
Package ‘treats’
November 11, 2024

Title Trees and Traits Simulations

Version 1.1

Date 2024-11-11

Description A modular package for simulating phyloge-
netic trees and species traits jointly. Trees can be simulated using modular birth-death parame-
ters (e.g. changing starting parameters or algorithm rules). Traits can be simulated in any way de-
signed by the user. The growth of the tree and the traits can influence each other through modi-
fiers objects providing rules for affecting each other. Finally, events can be created to mod-
ify both the tree and the traits under specific conditions (Guillerme, 2024 <DOI:10.1111/2041-
210X.14306>).

Depends R (>= 4.0.0), ape, dispRity, stats

Imports graphics, geiger, MASS, methods, utils, rgl,

Suggests testthat, knitr

License GPL-3

RoxygenNote 7.2.3

URL https://github.com/TGuillerme/treats

NeedsCompilation yes

Author Thomas Guillerme [aut, cre, cph]
(<https://orcid.org/0000-0003-4325-1275>)

Maintainer Thomas Guillerme <guillert@tcd.ie>

Repository CRAN

Date/Publication 2024-11-11 17:20:02 UTC

Contents
crude.bd.est . 2
dispRitreats . 3
drop.things . 5
drop.tip.treats . 7
events.conditions . 8
events.modifications . 10

1

https://doi.org/10.1111/2041-210X.14306
https://doi.org/10.1111/2041-210X.14306
https://github.com/TGuillerme/treats
https://orcid.org/0000-0003-4325-1275

2 crude.bd.est

link.traits . 12
make.bd.params . 14
make.events . 16
make.modifiers . 18
make.traits . 20
make.treats . 22
map.traits . 23
modifiers . 24
parent.traits . 26
plot.treats . 27
print.treats . 29
trait.process . 30
transition.matrix . 33
treats . 34

Index 37

crude.bd.est Crudely estimates extinction and speciation

Description

Crudely estimates the extinction and speciaton rate of a tree based on geiger::bd.km and geiger::bd.ms

Usage

crude.bd.est(tree, method, ...)

Arguments

tree a "phylo" object.
method either "count" or "estimate". See details.
... any additional arguments to be passed to geiger::bd.km and geiger::bd.ms.

Details

This function calculates the extinction and speciation rates using two methods:

• "estimate" estimates the rates using the algorithm from geiger::bd.km and geiger::bd.ms
based on the Magallon and Sanderson 2000 method. Note that this function provides more
of a "guestimate" of extinction and speciation rates which can be especially wrong with low
sampling (either missing fossil or living data). This can lead to estimating erroneous negative
extinction rates.

• "count" This function calculates the extinction rate as the logged number of extinction events
in the tree divided by the tree age (expressed in tree age units - e.g. million years). The
speciation rate is calculated as the logged number of speciation events divided by the tree age.
If the input tree has no $root.time element, the speciation and extinction rate are just the
number of speciation and extinction events. Although very crude this method is slightly better
at handling under sampled trees.

dispRitreats 3

For more accurate model base approaches see for example birthdeath or bd.ext.

Value

A "bd.params" object to be fed to treats.

Author(s)

Thomas Guillerme

References

Magallon S and MJ Sanderson. 2000. Absolute diversification rates in angiosperm clades. Evolu-
tion 55:1762-1780.

See Also

treats make.bd.params

Examples

set.seed(1)
Generating a random tree
my_tree <- rcoal(20)
Estimate the number of speciations and extinctions events
crude.bd.est(my_tree, method = "estimate")

Adding a root time
my_tree$root.time <- 5
Count the number of speciations and extinctions
per units of time
crude.bd.est(my_tree, method = "count")

dispRitreats dispRity interface for treats objects

Description

Pass a treats object to the dispRity function.

Usage

dispRitreats(data, ..., scale.trees = TRUE)

4 dispRitreats

Arguments

data an output from treats containing tree and traits data.

... any other arguments to be passed to dispRity, chrono.subsets, custom.subsets,
and boot.matrix.

scale.trees logical, whether to scale the tree ages in all simulations (TRUE; default) or not
(FALSE).

Details

This function applies the dispRity package pipeline to the treats output. If multiple simulations
are input, the data is scaled for all the simulations.

The scale.trees option allows the trees to have the same depth and root age. This option is
recommended if chrono.subsets options are called to make the output results comparable.

Common optional arguments for the following arguments include the following (refer the the spe-
cific function for the arguments details):

• custom.subsets: group for the list of elements to be attributed to specific groups;

• chrono.subsets: method for selecting the time binning or slicing method; time for the num-
ber of time bins/slices or their specific ages; model for the time slicing method; or inc.nodes
for whether to include nodes or not in the time subsets;

• boot.matrix: bootstraps for the number of bootstrap replicates; rarefaction for the num-
ber of elements to include in each bootstrap replicate; or boot.type for the bootstrap algo-
rithm;

• dispRity: metric for the disparity, dissimilarity or spatial occupancy metric to apply to the
data; or dimensions for the number of dimensions to consider.

Value

Outputs a "dispRity" object that can be plotted, summarised or manipulated with the dispRity
package.

Author(s)

Thomas Guillerme

See Also

treats dispRity chrono.subsets custom.subsets boot.matrix plot.dispRity summary.dispRity

Examples

Simulate a random tree with a 10 dimensional Brownian Motion trait
my_treats <- treats(stop.rule = list("max.taxa" = 20),

traits = make.traits(BM.process, n = 10),
bd.params = make.bd.params(speciation = 1))

Calculating disparity as the sum of variances
disparity <- dispRitreats(my_treats, metric = c(sum, variances))

drop.things 5

summary(disparity)

Calculating disparity as the mean distance from the centroid of
coordinates 42 (metric = c(mean, centroids), centroid = 42)
using 100 bootstrap replicates (bootstrap = 100) and
chrono.subsets (method = "continuous", model = "acctran", time = 5)
disparity <- dispRitreats(my_treats,

metric = c(mean, centroids), centroid = 42,
bootstraps = 100,
method = "continuous", model = "acctran", time = 5)

plot(disparity)

Simulate 20 random trees with a 10 dimensional Brownian Motion trait
my_treats <- treats(stop.rule = list("max.taxa" = 20),

traits = make.traits(BM.process, n = 10),
bd.params = make.bd.params(speciation = 1))

Calculating disparity on all these trees as the sum of variance
on 5 continuous proximity time subsets
disparity <- dispRitreats(my_treats, metric = c(sum, variances),

method = "continuous", model = "proximity", time = 5)
plot(disparity)

drop.things Drop things from a treats object

Description

Remove fossils or living species or non-bifurcating nodes (singles) from treats objects or phylo
objects.

Usage

drop.things(treats, what)

drop.fossils(treats)

drop.livings(treats)

drop.singles(treats)

Arguments

treats treats data.

what what to drop. Can be "fossils", "livings" or "singles" (non-bifurcating
nodes).

6 drop.things

Details

NOTE that dropping living or fossils species DOES NOT drop associated internal nodes and edge
lengths. To drop both fossil/living taxa AND internal nodes, you can use for example: drop.things(drop.things(my_data,
what = "fossils"), what = "singles").

Value

This function outputs either a "phylo" object if no traits where generated or a treats object that is
a list of at least two elements: $tree, a "phylo" object and $data, a "matrix" of the trait values.

Author(s)

Thomas Guillerme

See Also

treats plot.treats

Examples

A random tree with fossils and traits and internal nodes every 0.5 times
set.seed(3)
my_data <- treats(stop.rule = list(max.taxa = 20),

bd.params = list(speciation = 1, extinction = 1/3),
traits = make.traits(), save.steps = 0.5)

A tree with 20 tips and 54 nodes
my_data$tree
And a dataset with 74 rows
dim(my_data$data)

Removing the fossil species
drop.things(my_data, what = "fossils")$tree
dim(drop.fossils(my_data)$data)

Removing the living species
drop.things(my_data, what = "livings")$tree
dim(drop.livings(my_data)$data)

Removing the internal nodes
drop.things(my_data, what = "singles")$tree
dim(drop.singles(my_data)$data)

Removing the internal nodes AND the fossils
drop.singles(drop.fossils(my_data))

drop.tip.treats 7

drop.tip.treats drop.tip.treats

Description

Drop or keep tips from a "treats" object.

Usage

S3 method for class 'treats'
drop.tip(phy, tip, ...)

Arguments

phy an object of class "treats".

tip a vector of mode numeric or character specifying the tips to delete or to keep.

... any additional argument to be passed to drop.tip.phylo.

Details

This function allows to remove or keep tips from a "treats" object the same way as the drop.tip.phylo
function.

Value

This function outputs either a "phylo" object if no traits where generated or a treats object that is
a list of at least two elements: $tree, a "phylo" object and $data, a "matrix" of the trait values.

Author(s)

Thomas Guillerme

See Also

treats

Examples

A treats object with one trait and 20 tips
my_treats <- treats(stop.rule = list(max.taxa = 20),

traits = make.traits())

Removing five tips
drop.tip.treats(my_treats, tip = c("t1", "t2", "t3", "t4", "t5"))

Keeping these five tips
drop.tip.treats(my_treats, tip = c("t1", "t2", "t3", "t4", "t5"))

8 events.conditions

events.conditions events.conditions

Description

Inbuilt conditions functions for helping designing events

Usage

events.condition(x, condition, ...)

Arguments

x the variable to reach for satisfying a condition (see details)

condition the logical function for triggering the condition (e.g. ‘<‘, ‘==‘, ‘!>‘, etc...).

... any optional argument specific for that condition (see details)

Details

The following functions allow to design specific conditions for events:

• age.condition: a conditional function based on the time x. Typically this can be translated
into "when time reaches the value x, trigger a condition" (see make.events). There is no
optional argument for the function.

• taxa.condition: a conditional function based on the number of taxa x. Typically this can
be translated into "when the number of taxa reaches the value x, trigger a condition" (see
make.events). This function has one optional argument:

– living, a logical argument whether to consider the number of taxa alive when the con-
dition is checked (default: living = TRUE) or whether to consider all the taxa simulated
so far (living = FALSE).

• trait.condition: a conditional function based on the value x of one or more traits. Typ-
ically this can be translated into "when a trait reaches a value x, trigger a condition" (see
make.events). This function has three optional argument:

– trait, one or more integer or numeric value designating the trait(s) to consider. By
default, trait = 1, thus considering only the first trait to trigger the condition.

– what, a function designating what to select from the trait values. By default what = max
to select the maximal value of the trait when the condition is triggered (but you can use
any function like min, mean, sd, etc. or provide your own function).

– absolute, a logical designating to consider absolute trait values (TRUE) or not (default;
FALSE).

More details about the events functions is explained in the treats manual: http://tguillerme.
github.io/treats.

Value

This function outputs a "function" to be passed to make.events.

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

events.conditions 9

Author(s)

Thomas Guillerme

See Also

treats make.events events.modifications

Examples

Generating a mass extinction
80% mass extinction at time 4
mass_extinction <- make.events(

target = "taxa",
condition = age.condition(4),
modification = random.extinction(0.8))

Set the simulation parameters
stop.rule <- list(max.time = 5)
bd.params <- list(extinction = 0, speciation = 1)

Run the simulations
set.seed(123)
results <- treats(bd.params = bd.params,

stop.rule = stop.rule,
events = mass_extinction)

Plot the results
plot(results, show.tip.label = FALSE)
axisPhylo()

Changing the trait process
The 95% upper quantile value of a distribution
upper.95 <- function(x) {

return(quantile(x, prob = 0.95))
}
Create an event to change the trait process
change_process <- make.events(

target = "traits",
condition is triggered if(upper.95(x) > 3)
condition = trait.condition(3, condition = `>`, what = upper.95),
modification = traits.update(process = OU.process))

Set the simulation parameters
bd.params <- list(extinction = 0, speciation = 1)
stop.rule <- list(max.time = 6)
traits <- make.traits()

Run the simulations
set.seed(1)
no_change <- treats(bd.params = bd.params,

stop.rule = stop.rule,
traits = traits)

set.seed(1)

10 events.modifications

process_change <- treats(bd.params = bd.params,
stop.rule = stop.rule,
traits = traits,
events = change_process)

Plot the results
oldpar <- par(mfrow = c(1,2))
plot(no_change, ylim = c(-7, 7))
plot(process_change, ylim = c(-7, 7))
par(oldpar)

events.modifications Events modifications

Description

Inbuilt modifications functions for helping designing events

Usage

events.modification(x, ...)

Arguments

x a numerical value to update.

... any specific argument for the modification (see details).

Details

The following functions allow to design specific modifications for events:

• modifications for the target "taxa"

– random.extinction: this function removes (makes extinct) a proportion of living taxa
when the event is triggered. The proportion of taxa to remove can be changed with the
argument x.

– trait.extinction: this function removes (makes extinct) a number of living taxa based
on their trait(s) values when the event is triggered. The trait value is specified with the
argument x.This function has one optional argument:

* condition to specify the condition in relation to that trait value (the default is condition
= `<` meaning taxa with a trait value lower that x will go extinct).

* trait to specify which trait will be affected (the default is trait = 1, meaning it will
only consider the first trait).

• modifications for the target "bd.params"

– bd.params.update: this function updates a "bd.params" object within the birth death
process. It takes any unambiguous named argument to be passed to make.bd.params.
For example, to update the speciation from any current rate to a new rate of 42, you can
use bd.params.update(speciation = 42).

events.modifications 11

• modifications for the target "traits"

– traits.update: this function updates a "traits" object within the birth death pro-
cess. It takes any unambiguous named argument to be passed to make.traits. For
example, to update the trait process from the current one to an OU process, you can use
traits.update(process = OU.process).

• modifications for the target "modifiers"

– modifiers.update: this function updates a "modifiers" object within the birth death
process. It takes any unambiguous named argument to be passed to make.modifiers.
For example, to update the speciation from the current process to be dependent to trait
values, you can use modifiers.update(speciation = speciation.trait).

• modifications for the target "founding"

– founding.event: this function runs an independent birth-death process when the con-
dition is met. This function takes any of the arguments normally passed to treats
("bd.params", "traits", "modifiers" and "events"). The stop.rule and other ar-
guments are handled internally: namely the stop.rule argument is updated to match the
time and number of taxa when the founding event is triggered. Note that this can lead to
the simulation stopping just before reaching the max.taxa or max.living stop rule.

More details about the events functions is explained in the treats manual: http://tguillerme.
github.io/treats.

Value

This function outputs a "function" to be passed to make.events.

Author(s)

Thomas Guillerme

See Also

treats make.events events.conditions

Examples

Generating a mass extinction
80% mass extinction at time 4
mass_extinction <- make.events(

target = "taxa",
condition = age.condition(4),
modification = random.extinction(0.8))

Set the simulation parameters
stop.rule <- list(max.time = 5)
bd.params <- list(extinction = 0, speciation = 1)

Run the simulations
set.seed(123)
results <- treats(bd.params = bd.params,

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

12 link.traits

stop.rule = stop.rule,
events = mass_extinction)

Plot the results
plot(results, show.tip.label = FALSE)
axisPhylo()

Changing the trait process
The 95% upper quantile value of a distribution
upper.95 <- function(x) {

return(quantile(x, prob = 0.95))
}
Create an event to change the trait process
change_process <- make.events(

target = "traits",
condition is triggered if(upper.95(x) > 3)
condition = trait.condition(3, condition = `>`, what = upper.95),
modification = traits.update(process = OU.process))

Set the simulation parameters
bd.params <- list(extinction = 0, speciation = 1)
stop.rule <- list(max.time = 6)
traits <- make.traits()

Run the simulations
set.seed(1)
no_change <- treats(bd.params = bd.params,

stop.rule = stop.rule,
traits = traits)

set.seed(1)
process_change <- treats(bd.params = bd.params,

stop.rule = stop.rule,
traits = traits,
events = change_process)

Plot the results
oldpar <- par(mfrow = c(1,2))
plot(no_change, ylim = c(-7, 7))
plot(process_change, ylim = c(-7, 7))
par(oldpar)

link.traits link.traits

Description

Linking traits objects together to simulate simulate them sequentially.

Usage

link.traits(base.trait, next.trait, link.type, link.args, trait.name)

link.traits 13

Arguments

base.trait One or more "treats" "traits" object(s) to be considered first.

next.trait One or more "treats" "traits" object(s) to be considered sequentially.

link.type The type of link between the traits. Can be "conditional".

link.args Optional arguments to interpret the link between the objects (based on the link.type).

trait.name Optional, a character, the name the resulting trait.

Details

This function allows to link several traits together in the simulations. The current link types imple-
mented are:

• "conditional": this allows to link the next.trait traits conditionally to the base.trait one.
For example if base.trait is a discrete.process with two states 0 and 1 and next.trait
is a list of two traits with two different processes OU.process and BM.process. The sim-
ulations generates a first trait using base.trait and then a second one using one of the
two processes in next.trait depending on the results of base.trait. The link arguments
link.args must be a list of logical functions to interpret x1, the results of the base.trait.
For example, list(function(x1){x1 == 0}, function(x1){x1 == 1}) will generate a trait
using the first next.trait if x1 is equal to 0 or using the second next.trait if x1 is equal to
1.

Value

This function outputs a treats object that is a named list of elements handled internally by the
treats function.

Author(s)

Thomas Guillerme

See Also

treats trait.process make.traits

Examples

Setting up a discrete trait
discrete_trait <- make.traits(discrete.process,

process.args = list(transitions = matrix(c(3, 0.2, 0.05, 3), 2, 2)),
trait.names = "discrete")

Setting up one dummy trait (always outputs 1)
always_one <- make.traits(process = function(x0 = 0, edge.length = 1) {return(1)},

trait.names = "one")
Setting up a Brownian motion trait
BM_trait <- make.traits(trait.names = "BM")

Setting a condition list to link all traits

14 make.bd.params

(if discrete trait is 0, simulate a BM trait)
(if discrete trait is 1, simulate the always one trait)
conditions <- list("choose.BM" = function(x1) {x1 == 0},

"choose.one" = function(x1) {x1 == 1})

Creating the linked trait
conditional <- link.traits(base.trait = discrete_trait,

next.trait = list(BM_trait, always_one),
link.type = "conditional",
link.args = conditions)

Simulating a tree using this trait
treats(stop.rule = list(max.living = 200),

traits = conditional)

make.bd.params Make birth death parameters

Description

Making bd.params objects for treats.

Usage

make.bd.params(
speciation = NULL,
extinction = NULL,
joint = NULL,
absolute = NULL,
speciation.args = NULL,
extinction.args = NULL,
test = TRUE,
update = NULL

)

Arguments

speciation The speciation parameter. Can be a single numeric value, a numeric vector or
a function (default is 1).

extinction The extinction parameter. Can be a single numeric value, a numeric vector or
a function (default is 0).

joint Logical, whether to estimate both birth and death parameter jointly with specia-
tion > extinction (TRUE) or not (FALSE; default).

absolute Logical, whether always return absolute values (TRUE) or not (FALSE; default).
speciation.args

If speciation is a function, any additional arguments to passed to the speciation
function.

make.bd.params 15

extinction.args

If speciation is a function, any additional arguments to passed to the speciation
function.

test Logical whether to test if the bd.params object will work (default is TRUE).

update Optional, another previous "treats" "bd.params" object to update (see de-
tails).

Details

When using update, the provided arguments (to make.bd.params) will be the ones updated in the
"bd.params" object.

Value

This function outputs a treats object that is a named list of elements handled internally by the
treats function.

Author(s)

Thomas Guillerme

See Also

treats

Examples

A default set of birth death parameters
make.bd.params()

Speciation is randomly picked between 1, 10 and 100
and extinction is always 2
make.bd.params(speciation = c(1,10,100), extinction = 2)

Speciation is a normal distribution(with sd = 0.75)
and extinction is a lognormal distribution always lower than
speciation (joint). Both are always positive values (absolute)
my_bd_params <- make.bd.params(speciation = rnorm,

speciation.args = list(sd = 0.75),
extinction = rlnorm,
joint = TRUE,
absolute = TRUE)

my_bd_params

Visualising the distributions
plot(my_bd_params)

16 make.events

make.events make.events

Description

Making events objects for treats

Usage

make.events(
target,
condition,
modification,
add,
test = TRUE,
event.name,
replications = 0,
additional.args

)

Arguments

target What to modify, can be "taxa", "bd.params", "traits" or "modifiers" (see
details).

condition A function returning a logical to trigger the event (see details).

modification A function bringing the modification to the event (see details).

add Another "events" to object to add this event.

test A logical, whether to test if the events object will work (default is TRUE)

event.name Optional, a "character" string to name the event.

replications A numeric or integer value for repeating the event (by default, the event is not
repeated: replications = 0).

additional.args

Optional, a named list of additional arguments to be used in the event.

Details

target is a character to designate what will be affected by the event. It can be either "taxa",
"bd.params", "traits" or "modifiers". This means that the condition and modification
functions will target this specific part of the algorithm.

condition must be a function that returns a logical value and intakes any of the following argu-
ments: bd.params, lineage, traits and time. See events.conditions for examples.

modification must be a function that intakes a first argument named "x" an returns any specific
type of class that can be handled internally by treats. For example, if target = "bd.params" the
modification function should typically return an updated bd.params object (see make.bd.params).
See events.modifications for examples.

make.events 17

Value

This function outputs a treats object that is a named list of elements handled internally by the
treats function.

Author(s)

Thomas Guillerme

See Also

treats make.bd.params make.traits make.modifiers events.conditions events.modifications

Examples

Generating a mass extinction
80% mass extinction at time 4
mass_extinction <- make.events(

target = "taxa",
condition = age.condition(4),
modification = random.extinction(0.8))

Set the simulation parameters
stop.rule <- list(max.time = 5)
bd.params <- list(extinction = 0, speciation = 1)

Run the simulations
set.seed(123)
results <- treats(bd.params = bd.params,

stop.rule = stop.rule,
events = mass_extinction)

Plot the results
plot(results, show.tip.label = FALSE)
axisPhylo()

Changing the trait process
The 95% upper quantile value of a distribution
upper.95 <- function(x) {

return(quantile(x, prob = 0.95))
}
Create an event to change the trait process
change_process <- make.events(

target = "traits",
condition is triggered if(upper.95(x) > 3)
condition = trait.condition(3, condition = `>`, what = upper.95),
modification = traits.update(process = OU.process))

Set the simulation parameters
bd.params <- list(extinction = 0, speciation = 1)
stop.rule <- list(max.time = 6)
traits <- make.traits()

Run the simulations

18 make.modifiers

set.seed(1)
no_change <- treats(bd.params = bd.params,

stop.rule = stop.rule,
traits = traits)

set.seed(1)
process_change <- treats(bd.params = bd.params,

stop.rule = stop.rule,
traits = traits,
events = change_process)

Plot the results
oldpar <- par(mfrow = c(1,2))
plot(no_change, ylim = c(-7, 7))
plot(process_change, ylim = c(-7, 7))
par(oldpar)

make.modifiers make.modifiers

Description

Making modifiers objects for treats based on an ancestor’s (parent) trait.

Usage

make.modifiers(
branch.length = NULL,
selection = NULL,
speciation = NULL,
condition = NULL,
modify = NULL,
add = NULL,
update = NULL,
test = TRUE

)

Arguments

branch.length A function for the waiting time generating branch length (can be left empty for
the defeault branch length function; see details).

selection A function for selecting the lineage(s) affected by speciation (can be left empty
for the default selection function; see details).

speciation A function for triggering the speciation events (can be left empty for the default
speciation function; see details).

condition A function giving the condition on which to modify the output of branch.length
or speciation (see details). If NULL the condition is always met.

modify A function giving the rule of how to modify the output of branch.length or
speciation (see details). If NULL no modification is used.

make.modifiers 19

add Whether to add this modifier to a "treats" "modifier" object.

update Optional, another previous "treats" modifiers object to update (see details).

test Logical whether to test if the modifiers object will work (default is TRUE).

Details

branch.length, selection and speciation must be a functions that intakes the following argu-
ments: bd.params, lineage, trait.values, modify.fun. If left empty, any of these arguments
is considered as NULL.

The default branch.length function is drawing a random number from the exponantial distribution
with a rate equal to the current number of taxa multiplied by the speciation and extinction (rexp(1,
n_taxa * (speciation + extinction))).

The default selection function is randomly drawing a single lineage among the ones present at
the time of the speciation (sample(n_taxa, 1)).

The default speciation function is drawing a random number from a uniform distribution (0,1) and
starts a speciation event if this random number is lower than the ration of speciation on speciation
and extinction (runif(1) < (speciation/(speciation + extinction))). If the random number
is greater, the lineage goes extinct.

condition must be a function with unambiguous input (the inputs listed about for branch.length
and speciation) and must output a single logical value.

For example a conditional on the number of taxa:

condition = function(lineage) return(lineage$n < 1)

or a conditional on the trait values:

condition = function(trait.values, lineage) { parent.traits(trait.values, lineage) <
mean(trait.values) }

modify must be a function with at least one input named x (which will be the branch length or
the speciation trigger to value depending on the modifier) and must return a numeric value. For
example a constant modification of the input:

modify = function(x) return(x * 2)

or a modifier depending on the number of taxa:

modify = function(x, lineage) return(x/lineage$n)

When using update, the provided arguments (to make.modifiers) will be the ones updated in
the "modifiers" object. If the "modifiers" object contains multiple modifiers (branch.length,
selection or speciation), only the called arguments will be updated (e.g. make.modifiers(update
= previous_modifiers, speciation = new_speciation) will only update the speciation pro-
cess).

More details about the modifiers functions is explained in the treats manual: http://tguillerme.
github.io/treats.

Value

This function outputs a treats object that is a named list of elements handled internally by the
treats function.

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

20 make.traits

Author(s)

Thomas Guillerme

See Also

treats modifiers

Examples

These functions should be fed to the make.modifiers function to create
modifiers for treats objects. For example, the following sets specifies that
the branch length should be generated using the branch.length.trait function
the selection using the selection function and the speciation using the
speciation.trait function:
my_modifiers <- make.modifiers(branch.length = branch.length.trait,

selection = selection,
speciation = speciation.trait)

Creating a treats simulation using these modifiers
treats(stop.rule = list(max.taxa = 20),

traits = make.traits(),
modifiers = my_modifiers)

make.traits make.traits

Description

Making traits objects for treats

Usage

make.traits(
process = BM.process,
n = NULL,
start = NULL,
process.args = NULL,
trait.names = NULL,
add = NULL,
update = NULL,
test = TRUE,
background

)

make.traits 21

Arguments

process The trait process(es) (default is BM.process).

n Optional, the number of traits per process (default is 1).

start Optional, the starting values for each traits (default is 0).

process.args Optional, a named list of optional arguments for the trait process.

trait.names Optional, the name(s) of the process(s).

add Optional, another previous "treats" traits object to which to add the trait.

update Optional, another previous "treats" traits object to update (see details).

test Logical, whether to test if the traits object will work with treats (TRUE - de-
fault).

background Optional, another "treats" "traits" object to simulate background trait evo-
lution (see details).

Details

When using update, the provided arguments (to make.traits) will be the ones updated in the
"traits" object. If the "traits" object contains multiple processes, you can specify which ones
should be affected with the trait.names argument. Note that you cannot update the traits.names
or the number of traits per processes (n) not use the add argument when updating a "traits" object.

If a background "traits" object is given, this object is then applied to all living edges at the same
in the background while the main "traits" is computed.

More details about the "treats" "traits" objects is explained in the treats manual: http:
//tguillerme.github.io/treats.

Value

This function outputs a treats object that is a named list of elements handled internally by the
treats function.

Author(s)

Thomas Guillerme

See Also

treats trait.process

Examples

A simple Brownian motion trait (default)
make.traits()

Two independent Brownian motion traits
make.traits(n = 2)

Two different traits with different process
(Brownian motion and Ornstein-Uhlenbeck)

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

22 make.treats

make.traits(process = list(BM.process, OU.process))

A multidimensional Brownian motion trait with correlation
and different starting points
my_correlations <- matrix(1/3, ncol = 3, nrow = 3)
(my_traits <- make.traits(n = 3, start = c(0, 1, 3),

process.args = list(Sigma = my_correlations)))

Adding a Ornstein-Uhlenbeck trait to the previous trait object
make.traits(process = OU.process, trait.names = "OU_trait",

add = my_traits)

make.treats Make a treats object

Description

Combines a tree and some associated data into a treats object (e.g. for plotting)

Usage

make.treats(tree, data)

Arguments

tree a phylogenetic tree.

data a dataset of traits, either a matrix with column names or a named vector.

Value

This function outputs a treats object that is a list of at least two elements: $tree, a "phylo" object
and $data, a "matrix" of the trait values.

Author(s)

Thomas Guillerme

See Also

treats plot.treats

map.traits 23

Examples

Creating a random tree
my_tree <- rtree(5)
Adding node labels
my_tree$node.label <- letters[1:4]
Creating a random dataset
my_data <- matrix(rnorm(9),

dimnames = list(c(my_tree$tip.label, my_tree$node.label)))
Creating the treats object
my_treats <- make.treats(tree = my_tree, data = my_data)
plot(my_treats)

map.traits Maps a trait on a tree

Description

Simulates one or more trait specified through a "traits" onto one or multiple trees.

Usage

map.traits(traits, tree, replicates)

Arguments

traits A "traits" object (see make.traits).

tree A "phylo" or "multiPhylo" object.

replicates Optional, a number of replicated traits to map.

Details

This function simulates the trait(s) on the tree using the tree’s branch length.

Value

A "treats" object containing the tree and the traits.

Examples

Simulating a random tree with branch length
my_tree <- rtree(20)

Creating three different traits objects:
A Brownian Motion
bm_process <- make.traits(process = BM.process)
An Ornstein-Uhlenbeck process
ou_process <- make.traits(process = OU.process)

24 modifiers

No process (just randomly drawing values from a normal distribution)
no_process <- make.traits(process = no.process)

Mapping the three traits on the phylogeny
bm_traits <- map.traits(bm_process, my_tree)
ou_traits <- map.traits(ou_process, my_tree)
no_traits <- map.traits(no_process, my_tree)

Plotting the topology and the different traits
oldpar <- par(mfrow = c(2,2))
plot(my_tree, main = "Base topology")
plot(bm_traits, main = "Mapped BM")
plot(ou_traits, main = "Mapped OU")
plot(no_traits, main = "Mapped normal trait")
par(oldpar)

modifiers Modifiers

Description

Different modifiers for the birth death process implemented in treats.

Usage

modifiers(bd.params = NULL, lineage = NULL, trait.values = NULL,
modify.fun = NULL)

Arguments

bd.params A named list of birth death parameters (see details).

lineage A named list containing the lineage data (see details).

trait.values A matrix containing the trait values (see details).

modify.fun A list of internals functions that can modified by events (see details).

Details

bd.params can be either a named list of parameter values (e.g. list("extinction" = 0, "speciation"
= 1)) but it is typically handled internally from a "treats" "bd.params" object.

modifiers are functions passed to the birth death process in treats to either generate the branch
length (named branch.length and similar) or to decide whether to speciate or go extinct (named
speciation and similar).

For user defined functions, the modifiers must have at least the arguments described above. For
safety, we suggest setting these arguments to NULL.

The pre-build modifiers in the treats package are (so far):

modifiers 25

• branch.length the simple branch length generator that randomly gets a numeric value drawn
from the exponential distribution (rexp) with a rate equal to the number of taxa (lineage$n
* bd.params$speciation + bd.params$extinction).

• branch.length.trait a modification of the branch.length modifier where the resulting
branch length is changed by modify.fun$modify if the parent trait(s) meet the condition
modify.fun$condition.

• selection a function returning a randomly sampled integer among the number of taxa avail-
able.

• speciation a function returning TRUE (speciation) if a random uniform number (runif) is
smaller than the ratio of speciation by speciation and extinction (bd.params$speciation
/ (bd.params$speciation) + bd.params$extinction). If it’s bigger, the function returns
FALSE (exinction).

• speciation.trait a modification of the speciation modifier where the random uniform
number is changed by modify.fun$modify if the parent trait(s) meet the condition modify.fun$condition.

More details about the modifiers functions is explained in the treats manual: http://tguillerme.
github.io/treats.

Value

These functions returns either "numeric" or "logical" values to be passed to make.modifiers
and treats.

Author(s)

Thomas Guillerme

See Also

treats make.modifiers

Examples

These functions should be fed to the make.modifiers function to create
modifiers for treats objects. For example, the following sets specifies that
the branch length should be generated using the branch.length.trait function
the selection using the selection function and the speciation using the
speciation.trait function:
my_modifiers <- make.modifiers(branch.length = branch.length.trait,

selection = selection,
speciation = speciation.trait)

Creating a treats simulation using these modifiers
treats(stop.rule = list(max.taxa = 20),

traits = make.traits(),
modifiers = my_modifiers)

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

26 parent.traits

parent.traits Get parent traits

Description

An internal utility function for modifiers, traits or events to access the value(s) of the parent
traits in the treats algorithm

Usage

parent.traits(trait.values, lineage, current = TRUE)

Arguments

trait.values The internal table of trait values

lineage The internal lineage data list

current Whether to consider only the current lineage (TRUE - default) or all the living
lineages (FALSE).

Details

This function is designed to be used internally in treats to help modifiers, traits or events ob-
jects to access the parent traits of the lineages simulated through the internal birth death algorithm.

Value

Returns one or more "numeric" values.

Author(s)

Thomas Guillerme

See Also

treats make.modifiers

Examples

Speciation event is more likely if lineage's ancestor is further away from the mean trait value
distance.modify <- function(x, trait.values, lineage) {

Distance to the parent's trait
parent_trait_val <- parent.traits(trait.values, lineage)[1]
mean_trait_val <- mean(trait.values[, 1])
distance <- abs(parent_trait_val - mean_trait_val)
Scales x with the distance
return(x + x * distance)

}

plot.treats 27

Make a distance modifier (speciation more likely with distance)
distance.speciation <- make.modifiers(speciation = speciation,

modify = distance.modify)

plot.treats Plot treats objects

Description

Plotting treats objects (either a simulated tree and trait(s) or a process for traits objects)

Usage

S3 method for class 'treats'
plot(
x,
col,
...,
trait = 1,
edges = "grey",
tips.nodes = NULL,
use.3D = FALSE,
simulations = 20,
cent.tend = mean,
quantiles = c(95, 50),
legend = FALSE,
transparency,
add = FALSE

)

Arguments

x treats data.

col Optional, a vector of colours that can be named or a function (see details).

... Any additional options to be passed to plot functions (from graphics or rgl if
use.3D = TRUE).

trait which trait to plot (default is 1; see details).

edges either a colour name to attribute to the edges or NULL to not display the edges
(default is "grey").

tips.nodes optional, a colour to circle tips and nodes (only used if use.3D = FALSE). By
default tips.nodes = NULL.

use.3D logical, whether to use a 3D plot or not (default is FALSE; see details).

simulations if the input is a treats traits or bd.params object, how many replicates to
run (default is 50).

28 plot.treats

cent.tend if the input is a treats traits, which central tendency to plot (default is mean).

quantiles if the input is a treats traits, which quantiles to plot (default are c(95, 50))).

legend logical, whether to display the legend in 2D plots (TRUE) or not (FALSE; default)

transparency Optional, a transparency factor (1 = not transparent, 0 = invisible). If left empty,
and multiple plots are called, the transparency is set to 1 / number of plots + 0.1.

add logical, whether to add to a previous plot.

Details

The col option can be either:

• a vector of colours to be applied to "treats" "traits" objects (for respectively the median,
50

• a vector of colours to be applied to "treats" objects for the colours of different elements of
the plot. This vector is applied to all the elements in the tree using the order in tree$tip.label
and tree$node.label.

• an unambiguous named vector for colouring each specific elements. These can be any of the
following (with default colours) col = c("nodes" = "orange", "fossils" = "lightblue",
"livings" = "blue") or "tips" to designate both livings and fossils and "singletons" to
designate non-bifurcating nodes.

• a function from which to sample the colours to match the time gradient for each element.

The trait option can intake from 1 to 3 traits (if use.3D = TRUE). If two traits are given (e.g. c(1,
2)), the default plots a correlation plot between both traits (same for 3 traits if use.3D = TRUE).

The use.3D option uses the rgl library to create a 3D plot. The plot displays either a time on the Z
axis with two traits on the X and Y axis (if two traits are requested via trait) or three traits on the
X Y and Z (if three traits a requested via trait).

Value

No return value, plot x’s content.

Author(s)

Thomas Guillerme

See Also

treats

Examples

Specifying a trait process
my_trait <- make.traits()
Plotting a trait process
plot(my_trait, main = "A Brownian Motion")

Simulating a tree with ten taxa

print.treats 29

my_tree <- treats(stop.rule = list(max.taxa = 10))
Plotting a simple birth death tree (using ape::plot.phylo)
plot(my_tree, main = "A pure birth tree")

Simulating a tree with traits
my_data <- treats(stop.rule = list(max.taxa = 100),

traits = my_trait)
Plotting the tree and traits
plot(my_data)

Specifying a 3D trait process
my_3D_trait <- make.traits(n = 3)
Simulating a birth death tree with that trait
my_data <- treats(bd.params = list(extinction = 0.2),

stop.rule = list(max.living = 50),
traits = my_3D_trait)

Plotting the second trait and the tree (default)
The colours are purple for nodes and blue for tips
with a black circle for highlighting the tips
plot(my_data, trait = 2,

col = c("nodes" = "purple", "tips" = "blue"),
edges = "pink", tips.nodes = "black")

Plotting the first and third trait correlation
The colours are a heat map based on the elements age
plot(my_data, trait = c(1,3), col = terrain.colors,

edges = "grey", tips.nodes = "black")

Plotting the first and third trait correlation in 3D
plot(my_data, trait = c(1,3), col = rainbow,

edges = "grey", tips.nodes = "black", use.3D = TRUE)
#rglwidget() # to display the plot with non-default OpenRGL

Plotting all traits in 3D (without branch lengths)
plot(my_data, trait = c(1:3), col = heat.colors,

edges = NULL, tips.nodes = "black", use.3D = TRUE)
#rglwidget() # to display the plot with non-default OpenRGL

print.treats Prints a treats object.

Description

Summarises the content of a treats object.

Usage

S3 method for class 'treats'
print(x, all = FALSE, ...)

30 trait.process

Arguments

x A treats object.

all logical; whether to display the entire object (TRUE) or just summarise its con-
tents (FALSE - default).

... further arguments to be passed to print or to print.treats.

Value

No return value, summarises x’s content.

Author(s)

Thomas Guillerme

See Also

treats

Examples

A treats birth-death parameters object
make.bd.params()
A treats traits object
make.traits()
A treats modifiers object
make.modifiers()
A treats object
treats(stop.rule = list(max.taxa = 10), traits = make.traits())

trait.process Trait processes

Description

Different trait processes implemented in treats.

Usage

trait.process(x0, edge.length, ...)

Arguments

x0 The previous state. This can be a single value (unidimensional process) or more
(multidimensional processes).

edge.length The branch length (default must be 1). This is always a single value.

... Any optional argument for the specific process (see details).

trait.process 31

Details

The different trait processes implemented in treats are:

• BM.process A Brownian motion process (uni or multidimensional). This function is based on
mvrnorm. This process can take following optional arguments:

– Sigma a positive-definite symmetric matrix specifying the covariance matrix of the vari-
ables (default is diag(length(x0))).

– ... any named additional argument to be passed to mvrnorm.

• discrete.process This process can take following optional arguments:

– transitions a positive-definite squared transition matrix. If left missing, a 2 states equal
rates matrix is used.

Note that for this process, 0 corresponds to state 1, 1 corresponds to state 2, etc... The current
version of this process does not allow other discrete traits notation (but future versions will!).

• OU.process A Ornstein-Uhlenbeck process (uni or multidimensional). This function is based
on mvrnorm. This process can take following optional arguments:

– Sigma the traits variance/covariance (default is diag(length(x0))).
– alpha the alpha parameter (default = is 1).
– optimum the theta parameter (default = is 0).
– ... any named additional argument to be passed to mvrnorm.

• no.process An non-process unidimensional function. This function generates a trait value not
depending on the branch length nor the previous state This process can take following optional
arguments:

– fun a random number function (default is rnorm).
– ... any named additional argument to be passed to fun.

• multi.peak.process A Ornstein-Uhlenbeck process (uni or multidimensional) with multiple
optimal values. This function is based on mvrnorm. This process can take following optional
arguments:

– Sigma the traits variance/covariance (default is diag(length(x0))).
– alpha the alpha parameter (default = is 1).
– peaks the multiple optimal values to be attracted to (default = is 0). This can be a numeric

vector to be applied to all the values of x0 or a list of the same length as x0 for different
multiple optimums for each x0.

– ... any named additional argument to be passed to mvrnorm.

• repulsion.process An unidimensional Brownian Motion process that generates a trait value not
overlapping with the other living taxa ancestral values. This function is based on rnorm. This
process can take following optional arguments:

– sd the normal distribution standard deviation.
– repulsion the minimal distance requested between trait values.
– max.try the maximum number of values to draw (if the repulsion value is to hard to

achieve).
– trait.values LEAVE AS NULL (it designates the trait value table from the birth death

process and is handled internally by treats).

32 trait.process

– lineage LEAVE AS NULL (it designates the lineage object from the birth death process
and is handled internally by treats).

– trait LEAVE AS NULL (it which trait to use and is analysed an is handled internally by
treats).

More details about the trait.process functions is explained in the treats manual: http://
tguillerme.github.io/treats.

Value

Returns one or more "numeric" value(s).

Author(s)

Thomas Guillerme

See Also

treats make.traits

Examples

NOTE: You can visualise most process by making them
into a "treats" "traits" object using make.traits():

The Brownian motion process
BM.process(x0 = 0)
plot(make.traits(process = BM.process))
A covariance matrix between 3 traits
varcovar_matrix <- matrix(c(1/3,1/3,1/3,1/3,2/3,0,1/3,0,2/3), ncol = 3)
BM.process(x0 = c(0,0,0), Sigma = varcovar_matrix)

The Ornstein-Uhlenbeck process
OU.process(x0 = 0)
plot(make.traits(process = OU.process))

No process
no.process()
plot(make.traits(process = no.process))

Multi peaks with peaks at the values 1, 5 and 10
multi.peak.process(peaks = c(1, 5, 10))
plot(make.traits(multi.peak.process, process.args = list(peaks = c(1, 5, 10))))

Repulsion process
repulsion.process(x0 = 0, repulsion = 1)
plot(make.traits(repulsion.process, process.args = list(repulsion = 5)))

Discrete trait process
Generating a stepwise transition matrix for 3 states (with an overal random transition rate)
stepwise_matrix <- transition.matrix(type = "stepwise", states = 3)
Generatin and plotting the the trait

http://tguillerme.github.io/treats
http://tguillerme.github.io/treats

transition.matrix 33

plot(make.traits(discrete.process, process.args = list(transitions = stepwise_matrix)))

##

transition.matrix Makes a transition matrix

Description

Utility function for generating discrete characters evolution transition matrices.

Usage

transition.matrix(type, states, rates = runif, self = TRUE, ...)

Arguments

type the type of transition matrix, either "equal rates", "stepwise", "symmetric", or
"all rates different". See details.

states the number of states.

rates either a fixed value for a rate to attribute to each possible transitions or a function
to generate the rates (default is runif). See details.

self logical, whether to allow reverting states (i.e. transition rates from state A to the
same state A; TRUE; default) or not (FALSE).

... if rates is a function, any optional arguments to be passed to it.

Details

The following transition rate matrices are currently implemented:

• "equal rates" (or "ER") where all transitions are equal (including no transition if self = TRUE).

• "stepwise" (or "Dollo") transitions are allowed only in a step wise way (e.g. state 1 to 2 and 2
to 3 are allowed but not 1 to 3).

• "symmetric" ("SYM") where transitions between states are all different but not directional
(e.g. the change of state 1 to 2 is equal to 2 to 1). If self = TRUE, the non transitions (e.g.
from state 1 to 1) are equal.

• "all rates different" (or "ARD") where all transitions are different. Note that if rates is a give
value (rather than a function), then all rates are actually equal.

If rates is a function that generates negative values or a negative value, the output transition matrix
always returns absolute values.

Value

Returns a squared "matrix".

34 treats

Author(s)

Thomas Guillerme

See Also

make.traits discrete.process

Examples

A two states equal rates matrix with a rate of 1
and no stationary rates (no probability of staying in the same state)
transition.matrix(type = "equal rates", states = 2, rates = 1, self = FALSE)

Two different 6 states stepwise matrix with a random absolute normal rate
transition.matrix(type = "stepwise", states = 6, rates = rnorm)
transition.matrix(type = "stepwise", states = 6, rates = rnorm)

treats Diversity and disparity simulator

Description

Simulating phylogenetic trees and traits. See full manual here: https://github.com/TGuillerme/treats

Usage

treats(
stop.rule,
bd.params,
traits = NULL,
modifiers = NULL,
events = NULL,
save.steps = NULL,
null.error = FALSE,
replicates,
verbose = TRUE

)

Arguments

stop.rule The rules on when to stop the simulation (see details).

bd.params A "bd.params" object or a named list of parameters for the birth-death process
(see details or make.bd.params).

traits A "traits" object (see make.traits).

modifiers A "modifiers" object (see make.modifiers).

treats 35

events A "events" object (see make.events).

save.steps Optional, "numeric" value to save the simulations at specific internal points
(this can slow down the algorithm significantly for large trees).

null.error Logical, whether to return an error when the birth-death parameters fails to
build a tree (FALSE; default and highly recommended) or whether to return NULL
(TRUE). Can also be set to an integer value for the numbers of trials (see details).

replicates Optional, the number of replicates for the simulation.

verbose Logical, whether to be verbose (TRUE; default) or not (FALSE).

Details

stop.rule: The rule(s) for when to stop the simulation. When multiple rules are given, the simu-
lation stops when any rule is broken. The allowed rules are:

• max.taxa The maximum number of taxa (including extinct ones).

• max.living The maximum number of living taxa (i.e. non extinct).

• max.time The maximum amount of phylogenetic (in arbitrary units).

bd.params: This can be either a "treats" "bd.params" object (see make.bd.params) or a list of
named parameters. The allowed parameters are:

• speciation The speciation parameter value.

• extinction The extinction parameter value.

By default, this parameter is set to bd.params = list(speciation = 1)

If null.error is set to a numeric value, the function will run multiple times until a correct tree is
generated. Using this option can greatly increase computational time!

Value

This function outputs either a "phylo" object if no traits where generated or a treats object that is
a list of at least two elements: $tree, a "phylo" object and $data, a "matrix" of the trait values.

Author(s)

Thomas Guillerme

See Also

plot.treats make.traits make.modifiers make.events

Examples

Setting pure birth tree (no extinction) parameters
my_bd_params <- list(speciation = 1)
Setting a stopping rule: stop when reaching 10 taxa.
my_stop_rule <- list(max.taxa = 10)

Run a birth tree without traits

36 treats

a_tree <- treats(bd.params = my_bd_params,
stop.rule = my_stop_rule)

Plot the results
plot(a_tree)

Add an extinction parameter
my_bd_params$extinction <- 1/3

Add a simple trait simulation (default Brownian motion)
my_trait <- make.traits()

Run a birth-death tree with traits simulation
treats(bd.params = my_bd_params,

stop.rule = my_stop_rule,
traits = my_trait)

Simulating a tree using modifiers
Making a modifier to make speciation trait dependent
my_modifiers <- make.modifiers(branch.length = branch.length.trait,

selection = selection,
speciation = speciation.trait)

Simulating the tree
treats(stop.rule = list(max.taxa = 20),

traits = make.traits(),
modifiers = my_modifiers)

Run a birth death tree with an event
80% mass extinction at time 4
mass_extinction <- make.events(

target = "taxa",
condition = age.condition(4),
modification = random.extinction(0.8))

Set the simulation parameters
stop.rule <- list(max.time = 5)
bd.params <- list(extinction = 0, speciation = 1)

Run the simulations
set.seed(123)
results <- treats(bd.params = bd.params,

stop.rule = stop.rule,
events = mass_extinction)

Plot the results
plot(results, show.tip.label = FALSE)
axisPhylo()

Index

age.condition (events.conditions), 8

bd.ext, 3
bd.params.update

(events.modifications), 10
birthdeath, 3
BM.process, 13, 21
BM.process (trait.process), 30
boot.matrix, 4
branch.length (modifiers), 24

chrono.subsets, 4
crude.bd.est, 2
custom.subsets, 4

discrete.process, 13, 34
discrete.process (trait.process), 30
dispRitreats, 3
dispRity, 4
drop.fossils (drop.things), 5
drop.livings (drop.things), 5
drop.singles (drop.things), 5
drop.things, 5
drop.tip.phylo, 7
drop.tip.treats, 7

events.condition (events.conditions), 8
events.conditions, 8, 11, 16, 17
events.modification

(events.modifications), 10
events.modifications, 9, 10, 16, 17

founding.event (events.modifications),
10

keep.tip.treats (drop.tip.treats), 7

link.traits, 12

make.bd.params, 3, 10, 14, 16, 17, 34, 35
make.events, 8, 9, 11, 16, 35

make.modifiers, 11, 17, 18, 25, 26, 34, 35
make.traits, 11, 13, 17, 20, 23, 32, 34, 35
make.treats, 22
map.traits, 23
mean, 8
min, 8
modifiers, 20, 24
modifiers.update

(events.modifications), 10
multi.peak.process (trait.process), 30
mvrnorm, 31

no.process (trait.process), 30

OU.process, 13
OU.process (trait.process), 30

parent.traits, 26
plot.dispRity, 4
plot.treats, 6, 22, 27, 35
print.treats, 29

random.extinction
(events.modifications), 10

repulsion.process (trait.process), 30
rexp, 25
rnorm, 31
runif, 25, 33

sd, 8
selection (modifiers), 24
speciation (modifiers), 24
summary.dispRity, 4

taxa.condition (events.conditions), 8
trait.condition (events.conditions), 8
trait.extinction

(events.modifications), 10
trait.process, 13, 21, 30
traits.update (events.modifications), 10
transition.matrix, 33

37

38 INDEX

treats, 3, 4, 6, 7, 9, 11, 13, 15, 17, 19–22,
24–26, 28, 30–32, 34

	crude.bd.est
	dispRitreats
	drop.things
	drop.tip.treats
	events.conditions
	events.modifications
	link.traits
	make.bd.params
	make.events
	make.modifiers
	make.traits
	make.treats
	map.traits
	modifiers
	parent.traits
	plot.treats
	print.treats
	trait.process
	transition.matrix
	treats
	Index

