| Function | Works |
|---|---|
tidypredict_fit(), tidypredict_sql(),
parse_model() |
✔ |
tidypredict_to_column() |
✗ |
tidypredict_test() |
✔ |
tidypredict_interval(),
tidypredict_sql_interval() |
✗ |
parsnip |
✔ |
Here is a simple ranger() model using the
mtcars dataset:
The parser is based on the output from the
ranger::treeInfo() function. It will return as many
decision paths as there are non-NA rows in the prediction
field.
treeInfo(model) %>%
head()
#> nodeID leftChild rightChild splitvarID splitvarName splitval terminal
#> 1 0 1 2 8 gear 3.50 FALSE
#> 2 1 3 4 2 hp 192.50 FALSE
#> 3 2 5 6 4 wt 2.26 FALSE
#> 4 3 NA NA NA <NA> NA TRUE
#> 5 4 NA NA NA <NA> NA TRUE
#> 6 5 NA NA NA <NA> NA TRUE
#> prediction
#> 1 NA
#> 2 NA
#> 3 NA
#> 4 16.02000
#> 5 12.18333
#> 6 29.98750The output from parse_model() is transformed into a
dplyr, a.k.a Tidy Eval, formula. Each decision tree becomes
one dplyr::case_when() statement, which are then
combined.
tidypredict_fit(model)
#> case_when(hp < 192.5 & gear < 3.5 ~ 16.02, hp >= 192.5 & gear <
#> 3.5 ~ 12.1833333333333, wt < 2.26 & gear >= 3.5 ~ 29.9875,
#> .default = 20.0076923076923) + case_when(vs < 0.5 & wt <
#> 3.295 ~ 21.1833333333333, vs >= 0.5 & wt < 3.295 ~ 25.8714285714286,
#> qsec < 18.15 & wt >= 3.295 ~ 14.1588235294118, .default = 18.5) +
#> case_when(hp < 79.5 & disp < 163.8 ~ 28.125, hp >= 79.5 &
#> disp < 163.8 ~ 21.225, wt < 4.5475 & disp >= 163.8 ~
#> 17.15, .default = 10.4) + case_when(disp < 101.55 & cyl <
#> 5 ~ 31.65, disp >= 101.55 & cyl < 5 ~ 23.3, cyl < 7 & cyl >=
#> 5 ~ 20.2666666666667, .default = 15.3538461538462) + case_when(wt <
#> 1.885 & cyl < 5 ~ 31.5666666666667, wt >= 1.885 & cyl < 5 ~
#> 23.9714285714286, cyl < 7 & cyl >= 5 ~ 19.8, .default = 14.91875)From there, the Tidy Eval formula can be used anywhere where it can
be operated. tidypredict provides three paths:
dplyr,
mutate(iris, !! tidypredict_fit(model))tidypredict_to_column(model) to a piped command
settidypredict_to_sql(model) to retrieve the SQL
statementtidypredict also supports ranger model
objects fitted via the parsnip package.
library(parsnip)
parsnip_model <- rand_forest(mode = "regression", trees = 5) %>%
set_engine("ranger", max.depth = 2) %>%
fit(mpg ~ ., data = mtcars)
tidypredict_fit(parsnip_model)
#> case_when(disp < 197.95 & gear < 3.5 ~ 21.5, disp >= 197.95 &
#> gear < 3.5 ~ 15.42, drat < 4 & gear >= 3.5 ~ 23.4444444444444,
#> .default = 27.9833333333333) + case_when(wt < 2.2775 & hp <
#> 131.5 ~ 30.5, wt >= 2.2775 & hp < 131.5 ~ 21.1125, drat <
#> 3.035 & hp >= 131.5 ~ 10.4, .default = 16.8833333333333) +
#> case_when(hp < 78.5 & cyl < 5 ~ 31.15, hp >= 78.5 & cyl <
#> 5 ~ 26.1285714285714, disp < 266.9 & cyl >= 5 ~ 20.2,
#> .default = 15.2583333333333) + case_when(drat < 4.325 &
#> vs < 0.5 ~ 16.7, drat >= 4.325 & vs < 0.5 ~ 26, wt < 2.26 &
#> vs >= 0.5 ~ 32.2333333333333, .default = 20.6375) + case_when(vs <
#> 0.5 & disp < 120.65 ~ 26, vs >= 0.5 & disp < 120.65 ~ 31.2777777777778,
#> wt < 3.3125 & disp >= 120.65 ~ 21.4555555555556, .default = 16.4307692307692)