
Package ‘zonohedra’
January 20, 2025

Version 0.3-0

Date 2024-07-07

Title Compute and Plot Zonohedra from Vector Generators

Depends R (>= 4.0.0)

Imports logger

Suggests rgl, orientlib, microbenchmark, arrangements, knitr,
rmarkdown, gifski

Description Computes a zonohedron from real vector generators. The package also computes zono-
gons (2D zonotopes) and zonosegs (1D zonotopes). An elementary S3 class for matroids is in-
cluded, which supports matroids with rank 3, 2, and 1. Optimization meth-
ods are taken from Heckbert (1985) <https://www.cs.cmu.edu/~ph/zono.ps.gz>.

License GPL (>= 2)

LazyLoad yes

LazyData yes

NeedsCompilation yes

Biarch no

Author Glenn Davis [aut, cre]

Maintainer Glenn Davis <gdavis@gluonics.com>

Repository CRAN

VignetteBuilder knitr

BuildVignettes yes

ByteCompile no

Date/Publication 2024-07-09 22:10:02 UTC

Contents
zonohedra-package . 2
boundarypgramdata . 3
genlist . 5
getmetrics.zonohedron . 6

1

https://www.cs.cmu.edu/~ph/zono.ps.gz

2 zonohedra-package

grpDuplicated . 8
inside . 10
inside2trans . 11
invertboundary . 13
lintransform . 14
matroid . 15
matroid-getters . 17
matroid-props . 18
minkowskisum . 19
plot2trans . 20
plothighertrans . 22
plotpolygon . 23
print . 24
print.genlist . 25
rank . 26
raytrace2trans . 27
section2trans . 29
simplify . 31
spherize . 33
support . 34
symmetrize . 35
transitionsdf . 36
zonogon . 37
zonogon-getmetrics . 38
zonogon-invert . 39
zonogon-plot . 41
zonogon-raytrace . 42
zonogon-section . 44
zonohedron . 45
zonohedron-plot . 47
zonohedron-raytrace . 48
zonohedron-section . 50
zonoseg . 52
zonoseg-invert . 54
zonotope-getters . 56
zonotope-props . 56

Index 59

zonohedra-package zonhedra package

boundarypgramdata 3

Description

This package deals with zonohedra, which are zonotopes of dimension 3. It also handles zonogons
(2D zonotopes) and zonosegs (1D zonotopes).

The term zonoseg ("zonotope" + "segment") is my own personal term; I could not find an alternative
term. It is a linear image of the unit cube [0, 1]n in the real numbers, and a compact segment of
reals.

S3 classes

Z class(Z)
zonohedron "zonohedron" "zonotope" "list"

zonogon "zonogon" "zonotope" "list"
zonoseg "zonoseg" "zonotope" "list"

For example, the section() returns very diffferent things for a zonohedron and a zonogon, and
so section.zonohedron() and section.zonogon() are coded and documented separately. A
section for a zonoseg does not make sense, so section.zonoseg() is undefined.

Terminology

For a convex polytope, a supporting hyperplane is a hyperplane that intersect the polytope’s bound-
ary but not its interior.
A zonotope is a convex polytope. A zonohedron has supporting planes, and a zonogon has support-
ing lines.

In the package zonohedra, a zonotope mean a zonotope of dimension 3, 2, or 1.

A face of a zonotope is the intersection of the boundary of the zonotope with some supporting
hyperplane. A d-face is a face of dimension d. So a 0-face is a vertex, and a 1-face is an edge.

A facet of a zonotope is a face whose dimension is 1 less than the dimension of the zonotope.
A facet is a maximal proper face.

A zonohedron has 0-faces (vertices), 1-faces (edges), and 2-faces (facets).

A zonogon has 0-faces (vertices) and 1-faces (edges). Since the dimension of an edge is 1 less
than the dimension of the zonogon, an edge of a zonogon is also a facet of a zonogon.

boundarypgramdata compute data about specific parallelograms in the boundary of a zono-
hedron

4 boundarypgramdata

Description

The boundary of a zonohedron is the union of parallelograms, where some of them may be facets,
and some may be tiles in the standard tiling of more complex facets. The edges of each parallelo-
gram are given by a pair of distinct simplified generators. If a zonohedron has n of these generators,
then there are n(n−1)/2 such pairs. For each pair of generators, there are 2 parallelograms which
are antipodal to each other. This function computes data about one parallelogram from this antipo-
dal pair. The total number of parallelograms is n(n−1).

Usage

boundarypgramdata(x, gndpair, cube=FALSE)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

gndpair an Mx2 integer matrix. Each row of gndpair must contain a pair of points in
the ground set of the simplified matroid of the zonohedron x. The 1st point must
be less that the 2nd point.
gndpair can also be a numeric vector that can be converted to such a matrix, by
row.

cube if TRUE, then a point of the cube that maps to the center of the given parallelo-
gram is returned, see Value.

Value

boundarypgramdata() returns a data.frame with M rows and these columns:

gndpair the given gndpair

hyperplaneidx the index of the hyperplane in the simplified matroid of x that contains gndpair

center the center of the parallelogram relative to the center of the zonohedron. For the
antipodal parallelogram, multiply this by -1.

transitions the number of transitions in pcube - a point in the n-cube that maps to center.
This is a non-negative even integer.

And if cube is TRUE, then this column is added:

pcube a point in the n-cube that maps to center. For the antipodal parallelogram,
subtract this from 1; the number of transitions is the same.

If a row of gndpair has an invalid pair, the other columns are filled with NAs.

In case of global error, the function returns NULL.

WARNING

In this version of the package, when the parallelogram is a tile in a more complex facet, the function
may return incorrect results. This will be fixed in a future version.

genlist 5

See Also

zonohedron()

genlist zonohedra generators useful for testing and plotting

Description

classics.genlist 13 classic zonohedra generators
colorimetry.genlist 4 sets of Color Matching Functions (each set is a 3xN matrix)

Format

Each is an S3 class genlist object organized as a list of 3xN matrices (N varies). The list must
have names, preferably short names or abbreviations. Each matrix can have optional attributes
"shortname" and "fullname" which are useful when printing with print.genlist().

Note

Making these S3 class genlist makes it possible to easily print a short summary using print.genlist().

For colorimetry.genlist[[2]] a few remarks are in order. These generators come from the xyz CIE
color matching functions of 1931, from 360 to 830 nm with 1 nm step. From 699 to 830 nm, the
angles between the generators only differ by a few microradians, and it apparent that the designers
tapered all 3 functions identically in that nm range. For an illustration of this in the chromaticity
domain, see Burns, Figure 10. When the zonohedron is constructed from these 132 generators, with
the default options, all these generators a ’collapsed’ into a single one. In the original matroid these
132 points form a multiple group, and in the simplified matroid they are collapsed to a single point,
labeled with 699.

Source

David Eppstein. Zonohedra and Zonotopes.
https://www.ics.uci.edu/~eppstein/junkyard/ukraine/ukraine.html

Colour & Vision Research Laboratory. University College London. http://www.cvrl.org

References

ASTM E 308 - 01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
Table 1

Scott A Burns. The location of optimal object colors with more than two transitions. Color
Research & Application. Vol. 46. No. 6. pp 1180-1193. 2021.

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table I(3.3.1). pp. 723-735.

https://www.ics.uci.edu/~eppstein/junkyard/ukraine/ukraine.html
http://www.cvrl.org

6 getmetrics.zonohedron

See Also

print.genlist()

Examples

get the names of 3 sets of color matching functions
names(colorimetry.genlist)
[1] "xyz1931.5nm" "xyz1931.1nm" "lms2000.1nm"

print zonohedra metrics associated with 3 sets of color matching functions
colorimetry.genlist
fullname generators vertices edges facets area volume pointed
xyz1931.5nm xyz at 5nm step 81 5100 10146 5048 1582.722 4070.345 TRUE
xyz1931.1nm xyz at 1nm step 471 112910 225720 112812 39586.707 509434.149 TRUE
lms2000.1nm lms at 1nm step 441 146642 292860 146220 22736.652 181369.085 TRUE
ciexyzjv.5nm xyz at 5nm step (1978) 90 8012 16020 8010 1553.535 3951.899 TRUE

getmetrics.zonohedron Get Important Metrics about a Zonohedron, and Print and Summarize
Them

Description

Get some important zonohedron metrics; for most some computation is needed.

The print() function prints nicely formatted facts about a zonohedron, including its matroid.

The summary() function prints a single-line summary, formatted as a row in a data frame.

Usage

S3 method for class 'zonohedron'
getmetrics(x)

S3 method for class 'zonohedron'
print(x, trans2=FALSE, matroid=TRUE, ...)

S3 method for class 'zonohedron'
summary(object, ...)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

trans2 if TRUE then print extra metrics on the 2-transition surface associated with x

matroid if TRUE then print extra information about the matroid associated with x

object a zonohedron object as returned by the constructor zonohedron()

getmetrics.zonohedron 7

... for print() further arguments are ignored; for summary() the further arguments
can be *more* zonohedron objects, which are summarized by adding more rows
to the same data frame; see Examples.

Value

getmetrics.zonohedron() returns a list with these items:

vertices the number of vertices

edges the number of edges

facets the number of facets (2D faces); all of them are zonogons

area the sum of the areas of all the facets

volume as a polytope

All of these are always positive.

print.zonohedron() returns TRUE or FALSE.

summary.zonohedron() returns a data frame, see Examples.

See Also

genlist, zonohedron(),

Examples

zono = zonohedron(classics.genlist[['BD']])
zono
zonohedron:
fullname: Bilinski dodecahedron
generators (original): 4
generators with multiples: 0
generators (simplified): 4
number of facets: 12 [6 antipodal facet-pairs]
facets that contain 0: 4 { 1 3 4 6 }
number of edges: 24
center: 0.809017 2.118034 1.309017
pointed: TRUE
salient: TRUE
area: 38.83282
volume: 16.94427
#
matroid:
ground set: 4 points {1 2 3 4}
hyperplanes: 6 {1 2} {1 3} {1 4} {2 3} {2 4} {3 4}
rank: 3
loops: 0 {}
multiple groups: 0 {}
uniform: TRUE
paving: TRUE

8 grpDuplicated

simple: TRUE
This matroid is constructed from a 3x4 real matrix.
1 2 3 4
[1,] 1.000000 1.618034 0.000000 -1.000000
[2,] 1.618034 0.000000 1.000000 1.618034
[3,] 0.000000 1.000000 1.618034 0.000000

summary(zono)
fullname generators vertices edges facets area volume
1 Bilinski dodecahedron 4 14 24 12 38.83282 16.94427

zono4 = zonohedron(classics.genlist[['RI']])
zono7 = zonohedron(classics.genlist[['TO']])
summary(zono, zono4, zono7)
fullname generators vertices edges facets area volume
1 Bilinski dodecahedron 4 14 24 12 38.83282 16.94427
2 rhombic icosahedron 5 22 40 20 64.72136 42.36068
3 truncated octahedron 6 24 36 14 53.56922 32.00000

grpDuplicated Grouping by duplicated elements

Description

grpDuplicated() is a generic function that takes an indexed set of "elements", and outputs an
integer vector with the same length. The "elements" can be components of a vector, or the row
vectors or column vectors of a matrix. In the output vector, a component is 0 if and only if the
corresponding element is unique. When the element is unique, it forms a singleton group. Output
components have equal positive integer values if and only if the corresponding elements are identi-
cal to each other. These elements form a non-singleton group, and the positive integer is called the
group number.

The number of singleton groups is equal to #(zeros), which is equal to the #(elements) - #(duplicated
elements).
The number of non-singleton groups is equal to max(output vector).
The number of all groups is equal to #(zeros) + max(output vector).

Usage

Default S3 method:
grpDuplicated(x, ...)

S3 method for class 'matrix'
grpDuplicated(x, MARGIN=1, ...)

Arguments

x a vector or matrix of atomic mode "numeric", "integer", "logical", "complex",
"character" or "raw".

grpDuplicated 9

MARGIN an integer scalar, the matrix margin to be held fixed, as in apply. MARGIN=1
means that it looks for duplicated rows, and MARGIN=2 means that it looks for
duplicated columns. Other values are invalid.

... arguments for particular methods.

Details

The implementation is based on std::unordered_map in C++11, which uses a hash-table.

Value

The return value is an integer vector with all elements ranging from 0 to K, where K is the number
of non-singleton groups.
For vector x the elements are the vector components, and the output is the same length as the input.
For a matrix x with MARGIN=1, the elements are the rows of the matrix and the output has length
nrow(x).
For a matrix x with MARGIN=2, the elements are the columns of the matrix and the output has length
ncol(x).
The 'ngroups' attribute of the returned vector is set to an integer 3-vector. The 1st component
is the total number of groups, the 2nd component is the number of singleton groups, and the 3rd
component is the number of non-singleton groups K.

Note

The templated C++ function that does the real work is taken from the package uniqueAtomMat by
Long Qu, but the returned vector is slightly modified by Glenn Davis.

Author(s)

Long Qu and Glenn Davis

Source

https://github.com/cran/uniqueAtomMat/
The package uniqueAtomMat was removed from CRAN by its author Long Qu.

Examples

set.seed(0)

test a numeric vector
x = rnorm(7)
y = rnorm(5)
grpDuplicated(c(x,y,rev(x)))
[1] 7 6 5 4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7
attr(,"ngroups")
[1] 12 5 7

test a numeric matrix, both rows and columns

https://github.com/cran/uniqueAtomMat/

10 inside

A = matrix(rnorm(3*7), 3, 7)
B = matrix(rnorm(3*5), 3, 5)

the columns of cbind(A,B,A) have the duplicates one would expect
grpDuplicated(cbind(A,B,A), MARGIN=2)
[1] 1 2 3 4 5 6 7 0 0 0 0 0 1 2 3 4 5 6 7
attr(,"ngroups")
[1] 12 5 7

but the rows of cbind(A,B,A) are unique
grpDuplicated(cbind(A,B,A), MARGIN=1)
[1] 0 0 0
attr(,"ngroups")
[1] 3 3 0

inside test points for being inside a zonotope

Description

Test points for being inside a zonotope. The boundary points are considered to be inside.

Usage

S3 method for class 'zonotope'
inside(x, p)

Arguments

x a zonotope object - a zonohedron, zonogon, or zonoseg
p an NxM numeric matrix, where M is the dimension of the zonotope. The points

to be tested are in the rows. p can also be a numeric vector that can be converted
to such a matrix, by row.

Details

The given zonotope is viewed as the intersection of slabs; there is a slab for each hyperplane in the
simplified matroid. For each slab a signed distance to boundary of the slab is computed. For points
outside the slab the distance is positive, for points on the boundary, the distance is 0, and for points
in the interior of the slab the distance is negative. The distance to the zonotope is computed as the
maximum over all these slab distances, and the critical hyperplane index is recorded. A point is
inside iff the zonotope distance ≤ 0.

Value

inside.zonotope() returns a data.frame with N rows and these columns:

p the given point

inside2trans 11

inside whether the point is inside the zonotope. For boundary points, inside is TRUE.

distance the distance from the point to the zonotope. For boundary points, distance is
0. When distance > 0, it may be larger than the true mathematical distance, so
distance is really a pseudo-distance.

idxhyper the index of the critical hyperplane in the simplified matroid. This is the index
of the slab where the maximum slab distance was taken. For a zonoseg there is
only 1 hyperplane (the empty set) so this is always 1.

If the row names of p are unique, they are copied to the row names of the output.
In case of error, the function returns NULL.

See Also

inside2trans()

Examples

zono1 = zonoseg(c(1,-2,3,0,-3,-4))

getsegment(zono1)
[1] -9 4

p = c(0, -3*pi, pi, 2*pi, getsegment(zono1))

inside(zono1, p)
p inside distance idxhyper
1 0.000000 TRUE -4.0000000 1
2 -9.424778 FALSE 0.4247780 1
3 3.141593 TRUE -0.8584073 1
4 6.283185 FALSE 2.2831853 1
5 -9.000000 TRUE 0.0000000 1
6 4.000000 TRUE 0.0000000 1

inside2trans test points against a 2-transition surface

Description

This function tests points for being inside the 2-transition surface associated with a zonohedron.

Usage

inside2trans(x, p)

Arguments

x a zonohedron object

p an Nx3 numeric matrix. The points to be tested are in the rows. p can also be a
numeric vector that can be converted to such a matrix, by row.

12 inside2trans

Details

If the surface has no self-intersections, the the definition of whether a point p is "inside" is fairly
straightforward: it is where the linking number of p and the surface is non-zero. In fact, if it is
non-zero then it must be +1 or -1. The linking number is analogous the winding number in 2D, for
more discussion see Note.

Unfortunately, there is currently no test for whether the surface has self-intersections, For a bad
surface with self-intersections, the linking number might be any integer. Since there is no such test,
we simply use the same non-zero linking number rule always.

The computed linkingnumber is returned so that the user can apply the non-zero rule, or the even-
odd rule, as appropriate for their situation. These 2 rules are analogous to the two winding number
rules used for polygons in computer graphics, see Point in polygon.

The case where a point is on the surface (i.e. the distance to the surface is 0) is problematic.
The linkingnumber is then undefined, and we currently set inside to be undefined as well. Thus
inside should be interpreted as strictly inside. However, in some situations, the user may want
to consider inside to be TRUE in this problematic case. Or the user may want to consider points
that are within a very small epsilon of the surface, where roundoff might have occurred, to have
inside=FALSE or inside=NA. So the both the computed linkingnumber and distance are re-
turned so the user can use them to make their own definition of what "inside" means.

Value

inside2trans() returns a data.frame with N rows and these columns:

p the given point

distance the distance from the point to the surface. This is the true Euclidean distance,
and not a "pseudo-distance" as in the case of inside(). If the point is on the
surface, the distance should be 0 up to numerical precision.

linkingnumber the linking number of the point and the surface. If the point is on the surface
(distance==0), the (mathematical) linking number is undefined, and the com-
puted linkingnumber is NA (integer).

inside whether the point is inside the surface; a logical. This is currently set to linkingnumber
!= 0. If the linkingnumber is NA (integer), then inside is NA (logical).

timecalc the time to do the calculations, in seconds

If the row names of p are unique, they are copied to the row names of the output.
In case of error, the function returns NULL.

Note

The standard definition of the linking number of a point and a surface uses intersections with rays,
see the vignette The 2-Transition Subcomplex and the 2-Transition Surface for the precise defini-
tion. This is fine in theory, but in practice does not handle well the case when the ray intersects the
boundary of a parallelogram. So this function uses an integral formula for the degree of a linking
map that reduces to summing the signed area of a lot of spherical triangles, see Spivak p. 75 and
Guillemin and Pollack p. 188.

../doc/transitions.html

invertboundary 13

References

Guillemin, Victor and Alan Pollack. Differential Topology. Prentice-Hall. 1974.

Point in polygon — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.
php?title=Point_in_polygon&oldid=1139808558. 2023.

Spivak, Michael. A Comprehensive Introduction to Differential Geometry. Volume 1. 3rd edition.
Publish or Perish. 1999.

See Also

inside()

invertboundary invert points on the boundary of a zonohedron

Description

A zonohedron Z is the image of a linear map [0, 1]n → Z ⊂ R3, from the n-cube to 3D space.
For a point on the boundary of the zonohedron, this function computes a point in the unit cube that
maps to it. All coordinates of the point in the cube are 0 or 1, except for two of them. The point is
not necessarily unique.

Usage

S3 method for class 'zonohedron'
invertboundary(x, point, tol=5.e-14)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

point Mx3 matrix with points on the boundary of x in the rows. Such a matrix typically
is returned by raytrace.zonohedron() or section.zonohedron(). point
can also be a numeric vector that can be converted to such a matrix, by row.

tol points that are not within tol of the boundary are skipped, see Details

Details

Given the boundary point, the function determines the facet that contains it. The pcube coordinates
of the base vertex of this facet are all 0 or 1, and fairly easy to determine. If the facet is a parallel-
ogram, the other two coordinates are fairly easy to determine too. If the facet is a zonogon with K
generators, with K>2, then the unknown K coordinates are calculated using invert.zonogon().
Because of floating point behaviour, coordinates can be slightly negative or slightly more than 1.
After the calculation, they are clamped to [0,1].

https://en.wikipedia.org/w/index.php?title=Point_in_polygon&oldid=1139808558
https://en.wikipedia.org/w/index.php?title=Point_in_polygon&oldid=1139808558

14 lintransform

Value

invertboundary.zonohedron() returns a data.frame with M rows and these columns:

point the given boundary point
distance signed distance to the boundary of x; for successful inversion its absolute value

is ≤ tol

facetidx index of the facet pair that contains the point
sign sign of the facet pair; either +1 or -1
pcube a point in the unit n-cube that maps to the given boundary point; all coordinates

of pcube are 0 or 1, except for 2 of them.
transitions the number of transitions in pcube - a non-negative even integer

If a point point cannot be inverted, e.g. because distance is too large, the other columns are all
NA.

If the row names of point are unique, they are copied to the row names of the output. The column
names of pcube are copied from the ground set of the associated matroid.

In case of global error, the function returns NULL.

See Also

zonohedron(), section.zonohedron(), raytrace.zonohedron(), invert.zonogon()

lintransform linear transformations of zonotopes, and vector matroids

Description

These functions perform straightforward linear transformations on the generators of a zonotope,
and the column vectors of a vector matroid

Usage

S3 method for class 'zonohedron'
lintransform(x, W)
S3 method for class 'zonogon'
lintransform(x, W)
S3 method for class 'matroid'
lintransform(x, W)

Arguments

x x can be a vector matroid object, as returned from the constructor matroid()
that takes a matrix as input.

W An invertible matrix that matches the rank of x. This invertibility is verified. W
can also be a scalar; it is then replaced by that scalar multiplied by the identity
matrix of the appropriate rank.

matroid 15

Value

If x is a zonohedron (or zonogon), lintransform(x) returns the zonohedron (or zonogon) whose
generators are the generators of x with the matrix W applied on the left side. This function is opti-
mized - it is not necessary to transform the generators and start all over again.

If x is a vector matroid, lintransform(x) returns the matroid whose generators are the genera-
tors of x with the matrix W applied on the left side. If x is a matroid, but *not* a vector matroid, it
returns the original matroid and prints a warning message.

In case of error, e.g. invalid W, the function prints an error message and returns NULL.

References

Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

See Also

rank(), matroid()

matroid matroid construction

Description

Construct a matroid from a matrix, or from explicit list of hyperplanes

Usage

S3 method for class 'matrix'
matroid(x, e0=0, e1=1.e-6, e2=1.e-10, ground=NULL, ...)

S3 method for class 'list'
matroid(x, ground=NULL, ...)

Arguments

x x can be a numeric matrix with 3, 2, or 1 rows whose columns determine the
matroid. The matrix must be either square or "wide", i.e. more columns than
rows. The matrix must be full-rank, i.e. the rank must be equal to the number of
rows, which is then the rank of the constructed matroid. Such a matroid is often
called a column matroid or vector matroid.

x can also be a list of vectors of positive integers, which are thought of as sets,
and are the hyperplanes of the matroid. The hyperplanes are checked that they
satisfy the matroid hyperplane axioms. The rank of the constructed matroid is
determined automatically, and must be 3, 2, or 1.

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

16 matroid

ground The ground set of the matroid - a vector of positive integers in strictly increasing
order.

When x is a matrix, length(ground) must be equal to ncol(x). The point
ground[i] corresponds to the i’th column of x. If ground is NULL, the column
names of x are converted to such a vector if possible. If this is not possible,
ground is set to 1:ncol(x).

When x is a list, every set in the list must be a subset of ground. If ground
is NULL, it is set to the union of all the sets in x. For technical reasons, when the
rank is 1, ground is required and cannot be NULL, see Details.

e0 threshold, in the L∞ norm, for a column vector of x to be considered 0, and thus
that the corresponding point in the matroid is a loop. Since the default is e0=0,
by default a column vector must be exactly 0 to become a loop.

e1 threshold, in a pseudo-angular sense, for column vectors to be multiples of each
other, and thus members of a group of multiple (aka parallel) points in the ma-
troid. This tolerance is only used when the rank is 2 or 3.

e2 threshold, in a pseudo-angular sense, for the planes spanned by pairs of column
vectors to be considered coincident, and thus the columns to be in the same
hyperplane of the matroid. This tolerance is used when the rank is 3.

... not used

Details

It was mentioned above that the tolerances e1 and e2 are pseudo-angular. Specifically, vectors are
normalized to the L2 unit sphere and the distance between them is computed in the L∞ norm.

Matroids are well-known to have many cryptomorphic definitions, e.g. independent sets, bases,
circuits, rank function, closure operator, flats, and hyperplanes. See Matroid - Wikipedia. In this
package, matroids can only be constructed from hyperplanes, but there are functions rank() and
is_independent() that can be used after construction.

Checking that the hyperplanes satisfy the matroid hyperplane axioms is made easier by the fact
that all simple matroids of rank 3 or less are paving matroids, see Paving Matroid - Wikipedia

Rank 1 matroids are extremely simple - the loops form the single hyperplane (possibly empty),
and the non-loops form a multiple group. If ground=NULL the non-loops are unknown, so this is
why ground is required when the rank is 1.

Value

matroid() returns an object with S3 class ’matroid’.
In case of error, e.g. invalid x or computed hyperplanes, the function prints an error message and
returns NULL.

Note

The ground set of positive integers should not be too sparse; otherwise performance may suffer.

matroid-getters 17

When x is a matrix with 3 rows, it may happen that the computed hyperplanes do not satisfy the
axioms for a matroid. In that case, the user will be prompted to try reducing tolerance e2. Getting
the expected hyperplanes may require some a priori knowledge of the expected hyperplanes. For
best results, the matrix should be given with maximum precision.

References

Matroid - Wikipedia.
https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

Paving Matroid - Wikipedia.
https://en.wikipedia.org/w/index.php?title=Paving_matroid&oldid=1021966244

See Also

rank(), simplify(), getsimplified()

matroid-getters matroid get functions

Description

get some important members of a matrix

Usage

S3 method for class 'matroid'
getground(x)

S3 method for class 'matroid'
gethyperplane(x)

S3 method for class 'matroid'
getmatrix(x)

S3 method for class 'matroid'
getloop(x)

S3 method for class 'matroid'
getmultiple(x)

Arguments

x a matroid object, as returned from the constructor matroid()

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057
https://en.wikipedia.org/w/index.php?title=Paving_matroid&oldid=1021966244

18 matroid-props

Value

getground() returns an vector of positive integers in strictly increasing order = the ground set of
the matroid x.

gethyperplane() returns a list of vectors of positive integers = the hyperplanes of the matroid.
If x is the simplification of an "original matroid", the "lmdata" attribute of the returned list is set to
the loop and multiple group data of the "original hyperplanes". These hyperplanes can be recovered
using unsimplify().
If x was constructed from a matrix, these hyperplanes are sorted in decreasing order by length. The
non-trivial hyperplanes come first, followed by the trivial hyperplanes. A hyperplane is trivial iff it
is independent in the matroid. For a matroid of rank 3, a hyperplane is trivial iff it has 2 points.

getmatrix() returns the matrix passed to the matroid.matrix() constructor, or NULL if the list
constructor was used. The column names are labeled with the ground set.

getloop() returns an integer vector with the loops of x. If x is simple, it is the empty vector.

getmultiple() returns a list of integer vectors - the multiple groups of x. If x is simple, it is
the empty list.

References

Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

See Also

rank(), simplify(), unsimplify(), getsimplified(),

Examples

construct a classic matroid with 7 points, but assign an unusual ground set
mat = matroid(classics.genlist[['TRD']], ground=11:17)

getmatrix(mat)

11 12 13 14 15 16 17
[1,] 1 1 1 1 1.732051 0.000000 0.000000
[2,] 1 1 -1 -1 0.000000 1.732051 0.000000
[3,] 1 -1 1 -1 0.000000 0.000000 1.732051

matroid-props matroid properties

Description

get some important boolean properties of a matrix, see Matroid - Wikipedia for the definitions.

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

minkowskisum 19

Usage

S3 method for class 'matroid'
is_simple(x)

S3 method for class 'matroid'
is_uniform(x)

S3 method for class 'matroid'
is_paving(x)

Arguments

x a matroid object, as returned from the constructor matroid()

Value

is_simple() returns a logical. A matroid is simple iff it has no loops and no multiple groups.

is_uniform() returns a logical. A matroid is uniform iff all the hyperplanes have the same size,
which is the rank-1.

is_paving() returns a logical. For the definition of paving see Paving Matroid - Wikipedia.
This property is important because the hyperplane axioms are fairly easy to check.

References

Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057
Paving Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Paving_matroid&
oldid=1021966244

See Also

matroid()

minkowskisum Minkowski sum of Two zonotopes

Description

A zonotope can be viewed as a Minkowski sum of line segments, with one endpoint at 0. Therefore,
the Minkowski sum of two zonotopes (in the same dimension) is also a zonotope.

Usage

S3 method for class 'zonotope'
minkowskisum(zono1, zono2, e0=0, e1=1.e-6, e2=1.e-10, ground=NULL, ...)

S3 method for class 'zonotope'
zono1 %+% zono2

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057
https://en.wikipedia.org/w/index.php?title=Paving_matroid&oldid=1021966244
https://en.wikipedia.org/w/index.php?title=Paving_matroid&oldid=1021966244

20 plot2trans

Arguments

zono1 a zonotope object - a zonohedron, a zonogon, or a zonoseg
zono2 a zonotope object with the same dimension as zono1
e0 see zonohedron()

e1 see zonohedron()

e2 see zonohedron()

ground the ground set of the returned zonotope. If ground is NULL, it is set to the ground
set of zono1 followed by the ground set of zono2 translated sufficiently to not
intersect that of zono1.

... not used

Details

After verifying that zono1 and zono2 are the same dimension, it takes the 2 matrices, cbinds them,
and passes the new matrix to the appropriate constructor, along with the other arguments. There are
no special optimizations.

Value

minkowskisum() returns a zonotope of the same dimension as zono1 and zono2.
%+% is a more convenient binary operator that calls minkowskisum(), but without the flexibility of
the extra arguments.
In case of error, the function returns NULL.

References

Zonohedron - Wikipedia.
https://en.wikipedia.org/wiki/Zonohedron.

See Also

zonohedron(), zonogon(), zonoseg()

plot2trans plot the 2-transition surface associated with a zonohedron

Description

The 2-transition surface has the topology of a sphere and is contained in the zonohedron. All
the facets are parallelograms. The surface is centrally symmetric, with the same center as the
zonohedron. The surface may have self-intersections.

Usage

plot2trans(x, type='ef', ecol='black', econc=FALSE,
fcol='yellow', falpha=0.5, level=NULL,
normals=FALSE, both=TRUE, bgcol="gray40", add=FALSE, ...)

https://en.wikipedia.org/wiki/Zonohedron

plot2trans 21

Arguments

x a zonohedron object as returned by the constructor zonohedron()

type a character string with what parts to draw. If type contains 'e', then draw the
edges. If type contains 'f', then draw filled facets. If type contains 'p', then
draw points at the centers of the facets.

ecol The color to use when drawing the edges.

econc If TRUE then draw the concave edges in red, and with extra thickness

fcol The color to use when drawing the facets.

falpha The opacity to use when drawing the facets.

level An integer vector which is a subvector of 0:(M-2), where M is the number
of simplified generators. Only the facets and edges at the specified levels are
drawn. When level=NULL then all facets and edges are drawn. This argument
does not affect the drawing of points.

normals If TRUE then draw the unit facet normals.

both if FALSE then draw only one half of the centrally symmetric surface. Otherwise
draw both halves (the default).

bgcol the background color

add If TRUE then add to the current 3D plot. If there is no current 3D plot, it is an
error.

... not used

Details

Facets and regular edges are drawn with rgl::quads3d(). Concave edges are drawn with rgl::segments3d().
Points are drawn with rgl::points3d().

Value

The function returns TRUE; or FALSE in case of error.

Note

The package rgl is required for 3D plots. A large black point is drawn at 0, a large white point at
the "white point", and a 50% gray point at the center. A line from the black point to the white point
is also drawn.

See Also

zonohedron(), plothighertrans(), plot.zonohedron()

22 plothighertrans

plothighertrans plot abundant and deficient parallelograms

Description

The 2-transition surface associated with a zonohedron is a topological sphere and is contained
in the zonohedron. The surface is centrally symmetric, with the same center as the zonohedron.
The surface may have self-intersections. For this function, the surface is required to be strictly
starshaped at the center. For the definition of strictly starshaped see the vignette The 2-Transition
Subcomplex and the 2-Transition Surface.

The 2-transition surface is a union of parallelograms. Each parallelogram has a unit normal that
defines a linear functional.
If a 2-transition parallelogram is in the interior of the zonohedron then the functional is not max-
imized on the parallelogram, and there is a corresponding similar parallelogram on the boundary
of the zonohedron where the functional *is* maximized. The first parallelogram (in the surface)
is called deficient because the functional is not maximized, and the second parallelogram (in the
boundary) is called abundant because the number of corresponding transitions across this parallel-
ogram is more than 2.
If the 2-transition parallelogram is on the boundary, then it is called coincident. The coincident
parallelograms are ignored and not drawn in this function.

Because of this 1-1 correspondence between deficient parallelograms (in the 2-transition surface)
and the abundant parallelograms (in the boundary of the zonohedron), the area of these two surfaces
are the same.

Usage

plothighertrans(x, abalpha=1, defcol='green', defalpha=0, ecol=NA,
connections=FALSE, bgcol="gray40", both=TRUE, ...)

Arguments

x a zonohedron object as returned by the constructor zonohedron()
abalpha The opacity to use when drawing the abundant parallelograms. If abalpha=0

then they are not drawn.
defcol The color to use when drawing the deficient parallelograms
defalpha The opacity to use when drawing the deficient parallelograms. If defalpha=0

(the default), then they are not drawn.
ecol The color to use when drawing the edges. If ecol=NA (the default), then they are

not drawn.
connections If TRUE then draw segments between centers of the deficient parallelograms in

the 2-transition surface, and centers of the the corresponding abundant parallel-
ograms in the zonohedron boundary

bgcol the background color
both if FALSE then draw only one half of the centrally symmetric boundary. Other-

wise draw both halves. This affects edges and parallelograms.
... not used

../doc/transitions.html
../doc/transitions.html

plotpolygon 23

Details

Connections are drawn with rgl::segments3d() and rgl::points3d() . parallelograms and
edges are drawn with rgl::quads3d(). Both parallelograms and edges are drawn unlit (lit=FALSE).
The parallelograms are colored by the number of transitions using the color codes in Burns, up to
10 transitions.

A large black point is drawn at 0, a large white point at the "white point", and a 50% gray point at
the center. A line from the black point to the white point is also drawn.

Value

The function returns TRUE when successful; or FALSE in case of error.

WARNING

This function currently only works when the 2-transition surface is starshaped at the center. This
excludes many of the classic zonohedra.

Note

The package rgl is required for 3D plots.

References

Scott A Burns. The location of optimal object colors with more than two transitions. Color
Research & Application. Vol. 46. No. 6. pp 1180-1193. 2021.

See Also

zonohedron(), plot.zonohedron(), plot2trans()

plotpolygon plot the generator polygon associated with a pointed zonohedron

Description

A zonohedron is pointed iff there is a vector n so the inner product of all the zonohedron generators
with n is positive. In other terminology, it is pointed iff there is an open halfspace that contains all
the generators.
When n exists, a neighborhood of 0 can be cut by a plane orthogonal to n and the intersection is a
polygon. Since n is not unique, the polygon is only unique up to a 2D projective transformation.

Usage

plotpolygon(x, normal=NULL, points=TRUE, labels=TRUE)

24 print

Arguments

x a zonohedron object as returned by the constructor zonohedron(). It must be
pointed.

normal the vector n to use - a non-zero numeric vector of length 3. If it is given, the
validity is checked and if invalid it is an error.
If it is NULL, a few canonical normals are first tested for validity. If they are
invalid, then a valid one is computed.

points If TRUE then draw the vertices of the polygon

labels If TRUE then draw labels, taken from the ground set of the simplified matroid,
near the vertices

Details

The selected normal vector n is added to the title of the plot.

Value

The function returns TRUE; or FALSE in case of error.

See Also

zonohedron(), plot.zonohedron()

print Print Basic Facts about a Matroid

Description

The function prints a nicely formatted summary of a matroid, including the ground set, the rank,
loops, multiple groups, and some boolean properties. It prints the number of hyperplanes, broken
down by their size. If it is a vector matroid, and its matrix is not too large, it prints that matrix. If
the matroid is not simple, it also prints the simplified matroid.

Usage

S3 method for class 'matroid'
print(x, ...)

Arguments

x a matroid object as returned by the constructor matroid()

... further arguments ignored, but required by the generic print()

Value

The function returns TRUE or FALSE.

print.genlist 25

See Also

matroid()

print.genlist Print Basic Metrics for Each Zonohedron Generated by the Matrices
in a genlist object

Description

An S3 class genlist object is organized as a named list of 3xN matrices, when N varies. The print()
method constructs a zonohedron object from each matrix and then prints some basic metrics about
each zonohedron, as a data frame. If the matrix has the "fullname" attribute, it is added as a
column. The names of the list are copied to the rownames of the data frame.

Usage

S3 method for class 'genlist'
print(x, full=TRUE, ...)

Arguments

x a genlist object

full if TRUE, include area and volume columns

... not used

Details

print.genlist() uses summary.zonohedron().

Value

The function returns TRUE or FALSE.

See Also

genlist, summary.zonohedron()

Examples

print zonohedra metrics associated with 3 sets of color matching functions
colorimetry.genlist
fullname generators vertices edges facets area volume
xyz1931.5nm xyz at 5nm step 81 5100 10146 5048 1582.722 4070.345
xyz1931.1nm xyz at 1nm step 471 112910 225720 112812 39586.707 509434.149
lms2000.1nm lms at 1nm step 441 146642 292860 146220 22736.652 181369.085

names(classics.genlist)

26 rank

[1] "C" "RD" "BD" "RI" "RHD" "RT" "TO" "TRD" "TC" "RE" "RH" "TI" "TSR"

print(classics.genlist, full=FALSE)
fullname generators vertices edges facets
C cube 3 8 12 6
RD rhombic dodecahedron 4 14 24 12
BD Bilinski dodecahedron 4 14 24 12
RI rhombic icosahedron 5 22 40 20
RHD rhombo-hexagonal dodecahedron 5 18 28 12
RT rhombic triacontahedron 6 32 60 30
TO truncated octahedron 6 24 36 14
TRD truncated rhombic dodecahedron 7 32 48 18
TC truncated cuboctahedron 9 48 72 26
RE rhombic enneacontahedron 10 92 180 90
RH rhombic hectotriadiohedron 12 134 264 132
TI truncated icosidodecahedron 15 120 180 62
TSR truncated small rhombicosidodecahedron 21 240 360 122

rank Rank and Independence

Description

calculate the rank of any subset of a matroid, or determine whether any subset is independent

Usage

rank(x, subs)

is_independent(x, subs)

Arguments

x a matroid object, as returned from the constructor matroid()

subs a list of integer vectors, representing subsets of the ground set of x. subs can
also be an integer vector, which is put into a list of length 1.

Value

rank(x,subs) returns an integer vector with the same length as the list subs. The i’th value is the
rank of the i’th set in subs. If a set is not a subset of the ground set of x, the value is NA, and a
warning message is printed.

is_independent(x,subs) returns a logical vector with the same length as the list subs. The
i’th value is the independence of i’th set in x. It is equal to TRUE iff the rank of the subset is equal
to the cardinality of the subset.

For both functions the names are copied from input to output.

raytrace2trans 27

References

Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

See Also

matroid()

Examples

make a matroid with rank 3
mat = matroid(classics.genlist[['RT']])

the ground set itself should have rank 3
rank(mat, getground(mat))
[1] 3

single points should have rank 1 (there are no loops)
rank(mat, as.list(getground(mat)))
[1] 1 1 1 1 1 1

all hyperplanes should have rank 2
rank(mat, gethyperplane(mat))
[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

a point not in the ground set should have rank NA
and the emtpy set should have rank 0
rank(mat, list(100L,integer(0)))
1 of 1 subsets are not a subset of ground.
[1] NA 0

raytrace2trans compute the intersection of a ray and the 2-transition surface associ-
ated with a zonohedron

Description

The open ray with basepoint b and non-zero direction d is the set of the form b+ td where t > 0.

This function computes the intersection of an open ray and the 2-transition surface associated with
a zonohedron. The linking number of the surface and b must be ±1. This is verified at the begin-
ning, and if not true, then it is an error. The linking number condition implies that an intersection
exists for every ray based at b. Note also that the condition implies that b is not on the surface. For
discussion of uniqueness, see Details. For the definition of linking number see The 2-Transition
Subcomplex and the 2-Transition Surface.

The 2-transition surface is a union of parallelograms. The surface is symmetric about the center
of the zonhedron, so each parallelogram has an antipodal parallelogram. Each parallelogram is

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057
../doc/transitions.html
../doc/transitions.html

28 raytrace2trans

specified by an ordered pair of distinct generators from the simplified matroid associated with the
zonohedron. Thus, if there are N generators, there are N(N − 1) parallelograms. Swapping the
generators of a parallelogram changes it to the antipodal parallelogram.

The 2-transition surface has two poles - the point 0 and the sum of all the generators. It is OK for
the ray to pass through one of these poles.

Usage

raytrace2trans(x, base, direction, invert=FALSE, plot=FALSE, tol=1.e-12, ...)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

base a numeric 3-vector - the basepoint of all the rays. The surface must be strictly
starshaped at base, and this is verified.

direction a numeric Mx3 matrix with M non-zero directions in the rows. The basepoint
and these directions define M rays.
direction can also be a numeric vector that can be converted to such a matrix,
by row.

invert if TRUE, then compute a point in the unit cube that maps to the point on the
2-transition surface associated with x, and add it as a column in the returned
data.frame

plot if TRUE, the computed rays, up to the boundary, are added to an existing plot
of the zonohedron x, see plot.zonohedron(). The segments are drawn in the
color red. If there is no open 3D plot, a warning is issued.

tol the tolerance for being strictly starshaped, and for intersection with a pole.

... not used

Details

The function is designed for the situation when the intersection of the ray and the surface exists and
is unique. This is guaranteed for all ray directions d when the surface is strictly starshaped at b. This
condition is checked at the beginning of the function, and if false then a warning is issued that the
intersection point may not be unique. For the definition of strictly starshaped see The 2-Transition
Subcomplex and the 2-Transition Surface.

For finding a parallelogram of intersection, a brute-force search is used; all parallelograms are
searched until the first one that intersects the ray is found. To speed things up, the 3D problem is
reduced to 2D, and the search is programmed in plain C.

If plot is TRUE, the rays are drawn in red using rgl::segments3d() and rgl::points3d().

Value

raytrace2trans() returns a data.frame with M rows and these columns:

base the given basepoint - this is the same in every row

direction the given direction

../doc/transitions.html
../doc/transitions.html

section2trans 29

gndpair the 2 generators of the parallelogram that the ray intersects, taken from the
ground set of the simplified matroid. If the ray passes through a pole, both
of these are NA.

alpha the 2 coordinates of the intersection point within the parallelogram

tmax ray parameter of the intersection with the parallelogram, always positive

point the point on the surface; the intersection of the ray and the parallelogram

iters the number of parallelograms searched, until the desired one was found. If the
ray intersects a pole, this is 0.

timetrace the computation time for the given ray, in seconds. This does not include the
initial preprocessing time.

And if invert is TRUE, then this column is added:

pcube a point in the unit cube that maps to point. This point in the cube always has 2
transitions.

If base and direction in a row cannot be processed, the rest of the row is NA.

If the row names of direction are unique, they are copied to the row names of the output.

In case of error, the function returns NULL.

Note

The package rgl is required for 3D plotting.

See Also

zonohedron(), plot.zonohedron(), section2trans(), raytrace.zonohedron()

section2trans compute the intersection of a plane and the 2-transition surface asso-
ciated with a zonohedron

Description

In general, the 2-transition surface may be highly non-convex, possibly with self-intersections.
The intersection of a plane and the 2-transition surface is a union of polygons, possibly with self-
intersections and intersecting each other. This function computes one of those polygons. If there
are other polygons, it issues a warning and does not try to compute them.

Usage

section2trans(x, normal, beta, invert=FALSE, plot=FALSE, tol=1.e-12, ...)

30 section2trans

Arguments

x a zonohedron object as returned by the constructor zonohedron()

normal a non-zero numeric 3-vector - the normal of all the planes

beta a numeric M-vector of plane constants. The equation of the k’th plane k is:
<x,normal> = beta[k].

invert if TRUE, then compute a point in the unit cube that maps to the point on the
2-transition surface, and add it as a column in the returned data.frame

plot if TRUE, the polygons formed by the the intersection of the planes and the 2-
transition surface. added to an existing 3D plot of the zonohedron x, see plot.zonohedron().
The polygons are drawn in red.

tol a small positive number, used as the tolerance for the plane intersecting the
interior of each parallelogram, see Details.

... not used

Details

The function is designed for the situation when the intersection of a plane and the surface is a single
polygon.

Given a plane, the function finds all the parallelograms of the surface whose interiors intersect
the plane. Each intersection is a line segment. For each parallelogram it associates one of the
endpoints of the segment. The parallelograms are put in polygon order by picking an arbitrary one
as the starting point, and then "marching" from one to the next using the canonical parallelogram
adjacency relation. After returning to the starting point, if there are other parallelograms remaining,
it means that there are other polygons in the section and a warning is issued.

Value

section2trans() returns a list of length M (=length(beta)), and the i’th item in the list is a data
frame with these columns:

point a Px3 matrix with the P points of the i’th polygon in the rows. If the plane does
not intersect the 2-transition surface, then P=0 and the matrix has 0 rows. The
row names of point are the indexes of the facets that contain the vertices of the
polygon; see Details.

gndpair the 2 indexes from the ground set that generates the parallelogram containing
point. See Details for a description of the "marching parallelogram" procedure.

And if invert is TRUE, then this column is added:

pcube a point in the unit cube that maps to point. This point in the cube always has 2
transitions.

The names of the returned list are readable strings that contain normal and beta[i].

In case of error, the function returns NULL.

Note

The package rgl is required for 3D plotting.

simplify 31

See Also

zonohedron(), plot.zonohedron(), section.zonohedron(), raytrace2trans()

simplify simplify and unsimplify

Description

A simple matroid has no loops and no multiple groups. Simplification is the process of removing
all loops, and every point except one from each multiple group. The result is a simple matroid.
The functions below simplify a matroid, or an explicit list of hyperplanes.
The hyperplanes can be unsimplified if the original loops and multiple groups are known.

Usage

S3 method for class 'matroid'
getsimplified(x, ...)

S3 method for class 'list'
simplify(x, ground=NULL, ...)

S3 method for class 'list'
unsimplify(x, loop=NULL, multiple=NULL, ground=NULL, ...)

Arguments

x x can be a matroid object, as returned from the constructor matroid()
x can also be a list of vectors of positive integers, which are thought of as sets.
All must be subsets of ground. They do not have to satisfy the matroid hy-
perplane axioms. For a definition of loop and multiple group in this case, see
Details.

ground The ground set of the sets in x (both simplify() and unsimplify()). It must be
a vector of positive integers in strictly increasing order (not verified). If ground
is NULL, it is set to the union of the sets in x.

loop a vector of positive integers, the loops, to add to the list x; loop must be disjoint
from ground (verified). If loop is NULL, the function looks for loop in the
attribute data attr(x,'lmdata'). If there is no such attribute, loop is set to the
empty set.

multiple a list of vectors of positive integers, the multiple groups, to add to the list
x; these groups must be pairwise disjoint and disjoint from loop (not veri-
fied). Each group must intersect the ground set in exactly one point (veri-
fied). If multiple is NULL, the function looks for multiple in the attribute
data attr(x,'lmdata'). If there is no such attribute, multiple is set to the
empty list.

... not used

32 simplify

Details

First consider the case when x is a list of vectors of positive integers. Each vector represents a subset
of the ground set. They are not required to satisfy the hyperplane axioms, but by abuse of language
we will call them hyperplanes in this paragraph. A loop is a point (an integer in the ground set)
that is in every hyperplane. Imagine now that all loops have been removed. Say that two points p
and q are multiples iff for every hyperplane H , p ∈ H iff q ∈ H . This is an equivalence relation,
and the multiple groups are the equivalence classes with more than one point. For computation it is
convenient to think of a boolean incidence matrix. There is a column for each point in the ground
set, and a row for each hyperplane. An entry is TRUE iff the point is in the hyperplane. A loop is then
a column of all TRUEs. A multiple group is a maximal set of duplicate columns. This is basically
how simplify() is implemented, except with optimizations that avoid computing the very large
incidence matrix.

Now consider the case when x is a matroid object. When x was constructed, the simplification
of x was computed (with help from the *previous* simplify()) and stored as a member of x (un-
less x was already simple). So in this case getsimplified(x) does not do any real work and only
takes microseconds.

These functions are accelerated with C/C++.

Value

If x is a matroid, getsimplified(x) returns x when x is simple, and a member of x when x is not
simple. It does not do any real work.

If x is a list, simplify(x) returns a list of the same length, but with all loops removed, and ev-
ery point except one from each multiple group removed. The integer that remains is the smallest
one in the group. The order of the sets is preserved. It also sets the 'lmdata' attribute of the re-
turned list to a list of 2 objects - the loop and multiple group data found in x.

If x is a list, unsimplify(x) returns a list of the same length, but with the loops and multiples
added back. The order of the sets is preserved.

In case of error, e.g. invalid x etc., the function prints an error message and returns NULL.

References

Matroid - Wikipedia. https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

See Also

rank(), matroid()

Examples

an example using simplify.list() and unsimplify.list()
get the matrix for CIE XYZ at 5 nm step size
mat3x81 = colorimetry.genlist[[1]]

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

spherize 33

create the matroid
mat5 = matroid(mat3x81)

test for simplicity
is_simple(mat5)
[1] FALSE

get the list of hyperplanes, and simplify
hyper = gethyperplane(mat5)
hypersimple = simplify(hyper)

print the loop and multiple data found
attr(hypersimple,'lmdata')

unsimplify and compare to the originals
the list attr(hypersimple,'lmdata') is 'secretly' used in unsimplify()
identical(unsimplify(hypersimple), hyper)
[1] TRUE

spherize spherize a zonotope

Description

The input is a zonotope with a best-fit ellipsoid (or ellipse for a zonogon) with axes that may
have very different lengths. The function computes a spherizing matrix W, and then transforms the
zonotope so its boundary is close to a sphere.

Usage

S3 method for class 'zonotope'
spherize(x, method='ZCA', ...)

Arguments

x a zonotope object - a zonohedron, a zonogon, or a zonoseg.
method for computing the matrix W, either 'ZCA' or 'PCA-COR'. Matching is partial and

case-insensitive.
... not used

Details

The 2 methods are taken from Kessy, et. al..

Value

After computing the matrix W, the function return lintransform(x,W). The "sphering" attribute
is set to W.
If x is a 1D zonoseg, sphering is not really possible, so the function prints a warning message and
returns x. In case of error, the function returns NULL.

34 support

References

Agnan Kessy, Alex Lewin, Korbinian Strimmer. Optimal whitening and decorrelation.
https://arxiv.org/abs/1512.00809 v4 2016.

See Also

lintransform()

support the support function for a zonotope

Description

Compute the classical support function for a zonotope. It also computes a point on the bound-
ary where the linear functional is maximized, and the dimension of the face where the supporting
hyperplane intersects the zonotope.

Usage

S3 method for class 'zonotope'
support(x, direction, tol=5.e-15)

Arguments

x a zonotope object - a zonohedron, a zonogon, or a zonoseg
direction an NxM matrix with N directions in the rows. If x is a zonohedron, M must be

3. If x is a zonogon, M must be 2. If x is a zonoseg, M must be 1. direction
can also be a vector that can be converted to such a matrix, by row. The direction
is normal to the supporting hyperplane

tol the tolerance for determining whether the supporting hyperplane intersects a
face with positive dimension. This does not affect the value of the support func-
tion. For a zonoseg, tol is ignored.

Value

The function returns a data.frame with N rows and these columns:

direction the given direction

value the value of the support function of x, in the given direction

argmax a point on the boundary of x where the functional max is taken. This point is the
center of the face where the supporting hyperplane intersects the zonotope.

dimension of the face where the supporting hyperplane intersects the zonotope. 0 means a
vertex, 1 means an edge, and 2 means a 2-face.

If direction is 0, the other columns are NA. If the rownames of direction are unique, they are
copied to the row names of the output.
In case of error, the function returns NULL.

https://arxiv.org/abs/1512.00809

symmetrize 35

References

Wikipedia - Support function
https://en.wikipedia.org/wiki/Support_function

See Also

zonoseg()

symmetrize symmetrize a zonotope

Description

The input is a zonotope whose matroid is simple. The function adds new generators that creates a
new zonotope that is a translate of the original, and has center of symmetry at 0.

Usage

S3 method for class 'zonotope'
symmetrize(x, e0=0, e1=1.e-6, e2=1.e-10, ...)

Arguments

x a zonotope object - a zonohedron, a zonogon, or a zonoseg. The matroid of
this zonotope must be simple.

e0 see zonohedron()

e1 see zonohedron()

e2 see zonohedron()

... not used

Details

Each generator g (a column of the matrix) is replace by 2 generators: g/2 and -g/2. The new set of
generators correponds to a star at 0, from Sec 2-8 of Coxeter.
The new ground points are obtained by translating the original ground points by the their maximum.

Value

The function returns a zonotope that is a translate of the original, and has center of symmetry at 0.
In case of error, the function returns NULL.

References

Coxeter, H.S.M. Regular Polytopes. Dover Publications. 1973.

See Also

zonohedron(), zonogon(), zonoseg()

https://en.wikipedia.org/wiki/Support_function

36 transitionsdf

transitionsdf summarize the number of transitions and associated data, over all par-
allelograms in the boundary of a zonohedron

Description

The 2-transition surface is a union of parallelograms. For this function, the surface is required to
be strictly starshaped at the center. For the definition of strictly starshaped see The 2-Transition
Subcomplex and the 2-Transition Surface.

Each parallelogram has a unit normal that defines a linear functional.
If the 2-transition parallelogram is in the interior of the zonohedron then the functional is not max-
imized on the parallelogram, and there is a corresponding similar parallelogram on the boundary
of the zonohedron where the functional *is* maximized. The first parallelogram (in the surface)
is called deficient because the functional is not maximized, and the second parallelogram (in the
boundary) is called abundant because the number of corresponding transitions across this parallel-
ogram is more than 2. The difference between the functional values is called the deficit.
If the 2-transition parallelogram is on the boundary, then it is called coincident. It is also called
non-deficient and the deficit is 0.

Usage

transitionsdf(x, trans2=TRUE)

Arguments

x a zonohedron object as returned by the constructor zonohedron(). The 2-
transition surface must be strictly starshaped.

trans2 if TRUE, then include metrics on the non-deficient (coincident) parallelograms,
with 2 transitions. This is always the first row of the returned data frame.
if FALSE, then data on the non-deficient parallelograms is not included, and the
returned data frame only has data on the deficient parallelograms, with more
than 2 transitions.

Value

transitionsdf() returns a data.frame with a row for each number of transitions found, plus a
final row with totals on appropriate columns. The columns are:

transitions the number of transitions, a positive even integer, in increasing order.

parallelograms the number of parallelograms with the given number of transitions

area the min and max of the area of the parallelograms with the given number of
transitions

area.sum the total area of the parallelograms with the given number of transitions

../doc/transitions.html
../doc/transitions.html

zonogon 37

deficit the min and max of the deficit of the parallelograms with the given number of
transitions. When there are 2 transitions the deficit should be exactly 0, but is
usually slightly non-0 due to truncation. When there are more than 2 transitions
the deficit is positive.

example the 2 generators (from the ground set of the simplified matroid) of the parallel-
ogram with the maximum area

In case of error, the function returns NULL.

Note

Because of the 1-1 correspondence between similar parallelograms, the surface areas of the 2-
transition surface and the boundary of the zonohedron are equal.

See Also

zonohedron(), plot.zonohedron()

zonogon zonogon construction

Description

Construct a zonogon from a numeric matrix with 2 rows.

Usage

zonogon(mat, e0=0, e1=1.e-6, ground=NULL)

polarzonogon(n, m=n, ground=NULL)

Arguments

mat a numeric 2xM matrix, where 2 ≤ M. The matrix must have rank 2 (verified).
The M columns are the generators of the zonogon.

e0 threshold for a column of mat to be considered 0, in the L∞ norm. Since the
default is e0=0, by default a column must be exactly 0 to be considered 0.

e1 threshold, in a pseudo-angular sense, for non-zero column vectors to be multi-
ples of each other, and thus members of a group of multiple (aka parallel) points
in the associated matroid. It OK for a column to be a negative multiple of an-
other.

ground The ground set of the associated matroid of rank 2 - an integer vector in strictly
increasing order, or NULL.
When ground is NULL, it is set to 1:ncol(mat). If ground is not NULL, length(ground)
must be equal to ncol(mat). The point ground[i] corresponds to the i’th col-
umn of mat.

38 zonogon-getmetrics

n an integer ≥ 3. The generators are computed as n equally spaced points on the
unit circle, starting at (1,0).

m an integer with 2 ≤ m ≤ n. When m < n, only the first m points are used as
generators of the zonogon.

Details

polarzonogon() is useful for testing. The term polar zonogon is my own, and based on the polar
zonohedron in Chilton & Coxeter. It it loads the matrix mat and passes it to zonogon(). When m=n
the zonogon is a regular 2n-gon. When m<n the zonogon is a has 2m vertices, but is not necessarily
regular. The generators correspond to the n’th-roots of unity.

Value

zonogon() and polarzonogon() return a list with S3 class 'zonogon'. In case of error, e.g. invalid
mat, the functions print an error message and returns NULL.

Note

The ground set of positive integers should not be too sparse; otherwise performance may suffer.

References

B. L. Chilton and H. S. M. Coxeter. Polar Zonohedra. The American Mathematical Monthly. Vol
70. No. 9. pp. 946-951. 1963.

See Also

zonohedron(), zonoseg(),

zonogon-getmetrics get important metrics about a zonogon, and print basic facts about a
zonogon.

Description

Get some important zonogon metrics; some computation is used. Also print the data, and more.

Usage

S3 method for class 'zonogon'
getmetrics(x)

S3 method for class 'zonogon'
print(x, ...)

zonogon-invert 39

Arguments

x a zonogon object
... not used

Details

print.zonogon() prints some basic information about the zonogon, and the associated matroid.

Value

getmetrics() returns a list with these items:

vertices the number of vertices
perimeter the sum of the lengths of the all edges
area as a polygon

All of these are always positive.

print.zonogon() returns TRUE or FALSE.

See Also

zonogon(), getmetrics.zonohedron()

zonogon-invert invert points in a zonogon

Description

A zonogon Z is the image of a linear map [0, 1]n → Z ⊂ R2, from the n-cube to the plane.
For a point in a zonogon, this function finds a point in the unit cube that maps to it. There are
infinitely many such points in general (unless n = 2), but this function picks a specific point using
the standard tiling, see Details.

Usage

S3 method for class 'zonogon'
invert(x, z, tol=0, plot=FALSE, ...)

Arguments

x a zonogon object as returned by the constructor zonogon()
z a numeric Mx2 matrix, with M points in the rows. z can also be a numeric vector

that can be converted to such a matrix, by row.
tol points that are within tol of the boundary are still processed, see Details
plot if TRUE then the points in z are added to an existing plot of the zonogon x, using

a red X symbol, see plot.zonogon(). If there is no plot open, a warning is
issued.

... not used

40 zonogon-invert

Details

The given points are first tested for being inside the zonogon, using inside() and the given tol.
If any are outside, a warning is issued. When the corresponding point pcube is computed, it is
clamped to the unit cube, so the inversion error may be as large as tol.

Inversion is not unique in general. For this function, the standard tiling of the zonogon by par-
allelograms is computed; it is an example of a zonotopal tiling. It is a regular zonotopal tiling
because it arises from the projection of a zonohedron onto the plane, see Ziegler. The function
plot.zonogon() has an option to plot this tiling. Given the point z, the function determines a par-
allelogram that contains the point. The pcube coordinates of the base of this parallelogram are all 0
or 1, and the coordinates of z within the parallelogram are in [0,1]. Thus, all coordinates of pcube
are 0 or 1, except possibly for 2 of them.

Value

invert.zonogon() returns a data.frame with M rows and these columns:

z the given point

pcube a point in the unit cube that maps to z. Every pcube has all coordinates 0 or 1,
except possibly for the 2 given by hyper, see Details.

hyper the 2 indexes of the generators of the parallelogram that contains z, in the sim-
plified matroid. These 2 coordinates in pcube are not 0 or 1 in general.

hyperidx the index of the parallelogram that contains z

If a point z cannot be inverted, the other columns are all NA, and a warning message is printed.

If the row names of z are unique, they are copied to the row names of the output. The column names
of pcube are copied from the ground set of the associated matroid.

In case of error, the function returns NULL.

References

Ziegler, G.M. Lectures on Polytopes. Graduate Texts in Mathematics. Springer New York. 2007.

See Also

zonogon(), inside(), plot.zonogon()

Examples

make a zonogon with 5 generators
pz20 = polarzonogon(20, 5)

make 7 random points in the zonogon
set.seed(0)
pcube = matrix(runif(5*7), 5, 7)
z = t(getmatrix(pz20) %*% pcube)

invert these 7 points back to the cube

zonogon-plot 41

invert(pz20, z)
z.1 z.2 pcube.1 pcube.2 pcube.3 pcube.4 pcube.5
1 2.0676319 1.6279807 0.00000000 0.70030526 1.00000000 1.00000000 0.01553241
2 2.4031738 1.9658035 0.00000000 0.96572153 1.00000000 1.00000000 0.28450140
3 0.9230336 1.0885446 0.00000000 0.00000000 0.39548689 1.00000000 0.04948838
4 2.5242122 1.7395069 0.16540765 1.00000000 1.00000000 1.00000000 0.03542132
5 2.2598725 1.0601592 0.38111324 1.00000000 1.00000000 0.20192029 0.00000000
6 1.1387813 1.2636700 0.00000000 0.00000000 0.65250505 1.00000000 0.07478012
7 1.6315341 1.0777737 0.00000000 0.64210923 1.00000000 0.36039509 0.00000000

hyper.1 hyper.2 hyperidx
1 2 5 7
2 2 5 7
3 3 5 9
4 1 5 4
5 1 4 3
6 3 5 9
7 2 4 6

zonogon-plot plot a zonogon

Description

Plot a zonogon object, with many options.

Usage

S3 method for class 'zonogon'
plot(x, orientation=TRUE, normals=FALSE, elabels=FALSE,

tiling=FALSE, tlabels=FALSE,
trans2=FALSE, trans2type='both', ...)

Arguments

x a zonogon object as returned by the constructor zonogon()
orientation if TRUE then draw the edges with orientation arrows. Otherwise just draw unori-

ented line segments.
normals if TRUE then draw an outward-pointing unit normal on each edge
elabels if TRUE then label each edge with its generator
tiling if TRUE then draw the standard tiling of the zonogon by parallelograms
tlabels if TRUE then label each parallelogram in the tiling with its generators. If tiling

is FALSE then this is ignored.
trans2 if TRUE then draw the image of the 2-transition subcomplex of the unit cube

[0, 1]n, in the color blue.
trans2 can also be an integer 2-vector defining a range of levels of the subcom-
plex, where the level of a vertex of the n-cube is the number of 1s. Both integers
should be between 0 and n.

42 zonogon-raytrace

trans2type which part of the 2-transition subcomplex to draw. It can be 'BP' for bandpass
(aka Type 1), 'BS' for bandstop (aka Type 2), or 'both' for both.

... not used

Details

A white dot is plotted at the center of the zonogon. A suitable is title is added above the plot. If the
zonogon was returned from spherize.zonotope() the string "[spherized]" is added to the title.

Value

The function returns TRUE; or FALSE in case of error.

See Also

zonogon(), spherize.zonotope()

zonogon-raytrace compute the intersection of a ray, based in the interior of a zonogon,
and the boundary of that zonogon

Description

The open ray with basepoint b and non-zero direction d is the set of the form b+ td where t > 0.

This function computes the intersection of an open ray and the boundary of a zonogon Z. The
basepoint is normally required to be in the interior of Z, but an exception is made if the basepoint
is 0, and on the boundary of Z, and the direction points into the interior of Z. In these two cases
the intersection of the open ray and the boundary of Z is unique. In the second case, the basepoint
is also allowed to be the sum of all the generators - the so-called white point of Z.

Usage

S3 method for class 'zonogon'
raytrace(x, base, direction, plot=FALSE, ...)

Arguments

x a zonogon object as returned by the constructor zonogon()
base a numeric 2-vector - the basepoint of all the rays. base must either be in the

interior of x, or 0 or the white point and on the boundary of x.
direction a numeric Mx2 matrix with M non-zero directions in the rows. The basepoint

and these directions define M rays.
direction can also be a numeric vector that can be converted to such a matrix,
by row.

plot if TRUE, the computed rays, up to the boundary, are added to an existing plot of
the zonogon x, see plot.zonogon(). The segments are drawn in the color red.
If there is no open plot, a warning is issued.

... not used

zonogon-raytrace 43

Value

raytrace.zonogon() returns a data.frame with M rows and these columns:

base the given basepoint - this is the same in every row

direction the given direction

facetidx the index of the facet (an edge) where ray exits the zonogon

sign of the facet, either +1 or -1

tmax ray parameter of the intersection with the exit facet, always positive

point the point on the boundary; the intersection of the ray and the facet

timetrace the computation time, in seconds

If base and direction in a row cannot be processed, the rest of the row is NA.

If the row names of direction are unique, they are copied to the row names of the output.

In case of error, the function returns NULL.

See Also

zonogon(), plot.zonogon(), section.zonohedron()

Examples

make a zonogon with 5 generators
pz20 = polarzonogon(20, 5)

make 4 random directions
set.seed(0)
dir = matrix(rnorm(4*2),4,2)

use basepoint in the interior of the zonogon
raytrace(pz20, c(0.5,0.5), dir)
base.1 base.2 direction.1 direction.2 facetidx sign tmax boundary.1 boundary.2 timetrace
1 0.5 0.5 1.2629543 0.4146414 4 -1 2.0503073 3.08944438 1.35014236 7.680000e-05
2 0.5 0.5 -0.3262334 -1.5399500 1 -1 0.3246859 0.39407664 0.00000000 4.649995e-05
3 0.5 0.5 1.3297993 -0.9285670 2 -1 0.4868719 1.14744192 0.04790678 4.310103e-05
4 0.5 0.5 1.2724293 -0.2947204 2 -1 0.9354693 1.69031851 0.22429808 4.149997e-05

use basepoint at 0 - on the boundary of the zonogon
raytrace(pz20, c(0,0), dir)
base.1 base.2 direction.1 direction.2 facetidx sign tmax boundary.1 boundary.2 timetrace
1 0 0 1.2629543 0.4146414 4 -1 2.192481 2.7690037 0.9090936 0.0001216
2 0 0 -0.3262334 -1.5399500 NA NA NA NA NA NA
3 0 0 1.3297993 -0.9285670 NA NA NA NA NA NA
4 0 0 1.2724293 -0.2947204 NA NA NA NA NA NA

44 zonogon-section

zonogon-section compute the intersection of a line and the boundary of a zonogon

Description

Generically, a line intersects the boundary of a zonogon in 2 points. Computing those 2 points is
the chief goal of this function.
For a supporting line, the intersection is a face of the zonogon, but in this function only one point
of intersection is computed and returned.

Usage

S3 method for class 'zonogon'
section(x, normal, beta, tol=1.e-10, plot=FALSE, ...)

Arguments

x a zonogon object as returned by the constructor zonogon()
normal a non-zero numeric 2-vector - the normal of all the lines
beta a numeric M-vector of line-constants. The equation of the k’th line k is: <x,normal>

= beta[k].
tol a small positive number, used as the tolerance for the line being considered a

supporting line
plot if TRUE, the line segments formed by the the intersection of the lines and the

zonogon are added to an existing plot of the zonogon x, see plot.zonogon().
The segments are drawn in dashed linestyle and the color red. boundary1 and
boundary2 are plotted as points. If there is no open plot, a warning is issued.

... not used

Value

section.zonogon() returns a data.frame with M rows and these columns:

normal the given normal vector - this is the same in every row
beta the given line constant
boundary1 the 1st intersection point - a 2-vector
boundary2 the 2nd intersection point - a 2-vector

Regarding orientation, if normal is considered "north" then boundary1 is on the "west" and boundary2
is on the "east".

If a line is a supporting line of the zonogon, then boundary1 is some point in the boundary face
(vertex or edge), and boundary2 is NA. If a line does not intersect the zonogon, both boundary1 and
boundary2 are NA.

If the names of beta are unique, they are copied to the row names of the output.

In case of error, the function returns NULL.

zonohedron 45

See Also

zonogon(), plot.zonogon(), section.zonohedron()

Examples

make a zonogon with 5 generators
pz20 = polarzonogon(20, 5)

section(pz20, normal=c(1,1), beta=-1:5)
normal.1 normal.2 beta boundary1.1 boundary1.2 boundary2.1 boundary2.2
1 1 1 -1 NA NA NA NA
2 1 1 0 -2.220446e-16 0.000000e+00 NA NA
3 1 1 1 2.452373e-01 7.547627e-01 1.0000000 0.0000000
4 1 1 2 6.203838e-01 1.379616e+00 1.7547627 0.2452373
5 1 1 3 1.095537e+00 1.904463e+00 2.3796162 0.6203838
6 1 1 4 1.674729e+00 2.325271e+00 2.9044629 1.0955371
7 1 1 5 2.420068e+00 2.579932e+00 3.3252706 1.6747294

zonohedron zonohedron construction

Description

Construct a zonohedron from a numeric matrix with 3 rows. Also construct some special zonohedra
useful for testing.

Usage

zonohedron(mat, e0=0, e1=1.e-6, e2=1.e-10, ground=NULL)

polarzonohedron(n, m=n, height=pi, ground=NULL)

regularprism(n, m=n, axis=c(0,0,1), ground=NULL)

Arguments

mat a numeric 3xM matrix, where 3 ≤ M. The matrix must have rank 3 (verified).
The M columns are the generators of the zonohedron.

e0 threshold for a column of mat to be considered 0, in the L∞ norm. Since the
default is e0=0, by default a column must be exactly 0 to be considered 0.

e1 threshold, in a pseudo-angular sense, for non-zero column vectors to be multi-
ples of each other, and thus members of a group of multiple (aka parallel) points
in the associated matroid. It OK for a column to be a negative multiple of an-
other.

e2 threshold, in a pseudo-angular sense, for the planes spanned by pairs of column
vectors to be considered coincident, and thus the columns to be in the same
hyperplane of the associated matroid.

46 zonohedron

ground The ground set of the associated matroid of rank 3 - an integer vector in strictly
increasing order, or NULL.
When ground is NULL, it is set to 1:ncol(mat). If ground is not NULL, length(ground)
must be equal to ncol(mat). The point ground[i] corresponds to the i’th col-
umn of mat.

n an integer ≥ 3. The generators are computed as n equally spaced points on a
circle. See Details for more on this circle.

m an integer with 2 ≤ m ≤ n. When m < n, only the first m points are used as
generators of the zonohedron.

height the z value at the apex of the zonohedron, which is the sum of all the generators.
The z value of all the generators is set to make this happen. When height=pi,
as n → ∞ the zonohedron converges to the interior of the surface of revolution
of the curve x = sin(z) for z ∈ [0, π], see Chilton & Coxeter.

axis the axis of the regular prism. It must be a 3-vector with z value non-zero.

Details

In zonohedron(), the contruction of the zones (or belts) is optimized by following the procedure in
Heckbert. The key step is sorting face normals that all lie on a great circle of the unit sphere.

For polarzonohedron() the circle is centered at (0,0,height/n) and parallel to the xy-plane. The
radius is height/n.

For regularprism() the circle is the unit circle in the xy-plane. The 3-vector axis is added as
column m+1 of the matrix. The returned zonohedron is the Minkowski sum of a zonogon and the
line segment defined by axis. If m < n, the zonogon may not be regular.

Both of these functions are useful for testing. They load the matrix mat and pass it to zonohedron().

Value

zonohedron() and polarzonohedron() return a list with S3 class 'zonohedron'. In case of error,
e.g. invalid mat, the functions print an error message and returns NULL.

Note

The ground set of positive integers should not be too sparse; otherwise performance may suffer.

References

B. L. Chilton and H. S. M. Coxeter. Polar Zonohedra. The American Mathematical Monthly. Vol
70. No. 9. pp. 946-951. 1963.

Paul Heckbert. An Efficient Algorithm for Generating Zonohedra. 3-D Technical Memo 11. 24
February 1985. Computer Graphics Lab. New York Institute of Technology

See Also

zonohedron(), zonoseg(),

zonohedron-plot 47

zonohedron-plot plot a zonohedron

Description

Plot a zonohedron object in 3D, with many options.

Usage

S3 method for class 'zonohedron'
plot(x, type='e', pcol=NULL, ecol=NULL, ewd=3, etcol=NA,

fcol=NULL, falpha=1, normals=FALSE, bgcol="gray40", both=TRUE, ...)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

type a string of letter with what parts to draw. If type contains an 'p', then draw a
point at the center of each facet. If type contains an 'e', then draw the edges.
If type contains an 'f', then draw filled facets.

pcol The color to use when drawing points. It can be a vector of 2 colors, and then
when both is TRUE, the first color is used for one half, and the second color is
used for the antipodal half. When pcol is NULL, it is set to c('black','red').

ecol A vector of colors to use when drawing the edges. Let N be the number of
simplified generators of the zonohedron. Each edge is parallel to exactly one of
the generators, so this divides the edges into N zones, or belts. ecol can be a
vector of N colors, one for each zone. If ecol is shorter than N, it is extended
to length N using the last color. If ecol is longer than N, the extra colors are
ignored. If ecol is NULL, it is set to rainbow(N).

ewd width of the edges, in pixels

etcol color of the tiling edges, for the standard tiling of the facets by parallelograms.
This only applies to facets that are not parallelograms. The default etol=NA
means do not draw these edges.

fcol A vector of colors to use when drawing the facets. The 1st color is used for
parallelograms, the next color for hexagons, etc. For facets with more edges
than colors available, the last color is used. If fcol is NULL, it is set to c(
'blue', 'red', 'yellow', 'green', 'orange', 'purple').

falpha opacity of the facets

normals if TRUE then draw an outward-pointing unit normal from each facet

bgcol the background color

both if FALSE then draw only one half of the centrally symmetric boundary. Other-
wise draw both halves. This affects points, edges, and facets.

... not used

48 zonohedron-raytrace

Details

Points are drawn with rgl::points3d(). Edges are drawn with rgl::segments3d(). Edges of
the tiles are drawn with rgl::quads3d(). Facets are drawn with rgl::quads3d(); facets with
more than 4 edges are split into trapezoids. Facet normals are drawn with rgl::arrow3d().

Value

The function returns TRUE; or FALSE in case of error.

Note

The package rgl is required for 3D plots. A large black point is drawn at 0, a 50% gray point at the
center, and a large white point at the "white point" (which is 2*center).

A line from the black point to the white point is also drawn.

See Also

zonohedron(), spherize.zonotope()

zonohedron-raytrace compute the intersection of a ray, based in the interior of a zonohe-
dron, and the boundary of that zonohedron

Description

The open ray with basepoint b and non-zero direction d is the set of the form b+ td where t > 0.

This function computes the intersection of an open ray and the boundary of a zonohedron Z. The
basepoint is normally required to be in the interior of Z, but an exception is made if the basepoint
is 0, and on the boundary of Z, and the direction points into the interior of Z. In these two cases
the intersection of the open ray and the boundary of Z is unique. In the second case, the basepoint
is also allowed to be the sum of all the generators - the so-called white point of Z.

Usage

S3 method for class 'zonohedron'
raytrace(x, base, direction, invert=FALSE, plot=FALSE, ...)

Arguments

x a zonohedron object as returned by the constructor zonohedron()

base a numeric 3-vector - the basepoint of all the rays. base must either be in the
interior of x, or 0 or the white point and on the boundary of x.

direction a numeric Mx3 matrix with M non-zero directions in the rows. The basepoint
and these directions define M rays.
direction can also be a numeric vector that can be converted to such a matrix,
by row.

zonohedron-raytrace 49

invert if TRUE, then compute a point in the unit cube that maps to the point on the
boundary of x and add it as a column in the returned data.frame

plot if TRUE, the computed rays, up to the boundary, are added to an existing plot
of the zonohedron x, see plot.zonohedron(). The segments are drawn in the
color red. If there is no open plot, a warning is issued.

... not used

Details

If plot is TRUE, the rays are drawn with rgl::segments3d().

Value

raytrace.zonohedron() returns a data.frame with M rows and these columns:

base the given basepoint - this is the same in every row

direction the given direction

facetidx the index of the facet (a zonogon) where ray exits the zonohedron

sign of the facet, either +1 or -1

tmax ray parameter of the intersection with the exit facet, always positive

point the point on the boundary; the intersection of the ray and the facet

timetrace the computation time, in seconds

And if invert is TRUE, then these columns are added:

distance signed distance to the boundary of x

pcube a point in the unit cube that maps to boundary

transitions the number of transitions in pcube - a non-negative even integer

If base and direction in a row cannot be processed, the rest of the row is NA.

If the row names of direction are unique, they are copied to the row names of the output.

In case of error, the function returns NULL.

Note

The package rgl is required for 3D plotting.

See Also

zonohedron(), plot.zonohedron(), section.zonohedron(), invertboundary(), raytrace.zonogon()

50 zonohedron-section

Examples

make a regular prism, a regular 20-gon extruded 1 unit along z-axis
rp10 = regularprism(10)

make 7 random directions
set.seed(0)
dir = matrix(rnorm(7*3),7,3)

use basepoint in the interior of the zonohedron
raytrace(rp10, c(0.5,0.5,0.5), dir)
base.1 base.2 base.3 direction.1 direction.2 direction.3 facetidx sign tmax ...
1 0.5 0.5 0.5 1.262954285 -0.294720447 -0.299215118 1 1 1.6710386 ...
2 0.5 0.5 0.5 -0.326233361 -0.005767173 -0.411510833 1 1 1.2150348 ...
3 0.5 0.5 0.5 1.329799263 2.404653389 0.252223448 6 -1 0.8724774 ...
4 0.5 0.5 0.5 1.272429321 0.763593461 -0.891921127 1 1 0.5605877 ...
5 0.5 0.5 0.5 0.414641434 -0.799009249 0.435683299 1 -1 1.1476226 ...
6 0.5 0.5 0.5 -1.539950042 -1.147657009 -1.237538422 1 1 0.4040279 ...
7 0.5 0.5 0.5 -0.928567035 -0.289461574 -0.224267885 1 1 2.2294766 ...

use basepoint 0 on the boundary of the zonohedron
note that only 2 directions point into the interior
raytrace(rp10, c(0,0,0), dir)
base.1 base.2 base.3 direction.1 direction.2 direction.3 facetidx sign tmax ...
1 0 0 0 1.262954285 -0.294720447 -0.299215118 NA NA NA ...
2 0 0 0 -0.326233361 -0.005767173 -0.411510833 NA NA NA ...
3 0 0 0 1.329799263 2.404653389 0.252223448 6 -1 1.128580 ...
4 0 0 0 1.272429321 0.763593461 -0.891921127 NA NA NA ...
5 0 0 0 0.414641434 -0.799009249 0.435683299 1 -1 2.295245 ...
6 0 0 0 -1.539950042 -1.147657009 -1.237538422 NA NA NA ...
7 0 0 0 -0.928567035 -0.289461574 -0.224267885 NA NA NA ...

zonohedron-section compute the intersection of a plane and the boundary of a zonohedron

Description

Generically, a plane intersects the boundary of a zonohedron in a convex polygon. Computing that
polygon is the chief goal of this function.
For a supporting plane, the intersection is a face of the zonohedron, but in this function only one
point of intersection is computed and returned.

Usage

S3 method for class 'zonohedron'
section(x, normal, beta, tol=1.e-10, plot=FALSE, ...)

zonohedron-section 51

Arguments

x a zonohedron object as returned by the constructor zonohedron()

normal a non-zero numeric 3-vector - the normal of all the planes

beta a numeric M-vector of line-constants. The equation of the k’th plane k is:
<x,normal> = beta[k].

tol a small positive number, used as the tolerance for the plane being considered a
supporting plane

plot if TRUE, the polygons formed by the the intersection of the planes and the bound-
ary of the zonohedron are added to an existing 3D plot of the zonohedron x, see
plot.zonohedron(). The polygons are drawn in red.

... not used

Details

Given a plane, the function finds all the facets of the zonohedron that intersect the plane. For
each such facet it computes a single point of intersection on the boundary of the facet. For the
parallelograms, the computation is done in a C function; and for zonogon facets with 3 or more
generators, the computation is done in section.zonogon(). Orientation is handled carefully so
that no point appears twice. The facets are not processed in order around the boundary, so these
points are in no particular order. They are put in polygon order by sorting them by angle around a
suitable "diameter" of the zonohedron.

Value

section.zonohedron() returns a list of length M (=length(beta)), and the i’th item in the list is
a data frame with these columns:

point a Px3 matrix with the P points of the i’th polygon in the rows. If the plane does
not intersect the zonohedron, then P=0 and the matrix has 0 rows. If the plane is
a supporting plane, the polygon is degenerate and P=1 and the matrix has 1 row.
The row names of section are the indexes of the facets that contain the vertices
of the polygon; see Details.

hyperidx index of a hyperplane that contains the given point

sign The sign specifying which of the 2 facets (selected or antipodal) contains the
given point. The value is +1 or -1.

The names of the list are readable strings that contain normal and beta[i].

In case of error, the function returns NULL.

Note

The package rgl is required for 3D plotting.

See Also

zonohedron(), plot.zonohedron(), section.zonogon()

52 zonoseg

zonoseg zonoseg construction, querying, and printing

Description

Construct a zonoseg from a numeric matrix with one row.

A zonoseg ("zonotope" + "segment") is my own personal term for a 1-dimensional zonotope. I
could not find an alternative term. It is a linear image of the unit cube [0, 1]n in the real numbers,
and a compact segment of reals. The order of the generators has no effect on the zonoseg.

The image of the 2-transition subcomplex of [0, 1]n is a compact subsegment of the zonoseg. The
order of the generators affects this subsegment in a major way.

Usage

zonoseg(mat, e0=0, ground=NULL)

S3 method for class 'zonoseg'
getsegment(x)

S3 method for class 'zonoseg'
getsegment2trans(x)

S3 method for class 'zonoseg'
print(x, ...)

Arguments

mat a numeric matrix with 1 row whose entries determine the zonoseg. One or more
entries must be non-zero. It is OK to have both positive and negative entries.
mat can also be a numeric vector which is then converted to a matrix with 1 row.

e0 threshold for an entry of mat to be considered 0. Since the default is e0=0, by
default an entry must be exactly 0 to become a loop in the associated matroid.

ground The ground set of the associated matroid of rank 1 - an integer vector in strictly
increasing order, or NULL.
When ground is NULL, it is set to 1:ncol(mat). If ground is not NULL, length(ground)
must be equal to ncol(mat). The point ground[i] corresponds to the i’th col-
umn of mat.

x a zonoseg object as returned by zonoseg()

... not used

Details

A zonoseg object is a list with only 3 items: the associated matroid, the endpoints of the segment,
and endpoints of the 2-transition subsegment.

zonoseg 53

print.zonoseg() prints some information about the generators, and the endpoints of the seg-
ment plus the 2 vertices of the unit cube that map to these endpoints. It prints similar data for the
2-transition subsegment. Finally, it prints data on the associated matroid.

Value

zonoseg() returns a list with S3 class 'zonoseg'. In case of error, e.g. invalid mat, the function
prints an error message and returns NULL.

getsegment() and getsegment2trans() return numeric 2-vectors - the min and max endpoints of
the corresponding segments.

print.zonoseg() returns TRUE or FALSE.

Note

The ground set of positive integers should not be too sparse; otherwise performance may suffer.

References

Matroid - Wikipedia.
https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

See Also

rank()

Examples

zono1 = zonoseg(c(1,-2,3,0,-3,-4))
zono1

generators: 6 -- 3 negative, 2 positive, and 1 loops.
#
segment: [-9,4]
value pcube.1 pcube.2 pcube.3 pcube.4 pcube.5 pcube.6
zmin -9 0 1 0 0 1 1
zmax 4 1 0 1 0 0 0
#
2-transition subsegment: [-8,3]
value source.1 source.2 source.3 source.4 source.5 source.6
tmin-2trans -8 1 1 0 0 1 1
tmax-2trans 3 0 0 1 1 0 0
#
matroid:
ground set: 6 points {1 2 3 4 5 6}
hyperplanes: 1 {4}
rank: 1
loops: 1 {4}
multiple groups: 1 {1 2 3 5 6}

https://en.wikipedia.org/w/index.php?title=Matroid&oldid=1086234057

54 zonoseg-invert

uniform: FALSE
paving: TRUE
simple: FALSE
This matroid is constructed from a 1x6 real matrix.
1 2 3 4 5 6
[1,] 1 -2 3 0 -3 -4
#
The summary of the simplified matroid is:
ground set: 1 points {1}
Point 1 corresponds to the multiple group {1 2 3 5 6} in the original ...
hyperplanes: 1 {}
rank: 1
loops: 0 {}
multiple groups: 0 {}
uniform: TRUE
paving: TRUE
simple: TRUE
This matroid is constructed from a 1x1 real matrix.
1+...+6
[1,] -13

so the 2-transition subsegment is a proper subset of the zonoseg

zonoseg-invert invert points in a zonoseg

Description

For points in a zonoseg, find points in the unit cube that map to those points.

Usage

S3 method for class 'zonoseg'
invert(x, z, tol=0, ...)

Arguments

x a zonoseg object as returned by the constructor zonoseg()

z a numeric M-vector

tol points that are within tol of a boundary point are taken to be that point

... not used

Details

For a point in the interior of the zonoseg, there are infinitely many points in the cube that map to it.
This function tries to find one with the fewest number of non-zero components.

zonoseg-invert 55

Value

invert.zonoseg() returns a data.frame with M rows and these columns:

z the given point

pcube a point in the unit cube that maps to z. For the 2 boundary points, pcube is a
vertex. If z is outside the zonoseg, pcube is all NA, and a warning message is
printed

If the names of z are unique, they are copied to the row names of the output. The column names are
copied from the ground set of the associated matroid.

In case of error, the function returns NULL.

See Also

zonoseg()

Examples

zono1 = zonoseg(c(1,-2,3,0,-3,-4))
zono1
generators: 6 -- 3 negative, 2 positive, and 1 loops.
#
segment: [-9,4]
value pcube.1 pcube.2 pcube.3 pcube.4 pcube.5 pcube.6
zmin -9 0 1 0 0 1 1
zmax 4 1 0 1 0 0 0
#
2-transition subsegment: [-8,3]
value source.1 source.2 source.3 source.4 source.5 source.6
tmin-2trans -8 1 1 0 0 1 1
tmax-2trans 3 0 0 1 1 0 0

z = c(0, -3*pi, pi, 2*pi, getsegment(zono1))

invert(zono1, z)
z pcube.1 pcube.2 pcube.3 pcube.4 pcube.5 pcube.6
1 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
2 -9.424778 NA NA NA NA NA NA
3 3.141593 1.0000000 0.0000000 0.7138642 0.0000000 0.0000000 0.0000000
4 6.283185 NA NA NA NA NA NA
5 -9.000000 0.0000000 1.0000000 0.0000000 0.0000000 1.0000000 1.0000000
6 4.000000 1.0000000 0.0000000 1.0000000 0.0000000 0.0000000 0.0000000

56 zonotope-props

zonotope-getters zonotope get functions

Description

get some important members of a zonotope

Usage

S3 method for class 'zonotope'
getmatrix(x)

S3 method for class 'zonotope'
getmatroid(x)

S3 method for class 'zonotope'
getcenter(x)

Arguments

x a zonotope object - a zonohedron, a zonogon, or a zonoseg

Value

getmatrix() returns the matrix originally used to construct the zonotope x.

getmatroid() returns the matroid (possibly nonsimple) constructed from the matrix

getcenter() returns the center of the zonotope; which is also the center of radial symmetry. If
x is an object-color solid, the center corresponds to the 50% graypoint. For the whitepoint multiply
by 2.

See Also

zonohedron(), zonogon(), zonoseg()

zonotope-props zonotope properties

zonotope-props 57

Description

Get some important boolean properties of a zonotope.

pointed means that 0 is a vertex of the zonotope. salient means that 0 is in the boundary of the
zonotope. So pointed implies salient, but not the reverse.

A zonotope has an associated convex cone - allow the coefficients of the generators to be any non-
negative numbers. For convex cones, pointed means that the cone is in an open linear halfspace
(except for 0). And salient means that the cone is in a closed linear halfspace (the cone may contain
a line).

In terms of generators (of both zonotopes and convex cones), pointed means that the generators
are in an open linear halfspace (except for 0 generators). And salient means that the generators are
in a closed linear halfspace.

Usage

S3 method for class 'zonotope'
is_pointed(x)

S3 method for class 'zonotope'
is_salient(x)

Arguments

x a zonotope object - a zonohedron, a zonogon, or a zonoseg

Details

For a zonohedron, if 0 is in the interior of an edge or a facet, then the zonohdron is salient but not
pointed.
For a zonogon, if 0 is in the interior of an edge, then the zonogon is salient but not pointed.
For a zonoseg, both pointed and salient are equivalent to 0 being a boundary point. And this is
equivalent to all the non-zero generators having the same sign (all negative or all positive).

Value

TRUE or FALSE

References

Zonohedron - Wikipedia.
https://en.wikipedia.org/wiki/Zonohedron

See Also

zonohedron(), zonogon(), zonoseg()

https://en.wikipedia.org/wiki/Zonohedron

58 zonotope-props

Examples

zono1 = zonoseg(c(1,-2,3,0,-3,-4))

is_pointed(zono1)
[1] FALSE

is_salient(zono1)
[1] FALSE

Index

∗ adaptation
matroid, 15

∗ datasets
genlist, 5

∗ eyes
genlist, 5

∗ package
zonohedra-package, 2

%+% (minkowskisum), 19

apply, 9

boundarypgramdata, 3

classics.genlist (genlist), 5
colorimetry.genlist (genlist), 5

genlist, 5, 7, 25
getcenter (zonotope-getters), 56
getground (matroid-getters), 17
gethyperplane (matroid-getters), 17
getloop (matroid-getters), 17
getmatrix (matroid-getters), 17
getmatrix.zonotope (zonotope-getters),

56
getmatroid (zonotope-getters), 56
getmetrics (getmetrics.zonohedron), 6
getmetrics.zonogon

(zonogon-getmetrics), 38
getmetrics.zonohedron, 6, 39
getmultiple (matroid-getters), 17
getsegment (zonoseg), 52
getsegment2trans (zonoseg), 52
getsimplified, 17, 18
getsimplified (simplify), 31
grpDuplicated, 8

inside, 10, 12, 13, 40
inside2trans, 11, 11
invert (zonogon-invert), 39
invert.zonogon, 13, 14

invert.zonoseg (zonoseg-invert), 54
invertboundary, 13, 49
is_independent, 16
is_independent (rank), 26
is_paving (matroid-props), 18
is_pointed (zonotope-props), 56
is_salient (zonotope-props), 56
is_simple (matroid-props), 18
is_uniform (matroid-props), 18

lintransform, 14, 34

matroid, 14, 15, 15, 17, 19, 24–27, 31, 32
matroid-getters, 17
matroid-props, 18
matroid.matrix, 18
minkowskisum, 19

plot.zonogon, 39, 40, 42–45
plot.zonogon (zonogon-plot), 41
plot.zonohedron, 21, 23, 24, 28–31, 37, 49,

51
plot.zonohedron (zonohedron-plot), 47
plot2trans, 20, 23
plothighertrans, 21, 22
plotpolygon, 23
polarzonogon (zonogon), 37
polarzonohedron (zonohedron), 45
print, 24
print.genlist, 5, 6, 25
print.zonogon (zonogon-getmetrics), 38
print.zonohedron

(getmetrics.zonohedron), 6
print.zonoseg (zonoseg), 52

rank, 15–18, 26, 32, 53
raytrace (zonohedron-raytrace), 48
raytrace.zonogon, 49
raytrace.zonogon (zonogon-raytrace), 42
raytrace.zonohedron, 13, 14, 29

59

60 INDEX

raytrace2trans, 27, 31
regularprism (zonohedron), 45

section (zonohedron-section), 50
section.zonogon, 51
section.zonogon (zonogon-section), 44
section.zonohedron, 13, 14, 31, 43, 45, 49
section2trans, 29, 29
simplify, 17, 18, 31
spherize, 33
spherize.zonotope, 42, 48
summary.zonohedron, 25
summary.zonohedron

(getmetrics.zonohedron), 6
support, 34
symmetrize, 35

transitionsdf, 36

unsimplify, 18
unsimplify (simplify), 31

zonogon, 20, 35, 37, 39, 40, 42, 43, 45, 56, 57
zonogon-getmetrics, 38
zonogon-invert, 39
zonogon-plot, 41
zonogon-raytrace, 42
zonogon-section, 44
zonohedra-package, 2
zonohedron, 5–7, 14, 20, 21, 23, 24, 29, 31,

35, 37, 38, 45, 46, 48, 49, 51, 56, 57
zonohedron-plot, 47
zonohedron-raytrace, 48
zonohedron-section, 50
zonoseg, 20, 35, 38, 46, 52, 55–57
zonoseg-invert, 54
zonotope-getters, 56
zonotope-props, 56

	zonohedra-package
	boundarypgramdata
	genlist
	getmetrics.zonohedron
	grpDuplicated
	inside
	inside2trans
	invertboundary
	lintransform
	matroid
	matroid-getters
	matroid-props
	minkowskisum
	plot2trans
	plothighertrans
	plotpolygon
	print
	print.genlist
	rank
	raytrace2trans
	section2trans
	simplify
	spherize
	support
	symmetrize
	transitionsdf
	zonogon
	zonogon-getmetrics
	zonogon-invert
	zonogon-plot
	zonogon-raytrace
	zonogon-section
	zonohedron
	zonohedron-plot
	zonohedron-raytrace
	zonohedron-section
	zonoseg
	zonoseg-invert
	zonotope-getters
	zonotope-props
	Index

