## ----include = FALSE---------------------------------------------------------- ggplot2::theme_set(bayesplot::theme_default(base_family = "sans")) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message = FALSE---------------------------------------------------------- library(priorsense) library(rstan) ## ----message = F, warning = F, eval = F--------------------------------------- # normal_model <- example_powerscale_model("univariate_normal") # # fit <- stan( # model_code = normal_model$model_code, # data = normal_model$data, # refresh = FALSE, # seed = 123 # ) # ## ----echo = F, warning = F, message = F--------------------------------------- normal_model <- example_powerscale_model("univariate_normal") fit <- normal_model$draws ## ----message = F, warning = F------------------------------------------------- powerscale_sensitivity(fit, variable = c("mu", "sigma")) ## ----message=FALSE, warning = FALSE, fig.width = 6, fig.height = 4------------ powerscale_plot_dens(fit, variable = "mu", facet_rows = "variable") ## ----message = F, warning = F, fig.width = 6, fig.height = 4------------------ powerscale_plot_ecdf(fit, variable = "mu", facet_rows = "variable") ## ----message = F, warning = F, fig.width = 12, fig.height = 4----------------- powerscale_plot_quantities(fit, variable = "mu") ## ----------------------------------------------------------------------------- mean(normal_model$data$y) sd(normal_model$data$y)