
Package ‘remify’
January 29, 2025

Type Package

Title Processing and Transforming Relational Event History Data

Version 3.2.8

Date 2025-01-28

Maintainer Giuseppe Arena <g.arena@uva.nl>

Description Efficiently processes relational event history data and transforms them into formats suit-
able for other packages. The primary objective of this package is to convert event his-
tory data into a format that integrates with the packages in 'remverse' and is compatible with vari-
ous analytical tools (e.g., computing network statistics, estimating tie-oriented or actor-
oriented social network models). Second, it can also transform the data into formats compati-
ble with other packages out of 'remverse'. The package processes the data for two types of tem-
poral social network models: tie-oriented modeling frame-
work (Butts, C., 2008, <doi:10.1111/j.1467-9531.2008.00203.x>) and actor-oriented model-
ing framework (Stadtfeld, C., & Block, P., 2017, <doi:10.15195/v4.a14>).

License MIT + file LICENSE

URL https://tilburgnetworkgroup.github.io/remify/

BugReports https://github.com/TilburgNetworkGroup/remify/issues

Depends R (>= 4.0.0)

Imports Rcpp (>= 1.0.8.3), igraph (>= 1.4.3)

Suggests knitr, rmarkdown, tinytest

LinkingTo Rcpp, RcppArmadillo,

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation yes

Author Giuseppe Arena [aut, cre] (<https://orcid.org/0000-0001-5204-3326>),
Rumana Lakdawala [ctb],
Marlyne Meijerink-Bosman [ctb],
Diana Karimova [ctb],

1

https://doi.org/10.1111/j.1467-9531.2008.00203.x
https://doi.org/10.15195/v4.a14
https://tilburgnetworkgroup.github.io/remify/
https://github.com/TilburgNetworkGroup/remify/issues
https://orcid.org/0000-0001-5204-3326

2 dim.remify

Fabio Generoso Vieira [ctb],
Mahdi Shafiee Kamalabad [ctb],
Roger Leenders [ctb],
Joris Mulder [ctb]

Repository CRAN

Date/Publication 2025-01-29 13:20:05 UTC

Contents
dim.remify . 2
getActorID . 3
getActorName . 4
getDyad . 5
getDyadID . 6
getRiskset . 7
getTypeID . 8
getTypeName . 9
plot.remify . 10
print.remify . 11
randomREH . 12
randomREHsmall . 13
rehshape . 14
remify . 16
summary.remify . 19

Index 21

dim.remify dim.remify

Description

A function that returns the dimension of the temporal network.

Usage

S3 method for class 'remify'
dim(x)

Arguments

x a remify object.

Value

vector of dimensions of the processed event sequence.

getActorID 3

Examples

processing the random network 'randomREHsmall'
library(remify)
data(randomREHsmall)
reh <- remify(edgelist = randomREHsmall$edgelist,

model = "tie")

dimensions of the processed 'remify' object
dim(reh)

getActorID getActorID

Description

A function that given a vector of actor names returns the corresponding vector of ID’s.

Usage

getActorID(x, actorName = NULL)

S3 method for class 'remify'
getActorID(x, actorName = NULL)

Arguments

x a remify object.

actorName a vector of actor names. The same names in the input edgelist.

Value

actor ID as integer value.

Methods (by class)

• getActorID(remify): return actor’s ID from actor’s name

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

4 getActorName

find actor ID from the actor name
getActorID(x = reh, actorName = c("Francesca","Kayla"))

getActorName getActorName

Description

A function that given a vector of actor ID’s returns the corresponding vector of actor (input) names.

Usage

getActorName(x, actorID = NULL)

S3 method for class 'remify'
getActorName(x, actorID = NULL)

Arguments

x a remify object.

actorID a vector of actor ID’s. The ID value can range between 1 and N (number of
actors in the network).

Value

character vector of actors’ names.

Methods (by class)

• getActorName(remify): return actor’s name from actor’s ID

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

find actor name from actor ID
getActorName(x = reh, actorID = c(1,2,8,12))

getDyad 5

getDyad getDyad

Description

A function that given a vector of one or more dyad ID’s returns the corresponding dyad composition
of "actor1", "actor2" and "type" (if event types are present). The ID’s to supply must range between
1 and D (largest risk set size).

Usage

getDyad(x, dyadID, active = FALSE)

S3 method for class 'remify'
getDyad(x, dyadID, active = FALSE)

Arguments

x a remify object.

dyadID a vector of one or more dyad ID’s, each one ranging from 1 to D (largest risk set
size).

active logical, whether to consider the input dyadID as a vector of ID’s of active dyads
(active = TRUE) or dyads from the full risk set (active = FALSE).

Value

a data.frame with "actor1", "actor2" and "type" names corresponding to the vector dyadID.

Methods (by class)

• getDyad(remify): return dyad composition in actor1, actor2 and type from one (or more)
dyad ID

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

find dyad composition (names of actor1, actor2 and type) from the dyad ID
getDyad(x = reh, dyadID = c(450,239,900))

6 getDyadID

getDyadID getDyadID

Description

A function that given a vector of names as to actor1, actor2 and type returns the corresponding dyad
ID. The names to supply are the original input names of the edgelist before the processing via the
function remify::remify().

Usage

getDyadID(x, actor1, actor2, type)

S3 method for class 'remify'
getDyadID(x, actor1, actor2, type)

Arguments

x a remify object.

actor1 [character] name of actor1.

actor2 [character] name of actor2.

type [character] name of type.

Value

dyad ID as integer value.

Methods (by class)

• getDyadID(remify): return dyad’s ID from dyad’s composition

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

find dyad ID from dyad composition (names of actor1, actor2 and type)
getDyadID(x = reh, actor1 = "Francesca", actor2 = "Kayla", type = "conflict")

getRiskset 7

getRiskset getRiskset

Description

This function returns the processed risk set changes specified by the input ‘omit_dyad‘. In such a
matrix: value 1 refers to the dyads in the risk set, and 0 otherwise (dyads excluded from the risk
set). All the possible risk set modifications are described by row, and the columns identify the dyads.
Note: This matrix is the output given by processing the input ‘omit_dyad‘, and the number of rows
might be equal to or higher than the number of objects in ‘omit_dyad‘. This might happen because
more than one modification of the risk set defined in the input could overlap over time with others.
For more details about how the risk set is processed, see vignette(package="remify",topic="riskset").

Usage

getRiskset(x)

S3 method for class 'remify'
getRiskset(x)

Arguments

x a remify object.

Value

list of objects describing the processed the risk set.

Methods (by class)

• getRiskset(remify): manual riskset object

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

structure of the processed risk set
str(getRiskset(reh))

8 getTypeID

getTypeID getTypeID

Description

A function that given a vector of type names returns the corresponding vector of ID’s.

Usage

getTypeID(x, typeName = NULL)

S3 method for class 'remify'
getTypeID(x, typeName = NULL)

Arguments

x a remify object.

typeName a vector of type names. The same names in the input edgelist.

Value

type ID as integer value.

Methods (by class)

• getTypeID(remify): return type’s ID from type’s name

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

find type ID from the type name
getTypeID(x = reh, typeName = c("conflict","cooperation"))

getTypeName 9

getTypeName getTypeName

Description

A function that given a vector of type ID’s returns the corresponding vector of type (input) names.

Usage

getTypeName(x, typeID = NULL)

S3 method for class 'remify'
getTypeName(x, typeID = NULL)

Arguments

x a remify object.

typeID a vector of type ID’s. The ID value can range between 1 and C (number of event
types in the network).

Value

character vector of types’ names.

Methods (by class)

• getTypeName(remify): return type’s name from type’s ID

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

find type name from type ID
getTypeName(x = reh, typeID = c(1,3))

10 plot.remify

plot.remify plot.remify

Description

several plots that describe the network of relational events, both for directed and undirected rela-
tional events.

Usage

S3 method for class 'remify'
plot(
x,
which = c(1:5),
breaks = 15L,
palette = "Purples",
n_intervals = 4L,
rev = TRUE,
actors = attr(x, "dictionary")$actors$actorName,
pch.degree = 20,
igraph.edge.color = "#4daa89",
igraph.vertex.color = "#5AAFC8",
...

)

Arguments

x is a remify object.

which one or more numbers between 1 and 5. Plots described in order: (1) distribution
of the inter-event times (histogram), (2) tile plot titled ’activity plot’, with in-
degree and out-degree activity line plots on the sides (or total-degree on the top
side if the network is undirected). Tiles’ color is scaled based on the count of the
directed (or undirected) dyad, (3) for directed networks two plots of normalized
out-degree and in-degree (values ranging in [0,1]) over a set of n_intervals
(evenly spaced). For undirected networks one plot of normalized total-degree
over the n_intervals (also here values ranging in [0,1]). The normalization is
calculated in each interval as the (degree-min(degree))/(max(degree)-min(degree)))
for each actor considering minimum and maximum degree (in-, out- or total-)
observed in the interval (opacity and size of the points is proportional to the
normalized measure), (4) four plots: (i) number of events (# events) per time
interval, (ii) proportion of observed dyads (# dyads / x$D) per time interval, (iii)
and (iv) (for directed network only) proportion of active senders and receivers
per time interval (calculated as # senders/ x$N and # receiver/x$N per interval),
(5) two networks: (i) network of events where edges are considered undirected
(edges’ opacity is proportional to the counts of the undirected events, vertices’
opacity is proportional to the total-degree of the actors), (ii) visualization of

print.remify 11

directed network (edges’ opacity is proportional to the counts of the directed
events, vertices’ opacity is proportional to the in-degree of the actors).

breaks default is 15L and it describes the number of cells of the histogram plot for the
inter-event times. It can be specified in the same way as the argument used by
the function graphics::hist() (see ?graphics::hist for more details).

palette a palette from grDevices::hcl.pals() (default is the "Purples" palette).

n_intervals number of time intervals for time plots (default is 10).

rev default is TRUE (reverse order of the color specified in palette)

actors default is the set of actors in the network (see attr(x,"dictionary")[["actors"]]).
The user can specify a subset of actors on which to run the descriptive plots. If
the set contains more than 50 actors, then the function will select the 50 most
active actors from the set provided.

pch.degree default is 20. Shape of the points for the degree plots (in-degree, out-degree,
total-degree).

igraph.edge.color

color of the edges in visualization of the network with vertices and nodes. The
user can specify the hex value of a color, the color name or use the func-
tiongrDevices::rgb() which returns the hex value.

igraph.vertex.color

color of the vertices in visualization of the network with vertices and nodes.
The user can specify the hex value of a color, the color name or use the function
grDevices::rgb() which returns the hex value.

... other graphical parameters

Details

Generic plot method

Value

no return value, called for plotting descriptives on the relational event history data.

print.remify print.remify

Description

print a summary of the event history.

Usage

S3 method for class 'remify'
print(x, ...)

12 randomREH

Arguments

x a remify object.
... further arguments.

Value

displays the same information provided by the summary method.

Examples

processing the random network 'randomREHsmall'
library(remify)
data(randomREHsmall)
reh <- remify(edgelist = randomREHsmall$edgelist,

model = "tie")

printing a summary of the processed 'remify' object
print(reh)

randomREH Random Relational Event History

Description

A randomly generated sequence of relational events with 20 actors and 9915 events. Each event
type is associated to one of the three following sentiments: conflict, competition and cooperation.

Usage

randomREH

Format

data(randomREH) will load a list containing following objects:

edgelist a data.frame that contains the random sequence of events. Columns of the edgelist are:
time the timestamp indicating the time at which each event occurred;
actor1 the name of the actor that generated the relational event;
actor2 the name of the actor that received the relational event;
type the type of the relational event.

actors names of actors interacting in the dynamic network.
types names of event types observed in the network and describing the sentiment of the interaction

(conflict, competition and cooperation).
origin starting time point (t_0) prior to the first observed event (t_1), the class of this object must

be the same as the one of the time column in the edgelist.
omit_dyad a list where each element describes an alteration of the riskset which takes place at

specific time points and for certain actors and/or types.

randomREHsmall 13

Examples

data(randomREH)

actors names
randomREH$actors

types names
randomREH$types

looking into the first modification of the riskset: omit_dyad[[1]]
the data.frame `dyad` specifies which dyads will be omitted from the riskset
(all the dyads that expressed a `conflict` between actor won't be part of the riskset):
randomREH$omit_dyad[[1]]$dyad

the vector `time` specifies the time points when this exclusion takes place
head(randomREH$omit_dyad[[1]]$time) # (printing out only the first 10 time points)

run the preprocessing function reh() by supplying the loaded objects.
edgelist_reh <- remify(edgelist = randomREH$edgelist,

actors = randomREH$actors,
types = randomREH$types,
directed = TRUE,
ordinal = FALSE,
origin = randomREH$origin,
omit_dyad = randomREH$omit_dyad,
model = "tie")

`edgelist_reh` is an object of class `reh`
class(edgelist_reh)

names of objects inside `edgelist_reh`
names(edgelist_reh)

randomREHsmall Random Relational Event History (small)

Description

A subset from the randomly generated sequence of relational events ‘randomREH‘, with 5 actors
and 586 events (without event types).

Usage

randomREHsmall

Format

data(randomREHsmall) will load a list containing following objects:

14 rehshape

edgelist a data.frame that contains the random sequence of events. Columns of the edgelist are:

time the timestamp indicating the time at which each event occurred;
actor1 the name of the actor that generated the relational event;
actor2 the name of the actor that received the relational event;

actors names of actors interacting in the dynamic network.

origin starting time point (t_0) prior to the first observed event (t_1), the class of this object must
be the same as the one of the time column in the edgelist.

omit_dyad a list where each element describes an alteration of the riskset which takes place at
specific time points and for certain actors and/or types.

Examples

data(randomREHsmall)

actors names
randomREHsmall$actors

types names
randomREHsmall$types

run the preprocessing function reh() by supplying the loaded objects.
small_edgelist_reh <- remify(edgelist = randomREHsmall$edgelist,

actors = randomREHsmall$actors,
directed = TRUE,
ordinal = FALSE,
origin = randomREHsmall$origin,
omit_dyad = randomREHsmall$omit_dyad,
model = "tie")

`small_edgelist_reh` is an object of class `reh`
class(small_edgelist_reh)

names of objects inside `small_edgelist_reh`
names(small_edgelist_reh)

rehshape Transform processed remify objects to different formats

Description

A function that transforms a remify object into one of the possible formats that suit external pack-
ages. The function can convert, at the moment, the data structure from an object of class remify to a
data structure required by the function relevent::rem() or by the function relevent::rem.dyad()
from the ’relevent’ package (Butts, C.T. 2023).

https://CRAN.R-project.org/package=relevent

rehshape 15

Usage

rehshape(
data,
output_format = c("relevent-rem", "relevent-rem.dyad"),
ncores = 1L,
optional_arguments = NULL

)

Arguments

data an object of class ’remify’ (see function remify::remify()).

output_format a character indicating the output format which the input data has to be converted
to. It can assume two values: "relevent-rem" , "relevent-rem.dyad". De-
fault value is "relevent-rem".

ncores number of cores used to parallelize internal algorithms
optional_arguments

vector of arguments names from relevent::rem or relevent::rem.dyad() that the
user might want to process and have in the output object of rehshape (e.g., the
pre-computed structures required by relevent::rem.dyad)

Value

an object of class specified in the output_format argument. The output class object ’relevent-rem’
contains a list of objects named after the arguments of the function relevent::rem(): ’eventlist’
(mandatory), ’supplist’ (optional), ’timing’(mandatory). The output class object ’relevent-rem.dyad’
contains a list of objects named after the arguments of the function relevent::rem.dyad(): ’edge-
list’ (mandatory), ’n’ (mandatory), ’ordinal’(optional).

Examples

processing the random network 'randomREH'
library(remify)
data(randomREH)
reh <- remify(edgelist = randomREH$edgelist,

model = "tie",
riskset = "manual",
omit_dyad = randomREH$omit_dyad)

convert 'remify' object to output_format = "relevent-rem"
relevent_rem_obj <- rehshape(data = reh, output_format = "relevent-rem")

str(relevent_rem_obj)

convert 'remify' object to output_format = "relevent-rem.dyad"
relevent_rem.dyad_obj <- rehshape(data = reh, output_format = "relevent-rem.dyad")

summary(relevent_rem.dyad_obj)

16 remify

remify Process a Relational Event History

Description

A function that processes raw relational event history data and returns a S3 object of class ’remify’
which is used as input in other functions inside ’remverse’.

Usage

remify(
edgelist,
directed = TRUE,
ordinal = FALSE,
model = c("tie", "actor"),
actors = NULL,
types = NULL,
riskset = c("full", "active", "manual"),
origin = NULL,
omit_dyad = NULL,
ncores = 1L

)

Arguments

edgelist the relational event history. An object of class data.frame with first three
columns corresponding to time, and actors forming the dyad. The first three
columns will be re-named "time", "actor1", "actor2" (where, for directed net-
works, "actor1" corresponds to the sender and "actor2" to the receiver of the re-
lational event). Optional columns that can be supplied are: ‘type‘ and ‘weight‘.
If one or both exist in edgelist, they have to be named accordingly.

directed logical value indicating whether events are directed (TRUE) or undirected (FALSE).
(default value is TRUE)

ordinal logical value indicating whether only the order of events matters in the model
(TRUE) or also the waiting time must be considered in the model (FALSE). (de-
fault value is FALSE)

model can be "tie" or "actor" oriented modeling. This argument plays a fundamen-
tal role when omit_dyad is supplied. Indeed, when actor-oriented modeling,
the dynamic risk set will consist of two risk sets objects (senders’ and dyads’
risk sets). In the tie-oriented model the function will return a dynamic risk set
referred at a dyad-level.

actors [optional] character vector of actors’ names that may be observed interacting
in the network. If NULL (default), actors’ names will be taken from the input
edgelist.

types [optional] character vector of event types that may occur in the network. If NULL
(default), types’ names will be taken from the input edgelist.

remify 17

riskset [optional] character value indicating the type of risk set to process: riskset
= "full" (default) consists of all the possible dyadic events given the number
of actors (and the number of event types) and it mantains the same structure
over time. riskset = "active" considers at risk only the observed dyads and
it mantains the same structure over time. riskset = "manual", allows the risk
set to have a structure that is user-defined, and it is based on the instructions
supplied via the argument omit_dyad. This type of risk set allows for time-
varying risk set, in which, for instance, subset of actors can interact only at
specific time windows, or events of a specific type (sentiment) can’t be observed
within time intervals that are defined by the user.

origin [optional] starting time point of the observaton period (default is NULL). If it is
supplied, it must have the same class of the ‘time‘ column in the input edgelist.

omit_dyad [optional] list of lists. Each list refers to one risk set modification and must have
two objects: a first object named ‘time‘, that is a vector of two values defining
the first and last time point of the time window where to apply the change to the
risk set and a second object, named ‘dyad‘, which is a data.frame where dyads
to be removed are supplied in the format actor1,actor2,type (by row). The
NA value can be used to remove multiple objects from the risk set at once with
one risk set modification list (see Details).

ncores [optional] number of cores used in the parallelization of the processing func-
tions. (default is 1).

Details

In omit_dyad, the NA value can be used to remove multiple objects from the risk set at once with
one risk set modification list. For example, to remove all events with sender equal to actor “A” add
a list with two objects time = c(NA, NA) and dyad = data.frame(actor1 = A, actor2 = NA, type
= NA) to the omit_dyad list. For more details about

Value

’remify’ S3 object, list of: number of events (‘M‘), number of actors (‘N‘), number of event types (if
present, ‘C‘), number of dyads (‘D‘, and also ‘activeD‘ if ‘riskset="active"‘), vector of inter-event
times (waiting times between two subsequent events), processed input edgelist as ‘data.frame‘, pro-
cessed ‘omit_dyad‘ object as ‘list‘. The function returns also several attributes that make efficient
the processing of the data for future analysis. For more details about the function, input arguments,
output, attributes and methods, please read vignette(package="remify",topic="remify").

Examples

load package and random network 'randomREH'
library(remify)
data(randomREH)

first events in the sequence
head(randomREH$edgelist)

actor's names
randomREH$actors

18 remify

event type's names
randomREH$types

start time of the study (origin)
randomREH$origin

list of changes of the risk set: each one is a list of:
'time' (indicating the time window where to apply the risk set reduction)
'dyad' (a data.frame describing the dyads to remove from the risk set
during the time window specified in 'time')
str(randomREH$omit_dyad)

processing for tie-oriented modeling

tie_randomREH <- remify(edgelist = randomREH$edgelist,
directed = TRUE,
ordinal = FALSE,
model = "tie",
actors = randomREH$actors,
types = randomREH$types,
riskset = "manual",
origin = randomREH$origin,
omit_dyad = randomREH$omit_dyad)

summary
summary(tie_randomREH)

dimensions of the processed network
dim(tie_randomREH)

Which ID is assigned to the actors with names "Francesca" and "Kayla"?
getActorID(x = tie_randomREH, actorName = c("Francesca","Kayla"))

Which ID is assigned to the event type "conflict"?
getTypeID(x = tie_randomREH, typeName = "conflict")

Find dyad composition (names of actor1, actor2 and type) from the dyad ID: c(1,380,760,1140)
getDyad(x = tie_randomREH, dyadID = c(1,380,760,1140))

visualize descriptive measures of relational event data
plot(x = tie_randomREH)

processing for actor-oriented modeling

loading network 'randomREHsmall'
data(randomREHsmall)

processing small random network

summary.remify 19

actor_randomREH <- remify(edgelist = randomREHsmall$edgelist,
directed = TRUE,
ordinal = FALSE,
model = "actor",
actors = randomREHsmall$actors,
origin = randomREHsmall$origin)

summary
summary(actor_randomREH)

dimensions of the processed network
dim(actor_randomREH)

for more information about remify()
check: vignette(package="remify")

summary.remify summary.remify

Description

A function that returns a easy-to-read summary of the main characteristics as to the processed
relational event sequence.

Usage

S3 method for class 'remify'
summary(object, ...)

Arguments

object a remify object.

... other arguments.

Value

prints out the main characteristics of the processed relational event sequence.

Examples

processing the random network 'randomREHsmall'
library(remify)
data(randomREHsmall)
reh <- remify(edgelist = randomREHsmall$edgelist,

model = "tie")

20 summary.remify

printing a summary of the processed 'remify' object
summary(reh)

Index

∗ datasets
randomREH, 12
randomREHsmall, 13

data.frame, 16, 17
dim.remify, 2

getActorID, 3
getActorName, 4
getDyad, 5
getDyadID, 6
getRiskset, 7
getTypeID, 8
getTypeName, 9

plot.remify, 10
print.remify, 11

randomREH, 12
randomREHsmall, 13
rehshape, 14
remify, 16

summary.remify, 19

21

	dim.remify
	getActorID
	getActorName
	getDyad
	getDyadID
	getRiskset
	getTypeID
	getTypeName
	plot.remify
	print.remify
	randomREH
	randomREHsmall
	rehshape
	remify
	summary.remify
	Index

