant}
\end{tikzpicture}

Named enclosings and custom gates

The naming scheme of enclosings does not respect any name mangling, there-
fore names are available globally and must be unique within one yquant
environment. So make sure never to use named enclosings within custom gate
definitions, as their names might conflict with the ones of the circuits that use
them. Unnamed enclosings using \enclose or \encloseall are fine, though.

Transcending subcircuits

Yes, it is indeed possible to start one enclose in a subcircuit and end it after this
subcircuit or vice versa. Note that this is much easier for the polygon shape
than for rectangles! The rectangular enclosure has to add alignments before
and after to make sure that nothing enters its region that is not supposed to be
there. Since enclosings can transcend subcircuits, this alignment is nothing that
could be reproduced just by using the align gate—it requires something more
sophisticated. The problem is that at the beginning of an enclosing, it is not
even known which registers and from which subcircuits will take part. In fact,
this is only known when the enclosing is finished, but by then, the devious user

22

might already have exited a subcircuit in which they said \startenclose. Now
we are in deep trouble, because calculating the width of the subcircuit, which is
necessary for the box of the subcircuit and proper vertical alignment for example
of the control line or multiple subcircuits used in the same expression (luckily,
having more than one [multiregister] target is impossible here, as this would
lead to a name clash), was already completed—of course without the unknown
alignment. So what we do to get a halfway proper display in the end is that
during the drawing stage, where we can rather easily perform the alignment,
yquantwill compare whether the precalculated width coincides with the actual
one, and if not, the width is adjusted post mortem. Yes, indeed, for this is just
an attempt not do produce too much garbage. The size of the box itself will be
rendered correctly, but for everything that came before or a potential control line,
the size is as it was calculated without alignment. It would be easily possible for
yquant to place the control line correctly, but gates that came before cannot be
re-adjusted, hence the control line could potentially overlap with them – better
not to do this. Let’s illustrate this most monstrous failure with a tiny circuit:

loooooong gate

𝑋 𝑌

𝑍

𝐻

𝑆

\begin{tikzpicture}
\begin{yquant}

qubit {} a;
qubit {} b;
box {loooooong gate} b;
subcircuit {

qubit {} a;
x a;

\startenclose[fill=blue!20]{enc}
y a;

} a | b;
z b;
\stopenclose{enc}
h a;
box {S} b;

\end{yquant}
\end{tikzpicture}

Note how here, the control line is placed where you would expect it if the y
gate directly followed the x gate without any alignment. In fact, how does
the alignment even work? First, the size of the subcircuit (without alignment)

23

is computed. Naturally, the z gate would come after the full length of the
subcircuit, since the control on the lower register blocks the complete space.
This is now know as the position of the z gate, where we then have to align the
y gate at. The pre-calculated box size for the subcircuit would be too small, so
it is enlarged, and after both gates, we align once more, so that there is indeed
also more space than normal before the 𝑆 gate.

2.7.4 Enclosing drawing pipeline

Drawing the enclosings works in multiple stages: During preparation, yquant an-
alyzes which gates in the circuit belong to the enclosing region; it also keeps
track of the individual register extents (space-like, i.e., from register to reg-
ister), if the shape requires this. During the drawing stage, yquant knows in
which visual order the registers are placed in the circuit and can therefore sort
them properly in order to figure out which is the topmost and which is the
bottom-most register. Furthermore, the gate extents (time-like, i.e., from gate
to gate) are accumulated, including all separations that are gleaned from the
style in /yquant/enclose/every enclose as well as the one passed explicitly
to \encloseall, \enclose, or \startenclose.

/yquant/enclose/every enclose default: draw, dashed, inner
spacesep=.5*\pgfkeysvalueof{/yquant/register/separation}, inner

timesep=.5*\pgfkeysvalueof{/yquant/operator/separation}
This style is applied to the enclosed region, where by default, the separations
increase the region just by the half distance to their next neighboring element.

/yquant/enclose/style default: /yquant/enclose/every enclose/.append
style={#1}

This is a shorthand that can be used to modify the appearance of the enclosed
region.

After all the calculations are done, the necessary drawing commands for the
enclosing region are stored, but not yet executed. Their execution is deferred until
the very end of all the drawings—this would ensure that without further measures,
they would be drawn on top of everything (having them somewhere in between
would just result in a weird mix). This is of course not desired; therefore, the
enclosing region will be drawn on a background layer, but any label commands
will be drawn on the main layer instead, which should put them to the very front.
However, this behavior is also configurable.

24

/yquant/enclose/layer default: background
Defines the layer onto which the enclosing regions are drawn, excluding late
options such as labels.

Note that yquant automatically loads the TikZ library backgrounds, which
makes the background layer available; however, any active layer can be chosen.
It is also possible to use main—note that as it is not possible to explicitly draw on
the main layer, yquant will then simply not invoke any change of layers. Hence, if
you put the whole yquant environment on a layer X different from main, saying
main here will draw on X, not on main.

/yquant/enclose/label layer default: main
Defines the layer onto which all labels of enclosing regions (more precisely, ev-
erything that uses the TikZ feature append after command or prefix after
command) are drawn.

The same remarks as for /yquant/enclose/layer hold.

2.7.5 Embracing regions

Sometimes, you want to highlight a part of a circuit in a very unobtrusive way,
simply by putting curly braces at some region to the top or bottom (resp. left/right
in vertical layout) of the whole circuit. The \encloseall feature already sets
everything up nicely so that with a bit of TikZ magic on the node that is drawn,
we can easily modify the visible shape into such a curly brace. yquant defines
styles that do exactly this.

/yquant/enclose/brace above default:
Style that can be passed to an \encloseall region which will put a curly brace
above (in vertical layout: to the left of) the whole circuit. The style expects a label
as its argument, which will subsequently be drawn above (in vertical layout: to
the left of) the brace. Note that everything that applies to ordinary TikZ labels
also holds here: you may use a square bracket as the first character of the label in
order to specify some styles, and you may use the colon to separate an optional
label position from the label text.
yquant will also apply the following styles to the decoration of the path:

• /yquant/enclose/every brace

• /yquant/enclose/every brace above or left

• /yquant/enclose/every brace above in horizontal layout

• /yquant/enclose/every brace left in vertical layout

25

yquant will apply the corresponding every brace label styles to the label.
Note that only the styles that have been defined before brace above is invoked

are applied to the brace/label! This allows to apply both a brace above and below
and use different styles for them.

/yquant/enclose/brace left default:
This is a synonym for /yquant/enclose/brace above, as this naming makes
more sense for vertical circuits.

/yquant/enclose/brace below default:
Style that can be passed to an \encloseall region which will put a curly brace
below (in vertical layout: to the right of) the whole circuit. The style expects a
label as its argument, which will subsequently be drawn below (in vertical layout:
to the right of) the brace. Note that everything that applies to ordinary TikZ labels
also holds here: you may use a square bracket as the first character of the label in
order to specify some styles, and you may use the colon to separate an optional
label position from the label text.
yquant will also apply the following styles to the decoration of the path:

• /yquant/enclose/every brace

• /yquant/enclose/every brace below or right

• /yquant/enclose/every brace below in horizontal layout

• /yquant/enclose/every brace right in vertical layout

yquant will apply the corresponding every brace label styles to the label.
Note that only the styles that have been defined before brace below is invoked

are applied to the brace/label! This allows to apply both a brace below and above
and use different styles for them.

/yquant/enclose/brace right default:
This is a synonym for /yquant/enclose/brace below, as this naming makes
more sense for vertical circuits.

26

Brace styles

/yquant/enclose/every brace default: draw, /pgf/decoration/brace,
decorate

This style is applied to the path drawn for every brace put to an enclosing region
using any of /yquant/enclose/brace above, /yquant/enclose/brace left,
/yquant/enclose/brace below, or /yquant/enclose/brace right. Note that
the option has to be specified before the brace style is invoked.

/yquant/enclose/brace style default: /yquant/enclose/every brace/.append
style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
for enclosing regions.

/yquant/enclose/every brace above or left default:
This style is applied to the path drawn for every brace put to an enclosing region
using /yquant/enclose/brace above or /yquant/enclose/brace left styles.
Note that the option has to be specified before the brace style is invoked.

/yquant/enclose/brace above or left style default: /yquant/enclose/every
brace above or left/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
above or to the left of enclosing regions.

/yquant/enclose/every brace below or right default:
This style is applied to the path drawn for every brace put to an enclosing region us-
ing /yquant/enclose/brace below or /yquant/enclose/brace right styles.
Note that the option has to be specified before the brace style is invoked.

/yquant/enclose/brace below or right styledefault: /yquant/enclose/every
brace below or right/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
below or to the right of enclosing regions.

/yquant/enclose/every brace above default: /pgf/decoration/raise=1pt
This style is applied to the path drawn for every brace put to an enclosing re-
gion using /yquant/enclose/brace above or /yquant/enclose/brace left
styles—it will only be active in horizontal layout. Note that the option has to be
specified before the brace style is invoked.

27

/yquant/enclose/brace above style default: /yquant/enclose/every brace
above/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
above enclosing regions.

/yquant/enclose/every brace left default: /pgf/decoration/raise=2pt,
/pgf/decoration/mirror

This style is applied to the path drawn for every brace put to an enclosing re-
gion using /yquant/enclose/brace above or /yquant/enclose/brace left
styles—it will only be active in vertical layout. Note that the option has to be
specified before the brace style is invoked.

/yquant/enclose/brace left style default: /yquant/enclose/every brace
left/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
to the left of enclosing regions.

/yquant/enclose/every brace below default: /pgf/decoration/raise=1pt,
/pgf/decoration/mirror

This style is applied to the path drawn for every brace put to an enclosing re-
gion using /yquant/enclose/brace below or /yquant/enclose/brace right
styles—it will only be active in horizontal layout. Note that the option has to be
specified before the brace style is invoked.

/yquant/enclose/brace below style default: /yquant/enclose/every brace
below/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
below enclosing regions.

/yquant/enclose/every brace right default: /pgf/decoration/raise=2pt
This style is applied to the path drawn for every brace put to an enclosing re-
gion using /yquant/enclose/brace below or /yquant/enclose/brace right
styles—it will only be active in vertical layout. Note that the option has to be
specified before the brace style is invoked.

/yquant/enclose/brace right style default: /yquant/enclose/every brace
right/.append style={#1}

This is a shorthand that can be used to modify the appearance of the brace path
to the right of enclosing regions.

28

Brace label styles

/yquant/enclose/every brace label default: label distance=4pt
This style is applied to the label for every brace put to an enclosing region
using any of /yquant/enclose/brace above, /yquant/enclose/brace left,
/yquant/enclose/brace below, or /yquant/enclose/brace right. Note that
the option has to be specified before the brace style is invoked.

/yquant/enclose/brace label style default: /yquant/enclose/every brace
label/.append style={#1}

This is a shorthand that can be used to modify the appearance of the labels of
braces in enclosing regions.

/yquant/enclose/every brace label above or left default:
This style is applied to the label for every brace put to an enclosing region using
/yquant/enclose/brace above or /yquant/enclose/brace left styles. Note
that the option has to be specified before the brace style is invoked.

/yquant/enclose/brace label above or left style default:
/yquant/enclose/every brace label above or left/.append

style={#1}
This is a shorthand that can be used to modify the appearance of the labels of
braces above or to the left of enclosing regions.

/yquant/enclose/every brace label below or right default:
This style is applied to the label for every brace put to an enclosing region us-
ing /yquant/enclose/brace below or /yquant/enclose/brace right styles.
Note that the option has to be specified before the brace style is invoked.

/yquant/enclose/brace label below or right style default:
/yquant/enclose/every brace label below or right/.append

style={#1}
This is a shorthand that can be used to modify the appearance of the labels of
braces below or to the right of enclosing regions.

/yquant/enclose/every brace label above default: align=center
This style is applied to the label for every brace put to an enclosing region us-
ing /yquant/enclose/brace above or /yquant/enclose/brace left styles—
it will only be active in horizontal layout. Note that the option has to be specified
before the brace style is invoked.

29

/yquant/enclose/brace label above style default: /yquant/enclose/every
brace label above/.append style={#1}

This is a shorthand that can be used to modify the appearance of the labels of
braces above enclosing regions.

/yquant/enclose/every brace label left default: align=right
This style is applied to the label for every brace put to an enclosing region us-
ing /yquant/enclose/brace above or /yquant/enclose/brace left styles—
it will only be active in vertical layout. Note that the option has to be specified
before the brace style is invoked.

/yquant/enclose/brace label left style default: /yquant/enclose/every
brace label left/.append style={#1}

This is a shorthand that can be used to modify the appearance of the labels of
braces to the left of enclosing regions.

/yquant/enclose/every brace label below default: align=center
This style is applied to the label for every brace put to an enclosing region using
/yquant/enclose/brace below or /yquant/enclose/brace right styles—it
will only be active in horizontal layout. Note that the option has to be specified
before the brace style is invoked.

/yquant/enclose/brace label below style default: /yquant/enclose/every
brace label below/.append style={#1}

This is a shorthand that can be used to modify the appearance of the labels of
braces below enclosing regions.

/yquant/enclose/every brace label right default: align=left
This style is applied to the label for every brace put to an enclosing region using
/yquant/enclose/brace below or /yquant/enclose/brace right styles—it
will only be active in vertical layout. Note that the option has to be specified before
the brace style is invoked.

/yquant/enclose/brace label right style default: /yquant/enclose/every
brace label right/.append style={#1}

This is a shorthand that can be used to modify the appearance of the labels of
braces to the right of enclosing regions.

30

Combined shorthands

/yquant/enclose/bracing style default: /yquant/enclose/brace
style={#1},/yquant/enclose/brace label style={#1}

This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels in enclosing regions.

/yquant/enclose/bracing style above or left default:
/yquant/enclose/brace above or left

style={#1},/yquant/enclose/brace above or left label style={#1}
This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels above or to the left of enclosing regions.

/yquant/enclose/bracing style below or right default:
/yquant/enclose/brace below or right

style={#1},/yquant/enclose/brace below or right label style={#1}
This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels below or to the right of enclosing regions.

/yquant/enclose/bracing style above default: /yquant/enclose/brace above
style={#1},/yquant/enclose/brace above label style={#1}

This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels above enclosing regions.

/yquant/enclose/bracing style left default: /yquant/enclose/brace left
style={#1},/yquant/enclose/brace left label style={#1}

This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels to the left of enclosing regions.

/yquant/enclose/bracing style below default: /yquant/enclose/brace below
style={#1},/yquant/enclose/brace below label style={#1}

This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels below enclosing regions.

/yquant/enclose/bracing style right default: /yquant/enclose/brace right
style={#1},/yquant/enclose/brace right label style={#1}

This is a shorthand that can be used to modify the appearance of both the brace
path as well as its labels to the right of enclosing regions.

31

2.8 Importing circuits from files

yquant provides a simple way to import circuits that are stored in external files.
The macro \yquantimport can be used in three different contexts:

• Outside of a TikZ picture environment.
Here, \yquantimport[<options>]{<filename>} will be equivalent to

\begin{tikzpicture}
\begin{yquant}[<options>]

% the content of <filename> goes here
\end{yquant}

\end{tikzpicture}

The starred form, \yquantimport*[<options>]{<filename>}, instead in-
serts the starred yquant environment. Note that the options are always
yquant options; if you want to pass TikZ options, you will have to create the
picture environment by yourself or change the option path to the correct
one (/tikz/.cd).

• Inside a TikZ picture environment, but outside of a yquant environment.
This is the same as before, just that no extra picture environment will be
added.

• Inside both a TikZ picture environment and a yquant environment.
The file will be inserted directly into the environment. yquant’s parser
is automatically restarted after this. The content will always be put in a
TEX group; if additional options are provided, yquant also inserts a TikZ
scope and executes \yquantset{<options>} directly after the scope. If
\yquantimport is used, the content will be read as if the containing envi-
ronment was an unstarred one; if \yquantimport* is used, the content will
be read as if the containing environment was a starred one.

Note that yquant internally uses plain TEX’s \import command (i.e., \@@import
in LATEX). However, when the import package is loaded, it uses
\subimport{\yquantimportpath}{<filename>}, where \yquantimportpath
defaults to ./—so by changing this, files from other folders may be imported
which by themselves again include other files, and the relative path resolution
will work.

Note that you may in particular import the content of a subcircuit.

32

2.9 Defining own gates

Scope

All gate declarations are always global.

If you want to define a gate that corresponds to a single box gate with a certain
pre-defined content, you may use the macro
\yquantdefinebox[<attributes>]{<name>}[<style>]{<content>}, which is
far more efficient than the much more general \yquantdefinegate introduced
below. It only allows for single-register usage; use \yquantdefinemultibox with
the same arguments if you want to allow the gate to be used in a multi-register
gate fashion. The macros work in the following way:

• They create a new gate with name <name> that can be accessed as all
the other build-in gates. Note that <name> is case-insensitive and may not
contain spaces. Special characters are allowed if TEX can cope with them
(i.e., no comment signs, no unbalanced braces, no backslashes...).

• They create a style /yquant/operators/every <name> and assign the
optional <style> to it. If no style is provided, the default style will inherit
from /yquant/operators/every rectangular box. If a compat version
before 0.6 is chosen, /yquant/operators/every box will instead be the
ancestor.

• They define attributes for the gate as specified in <attributes>, where
<attributes> is one of the following:

– required attrs={<list of attributes>}

– optional attrs={<list of attributes>}

or both, comma separated. The <list of attributes> is a comma-sep-
arated list of attribute names that are known to yquant. You may declare
custom attributes using \yquantdeclareattr; note that an attribute is just
a pgfkeys style. Hence, if you want to define an attribute myattr that stores
a value in the macro \myattr, you may say
\yquantdeclareattr{myattr/.store in=\myattr}.

• They define <content> to be the value that is written into the box. You may
need to prefix fragile macros by \protect. By default, the <content> is
not expanded; use \yquantedefinebox to expand it in a protected manner.
In this case only, if you stored some content in a macro by means of an
attribute definition, you should prefix the macro by \noexpand; hence, in

33

the previous example, you’d write \noexpand\myattr whenever you want
to print the content of \myattr.

Note that if you want to use the value attribute which holds whatever is
passed to the gate in curly brackets, a more convenient way exists. You do
not have to specify valuemanually in required attrs, and you don’t have
to use a special macro to access its value; instead, you can simply say #1 in
the <content>. If this TEX parameter slot is found, value will automatically
be made into a required attribute, and #1 will be replaced by the actual
value.

Note that before version 0.8, the behavior of \yquantdefinebox was to
expand during definition; the old behavior is restored with a compat version
smaller than 0.8.

Sometimes, you may wish to define gates that are more than just a single box—
perhaps a succession of multiple gates or even multi-register gates with individual
operations on the input registers. yquant provides a simple macro that allows this;
\yquantdefinegate[<attributes>]{<name>}[<style>]{<content>}works in
the following way:

• It creates a new gate with name <name> that can be accessed as all the other
built-in gates. Note that <name> is case-insensitive and may not contain
spaces. Special characters are allowed if TEX can cope with them (i.e., no
comment signs, no unbalanced braces, no backslashes...).

• It creates a style /yquant/operators/every <name> and assigns the op-
tional <style> to it. If no style is provided, the default style will inherit
from /yquant/operators/every custom gate. This will make the gate
“seamless,” i.e., avoid highlighting the fact that this is a custom gate.

• It assigns attributes according to <attributes> to the gate as before.

• It defines a macro that contains <content> and that will be inserted as
a subcircuit whenever this gate is invoked. You may need to prefix frag-
ile macros by \protect. By default, the <content> is not expanded; use
\yquantedefinegate to expand it in a protected manner. All that was
said for \yquantdefinebox still holds; however, note one intricacy with
attributes: they are assigned when the gate is used. The attributes defined by
yquant, except for value (which is available through #1), are applied only
to the gate as a whole, but they are reset before the content is inserted as a
subcircuit. This makes sure that the attributes are not applied to each gate
within the custom gate individually, but only to the box. However, yquant

34

will not reset custom attributes (which is basically impossible, as it does
not know which effect such an attribute has). Therefore, a custom attribute
will keep its value while the custom gate is applied and may affect gates
inside—which could be intended or not. If it is not, you must make sure to
reset the attributes by yourself at an appropriate position.

When the gate is later drawn, the styles are invoked in the following order—
remember custom gates are implemented by means of subcircuits—:

1. /yquant/every operator

2. /yquant/operators/every <name>

3. /yquant/operators/every subcircuit box

4. /yquant/this operator

5. /yquant/operators/this subcircuit box

Gates defined in this way can only make use of the default gates or other custom
gates. They do not accept custom arguments, and it is not possible to declare own,
custom shapes in this way (though other predefined shapes may be used). If they
are used in a multi-qubit manner, they will never be split into contiguous slices
(but their content will be, so if you use the default style that turns off the box,
the only way to notice this is that intermediate unaffected registers will not be
allowed to have gates visually within the rectangle that would bound the custom
gate).

Redefining existing gates

The above macros will issue an error if the gate already exists. You can use
\yquantredefinebox, \yquantredefinemultibox (use the appropriate com-
mand for the new definition), or \yquantredefinegate, or their expanded
counterparts to overwrite existing gate definitions. Note that this will overwrite
any gate, even the built-in ones.
Generally, it is discouraged to make use of this possibility. For custom gates,
if you redefine a gate as a box which was previously a general subcircuit-
based gate, the macro that contains the subcircuit will still be held in memory.
Overwriting built-in gates will not clear the attributes previously associated to
this gate (though required attributes will no longer be required afterwards).
Again, this is not a problem but prevents yquant from issuing potentially
helpful error message if such a—now meaningless—attribute is used.
Finally, once a built-in gate is overwritten, it cannot be restored. In particular,
the register creation pseudo-gates qubit, cbit, qubits, and nobit perform

35

some magic that cannot be mimicked with custom gates.

More advanced declaration of custom gates requires the use of backend macros.
Refer to yquant-lang.tex for this. Note that the backend interface changed in
version 0.4. For the declaration of custom shapes, see yquant-shapes.tex for
examples.

2.10 The flow of time: horizontal and vertical layout

By default, quantum circuits are oriented horizontally, i.e., time flows from left to
right. Sometimes, this is problematic when printed on a portrait page layout and
a vertical layout would be better suited. yquant supports this by simply passing
the configuration option /yquant/vertical to the circuit (this can even be done
globally, so that all circuits are rendered vertically).

The vertical layout is supposed to work exactly as the horizontal layout; how-
ever, most testing occurs for horizontal mode only (basically, for every release,
the examples in this manual comprise the testsuite). Hence, if something weird
happens in vertical mode, please file a bug report.

Most of the internal and exposed nomenclature in yquant is designed for the
horizontal case (names such as “height” or “width”). For some of the exposed
configuration options, synonyms are provided which are more meaningful in
vertical mode or that are more orientation-agnostic. These synonyms are merely
conveniences, they do not provide any new functionality. As a general rule of
thumb, everything that was “atop” becomes “left.”

Some relevant TikZ options refer to a fixed direction, namely [x|y] radius
and [inner|outer] [x|y]sep. If you think that maybe you want to change the
orientation of your circuit at some point, you should never use the original TikZ
styles—their meaning would depend on the current orientation. Instead, con-
sider using the yquant alternatives [time|space] radius and [inner|outer]
[time|space]sep.

36

3 Configuration

yquant uses pgfkeys to control its options, which are located in the path /yquant.
The following list contains all options and styles that are recognized, apart from
gate arguments. Those are listed together with their operations.

3.1 Circuit layout

/yquant/register/minimum height default: 1.5mm
yquant automatically determines the height (extent from wire to top boundary;
in vertical mode: from wire to left boundary) of a register as the height of the
largest operation. This might be too small for two reasons:

• if the register is used only with small gates (e.g., only as a control, or as a
swap), and it does not have a label (or one containing only x-height letters).

• if you manually turned off height calculation or multi-extent calculation for
a large gate. yquant will then not consider the vertical extent of this gate,
which might consequently lead to undesirable overlaps.

This key provides an easy alleviation of the problem by requiring a minimal
height for every register. As the value of this key is relevant at the time of register
declaration, it can also be changed for each register individually.

Note that in vertical mode, the default of this setting is 2.5mm.
Note that this key is affected by the compat setting. Before version 0.4, there

was no /yquant/register/minimum depth key. In this compatibility setting,
passing the value 𝑥 to this key will set both height and depth to 𝑥

2 . The default for
𝑥 is then 3mm.

/yquant/register/minimum depth default: 1.5mm
see /yquant/register/minimum height

This key allows to specify a minimum depth (extent from wire to bottom bound-
ary; in vertical mode: from wire to right boundary) for a register.

Note that in vertical mode, the default of this setting is 2.5mm.
Note that this key is affected by the compat setting. Before version 0.4, this key

will not be available.

/yquant/register/minimum left default: 1.5mm
This is a synonym for /yquant/register/minimum height, as this namingmakes
more sense for vertical circuits.

37

/yquant/register/minimum right default: 1.5mm
This is a synonym for /yquant/register/minimum depth, as this naming makes
more sense for vertical circuits.

/yquant/register/minimum before default: 1.5mm
This is a synonym for /yquant/register/minimum height, which provides a
naming that makes sense in both horizontal and vertical mode.

/yquant/register/minimum after default: 1.5mm
This is a synonym for /yquant/register/minimum depth, which provides a
naming that makes sense in both horizontal and vertical mode.

/yquant/register/separation default: 1mm
This key controls the amount of vertical space that is inserted between two succes-
sive registers. Half of this value is also the length that multi-init or multi-output
braces extend beyond the mid position of the register.

/yquant/operator/minimum width default: 5mm
yquant automatically determines the width (in vertical mode: the vertical extent)
of an operator according to its content. However, single-letter boxes are among the
most common operators, and giving them slightly different widths would result
in a very uneven spacing, as yquant does not use a grid layout but stacks the
operators horizontally one after each other. Hence, this key provides a minimum
width that will be set for every operator. This does not imply that the visual
appearance (i.e., the x radius key) is enlarged, but that operators of a smaller
actual width will be centered in a virtual box of the minimum width.

Note that in vertical mode, the default of this setting is 3mm.

/yquant/operator/minimum extent default: 3mm
This is a synonym for /yquant/operator/minimum width, which provides a
naming that makes sense in both horizontal and vertical mode.

/yquant/operator/separation default: 1mm
This key controls the amount of horizontal space that is inserted between two
successive operators and at the beginning and end of a circuit.

/yquant/operator/multi warning default: true
If this key is true, a warning is displayed whenever more than a single multi-
register gate, where at least one is discontiguous, is employed together with

38

controls. Even if a visual distinction between control and multi-qubit line may be
possible (depending on the style in use), they will overlap and produce unaesthetic
output. You may disable this warning globally, on a per-circuit, or even on a per-
gate basis.

/yquant/drawing mode default: quality
This key determines which drawing pipeline is enabled. For more details, see
section 4.3. The option should not be changed within a circuit (though only the
last value will be relevant). Allowed values are quality for the default clipping-
based pipeline, and size of the filling-based one. Note that choosing quality will
set /yquant/default background to none; choosing size will set it to white
(though this can be changed after setting the option).

/yquant/default background default: none
This key contains the default color that is used to fill all gates with a nonempty
interior.

/yquant/default fill default:
fill/.expanded=\pgfkeysvalueof{/yquant/default background}

Use this style if you want to apply the default filling to a user-defined gate.

3.2 Register creation

/yquant/register/default name default: \regidx
The printed name that is used by default if a new register is created explicitly
(qubit, cbit, qubits; not used for nobit or for implicit declarations) and no
value is specified. The following macros are available:

• \reg contains your name to identify this register.

• \idx contains the index (zero-based) of the current register within a vector
register. Note that before version 0.8, this was not strictly true; \idx con-
tained the index within the currently added registers. Most often, this is the
same; however, if you were adding, say, the second part of a discontinuous
register (or you were using the groups library), then the indices would have
started with zero again. Starting from compat version 0.8, \idx will always
contain the index of the complete vector register.

• \regidx expands to \reg if the register is of length one, and to \reg[\idx]
else. Note that before version 0.8, this decision was made during the creation;

39

therefore, if you first created a register of length one which you later added
some further registers to, the first label would have expanded \regidx
to \reg. Starting from compat version 0.8, this decision is deferred until
the drawing stage, when the actual length is known. As a consequence, to
measure the vertical extent of the label consistently, \regidx will always
be at least as high as the opening square bracket. This can make registers
with no or only very small gates larger than before; therefore, this setting is
compatibility-protected.

• \len contains the length of the current register vector. Note that current
means at the stage of creation. As this was always documented in this way
(while the behavior of the other macros did not match their documentation),
the behavior is the same with all compatibility settings.

/yquant/register/default lazy name default:
The printed name that is used by default if a new register is created implic-
itly (i.e., without using any of qubit, cbit, qubits, or nobit, but inside a
yquant* environment by just using the register). The same macros as with
/yquant/register/default name are available. Note that this default setting is
not used when the register is created via an init gate—its value always overwrites
the default.

/yquant/every label default: shape=yquant-init, anchor=center,
align/.expanded=\ifyquanthorz{right}{center}, outer timesep=2pt,

/yquant/operator/if multi={draw, decoration={gapped brace,
raise=2pt, \ifyquanthorz{mirror}{}}, decorate}

This style is installed for every single register name label (i.e., upon creation and
when used with the init gate). The default style allows to use line breaks in
the labels. The node shape, yquant-init, will generate a path at its right side
(in vertical mode: at its bottom side), which is replaced by the gapped brace
decoration if the gate is used in a multi-register fashion. The decoration is similar
to TikZ’s brace decoration, but additionally allows specify the regions in which
a line should be drawn by using the /tikz/decoration/from to key, which
expects a comma-separated list of dimension ranges, and which is automatically
populated by yquant.

Note that if the compat key is below 0.3, the multi options are instead read
from /yquant/every multi label.

40

/yquant/every initial label default:
anchor/.expanded=\ifyquanthorz{east}{south},

/yquant/internal/autorotate init
This style is installed for every single register name label at the left border of the
circuit. It is therefore used if a label is specified upon declaration and also for
the init gate if it happens to be the first gate on an unlabelled register (use a
zero-width hspace gate before if you want to suppress this).

The automatic rotation will be set up by using the /yquant/vertical style
with an argument; by default, it is empty.

/yquant/every qubit label default:
This style is installed for every single register name label of a register of type
qubit.

/yquant/every cbit label default:
This style is installed for every single register name label of a register of type
cbit.

/yquant/every qubits label default:
This style is installed for every single register name label of a register of type
qubits.

/yquant/every multi label default: draw, decoration={gapped brace,
mirror, raise=2pt}, decorate

This style is installed for every register name label that is attached to a multi-qubit
register by means of the init gate.

Note that this key is only available if the compat setting is smaller than 0.4. In
newer versions, this is incorporated in /yquant/every label.

/yquant/every input label default:
This style is installed for every register name label in a subcircuit when the
register is an input (or input and output) register.

Note that this key is only available if the compat setting is smaller than 0.4;
and in this case, it behaves inconsistently, as it is only applied for labels directly
specified during creation, but not for initial init gates.

41

3.3 Register outputs

/yquant/every output default: shape=yquant-output,
anchor/.expanded=\ifyquanthorz{west}{north},

align/.expanded=\ifyquanthorz{left}{center}, outer timesep=2pt,
/yquant/operator/if multi={draw, decoration={gapped brace,

raise=2pt, \ifyquanthorz{}{mirror}}, decorate},
/yquant/internal/autorotate output

This style is installed for every output label at the end of the circuit. The default
style allows to use line breaks in the labels.

The node shape, yquant-output, will generate a path at its left side (in vertical
mode: at its top side), which is replaced by the gapped brace decoration in
the case of multi-register usage. See /yquant/every label for a more detailed
explanation.

The automatic rotation will be set up by using the /yquant/vertical style
with an argument; by default, it is empty.

/yquant/every qubit output default:
This style is installed for every output label of a register of type qubit.

/yquant/every cbit output default:
This style is installed for every output label of a register of type cbit.

/yquant/every qubits output default:
This style is installed for every output label of a register of type qubits.

/yquant/every multi output default: draw, decoration={gapped brace,
raise=2pt}, decorate

This style is installed for every output label that is attached to a multi-qubit
register.

Note that this key is only available if the compat setting is smaller than 0.4. In
newer versions, this is incorporated into /yquant/every output.

3.4 General styling

/yquant/every circuit default: every node/.prefix style={transform shape}
Style that is installed for every yquant and yquant* environment, as if it had
been given as an option. The style’s default path is, as with all other styles, /tikz.

42

The style is re-applied for every subcircuit. The default style will make all nodes
(which in particular means, all gates) respect outer canvas transformations.

If your TikZ version is before 3.1.6a, this style will additionally contain every
label/.prefix style={transform shape=false}, which undoes the effect for
labels (see TikZ bug #843). An update is recommended.

/yquant/every wire default: draw
This style is installed whenever a wire is drawn.

/yquant/every qubit wire default:
This style is installed whenever a wire for a register of type qubit is drawn.

/yquant/every cbit wire default:
This style is installed whenever a wire for a register of type cbit is drawn.

/yquant/every qubits wire default:
This style is installed whenever a wire for a register of type qubits is drawn.

/yquant/every control line default: draw
This style is used to draw the vertical control line that connects controlled opera-
tions and their controls.

/yquant/every control default: shape=yquant-circle, anchor=center,
radius=.5mm

This style is used to draw the node for a control, both positive and negative.

/yquant/every positive control default: fill=black
This style is installed for every positive control (i.e., one that conditions on the
register being in state |1⟩ or 1).

/yquant/every negative control default: draw, /yquant/default fill
This style is installed for every negative control (i.e., one that conditions on the
register being in state |0⟩ or 0).

/yquant/every operator default: anchor=center
This style is installed for every gate (and also pseudo-gates such as the slash
operator) that acts on one or multiple registers.

43

https://github.com/pgf-tikz/pgf/issues/843

/yquant/every multi line default: draw, decoration={snake,
amplitude=.25mm, segment length=5pt}, decorate

This style is used to draw the vertical line that connects discontiguous slices of
sub-gates.

/yquant/this operator default:
This style is appended to the current style installed for an operator; it should be
used only locally to overwrite any global configuration effect.
Consider using /tikz/only at and /tikz/not at within this style if you want
to selectively address certain operators when there are multiple.

/yquant/this control default:
This style is appended to the current style installed for a control; it should be used
only locally to overwrite any global configuration effect.
Consider using /tikz/only at and /tikz/not at within this style if you want
to selectively address certain controls when there are multiple.

/yquant/operator style default: /yquant/this operator/.append style={#1}
This is a shorthand that can be used to modify the appearance of the current
operator.

/yquant/control style default: /yquant/every control line/.append
style={#1}, /yquant/this control/.append style={#1}

This is a shorthand that can be used to modify the appearance of the current
control and its associated line.

/yquant/style default: /yquant/operator style={#1}, /yquant/control
style={#1}

This is a shorthand that modifies the appearance of both the current operator and
any controls or control lines.

/tikz/only at default:
This is a style which is available within /yquant/this operator and /yquant/this
control. It allows to selectively apply its contents only to a certain part of a multi-
partite operator. The style expects an even number of parameters. The first (third,
...) parameter contains the index of the operator/control where the style should
apply. This index corresponds to the values that \idx can take; i.e., it will be
zero for the topmost operator/control (leftmost for vertical circuits) and then
increment by one. The indices of operators, positive, and negative controls are all
independent. You may not only give a single index, but instead also a comma-sep-

44

arated list, and you may also use index ranges (where both the first and second
part of the range can be omitted, which then means “from the first” or “to the
last”). The second (fourth, ...) parameter then contains all the styles that should
actually be applied.
q[0]
q[1]
q[2]
q[3]
q[4]
q[5]
q[6]

𝐻
𝐻
𝐻

𝐻
𝐻

\begin{tikzpicture}
\begin{yquant}

qubit q[7];
[operator style={only at={1, 3-}{fill=yellow}

{0}{ultra thick}},
control style={only at={0}{fill=orange}}]
h q[-2, 4, 5] | q[3, 6];

\end{yquant}
\end{tikzpicture}

/tikz/not at default:
See /tikz/not at; this style does the same, but instead only acts if the current
register is not the one given in the odd arguments.

/yquant/operator/multi as single default: /yquant/every multi
line/.style=/yquant/every control line

This style is automatically set for certain gates such as the swap or the zz gate.
For those gates, neighboring registers will be treated as discontiguous; and this
style will enforce their connecting line to have the style used by control lines.

This style actually checks whether control lines are present in the gate and in
this case, it is equal to draw=none, i.e., it suppresses the multi-register line. This is
due to the fact that this line would be drawn on top of (a segment of) the control
line with an identical style, so that it cannot be seen unless there were some bug
in the renderer. Note that the check for control lines is embedded into the style
(the default value shown here is a simplification); so if you change it, you will
overwrite the style for all cases, not only when there is no control line.

The default /yquant/every multi line is a wavy line; this allows to distin-
guish discontiguous multi-qubit gates from multiple single-qubit gates when using
controls. Still, some gates have such an established appearance that—despite
being logically misleading—we rather use the same style as for a control line.

/yquant/operator/if multi default:
This style can be invoked by other styles with an arguments that contains styles
to be executed only if the current gate is used in a multi-register fashion. See
/yquant/every label for an example.

45

/yquant/circuit/seamless default: false
The value of this setting determines whether circuits drawn in a yquant environ-
ment in the current groupwill be drawn in a “seamless” state (hence, this stylemust
be set before the yquant environment is started). The key /yquant/operator/separation
will control the amount of padding with which a wire starts or ends before the first
or after the last gate. By turning on the seamless state, this padding is suppressed.
Using outputs or giving an initial value at the register declaration brings the
corresponding padding back. Usually, this setting is intended only for subcircuits.
Direct access is discouraged, as it will persist in subcircuits. Only access it via
/yquant/operators/subcircuit/seamless.

/yquant/circuit/orientation default: horizontal
This setting allows two possible values, horizontal and vertical. It must only
be changed before a circuit or at latest with the option arguments to the yquant
environment, but not within a circuit.

In the default horizontal mode, time flows from left to right and registers will
be created from top to bottom. In the alternative verticalmode, time flows from
top to bottom and registers will be created from left to right.

Note that this setting influences the behavior of various macros and styles:

Macro/Style horizontal meaning vertical meaning

\ifyquanthorz{a}{b} a b
/tikz/time radius /tikz/x radius /tikz/y radius
/tikz/space radius /tikz/y radius /tikz/x radius
/tikz/inner timesep /tikz/inner xsep /tikz/inner ysep
/tikz/inner spacesep /tikz/inner ysep /tikz/inner xsep
/tikz/outer timesep /tikz/outer xsep /tikz/outer ysep
/tikz/outer spacesep /tikz/outer ysep /tikz/outer xsep

Additionally, this setting influences the default values of various yquant styles—
note that if a style was once overwritten, the user-supplied value will be never be
changed! Here, we use the orientation-independent names of the styles, although
all their synonyms are equivalent.

Style horizontal def. vertical def.

/yquant/register/minimum before 1.5mm 2.5mm
/yquant/register/minimum after 1.5mm 2.5mm
/yquant/operator/minimum extent 5mm 3mm

46

/yquant/horizontal default:
This style is a shorthand that sets /yquant/circuit/orientation to the horizontal
value (which is the default).

/yquant/vertical default: 0
This style is a shorthand that sets /yquant/circuit/orientation to the vertical
value. Additionally, it accepts a parameter which should be an angle value (in
degrees) between -180 and 180. This is a rotation that is automatically applied
to the text in every init gate at the beginning of a circuit; the inverse rotation is
automatically applied to the text in every output gate at the end of a circuit.

Note that the gates themselves are not rotated. This would be counterproductive
for multi-qubit gates that contain braces—those should still be orthogonal to the
wire lines. In order to achieve this, the macro will use internal TikZ details and
exploit that the execute at begin node key is directly followed by the braced
content of the node. Hence, it will add a corresponding \adjustbox{rotate=#1}
to this style. Therefore, yquant will raise a warning if the argument is used and
the adjustbox package is not loaded, in which case the rotation is just ignored.

/yquant/every post measurement control default: indirect
This style determines the default arrangement of measurements that are followed
by positive controls.

The default option indirect will draw the measurement at the position where
it is specified. Any later use of a control will be at the position of the controlled
gate.

The option direct will defer the measurement. If later on, a controlled opera-
tion is used where the positive controls contain all of the targets of this measure-
ment and no other gate was executed meanwhile on any of the targets of this
measurement, then the measurement gate will replace the corresponding positive
control knobs (and might inherit TikZ options of the embedding gate); otherwise,
it will behave as if the indirect option had been specified.

Some care must be taken when gates are named that are affected by this
option. If the embedding gate is named, the positive controls that will be replaced
by measurements are no longer available with the “p” suffix (but other positive
controls will still be numbered as if all were). Attach the name to the measurement
in order to access it as if it were an ordinary gate; however, note that the name
only becomes available after the later embedding gate was called.

Note that this setting affects all measurements that have a compatible shape;
currently, this is only measure. While there is no technical difficulty in implement-
ing the same behavior for dmeter, its particular shape does not really suggest this

47

use. However, if you desire to do so, please file a feature request.

3.5 Styles for operators

/yquant/operators/every barrier default: shape=yquant-line, dashed, draw,
shorten <= -1mm, shorten >= -1mm

This style is installed for every barrier pseudo-gate, i.e., the one that is used to
explicitly denote a separation between “before” and “after” within the circuit.

Note that the shorten keys are only present in the default style if you specify
at least the compatibility version 0.4.

/yquant/operators/every box default: /yquant/operators/every rectangular
box

This style is installed for every box operator. Note that with a compat setting
strictly smaller than 0.6, the definition of this style was the one that is now
/yquant/operators/every rectangular box, and this style was also the base
style from which all box-like gates inherited. With a compat setting of at least 0.6,
no other gates apart from box will use this style directly or indirectly.

/yquant/operators/every custom gate default:
/yquant/operators/subcircuit/seamless

This style is by default installed for every user-defined gate. User-defined gates
are implemented via subcircuits; this style suppresses the box that surrounds the
subcircuit and by default suppresses all register names. This allows a seamless
integration of the gate/subcircuit into the main circuit, without putting particular
emphasis to the fact that what was defined as the custom gate indeed belongs
together. Note that with the compat key set before 0.4, this style instead defaults to
/yquant/operators/subcircuit/frameless, /yquant/register/default name=.

/yquant/operators/every dmeter default: shape=yquant-dmeter, time
radius=2mm, space radius=2mm, draw, /yquant/default fill

This style is installed for every dmeter gate. The yquant-dmeter shape consists
of a rectangle whose right side is replaced by a circle, resembling the letter “D.”

/yquant/operators/every h default: /yquant/operators/every rectangular
box

This style is installed for every h (Hadamard) operator.

48

/yquant/operators/every inspect default: shape=yquant-output,
align/.expanded=\ifyquanthorz{left}{center}, outer

timesep=.3333em, space radius=2.47mm, /yquant/default fill,
/yquant/operator/if multi={draw, decoration={gapped brace,

raise=2pt, \ifyquanthorz{}{mirror}}, decorate}
This style is installed for every inspect gate. It does not have any shape on its
own, apart from multi-register uses, in which it will contain a brace on its left (in
vertical mode: on its top).

/yquant/operators/every iswap default: shape=yquant-ocross, radius=.75mm,
draw

This style is installed for every iswap gate that interchanges two qubits and
conditionally adds phases. The yquant-iswap shape is a cross enclosed in a circle.

/yquant/operators/every measure default: shape=yquant-measure, x
radius=4mm, y radius=2.5mm, draw, /yquant/default fill

This style is installed for every measure gate. The yquant-measure shape is a
rectangle that contains a “meter” symbol. It allows for a text to be put inside (e.g.,
a basis), which then shifts the meter symbol accordingly.

/yquant/operators/every measure meter default: draw,
-{Latex[length=2.5pt]}

This style is applied to the path that resembles the “meter” symbol that is drawn by
the yquant-measure shape. Due to the default style, the TikZ library arrows.meta
is automatically loaded with yquant.

/yquant/operators/every not default: shape=yquant-oplus, radius=1.3mm,
draw

This style is installed for every not or cnot gate (which are synonyms, and
actually do the same as the Pauli 𝜎𝑥 gate). The yquant-oplus shape resembles
the addition-modulo-two symbol ⊕.

/yquant/operators/every pauli default: /yquant/operators/every
rectangular box

This style is installed for every Pauli operator, i.e., x, y, and z.

/yquant/operators/every phase default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every phase gate |0⟩⟨0| + ei𝜙 |1⟩⟨1|.

49

/yquant/operators/every rectangular box default: shape=yquant-rectangle,
draw, align=center, inner timesep=1mm, time radius=2mm, space

radius=2.47mm, /yquant/default fill
This style is not associated to any particular gate, but will be inherited by a lot of
gates that have a rectangular box frame with some text. This style should not be
used with a compat setting strictly smaller than 0.6.

/yquant/operators/every slash default: shape=yquant-slash, x radius=.5mm,
y radius=.7mm, draw

This style is installed for every slash pseudo-gate, i.e., the one that is used to
indicate that a single register line actually denotes multiple registers.

/yquant/operators/every subcircuit default:
This style is installed for every subcircuit. Note that all styles given here will
also apply to every element in the subcircuit; in a way, this is an addition to
/yquant/every circuit (which is also again put into effect at the beginning of
a subcircuit).

/yquant/operators/every subcircuit box default: /yquant/operators/every
rectangular box, fill=none

This style is installed for every subcircuit. Note that in contrast to all other styles
such as /yquant/operators/every subcircuit or /yquant/this operator,
this style is only applied to the “container” node of the subcircuit, but not to the
elements in the subcircuit themselves. Also note that the box style by default
contains an inner xsep that will be added as an inside padding. This makes
sense if your wires have labels so that these labels don’t move too closely to the
border of the box. However, if you do not labelled wires but still want to have a
box around the subcircuit, you should consider removing the separation—as it will
be added to the initial wire padding given by /yquant/operator/separation.

/yquant/subcircuit box style default: /yquant/operators/every subcircuit
box/.append style={#1}

This is a shorthand to append styles to the subcircuit box only.

/yquant/operators/this subcircuit box default:
This style is appended to the current style installed for the subcircuit, but will
not apply to its contents. Additionally, this style will be reset to an empty style
at the beginning of each subcircuit, so that it really only applies to exactly the
subcircuit box it is explicitly specified on, not to nested subcircuit boxes.

50

/yquant/this subcircuit box style default: /yquant/operators/this
subcircuit box/.append style={#1}

This is a shorthand to append styles to the current subcircuit box only.

/yquant/operators/subcircuit/frameless default: /yquant/operators/this
subcircuit box/.append style={draw=none, inner sep=0pt}

This is a shorthand style that removes the frame and additional inner separation for
the current subcircuit. Note that still, the wire padding given by /yquant/operator/separation
is present within the—now invisible—outer box that contains the subcircuit (use
/yquant/operators/subcircuit/seamless to suppress it). Hence, the most
prominent application of this key is if the wires before and after the subcircuit are
nobits, which provides a clean way to build up circuit equations with perfectly
aligned wires (examples can be found in section 6).

/yquant/operators/subcircuit/name mangling default: prefix or discard
This option defines how named nodes within subcircuits are made available to
the outer circuit:

• prefix or discard
If the subcircuit itself has a name 𝑠 and the inner gate has a name 𝑔, the
outer circuit can refer to the inner gate via the name 𝑠-𝑔. Note that 𝑠 itself
may not only consist of the user-specified name, but may instead already be
suffixed by -0, -1, …, if the subcircuits were assigned to multiple targets.
If the subcircuit itself has no name, works as discard.

• prefix or transparent
If the subcircuit itself has a name, as works as prefix or discard; else,
works as transparent.

• transparent
The inner gates are always available in the outer circuit by their original
names. Note that this may potentially lead to naming conflicts, which are
always resolved by the latest name overwriting all previous declarations
without notice.

• discard
The inner gates will not be available in the outer circuit.

Note that if a new gate is defined via \yquantdefinegate—which internally uses
subcircuits—the value of this option at the time of declaration is the relevant one,
not the one at the time of usage. This can be influenced via /yquant/operators/subcircuit/name
mangling reset.

51

/yquant/operators/subcircuit/name mangling reset default: true
The current value of /yquant/operators/subcircuit/name mangling will be
reset at the beginning of a subcircuit to the value it had upon declaration of the
subcircuit only if this option is true upon using the subcircuit (which typically
will only make a difference if the subcircuit was defined via \yquantdefinegate
at some earlier stage).

Setting this value to false has the potential of breaking the corresponding
subcircuit/custom gate, as it may internally reference gates by names that are
no longer the correct ones. Do not use this property without a very good reason
and thorough understanding of what is happening.

/yquant/operators/subcircuit/seamless default:
/yquant/operators/subcircuit/frameless, /yquant/register/default

name=, /yquant/circuit/seamless
This option carries out multiple actions that are responsible to let the current
subcircuit appear in a “seamless” state:

• It calls /yquant/operators/subcircuit/frameless.

• It sets /yquant/circuit/seamless to true.

• It ensures that /yquant/circuit/seamless is reset within the subcircuit,
so that it does not propagate to nested subcircuits.

/yquant/operators/every swap default: shape=yquant-swap, radius=.75mm,
draw

This style is installed for every swap gate that interchanges two qubits. The
yquant-swap shape consists of a single cross.

/yquant/operators/every text default: shape=yquant-rectangle,
align=center, inner timesep=1mm, time radius=2mm, space

radius=2.47mm, /yquant/default fill
This style is installed for every text gate.

/yquant/operators/every wave default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every correlate gate.

/yquant/operators/every x default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑥, i.e., x.

52

/yquant/operators/every xx default: shape=yquant-rectangle, radius=.75mm,
draw, /yquant/default fill

This style is installed for every xx gate in symmetrized notation (|++⟩⟨++| +
|+−⟩⟨+−| + |−+⟩⟨−+| − |−−⟩⟨−−|).

/yquant/operators/every y default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑦, i.e., y.

/yquant/operators/every z default: /yquant/operators/every pauli
This style is installed for every Pauli operator 𝜎𝑧, i.e., z.

/yquant/operators/every zz default: shape=yquant-circle, radius=.5mm,
fill

This style is installed for every zz gate (aka CPhase) in symmetrized notation
(|00⟩⟨00| + |01⟩⟨01| + |10⟩⟨10| − |11⟩⟨11|).

53

4 Doing the impossible

yquant will almost certainly never be able to do everything an author has in mind.
Sometimes, there is the need to draw something non-standard, and this cannot be
implemented in the yquant language. However, since yquant is a layer on top of
TikZ, it should be very hard to find something (meaningful) that cannot be done
by combining the power of both packages.

4.1 Mixing yquant and TikZ code

Before or after any gate, you may interrupt the yquant instructions to perform
arbitrary TikZ path operations. After every such operation, yquant will automati-
cally restart its parser so that you can fluently jump between yquant and TikZ
code. You can even interject arbitrary TEX code (or, say, low-level pgf commands);
however, then, yquant is not able to restart its parser. For this reason, after the
last command in a block of TEX commands, you must issue \yquant, which then
re-enables the yquant language.

4.2 Accessing gates in TikZ

The feature to perform arbitrary TikZ operations is powerful in itself, but would
be of limited use were there no way to access the elements in the quantum circuit.
yquant provides a global attribute name that can be assigned to every gate. All
quantum operations are in fact TikZ nodes, and the name you give to them then
becomes a TikZ name, which you can easily reference to get the coordinates of a
particular operator. Note that the name you specify is only available if a single
register is targeted. The name is suffixed by -\idx, where \idx refers to the (zero-
based) index of the operation ordered from top to bottom (i.e., if an operator acts
on two qubits and should be named op, the topmost operator will be available as
op-0 and the second as op-1). Multiple slices in a discontiguous multi-register are
additionally suffixed by -s<slice index>. All controls are also named, suffixed
by -p\idx or -n\idx for positive and negative controls (i.e., the topmost positive
control of the previous operator will be available as op-p0). Counters for target
registers, positive, and negative controls are all independent. Finally, you can
even access names within a subcircuit, provided you give a name to the subcircuit.
All nodes in the subcircuit will then have the name <subcircuit name>-<name
specified in the subcircuits>. Note that here, <subcircuit name> is the
full name of the subcircuit, which includes the -\idx suffix, unless there is only a
single target register. For nested subcircuits, you will get multiple prefixes. The

54

prefixing behavior can be influenced by /yquant/operators/subcircuit/name
mangling.

4.3 Shapes and the drawing pipeline

All yquant shapes have the anchors available you would typically expect from a
TikZ shape of the given outline. The center anchor will be aligned to the wire. In
addition to the normal paths implemented by TikZ shapes, the width and height
of those fit for yquant at least twice as large as given by the /tikz/x radius and
/tikz/y radius; and they must implement clipping paths, a yquant addition to
TikZ shapes. Such a path has to provide the “clipping outline,” i.e., anything that
should not contain register or control lines. There may be a difference between
horizontal and vertical clipping outlines. To understand clipping paths, yquant’s
drawing pipeline needs to be explained.

• In a first run—this is what happens directly at the position where you
type the gate command—yquant will “virtually” draw the gates in order
to determine their dimensions and calculate register heights. The actual
drawing commands are written to a macro (this is the cause that some
macros must be preceded by \protect if used in a gate value—in fact, if
multiple registers are targeted in one gate, the style and values required for
this gate are only stored once, so that for example \idx is a \protected
macro until the very end).

• Deferred gates (measurements that may replace future control knobs) are
stored temporarily and queried when the next gate is executed or at the end
of the circuit. The corresponding commands—either re-inserting if they must
appear at their original position or substituting the controls—are inserted
appropriately.

• When \end{yquant} is encountered, the vertical positions are determined
and the actual drawing commands are executed.

• Unless the operation changes the wire type or style, do the following (first
two items for every register at which an operator node has to be created).

– Create the operator node at the appropriate position.
– Call \pgfshapeclippath on the newly created node. This will first

determine whether the node was stroked; if not, \pgflinewidth is set
to zero. Then, it will call the horizontal clipping path, which is supposed
to create some soft path commands. Those soft path commands are
collected in a macro on a per-register basis and the soft path is cleared.

55

The same happens for the vertical clipping path, which is collected in
a macro on a per-operation basis.

– If control lines or multi lines are to be drawn, the vertical clipping path
commands are now executed and installed as an inverted2 clipping.

– Control lines and multi lines are drawn (in this order) from one to the
next center anchor. Due to the clipping commands, this will create
a perfect connection with the shape of the gate, but even transparent
gates are possible without the lines being visible.

• If the operation changes the wire type or style, or if there is no operation
left on this register, the following is done.

– Load the clipping paths accumulated for all the gates acting on this
register and install the inverted clipping.

– Draw the wire as one continuous line from where the last wire ended
(or the beginning of the circuit) to the center of the last gate, or to the
common end position for all wires of the circuit.

– Remove the clipping paths stored so far on this register, apart from the
clipping on the last gate (which will be needed again if this was not
the end of the circuit).

Note that yquant also supports a simplified drawing pipeline which does not
involve clipping paths. It can be enabled by setting the /yquant/drawing mode
option to size. The simplified pipeline has the following benefits:

• TEX has to compute a bit less, so the compilation process can be sped up.

• PDF readers may render the circuit faster.

• The size of the output files is decreased.

• Compatibility with very simplistic clients that don’t support clipping well
is improved (this may be an issue for some PDF to image converters, for
example).

• Theoretically, you may use any kind of predefined shape in this mode (from
TikZ or other packages), since the clipping paths are no longer required.

2Inverting the clipping means that instead of drawing only within the clipping path (which
corresponds to the gates), we only draw outside. However, as there is no direct support for this,
we invert by exploiting the even-odd rule. If you specify a register multiple times, whether
as target, control, or mixed, funny effects can be expected, as the clipping region is inverted
multiple times. Note that using a register more than once is always an error, but yquant does
not check for it due to the high overhead.

56

However, with it come certain drawbacks:

• Gates are no longer transparent, but filled with some fixed background color,
so if transparency is important for you, this just does not work.

• yquant relies on TikZ’s layering capabilities; if you use layers by yourself,
you have to pay some attention to do it correctly.

• The z-order may not be as you expect it; in particular: All the gates will be
drawn on the main layer; all the wires on the wires layer, which is behind
main; so if you don’t use layers by yourself, everything that you draw will
overshadow the wires, but not necessarily the gates.

• If you were to fill a subcircuit, this would then erase all the internal wires.
Hence, the box of a subcircuit is drawn on the behindwires layer; but this
implies that also the frame of the box is drawn behind the wires and that
this box is also overshadowed by any of your drawing.

• Wires that visually cross gates which are not part of the gate may be displayed
differently from the standard pipeline.

Unless you use \pgfsetlayers to add the layers wires and behindwires manu-
ally, yquant will automatically place the wires layer directly before main; then
it will place behindwires directly before wires. This in particular ensures full
compatibility with the backgrounds library: the background layer is still the very
first in the layer list. In contrast to pgfplots, this automatism should work even
if the yquant environment is placed within groups.

4.4 Overwriting the height and depth calculation

yquant automatically takes care of calculating the height and depth of all registers,
so that their final vertical positions are chosen without overlap. This is almost
always advisable, but it has some weaknesses:

• If you specify a multi-register gate, say, extending for three registers and
this requires a certain height and depth, where should this be accounted
for? yquant is able to handle these situations by first determining all heights
and depths that can safely be attributed to individual registers. After that, it
checks for all multi-register gates: Is the space from the top of the first to
the bottom of the last register enough to hold the multi-qubit gate? If not,
it evenly distributes the additional required space to all registers that are
visually within the range of this multi-register.
This will fail to produce good results (hopefully) only in two cases:

57

– If you place labels on the gate, those are outside of the gate—and
typically, either below or above. Hence, the additional extent stemming
from them should not be equally distributed among all registers, but
either to the height of the first or the depth of the last one. Currently,
yquant is unable to detect this (and, considering the fact that you can
place labels at any angle, this is not an easy problem to solve except
for special cases).

– If you make use of a discontiguous init gate with a large vertical
extent, yquant will correctly allocate space as if the gate’s content
were placed in the vertical center. However, if there is no way to put
the arch of the brace at the middle, as the register at this position is
excluded from the gate, the content will be shifted—but only after
calculating the extent. Hence, the automatically calculated vertical
positions will be unsuitable.

• Sometimes, there is more space available than yquant thinks because you
already discarded some wire. yquant does not keep track of whether the
wires below or above a gate are actually visible at this position—which is
not even be known at the time the gate command is issued, as horizontal
positions are determined only in the drawing stage. Hence, you may choose
to draw “within” the other, invisible wire.

In these certain special cases, you may want to turn off the automatic calculation
for one particular gate. Note that you may then, depending on the situation, obtain
results with overlapping gates. You can use the keys /yquant/register/minimum
height and /yquant/register/minimum depth when declaring the relevant
register to manually specify a larger desired value, but you have to experiment
with regard to what this value is.

The global attribute overlay (conveniently overshadowing TikZ’s overlay key,
which should not be used for gates) can take the values

• true (default if no value given, combines multi, height, and depth),

• multi (short m),

• height (short ht, h), equivalent to left (short l) and before (short bef, b),
which sound more meaningful for vertical and generic circuit orientations,

• depth (short dp, d), equivalent to right (short r) and after (short aft, a),
which sound more meaningful for vertical and generic circuit orientations,

• single (short s, combines height and depth), and

58

• false (useless, default if attribute not given).

It disables the calculation of the selected vertical extent for this particular gate. (In
fact, multi, height, depth, and single are subkeys that accept boolean values.)

59

5 Reference: Gates and operations

This section lists all operations yquant currently understands. It also details all
arguments that can be given to customize the operation, apart from name and
overlay, which are always available. Note that the [value=<value>] attribute
can (and should) alternatively be given as a braced expression that follows the
name of the register. Within <value>, unless specified differently, the macro \idx
is always available and corresponds to the index of the current register in the list
of targets.

5.1 addstyle

Syntax: setstyle <target>;
This is an invisible pseudo-gate that immediately changes the TikZ style with
which the register lines of all target registers are drawn. It adds to the styles that
are already installed. Use setstyle to replace styles. It may not span multiple
registers and does not allow for controls.

Possible attributes:

• [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

5.2 align

Syntax: align <target>;
This is an invisible pseudo-gate that enforces all affected registers to share a
common horizontal position for their next gate, which is determined by the largest
position of all gates involved. It may not span multiple registers and does not
allow for controls. The gate now always aligns the wires, i.e., if they are discarded
directly after this gate, they will still discarded all at the same position.

Possible attributes: none

5.3 barrier

Syntax: barrier <target>;
This is a pseudo-gate that denotes some physical barrier that ensures execution
with a specific timing; it is basically a visible version of the align gate, denoted
by a vertical line. It may span multiple registers, but does not allow for controls.
The style /yquant/operators/every barrier is installed.

Possible attributes: none

60

5.4 box

Syntax: box <target> | <pcontrol> ~ <ncontrol>;
This is a generic register of a rectangular shape that can be filled with arbi-
trary content. It may span multiple registers and allows for controls. The style
/yquant/operators/every box is installed.

Possible attributes:

• [value=<value>]
Denotes the content of the box.

5.5 cbit

Syntax: cbit <name>[<len>];
Declares a register of type cbit.

see qubit

5.6 correlate

Syntax: correlate <target>;
This is a pseudo-gate that indicates a correlation (usually a Bell-state) present
between the multi-registers involved. This gate should span multiple registers
and does not allow for controls. The style /yquant/operators/every wave is
installed.

Possible attributes: none

5.7 cnot

Syntax: cnot <target> | <pcontrol> ~ <ncontrol>;
This is a synonym for the not gate. Note that despite its name, controls are not
mandatory and also here, the style /yquant/operators/every not is installed.

5.8 discard

Syntax: discard <target> | <pcontrol> ~ <ncontrol>;
This is an invisible pseudo-gate that changes the type of all target registers to
nobit, i.e., no line will be drawn for them. This has effect already for the outgoing
line of the last gate on the target registers. The gate may not span multiple registers.
To change a register type on-the-fly into something different from nobit, use the
settype pseudo-gate.

Since version 0.8, the gate allows for controls, which will draw as the “corner”
gate:

61

=
𝐻

𝑍

Possible attributes: none

5.9 dmeter

Syntax: dmeter <target>;
This is a measurement gate, denoted by a “D” shape. It changes the type of all
targets involved. It may span multiple registers, but does not allow for controls.
The style /yquant/operators/every dmeter is installed.

Possible attributes:

• [value=<value>]
Allows to specify a text that will be included inside the gate, possible en-
larging its width. For outside texts, use TikZ labels instead.

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

5.10 h

Syntax: h <target> | <pcontrol> ~ <ncontrol>;
This is a Hadamard gate, (|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|) ⁄

√
2, denoted by a

rectangle that contains the letter 𝐻. It may not span multiple registers, but allows
for controls.
The style /yquant/operators/every h is installed.

Possible attributes: none

5.11 hspace

Syntax: hspace <target>;
This is an invisible pseudo-gate that inserts a certain amount of white space into all
target registers. It may not span multiple registers and does not allow for controls.
The gate now always has an effect, e.g., if the wire is discarded after this gate, it
will still be extended by the given amount first.

Possible attributes:

62

• [value=<dim>] (required)
Gives the amount of white space that is to be inserted. Must be a valid
(nonnegative) TEX dimension.

5.12 init

Syntax: init <target> | <pcontrol> ~ <ncontrol>;
This is a pseudo-gate that (re)initializes a registers to a given state. It may span
multiple registers, or it may allow for controls (though the exclusiveness is not
checked). The style /yquant/every label is installed. Note that this pseudo-gate,
unlike all others, behaves differently if it is the first operation acting on a register
and does not have controls: in this case, it does not increment the horizontal
position, but uses the space available to the left; and the style /yquant/every
initial label is installed additionally. Internally, creating a new register with
some printed name is translated into the creation of an unnamed register, followed
by application of this gate with the desired text.

Since version 0.8, the gate allows for controls, which will draw as the “corner”
gate:

=
|0⟩

Possible attributes:

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected target registers are con-
verted. Default is the type of the first target register that is different from
nobit, or qubit if they all are nobit. The style /yquant/every <type>
label is installed additionally.

• [value=<value>]
Denotes the label that is printed to the left of the wire. Since version 0.8,
the value is optional; if it is not given, it is assumed to be empty.

5.13 inspect

Syntax: inspect <target>;
This is a pseudo-gate that allows to print the current state of one or multiple
registers within a circuit. It may span multiple registers, but does not allow for
controls. The style /yquant/operators/every inspect is installed. Essentially,
it is the same as an output gate that will be drawn immediately at the current

63

position and not deferred until the end; hence, it also draws braces when used in
a multi-register context. If this is not desired, use the text gate instead.

Possible attributes:

• [value=<value>] (required)
Denotes the text that is to be printed.

5.14 iswap

Syntax: iswap <targets> | <pcontrol> ~ <ncontrol>;
This is the two-qubit iswap gate |00⟩⟨00| + i |01⟩⟨10| + i |10⟩⟨01| + |11⟩⟨11| that
exchanges two qubits and conditionally adds phases. It is denoted by crosses
within circles at the affected registers which are connected by a control line. It
may span multiple registers (in fact, it should always span exactly two registers,
though yquant does not enforce this), and it allows for controls. However, refrain
from combining multiple two-qubit targets together with controls. The control line
will extend from the first to the last of all registers involved in the operation, so
that it is impossible to discern visually which registers should actually be swapped.
Using multiple swaps without controls in one operation is fine, as well as a single
controlled swap. The style /yquant/operators/every iswap is installed.

Possible attributes: none

5.15 measure

Syntax: measure <target>;
This is a measurement gate, denoted by a rectangle with a meter symbol. It
changes the type of all targets involved. It may span multiple registers, but does
not allow for controls. The style /yquant/operators/every measure is installed.
It may be deferred to be used instead of a control knob for a later gate using
the /yquant/every post measurement control style or the suitable attributes;
see the documentation for this style.

Possible attributes:

• [type=<qubit|cbit|qubits>]
Allows to specify the type into which the affected targets are converted.
Default is cbit.

• [value=<value>]
Allows to specify a text that will be included at the bottom of the rectangle
(which will shift the meter symbol upwards accordingly). For outside texts,
use TikZ labels instead.

64

• [direct control]
Temporarily sets /yquant/every post measurement control=direct for
this particular gate.

• [indirect control]
Temporarily sets /yquant/every post measurement control=indirect
for this particular gate.

5.16 nobit

Syntax: nobit <name>[<len>];
Declares a register of type nobit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this circuit (but
names can be re-used in subcircuits). Names are case-insensitive. The register can
be made into a vector register by specifying <len> (default 1).

Possible attributes:

• [out] or [ancilla] (required in subcircuits)
see qubit

5.17 not

Syntax: not <target> | <pcontrol> ~ <ncontrol>;
This is a not gate, |0⟩⟨1|+|1⟩⟨0|, denoted by the⊕ symbol. It may not spanmultiple
registers, but allows for controls. Due to its common usage, the synonymous gate
cnot is provided. The style /yquant/operators/every not is installed.

Possible attributes: none

5.18 output

Syntax: output <target>;
This is a pseudo-gate that allows to write some text at the very end of the register
line. It may only be specified once per register. It may span multiple registers, but
does not allow for controls. The style /yquant/every output is installed, and
also the style /yquant/every <type> output, where <type> is the type of the
affected register (at the time of printout). Note that while outputs can be named,
the name will only become available after the yquant environment itself was
ended (but of course before the outer tikzpicture was closed).

Possible attributes:

• [value=<value>] (required)
Denotes the text that is to be printed.

65

5.19 phase

Syntax: phase <name> | <pcontrol> ~ <ncontrol>;
This is a phase gate, |0⟩⟨0| + ei𝜙 |1⟩⟨1|, denoted by a filled circle. It may not span
multiple registers, but allows for controls. The style /yquant/operators/every
phase is installed.

Possible attributes:

• [value=<value>] (required)
Denotes the angle 𝜙 that is to be printed together with the gate. Position
and appearance can be influenced by setting the position of TikZ labels, as
this is internally used. Note that at the moment, it is not possible to change
any label options on a gate-type basis, only locally or fully globally (TikZ
feature request #811).

5.20 qubit

Syntax: qubit <name>[<len>];
Declares a register of type qubit. The <name> must be a self-chosen name for
the register which was not previously used as a register name in this circuit (but
names can be re-used in subcircuits). Names are case-insensitive. The register can
be made into a vector register by specifying <len> (default 1).

Possible attributes:

• [after=<regname>]
If given, the register will start not at the left of the circuit but instead at the
position at which the last gate in the register <regname> ended.

This attribute may not be given in combination with [in] or [inout].

• [in], [out], [inout], or [ancilla]
Default: [ancilla] for top-level circuits (do not change there); [inout]
for subcircuits.

Determines how a subcircuit interacts with its parent circuit.

Registers declared with the [ancilla] attribute are available only to the
subcircuit; they cannot be connected to an outside wire.

Registers declared with the [in] or [inout] attribute will expect an outer
wire of the same type to be present and will then be identical with this outer
wire. Any changes applied to the wire within the subcircuit automatically
also happen on the associated outer wire. If the attribute is [in], the wire
will automatically be discarded at the end of the subcircuit (and hence also

66

https://github.com/pgf-tikz/pgf/issues/811

in the outer circuit, where it may be re-initialized). This is different from
applying the discard gate in that the wire will still extend until the end of
the subcircuit and may thus receive proper outputs.

Registers declared with the [out] attribute will expect a discarded outer
wire to be present, which will be initialized to a qubit at the beginning of
the subcircuit, and from then on be identical with the outer wire.

• [value=<value>]
Denotes the label that is printed to the left of the wire. If the value is omitted,
the default is used (/yquant/register/default name, preinitialized to
\regidx).

Inside the value, \reg expands to <name>, \len expands to <len>, \idx
expands to the current index within the vector register (for new registers,
0 ≤ \idx < <len>), and \regidx expands to \reg if <len> is one, or to
\reg[\idx] else. For details about these macros and changes in version 0.8,
see their documentation.

• [enclose/set from=<enclose name>]
Tells yquant that the named enclosing <name> should at least start from
this register (if multiple registers are created, from the first one), if not at a
preceding one.
See the documentation for /yquant/enclose/from.

• [enclose/set to=<enclose name>]
Tells yquant that the named enclosing <name> should at least end at this
register (if multiple registers are created to the last one), if not at a succeed-
ing one.
See the documentation for /yquant/enclose/to.

5.21 qubits

Syntax: qubits <name>[<len>];
Declares a register of type qubits.

see qubit

5.22 setstyle

Syntax: setstyle <target>;
This is an invisible pseudo-gate that immediately changes the TikZ style with
which the register lines of all target registers are drawn. It replaces all previous

67

styles. Use addstyle to accumulate styles. It may not span multiple registers and
does not allow for controls.

Possible attributes:

• [value=<styles>] (required)
Denotes the new styles; this should be a string that could be passed to
\tikzset.

5.23 settype

Syntax: settype <target>;
This is an invisible pseudo-gate that immediately changes the type of the targets
registers, taking effect with the output line extending from the last drawn gate. It
may not span multiple registers and does not allow for controls.

Possible attributes:

• [value=<qubit|cbit|qubits>] (required)
Denotes the new type that is assigned to all registers. To change the type to
nobit, use the discard pseudo-gate instead.

5.24 setwire

Use settype instead.
This gate is only available if a compatibility version before 0.4 is chosen.

5.25 slash

Syntax: slash <target>;
This is a pseudo-gate used to denote that a single line actually represents multiple
registers. It is drawn as a short slash through the line of the register. The style
/yquant/operators/every slash is installed. Note that this gate will ignore
the /yquant/operator/minimum width key. With a compat key of 0.3 or earlier,
the gate was special in that it did not advance the horizontal position on the wire,
which allows to use it on only some of the wires without leading to a ragged start
of subsequent gates. However, as yquant’s default separation is not large enough
to give a pleasant layout when the slash is squeezed in the initial separation, this
was dropped as of version 0.4. Use the align gate after all slashes to get a better
layout.

Possible attributes: none

68

5.26 subcircuit

Syntax: subcircuit <target>;
This is a subcircuit gate which inserts independent quantum circuits at the current
position within the circuit. It may span multiple registers, but is never split into con-
tiguous slices. It allows for controls and may change the type of any target involved,
depending on the particular subcircuit. The style /yquant/operators/every
subcircuit is installed.

Possible attributes:

• frameless
This /yquant/operators/subcircuit/frameless style is activated with
this shorthand.

• name mangling
This shorthand will pass the value of the attribute directly to the configura-
tion key /yquant/operators/subcircuit/name mangling.

• seamless
The /yquant/operators/subcircuit/seamless style is activated with
this shorthand (implies frameless).

• value=<subcircuit> (required)
Denotes the content of the subcircuit. It is specified in the usual syntax of
yquant. Note that, regardless of the outer environment, a subcircuit always
implicitly uses the unstarred form, i.e., you must declare every register
explicitly before its first usage. This is to make sure that the interface of the
circuit, i.e., which registers are taken as input and/or output parameters
and in which order, is not accidentally mistaken.
The mapping between input and output registers is trivial for single-qubit
uses. For multi-qubit uses, it works in the following way—in short, it matches
in visual order. You declare input and output registers by using the appro-
priate attributes on the qubit, cbit, qubits (or even nobit) gates. The
list of all non-ancillas, from the topmost to the bottom-most, forms the
list of parameter registers of the subcircuit. This is exactly the number of
registers that must be supplied within one multi-qubit target. Also within
the multi-qubit target, we sort all registers from the topmost to the bottom-
most (in the order as they visually appear, not the order in which they are
entered). Those two lists of equal length are then mapped 1 ∶ 1 to each
other. Intermixing with ancillas is possible at every position and will lead
to a vertical shift of the wires, until all registers, inner and outer, can be
displayed flawlessly.

69

As subcircuits follow the same rules as ordinary circuits, it is possible to
mix them with arbitrary TEX code, and also to access named gates within
the subcircuit—but note that named gates in the outer circuit cannot be
accessed (at least unless you play with the name prefix key in TikZ). In
order to access inner nodes from the outer circuit, the subcircuit itself must
be named; the inner nodes are then prefixed by the name of the subcircuit
and a dash.
It is possible to nest subcircuits arbitrarily.

5.27 swap

Syntax: swap <targets> | <pcontrol> ~ <ncontrol>;
This is the two-qubit swap gate |00⟩⟨00| + |01⟩⟨10| + |10⟩⟨01| + |11⟩⟨11| that
exchanges two qubits. It is denoted by crosses at the affected registers which
are connected by a control line. It may span multiple registers (in fact, it should
always span exactly two registers, though yquant does not enforce this), and it
allows for controls. However, refrain from combining multiple two-qubit targets
together with controls. The control line will extend from the first to the last of
all registers involved in the operation, so that it is impossible to discern visu-
ally which registers should actually be swapped. Using multiple swaps without
controls in one operation is fine, as well as a single controlled swap. The style
/yquant/operators/every swap is installed.

Possible attributes: none

5.28 text

Syntax: text <targets> | <pcontrol> ~ <ncontrol>;
This is a pseudo-gate that allows to write some text within the circuit. It may span
multiple registers and allows for controls (though the situations in which controls
make sense are pretty scarce). The style /yquant/operators/every text is
installed. Contrary to the inspect gate, this gate will not draw curly braces in
multi-register use. It basically corresponds to a box gate with suppressed drawing.

Possible attributes:

• [value=<value>] (required)
Denotes the text that is to be printed.

5.29 x

Syntax: x <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎x gate |0⟩⟨1| + |1⟩⟨0|, denoted by a rectangle that contains the

70

letter 𝑋. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every x is installed.

Possible attributes: none

5.30 xx

Syntax: xx <targets>;
This is a symmetric flip gate, denoted by joined open squares. It should span
multiple registers and it allows for controls. The same warnings as for the swap
gate apply. The style /yquant/operators/every xx is installed.

Possible attributes: none

5.31 y

Syntax: y <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎y gate −i |0⟩⟨1| + i |1⟩⟨0|, denoted by a rectangle that contains the
letter 𝑌. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every y is installed.

Possible attributes: none

5.32 z

Syntax: z <target> | <pcontrol> ~ <ncontrol>;
This is a Pauli 𝜎z gate |0⟩⟨0| − |1⟩⟨1|, denoted by a rectangle that contains the
letter 𝑍. It may not span multiple registers, but allows for controls.
The style /yquant/operators/every z is installed.

Possible attributes: none

5.33 zz

Syntax: zz <targets>;
This is a symmetric phase gate, denoted by joined filled circles. It should span
multiple registers, but does not allow for controls. The same warnings as for the
swap gate apply. The style /yquant/operators/every zz is installed.

Possible attributes: none

71

6 Examples

This section will contain lots of examples. On the left-hand side, the output is
given, while the code to construct the example is on the right. All examples
that are provided originate from the examples supplied with qasm, qcircuit,
quantikz, and qpic. Wewill essentially follow their manuals example-by-example,
which gives a nice comparison in how to achieve the given feature using these
packages and yquant instead. All examples of course require inclusion of the
yquant package with newest compatibility in the preamble, and some also require
braket.

6.1 qasm documentation

The qasm documentation most often names the registers in the way |registerindex⟩.
This can be achieved by writing

qubit {$\ket{<name>_{\idx}}$} <name>[<len>];

but if you want to realize this naming scheme for all circuits in your document, it
is more convenient to say

\yquantset{register/default name=$\ket{\reg_{\idx}}$}

in the preamble, as is done here.
Note that yquant also directly supports the qasm syntax, see section 7.2.

test1 (create an EPR pair)

|𝑞0⟩
|𝑞1⟩

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

h q[0];
cnot q[1] | q[0];

\end{yquant}
\end{tikzpicture}

72

test2 (simple teleportation circuit)

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻
𝐻

𝑍 𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[1];
cnot q[2] | q[1];
cnot q[1] | q[0];
h q[0];
measure q[0-1];

z q[2] | q[1];
x q[2] | q[0];

\end{yquant}
\end{tikzpicture}

test3 (swap circuit)

|𝑞0⟩
|𝑞1⟩

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

cnot q[1] | q[0];
cnot q[0] | q[1];
cnot q[1] | q[0];

\end{yquant}
\end{tikzpicture}

73

test4 (quantum fourier transform on three qubits)

|𝑗0⟩
|𝑗1⟩
|𝑗2⟩

𝐻 𝑆 𝑇
𝐻 𝑆

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit j[3];

h j[0];
box {S} j[0] | j[1];
box {T} j[0] | j[2];
h j[1];
box {S} j[1] | j[2];
h j[2];
swap (j[0, 2]);

\end{yquant}
\end{tikzpicture}

test5 (demonstrate arbitrary qubit matrix ops)

|𝑗0⟩

|𝑗1⟩ [𝑒
𝑖𝛼 0
0 𝑒−𝑖𝛼]

[cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃]

% \usepackage{amsmath}
\begin{tikzpicture}

\begin{yquant}
qubit j[2];

box {$\begin{bmatrix}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}

\end{bmatrix}$} j[1] | j[0];
box {$\begin{bmatrix}

\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta

\end{bmatrix}$} j[0];
\end{yquant}

\end{tikzpicture}

74

test6 (demonstrate multiple-qubit controlled single-q-gates)

|𝑗0⟩
|𝑗1⟩
|𝑗2⟩
|𝑗3⟩

𝑋
𝑈

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit j[4];

cnot j[2] | j[0, 1];
x j[0];
box {U} j[1] | j[0, 2-3];
h j[2];
measure j[3];

\end{yquant}
\end{tikzpicture}

test7 (measurement of operator with correction)

|𝑞0⟩
|𝑞1⟩

𝐻
𝑈

𝐻
𝑉

\begin{tikzpicture}
\begin{yquant}

qubit q[2];

h q[0];
box {U} q[1] | q[0];
h q[0];
measure q[0];
box {V} q[1] | q[0];

\end{yquant}
\end{tikzpicture}

75

test8 (stage in simplification of quantum teleportation)

|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |0⟩
|𝑞2⟩ = |0⟩

𝐻
𝐻 𝑍

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$}
q[1];↪

qubit {$\ket{q_{\idx}} = \ket0$}
q[+2];↪

h q[1];
cnot q[1] | q[0];
cnot q[2] | q[1];
cnot q[1] | q[0];
h q[0];
cnot q[2] | q[1];
z q[0] | q[2];

\end{yquant}
\end{tikzpicture}

Note that we left out two Hadamards at the end.
Another way to provide various initial values in a single command is by per-
forming case discrimination on \idx, for example in the following manner:

qubit {$\ket{q_{\idx}} = \Ifcase\idx\relax \ket\psi \Else \ket0 \Fi$}
q[3];↪

In principle, all TEX conditionals that check against \idx need to be prefixed by
\protect. If the compat key is at least 0.4, yquant will make the commands
\Ifnum, \Ifcase, \Or, \Else, \Fi, \Unless and \The available for use within
gates; they correspond in a certain way to auto-\protected versions of the
corresponding TEX primitives. Most likely, you will never need them inside
values if not in the exact combination with \idx.

76

test9 (two-qubit gate circuit implementation of Toffoli)

|𝑞0⟩
|𝑞1⟩

|𝑞2⟩
√
𝑋

√
𝑋† √

𝑋

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

box {$\sqrt X$} q[2] | q[1];
cnot q[1] | q[0];
box {$\sqrt X^\dagger$} q[2] |

q[1];↪

cnot q[1] | q[0];
box {$\sqrt X$} q[2] | q[0];

\end{yquant}
\end{tikzpicture}

test10 (multi-qubit gates also demonstrates use of classical bits)

|𝑞0⟩
𝑐1

|𝑞2⟩

𝐻 𝑈

𝑆 𝑈

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0}$} q;
cbit {c_1} c;
qubit {$\ket{q_2}$} q[+1];

h q[0];
box {U} (q[0], c);
box {S} q[1];
box {U} (c, q[1]);

\end{yquant}
\end{tikzpicture}

Instead of a discontiguous vector register, we could also have used three scalar
registers. The labels chosen for qasm do not fit well to the indices yquant
assigns. We might also have used a three-register vector and used the settype
pseudo-gate to immediately change the second register into a classical one,
which would give indices matching the labels—but still, the registers would
have a common name, which would make this a very unnatural approach.

77

test11 (user-definedmulti-qubit ops)

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻 𝑈𝑓(𝑥)
𝐻 𝑈𝑓(𝑥,𝑦)

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[0];
box {$U_{f(x)}$} (q[0, 1]);
h q[1];
box {$U_{f(x, y)}$} (q);

\end{yquant}
\end{tikzpicture}

Here we used the fact that a vector register can also be addressed as a whole.
Instead of (q), we could have also written, e.g., (q[0]-q[2]) or (q[0-2]),
or enumerated all sub-registers in a comma-separated list.

test12 (multi-qubit controlledmulti-qubit operations)

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻

𝑈

𝐻
𝑉

\begin{tikzpicture}
\begin{yquant}

qubit q[3];

h q[0];
box {U} (q[1-2]) | q[0];
h q[0];
box {V} (q[0-1]) | q[2];

\end{yquant}
\end{tikzpicture}

78

test13 (three-qubit phase estimation circuit with QFT and controlled-U)

|𝑗0⟩ = |0⟩
|𝑗1⟩ = |0⟩
|𝑗2⟩ = |0⟩

|𝑠0⟩
|𝑠1⟩

𝐻
𝐻
𝐻

𝑈4 𝑈2 𝑈

𝐻
𝑆 𝐻

𝑇 𝑆 𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{j_{\idx}} = \ket0$} j[3];
qubit s[2];

h j;
box {U^4} (s) | j[0];
box {U^2} (s) | j[1];
box {U} (s) | j[2];
h j[0];
box {S} j[1] | j[0];
h j[1];
box {T} j[2] | j[0];
box {S} j[2] | j[1];
h j[2];
measure j;

\end{yquant}
\end{tikzpicture}

test14 (three-qubit FT QEC circuit with syndromemeasurement)

|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

|𝑠0⟩ = |0⟩
|𝑠1⟩ = |0⟩

𝑐0 = 0
𝑐1 = 0

𝐻 𝐻 |0⟩
|0⟩

𝐻 𝐻
Process

Syndrome

ℛ

79

\begin{tikzpicture}
\begin{yquant}

qubit q[3];
qubit {$\ket{s_{\idx}} = \ket0$} s[2];
cbit {$c_{\idx} = 0$} c[2];

h s[0];
cnot s[1] | s[0];
cnot s[0] | q[0];
cnot s[1] | q[1];
cnot s[1] | s[0];
h s[0];
measure s;
cnot c[0] | s[0];
cnot c[1] | s[1];
discard s; % to suppress wires extending until re-initialization

init {$\ket0$} s;
h s[0];
cnot s[1] | s[0];
cnot s[0] | q[1];
cnot s[1] | q[2];
cnot s[1] | s[0];
h s[0];
measure s;

box {Process\\Syndrome} (s, c);
box {$\symcal R$} (q) | s, c;

\end{yquant}
\end{tikzpicture}

80

test15 (“D-type”measurement)

|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩

𝐻𝑍𝜃

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$} q;
qubit {$\ket{q_1} = \ket+$} q[+1];

zz (q);
dmeter {$H Z_\theta$} q[0];

\end{yquant}
\end{tikzpicture}

test16 (example from Nielsen paper on cluster states)

|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |𝜓⟩
|𝑞2⟩ = |𝜙⟩
|𝑞3⟩ = |0⟩

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_{\idx}} = \ket\psi$}
q[2];↪

qubit {$\ket{q_2} = \ket\phi$} q[+1];
qubit {$\ket{q_3} = \ket0$} q[+1];

zz (q[1], q[2]);
align q;
cnot q[3] | q[2];
slash q[0];
dmeter q[3];
align q;
[solid]
barrier q[2];
discard q[2];

\end{yquant}
\end{tikzpicture}

We needed to include an align pseudo-gate to put the slash at the desired
position. Usually, this would be sufficient to put the cnot and the slash gate
directly under each other, as it is in the qasm example. However, the slash
gate is special in that it does not need horizontal space and is put with only
half of the usual operator separation into the circuit (for this reason, it can be
put at the beginning of a wire without creating weird shifts with respect to the
“unslashed” registers—it is put in the initial line that every wire even without
an operation has). Hence, you should normally only use the slash gate as the
very first gate in a circuit. To get the vertical stopper mark, we abuse a barrier
on just a single wire and turn it from dashed to solid before discarding.

81

test17 (example from Nielsen paper on cluster states)

|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩
|𝑞2⟩ = |+⟩
|𝑞3⟩ = |𝜙⟩

𝐻
𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_0} = \ket\psi$} q;
qubit {$\ket{q_{\idx}} = \ket+$} q[+2];
qubit {$\ket{q_3} = \ket\phi$} q[+1];

zz q[(0-1), (2-3)];
zz (q[1-2]);
dmeter {H} q[1-2];

\end{yquant}
\end{tikzpicture}

This example shows how the multi-qubit delimiter (the parenthesis) can even
be used within indices.

test18 (multiple-control bullet op)

|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩
|𝑞2⟩ = |+⟩
|𝑞3⟩ = |𝜙⟩

𝐻
𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket{q_{\idx}} =
\ket{\Ifcase\idx\relax \psi \Or + \Or +
\Or \phi \Fi}$} q[4];

↪

↪

zz (q);
dmeter {H} q[1, 2];

\end{yquant}
\end{tikzpicture}

This gate is probably a generalization of zz, 𝟙 − 2 |1⋯1⟩⟨1⋯1|, and indeed
since version 0.1.2, we can use zz for this purpose. This time, we used the case
distinction method in the initialization, as already alluded to before.

82

6.2 qcircuit documentation

For a better orientation, we use the same section headings as the qcircuit
manual. The manual uses unnamed registers a lot; often, we will use the yquant*
environment to make things more concise. As the qcircuit manual uses a bit
larger separation between the operators than yquant’s default, we globally say
\yquantset{operator/separation=2mm}.

6.2.1 I. Introduction

𝑈
=

𝑉 𝑉 † 𝑉

% \useyquantlanguage{groups}
\begin{yquantgroup}

\registers{
qubit {} q[3];

}
\circuit{

box {U} q[2] | q[0, 1];
}
\equals
\circuit{

box {V} q[2] | q[1];
cnot q[1] | q[0];
box {V^\dagger} q[2] | q[1];
cnot q[1] | q[0];
box {V} q[2] | q[0];

}
\end{yquantgroup}

The best way to realize circuit equalities is with the help of groups language
extension, which is documented in section 7.1.

|𝜓⟩
|0⟩
|0⟩ 𝐻

𝐻

𝑋 𝑍 |𝜓⟩

83

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket\psi$} a;
qubit {$\ket0$} b[2];

h b[1];
cnot b[0] | b[1];
cnot b[0] | a;
h a;
align a, b;
measure a;
[direct control]
measure b[0];

x b[1] | b[0];
z b[1] | a;

discard a;
discard b[0];
output {$\ket\psi$} b[1];

\end{yquant}
\end{tikzpicture}

Here, we see how to use ameasurement as a direct output for the next controlled
operation.

Syndrome Measurement

|0⟩

|0⟩

|0⟩

𝑀𝑎

𝑀𝑏

𝑀𝑐

ℛ

Recovery

84

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant}
qubit {} msg[3];
nobit syndrome[3];

[this subcircuit box style={dashed, "Syndrome Measurement"}]
subcircuit {

qubit {} msg[3];
[out]
qubit {$\ket0$} syndrome[3];

cnot syndrome[0] | msg[0];
cnot syndrome[0] | msg[1];
cnot syndrome[1] | msg[1];
cnot syndrome[1] | msg[2];
cnot syndrome[2] | msg[0];
cnot syndrome[2] | msg[2];

dmeter {$M_{\symbol{\numexpr`a+\idx}}$} syndrome;
} (msg[-2], syndrome[-2]);

["Recovery"]
box {$\mathcal R$} (msg) | syndrome;
discard syndrome;

\end{yquant}
\end{tikzpicture}

The example demonstrates how to put a description next to a gate. In general,
those descriptions should be realized using the TikZ feature label. Using the
TikZ library quotes, the label is most easily specified. Since the label is not
part of the valid arguments and also cannot be found in the /yquant path, it
is automatically passed to /yquant/operator style.
To enclose a part of the circuit by a rectangle, we use a subcircuit. This appears
to be logically preferrable to using the \enclose macro, as the syndrome
measurement is a self-contained operation which introduces its own registers;
in principle, it could be turned into a custom gate and reused.
We define the incoming qubits in the outer circuit, they will have the de-
fault attribute [inout]; the syndrome registers, which are created only in
the subcircuit enter as nobits and consequently have the [out] attribute. It
is important to note that both the dashed style as well as the label (here
with quoted syntax) are specified only inside /yquant/this subcircuit box
style. This ensures that they are not also attached to every single gate in the
subcircuit.

85

Then we see how to apply an operation to multiple registers in parallel while
using the \idx macro to still give them a different text. Since \idx gives a nu-
merical index (zero-based), we exploit the ASCII code (actually, this document
is compiled in Unicode mode...) to turn this into a letter.
Note that it could have become necessary to pass the overlay attribute to
the recovery gate, as it is a multi-register gate with a label, meaning that
yquant cannot reliably distribute its total vertical extent over its constituent
registers. However, as the ℛ together with the label in total were not higher
than the three-qubit gate would have been anyway, this was not necessary here.
In generally, don’t use overlay unless necessary; maybe a future version will
even be able to handle the more difficult cases better.
Finally, we will give a similar circuit by using the \enclose interface instead
of subcircuits, this time also showing how we can change the shape of the
measurement gate to one as in the qcircuit manual:

|0⟩

|0⟩

|0⟩

𝑀𝑎

𝑀𝑏

𝑀𝑐

ℛ

RecoverySyndrome Measurement

86

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant}
qubit {} msg[3];
\encloseall["Syndrome Measurement"]{

qubit {$\ket0$} syndrome[3];

cnot syndrome[0] | msg[0];
cnot syndrome[0] | msg[1];
cnot syndrome[1] | msg[1];
cnot syndrome[1] | msg[2];
cnot syndrome[2] | msg[0];
cnot syndrome[2] | msg[2];
[shape=yquant-rectangle, rounded corners=.45em]
dmeter {$M_{\symbol{\numexpr`a+\idx}}$} syndrome;

}
["Recovery"]
box {$\symcal R$} (msg) | syndrome;
discard syndrome;

\end{yquant}
\end{tikzpicture}

We name several elements that visually form the enclosing rectangle; then, we
use the TikZ library fit to put a node around them all. Any gate can be given
a custom shape; here, we use a yquant-rectangle, which is the analogue to
TikZ’s rectangle and thus supports the standard rounded corners style.

6.2.2 IV. Simple Quantum Circuits

𝑋

\begin{tikzpicture}
\begin{yquant*}

x q;
\end{yquant*}

\end{tikzpicture}

87

A. Wires and gates

𝐻 𝑍
𝑋

𝐻

\begin{tikzpicture}
\begin{yquant*}

h a;
align a, b;
z a;
x b;
h a;

\end{yquant*}
\end{tikzpicture}

𝑈

𝑈†

\begin{tikzpicture}
\begin{yquant*}

box {U} a;
box {U^\dagger} b;
setstyle {->} -;

\end{yquant*}
\end{tikzpicture}

yquant allows to change wire styles by means of the setstyle and addstyle
pseudo-gates. Here, we use the gate on all wires in order to set an arrow style.
Note that arrowheads are actually very special in two respects:

• yquant draws continuous wires for as long as possible. In this example,
the wire path extends from the very left to the end of the circuit; yquant
does not draw a wire to the gate and then a separate one from the gate
to the next or the end. The only way to force yquant to draw multiple
wires is to change the wire style or type mid-circuit. For example, by
saying addstyle {} -;, all wire paths will be separated at the current
position, which in theory allows to draw arrowsheads on intermediate
wires.

• In practice, this will not work due to the clipping commands that yquant
installs. Every wire extends from the center of the left to the center of
the right gate, and the gate’s shape acts as a clipping path. Consequently,
though the arrowhead is drawn, it is actually drawn at the center of
the gate instead of the west anchor and then clipped away (unless the
gate is small, in which case you might still see some fragments of the
arrowhead).

88

Thus, it is currently not possible to use arrowheads on intermediate wires. If
you really need to do this (say, for only a single gate), you may experiment
with the TikZ shorten keys, which allow you to manually reduce the length of
the wire, but the amount of reduction must be hand-computed for every gate.
If you need this more often, consider filing a feature request.

B. CNOT and other controlled single qubits gates

\begin{tikzpicture}
\begin{yquant*}

cnot a[1] | a[0];
cnot a[0] | a[1];

\end{yquant*}
\end{tikzpicture}

𝑈
\begin{tikzpicture}

\begin{yquant*}
cnot q[2] | q[0];
cnot q[0] | q[1-3];
box {U} q[0] | q[2];

\end{yquant*}
\end{tikzpicture}

C. Vertical wires

𝑈1

𝑈2

\begin{tikzpicture}
\begin{yquant*}

box {$U_{\The\numexpr\idx+1}$} q[0, 2] | q[1];
\end{yquant*}

\end{tikzpicture}

There is no direct support for this construction, but as with the initialization of
a vector registers, yquant allows to access the macro \idx within an operator
value. This macro follows the same rules as the name suffix, i.e., it assigns
indices (zero-based) to the target registers in top-to-bottom order, regardless
of which order was specified in the target list. Since we instead want a one-
based subscript, we need to add one. Note that if you want to output \idx
directly or within an unexpandable expression, you don’t need to take any
action. However, here, \the is expandable; and since yquant needs to process

89

all its output twice (first in order to determine the vertical spacing, second
to actually typeset), you must manually take care that the command is not
expanded prematurely by saying \protect\the instead, for which yquant,
with a compat setting of at least 0.4, provides the shorthand \The. Had we
used the plain TEX \the instead, the subscript would have been “1” for both
operators.

D. Labeling input and output states

|1⟩
|1⟩

|0⟩
|1⟩

\begin{tikzpicture}
\begin{yquant*}

qubit {$\ket1$} q[2];
cnot q[0] | q[1];
output {$\ket\idx$} q;

\end{yquant*}
\end{tikzpicture}

|0𝑘⟩

|𝜓⟩
𝐴
𝐵|𝜓⟩

% \usetikzlibrary{calc}
\begin{tikzpicture}

\begin{yquant*}
{

\yquantset{every multi label/.style={every
node/.style={anchor=east, midway}}}↪

init {$\ket{0^k}$} (a[-1]);
}
init {$\ket\psi$} (b[-1]);
[name=cinit]
qubit {\Ifcase\idx\relaxA\OrB\Fi} c[2];
\node[anchor=east] at

($(cinit-0.west)!.5!(cinit-1.west)$) {$\ket\psi$};↪

\end{yquant*}
\end{tikzpicture}

Here, three different styles for the initialization of multi-qubit labels are used.
The second one (using a curly brace) corresponds to the default. It is overwritten
for the first qubit, and to make this modification local, this is done in a group.
The third qubit pair uses an overall label and additionally individual labels on
the lines. The recommended way to do this starting from version 0.4 is to add
the “special” label by means of a TikZ command.

90

6.2.3 V. More Complicated Circuits: Multiple Qubit gates and Beyond

A. Multiple qubit gates

𝑈†

\begin{tikzpicture}
\begin{yquant*}

box {U^\dagger} (a[-2]);
\end{yquant*}

\end{tikzpicture}

… 𝑈 …

\yquantdefinebox{dots}[inner sep=0pt]{\dots}
\begin{tikzpicture}

\begin{yquant}
qubit {} a;
cbit {} b;
[register/minimum height=0pt, register/minimum

depth=0pt]↪

nobit ellipsis;
qubit {} c;

dots ellipsis;
box {U} (a, b, ellipsis, c);
dots ellipsis;

\end{yquant}
\end{tikzpicture}

This demonstrates how a register of type nobit might even be useful if the
register is never used and no subcircuits are involved. Note how we overwrite
the default minimum height and depth setting for this register only. Additionally,
we for the first time define our own gate, which we call dots. As we define our
own style, it does not inherit from /yquant/operators/every box; hence,
we only need to overwrite the inner sep coming from TikZ’s defaults.

91

ℱ
𝒢

𝒢

\begin{tikzpicture}
\begin{yquant*}

box {$\symcal F$} (a[-1]);
box {$\symcal G$} (a[0, 2]);

\end{yquant*}
\end{tikzpicture}

This demonstrates yquant’s capabilities of discontiguous multi-qubit gates.
yquant automatically splits multi-qubit gates into slices of directly adjacent
wires (which, for the 𝒢 case, are the single wires a[0] and as second slice
a[2]).

B. Measurements and classical bits

𝜒

|𝜉±⟩

\begin{tikzpicture}
\begin{yquant*}

measure a;
dmeter {χ} b;
measure {$\ket{\xi_\pm}$} c;

\end{yquant*}
\end{tikzpicture}

The “tab” and “measure” type are not supported yet. Extracting a meter symbol
on its own will not be supported. If you are interested in the code, have a look
at yquant-shapes.tex and search for the yquant-measure shape.

Codebit
𝜒

\begin{tikzpicture}
\begin{yquant*}

[shape=yquant-rectangle, rounded corners=.45em,
direct control]↪

measure {Codebit} a;
box {χ} b | a;
discard a;
measure b;

\end{yquant*}
\end{tikzpicture}

Rectangles with rounded corners are not a specific style, but since the yquant-
rectangle shape internally uses \pgfpathrectangle, the ordinary TikZ op-
tion can be used (also, an inset specification can control how much the corner
is rounded).

92

|𝜓⟩ |𝜉±⟩

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket\psi$} q;

measure {$\ket{\xi_\pm}$} q;
\end{yquant}

\end{tikzpicture}

Bell

\begin{tikzpicture}
\begin{yquant*}

dmeter {Bell} (a[0, 1]);
discard a;

\end{yquant*}
\end{tikzpicture}

|𝜉∓⟩

|𝜉∓⟩

\begin{tikzpicture}
\begin{yquant*}

measure {$\ket{\xi_\mp}$} (a[-1, 3]);
\end{yquant*}

\end{tikzpicture}

Multi-qubit gates (including measurements) on non-adjacent registers are
properly supported. As explained in section 2.4, there is one main and multiple
subordinate gate in such a discontiguous multi-qubit operation (though at
the moment, the measure gates with text is the only gate that makes this
distinction). In our case, the main part contains the measurement symbol and
the text, while the subordinate gates only contain the text. By default, yquant
uses the first slice as main part, but you may influence this by preceding what
you want to be “main” by a star:

|𝜉∓⟩

|𝜉∓⟩

\begin{tikzpicture}
\begin{yquant*}

measure {$\ket{\xi_\mp}$} (a[-1, *3]);
\end{yquant*}

\end{tikzpicture}

93

C. Non-gate inserts, forcing space, and swap

𝑋
𝐻⊗𝑛

Defective Circuit

\begin{tikzpicture}
\begin{yquant*}

[name=sw]
swap (a[0-1]);
text {X} a[1];
slash b;
box {$H^{\otimes n}$} b;
\node[anchor=199] at (sw-0.north) {Defective

Circuit};↪

\end{yquant*}
\end{tikzpicture}

Here, the intermediate text was inserted by using a text gate; before ver-
sion 0.6, this would have to be done by a box gate with [draw=none] attribute.
Another way would be to use an init command, although this is semantically
wrong (probably).

…

\begin{tikzpicture}
\begin{yquant*}

qubit {} a;
[name=ypos]
qubit {} b[3];

cnot a | b[0];
[name=left]
cnot a | b[1];
hspace {7mm} -;
[name=right]
cnot a | b[2];

\end{yquant*}
\path (left |- ypos-0) -- (right |- ypos-1)

node[midway] {\dots};↪

\end{tikzpicture}

Note how the register range - was used to denote all registers. We positioned
the dots by first naming the relevant registers, so that the vertical position is at
the coordinates ypos-0 and ypos-1; and then, we also named the cnot gates,
so that we are able to discern the horizontal position.

94

D. Barriers

𝑋
𝑋

\begin{tikzpicture}
\begin{yquant*}

x a[0, 1];
barrier (a);

\end{yquant*}
\end{tikzpicture}

Now the qcircuit manual lists three circuits with barriers at different positions.
They cannot be drawn with yquant; however, since neither of them is a valid
circuit (no indication whether the control is positive or negative), this is of no
concern.

E. How to control anything

𝐻

𝑈

\begin{tikzpicture}
\begin{yquant*}

zz (a[0, 2]);
cnot a[1] ~ a[0];
zz (a[2, 3]);
h a[3] | a[0] ~ a[1];
measure a[2, 3];
box {U} (a[0, 1]) | a[3] ~ a[2];
discard a[2, 3];

\end{yquant*}
\end{tikzpicture}

Note that it is not possible to draw a control to measurement (the measurement
operations are explicitly defined not to accept controls): Either the measure-
ment is performed or not (which transforms the register type), but a measure-
ment conditioned on a quantum state is not possible. In principle, one could
think of a measurement conditioned on a classical register (in which case the
register type cannot change, as maybe the state stays quantum; the measure-
ment operation then is similar to a complete dephasing). If there is need for
this, please file a feature request. But note the relatively common (though
unsupported by yquant at the moment) use of control lines that directly go
from the measurement operator to the controlled operation; in this case, the
opposite direction would be meant by using the same notation.

95

6.2.4 VI. Bells andWhistles: Tweaking Your Diagram to Perfection

For options how to configure the circuits, refer to section 3.

A. Spacing

𝑇 †

\begin{tikzpicture}
\begin{yquant*}

swap (a[0, 1]);
box {T^\dagger} a[2] | a[1];
swap (a[0, 1]);

\end{yquant*}
\end{tikzpicture}

B. Labeling

𝑎

𝑏

𝐵 𝐴

\begin{tikzpicture}
\begin{yquant}[every initial

label/.style={anchor=south east, yshift=1mm},
every post measurement control=direct]

↪

↪

qubit {\rlap{\hskip2mm a}} a;
qubit {\rlap{\hskip2mm b}} b;
nobit out;
hspace {5mm} -;

measure b;
text {B} out | b;
measure a;
text {A} out | a;
discard -;

\end{yquant}
\end{tikzpicture}

We support measurements with vertical outputs, but only if they replace the
positive control of some action. Here, we fake this behavior by introducing an
invisible register at the bottom, which will contain the outputs. Note that if we
were to give style options to the texts, they would also affect the measurements.
The reason for this is that internally, the measurement will be nested within
the same scope that draws the text—so the options given to the text will
be inherited by the measurement. As an operator style overwrites default
styles, this will also apply to the measurements. Hence, to circumvent this, we
would need to revert the options as attributes to the measurements, even if the

96

reverted option was already included in their native style.
Repositioning the initial labels needs some care and manual fine-tuning.

C. Grouping

𝐻

𝐻

𝑍

𝐻

𝐻

\begin{tikzpicture}
\begin{yquant*}[register/separation=3mm]

cnot a[2] | a[0];
cnot a[2] | a[1];
\enclose[to={a[1]}]{

h a[0, 1];
z a[2];
cnot a[1] | a[0];
h a[0];
h a[1] | a[2];

}

hspace {2mm} -;
\end{yquant*}

\end{tikzpicture}

Note that \begin{yquant*} must not be followed by a line break (unless
masked by %) if options follow. Here, we use the \enclose macro to specify a
part of the circuit that should be highlighted. The time-like extent is given by
the earliest and latest gates in the circuit; however, note that the last register
is included in the enclosed section, but explicitly excluded using the to key, so
that now both the z-gate as well as the control of the Hadamard are not part of
the enclosed region.

97

6.3 quantikz documentation

Again, our section headings will be the same as in the quantikz manual. And
since quantikz also has even more space between the gates, we globally say
\yquantset{operator/separation=4mm}.

6.3.1 II. A single wire

|0⟩ 𝛼 𝐻
𝛽

𝐻
𝛾 Arbitrary

pure state

\begin{tikzpicture}[label position=north east, every label/.style={inner
sep=1pt}]↪

\begin{yquant}
qubit {$\ket0$} a;

phase {α} a;
h a;
phase {β} a;
h a;
phase {γ} a;

[every output/.append style={align=center}]
output {Arbitrary\\pure state} a;

\end{yquant}
\end{tikzpicture}

The captions of phase commands are internally implemented using TikZ
labels. At the moment, it is not possible to change any label options on
a gate-type basis, only locally or fully globally (TikZ feature request #811).

98

https://github.com/pgf-tikz/pgf/issues/811

A. Measurements

0
1

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
["0"]
measure a;
discard a;

init {} a;
dmeter {1} a;
discard a;

\end{yquant*}
\end{tikzpicture}

Other measurement shapes are not supported at the moment.

B. Wires and arrows

|0⟩
initial state 𝑋

0/1
|1⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant}[operator/separation=1cm, every label/.append
style={align=center}]↪

qubit {$\ket0$\\initial state} a;

text {X} a;

["0/1", type=qubit]
measure a;

addstyle {->} a;
output {$\ket1$} a;
\yquantset{operator/separation=5mm}

\end{yquant}
\end{tikzpicture}

This example demonstrates how to instruct the measure gate to use a different
output type than the standard cbit.
In general, any macros that are used within a TikZ path or a yquant operation
must not be fragile, or must be preceded with \protect. In this example, \\
is a robust command (at least in newer kernels), so protection is not required.

99

Since it may occur quite frequently that yquant is used within a center en-
vironment or in \centering mode (in which \\ is still fragile), yquant takes
care of this (it actually robustifies \@centercr, which is the meaning of \\ in
these surroundings—and which is now incorporated into the LATEX kernel as of
June 2021).
In order to change the style of an individual wire, we use addstyle. To make
the final line shorter, we change the operator separation by issuing \yquantset
at the end.

|0⟩ 𝐻

trash

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket0$} q;
[name=h]
h q;
discard q;
\path[/yquant/every wire, /yquant/every qubit

wire, -Stealth] (h) -| ++(1cm, -.5cm)
node[below] {trash};

↪

↪

\end{yquant}
\end{tikzpicture}

Here, we use an ordinary \path command to reproduce the “trash” line. This
time, we chose to use the appropriate styles as yquant itself would do it instead
of just saying \draw without the options, which would also have worked.

|0⟩⊗𝑛 3 𝐻

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
qubit {$\ket0^{\otimes n}$} a;
["north east:3" {font=\protect\footnotesize,

inner sep=0pt}]↪

slash a;
h a;

\end{yquant*}
\end{tikzpicture}

Again, you see an example of how some commands need to be \protected
when used in yquant options, and that you can indeed exploit all features of
the quotes library.

100

|0⟩⊗𝑛 𝐻

\begin{tikzpicture}
\begin{yquant}

qubits {$\ket0^{\otimes n}$} a;
h a;

\end{yquant}
\end{tikzpicture}

6.3.2 III. Multiple Qubits

|0⟩
|0⟩

𝐻
𝐻

𝑈

𝑈

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket0$} a;
qubit {$\ket0$} b;

h a, b;
cnot b | a;
box {U} a ~ b;
zz (a, b);

[after=a]
qubit {} c;

swap (a, c);
box {U} c | a ~ b;

\end{yquant}
\end{tikzpicture}

This example demonstrates the use of the after argument that instructs the
register creation to begin the register only after the current position of another
register that already exists. Note that this argument will always make the
wire begin at the right end of the last gate of the referenced register; however,
if—as is the case here—this gate is shorter than /yquant/operator/minimum
width, this might not coincide with the visual right end.

101

𝑈

\begin{tikzpicture}
\begin{yquant*}

[name=c]
cnot a[0, 2] | a[1];
[name=m, direct control]
measure a[1];
discard a[2];
box {U} a[0] | a[1];
\path[/yquant/every wire, /yquant/every qubit wire] (c-1) --

(m.center |- c-1);↪

discard a[1];
\end{yquant*}

\end{tikzpicture}

Here, we manually extended the wire on the last register. We could instead
have performed an align gate before the discarding process, then, the wire
line would have been extended by yquant; but since align aligns at the right
end as opposed to the center of the gate, the wire line would have been a bit
longer. Still, this TikZ wire is inferior to a wire drawn by yquant, as it does
not use clippings: the connection with the cnot gate may not be accurate; in
particular, if the wire is of a different color or if you need to draw classical or
bundle wires, the connection will become unpleasant.

𝑈 𝑉

\begin{tikzpicture}
\begin{yquant*}

cnot a[1, 2] | a[0];
measure a[1], a[2];
box {U} a[0] | a[1];
box {V} a[0] | a[2];
discard a[1]-;

\end{yquant*}
\end{tikzpicture}

yquant doesn’t offer anything comparable to the new \ctrlbundle command;
and as the bundle lines are spaced much more tightly in yquant, this would not
really make sense.

102

6.3.3 IV. Operating onmany Qubits

|0⟩⊗3
𝑈 |11⟩

\begin{tikzpicture}
\begin{yquant*}

init {$\ket0^{\otimes3}$} (a[-2]);

box {U} (a[1-2]) | a[0];
measure a[0];
discard a[0];
output {$\ket{11}$} (a[1-2]);

\end{yquant*}
\end{tikzpicture}

Multi-qubits inputs are possible using the init command. The text assigned
to a register declaration is always for an individual register.

𝐻

𝑈

\begin{tikzpicture}
\begin{yquant*}[register/minimum

height=6mm, register/minimum
depth=6mm]

↪

↪

hspace {7.5mm} a;
h a;
hspace {7.5mm} a;
[x radius=1cm]
box {U} (b, c);
cnot b | a;
measure a;
discard a;

\end{yquant*}
\end{tikzpicture}

yquant does not use a grid layout: operators are stacked next to each other.
Therefore, there is no automatic centering of a column, though it could be emu-
lated using hand-crafted hspace commands, as was done here (the Hadamard
gate uses the /yquant/operator/minimum width, which is 5mm, while the
large box has a width of 2cm, so that we need two 7.5mm spacings at the end,
as the hspace pseudo-gate only inserts exactly the space you give, but not
additional [twice] /yquant/operator/separation, as would be the case for
a hypothetical zero-width gate). In fact, we don’t even need the second hspace,
since the two-qubit cnot will automatically enforce correct alignment.

103

𝑥

𝑦

𝑥

𝑦 ⊕ 𝑓(𝑥)

𝑈

\begin{tikzpicture}
\begin{yquant}[register/separation=3mm, every nobit output/.style={}]

qubit {} a[4];
[every inspect/.append style={outer xsep=0pt}, operator/minimum

width=0pt, font=\footnotesize, name=sub]↪

subcircuit {
\yquantset{operator/separation=0pt}
qubit {} x[2];
qubit {} y;
discard -;

inspect {x} (x);
[inner xsep=0pt]
inspect {$y\vphantom f$} y;

[shape=yquant-init, decoration={mirror}]
inspect {\hskip4mm x} (x);
[shape=yquant-init, inner xsep=0pt]
inspect {$y \oplus f(x)$} y;

} (a[1-3]) | a[0];
\node at (sub) {U};
settype {qubit} a;

\end{yquant}
\end{tikzpicture}

We use quite some tricks to achieve such a layout. We use a subcircuit as a
container and inspect gates to indicate the inputs and output states accurately.
As those are ordinary gates, we reset /yquant/operator/minimum width, so
that the “𝑦” indication is not too long. Additionally, they are usually meant to
be used within a circuit, i.e., they have an additional margin denoted by the
outer xsep, which we also remove. Then, within the subcircuit, we reset the
/yquant/operator/separation, which would insert additional whitespace
at the beginning. It is important to do this within the subcircuit and not as an
attribute; else, we would also remove the outer lines going into the subcircuit.
Initial or final inspect gates without a brace do not really need the separation
between brace tip and text (inner xsep), so we also remove it. The output
gates should have their braces and separations at the other side, which cor-

104

responds to changing their shape from yquant-output to yquant-init and
mirroring the decoration (as in /yquant/every label). To get the desired
right-alignment, we hand-tailor an \hskip that enlarges the upper output
label—automatic alignments would not work here: putting the two inspects
together with a case distinction on \idx would center them; using outputs
would left-align them.
Finally, we have to deal with the caption of the gate, which should be absolutely
centered with respect to the subcircuit and not have any influence on the
spacing—so we just insert it retrospectively as an ordinary TikZ node.
Also note the use of discard and settype since we needed wires before and
after the subcircuit, which must match the inner wires in type, but we actually
do not want to have inner wires.

√
𝑍

𝑋
√
SWAP

\begin{tikzpicture}
\begin{yquant*}

box {$\sqrt Z$} a;
box {X} b;
box {$\sqrt{\mathrm{SWAP}}$} (a, b);
measure a;

\end{yquant*}
\end{tikzpicture}

This time, we did not artificially discard the lines.

𝑐0
𝑐1

𝑐2

𝑐3

M
A
J

M
A
J

\begin{tikzpicture}
\begin{yquant}

qubit {c_{\idx}} c[4];
box {M\\A\\J} (c[-2]);
box {M\\A\\J} (c[1-]);

\end{yquant}
\end{tikzpicture}

Notice here that the vertical spacing is uneven. yquant realizes that the mini-
mal vertical spacing will not be enough to account for the multi-qubit boxes.
However, when it tries to adjust positions accordingly so that the last gate fits,
this will of course not change anything for the first wire, which is not contained
in the gate. After having increased the spacing, yquant realizes that this already
was enough to accomodate for the first gate, so no further action is taken. In
order to get a more even spacing, just increase /yquant/register/minimum
height and /yquant/register/minimum depth.

105

A. Different connections

𝑈

\begin{tikzpicture}
\begin{yquant}[register/default name=]

qubit a;
cbit b;
nobit c;
cbit d;
qubit e;
box {U} (-);
settype {qubit} c;

\end{yquant}
\end{tikzpicture}

This example demonstrates the declaration of a non-existing register and the
settype pseudo-gate that acts as a zero-width, no-content init gate.

6.3.4 V. Slicing

𝐻
step

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {} a[3];
h a[0];
[red, thick, label=step]
barrier (a);
cnot a[1] | a[0];
measure a[0];
discard a[0];
cnot a[2] | a[1];
h a[1];

\end{yquant}
\end{tikzpicture}

There is nothing like a slice all keyword, as yquant’s underlying layout is
not grid-based. Changing the style of slice captions simply means providing
label options. This time, we used the label key instead of the shorter syntax
provided by the quotes library, which is of course also possible.

106

𝐻
slic

e 1
slic

e 2
slic

e 3

𝐻

% \usetikzlibrary{quotes}
\begin{tikzpicture}[every label/.style={rotate=40, anchor=south west}]

\begin{yquant}[operators/every barrier/.append style={blue, thick}]
qubit {} a[3];
h a[0];
["slice 1"]
barrier (-);
cnot a[1] | a[0];
["slice 2"]
barrier (-);
measure a[0];
discard a[0];
cnot a[2] | a[1];
["slice 3"]
barrier (-);
h a[1];

\end{yquant}
\end{tikzpicture}

|0⟩ 𝐻

1
𝜑

2

𝐻

3

cos 𝜑
2 |0⟩ − 𝑖 sin 𝜑

2 |1⟩

107

% \usetikzlibrary{quotes}
\begin{tikzpicture}[label distance=4mm]

\begin{yquant}[operators/every barrier/.append style={red, thick,
shorten <= -4mm, shorten >= -4mm}]↪

qubit {$\ket0$} a;
h a;
["1"]
barrier a;
phase {[label distance=0pt]φ} a;
["2"]
barrier a;
h a;
["3"]
barrier a;
output {$\cos\frac\varphi2 \ket0 - i\sin\frac\varphi2 \ket1$} a;

\end{yquant}
\end{tikzpicture}

Usually, the shorten keys do not have any effect on yquant operations, since
the latter are all made up of nodes. However, the yquant-line shape explicitly
takes care of correctly handling them. It is the only one that does so. Since
barriers usually end quite closely to the wires—and the default dashed style
may make this worse—the shortening may often prove useful. Note that if the
barriers are enlarged by means of negative shortenings, this will not affect
the bounding box and you must take care of appropriately shifting labels. The
internal register height calculations might be inconsistent for multi-register
barriers with shortening: While yquant takes care of enlarging the registers
so that there is enough space for placing the barrier with its original (single-
register) height, it actual height of the registers is only known at the second
stage in calculation; but applying shortenings after this stage would require
another iteration of height calculation. Hence, multi-register barriers that are
enlarged by a lot will probably look bad unless you add manual spacing to
the appropriate registers. Also note that we used much larger magnitudes in
order to achieve a similar appearance as in quantikz. To avoid that the large
distance also affects the phase gate badly, we locally reset the distance; for
this, there are two ways. The easiest one is to make use of the fact that the
value of the phase gate is passed directly as label argument, so that we can
locally reset the distance. The other possibility would be to write

108

{
\yquantset{/tikz/label distance=0pt}
phase {φ} a;

}

since due to the aforementioned lack of support for a style that sets the options
in TikZ, we must manually use a (grouped) \yquantset instruction for this.
Note that whenever you change a TikZ style in a yquant environment, use the
\yquantsetmacro, not \tikzset or \pgfkeys. Not only will the latter two not
automatically restart the parser (so that you would have to issue \yquant after
their use), but yquant has to process all its content twice in order to properly
determine the register height. Only \yquantset will be properly captured and
re-issued at the correct position when the content is actually typeset. Had
we written \tikzset{label distance=0pt} \yquant, no effect at all would
have been visible, since this command would only have taken effect in the first
(invisible) round when yquant determines heights.

yquant does not provide a mechanism for vertical labels, but you may of course
just insert line breaks at appropriate positions (and set the align property of the
labels).

6.3.5 VI. Spacing

A. Local adjustment

𝐻

𝑋
𝑋

𝑋

𝑍
𝑍

𝐻

𝑍
𝑍

\begin{tikzpicture}
\begin{yquant}[register/default name=]

[register/minimum depth=2cm]
qubit a;
qubit b;
qubit c;

h a;
x b-;
hspace {2cm} -;
x a;
z b-;
h a;
z b-;

\end{yquant}
\end{tikzpicture}

The vertical distance between registers is calculated by yquant automatically

109

based on the height and depth that yquant find for this particular register—i.e.,
how much space is required above and below the wire line for all the gates.
In order to enlarge these values, reset /yquant/register/minimum height
or /yquant/register/minimum depth to a different value. It is not possible
to artificially reduce the calculated heights and depths, as this would result
in overlapping gates. However, sometimes it might be required to exclude a
certain gate from the calculation; then, use the overlay attribute.

𝑋 𝑋 𝑋

\begin{tikzpicture}
\begin{yquant*}

[x radius=1cm]
x a;
box {\hbox to 1cm{\hfilX\hfil}} a;
hspace {1cm} a;
x a;
discard a;

\end{yquant*}
\end{tikzpicture}

Here, we demonstrate two possibilities to enlarge a box: The first is by specify-
ing its size in terms of the x radius or y radius keys beforehand. Those values
serve as minimum sizes and would be extended if the text extended beyond the
box. The second option is to just enlarge the text artificially by explicitly putting
it into a fixed-width box. Note that in the first case, the radius is specified,
i.e., the half-width, while in the second case, it is the total width (both times
modulo the inner separation). Also note that the /yquant/operator/minimum
width style is unsuitable for the given task: it would not change the visual
width, only what yquant assumes its width to be.

110

B. Global Adjustment

𝐻
𝛽

𝐻

\begin{tikzpicture}
\begin{yquant*}[operator/separation=1cm]

h a;
phase {β} a;
h a;

\end{yquant*}
\end{tikzpicture}

𝑋

𝑋

𝑋

𝐻

\begin{tikzpicture}
\begin{yquant*}[register/minimum height=0pt,

register/minimum depth=0pt]↪

x a[0, 2];
zz (a[0, 1]);
x a[0];
h b;

\end{yquant*}
\end{tikzpicture}

By default, yquant will use the height and depth that is required by the individ-
ual gates, but at least /yquant/register/minimum height or, respectively,
/yquant/register/minimum depth (which default to 1.5mm). Only manually
reducing the default height will produce the cramped spacing displayed here.

111

C. Alignment

𝑋
=

𝑋
𝑋

\begin{tikzpicture}
\begin{yquant*}

x a[0];
cnot a[1] | a[0];

\end{yquant*}
\end{tikzpicture}
$=$
\begin{tikzpicture}

\begin{yquant*}
cnot a[1] | a[0];
x a;

\end{yquant*}
\end{tikzpicture}

Not specifying anything for the vertical alignment will lead to the common
TikZ problem: the baseline will be at the bottom, which is particularly bad
in this case due to the missing 𝑋 gate. The keys for minimal register sizes
do not help here, since they only affect yquant’s internal handling, but not
the bounding box calculated by TikZ. The recommended way to draw circuit
equations is always with the groups language extension.

𝑋 = 𝑋
𝑋

% \useyquantlanguage{groups}
\begin{yquantgroup}

\registers{
qubit {} q[2];

}
\circuit{

x q[0];
cnot q[1] | q[0];

}
\equals
\circuit{

cnot q[1] | q[0];
x q;

}
\end{yquantgroup}

112

|𝑥⟩
|𝑦⟩

𝐻 ↦ |𝜓𝑥,𝑦⟩ ↦ 𝐻 |𝑥⟩
|𝑦⟩

% \useyquantlanguage{groups}
\begin{yquantgroup}

\registers{
qubit {} q[2];

}
\circuit{

init {$\ket x$} q[0];
init {$\ket y$} q[1];

h q[0];
cnot q[1] | q[0];
output {} (-);

}
\equals[$\mapsto\quad\ket{\psi_{x, y}}\quad\mapsto$]
\circuit{

init {} (q);
cnot q[1] | q[0];
h q[0];

output {$\ket x$} q[0];
output {$\ket y$} q[1];

}
\end{yquantgroup}

Here, we do not have a circuit equation (i.e., logical statements involving
multiple rather independent circuits), but a circuit progression. Since only in
one circuit we have a description of the registers, we declare them without an
initial text and put their initialization into init gates. The mapping in between
is done by using the optional argument of the \equals macro. In order to
obtain the braces at the ends, we use empty output and init gates.

113

1. Perfecting Vertical Alignment

|0⟩ = |0⟩

% \useyquantlanguage{groups}
\begin{yquantgroup}

\registers{
qubit {} q;
qubit {$\ket0$} q[+1];

}
\circuit{

cnot q[0] | q[1];
cnot q[1] | q[0];
cnot q[0] | q[1];

}
\equals
\circuit{

cnot q[1] | q[0];
cnot q[0] | q[1];

}
\end{yquantgroup}

D. Scaling

𝐻
𝛽

𝐻

\begin{tikzpicture}[scale=1.5]
\begin{yquant*}

h a;
phase {β} a;
h a;

\end{yquant*}
\end{tikzpicture}

Here, we first scaled the circuit itself. The default style for /yquant/every
circuit sets the transform shape key for every node (which means any
gate), so that those are also scaled. If your TikZ version is at least 3.1.6a,
this is all that needs to be done. In earlier versions, there was a bug that
required yquant to reset the transform shape key for labels, which would
then require you to scale those manually.

114

6.3.6 VII. Typesetting

A. Global Styling

𝐻
𝛽

𝐻
|±⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}[operators/every h/.append style={fill=red!20}]
h a;
phase {β} a;
h a;
["$\ket\pm$" above right]
measure a;

\end{yquant*}
\end{tikzpicture}

Instead of setting /yquant/operators/every h, we could also have changed
/yquant/operators/every box. Had we used /yquant/every operator,
then the measurement would also have changed. Again, due to a TikZ limitation,
it is not possible to change the position of labels on a per-style basis, only by
using label options or a global setting.

𝑅𝑧(−𝜃 ⁄ 2) 𝑅𝑧(𝜃 ⁄ 2)

\begin{tikzpicture}[thick]
\begin{yquant*}[every operator/.prefix style={fill=white}]

cnot a[1] | a[0];
box {$R_z(-\theta\fracslash2)$} a[1];
cnot a[1] | a[0];
box {$R_z(\theta\fracslash2)$} a[1];
measure a[1];

\end{yquant*}
\end{tikzpicture}

As the “thin” style is the default, we present the opposite. By default, all
operators are transparent; we changed this by giving all of them a white
background color (but as a style prefix, so that, e.g., black fillings overwrite
this). Contrary to quantikz, this also fills the cnots. If you only want to fill
certain operators, you have to selectively target them using their styles.

115

𝐽12
𝐽13

𝐽13
𝐽23

\begin{tikzpicture}
\begin{yquant}[operators/every box/.append style={fill=white}]

qubit {} j[3];
box {J_{12}} (-j[1]);
box {J_{13}} (j[0, 2]);
box {J_{23}} (j[1]-);

\end{yquant}
\end{tikzpicture}

yquant properly splits discontiguous multi-qubit operations.

B. Per-Gate Styling

𝐻
𝛽 |±⟩

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
[fill=red!20, font=\color{cyan}]
h a;
[green]
phase {[green]β} a;
["$\ket\pm$", blue]
measure a;
discard a;

\end{yquant*}
\end{tikzpicture}

Note that assigning styles in this way will forward them to /yquant/operator
style, i.e., if you have controls, the style will not apply to them. /yquant/style
is suitable to style both, e.g., [style={fill=red!20}].

|0⟩
|0⟩

𝐻

|0⟩
|0⟩

noise

116

% \usetikzlibrary{shapes.symbols, fit}
\begin{tikzpicture}

\begin{yquant}
qubit {} data;
qubit {$\ket0$} anc1[2];

h data;
cnot anc1 | data;
[after=data]
qubit {$\ket0$} anc2[2];
[name=noise]
text {} (data, anc1);
cnot anc2[0] | data;
cnot anc2 | anc1[0];
cnot anc2[1] | anc1[1];
measure anc2[0];
[blue] measure anc2[1];

\end{yquant}
\node[starburst, cyan, fill=yellow, draw=red, line width=2pt,

inner xsep=-4pt, inner ysep=-5pt, fit=(noise)] {noise};
\end{tikzpicture}

TikZ shapes cannot simply be used with yquant. Any yquant shape must be
aware of the keys x radius and y radius that control its width and height.
Additionally, yquant shapes must implement clipping paths. Those objects,
which are a yquant addition to TikZ allow yquant to properly clip wires and
vertical lines to the shape of the gate. yquant draws its elements sequentially;
hence, a wire that comes into an operator will be hidden by anything the
operator draws on top of it; but outgoing wires will in turn draw on the
operator (modulo clipping). To avoid the issues, we construct an invisible box
operator and name it; outside of the yquant environment, we fit the special
TikZ shape on top of it. Alternatively, we could also use the \enclose macro
to cover the text; however, this would then be drawn under the wires (which
we could fix by setting /yquant/enclose/layer to main).

C. Boxing/Highlighting Parts of a Circuit

𝐻 𝐻
𝐻

𝐻
𝐻 𝐻

reversed c-not

117

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
h a;
cnot b | a;
\enclose["reversed c-\textsc{not}", solid, inner ysep=3pt] {

h -;
cnot b | a;
h -;

}
cnot b | a;
h b;

\end{yquant*}
\end{tikzpicture}

Here, we could use subcircuits instead of \enclose, which would double the
separation:

𝐻

reversed c-not

𝐻
𝐻

𝐻
𝐻 𝐻

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
h a;
cnot b | a;
[this subcircuit box style={inner ysep=6pt, "reversed

c-\textsc{not}"}]↪

subcircuit {
qubit {} x;
qubit {} y;
h -;
cnot y | x;
h -;

} (-);
cnot b | a;
h b;

\end{yquant*}
\end{tikzpicture}

Here, we used the key /yquant/this subcircuit box style to influence
only the style of the subcircuit box itself instead of providing global options
that apply to every object in the subcircuit (you wouldn’t want the label be

118

assigned to every single gate).

𝐻
𝐻

swap

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant*}
h a;
\encloseall[rounded corners, fill=blue!20, "\textsc{swap}" below] {

cnot b | a;
cnot a | b;
cnot b | a;

}
h b;

\end{yquant*}
\end{tikzpicture}

Since version 0.9, the \encloseall macro is available to comfortably wrap
things in boxes. The default style already draws a dashed box, so here we
simply add some complements. Note that by using \encloseall! instead of
\enclose, we make sure that the vertical extent of the box not only encloses
all the gates that are in between, but in fact covers the whole height and
depth of the involved registers (which here are larger due to the size of the
Hadamard gates). Further note that the creation of registers (without putting
an initialization label) is not part of the region: in principle, the register b is
lazily created within the \encloseall, but without a label, this is probably
not intended to be taken into account, hence yquant decides to ignore this
fact.

yquant does not support the fancy nearest-neighbor swap gate that quantikz
has. It would however not be very difficult to implement this particular shape and
make it available. Maybe even a multi-swap gate using the knots library would
be possible.

119

6.3.7 VIII. Otherwise undocumented features

𝐻

𝐻
𝑈

…

…
… 𝑈𝑘

𝐻

𝐻

% \usetikzlibrary{quantikz,fit}
\begin{tikzpicture}

\begin{yquant}[register/default name=]
qubit a;
[name=wave, register/minimum height=5mm, register/minimum depth=5mm]
nobit wave;
qubit b;
qubit c;

h a, b;
box {U} c | a;
text {\dots} a, b-;
box {U^k} c | b;
h a, b;

\end{yquant}
\node[wave, fit=(wave) (current bounding box.east |- wave), inner

ysep=.5pt, inner xsep=0pt] {};↪

\end{tikzpicture}

Here, we included quantikz, which provides the wave shape, then introduced
a register that will contain this wave (and enlarged it sufficiently). After the
circuit is drawn, we fit the wave along. Since the name assigned to a register
without any text actually is of a coordinate shape, we need to enlarge the
height of the wave by providing a slightly increased inner ysep. Additionally,
quantikz sets a negative inner xsep, which is probably required for its grid
layout; but yquant positions exactly, so we also need to reset this.

yquant does not provide a shape corresponding to the “creating an ebit” gate.

120

6.3.8 X. Troubleshooting

|0⟩

|0⟩

(𝛼 𝛽
𝛽 −𝛼) 𝑈1

𝑈2

\begin{tikzpicture}
\begin{yquant}

qubit {$\ket0$} a[2];
box {$\begin{pmatrix}

\alpha & \beta \\
\beta & -\alpha

\end{pmatrix}$} a[0];
cnot a[1] | a[0];
box {$U_{\The\numexpr\idx+1}$} a;

\end{yquant}
\end{tikzpicture}

6.4 qpic documentation

Again, our section headings will be the same as in the qpic manual. As the qpic
manual uses a bit larger separation between the operators than yquant’s default,
we globally say \yquantset{operator/separation=3mm, register/default
name=\reg, register/default lazy name=\reg}, which allows to easily
generate all the registers on-the-fly.

6.4.1 1 Introduction

𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8
𝑎9

𝑎9
𝑎8
𝑎7
𝑎6
𝑎5
𝑎4
𝑎3
𝑎2
𝑎1

121

\def\reversecircuit#1{%
\begin{tikzpicture}

\let\high=\empty
\listeadd\high{#1}
\def\cnot##1|##2;{%

\ifinlist{##2}\high{
\yquant [style=red] cnot a[##1] | a[##2];
\ifinlist{##1}\high{

\listremove\high{##1}
\yquant addstyle {black} a[##1];

}{
\listadd\high{##1}
\yquant addstyle {red} a[##1];

}
}{

\yquant cnot a[##1] | a[##2];
}

}
\def\cnotA{\cnot 0|1; \cnot 2|3; \cnot 4|5; \cnot 6|7;}
\def\cnotB{\cnot 2|1; \cnot 4|3; \cnot 6|5; \cnot 8|7;}
\def\cnotC{\cnot 1|0; \cnot 3|2; \cnot 5|4; \cnot 7|6;}
\def\cnotD{\cnot 1|2; \cnot 3|4; \cnot 5|6; \cnot 7|8;}
\def\cnotBlock{\cnotA \cnotB barrier (-); \cnotC \cnotD}
\begin{yquant}[operator/minimum width=0pt, register/minimum height=2mm,

register/minimum depth=2mm]
qubit {\Ifnum\idx=#1\color{red}\Fi$\reg_{\The\numexpr\idx+1}$} a[9];
addstyle {very thick, red} a[#1];

\cnotBlock barrier (-);
\cnotBlock barrier (-);
\cnotBlock barrier (-);
\cnotBlock barrier (-);
\cnotBlock
output {\protect\xifinlist{\idx}{\high}{\color{red}}\relax

$a_{\The\numexpr9-\idx}$} -;
\end{yquant}

\end{tikzpicture}%
}
\reversecircuit2

This is an extremely interesting example, which could have been implemented in a lot of dif-
ferent manners. We chose an approach where we deferred the logic of coloring the gates en-
tirely to TEX. Note that we put everything, including the whole tikzpicture itself, in a macro
\reversecircuit, which we call directly after its definition by saying \reversecircuit2. This
is of course an overkill in this situation—there is no need for the macro definition. However, note
that the macro expects the wire that is to be colored in red as its argument. So by slightly changing

122

the invocation to

\foreach \ici in {0, ..., 8} {
\reversecircuit\ici
\par\vspace{1cm}

}

we are able to render the circuit with all different initial wires one after the other very easily. We
do not show the output in the manual to keep it succinct, but just try it out by yourself.
We now explain what is done in the macro.
We first define an etoolbox list that is stored in \high. The idea is that this list holds at any point
in time the indices of all the registers that are currently colored in red. Initially, we add the index
that was given as a parameter to the macro—in our case, this was 2. Note we use \listeadd
instead of \listadd, which is important for the invocation via \foreach—we want to have the
number in the list, not the macro \ici that holds the index of the initially colored wire).
Next, we do not want to manually do the bookkeeping of this list. All we want to do is to issue the
command to put a cnot gate on the appropriate registers and TEX should keep track of the correct
coloring and register state. For this, we first define a macro \cnot that expects the index of the
target and the index of the control register. Within this macro, we check whether the register of
the control is currently highlighted (\ifinlist{#2}\high). If this is not the case, we draw the
cnot gate without any additional styles (note that since we interrupted the yquant parser due
to the lots of intervening macros, we first have to restart it saying \yquant). However, if it is the
case that the control register is currently highlighted, we draw the cnot gate with the attribute
[style=red]—we do not only want to draw the gate itself in red (for which [red] would be
sufficient), but also its control line and the control blob, so we use the /yquant/style shorthand.
Note that in the qpic manual, some of the control lines are thicker than others. This could be
implemented by adding the argument every control line/.append style={very thick};
however, as it is unclear what the thick line should indicate, we did not add this to the example.
Then, we have to change the state of the target register appropriately, since the highlighting state
will propagate from control to target. If the target register was already highlighted, we have to
remove it from the list and we change its line color back to black; if it was not highlighted, we
add it to the list and change its line color to red. Note that the use of addstyle will keep adding
styles, so in the end, the register line style will be a long string red,black,red,black,...; we
could do better by saying setstyle, which would overwrite the line style. However, since we
will initially set the line width of a[#1] to very thick—which should be kept throughout the
circuit—we would have to take additional care not to lose this setting. Here, we chose the simpler
version.
After setting the coloring preliminaries, we note that if we slice the circuit at any time, it will
have four possible gate configurations (or a barrier). We define abbreviations for these in the

123

macros \cnotA to \cnotD. Since they will always follow in this order, we also define a \cnotBlock
abbreviation that executes these configurations together with their intermediate barrier. We do
not include the final barrier, since it is not present in the last block.
Now, we start the yquant environment. We give some options for a nicer spacing and initialize the
registers. In the qpic example, the registers are 1-indexed, so we use \The\numexpr\idx+1 to
give back the value of the current register index (\idx) plus one; we also conditionally color the
register name in red if the index coincides with the parameter. Note that here we use yquant’s
shorthand for \protect\the, \protect\ifnum, and \protect\fi, which are \The, \Ifnum, and
\Fi, to get the correct expansion behavior.
Then, we add the initial style for the a[#1] wire. Inserting the gates together with the correct
coloring is now extremely simple: we just need to call our \cnotBlock command and intersperse
it with barriers. At the end, we output all the gates in reverse order, which works similarly to
the initialization of the gates, and also conditionally color the reversed register. This coloring
could in principle be done similarly to the coloring of the initial label, saying something like
\Ifnum\numexpr8-\idx=#1 \color{red}\Fi. Here, we chose the “more honest” approach to
color all the registers that are still present in the coloring list—note the need to \protect the
etoolbox macro \xifinlist. In this way, we could, e.g., terminate the circuit earlier and still
get the correct output coloring at this particular point.
Note that if there were more that just five blocks, we could also have made use of TikZ’s \foreach
loop to output all the \cnotBlock commands. However, be aware of the fact that \foreach puts
its content in a group, so the \high list assignments would have been local and forgotten in the
next iteration. Either they would need to be made globally or some non-grouping loop construct
would have to be used (e.g., \pgfplotsforeachungrouped).

124

6.4.2 2 Simple Examples

2.1 Example 1: Majority
𝑎
𝑏
𝑐 M

AJ =
𝑎 ⊕ 𝑐
𝑏 ⊕ 𝑐
MAJ(𝑎, 𝑏, 𝑐)

\begin{tikzpicture}
\begin{yquant*}

box {\rotatebox{90}{MAJ}} (a, b, c);

text {$=$} (-);

cnot b | c;
cnot a | c;
cnot c | a, b;

output {$a \oplus c$} a;
output {$b \oplus c$} b;
output {$\operatorname{MAJ}(a, b, c)$} c;

\end{yquant*}
\end{tikzpicture}

125

2.2 Example 2: Quantum Fourier Transform

𝑥2

𝑥1

𝑥0

𝐻 2 3
𝐻 2

𝐻

1√
2(|0⟩ + 𝑒2𝜋𝑖⋅0.𝑥2𝑥1𝑥0 |1⟩)

1√
2(|0⟩ + 𝑒2𝜋𝑖⋅0.𝑥1𝑥0 |1⟩)

1√
2(|0⟩ + 𝑒2𝜋𝑖⋅0.𝑥0 |1⟩)

\begin{tikzpicture}
\begin{yquant}[operators/every box/.append style={shape=yquant-circle,

radius=2.5mm}]↪

qubit {x_2} x2;
qubit {x_1} x1;
qubit {x_0} x0;

h x2;
box {2} x2 | x1;
box {3} x2 | x0;
h x1;
box {2} x1 | x0;
h x0;

output {$\frac{1}{\sqrt2} (\ket0 + e^{2\pi i \cdot 0.x_2 x_1 x_0}
\ket1)$} x2;↪

output {$\frac{1}{\sqrt2} (\ket0 + e^{2\pi i \cdot 0.x_1 x_0}
\ket1)$} x1;↪

output {$\frac{1}{\sqrt2} (\ket0 + e^{2\pi i \cdot 0.x_0} \ket1)$}
x0;↪

\end{yquant}
\end{tikzpicture}

In this example, we opted to use three distinct registers instead of one vector
register, since the reversed indexing would probably have led to more confu-
sion. We globally overwrite the /yquant/operators/every box style to use
a circular shape instead. Note that this would usually be an ellipse, so we
explicitly set the radius to a value that exceeds the minimum (half) width. As
of version 0.6, the style /yquant/operators/every box is no longer the base
style for other rectangular boxes such as h (note this requires a compatibility
version of at least 0.6 or higher). For earlier versions, the change in shape
would also affect the Hadamard gate and therefore would have to be reverted
using the /yquant/operators/every h style.

126

2.3 Example 3: Shor’s Algorithm

|0⋯ 0⟩ |0⋯ 0⟩

𝐻⊗𝑛

𝑎𝑥 mod 𝑁

QFT

𝑦?

Quantum Hadamard Transform
2𝑛−1
∑
𝑥=0

|𝑥⟩ |0⟩

Exponentiation
2𝑛−1
∑
𝑥=0

|𝑥⟩ |𝑎𝑥 mod 𝑁⟩

Measure 𝑦 = 𝑎𝑏
⌊ 2𝑛−1

𝑟 ⌋

∑
𝑗=0

|𝑏 + 𝑗𝑟⟩ [𝑦]

Quantum Fourier Transform
2𝑛−1
∑
𝑥=0

⎛⎜
⎝

⌊ 2𝑛−1
𝑟 ⌋

∑
𝑗=0

𝜔𝑥∗(𝑏+𝑗𝑟)⎞⎟
⎠

|𝑥⟩

127

\long\def\explain#1#2#3{%
\encloseall[brace left={#1}, brace right={$\displaystyle#2$}] { #3 }

}
\begin{tikzpicture}

\begin{yquant}[vertical,
every control/.append style={radius=1.5mm},
operators/every slash/.append style={x radius=3mm, y

radius=1.5mm},↪

operators/every box/.append style={y radius=4mm},
operators/every measure/.append style={y radius=4mm},
operator/minimum extent=1.32cm,
enclose/every brace/.style={}]

qubit {$\ket{0\dotsm0}$} x; slash x;
qubit {$\ket{0\dotsm0}$} y; slash y;

\explain{Quantum Hadamard Transform}
{\sum_{x = 0}^{2^n -1} \ket x \ket 0}{

box {$H^{\otimes n}$} x;
}

\explain{Exponentiation}
{\sum_{x = 0}^{2^n -1} \ket x \ket{a^x \bmod N}}{

box {$a^x \bmod N$} y | x;
}

\explain{Measure $y = a^b$}
{\sum_{j = 0}^{\lfloor\frac{2^n -1}{r}\rfloor} \ket{b + j r}

[y]}{↪

measure y;
output {y} y;

}

\explain{Quantum Fourier Transform}
{\sum_{x = 0}^{2^n -1} \left(\sum_{j = 0}^{\lfloor\frac{2^n

-1}{r}\rfloor}↪

\omega^{x * (b + j r)} \right) \ket
x}↪

{
box {QFT} x;

}

output {$?$} x;
\end{yquant}

\end{tikzpicture}

Once again, this is a very interesting example. The circuit itself is very standard
(though it is the first one in vertical mode). In order to output the explanations, we

128

basically just use the \encloseallmacro with the /yquant/enclose/brace left
and /yquant/enclose/brace right options, and since we need it so often, we
define a macro shorthand for this. However, here, the explanations should be drawn
without and kind of brace—so we simply empty the /yquant/enclose/every
brace, effectively removing the brace completely.
Note that the code example above would work exactly in this way in traditional
LATEX documents; however, this document is set with unicode-math. This leads to
a problem when using \bmod, which has to be \protected—or, as we did here,
just say \robustify\bmod somewhere before its usage and after loading all the
packages.

2.4 Example 4: Teleportation

|𝜙⟩ |0⟩ |0⟩

𝐻

𝐻

𝑋

𝑍

|𝜙⟩

Alice and Bob form an
entangled pair of qubits

Alice entangles
and measures

Bob applies gates based on
Alice’s measurements

129

\begin{tikzpicture}
\begin{yquant}[vertical]

qubit {\color{red}$\ket\phi$} q;
qubit {$\ket0$} q[+2];
setstyle {red} q[0];

\encloseall[brace right=Alice and Bob form an\\entangled pair of
qubits] {↪

h q[1];
cnot q[2] | q[1];

}
setstyle {red} q[1];
setstyle {blue} q[2];
barrier (q);

\encloseall[bracing style=red, brace left=Alice entangles\\and
measures] {↪

[style=red, operator/separation=0pt] cnot q[1] | q[0];
[red] h q[0];
[red] measure q[0, 1];

}

\encloseall[bracing style=blue, brace right=Bob applies gates based
on\\Alice's measurements] {↪

[style=blue] x q[2] | q[1];
[style=blue] z q[2] | q[0];
discard q[0, 1];

}

output {\color{blue}$\ket\phi$} q[2];
\end{yquant}

\end{tikzpicture}

This example shows a different way of providing explanations along the circuit,
which this time also works for hints encompassing more than a single gate.
Since version 0.9, yquant provides the \encloseall macro, which is used
for highlighting a certain part of the circuit. The /yquant/enclose/brace
left and /yquant/enclose/brace right styles modify the enclosing action
to cover the full register range and put the description at the outside.

130

6.4.3 3.1 Wires
3.1.1 Wire Declarations

𝑎
𝑏

𝜙

\begin{tikzpicture}
\begin{yquant}

qubit a;
qubit b;
qubit {} c;

hspace {1cm} -;

output {ϕ} a;
\end{yquant}

\end{tikzpicture}

𝑥1
...

𝑥𝑛

𝑦1
...
𝑦𝑛

\makeatletter
% https://tex.stackexchange.com/a/112212/32357
\DeclareRobustCommand\rvdots{%

\vbox{%
\baselineskip4\p@\lineskiplimit\z@%
\kern-\p@%
\hbox{.}\hbox{.}\hbox{.}%

}%
}
\begin{tikzpicture}

\begin{yquant}[every nobit output/.style={},
register/separation=3mm]↪

qubit {x_1} x;
qubit {\rvdots} x[+1]; discard x[1];
qubit {x_n} x[+1];

hspace {1cm} -;

output {y_1} x[0];
output {\rvdots} x[1];
output {y_n} x[2];

\end{yquant}
\end{tikzpicture}

This is one of at least four possible implementations (note we defined \rvdots,
since the native \vdots does not appear to be very well-centered). It declares
the “invisible” register as part of the vector register x. As a consequence, when-
ever the whole vector register is addressed in operations, the operation is also
drawn on the invisible register. For multi-register gates, this may be desired

131

https://tex.stackexchange.com/a/112212/32357

(they just span the whole region), for single-register gates, this is most certainly
undesired. Note that yquant does not allow to declare an output gate for invis-
ible registers—usually, this does not make sense. However, this is not enforced
as a hard constraint, but rather due to the fact that the style /yquant/every
nobit output does not exist. To prevent an error message, we just define this
as an empty style. Also note that, to get a proper vertical spacing, we decided
to use the /yquant/register/separation key—which works well, as there
are no other registers. If there were others, it would be better to increase the
height and depth of the invisible register.
Alternatively, we might declare the invisible register with a completely different
name. This would create a discontiguous vector register x, which is probably
the better thing to do for single-register gates. However, yquant may now try
to split multi-register gates into contiguous slices—there could be arbitrary
registers between discontiguous parts of a vector register, and they should of
course not be targeted if they are not in the list of targets of a gate—but here,
we would actually want to have this.
A third approach mixes yquant and TikZ code. We declare a vector register
with size two, manually increase, say, the depth of the first register, and put
a \node at the appropriate position by naming the initial labels. In this way,
vector usage will never target the “invisible” line—since it does not exist; both
single- and multi-register gates will work appropriately. As a drawback, we
need to decide whether we want to enlarge the depth of the first or the height
of the second register (or both, splitting in half)—but what if some gates will
actually be so large that they would provide enough of height or depth had we
just chosen a different way of distribution the space?
In order to remediate this, a fourth way using only two registers would be to
defer the drawing of the dots to a multi-register text gate which receives a
y radius that enforces an appropriate separation. yquant will then automati-
cally perfectly distribute the vertical extents among height and depth of the
involved registers. The drawback with this approach is of course that the dots
will be drawn within the circuit, not to the left. There is an undocumented
option that we can use to shift the gate to the left; but since this only works for
initializers, we still need to draw the dots for the outputs manually. A possible
implementation could look as follows.

132

𝑥1

𝑥𝑛

...

𝑦1

𝑦𝑛

...

% \rvdots definition from above
\begin{tikzpicture}

\begin{yquant}
qubit {x_1} x;
qubit {x_n} x[+1];
[internal/move label, anchor=east, y radius=8mm]
text {\rvdots} (x);

hspace {1cm} -;

[name=o1]
output {y_1} x[0];
[name=o2]
output {y_n} x[1];

\end{yquant}
\path (o1.south west) -- (o2.north west) node[midway,

/yquant/every output] {\rvdots};↪

\end{tikzpicture}

𝐴

|0⟩⊗3
𝐵

|0⟩⊗2

\begin{tikzpicture}
\begin{yquant*}

[decorate=false, draw=none]
init {A} (q[0, 1]);
init {$\ket0^{\otimes3}$} (q[2-4]);

hspace {1cm} -;

output {B} (q[1, 2]);
output {$\ket0^{\otimes2}$} (q[3, 4]);

\end{yquant*}
\end{tikzpicture}

Note that here the 𝐴 is drawn without the curly braces. There are two simple
ways to achieve this: by setting draw to none, the curly brace is suppressed,
but still the 𝐴 would be drawn at the same position as if the brace were there.
We additionally set decorate to false to fully remove any reminiscence of
the brace, so that the text is closest to the wires. (Note that just removing the
decoration without also removing the drawing would lead to a vertical line
that connects all the affected wires—this is how the yquant-init shape looks
like in an undecorated fashion.)

133

6.4.4 3.2 Gates
3.2.1 Controlled NOT and controlled𝑍

𝑎

\begin{tikzpicture}
\begin{yquant*}

not a;
\end{yquant*}

\end{tikzpicture}

𝑎
𝑏

\begin{tikzpicture}
\begin{yquant*}[register/default lazy

name=$\symbol{\numexpr`a+\idx}$]↪

cnot q[1] | q[0];
\end{yquant*}

\end{tikzpicture}

Since in yquant’s notation, b is mentioned before a, it would also be created
as the first wire. If we instead resort to vector registers, we can directly specify
which position our registers should have. Of course, for longer circuits, an
explicit declaration is probably favorable.

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant*}[register/default lazy

name=$\symbol{\numexpr`a+\idx}$]↪

cnot q[2] | q[-1];
\end{yquant*}

\end{tikzpicture}

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant*}

not a;
zz (b, c);
cnot c | a ~ b;

\end{yquant*}
\end{tikzpicture}

134

3.2.2 General Gates

𝑎

𝑏
A
B

𝜏 GATE

\begin{tikzpicture}
\begin{yquant*}

box {\symbol{\numexpr`A+\idx}} a, b;
box {τ} (-);
box {GATE} a | b;

\end{yquant*}
\end{tikzpicture}

Note that the macro \idx is available in any gate, and it gives the index of the
current register within the target list.

𝑎 𝜌

𝑏 𝜌
𝜌

\begin{tikzpicture}
\begin{yquant*}[operators/every box/.append

style={shape=yquant-circle}]↪

box {ρ} a;
box {ρ} b | a;
box {ρ} (-);

\end{yquant*}
\end{tikzpicture}

Note that the macro \idx is available in any gate, and it gives the index of the
current register within the target list.

𝑎 𝑏 𝑐
𝑀

GATE

𝑀−1

\begin{tikzpicture}
\begin{yquant}[vertical=-90]

qubit a; qubit b; qubit c;
box {M} (c, b) | a;
box {GATE} (-);
box {M^{-1}} (c, b) | a;

\end{yquant}
\end{tikzpicture}

Here, we use the automatic rotation feature that the /yquant/vertical style
provides.

135

𝑎
𝑏
𝑐
𝑑

𝑓−1

𝑓
𝑔

𝜃

\begin{tikzpicture}
\begin{yquant*}

[name=fs] box {\Ifnum\idx<1 f^{-1}\Else f\Fi}
(a, b), (c, d);↪

[name=g] box {g} (b, c) | a;
[shape=yquant-circle, name=theta] box {θ}

d;↪

\end{yquant*}
\draw (fs-0) -- (fs-1) (g) -- (theta);

\end{tikzpicture}

By putting the two 𝑓-boxes into a single gate, we ensured that yquant will
center them with respect to each other.

3.2.3 Other predefined Gates

𝑎 𝐻
𝑥 𝐻

\begin{tikzpicture}
\begin{yquant*}

h a;
h x;

\end{yquant*}
\end{tikzpicture}

𝑎

𝑏
𝑍
𝑍

𝑍

\begin{tikzpicture}
\begin{yquant*}

z a, b;
zz (-);
z a | b;

\end{yquant*}
\end{tikzpicture}

𝑎
𝑏
𝑐
𝑑

\begin{tikzpicture}
\begin{yquant*}

zz (a, b), (c, d);
zz (b, c);
zz (-b), (c-);
zz (b, c);

\end{yquant*}
\end{tikzpicture}

136

𝑎
𝑏

\begin{tikzpicture}
\begin{yquant*}

swap (a, b);
\end{yquant*}

\end{tikzpicture}

𝑎
𝑏
𝑐

𝑓

𝑑

𝜁

𝑓

\begin{tikzpicture}
\begin{yquant*}[plusctrl/.style={/yquant/every

control/.style={/yquant/operators/every not}, /yquant/every
positive control/.style={}}]

↪

↪

[plusctrl] box {f} (a, b) | c;
[plusctrl, shape=yquant-circle] box {ζ} c | d;
[plusctrl] box {f} (a, b) | c;
cnot b | a;
cnot c | d;

\end{yquant*}
\end{tikzpicture}

This very unorthodox-looking style can be achieved by altering the control
styles in such a way that it basically looks like a not gate.

6.4.5 3.3 Attributes
Size Attributes

𝑎

𝑏

HIGH WIDE LONG BROAD

137

\begin{tikzpicture}
\begin{yquant*}

[y radius=20pt] box {HIGH} (a, b);
[x radius=20pt] box {WIDE} (-);
[time radius=20pt] box {LONG} (-);
[space radius=20pt] box {BROAD} (-);

\end{yquant*}
\end{tikzpicture}

In horizontal mode, time radius is a synonym for x radius, while space
radius is a synonym for y radius.

𝑎 𝑏

HIGH

WIDE

LONG

BROAD

\begin{tikzpicture}
\begin{yquant*}[vertical=45]

[y radius=20pt] box {HIGH} (a, b);
[x radius=20pt] box {WIDE} (-);
[time radius=20pt] box {LONG} (-);
[space radius=20pt] box {BROAD} (-);

\end{yquant*}
\end{tikzpicture}

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant}

[register/minimum depth=10pt]
qubit a;
qubit b;
[register/minimum height=1pt]
qubit c;

cnot c | a, b;
\end{yquant}

\end{tikzpicture}

Upon creation, the minimum register sizes can be passed on to yquant; note
that the /yquant/register/minimum height extends from the wire line to

138

the top of the space that is allocated for the wire, whereas the corresponding
key /yquant/register/minimum depth extends from the wire line to the
bottom. Hence, the values given here are half of qpic’s.

𝑎

𝑏 𝑔

\begin{tikzpicture}
\begin{yquant*}

[inner sep=0pt, radius=2.5pt]
box {} a | b;
[shape=yquant-circle, radius=10pt]
box {g} b | a;
cnot a | b;
[operator style={radius=7.5pt}, control

style={radius=4pt}]↪

cnot a | b;
\end{yquant*}

\end{tikzpicture}

To mimick closely qpic’s manual, we used an empty box instead of the xx gate,
which also is a rectangle. Note that the shapes that accept text also have an
inner separation, which would interfere with the radius setting.

𝑎 𝑓 𝑓

\begin{tikzpicture}
\begin{yquant*}

[x radius=12.5pt]
box {f} a;
[radius=12.pt, shape=yquant-circle]
box {f} a;

\end{yquant*}
\end{tikzpicture}

Note that when changing to the yquant-circle shape, this will become an
ellipse if only one of the radii is modified.

139

𝑎
𝑏

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit {\color{purple}a} a;
setstyle {purple} a;
qubit b;

[style=green!50!black]
cnot a | b;
setstyle {red} b;
[orange, control style=blue]
h a | b;

\end{yquant}
\end{tikzpicture}

𝑎
𝑏

𝑓

\yquantdefinebox{circle}[shape=yquant-circle, draw,
inner sep=0pt, radius=2mm]{}↪

\begin{tikzpicture}
\begin{yquant*}

[fill=red!50!white] box {f} a | b;
[fill=blue, name=b] circle a;
[fill=green, name=g] circle b;
not a;
[fill=yellow] not b;

\end{yquant*}
\draw (b) -- (g);

\end{tikzpicture}

𝑎
𝑏 𝐺

\begin{tikzpicture}
\begin{yquant*}

setstyle {dotted} a;
setstyle {very thick} b;
[dashed, fill=yellow] box {G} (-);
cnot a | b;
setstyle {densely dotted} a;

\end{yquant*}
\end{tikzpicture}

140

𝑎
𝑏
𝑐

\begin{tikzpicture}[on/.style={red, very thick}]
\begin{yquant*}[on/.style={style=red, control

style={very thick}}]↪

cnot a | b;
qubit {\color{red}c} c;
setstyle {on} c;
[on] cnot b | c;
setstyle {on} b;
[on] cnot a | b;
setstyle {on} a;

\end{yquant*}
\end{tikzpicture}

This example demonstrates for the first time that new registers can also be
declared at any later time in the circuit. Note that we defined two very different
styles:

• /tikz/on for the tikzpicture
This is an ordinary TikZ style and hence will be applied whenever it is
used in a styling context—for example, when added to the wire styles.

• /yquant/on for the yquant* environment
This is a style that does not directly apply any styling, but it instead
passes options to /yquant/style (we want to have the gates as well as
their controls and control lines in red) as well as to /yquant/control
style (we want to draw the control lines thicker [in principle, this would
also affect the controls, but they are filled, not drawn], but we don’t want
to draw the lines of the cnot gates themselves be drawn thicker.). Since
attributes for gates will first look in the /yquant namespace, this style is
applied when used as an attribute for a gate (but beware that [style=on]
would call the other style).

𝑎
𝑏 𝐻

\begin{tikzpicture}
\begin{yquant}[register/default name=\reg]

cbit a;
qubit b;
h b | a;
discard a;

\end{yquant}
\end{tikzpicture}

yquant does not offer the variety of shapes that qpic does; please file a feature

141

request if there is a need.

𝑎
𝑏 ⋅ 𝐴

\begin{tikzpicture}
\begin{yquant}

qubit a;
qubit b;
[shape=yquant-circle, radius=1.2mm, inner sep=0pt]
box {\cdot} b | a;
box {A} (-);

\end{yquant}
\end{tikzpicture}

142

𝑎
𝑏 SUB

% \usepackage[hidelinks]{hyperref}
% \usetikzlibrary{calc}
\makeatletter
\def\tikzHyperNode#1{%

\ifdefined\tikz@alias%
\unless\ifyquantmeasuring%

\pgfqkeysalso{/tikz}{%
% https://tex.stackexchange.com/a/36111/32357
alias=sourcenode,
append after command={

% we don't need to worry about outer sep, yquant shapes
ignore this value↪

let \p1=(sourcenode.north west),
\p2=(sourcenode.south east),
\n1={\x2-\x1},
\n2={\y1-\y2} in

node [inner sep=0pt, outer sep=0pt, anchor=north west,
at=(\p1)]↪

{#1{\XeTeXLinkBox{\phantom{\rule{\n1}{\n2}}}}}
}%

}%
\fi%

\fi%
}
\tikzset{

hyperlink/.code={\tikzHyperNode{\hyperlink{#1}}},
hyperref/.code={\tikzHyperNode{\hyperref[{#1}]}}

}

\begin{tikzpicture}
\begin{yquant}

qubit a;
qubit b;
[hyperref=sec:grammar]
box {SUB} (a-b);

\end{yquant}
\end{tikzpicture}

In principle, adding a hyperlink to any gate works as adding a hyperlink
to any TikZ node. We use a standard implementation; because of the way
yquant internally handles styles applied to a gate, we must protect this in
the \ifdefined\tikz@alias (yquant executes the options outside of nodes
first to set, e.g., line styles appropriately, which leads to an error, as the alias

143

option only works within nodes). We also want to refrain from unnecessarily
adding hyperlinks during the initial measurement phase. We then provide two
TikZ styles to do the job, depending on whether the link should be created via
\hyperlink or \hyperref and apply it. Note that here, we explicitly created
the registers first. Had we used an implicit creation, we would also have applied
to hyperref to the register labels!
Be aware of the fact that hyperlinks in PDFs will always be rectangular; if your
gate shape is different from this, do not expect the shapes to match.

6.4.6 3.4 Measurement and Other Wire Type Changes

𝑎
𝑏 𝑍

\begin{tikzpicture}
\begin{yquant*}

measure a;
cnot b | a;
dmeter {Z} b;

\end{yquant*}
\end{tikzpicture}

yquant does not support the tag shape.

𝑎
𝑏 𝑍

\begin{tikzpicture}
\begin{yquant*}

[direct control] measure a;
cnot b | a;
dmeter {Z} b;

\end{yquant*}
\end{tikzpicture}

144

𝑎 0 1

\begin{tikzpicture}
\begin{yquant*}[operator/separation=2mm]

setstyle {-|, shorten >= 3mm} a;
inspect {0} a;
discard a;

hspace {1cm} -;

setstyle {|-, shorten <= 2mm} a;
init {1} a;

\end{yquant*}
\end{tikzpicture}

There are no gates in yquant that resemble the visual discard or reinitializa-
tion marker; however, this can be achieved by placing appropriate arrowheads
at the wires. Still, this is a problematic solution: Every wire in yquant will ex-
tend from the center of one gate to the center of the next gate; protruding parts
will be clipped away. Hence, the arrowhead will not be visible, as it is below
the inspect or init gate—so we must shorten the wire by an “appropriate”
amount. Additionally, if the circuit were longer, we would want to quickly get
rid of this arrowhead style. yquant will try to make the wire lines as long as
possible—i.e., in a normal circuit without any changes, the wire will in fact be
one continuous line from the left to the right. However, whenever something
changes at the wire—say, the style or type is changed—yquant needs to start
a new path. We don’t want the arrowheads to still be installed on this new
path, hence we would quickly need to remove them.

145

𝑎
𝑏

𝑓 𝐴

𝑐
𝑔

𝑎′

𝐵 ℎ
𝐴′

𝐶′

\begin{tikzpicture}
\begin{yquant}

qubit a;
hspace {5mm} a;
[after=a] qubit b;
box {f} (a, b);
inspect {A} a;
[after=a] qubit c;
discard a;
box {g} (b, c);
align -;
init {a'} a;
inspect {B} b;
discard b;
box {h} (-);
output {A'} a;
output {C'} c;

\end{yquant}
\end{tikzpicture}

Here, we create registers with the after attribute at some later point in the
circuit. Note that logically speaking, the ℎ box should have had the targets (a,
c); however, as yquant does not know that the middle register was already
discarded, it would have drawn two boxes joined by a wiggly line to indicate
the discontiguous multi-qubit register.

6.4.7 3.5 Managing Slices

𝑎
𝑏
𝑐
𝑑

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b; qubit c; qubit d;
zz (a, c);
h b;
measure d;

\end{yquant}
\end{tikzpicture}

146

𝑎
𝑏
𝑐
𝑑

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b; qubit c; qubit d;
zz (a, c);
h b;
align -;
measure d;

\end{yquant}
\end{tikzpicture}

𝑎
𝑏
𝑐
𝑑

𝐻

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b; qubit c; qubit d;
zz (a, c);
align -;
h b;
measure d;

\end{yquant}
\end{tikzpicture}

𝑎
𝑏
𝑐
𝑑

𝐻

\begin{tikzpicture}
\begin{yquant}[operators/every barrier/.style={shape=yquant-line, draw,

shorten <= -2mm, shorten >= -2mm, decoration={zigzag, segment
length=4, amplitude=1pt}, decorate}]

↪

↪

qubit a; qubit b; qubit c; qubit d;
zz (a, c);
h b;
align -;
barrier d;
measure d;
[red] barrier a, d;

\end{yquant}
\end{tikzpicture}

Note that a yquant barrier works a bit differently from qpic’s. It is basically
just an ordinary gate with a dashed line style; by the fact that all registers

147

that are listed in the target list are aligned automatically, the barrier usually
does its job. Hence, we need to align before the first barrier, as it does not
perform an alignment by itself on registers that were not mentioned as targets.
Here, we also change the default style (which is a dashed line) to the zigzag
line that uses qpic’s style. Note that yquant automatically loads the library
decorations.pathmorphing, so we don’t need to do this.

𝑎

𝑏
2

𝑐

𝐻
𝐻
𝐻

\begin{tikzpicture}
\begin{yquant*}[operator/minimum width=0pt,

operator/separation=2mm]↪

[shape=yquant-circle, radius=1.5ex]
box {2} a | b;
h a, b, c;
[style=green!50!black]
cnot c | a, b;
[operator/separation=0pt, green!50!black]
not c;

\end{yquant*}
\end{tikzpicture}

In order to stick two operators directly next to each other, we must set the
/yquant/operator/separation to zero; this is the whitespace that is inserted
before an operator. However, if the total with of an operator is smaller than
/yquant/operator/minimum width, it is centered in a box of this width (giv-
ing a more uniform layout with lots of small gates), which would add additional
whitespace both to the right of the Hadamards and to the left of the cnots.
We just globally suppress this minimum width, which is unproblematic for this
particular circuit (we could also locally change it).

148

𝑎

𝑏
2

𝑐

𝐻
𝐻
𝐻

\begin{tikzpicture}
\begin{yquant*}[operator/minimum width=0pt,

operator/separation=2mm]↪

[shape=yquant-circle, radius=1.5ex]
box {2} a | b;
h a, b, c;
[style=red]
cnot c | a, b;
[operator/separation=0pt]
not c;
cnot c | a, b;
[operator/separation=0pt, red]
not c;

\end{yquant*}
\end{tikzpicture}

𝑎 1
𝑏

2

\begin{tikzpicture}
\begin{yquant*}[operators/every box/.append

style={shape=yquant-circle, radius=1.5ex}]↪

box {1} a;
not b;
box {2} a;
align -;
not b;

\end{yquant*}
\end{tikzpicture}

An instruction like MIXGATES does not exist in yquant, as it does not use a
grid-based layout; but of course, its behavior can be faked by align gates.

149

6.4.8 3.6 Reversing and Repeating

𝑎
𝑏
𝑐

\begin{tikzpicture}
\yquantdefinegate{cnots}{

qubit a; qubit b; qubit c;
cnot b | a;
cnot b | c;
cnot a | b;
cnot c | b;

}
\begin{yquant*}

cnots (a, b, c);
cnots (-);

\end{yquant*}
\end{tikzpicture}

yquant does not have a concept of slices and hence can also not automatically
repeat gates within a certain slice. However, there are multiple ways to achieve
the circuits in this section without repeating parts manually. Here, we defined
a custom gate that contained the content and inserted it two times. Another
alternative would be to do this using macros, as was illustrated in the very first
example of the qpic section.

𝑎
𝑏
𝑐

𝑓 𝑔 𝑓 𝑓 𝑔 𝑓

150

\begin{tikzpicture}
\yquantdefinegate{gates}{

qubit a; qubit b; qubit c;
[plusctrl] box {f} a | b;
addstyle {dotted} b;
[plusctrl] box {g} (a, b) | c;
[plusctrl] box {f} a | b;
addstyle {solid} b;

}
\begin{yquant*}[plusctrl/.style={/yquant/every

control/.style={/yquant/operators/every not}, /yquant/every
positive control/.style={}}]

↪

↪

gates (a, b, c);
cnot b | c;
gates (-);

\end{yquant*}
\end{tikzpicture}

Note that for this sequence, we did basically the same thing as before, as we
identified a symmetric slice—so reversing the order does not do anything.
We will also expand this example and give a very simple (and a bit shortsighted)
implementation of a macro that reverses the order of gates. Note that this macro
basically just splits its content at semicolons and when it is done inputs all the
parts in reverse order. Hence, it will fail if semicolons appear, e.g., in attributes
without enclosing them in braces. It also does not correspond exactly to the R
instruction from qpic, as it does not reverse wire styles (basically addstyle
would become a hypothetical subtractstyle macro), but just inserts them in
reverse order. Hence, the following example will give a different circuit with
respect to the wire style!

𝑎
𝑏

𝑓

𝑐

𝑔 𝑓 𝑓 𝑔 𝑓

151

\makeatletter
\long\def\reversegates#1{%

\begingroup%
\let\reversegates@list=\empty%
\count0=0 %
\expandafter\reversegates@i#1;\reversegates@stop%

}
\long\def\reversegates@i#1;#2\reversegates@stop{%

\ifstrempty{#2}{%
\yquant@fordown \reversegates@idx := \count0 downto 1 {%

\expandafter\expandafter\expandafter\yquant%
\csname reversegates@list@\reversegates@idx\endcsname%

}%
\endgroup%

}{%
\ifstrequal{#2}{;}{%

\reversegates@i;\reversegates@stop%
}{%

\advance\count0 by 1 %
\csdef{reversegates@list@\the\count0}{#1;}%
\reversegates@i#2\reversegates@stop%

}%
}

}
\begin{tikzpicture}

\def\gates{%
[plusctrl] box {f} a | b;
addstyle {dotted} b;
[plusctrl] box {g} (a, b) | c;
[plusctrl] box {f} a | b;
addstyle {solid} b;

}
\begin{yquant*}[plusctrl/.style={/yquant/every

control/.style={/yquant/operators/every not}, /yquant/every
positive control/.style={}}]

↪

↪

\expandafter\yquant\gates
cnot b | c;
\reversegates\gates

\end{yquant*}
\end{tikzpicture}

152

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b; qubit c;
cnot b | a;
cnot b | c;
\foreach \i in {1, 2} { \yquant

cnot a | b;
cnot c | b;

}
\end{yquant}

\end{tikzpicture}

Another way to repeat things is to just use appropriate repetition macros (and
remember to restart the parser); here, we used \foreach from TikZ, but any
other will also do the job.

6.4.9 3.7 Other Circuit Elements

𝑎 n

\begin{tikzpicture}
\begin{yquant*}[operators/every slash/.append

style={radius=2mm}]↪

slash a;
[label=10:n] slash a;

\end{yquant*}
\end{tikzpicture}

𝑎
𝑏

𝑎
𝑎 ⊕ 𝑏 𝑏

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b;
cnot b | a;
inspect {\Ifcase\idxa\Else$a \oplus

b$\Fi} -;↪

cnot b | a;
inspect {b} b;

\end{yquant}
\end{tikzpicture}

Here, we achieved the centering of the two inspected registers by putting
them in a single gate instruction with case discrimination.

153

𝑎
𝑏 =

\begin{tikzpicture}
\begin{yquant*}

swap (a, b);
text {$=$} (-);
cnot b | a;
cnot a | b;
cnot b | a;

\end{yquant*}
\end{tikzpicture}

This is a very simple equality; for more complicated ones, the groups library
is recommended.

𝑎
𝑏
𝑐
𝑑

𝑓 𝐺

𝐹 𝑔

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b; qubit c; qubit d;
box {f} (a, b);
inspect {G} (a, b);
init {F} (c, d);
box {g} (c, d);

\end{yquant}
\end{tikzpicture}

Note that we first defined all the registers explicitly, and they all use an initializ-
ing text. Had we directly used the init gate on the registers (c, d) as the first
gate when neither of both registers had an initializing text, then the 𝐹 would
have been placed to the left of the wires. Basically, a qubit declaration with a
value is the same as declaring the register without a value plus another init
gate that puts the value in place. A zero-length hspace gate or an alignment
directly at the beginning would be a way to prevent this shift to the left from
happening.

yquant does not support the permutation gate that qpic has. It would however
not be very difficult to implement this particular shape and make it available.
Maybe even a multi-swap gate using the knots library would be possible.

154

6.4.10 3.8 Comments

𝑎
𝑏

\begin{tikzpicture}
\begin{yquant}

qubit a; qubit b;
\foreach \i in {0, 1, 2} { \yquant

cnot b | a;
cnot a | b;
\ifnum\i<2 \yquant

[operator/separation=2pt, operator/minimum width=0pt]
barrier (-);

\fi
}

\end{yquant}
\end{tikzpicture}

𝑎 1
above

2
below

3
both

sides

% \usetikzlibrary{quotes}
\begin{tikzpicture}

\begin{yquant}[operators/every
box/.append
style={shape=yquant-circle,
radius=1.5ex}]

↪

↪

↪

qubit a;
[blue, "above" above] box {1} a;
[red, "below" below] box {2} a;
["both" above, "sides" below] box

{3} a;↪

\end{yquant}
\end{tikzpicture}

𝑎 1 2 3

above

below

155

\begin{tikzpicture}
\begin{yquant}[operators/every box/.append style={shape=yquant-circle,

radius=1.5ex}]↪

qubit a;
\startenclose[brace above=above]{first}
box {1} a;
\startenclose[bracing style=blue, brace below=below]{second}
box {2} a;
\stopenclose{first}
box {3} a;
\stopenclose{second}

\end{yquant}
\end{tikzpicture}

This shows a complicated use of the \enclose-like macros: here, we have
overlapping enclosing regions. Therefore, it is not possible to use the \enclose
macro for both descriptions (though for one would be fine). Instead, we create
named enclosures, which can be interleaved arbitrarily.

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant}

qubit a;
qubit b;
qubit c;
\enclose[draw=none, fill=red!40!white] {

cnot b | a;
cnot a | b;

}
hspace {2mm} -;
\enclose[rounded corners=10pt] {

cnot c | b;
cnot b | c;

}
\end{yquant}

\end{tikzpicture}

156

6.4.11 3.9 Macros and LATEX Code

𝑎

𝑏
2

2

\begin{tikzpicture}[loud/.style={red, very thick}]
\yquantdefinebox{phase2}[loud, draw,

shape=yquant-circle, radius=1.5ex]{2}↪

\begin{yquant*}
[style=loud]
phase2 a | b;
phase2 b;

\end{yquant*}
\end{tikzpicture}

Note that here, we choose an alternative gate name, as there already is the
built-in gate phase. While we could overwrite it, this is generally a very bad
idea. Keep in mind that gate declarations are global and also that gates are case
insensitive, so changing the capitalization would not help. Finally note that
when we define a style for a new gate, it only pertains to the gate itself. It is not
possible to change styles external to the gate—such as control lines—within
the gate definition itself.

The following example in the qpic manual requires some additional thoughts.
It defines a custom gate with a variable number of target registers. The
\yquantdefinegate interface does not officially allow for this, although some
low-level hacking can of course be done (a sorted etoolbox list is provided in
the macro \yquant@circuit@subcircuit@param, which holds the internal
indices of all currently involved target registers).
It is of course always possible to write some macros that output the required
gate commands. Looking at the particular example, it is actually not really
necessary to define a gate that has a variable number of targets. Rather, in
yquant, one would define a new gate that just contains the two ⊕ symbols
next to each other; the control line is drawn separately from the gate anyway.
This very straightforward description will unfortunately fail, for the following
reason: When a control line is drawn, yquant currently always draws it from
the center anchor of the current shape upwards or downwards. However,
for the ⊕⊕ shape, the control line point should actually be in the middle of
the right ⊕. This is an off-center point, so we need some hacking to convince
yquant to do this. The following code is pretty long; we will therefore give
parts of the code, followed by an explanation.
First of all, we define a shape (similar to what is done in yquant-shapes.tex)
that holds the two⊕es.

157

\makeatletter
\pgfdeclareshape{yquant-doubleoplus}{%

\inheritsavedanchors[from=yquant-slash]%
\anchor{center}{\pgfqpoint{.5\dimexpr\xradius\relax}{0pt}}%
\foreach \anc in {north, east, south, west} {

\inheritanchor[from=yquant-rectangle]{\anc}
}
\anchor{north east}{\pgfqpoint{.853553\dimexpr\xradius\relax}

{.707107\dimexpr\yradius\relax}}%
\anchor{south east}{\pgfqpoint{.853553\dimexpr\xradius\relax}

{-.707107\dimexpr\yradius\relax}}%
\anchor{south west}{\pgfqpoint{-.853553\dimexpr\xradius\relax}

{-.707107\dimexpr\yradius\relax}}%
\anchor{north west}{\pgfqpoint{-.853553\dimexpr\xradius\relax}

{.707107\dimexpr\yradius\relax}}%
% The border anchor is a bit more tricky, we leave it out here
\backgroundpath{%

\pgf@relevantforpicturesizefalse%
\pgfpathmoveto{\pgfqpoint{-.5\dimexpr\xradius\relax}{\yradius}}%
\pgfpathlineto{\pgfqpoint{-.5\dimexpr\xradius\relax}{-\yradius}}%
\pgfpathmoveto{\pgfqpoint{.5\dimexpr\xradius\relax}{\yradius}}%
\pgfpathlineto{\pgfqpoint{.5\dimexpr\xradius\relax}{-\yradius}}%
\pgfpathmoveto{\pgfqpoint{-\xradius}{0pt}}%
\pgfpathlineto{\pgfqpoint{\xradius}{0pt}}%
\pgfpathellipse{\pgfqpoint{-.5\dimexpr\xradius\relax}{0pt}}%

{\pgfqpoint{.5\dimexpr\xradius\relax}{0pt}}%
{\pgfqpoint{0pt}{\yradius}}%

\pgf@relevantforpicturesizetrue%
\pgfpathellipse{\pgfqpoint{.5\dimexpr\xradius\relax}{0pt}}%

{\pgfqpoint{.5\dimexpr\xradius\relax}{0pt}}%
{\pgfqpoint{0pt}{\yradius}}%

}%
\clippath{%

\pgfpathellipse
{\pgfqpoint{-.5\dimexpr\xradius}{0pt}}
{\pgfqpoint{.5\dimexpr\xradius+\pgflinewidth}{0pt}}
{\pgfqpoint{0pt}{\dimexpr\yradius+.5\pgflinewidth\relax}}%

\pgfpathellipse
{\pgfqpoint{.5\dimexpr\xradius\relax}{0pt}}
{\pgfqpoint{.5\dimexpr\xradius+\pgflinewidth\relax}{0pt}}
{\pgfqpoint{0pt}{\dimexpr\yradius+.5\pgflinewidth\relax}}%

}%
}

Nothing special happens in the first few lines (although the center anchor is
now off-center): We declare a new shape yquant-doubleoplus, inherit some
saved anchors and anchors (for details, see the TikZ manual, section 106.5.3,

158

“Command for Declaring New Shapes”). The x radius now corresponds to
the diameter of one of the circles, since we have two circles next to each other.
We do not define border anchors at the moment; they would require some
additional computation, but in lots of scenarios, they are not necessary (as
we would also not need most of the anchors, but it is always good to have
them). The clip path is also not very special, it just contains the shape that
is to be clipped away; basically, both circles. The background path deserves
more attention. We draw the two circles and the vertical and horizontal lines;
but note that we disable the pgf’s size protocol for all but the right circle.
Hence, when this shape is used, TEX and yquant will actually think that it only
occupies space for the right circle; the left one will protrude in the margin.
(Actually, we could wrap this in a test such as \ifdefined\yquant@prefix to
only discard protocoling within a yquant environment, so that the shape is
properly usable outside.)
Next, we must take care of re-inserting this “lost” margin whenever the gate is
used; andwe also define a style that appropriately uses the shape:

\yquantset{
operators/every noffoli/.style={

shape=yquant-doubleoplus, x radius=2.6mm, y radius=1.3mm, draw
},
internal/noffoli shift/.code={%

\begingroup%
\expandafter\tikzset\expandafter{\yquant@draw@@style}%
\tikzset{/yquant/every operator, /yquant/operators/every noffoli,

/yquant/this operator}%↪

\edef\cmd{%
\endgroup
\dimdef\noexpand\yquant@config@operator@sep{%

\yquant@config@operator@sep+
\pgfkeysvalueof{/tikz/x radius}%

}%
}%
\cmd

}
}

The first style is almost a copy of the /yquant/operators/every not style,
only with the new shape and a doubled x radius. The second style is more
complicated: Protected in a group, it first sets all the custom style overwrites
that a user may pass to the gate (e.g., the user may wish to overwrite the
radii)—those are stored in the internal macro \yquant@draw@@style. Then,

159

it applies the styles in the order as the gate would do it; note that an attribute
such as [x radius=1cm] would only add the directive to the /yquant/this
operator style, but not apply it yet, therefore we now execute all the options
that were stored previously. As the final action that survives the group, we
add the current value for the x radius to the current value of the operator
separation—this effectively enacts the proper placement of our gate.
Having defined those styles, we finally need to declare the gate itself, so that it
can be used in a circuit:

\yquant@langhelper@declare@command
{noffoli}
{}
{%

\appto\yquant@attrs@remaining{,/yquant/internal/noffoli shift}%
\yquant@prepare

{}%
{/yquant/operators/every noffoli}%

}%
\yquant@langhelper@setup@attrs{noffoli}{}{}

We call \yquant@langhelper@declare@command, as for every standard gate
declaration, with the desired name of the gate ({noffoli}), the actions that
are to be carried out before the targets and controls are parsed ({}), and the
actions that are to be carried out once the targets and controls are known. We
append the style that we just defined to the list of attributes, and execute the
gate preparation. Finally, we also declare the attributes that this gate takes—no
required and no optional attributes.
After all this work, which can be saved in some shared document and used
whenever necessary, we can come to the application, which is now very straight-
forward (however, note that our gate declaration was too simplistic for vertical
mode; but an adaptation is not difficult).

𝑎
𝑏
𝑐

\begin{tikzpicture}
\begin{yquant*}

noffoli a | b, c;
[style=red] noffoli c | a, b;
noffoli b | a;

\end{yquant*}
\end{tikzpicture}

160

𝑎
𝑏 FONT

% \usetikzlibrary{backgrounds}
\begin{tikzpicture}

\begin{yquant}
qubit a; qubit b;
[name=cn]
cnot b | a;
\draw[fill=blue] (cn) circle[radius=5pt];
box {FONT} (-);
[name=cn, fill=boxBlueBody]
cnot b | a;
\scoped[on background layer]

\draw[fill=red] (cn)
circle[radius=5pt];

↪

↪

\end{yquant}
\end{tikzpicture}

There are no special options to mix TikZ code with yquant code, as this can
be done natively at any time. To draw at the position of another gate, just
name the gate. Note that—as was illustrated here—also using the same name
multiple times is possible, in this case, the latter use overwrites the former.
There is no direct equivalent to the PRETIKZ option—the gate has to be drawn
first in order to get its position. However, TikZ supports layers, so it is easy to
draw something behind a gate: just put it on a background layer, e.g., the one
provided by the backgrounds library. Also note that here, we filled the second
cnot gate with our background color in order to give the same image as in the
qpic manual. The circle is not filled by default, hence the red “outer” circle
would be visible also inside the cnot circle.

The HYPERTARGET instruction can be directly reproduced in TEX by just putting
a \hypertarget before the tikzpicture.

161

7 Foreign language support and extensions

yquant is built in various modules, so that it is not hard to use the quantum circuit
rendering backend, but expose a different language frontend. yquant not only
understands its own language, but also others. Although we refer to “foreign
languages,” additional extension packages of the yquant language itself are also
covered in this section and can be loaded by the same syntax.

7.1 groups

By saying \useyquantlanguage{groups} in the preamble after loading yquant
itself, additional support for groups of yquant circuits is loaded. Various circuits
in a group share a common set of registers, are appropriately aligned horizontally
if on the same line and can also be aligned vertically among multiple lines. The
main intended use is for circuit equations.

This extension provides the environment yquantgroup. You may use this envi-
ronment within a tikzpicture; in this case, all page-break related features are not
available. You may alternatively use the environment outside of a tikzpicture;
in this case, it will start and end the pictures appropriately.

As with yquant, the environment accepts optional options that are passed
to \yquantset; a starred form is available that allows for the lazy creation of
registers—but note that shared registers must always be created explicitly; only if
some circuits in the group have additional registers, the lazy creation applies.

7.1.1 General usage

% preamble:
% \usepackage[compat=<version>]{yquant}
% \useyquantlanguage{groups}
\begin{tikzpicture}% tikz options possible. This environment may be omitted.

% tikz commands go here
\begin{yquantgroup}% yquant(group) options possible.

\registers{
% arbitrary shared register declaration go here

}
% any of \circuit, \equals, \\, \shiftright
% if the tikzpicture environment was omitted: also allows
% \pagebreak, \newpage, \clearpage, \cleardoublepage, \intertext,

\shortintertext↪

% in most cases, TikZ commands are also allowed
\end{yquantgroup}
% tikz commands go here

\end{tikzpicture}

162

7.1.2 Special macros

\registers The \registers macro can and must only be used once in a
yquantgroup environment. It contains the declaration of all the registers that
are shared among the various circuits within a group. Basically, if you follow the
convention in a usual yquant circuit to first declare all the registers, then use
the gates, then you would put the declaration part in the \registers macro.
However, note that it is in principle also possible to mix register declarations with
other gates and TikZ commands.

In case you do not use the import gate in any of the circuits within the group and
you do not declare own registers, the behavior is very straightforward: basically,
the content of \registers is copied verbatim at the beginning of each circuit3.
Otherwise, the general rule is: importing a register will ensure that all non-
declaration commands that preceded this register declaration are executed; and
importing the last register will additionally execute all succeeding commands
within \registers.

\circuit[<style>]{<content>} The \circuit macro can be thought of as
starting a yquant (or yquant*) environment and using its mandatory argument
<content> as the content of the circuit; the optional <style> is used to apply
additional styling options to the circuit.

This is not entirely accurate: In reality, the content is put into a subcircuit
and <style> is passed as arguments to the subcircuit.

The default style /yquant/operators/every group circuit is applied to
the circuit. This style is configured such that the illusion of working in a top-level
yquant environment is very convincing: The circuit is frameless by default and
uses the transparent name mangling scheme.

All the registers that were previously defined via \registers are automatically
available within the circuit, as if their declaration had been copied. In fact, yquant
will make a register available the first time it is referenced in some gate; if at the
end of a circuit some of the shared registers were not used, they will be imported
before exiting the circuit. Consequently, if you define own registers just for a single
circuit, these will always be at the very top. This can be influenced by means of
the import gate, which is only available in group \circuits. This gate allows to
import a declared register at an arbitrary position.

3This is not strictly true. Vector registers will always be created one-by-one, as yquant cannot
know (without undertaking some effort) whether they are complete or interspersed with others.
This implies that for compat versions prior to 0.8, indexing will look very strange.

163

\equals*[<content>] The \equals macro inserts a blank text—internally, a
box-like gate with the style /yquant/operators/every group equals—that
contains <content>. If omitted, <content> is given by $=$.

The optional star will put a horizontal alignment mark at the position where the
box is inserted. Similar to the & operation in amsmath’s align environment or the
\> in TEX’s native tabbing, yquant will now remember the horizontal position
of the box internally and will allow you to directly jump to this position in the
next line. Note that you may well have multiple alignment marks in a single line,
which yquant internally numbers 1, 2, ….

\\[<separation>] The \\ macro inserts a line break (never a page break), so
that the next \circuit or \equals will be put below all circuits that were output
before, and it will again start at the same left position as the first circuit. The
default vertical distance is given by /yquant/group/line separation, but it
may be overwritten by the optional <separation> argument, which must be a
TEX dimension.

Note that if you set new alignment marks in a new line, this will delete the
alignment marks that were previously set.

If the option /yquant/group/aligned is passed to the yquantgroup environ-
ment, the command \shiftright is implied after each linebreak.

\shiftright*[<where>] The \shiftright command will put the “cursor,” i.e.,
the horizontal position at which the next \circuit or \equals will start, at the
position specified by <where>. By default, <where> is 1. If the optional star is
present, yquant will additionally put an alignment mark at this position (see the
documentation for \equals). If the option /yquant/group/aligned is passed to
the yquantgroup environment, the command \shiftright is implied after each
linebreak or starred page break.

The option <where> can take various forms:

• It may be a natural number 1, 2, …, denoting the number of an alignment
mark specified in a previous line.

• It may be the number 0, denoting the very beginning of the line; this is
useful if the /yquant/group/aligned option is given, but for a specific line,
no alignment should be performed.

• It may be a TEX dimension, in which case this dimension is directly added
to the cursor (so it is a relative value). This is where passing the optional
star makes most sense. If you want to position absolutely, you may first issue
\shiftright[0] followed by a shift by the dimension that you want.

164

The macro is named \shiftright; however, yquant does not enforce that the
actual position is to the right of the current position. You may indeed be able
to create overlapping circuits if you shift back to a previous position.

\pagebreak*, \newpage*, \clearpage*, \cleardoublepage* The page break-
ing commands are available only if the yquantgroup was not enclosed in a
tikzpicture. They will end the current picture environment, issue the origi-
nal page breaking command, and start a new picture. Hence, if you want to pass
options globally to the picture, you should use the /yquant/preamble option
for the yquantgroup; the content of this key will be passed as options for every
implicitly started tikzpicture.

Usually, remembering the horizontal alignment marks on a new page does not
make much sense. For this reason, the commands will delete all alignment; use
their starred versions to retain them. If the option /yquant/group/aligned is
passed to the yquantgroup environment, the command \shiftright is implied
after the starred version of the page break.

Typically, you will not want to refer to named gates in a circuit on a differ-
ent page; remember that if you need this feature, you must pass the remember
picture key in the /yquant/preamble option, as this is a reference to another
tikzpicture. Also don’t forget to use the (TikZ) overlay key on the correspond-
ing path that references the node in order not to mess up with the bounding box
(see the TikZ documentation for those two keys).

\intertext, \shortintertext The text intermission commands are available
only if the yquantgroup was not enclosed in a tikzpicture. They will end the
current picture environment, output the text (or really just anything) that was
given as required argument as a new paragraph, and start a new picture with the
same alignment. Note that the commands do not detect whether a page break
happens, they will always preserve the alignment.

While the commands resemble those from amsmath and mathtools, they take
two optional arguments, which must be valid TEX skips and which define the
vertical space inserted before and after the text. By default, \intertext is the
same as \intertext[\belowdisplayskip][\abovedisplayskip], while
\shortintertext is the same as
\shortintertext[\belowdisplayshortskip][\abovedisplayshortskip].

165

7.1.3 Configuration

Loading the groups language extension will define several new configuration
keys.

/yquant/group/every group default:
Style that is installed for every yquantgroup and yquantgroup* environment, as
if it had been given as an option. The style’s default path is /tikz.

/yquant/group/line separation default: 5mm
This is the default vertical line separation that is inserted whenever a new line is
issued in a yquantgroup.

/yquant/group/aligned default: false
This boolean flag defines whether \shiftright is automatically issued after \\
and the starred page breaking commands.

/yquant/preamble default:
This style may only be passed to the yquantgroup alignment directly as an op-
tion; it is not available via \yquantset and the like. It is only relevant if the
yquantgroup is not contained in a tikzpicture. The content of this style will be
given as an optional argument to the tikzpicture; this is the recommended way
to specify TikZ options, as they are automatically preserved among page breaks.

/yquant/operators/every group circuit default: /yquant/operators/every
subcircuit, /yquant/operators/subcircuit/frameless,

/yquant/operators/subcircuit/name mangling=transparent
This style is installed for the subcircuit that implicitly wraps each \circuit.
Note that some magic is carried out to ensure that the name mangling setting
only applies to the direct content of the \circuit; any subcircuits within the
\circuit will use the default name mangling scheme.

/yquant/operators/every group equals default: shape=yquant-rectangle,
align=center, anchor/.expanded=\ifyquanthorz{center}{north west},

inner xsep=1mm, x radius=2mm, y radius=2.47mm
This style is installed for every \equals, which is internally realized similarly to a
box gate.

166

7.1.4 Gates and operations

No gates or operations may be used directly within the yquantgroup environment,
but all the usual yquant gates and operations are available within \registers
and \circuit. Additionally, within \circuit, the import gate is available.

import
Syntax: import <target>;
This is a pseudo-gate that makes all the outer registers given in <target> available
in the current circuit. Consequently, the register names that are specified in
<target>, also ranges, do not refer to the registers in the current \circuit, but
instead to those defined via \registers. Therefore, it is for example possible to
import all outer registers at once using import -;. Vector registers can also be
imported partially.

If additional content (TEX commands such as TikZ paths, non-creation gates) is
used within \registers, everything that comes before the declaration of a register
will be copied into the \circuit when the register is imported; for a vector, this
refers to the index zero. Additionally, any additional content that comes after the
declaration of the last register will be copied directly after the last register was
imported.

Out-of-order importing

Note that it is principle possible to import registers out-of-order. Since matching
outer and inner wires in subcircuits is done in the order in which they appear,
this will lead to inner registers with names that do not match their outer
registers and is probably highly undesirable.

Usually, this gate will not be needed as yquant will automatically import an
outer register upon its first use.

Possible attributes: none

7.1.5 Vertical layout

This library is aware of vertical circuits. Note that the layout between the circuits
will always be the same, irrespective of the actual circuit orientation: Circuit will
be set from left to right, and line breaks will always lead to a vertical shift and a
reset of the horizontal position.

That said, the circuits may internally be set in vertical mode. Every invocation
of \circuit will then always restart a new yquant environment. While the con-
tent will still be put in a lonely subcircuit—to keep consistency in the styling

167

options—no inter-circuit wire alignment will be carried out.
There is an additional complication regarding the vertical alignment of circuit

and equality signs within one “line.” Now, the circuits can very well have a varying
height, so vertically centering the circuits with respect to each other would not
lead to a satisfying layout. We might desire to vertically center the equality sign
between its two enclosing circuits. However, what if the line contains more than a
two circuits and they all have different heights? Then, the equality signs would be
at different positions. For this reason, all \circuits and \equals will be aligned
at their top.

7.2 qasm

By saying \useyquantlanguage{qasm} in the preamble after loading yquant
itself, the parser for qasm (not OpenQASM) is loaded. It provides the environment
qasm as well as the macro \qasmimport, which works similarly to \yquantimport
(but does not accept additional options).

7.2.1 Language specification

The qasm language is not formally defined, but an overview is provided at the
archived website of qasm2circ. The yquant implementation is designed to be
compatible with the original parser, with the following exceptions:

• In qasm, lines could begin in an arbitrary manner; the first whitespace
followed by the first valid command were then the instruction. Contrary
to this, yquant’s parser always expects a line to start with a valid gate
(preceded by arbitrary whitespaces), a comment, or to be empty.

• In qasm, user-defined gates will be drawn in a box unless they contain the
text \dmeter, and they will be recognized as measurement gates if they
contain \meter or \dmeter. Contrary to this, yquant’s parser expect the
gates to start with one of the macros \meter, \dmeter, or \dmeterwide.
Using these macros within the content of a gate does not make sense from
the point of view that in yquant, gates are nodes with shapes, so either the
full gate has a particular shape or it does not, but not only parts of it.

• The space gate is supposed to produce a horizontal whitespace without a
gate. In yquant’s implementation, you have to discard the wire if you want
to reproduce this behavior; space and nop are equivalent.

168

https://web.archive.org/web/20050410022847/https://www.media.mit.edu/quanta/qasm2circ/#spec
https://web.archive.org/web/20050410022847/https://www.media.mit.edu/quanta/qasm2circ/#spec

The default qasm style defines several macros that can be used in gates. yquant
makes \m (matrix; requires amsmath) and \txt (switch to text mode) available
within the qasm environment.

Do not expect yquant’s output to match the one of qasm exactly. yquant is
not grid based, so that commands such as nop don’t even make sense. They are
implemented for compatibility reasons and will produce a fixed horizontal space
of the operator minimum width plus one separation, which might or might not be
accurate.

Note that whatever you write between \begin{qasm} and \end{qasm} is es-
sentially treated as verbatim; only where the specification says so (in the definition
of a new gate and in the optional third command to the register definition), it is
interpreted as TEX markup. Consequently, in beamer, any frame containing these
environments must be given the fragile option.

7.2.2 Configuration

Loading the qasm language interpreter will define several new configuration keys.
For all the gates, it will use the keys defined in section 3, and it additionally
provides the following:

/yquant/operators/every s default: /yquant/operators/every box
This style is installed for every s operator.

/yquant/operators/every t default: /yquant/operators/every box
This style is installed for every t operator.

/yquant/operators/every utwo default: /yquant/operators/every box
This style is installed for every Utwo operator.

/qasm/zero default: \qasm@ket0
The content of this macro is used as the initialization content whenever the zero
gate is invoked.

/qasm/register/default qubit name default: \qasm@ket{#1}
This macro is invoked with a single parameter (the name of a qubit register) and
gives back what is printed as the name of the register (will be in math mode
automatically).

169

/qasm/register/default qubit name value default: \qasm@ket{#1} =
\qasm@ket{#2}

This macro is invoked with two parameters (the name of a qubit register and its
initial value) and gives back what is printed as the name of the register (will be in
math mode automatically).

7.2.3 Examples

The unaltered .qasm files provided from the qasm2circ page were stored in the
subfolder qasm relative to this manual’s TEX file. The following command is then
used to print all of them:

% preamble:
% \usepackage[compat=<version>]{yquant}
% \usepackage{import}
% \useyquantlanguage{qasm}
\def\yquantimportpath{qasm/}
\foreach \circuitno in {1, ..., 18} {

\paragraph{Circuit \#\circuitno}
\begin{center}

\qasmimport{test\circuitno.qasm}
\end{center}

}

Circuit #1
|𝑞0⟩
|𝑞1⟩

𝐻

Circuit #2
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻
𝐻

𝑋 𝑍

Circuit #3
|𝑞0⟩
|𝑞1⟩

170

https://www.media.mit.edu/quanta/qasm2circ/

Circuit #4
|𝑗0⟩
|𝑗1⟩
|𝑗2⟩

𝐻 𝑆 𝑇
𝐻 𝑆

𝐻

Circuit #5

|𝑗0⟩

|𝑗1⟩ (𝑒𝑖𝛼 0
0 𝑒−𝑖𝛼)

(cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃)

Circuit #6
|𝑗0⟩
|𝑗1⟩
|𝑗2⟩
|𝑗3⟩

𝑋
𝑈

𝐻

Circuit #7
|𝑞0⟩
|𝑞1⟩

𝐻
𝑈

𝐻
𝑉

Circuit #8
|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |0⟩
|𝑞2⟩ = |0⟩

𝐻
𝐻 𝑍 𝐻 𝐻

171

Circuit #9
|𝑞0⟩
|𝑞1⟩

|𝑞2⟩
√
𝑋

√
𝑋† √

𝑋

Circuit #10
|𝑞0⟩
𝑐1

|𝑞2⟩

𝐻 𝑈

𝑆 𝑈

Circuit #11
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻 𝑈𝑓(𝑥)
𝐻 𝑈𝑓(𝑥,𝑦)

Circuit #12
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

𝐻

𝑈

𝐻
𝑉

Circuit #13
|𝑗0⟩ = |0⟩
|𝑗1⟩ = |0⟩
|𝑗2⟩ = |0⟩

|𝑠0⟩
|𝑠1⟩

𝐻
𝐻
𝐻

𝑈4 𝑈2 𝑈

𝐻
𝑆 𝐻

𝑇 𝑆 𝐻

172

Circuit #14
|𝑞0⟩
|𝑞1⟩
|𝑞2⟩

|𝑠0⟩ = |0⟩
|𝑠1⟩ = |0⟩

𝑐0 = 0
𝑐1 = 0

𝐻 𝐻 |0⟩
|0⟩
𝐻 𝐻

Process
Syndrome

𝑅

Circuit #15
|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩

𝐻𝑍𝜃

Circuit #16
|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |𝜓⟩
|𝑞2⟩ = |𝜙⟩
|𝑞3⟩ = |0⟩

Circuit #17
|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩
|𝑞2⟩ = |+⟩
|𝑞3⟩ = |𝜙⟩

𝐻
𝐻

Circuit #18
|𝑞0⟩ = |𝜓⟩
|𝑞1⟩ = |+⟩
|𝑞2⟩ = |+⟩

|𝑞3⟩ = |𝜙⟩

𝐻
𝐻

173

8 Integration with other packages

In general, yquant should not introduce incompatibilities with other packages.
However, the possibility to mix yquant code with arbitrary TEX code may lead to
certain expectations on how things should work, which may not always be met.
This is mainly due to the fact that yquant requires two passes of its content (see
section 4.3), as it has to measure the heights and depths of the individual gates.
Similar issues can for example also arise in amsmath’s align environment, which
also has a measuring and a shipout stage. If you run into an incompatibility using
a macro from another package (or even plain TEX), try the following:

1. Using a TEX macro within yquant code will stop the yquant parser. Hence,
all gates following this macro will be ignored. Did you remember to issue
\yquant in order to restart the parser after your macro?
Symptom: No errors, but gates are missing

2. Is the macro robust? Modern packages could automatically take care of this
by a \protected definition, but older ones may not. Try to prefix the macro
by \protect.
Symptom: Unexpected error messages

3. Does the macro depend on other macros defined within the circuit? The
double pass may lead to problems. If possible, define your macros outside of
the yquant environment. If this is not possible, make sure the definitions
are expandable, then at measurement stage, yquant will do the expansion,
so that you get the correct results.
Symptom: Only the latest assignment will show up whenever the macro
is used; the vertical spacing (for subcircuits, possibly also the horizontal
spacing) may even be screwed.

4. Does the macro create output, using its own font? If the output depends
on the current position, this position will be completely wrong. This is due
to the fact that the macro is executed at the first pass only, where yquant
does not know about any positions at all. The macro \yquantsecondpass
will defer its content so that it is executed only at the second pass, where
positions are known. It will also automatically restart the parser. Note that
\yquantsecondpass will not expand its content. If you need expansion, you
may use \yquantesecondpass, which uses \protected@edef.
Symptom: Content occurring in the wrong place or missing

5. Does the macro need to be executed at both passes? There may be reasons
for this, in particular if you use commands from pgf’s basic or system layer.

174

However, all custommacros will only be executed once, at the first pass. Wrap
the macros in \yquantescape in order to execute them both times. The
parser will automatically be restarted afterwards. Note that \yquantescape
will not expand its content. You may use \yquanteescape, which will first
expand its content using \protected@edef. Note that the content will first
be executed, then stored for the second pass.
Symptom: Content missing

6. If all of this did not work and the use case is interesting enough, please file
a bug report.

8.1 TikZ

yquant is built on top of TikZ an hence integrates well with TikZ. You can use all
\path-like comands as well as scopes and yquant will automatically take care of
restarting the parser appropriately. If it does not, this is very likely a bug, please
file a report.

You should typically not use \tikzset, as all changes made by this macro will
only be executed in the first pass. Instead, use \yquantset and change the path
appropriately: this macro will first store its argument (using \protected@edef)
for the second pass and then set the appropriate options also in the first pass.

Note that low-level pgf functions are not altered by yquant; this would be
highly inefficient. If you need to use them, wrap them in \yquantescape or
\yquanteescape.

8.2 beamer

yquant integrates with beamer overlays. This means that you can use the over-
lay commands \only, \alt, \temporal, \uncover, \visible, and \invisible
directly in your yquant code; the parser will automatically be restarted when-
ever necessary. Note that the *env environments (onlyenv, altenv, uncoverenv,
visibleenv, and invisibleenv) should not be used within yquant code.

Themacros \pause and \uncover are also supported to some degree (\uncover
with braces is fully supported). They should work well in simple circuits, but
unexpected results can be expected in more complex scenarios. If you don’t get
appropriate results, use the aforementioned macros.

You may also use \note inside yquant circuits.
Note that yquant does not overwrite the definitions of the beamer macros,

which implies that you can also use them within gates (e.g., for the value of a
box). However, this means that the yquant parser must be running to detect these

175

macros and take appropriate action. Hence, if you interrupted the code via some
special macros, make sure to restart the parser even if your next macro is, e.g.,
\only.

Finally note that \only, \alt, and \temporal are more special than the usual
yquant-code-interrupting macros. They will not terminate the group that was
opened for the current gate. As a consequence, you can also use these macros
for arguments. Note that whenever you pass arguments to a gate using the
[<arguments>] <gate> <registers>; syntax, the value of <arguments> is di-
rectly fed to \pgfkeys, which does not understand beamer macros. Hence, you
cannot use, e.g., \only within the brackets. However, you can wrap the arguments
including the brackets as a whole in \only—this happens before yquant relin-
quishes control to \pgfkeys and therefore is executed as expected. Since you can
also pass multiple arguments to a gate by repeating [<arguments>], this easily
allows to combine arguments with and arguments without overlays.

Using overlays for arguments

% \documentclass{beamer}
\begin{frame}

\begin{tikzpicture}
\begin{yquant}

qubit a;
[fill=yellow]
\alt<2>{[draw=blue]}{[draw=green]}
\only<3>{[ultra thick]}
h a;

\end{yquant}
\end{tikzpicture}

\end{frame}

The Hadamard gate will always be filled yellow; its line color will be blue on
the second frame and green on all other frames. On the third frame, its line
width is dramatically increased.

You can also use overlay specifications for enclosing regions: this is as simple as
saying \enclose<...>, \encloseall<...>, or \startenclose<...>. Note that
you cannot put an overlay specification to \stopenclose—it will automatically
use the one from the corresponding \startenclose. By default, this overlay is
enforced using \uncover. You may also change this behavior; but be aware of the
fact that if you use the rectangle shape, an align gate will be enforced after the
enclosed region. Hence, using \only for the overlay may visually alter the circuit
by shifting parts.

176

/yquant/enclose/overlay command default: \uncover
This beamer overlay command is used whenever \enclose, \encloseall or
\startenclose is invoked with an overlay specification. Note that this key cannot
be changed using the implicit options given in square brackets after the macros; it
has to be changed before the macro invocation to have any effect.

177

9 Changelog

2020-03-15: Version 0.1

Initial release

2020-03-22: Version 0.1.1

Complete rewrite of the register name parser. yquant now understands comma-
separated lists and ranges in indices, and also is far more tolerant with respect to
whitespaces.
yquant now also supports non-contiguous vector registers and allows to add new
registers into an already existing vector that is not the last register, and also in
the unstarred mode.

2020-04-11: Version 0.1.2

Introduce setstyle and addstyle pseudo-gates that allow to style individual
wires; rename setwire to settype (the old name is still available and shows a
deprecation warning).
Complete rewrite of the way yquant draws wires; projection anchors are removed
in favor of clipping paths. This allows perfect connections between gates and wires,
even if the (rather rectangular) wire lines meets with nonplanar shapes, while
still preserving the possibility of transparent wires.
yquant now also properly draws non-contiguous multi-qubit operations.
New gate: correlate. Various bug fixes.

2020-06-02: Version 0.2

Introduce subcircuit; required rewriting how yquant internally positions verti-
cally. Provide simple macros to load circuits (or parts) from a file and to declare
own custom gates.

2020-06-07: Version 0.2.1

Introduce a macro to declare a lightweight custom gate, which is only a single
box with custom content.

2020-06-13: Version 0.3

Introduce support for the qasm language.

178

2020-07-11: Version 0.3.1

Add legacy support for very old TikZ versions such as the one used on the arXiv.

2020-08-24: Version 0.3.2

Fix #5: Can’t draw circuits with more than 9 qubits.

2020-10-27: Version 0.3.3

Fix #6: shorten doesn’t work for 2-qubit barriers. This fixes a bug in how the
shorten keyword worked on barriers, which may require re-assessing your
chosen values.

2021-02-21: Version 0.4-alpha

Lots of internal fixes, most notably vertical alignment with subcircuits.
Introduce capability to perform vertical alignment with multi-register gates.
Dramatic changes under the hood regarding horizontal positioning, which is now
only determined in the drawing stage; this paves the way for delayed gates, which
are planned for 0.4. Also changes in the gate declaration interface.
Introduce compatibility layer, so that layout-breaking changes will not become
effective unless explicitly requested.
Separate register height into a height and depth key.
Introduce overlay key to disable height calculation selectively.
Change register style declaration, so that this is now always equivalent to creating
an unnamed register followed by an init gate with the given text. Note: This
may be a breaking change that cannot be compatibility-protected—if you used
TEX conditionals involving \idx for creation labels of registers, you will now need
to either \protect them all or just capitalize their first letter (which corresponds
to auto-\protected versions for compat at least 0.4).
Now use nodes for init and output gates.
Change behavior of hspace and align: Now also extend if the wire is discarded
afterwards.
Introduce the commands \Ifnum, \Ifcase, \Or, \Else, \Fi, \Unless, and \The
available for use within gates that behave like auto-\protected versions of their
plain TEX equivalents.

179

https://github.com/projekter/yquant/issues/5
https://github.com/projekter/yquant/issues/6

2021-03-27: Version 0.4

New gate: inspect. Various bug fixes.
Introduce the direct control feature: measure gates can now substitute positive
controls of future gates.

2021-07-03: Version 0.4.1

Fix #9: Output bracket misaligned.
Fix #10: Unable to access node in subcircuit. As of this version, named nodes in
subcircuits will also be properly aliased if there is only a single target subcircuit
(so that you don’t need to use the -0 suffix for the subcircuit’s name).

2021-08-17: Version 0.5

Improvement: Active outer canvas transformations (TikZ shifts, scalings, rotations)
should be supported more nicely (no guarantees!).
Improvement: Custom gates (\yquantdefinegate) can now contain TikZ \path-
like commands without the \noexpand prefix.
Improvement: Automatically discard wires inside a subcircuit (even if they had the
[out] or [inout] attribute) if they are discarded directly after the subcircuit and
they have output gates within the subcircuit (else, the wire would be re-drawn
from the output to the border of the subcircuit).
Bugfix: Referencing named gates in nested subcircuits now works without produc-
ing an error (worked before, but gave errors).
Bugfix: Properly handle the direct control feature if it was specified, but not
used until the end of the (sub)circuit.
Introduce name mangling options for subcircuits.
Implement #11: Circuit equations. As of this version, the groups language is
available that allows to easily implement circuit equations.

2021-09-04: Version 0.5.1

Bugfix: The xx gate style was not made available since version 0.4-alpha.

2021-12-28: Version 0.6

Bugfix: Support to set the /yquant/operators/subcircuit/seamless property
outside of yquant environments.
New: Support for beamer.
New macros: \yquantsecondpass, \yquantesecondpass, \yquantescape, and

180

https://github.com/projekter/yquant/issues/9
https://github.com/projekter/yquant/issues/10
https://github.com/projekter/yquant/issues/11

\yquanteescape for more fine-grained control of when to execute macros.
Bugfix: the auto-\protected versions \Ifnum etc. now also work in output gates.
New gate: text.
Introduce the /yquant/operators/every rectangular box style as a common
ancestor of gates such as box, h, ... instead of using the /yquant/operators/every
box style for this. As a consequence, boxes can now be styled globally without
affecting the other gates. This new behavior is compatibility-protected.
Bugfix: outputs can now be named.
Bugfix: Border angles of yquant-circle now work properly.
New configuration: /yquant/register/default lazy name.
Documentation: Replace the wishlist by a section on integration with other pack-
ages.
Documentation: Include the examples of qpic in this manual.

2022-02-05: Version 0.7

New: Support for vertical layout.
Various bugfixes.
Internal change of the loading order of the package files.
Fix #18: Subcircuit boxes don’t render in yquantgroup environment. Now, styles
can properly modify the /yquant/operators/this subcircuit box style with-
out affecting the content of the subcircuit, only the box.
New: Support for a simplified drawing pipeline without clipping paths.

2022-05-07: Version 0.7.1

Fix issues with using handlers for attributes.
Fix #21: CSWAP scaling problems. Now the clipping of the swap and slash
gate scale appropriately when scaling canvas transformations are in effect (no
guarantee with rotations!). Multi-register lines in the same style as control lines
(/yquant/operator/multi as single) will be automatically hidden if control
lines are present—they would be drawn on top of each other in the exact same
style.

2022-12-24: Version 0.7.2

Fix #23: Add the iswap gate.

181

https://github.com/projekter/yquant/issues/18
https://github.com/projekter/yquant/issues/21
https://github.com/projekter/yquant/issues/23

2023-01-21: Version 0.7.3

Fix #24: Clipping in subcircuits can under very special circumstances fail. Change
all clipping paths to a most conservative huge rectangle—before, we tried to be
economical. Also use a more meticulous way of subcircuit position alignment
(which will probably consume more resources during compilation, but multiple
subcircuits may cancel each other in height and depth calculation if we don’t do
it).
Address #25: We now provide the styles /tikz/only at and /tikz/not at that
allow to easily use styles on an multi-register operator that just affect some parts
of their register representation.
Now the size of controls is taken into account when calculating the size of an
operation—so extremely large controls will appropriately enlarge the height/depth
or horizontal increment. This is more useful when putting labels to controls.

2023-03-05: Version 0.7.4

Fix #26: Reset all the special groups-related commands that are only valid directly
in a yquantgroup environment when parsing the arguments of \registers,
\circuit, or \equals. Most notably, this affects \\, which can now be used
properly within a grouped circuit.

2023-11-26: Version 0.7.5

Fix #29: Scaling the whole picture would lead to compilation failures and wrong
output with subcircuits.

2025-06-15: Version 0.8

Bugfix: Linebreaks in a yquantgroup environment no longer corrupt future com-
mands.
New (#32): add a possibility to define attributes—and hence, pass parameters—to
custom gates.
Changed: \yquantdefinebox and \yquantdefinegate now do no longer expand
their content at the time of definition. The expanding behavior can be obtained
with the new macros \yquantedefinebox and \yquantedefinegate. This is
compatibility-protected.
Changed: \idx and \regidx will now evaluate only at the time of drawing, giving
a correct index when used with discontiguous registers, and in particular, with the
groups language. As a consequence, \regidx is now always contains an implicit
\vphantom[to have the same vertical extent during preparation as in drawing.

182

https://github.com/projekter/yquant/issues/24
https://github.com/projekter/yquant/issues/25
https://github.com/projekter/yquant/issues/26
https://github.com/projekter/yquant/issues/29
https://github.com/projekter/yquant/issues/32

This can lead to larger spacings between very small registers and is therefore
compatibility-protected. To use the newer version with smaller spacing, give the
label at creation explicitly (or using \reg).
Bugfix: Rarely, calculation of the beginning of a register line did not succeed
(leading to a missing line) due to fixed-point inaccuracies; introduce a tolerance
to fix this.
Bugfix: The documentation PDF was broken in the Git repository, as it was appar-
ently not recognized as binary.
New: Introduce “corner” gates by allowing init and discard to be conditioned
on other registers; no longer require a value attribute for init.
Bugfix: The definition of \yquantescape vs. \yquanteescape was just the oppo-
site of what was documented.
Bugfix: Changing global TikZ variables such as the line width might have leaked
into other registers and gates.
New: add the \intertext and \shortintertext commands in a yquantgroup
environment.
Bugfix: Always recognize changes in register types in subcircuits (and thus groups).
Documentation: The documentation now contains much more links between in-
dividual commands. Maybe in the future, this can even be expanded to code
examples?

2025-08-29: Version 0.8.1

Bugfix: Subcircuits, where a wire with multi-digit internal index had the [in]
attribute broke the layout.
Bugfix: The \idx and \regidx changes in version 0.8 are now applied to the lazy
register creation (/yquant/register/default lazy name) as well.
Bugfix: Allow \par in gate definitions once more.

2026-01-03: Version 0.9

Bugfix: Remove some legacy code that modified TikZ decorations, which has not
been used since version 0.1.2 and might cause some issues with other packages
(problems with pgfplots and axis discontinuities were encountered). Fix #35:
Make sure to always advance all involved registers in a subcircuit, including
controls.
Bugfix: Controlled subcircuits will no longer potentially trigger an internal error.
New: \enclose-like macros for conveniently highlighting parts of a circuit.
Bugfix: Subcircuits will now work properly even in the presence of global rotation
transformations.

183

https://github.com/projekter/yquant/issues/35

Bugfix: Subcircuits will in vertical mode now properly account for their box space
when calculating register positions.

184

	Introduction
	How to read the manual
	Installation
	Purpose of yquant, alternatives
	License

	Basic elements of yquant
	General usage
	Starred vs. unstarred environment
	Formal syntax
	Registers
	Arguments
	Controls
	Highlighting parts of a circuit
	\encloseall
	\enclose
	\startenclose and \stopenclose
	Enclosing drawing pipeline
	Embracing regions
	Brace styles
	Brace label styles
	Combined shorthands

	Importing circuit from files
	Defining own gates
	The flow of time: horizontal and vertical layout

	Configuration
	Circuit layout
	Register creation
	Register outputs
	General styling
	Styles for operators

	Doing the impossible
	Mixing yquant and TikZ code
	Accessing gates in TikZ
	Shapes and the drawing pipeline
	Overwriting the height and depth calculation

	Reference: Gates and operations
	addstyle
	align
	barrier
	box
	cbit
	correlate
	cnot
	discard
	dmeter
	h
	hspace
	init
	inspect
	iswap
	measure
	nobit
	not
	output
	phase
	qubit
	qubits
	setstyle
	settype
	setwire
	slash
	subcircuit
	swap
	text
	x
	xx
	y
	z
	zz

	Examples
	qasm documentation
	qcircuit documentation
	I. Introduction
	IV. Simple Quantum Circuits
	A. Wires and gates
	B. CNOT and other controlled single qubits gates
	C. Vertical wires
	D. Labeling input and output states

	V. More Complicated Circuits: Multiple Qubit gates and Beyond
	A. Multiple qubit gates
	B. Measurements and classical bits
	C. Non-gate inserts, forcing space, and swap
	D. Barriers
	E. How to control anything

	VI. Bells and Whistles: Tweaking Your Diagram to Perfection
	A. Spacing
	B. Labeling
	C. Grouping

	quantikz documentation
	II. A single wire
	A. Measurements
	B. Wires and arrows

	III. Multiple Qubits
	IV. Operating on many Qubits
	A. Different connections

	V. Slicing
	VI. Spacing
	A. Local adjustment
	B. Global Adjustment
	C. Alignment
	D. Scaling

	VII. Typesetting
	A. Global Styling
	B. Per-Gate Styling
	C. Boxing/Highlighting Parts of a Circuit

	VIII. Otherwise undocumented features
	X. Troubleshooting

	qpic documentation
	1 Introduction
	2 Simple Examples
	2.1 Example 1: Majority
	2.2 Example 2: Quantum Fourier Transform
	2.3 Example 3: Shor's Algorithm
	2.4 Example 4: Teleportation

	3.1 Wires
	3.1.1 Wire Declarations

	3.2 Gates
	3.2.1 Controlled NOT and controlled Z
	3.2.2 General Gates
	3.2.3 Other predefined Gates

	3.3 Attributes
	Size Attributes

	3.4 Measurement and Other Wire Type Changes
	3.5 Managing Slices
	3.6 Reversing and Repeating
	3.7 Other Circuit Elements
	3.8 Comments
	3.9 Macros and LaTeX Code

	Foreign language support and extensions
	groups
	General usage
	Special macros
	Configuration
	Gates and operations
	Vertical layout

	qasm
	Language specification
	Configuration
	Examples
	Circuit #1
	Circuit #2
	Circuit #3
	Circuit #4
	Circuit #5
	Circuit #6
	Circuit #7
	Circuit #8
	Circuit #9
	Circuit #10
	Circuit #11
	Circuit #12
	Circuit #13
	Circuit #14
	Circuit #15
	Circuit #16
	Circuit #17
	Circuit #18

	Integration with other packages
	TikZ
	beamer

	Changelog

