
Package ‘preventr’
January 27, 2025

Title An Implementation of the PREVENT and Pooled Cohort Equations

Version 0.11.0

Description Implements the American Heart Association Predicting
Risk of cardiovascular disease EVENTs (PREVENT) equations from Khan
SS, Matsushita K, Sang Y, and colleagues (2023)
<doi:10.1161/CIRCULATIONAHA.123.067626>, with optional comparison
with their de facto predecessor, the Pooled Cohort Equations from the

American Heart Association and American College of Cardiology (2013)
<doi:10.1161/01.cir.0000437741.48606.98> and the revision to the Pooled
Cohort Equations from Yadlowsky and colleagues (2018)
<doi:10.7326/M17-3011>.

License MIT + file LICENSE

URL https://martingmayer.com/preventr,

https://github.com/martingmayer/preventr,

https://martingmayer.shinyapps.io/prevent-equations/

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports dplyr

Suggests data.table, devtools, knitr, purrr, rmarkdown, testthat (>=
3.0.0), utils

Config/testthat/edition 3

Config/Needs/website rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Martin Mayer [aut, cre, cph] (<https://orcid.org/0000-0003-3210-2274>)

Maintainer Martin Mayer <mmayer@ebsco.com>

Repository CRAN

Date/Publication 2025-01-26 23:20:01 UTC

1

https://doi.org/10.1161/CIRCULATIONAHA.123.067626
https://doi.org/10.1161/01.cir.0000437741.48606.98
https://doi.org/10.7326/M17-3011
https://martingmayer.com/preventr
https://github.com/martingmayer/preventr
https://martingmayer.shinyapps.io/prevent-equations/
https://orcid.org/0000-0003-3210-2274

2 app

Contents

app . 2
estimate_risk . 3

Index 22

app Navigate to browser-based Shiny implementation of PREVENT equa-
tions

Description

This function opens a browser window (using the user’s default browser) and navigates to the Shiny
app located at:

https://martingmayer.shinyapps.io/prevent-equations

Easier-to-remember URLs:

• https://tiny.cc/prevent-equations

• https://tiny.cc/preventequations

The app includes risk visualization and several options for customizing the output.

Usage

app(...)

Arguments

... Not used. Reserved for future use.

Value

Returns NULL invisibly after opening app in your default browser.

Examples

app()

https://martingmayer.shinyapps.io/prevent-equations
https://martingmayer.shinyapps.io/prevent-equations
https://martingmayer.shinyapps.io/prevent-equations

estimate_risk 3

estimate_risk Estimate risk of cardiovascular events using the American Heart As-
sociation (AHA) Predicting Risk of cardiovascular disease EVENTs
(PREVENT) equations, with optional comparison to their de facto
predecessor, the Pooled Cohort Equations (PCEs) from the AHA and
American College of Cardiology (ACC)

Description

estimate_risk() and est_risk() are the same function, with the latter being a function synonym
for those who favor syntactical brevity.

Estimation via the PREVENT equations includes both 10- and 30-year risk of 5 events:

• Total cardiovascular disease (CVD), which includes atherosclerotic CVD (ASCVD) and heart
failure as defined below

• ASCVD, which includes coronary heart disease (CHD) and stroke as defined below

• Heart failure (often abbreviated HF, but not herein)

• CHD, which includes nonfatal myocardial infarction (MI) and fatal CHD

• Stroke

Estimation via the PCEs includes 10-year risk of ASCVD. The title of the function focuses on
the "official" version of the PCEs from the AHA/ACC, but this function permits estimation via the
revised PCEs released by Yadlowsky and colleagues in 2018. Further details are in the "Arguments"
section.

See also the README for this package, which goes into additional detail about the PREVENT
equations (site, GitHub).

Usage

estimate_risk(
age,
sex,
sbp,
bp_tx,
total_c,
hdl_c,
statin,
dm,
smoking,
egfr,
bmi,
hba1c = NULL,
uacr = NULL,
zip = NULL,
model = NULL,

https://martingmayer.com/preventr
https://github.com/martingmayer/preventr

4 estimate_risk

time = "both",
chol_unit = "mg/dL",
optional_strict = FALSE,
quiet = is.data.frame(use_dat),
collapse = is.data.frame(use_dat),
use_dat = NULL,
add_to_dat = is.data.frame(use_dat),
progress = is.data.frame(use_dat)

)

est_risk(
age,
sex,
sbp,
bp_tx,
total_c,
hdl_c,
statin,
dm,
smoking,
egfr,
bmi,
hba1c = NULL,
uacr = NULL,
zip = NULL,
model = NULL,
time = "both",
chol_unit = "mg/dL",
optional_strict = FALSE,
quiet = is.data.frame(use_dat),
collapse = is.data.frame(use_dat),
use_dat = NULL,
add_to_dat = is.data.frame(use_dat),
progress = is.data.frame(use_dat)

)

Arguments

age Numeric (required predictor variable): Age in years, from 30-79. Note the PCEs
have a lower age limit of 40, so for ages 30-39, the function will only provide es-
timates for the PREVENT equations, irrespective of whether a user also requests
estimation via the PCEs via the model argument (more precisely, the function
will still carry out the estimation from the PCEs, but will return NA).

sex Character (required predictor variable): Either "female" or "male" ("f" and
"m" are accepted abbreviations).

sbp Numeric (required predictor variable): Systolic blood pressure (SBP) in mmHg,
from 90-180; see the "Details" section for more information about the upper
bound of the range.

estimate_risk 5

bp_tx Logical or numeric equivalent (required predictor variable): Whether the person
is on blood pressure treatment, either TRUE or FALSE (1 or 0 are accepted as
alternative input).

total_c Numeric (required predictor variable): Total cholesterol in mg/dL or mmol/L
(see chol_unit argument), from 130-320 (for chol_unit = "mg/dL") or 3.36-
8.28 (for chol_unit = "mmol/L").

hdl_c Numeric (required predictor variable): High-density lipoprotein cholesterol (HDL-
C) in mg/dL or mmol/L (see chol_unit argument), from 20-100 (for chol_unit
= "mg/dL") or 0.52-2.59 (for chol_unit = "mmol/L").

statin Logical or numeric equivalent (required predictor variable): Whether the person
is taking a statin, either TRUE or FALSE (1 or 0 are accepted as alternative input).

dm Logical or numeric equivalent (required predictor variable): Whether the per-
son has diabetes mellitus (DM), either TRUE or FALSE (1 or 0 are accepted as
alternative input).

smoking Logical or numeric equivalent (required predictor variable): Whether the person
is currently smoking (which PREVENT defines as cigarette use within the last
30 days), either TRUE or FALSE (1 or 0 are accepted as alternative input).

egfr Numeric or call (required predictor variable): Estimated glomerular filtration
rate (eGFR) in mL/min/1.73m2, entered either as a numeric from 15-140 or as
a call to calc_egfr() or synonyms, as described in the "Details" section.

bmi Numeric or call (required predictor variable): Body mass index (BMI) in kg/m2,
entered either as a numeric from 18.5-39.9 or as a call to calc_bmi() or syn-
onyms, as described in the "Details" section.

hba1c Numeric (optional predictor variable): Glycated hemoglobin (HbA1c) in %,
from 4.5-15; see the "Details" section for more information about the lower
bound of the range.

uacr Numeric (optional predictor variable): Urine albumin-to-creatinine ratio (UACR)
in mg/g, from 0.1-25000.

zip Character (optional predictor variable): ZIP code of the person’s residence, used
to estimate the Social Deprivation Index (SDI); see the "Details" section for
more information.

model Character or list (optional behavior variable):

• If character, the PREVENT model to use, one of NULL (the default), "base"
(the base model), "hba1c" (the base model adding HbA1c), "uacr" (the
base model adding UACR), "sdi" (the base model adding SDI), or "full"
(the base model adding HbA1c, UACR, and SDI). If NULL, the model will
be determined by algorithm specified in the "Details" section, and this is
the intended argument for most users. The ability to specify mainly exists
for specific use cases (e.g., research purposes).

• If passing a list, the list must have the following elements unless otherwise
specified (any other elements in the list will be ignored):

– main_model (character): The PREVENT model to use, following the
same requirements specified for when model is character. This element
is required only if the user desires to specify which PREVENT model
to use. It can otherwise be omitted, in which case the function will

6 estimate_risk

set main_model to NULL (which has the same impact as when model is
NULL).

– other_models (character): The PCEs to use, one of "pce_orig" (for
the original PCEs released by the ACC/AHA in 2013), "pce_rev" (for
the revised PCEs released by Yadlowsky and colleagues in 2018, but
not officially endorsed by ACC/AHA), or "pce_both" (for both).

– race_eth (character): The race and ethnicity of the person, which
is required by the PCEs. One of "Black" (for non-Hispanic Black),
"White" (for non-Hispanic White), or "Other" ("B", "W", or "O" are
accepted as alternative input, as are lowercase versions of the full word
or its first-letter abbreviation). See the "Details" section for further dis-
cussion.

time Character or numeric (optional behavior variable): Whether to estimate risk
over 10 or 30 years, one of "both" (character; the default); 10 (numeric), "10"
(character), or "10yr" (character); or 30 (numeric), "30" (character), or "30yr"
(character). Two additional things to note:

• If a user requests estimation over a 30-year time horizon, but the user also
requests estimation via the PCEs, a 10-year time horizon will automatically
be added, as the PCEs only estimate 10-year risk (see the "Value" section
for more information).

• If estimating over 30 years when age > 59, a warning will accompany the
results regarding the reliability of the estimation (see the "Value" section
for more information).

chol_unit Character (optional behavior variable): The unit of measurement for total_c
and hdl_c, either "mg/dL" (the default) or "mmol/L" ("mg" and "mmol" are
accepted abbreviations).

optional_strict

Logical (optional behavior variable): Whether to enforce strictness on optional
predictor variables, either TRUE or FALSE (the default). The argument itself is
strict, so 1 or 0 are not accepted (in contrast with predictor variables expecting
logical input), and moreover, anything other than TRUE will be treated as FALSE.
If FALSE, the function will discard invalid optional predictor variables but still
allow the model to run. If TRUE, optional predictor variables entered (if any)
must be valid for the function to return risk estimates. See the "Value" section
for more information.

quiet Logical (optional behavior variable): Whether to suppress messages and warn-
ings in the console, either TRUE or FALSE; this argument is strict, so 1 or 0 are
not accepted (in contrast with predictor variables expecting logical input), and
moreover, anything other than TRUE will be treated as FALSE. The default is
FALSE when use_dat is not a data frame and TRUE when use_dat is a data
frame. Having quiet = FALSE when use_dat is a data frame could result in a
fairly noisy console, and the information contained in console-printed messages
and warnings regarding model selection and input problems will already be in
the return data frame via columns model and input_problems. However, if
use_dat receives something other than a data frame or a data frame with zero
rows, it will always warn the user, independent of the quiet argument.

https://pubmed.ncbi.nlm.nih.gov/24222018
https://pubmed.ncbi.nlm.nih.gov/29868850

estimate_risk 7

collapse Logical (optional behavior variable): Whether to collapse the output into a sin-
gle data frame if applicable, either TRUE or FALSE; this argument is strict, so 1 or
0 are not accepted (in contrast with predictor variables expecting logical input),
and moreover, anything other than TRUE will be treated as FALSE. The default is
FALSE when use_dat is not a data frame (this ensures backward compatibility)
and TRUE when use_dat is a data frame. More precisely, however, although
I have specified the default as is.data.frame(use_dat) for clarity in behav-
ior, this argument is actually just ignored when a user passes a data frame to
use_dat. See the description of the use_dat argument and the "Value" section
for more information.

use_dat data frame via base R’s data.frame or data frame extension via tibble or data.table
(optional behavior variable): Whether to use a data frame provided by the user,
either NULL (the default) or a data frame. More precisely, anything other than
passing a data frame to use_dat has no impact. Passing a data frame to use_dat
modifies the behavior of the function in the following manner:

• The function expects each row in the data frame to represent a candidate
for risk estimation.

• Predictor variables must be present in the data frame passed to use_dat.
Optional predictor variables remain optional, though (for example, there
is no requirement for HbA1c data to be in the data frame per se, but if the
user wishes to use HbA1c data as part of predicting risk with the PREVENT
equations, those data must be represented in a column in the data frame).
Any given argument for a predictor variable may be omitted, in which case
the function expects the data frame to have a column with the name of the
omitted argument. For example, if age is omitted from the function call, the
function expects a column named age in the data frame passed to use_dat;
it (of course) furthermore expects column age to contain data adhering to
specifications set forth for the age argument (for example, an age of 20 is
still considered unacceptable). Alternatively, the user may pass a column
name for any predictor variable. Continuing with the previous example, if
the column containing age data were instead named years_old, the user
could pass either age = years_old or age = "years_old" to the function
call, and values for age would be extracted from the years_old column.

• Optional behavior variables may either be in the data frame passed to use_dat
in a column with the same name as the argument or passed to the function
call as usual. If an optional behavior variable is omitted from the call when
a user passes a data frame to use_dat, the function will first look for a col-
umn with the name of the optional behavior variable in the data frame; if it
does not find such a column, it will use the default behavior for the optional
behavior variable. If the user includes an argument for an optional behavior
variable in the call, the function will always use this, irrespective of any
column in the data frame that might share the same name. Additionally,
the following arguments are not passable via the data frame: collapse
(ignored when use_dat is a data frame), use_dat (this would be self-
referential), add_to_dat (again, essentially self-referential), and progress
(this applies to the entire call when use_dat is a data frame). As an ex-
ample, suppose a user wishes to specify the model(s) to use. The user may
either include a column in the data frame named model and omit the model

8 estimate_risk

argument from the call or pass the desired behavior to the model argument.
If a column named model exists in the data frame passed to use_dat and
the user passes something to the model argument, the function will use the
argument. Including an optional behavior variable in the data frame acti-
vates row-by-row behavior alteration of the function. If the user wants to
alter the default behavior of the function, but wishes to do so in the same
manner across all rows, it may be easier to forego having optional behavior
variables in the data frame and instead pass the optional behavior variables
via function arguments (though this is not strictly required; one can achieve
the same behavior by having the same value repeated across all rows of the
column for the optional behavior variable).

• The collapse argument is ignored (results will always be returned as a
data frame when use_dat is a data frame).

See vignette("using-data-frame") for further discussion and examples.

add_to_dat Logical (optional behavior variable): Whether to add the output to the data frame
passed to use_dat, either TRUE (the default) or FALSE. This argument is only
considered when use_dat is a data frame. This argument is strict, so 1 or 0 are
not accepted (in contrast with predictor variables expecting logical input), and
moreover, anything other than TRUE will be treated as FALSE. See the "Value"
section for more information.
See vignette("using-data-frame") for further discussion and examples.

progress Logical (optional behavior variable): Whether to display a progress bar dur-
ing computation, either TRUE or FALSE. This argument is only considered when
use_dat is a data frame, when it defaults to TRUE. This argument is strict, so
1 or 0 are not accepted (in contrast with predictor variables expecting logical
input), and moreover, anything other than TRUE will be treated as FALSE. This
argument is independent of the quiet argument. It requires the utils package,
which is part of the R distribution (i.e., outside of atypical scenarios, you should
not need to install the utils package yourself).

Details

Why is the upper limit of the SBP range 180 mmHg?:
Some may notice the upper limit is set to 180 mmHg here, whereas the PREVENT equations
technically permit up to 200 mmHg. The Pooled Cohort Equations (PCEs) do this as well. I have
restricted to 180 mmHg, as SBP beyond 180 mmHg constitutes hypertensive urgency (per AHA’s
own definitions), and irrespective of the debate surrounding labels like hypertensive urgency and
emergency, it would seem clinically unreasonable to engage with the PREVENT equations when
someone has more pressing matters to address (better blood pressure control per se).

Why is the lower limit of the HbA1c 4.5%?:
Some may notice the lower limit is set to 4.5% here, whereas the PREVENT equations technically
permit down to 3%. I have restricted to 4.5%, as HbA1c of 3% is neither realistic nor safe for
a person. For example, using the HbA1c to estimated average glucose (eAG) converter from the
American Diabetes Association (https://professional.diabetes.org/glucose_calc), a HbA1c of 3%
corresponds to an eAG of 39 mg/dL (2.2 mmol/L).

Entering eGFR and BMI as a call rather than a numeric value:

https://pubmed.ncbi.nlm.nih.gov/29133354
https://pubmed.ncbi.nlm.nih.gov/29133354
https://professional.diabetes.org/glucose_calc
https://professional.diabetes.org/glucose_calc

estimate_risk 9

The eGFR and bmi arguments can be entered as numeric values or as calls to calc_egfr() and
calc_bmi(), respectively. They both have synonyms as well:

• Synonyms for calc_egfr() are calculate_egfr(), calc_ckd_epi(), and calculate_ckd_epi(),
with the latter two synonyms reflecting the calculation is from the CKD-EPI equations (the
reparameterized version without race, which is also what the PREVENT equations use).

• The synonym for calc_bmi() is calculate_bmi().

These convenience functions add value where a person might have the necessary components to
calculate the respective parameter but do not have handy the parameter itself.
The syntax for these convenience functions is as follows:

• calc_egfr(cr, units = "mg/dL", age, sex, quiet = FALSE)

– cr is the creatinine in whatever units are specified by units.
– units is the unit of measurement for cr, either "mg/dL" or "umol/L", with "mg" and

"umol" being accepted abbreviations.
– age is the age of the person, but there is no need to enter this, as the function will extract

this from the age argument of estimate_risk(); in fact, any argument entered here will
be ignored in favor of the age argument of estimate_risk().

– sex is the sex of the person, but there is no need to enter this, as the function will extract
this from the sex argument of estimate_risk(); in fact, any argument entered here will
be ignored in favor of the sex argument of estimate_risk().

– quiet is a logical indicating whether to suppress the warning about use outside of
estimate_risk().

– An example call would be calc_egfr(1.2) (because units defaults to "mg/dL") or
calc_egfr(88, "umol").

• calc_bmi(weight, height, units = "nonmetric", quiet = FALSE)

– weight is the weight in pounds if units = "nonmetric" or kilograms if units = "metric".
– height is the height in inches if units = "nonmetric" or centimeters if units = "metric".
– units is the unit of measurement for weight and height, either "nonmetric" or "metric".
– quiet is a logical indicating whether to suppress the warning about use outside of
estimate_risk().

– An example call would be calc_bmi(150, 70) (because units defaults to "nonmetric")
or calc_bmi(68, 178, "metric").

What is the Social Deprivation Index (SDI)?:
Read more from the Robert Graham Center’s page on the SDI (https://www.graham-center.org/maps-
data-tools/social-deprivation-index.html)

Model selection when model = NULL:
If model = NULL, the model will be determined by the following algorithm:

• If no optional predictor variables (HbA1c, UACR, zip code) are entered, or only invalid
optional variables are entered and optional_strict = FALSE: The base model

• If one of the optional predictor variables is entered, or two or more optional predictor vari-
ables are entered but only one is valid and optional_strict = FALSE: The base model
adding that variable (e.g., if HbA1c is entered and no other optional predictor variables are
entered, the base model adding HbA1c; if HbA1c and UACR are entered, but HbA1c is
invalid and optional_strict = FALSE, the base model adding UACR)

https://www.graham-center.org/maps-data-tools/social-deprivation-index.html

10 estimate_risk

• If two or more of the optional predictor variables are entered, or all three optional variables
are entered but one is invalid and optional_strict = FALSE: The full model (the PREVENT
equations include a term for optional predictor variables being missing, so if one of the op-
tional predictor variables is missing in this scenario, it is treated as such within the full model)

What if SDI is not available for a zip code?:
Some zip codes do not have SDI data available, and the PREVENT equations include a term for
SDI being missing. As such, if a user enters a valid zip code but no SDI data are available, the
user will be notified (unless quiet = TRUE), and the tool will then implement the missing term as
part of predicting risk whenever the full model is used, but SDI will otherwise be removed from
prediction. Specifically, the following models will predict risk in the situation where the user
enters a valid zip code, but no SDI data are available:

• If the user does not enter a valid HbA1c or UACR: The base model.
• If the user enters valid HbA1c and UACR: The full model (treating SDI as missing).
• If the user enters a valid HbA1c: The base model adding HbA1c.
• If the user enters a valid UACR: The base model adding UACR.

Race and/or ethnicity in predictive models:
The use of race and/or ethnicity in predictive (also called prognostic) models is, in a word, prob-
lematic. It is problematic for a few reasons, and fortunately, this has received much-needed atten-
tion in recent years. The PCEs require this input as specified in the "Arguments" section of the
documentation. If you would like to read a bit more about this issue, see here.

Why is the risk estimation higher with the PCEs?:
The PCEs are known to overestimate risk. Indeed, this was a key motivation for Yadlowsky and
colleagues to develop the revised PCEs, and was also a key motivation for development of the
PREVENT equations.

Why don’t you export the PCEs or the convenience functions for BMI and eGFR?:
These are not exported for two main reasons:

• With specific regard to the PCEs, they are not the focal point of this package, but they are of
potential comparative interest.

• With regard to all these functions, I (of course) tested them for accuracy and intended be-
havior, but they are implemented primarily for internal package use or as part of estimating
risk with estimate_risk() or est_risk(). For example, although they implement at least
basic checks of input, some of the input checking and handling is delegated to other pro-
cesses that are invoked when using these functions in the aforementioned ways. To give more
concrete examples, if invoking these functions outside the context of estimate_risk() or
est_risk(), although implementation of the PCEs checks input validity, it just returns NA
with no messaging if it finds a problem. The functions for BMI and eGFR also implement
checks for input validity (such as numeric inputs needing to be a number greater than 0), but
they do not reject extreme numeric values (aside from the age input for eGFR, which imple-
ments some further restriction on age). Again, however, the calculations have certainly been
tested for accuracy, so for users who are confident (1) they understand the cautions described
here and (2) in the fidelity of their input for the functions, they can use them judiciously
outside of estimate_risk() or est_risk() (via preventr:::<function>).

https://www.martingmayer.com/preventr/articles/race-ethnicity-in-predictive-models.html
https://pubmed.ncbi.nlm.nih.gov/29868850
https://pubmed.ncbi.nlm.nih.gov/29868850
https://pubmed.ncbi.nlm.nih.gov/37947085

estimate_risk 11

Value

Basic information about the return:
estimate_risk() will always return either (1) a list of length 2, with each list element having a
single data frame or (2) a single data frame. All references herein to a data frame being returned
are for a data frame as a tibble (see the tibble package for more detail) unless use_dat receives
a data frame, in which case the return data frame will be of the same type passed to use_dat to
ensure type-stability.
Whether the return is a list of data frames or a single data frame is determined by:

• whether the risk estimation is occurring over a single time horizon
• the value of the collapse argument
• whether the user has passed a data frame to the use_dat argument.

When all of the following conditions are met, the function will return a list of length 2, with each
item in the list being a single data frame containing the 10-year and 30-year estimates, in that
order:

• the user did not pass a data frame to use_dat

• collapse = FALSE

• either (1) time = "both" or (2) time = "30yr" and the user requests estimation with the
PCEs via the model argument (thus adding a 10-year time horizon, as the PCEs only estimate
risk at 10 years).

In all other scenarios, the function will return a single data frame. Note this includes scenarios
where collapse will have no impact, namely when:

• the user passes a data frame to use_dat (passing a data frame to use_dat will always result
in a data frame being returned to the user)

• the estimation occurs over one time horizon, namely if (1) time = "30yr" and the user does
not request estimation with the PCEs or (2) time = "10yr".

The data frame will have the following columns:

• total_cvd: The estimated risk of a total CVD event (column type: double)
• ascvd: The estimated risk of an ASCVD event (column type: double)
• heart_failure: The estimated risk of a HF event (column type: double)
• chd: The estimated risk of a CHD event (column type: double)
• stroke: The estimated risk of a stroke event (column type: double)
• model: The PREVENT or PCE model used (column type: character)
• over_years: The time horizon for the risk estimate (column type: integer)
• input_problems: Semicolon-separated vector of length one delineating any input problems

(column type: character)

In addition, when use_dat is a data frame, the return data frame will also have the following
composition:

• A column named preventr_id (column type: integer) that acts as a unique identifier for
each row in the data frame passed to use_dat. This column will always be the first column
in the returned data frame. The values of preventr_id are simply the row numbers of the
data frame passed to use_dat. So, for example, if a row has preventr_id equal to 5, this
means it is based on the input present in row 5 of the data frame passed to use_dat.

https://cran.r-project.org/package=tibble

12 estimate_risk

• If add_to_dat = TRUE, the returned data frame will include the columns in use_dat. So,
the composition of the return data frame will be: preventr_id column + columns from
use_dat + risk estimation columns. In addition, for a given row in the use_dat data frame
with preventr_id x (hereafter, "row x"), if n represents the number of models requested
for row x, then row x will be replicated n times in the output to accommodate reporting the
different model outputs for that row. Note also n is determined by what the function receives
for both the model and time arguments (because, for example, if model = "base" and time
= "both", this is a request for 2 models). For those familiar with joins, the expansion de-
scribed here is simply the result of a left join of the data frame passed to use_dat with the
data frame returned by estimate_risk() (using preventr_id as the key). For those not
familiar with joins, if the above does not seem clear, the vignette about using data frames
(vignette("using-data-frame")) should help.

• If add_to_dat = FALSE, the returned data frame will not include the columns in use_dat,
so the composition of the return data frame will be: preventr_id column + risk estimation
columns. The replication behavior described for when add_to_dat = TRUE will still occur.
For this reason, the preventr_id column is perhaps especially important when add_to_dat
= FALSE, as it provides a mechanism to associate the results with the original data frame.

• If the user passes a data frame with a column named model (see the argument specifications
for use_dat for further detail), the function will rename this column to model_input in the
return data frame to prevent name conflicts, because the return data frame will also have the
column model based on the risk estimation output.

When valid input parameters exist for all required predictor variables:
The risk estimate columns are all of type double, and they are presented as a proportion rounded to
3 decimal places. Halves are rounded up to align with what many people likely expect, but this is
in contrast to base R’s default rounding behavior (it is a perfectly reasonable default, but perhaps
somewhat unexpected for people who are not familiar with different standards/conventions for
rounding; see round() for further detail).
The model column will be of type character, taking one of the following values: "base", "hba1c",
"uacr", "sdi", or "full". If opting in for comparison to the PCEs, model for those estimates
will be one of "pce_orig" or "pce_rev".
The over_years column will be of type integer, either 10 or 30.
If optional_strict = TRUE, the above will only hold if the optional predictor variables that are
entered (if any) are valid; if any optional predictor variables are entered but are invalid, the func-
tion will behave in the same manner as when invalid input parameters exist for one or more
required variables.

When invalid input parameters exist for one or more required predictor variable(s):
The function will issue a warning about the problematic variables, unless quiet = FALSE. A data
frame will be returned with the following characteristics:

• All risk estimates will be set to NA_real_

• The model column will state "none"
• The over_years column will be set to NA_integer_

• The input_problems column will contain a character vector of length 1 delineating the
problematic variable(s); if multiple problematic variables exist, they will be separated by
semicolons

When invalid input parameters exist for one or more optional predictor variable(s):

estimate_risk 13

When optional_strict = TRUE:
The function will behave similarly to when invalid input parameters exist for one or more re-
quired variables, with the input_problems column delineating the problematic variables

When optional_strict = FALSE:
The function will issue a warning about the problematic variables, unless quiet = FALSE. The
problematic optional variables will then be functionally discarded and the PREVENT equations
still run, in accordance with the specifications detailed in the "Details" section regarding model
selection. A data frame will be returned with the following characteristics:

• All estimates will be returned as specified in the valid input parameters section, as will the
model and over_years columns

• The input_problems column will contain a character vector of length 1 delineating the
problematic variables (because optional predictor variables are allowed to be empty, any
input that is functionally empty or missing (such as NULL, numeric(0), NA, etc.) will not be
considered problematic and thus not populate in the input_problems column)

When estimating 30-year risk and age > 59:
The function advises 30-year risk prediction for people > 59 years is questionable via two warn-
ings:

• in the console (that can be suppressed by setting quiet = TRUE)
• in the column input_problems of the return tibble (quiet has no impact here)

The special case of the zip argument:
The above rule for optional predictor variables applies to the zip argument as well, but with the
additional reminder that there are valid zip codes that do not have an SDI score. This is importantly
different from an invalid input for zip. See the "Details" section for more information about how
this is handled, but users should not expect anything to populate in the input_problems column
if the zip is valid, regardless of whether that zip has an SDI score. As will be clear from the
"Details" section, users will be able to determine when a zip code does not have an SDI score
based on the model that was used.

What about the PCEs?:
Within the broader context of the function itself, the PCEs are treated as optional. Thus, as long
as there is valid input for the PREVENT equations, the function will run, returning risk estimates
from the PREVENT equations. Note, however, that valid input for the PREVENT equations
requires valid input for the model argument. Thus, if the model argument is invalid or malformed
(i.e., not adherent to the specifications delineated for that argument), the function will behave
as described for the circumstance when invalid input exists for one or more required predictor
variables.
If a list containing elements other_models and race_eth is passed to argument model, then
within the sub-context of running additional models for comparison, the elements other_models
and race_eth are required. Thus, if either other_models or race_eth is invalid, the returned
row(s) within the data frame will function comparably to what is described for the circumstance
when invalid input exists for one or more required predictor variables for the PREVENT equa-
tions. For example, suppose someone enters valid input for the PREVENT equations and passes
the following argument to model: list(other_models = "pce_both", race_eth = NA). The
function would then run, returning risk estimates for the PREVENT equations, but the user would
be notified of the invalid input for argument race_eth within the argument model in the console

14 estimate_risk

(unless quiet = TRUE); furthermore, the return data frame for the 10-year time horizon would
contain two rows dedicated to the PCEs (given other_models = "pce_both", a valid argument),
but each row would behave in the manner described for the PREVENT equations when one or
more required predictor variable is invalid. That is, each row dedicated to the PCEs would consist
of NAs (of the appropriate type) for each column, aside from the column model, which would say
"none", and the column input_problems, which would specify there was erroneous input for
the argument race_eth. Likewise, if other_models were instead "pce_orig", "pce_rev", or an
invalid input, there would only be one row dedicated to the PCEs, because in the first two cases,
the user entered a valid argument specifying interest in only one of the two options for the PCEs,
and in the third case, the user entered invalid input for the options for the PCEs (thus becoming
functionally similar to a situation if someone gave invalid input for the model argument).
Lastly, note the risk estimation columns total_cvd, heart_failure, chd, and stroke will al-
ways be NA_real_, because the PCEs only estimate the risk of ASCVD.

Combining output into a single data frame:
Depending on the arguments to the function, the output may be a list of data frames, one for each
time horizon, (see the subsection "Basic information about the return" within the "Value" section).
The argument collapse supports collapsing these into a single data frame, but it is also easy to
do outside of this package, e.g.:

res_dplyr <- dplyr::bind_rows(res) # Combine in dplyr
res_dt <- data.table::rbindlist(res) # Combine in data.table
res_base_r <- do.call(rbind, res) # Combine in base R

These all yield the same tabular output, but the attributes vary
(e.g., the classes will obviously differ)

all.equal(res_dplyr, res_dt, check.attributes = FALSE) # TRUE
all.equal(res_base_r, res_dplyr, check.attributes = FALSE) # TRUE

Type-stability of return when passing a data frame to use_dat:
Importantly, the function maintains type-stability of the data frame it receives via the use_dat
argument, meaning passing a data.frame will yield a data.frame, passing a tibble will yield a
tibble, and passing a data.table will yield a data.table. See vignette("using-data-frame") for
more information.

Examples

Example with all required predictor variables (example from Table S25
in the supplemental PDF appendix of the PREVENT equations article)
#
Optional predictor variables are all omitted (and thus take their default).
`model` is also omitted (and thus takes its default, with the function
selecting # the model based on the algorithm specified in the "Details"
section).
`time` is also omitted (and thus takes its default, with the function
returning estimates for both 10- and 30-year risk as specified in the
"Value" section).
#

estimate_risk 15

Expect the base model to run given absence of optional predictor variables
res <- estimate_risk(

age = 50,
sex = "female", # or "f"
sbp = 160,
bp_tx = TRUE, # or 1
total_c = 200, # default unit is "mg/dL"
hdl_c = 45, # default unit is "mg/dL"
statin = FALSE, # or 0
dm = TRUE, # or 1
smoking = FALSE, # or 0
egfr = 90,
bmi = 35

)

Based on Table S25, expect the 10-year risk for `total_cvd` to be 0.147,
and based on the supplemental Excel file, also expect:
10-year risks: `ascvd`, 0.092; `heart_failure`, 0.081;
`chd`, 0.044; `stroke`, 0.054
30-year risks: `total_cvd`, 0.53; `ascvd`, 0.354; `heart_failure`, 0.39;
`chd`, 0.198; `stroke`, 0.221
res

Example with HbA1c
(also changing required predictor variables & limiting to 10-year results)
estimate_risk(
age = 66,
sex = "male", # or "m"
sbp = 148,
bp_tx = FALSE,
total_c = 188,
hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,
bmi = 30,
hba1c = 7.5,
time = "10yr" # only 10-year results will show

)

Example with UACR (limited to 30-year results)
estimate_risk(

age = 66,
sex = "female",
sbp = 148,
bp_tx = FALSE,
total_c = 188,
hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,

16 estimate_risk

bmi = 30,
uacr = 750,
time = "30yr" # only 30-year results will show

)

The remaining examples will all be limited to 10-year results unless
otherwise specified

Example with SDI with valid zip code with SDI data available
estimate_risk(

age = 66,
sex = "female",
sbp = 148,
bp_tx = FALSE,
total_c = 188,
hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,
bmi = 30,
zip = "59043", # Lame Deer, MT (selected randomly)
time = 10 # Note numeric 10 (not "10yr"),

just to show the option of entering this way
)

Example with SDI with valid zip code without SDI data available
(base model will be used)
estimate_risk(

age = 66,
sex = "male",
sbp = 148,
bp_tx = FALSE,
total_c = 188,
hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,
bmi = 30,
zip = "00738", # Fajardo, PR
time = 10

)

Example with full model (even though zip does not have available SDI, full
model used given availability of HbA1c and UACR; because zip is valid,
column `input_problems` will be NA)
estimate_risk(

age = 66,
sex = "female",
sbp = 148,
bp_tx = FALSE,
total_c = 188,

estimate_risk 17

hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,
bmi = 30,
hba1c = 9,
uacr = 75,
zip = "00738",
time = "10yr"

)

Example with full model (zip has SDI data available, UACR is valid, but
HbA1c is not; column `input_problems` will specify problem with `hba1c`,
but full model will still run given availability of the other two optional
predictor variables)
estimate_risk(

age = 66,
sex = "male",
sbp = 148,
bp_tx = FALSE,
total_c = 188,
hdl_c = 52,
statin = TRUE,
dm = TRUE,
smoking = TRUE,
egfr = 67,
bmi = 30,
hba1c = 20,
uacr = 75,
zip = "59043",
time = "10yr"

)

Example of using the convenience functions `calc_bmi()` and `calc_egfr()`
res_convenience_fxs <- estimate_risk(

age = 50,
sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = calc_egfr(1), # units unspecified, so treated as 1 mg/dL; eGFR = 69
bmi = calc_bmi(70, 150, "metric"), # weight in kg, height in cm; BMI = 31.1
time = "10yr",
quiet = TRUE

)

res_direct_entry <- estimate_risk(
age = 50,

18 estimate_risk

sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 69,
bmi = 31.1,
time = "10yr",
quiet = TRUE

)

identical(res_convenience_fxs, res_direct_entry)

Example of using `model` argument to compare results from PREVENT equations
to both versions of the PCEs
estimate_risk(

age = 50,
sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
hba1c = 8,
uacr = 30,
time = "10yr",
model = list(other_models = "pce_both", race_eth = "Black")
Note omission of element `main_model` within the list is okay, and the
element will then be treated as NULL (and thus model selection here
will be "full" given availability of valid HbA1c and UACR)

)

Essentially a repeat of example immediately above, but now will specify
`main_model` as "hba1c" and limit `other_models` to the revised PCEs
estimate_risk(

age = 50,
sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,

estimate_risk 19

hba1c = 8,
uacr = 30,
time = "10yr",
model = list(main_model = "hba1c", other_models = "pce_rev", race_eth = "Black")

)

Because the PCEs only give 10-year estimates, if a user specifies an
interest in a 30-year time horizon but also expresses interest in
comparison with the the PCEs, a 10-year time horizon must be added for the
PCEs, but this will not automatically result in estimation of 10-year risk
for the PREVENT equations.
estimate_risk(

age = 50,
sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = "30yr",
model = list(other_models = "pce_both", race_eth = "Black")

)

Repeat of above, but setting `collapse = TRUE`
res_collapsed <- estimate_risk(

age = 50,
sex = "female",
sbp = 130,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = "30yr",
model = list(other_models = "pce_both", race_eth = "Black"),
collapse = TRUE

)

res_collapsed

Can also accomplish this after the fact, as documented in "Combining output
into a single data frame" within the "Value" section
res_uncollapsed <- estimate_risk(

age = 50,
sex = "female",
sbp = 130,

20 estimate_risk

bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = "30yr",
model = list(other_models = "pce_both", race_eth = "Black")

)

all.equal(
do.call(rbind, res_uncollapsed),
res_collapsed,
check.attributes = FALSE

)
Can also accomplish with `dplyr` and `data.table`, as detailed in the
"Combining output into a single data frame" subsection of the "Value"
section

Passing a data frame to argument `use_dat`
if(interactive()) {

vignette("using-data-frame")
}

Expect table of NAs due to invalid input for `age` and `sbp`, and column
`input_problems` to contain explanations about problems with `age` and `sbp`
res <- estimate_risk(

age = 8675309,
sex = "female",
sbp = 112358,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = "10yr"

)

res

Quiet version of the above example
res <- estimate_risk(

age = 8675309,
sex = "female",
sbp = 112358,
bp_tx = TRUE,
total_c = 200,

estimate_risk 21

hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = "10yr",
quiet = TRUE # Suppresses messages, but not column `input_problems`

)

res

If only invalid input is for PCEs, PREVENT equations will still run
for(time in c("10yr", "30yr", "both")) {

cat(paste0("\n", "----- `time = \"", time, "\"` -----", "\n"))
print(

estimate_risk(
age = 38, # This age is okay for the PREVENT
sex = "female", # equations, but not for the PCEs
sbp = 144,
bp_tx = TRUE,
total_c = 200,
hdl_c = 45,
statin = FALSE,
dm = TRUE,
smoking = FALSE,
egfr = 90,
bmi = 35,
time = time,
model = list(

other_models = "pce_both",
race_eth = NA # Invalid `race_eth` for PCEs

),
quiet = TRUE

)
)

}

Note `input_problems` column is semicolon-separated, but it is easy to
print as separate lines with `gsub()` and `cat()`, e.g.:
cat(gsub("; ", "\n", res$input_problems))

res$input_problems |> gsub(pattern = "; ", replacement = "\n", x = _) |> cat()
... and could, of course, also use the `magrittr` pipe `%>%` if desired

Index

app, 2

est_risk (estimate_risk), 3
estimate_risk, 3

round(), 12

22

	app
	estimate_risk
	Index

