Fitting of non-parametric production frontiers for use in efficiency analysis. Methods are provided for both a smooth analogue of Data Envelopment Analysis (DEA) and a non-parametric analogue of Stochastic Frontier Analysis (SFA). Frontiers are constructed for multiple inputs and a single output using constrained kernel smoothing as in Racine et al. (2009), which allow for the imposition of monotonicity and concavity constraints on the estimated frontier.
Version: | 0.0.1 |
Depends: | R (≥ 3.5.0) |
Imports: | abind (≥ 1.4.5), ggplot2 (≥ 3.1.0), prodlim (≥ 2018.4.18), quadprog (≥ 1.5.5), Rdpack (≥ 0.10.1), rootSolve (≥ 1.7) |
Published: | 2018-12-01 |
DOI: | 10.32614/CRAN.package.snfa |
Author: | Taylor McKenzie [aut, cre] |
Maintainer: | Taylor McKenzie <tkmckenzie at gmail.com> |
License: | GPL-3 |
NeedsCompilation: | no |
CRAN checks: | snfa results |
Reference manual: | snfa.pdf |
Package source: | snfa_0.0.1.tar.gz |
Windows binaries: | r-devel: snfa_0.0.1.zip, r-release: snfa_0.0.1.zip, r-oldrel: snfa_0.0.1.zip |
macOS binaries: | r-devel (arm64): snfa_0.0.1.tgz, r-release (arm64): snfa_0.0.1.tgz, r-oldrel (arm64): snfa_0.0.1.tgz, r-devel (x86_64): snfa_0.0.1.tgz, r-release (x86_64): snfa_0.0.1.tgz, r-oldrel (x86_64): snfa_0.0.1.tgz |
Please use the canonical form https://CRAN.R-project.org/package=snfa to link to this page.