
Package ‘ggfixest’
January 22, 2025

Title Dedicated 'ggplot2' Methods for 'fixest' Objects

Version 0.2.0

Date 2025-01-21

Description Provides 'ggplot2' equivalents of fixest::coefplot() and fixest::iplot(),
for producing nice coefficient plots and interaction plots. Enables some
additional functionality and convenience features, including grouped
multi-'fixest' object faceting and programmatic updates to existing plots
(e.g., themes and aesthetics).

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

URL https://grantmcdermott.com/ggfixest/

BugReports https://github.com/grantmcdermott/ggfixest/issues

Depends ggplot2 (>= 2.2.0), fixest (>= 0.11.2)

Imports dreamerr, scales, marginaleffects (>= 0.10.0), stats, utils,
legendry (>= 0.2)

Suggests knitr, rmarkdown, tinytest (>= 1.4.1), tinysnapshot (>=
0.0.3), magick, rsvg, svglite, fontquiver, data.table

VignetteBuilder knitr

NeedsCompilation no

Author Grant McDermott [aut, cre] (<https://orcid.org/0000-0001-7883-8573>),
Laurent Berge [ctb],
Teun van den Brand [ctb] (<https://orcid.org/0000-0002-9335-7468>)

Maintainer Grant McDermott <gmcd@amazon.com>

Repository CRAN

Date/Publication 2025-01-22 01:00:02 UTC

1

https://grantmcdermott.com/ggfixest/
https://github.com/grantmcdermott/ggfixest/issues
https://orcid.org/0000-0001-7883-8573
https://orcid.org/0000-0002-9335-7468

2 aggr_es

Contents
aggr_es . 2
ggcoefplot . 3
iplot_data . 10

Index 13

aggr_es Aggregates event-study treatment effects.

Description

Aggregates post- (and/or pre-) treatment effects of an "event-study" estimation, also known as a dy-
namic difference-in-differences (DDiD) model. The event-study should have been estimated using
the fixest package, which provides a specialised i() operator for this class of models. By default,
the function will return the average post-treatment effect (i.e. across multiple periods). However,
it can also return the cumulative post-treatment effect and can be used to aggregate pre-treatment ef-
fects too. At its heart, aggr_es() is a convenience wrapper around marginaleffects::hypotheses(),
which is used to perform the underlying joint hypothesis test.

Usage

aggr_es(
object,
rhs = 0,
period = "post",
aggregation = c("mean", "cumulative"),
abbr_term = TRUE,
...

)

Arguments

object A model object of class fixest, where the i() operator has been used to facili-
tate an "event-study" DiD design. See Examples.

rhs Numeric. The null hypothesis value. Defaults to 0.
period Keyword string or numeric sequence. Which group of periods are we aggregat-

ing? Can either be one of three convenience strings—i.e., "post" (the default),
"prep", or "both"—or a numeric sequence that matches a subset of periods in
the data (e.g. 6:8).

aggregation Character string. The aggregation type. Either "mean" (the default) or "cumula-
tive".

abbr_term Logical. Should the leading "term" column of the return data frame be abbre-
viated? The default is TRUE. If FALSE, then the term column will retain the
full hypothesis test string as per usual with marginaleffects(). Note that this
information is retained as an attribute of the return object, regardless.

... Additional arguments passed to marginaleffects::hypotheses().

ggcoefplot 3

Value

A "tidy" data frame of aggregated (pre and/or post) treatment effects, plus inferential information
about standard errors, confidence intervals, etc. Potentially useful information about the underlying
hypothesis test is also provided as an attribute. See Examples.

See Also

marginaleffects::hypotheses()

Examples

library(ggfixest) ## Will load fixest too

est = feols(y ~ x1 + i(period, treat, 5) | id + period, base_did)

Default hypothesis test is a null mean post-treatment effect
(post_mean = aggr_es(est))
The underlying hypothesis is saved as an attribute
attr(post_mean, "hypothesis")

Other hypothesis and aggregation options
aggr_es(est, aggregation = "cumulative") # cumulative instead of mean effects
aggr_es(est, period = "pre") # pre period instead of post
aggr_es(est, period = "both") # pre & post periods separately
aggr_es(est, period = 6:8) # specific subset of periods
aggr_es(est, rhs = -1, period = "pre") # pre period with H0 value of 1
Etc.

ggcoefplot Draw coefficient plots and interaction plots from fixest regression
objects.

Description

Draws the ggplot2 equivalents of fixest::coefplot and fixest::iplot. These "gg" versions
do their best to recycle the same arguments and plotting logic as their original base counterparts.
But they also support additional features via the ggplot2 API and infrastructure. The overall goal
remains the same as the original functions. To wit: ggcoefplot plots the results of estimations (co-
efficients and confidence intervals). The function ggiplot restricts the output to variables created
with i, either interactions with factors or raw factors.

Usage

ggcoefplot(
object,
geom_style = c("pointrange", "errorbar"),
multi_style = c("dodge", "facet"),

4 ggcoefplot

facet_args = NULL,
theme = NULL,
...

)

ggiplot(
object,
geom_style = c("pointrange", "errorbar", "ribbon"),
multi_style = c("dodge", "facet"),
aggr_eff = NULL,
aggr_eff.par = list(col = "grey50", lwd = 1, lty = 1),
facet_args = NULL,
theme = NULL,
...

)

Arguments

object A model object of class fixest or fixest_multi, or a list thereof.

geom_style Character string. One of c('pointrange', 'errorbar', 'ribbon') describ-
ing the preferred geometric representation of the coefficients. Note that ribbon
plots not supported for ggcoefplot, since we cannot guarantee a continuous
relationship among the coefficients.

multi_style Character string. One of c('dodge', 'facet'), defining how multi-model ob-
jects should be presented.

facet_args A list of arguments passed down to ggplot::fact_wrap(). E.g. facet_args =
list(ncol = 2, scales = 'free_y'). Only used if multi_style = 'facet'.

theme ggplot2 theme. Defaults to theme_linedraw() with some minor adjustments,
such as centered plot title. Can also be defined on an existing ggiplot object to
redefine theme elements. See examples.

... Arguments passed down to, or equivalent to, the corresponding fixest::coefplot/fixest::iplot
arguments. Note that some of these require list objects. Currently used are:

• keep and drop for subsetting variables using regular expressions. The
fixest::iplot help page includes more detailed examples, but these should
generally work as you expect. One useful regexp trick worth mentioning
briefly for event studies with many pre-/post-periods is drop = "[[:digit:]]{2}".
This will cause the plot to zoom in around single digit pre-/post-periods.

• group a list indicating variables to group over. Each element of the list
reports the coefficients to be grouped while the name of the element is the
group name. Each element of the list can be either: i) a character vector of
length 1, ii) of length 2, or iii) a numeric vector. Special patterns such as
"^^var_start" can be used to more appealing plotting, where group labels
are separated from their subsidiary labels. This can be especially useful for
plotting interaction terms. See the Details section of fixest::coefplot
for more information.

ggcoefplot 5

• i.select Integer scalar, default is 1. In ggiplot, used to select which
variable created with i() to select. Only used when there are several vari-
ables created with i. See the Details section of fixest::iplot for more
information.

• main, xlab, and ylab for setting the plot title, x- and y-axis labels, respec-
tively.

• zero and zero.par for defining or adjusting the zero line. For example,
zero.par = list(col = 'orange').

• ref.line and ref.line.par for defining or adjusting the vertical refer-
ence line. For example, ref.line.par = list(col = 'red', lty = 4).

• pt.pch and pt.join for overriding the default point estimate shapes and
joining them, respectively.

• col for manually defining line, point, and ribbon colours.
• ci_level for changing the desired confidence level (default = 0.95). Note

that multiple levels are allowed, e.g. ci_level = c(0.8, 0.95).
• ci.width for changing the width of the extremities of the confidence inter-

vals. Only used if geom_style = "errorbar" (or if multiple CI levels are
requested for the default pointrange style). The default value is 0.2.

• ci.fill.par for changing the confidence interval fill. Only used when
geom_style = "ribbon" and currently only affects the alpha (transparency)
channel. For example, we can make the CI band lighter with ci.fill.par
= list(alpha = 0.2) (the default alpha is 0.3).

• dict a dictionary for overriding coefficient names.
• vcov, cluster or se as alternative options for adjusting the standard errors

of the model object(s) on the fly. See summary.fixest for details. Written
here in superseding order; cluster will only be considered if vcov is not
null, etc.

aggr_eff A keyword string or numeric sequence, indicating whether mean treatment ef-
fects for some subset of the model should be displayed as part of the plot. For
example, the "post" keyword means that the mean post-treatment effect will
be plotted alongside the individual period effects. Passed to aggr_es; see that
function’s documentation for other valid options.

aggr_eff.par List. Parameters of the aggregated treatment effect line, if plotted. The default
values are col = 'gray50', lwd = 1, lty = 1.

Details

These functions generally try to mimic the functionality and (where appropriate) arguments of
fixest::coefplot and fixest::iplot as closely as possible. However, by leveraging the gg-
plot2 API and infrastructure, they are able to support some more complex plot arrangements out-
of-the-box that would be more difficult to achieve using the base coefplot/iplot alternatives.

Value

A ggplot2 object.

6 ggcoefplot

Functions

• ggiplot(): This function plots the results of estimations (coefficients and confidence inter-
vals). The function ggiplot restricts the output to variables created with i, either interactions
with factors or raw factors.

See Also

fixest::coefplot(), fixest::iplot().

Examples

library(ggfixest)

##
Author note: The examples that follow deliberately follow the original
examples from the coefplot/iplot help pages. A few "gg-" specific
features are sprinkled within, with the final set of examples in
particular highlighting unique features of this package.

#
Example 1: Basic use and stacking two sets of results on the same graph
#

Estimation on Iris data with one fixed-effect (Species)
est = feols(Petal.Length ~ Petal.Width + Sepal.Length + Sepal.Width | Species, iris)

ggcoefplot(est)

Show multiple CIs
ggcoefplot(est, ci_level = c(0.8, 0.95))

By default, fixest model standard errors are clustered by the first fixed
effect (here: Species).
But we can easily switch to "regular" standard-errors
est_std = summary(est, se = "iid")

You can plot both results at once in the same plot frame...
ggcoefplot(list("Clustered" = est, "IID" = est_std))
... or as separate facets
ggcoefplot(list("Clustered" = est, "IID" = est_std), multi_style = "facet") +
theme(legend.position = "none")

#
Example 2: Interactions
#

Now we estimate and plot the "yearly" treatment effects

data(base_did)

ggcoefplot 7

base_inter = base_did

We interact the variable 'period' with the variable 'treat'
est_did = feols(y ~ x1 + i(period, treat, 5) | id + period, base_inter)

In the estimation, the variable treat is interacted
with each value of period but 5, set as a reference

ggcoefplot will show all the coefficients:
ggcoefplot(est_did)

Note that the grouping of the coefficients is due to 'group = "auto"'

If you want to keep only the coefficients
created with i() (ie the interactions), use ggiplot
ggiplot(est_did)

We can see that the graph is different from before:
- only interactions are shown,
- the reference is present,
=> this is fully flexible

ggiplot(est_did, ci_level = c(0.8, 0.95))
ggiplot(est_did, ref.line = FALSE, pt.join = TRUE, geom_style = "errorbar")
ggiplot(est_did, geom_style = "ribbon", col = "orange")
etc

We can also use a dictionary to replace label values. The dicionary should
take the form of a named vector or list, e.g. c("old_lab1" = "new_lab1", ...)

Let's create a "month" variable
all_months = c("aug", "sept", "oct", "nov", "dec", "jan",
"feb", "mar", "apr", "may", "jun", "jul")

Turn into a dictionary by providing the old names
Note the implication that treatment occured here in December (5 month in our series)
dict = all_months; names(dict) = 1:12
Pass our new dictionary to our ggiplot call
ggiplot(est_did, pt.join = TRUE, geom_style = "errorbar", dict = dict)

#
What if the interacted variable is not numeric?

let's re-use our all_months vector from the previous example, but add it
directly to the dataset
base_inter$period_month = all_months[base_inter$period]

The new estimation
est = feols(y ~ x1 + i(period_month, treat, "oct") | id+period, base_inter)
Since 'period_month' of type character, iplot/coefplot both sort it
ggiplot(est)

To respect a plotting order, use a factor

8 ggcoefplot

base_inter$month_factor = factor(base_inter$period_month, levels = all_months)
est = feols(y ~ x1 + i(month_factor, treat, "oct") | id + period, base_inter)
ggiplot(est)

dict -> c("old_name" = "new_name")
dict = all_months; names(dict) = 1:12; dict
ggiplot(est_did, dict = dict)

#
Example 3: Setting defaults
#

The customization logic of ggcoefplot/ggiplot works differently than the
original base fixest counterparts, so we don't have "gg" equivalents of
setFixest_coefplot and setFixest_iplot. However, you can still invoke some
global fixest settings like setFixest_dict(). SImple example:

base_inter$letter = letters[base_inter$period]
est_letters = feols(y ~ x1 + i(letter, treat, 'e') | id+letter, base_inter)

Set global dictionary for capitalising the letters
dict = LETTERS[1:10]; names(dict) = letters[1:10]
setFixest_dict(dict)

ggiplot(est_letters)

setFixest_dict() # reset

#
Example 4: group + cleaning
#

You can use the argument group to group variables
You can further use the special character "^^" to clean
the beginning of the coef. name: particularly useful for factors

est = feols(Petal.Length ~ Petal.Width + Sepal.Length +
Sepal.Width + Species, iris)

No grouping:
ggcoefplot(est)

now we group by Sepal and Species
ggcoefplot(est, group = list(Sepal = "Sepal", Species = "Species"))

now we group + clean the beginning of the names using the special character ^^
ggcoefplot(est, group = list(Sepal = "^^Sepal.", Species = "^^Species"))

#
Example 5: Some more ggcoefplot/ggiplot extras
#

ggcoefplot 9

We'll demonstrate using the staggered treatment example from the
introductory fixest vignette.

data(base_stagg)
est_twfe = feols(

y ~ x1 + i(time_to_treatment, treated, ref = c(-1, -1000)) | id + year,
base_stagg

)
est_sa20 = feols(

y ~ x1 + sunab(year_treated, year) | id + year,
data = base_stagg

)

Plot both regressions in a faceted plot
ggiplot(

list('TWFE' = est_twfe, 'Sun & Abraham (2020)' = est_sa20),
main = 'Staggered treatment', ref.line = -1, pt.join = TRUE

)

So far that's no different than base iplot (automatic legend aside). But an
area where ggiplot shines is in complex multiple estimation cases, such as
lists of fixest_multi objects. To illustrate, let's add a split variable
(group) to our staggered dataset.
base_stagg_grp = base_stagg
base_stagg_grp$grp = ifelse(base_stagg_grp$id %% 2 == 0, 'Evens', 'Odds')

Now re-run our two regressions from earlier, but splitting the sample to
generate fixest_multi objects.
est_twfe_grp = feols(

y ~ x1 + i(time_to_treatment, treated, ref = c(-1, -1000)) | id + year,
data = base_stagg_grp, split = ~ grp

)
est_sa20_grp = feols(

y ~ x1 + sunab(year_treated, year) | id + year,
data = base_stagg_grp, split = ~ grp

)

ggiplot combines the list of multi-estimation objects without a problem...
ggiplot(list('TWFE' = est_twfe_grp, 'Sun & Abraham (2020)' = est_sa20_grp),
ref.line = -1, main = 'Staggered treatment: Split multi-sample')

... but is even better when we use facets instead of dodged errorbars.
Let's use this an opportunity to construct a fancy plot that invokes some
additional arguments and ggplot theming.
ggiplot(

list('TWFE' = est_twfe_grp, 'Sun & Abraham (2020)' = est_sa20_grp),
ref.line = -1,
main = 'Staggered treatment: Split multi-sample',
xlab = 'Time to treatment',
multi_style = 'facet',
geom_style = 'ribbon',
facet_args = list(labeller = labeller(id = \(x) gsub(".*: ", "", x))),
theme = theme_minimal() +

10 iplot_data

theme(
text = element_text(family = 'HersheySans'),
plot.title = element_text(hjust = 0.5),
legend.position = 'none'

)
)

#
Aside on theming and scale adjustments
#

Setting the theme inside the `ggiplot()` call is optional and not strictly
necessary, since the ggplot2 API allows programmatic updating of existing
plots. E.g.
last_plot() +
labs(caption = 'Note: Super fancy plot brought to you by ggiplot')
last_plot() +
theme_grey() +
theme(legend.position = 'none') +
scale_fill_brewer(palette = 'Set1', aesthetics = c("colour", "fill"))
etc.

iplot_data Internal function for grabbing and preparing iplot data.

Description

Grabs the underlying data used to construct fixest::iplot, with some added functionality and
tweaks for the ggiplot equivalents.

Usage

iplot_data(
object,
.ci_level = 0.95,
.keep = NULL,
.drop = NULL,
.dict = fixest::getFixest_dict(),
.internal.only.i = TRUE,
.i.select = 1,
.aggr_es = NULL,
.group = "auto",
.vcov = NULL,
.cluster = NULL,
.se = NULL

)

coefplot_data(

iplot_data 11

object,
.ci_level = 0.95,
.keep = NULL,
.drop = NULL,
.group = "auto",
.dict = fixest::getFixest_dict(),
.internal.only.i = FALSE,
.i.select = 1,
.aggr_es = "none",
.vcov = NULL,
.cluster = NULL,
.se = NULL

)

Arguments

object A model object of class fixest or fixest_multi, where the i() operator has
been used to construct an interaction, or set of interactions.

.ci_level A number between 0 and 1 indicating the desired confidence level, Defaults to
0.95.

.keep Character vector used to subset the coefficients of interest. Passed down to
fixest::iplot(..., keep = .keep) and should take the form of an accept-
able regular expression.

.drop Character vector used to subset the coefficients of interest (complement of .keep).
Passed down to fixest::iplot(..., drop = .drop) and should take the form
of an acceptable regular expression.

.dict A dictionary (i.e. named character vector or a logical scalar). Used for chang-
ing coefficient names. Defaults to the values in getFixest_dict(). See the
?fixest::coefplot documentation for more information. Note: This argu-
ment applies dictionary changes directly to the return object for coefplot_data.
However, it is ignored for iplot_data, since we want to preserve the numeric
ordering for potential event study plots. (And imposing an ordered factor would
create its own downstream problems in the case of continuous plot features like
ribbons.) Instead, any dictionary replacement for ggiplot is deferred to the
actual plot call and applied directly to the labels.

.internal.only.i

Logical variable used for some internal function handling when passing on to
coefplot/iplot.

.i.select Integer scalar, default is 1. In (gg)iplot, used to select which variable created
with i() to select. Only used when there are several variables created with i.
This is an index, just try increasing numbers to hopefully obtain what you want.
Passed down to fixest::iplot(..., i.select = .i.select)

.aggr_es A keyword string or numeric sequence indicating whether the aggregated mean
treatment effects for some subset of the model should be added as a column to
the returned data frame. Passed to aggr_es(..., aggregation = "mean").

12 iplot_data

.group A list, default is missing. Each element of the list reports the coefficients to
be grouped while the name of the element is the group name. Passed down to
fixest::coefplot(..., group = .group). Example of valid uses:

• group=list(group_name="pattern")
• group=list(group_name=c("var_start", "var_end"))
• group=list(group_name=1:2)
• See the Details section of ?fixest::coefplot for more.

.vcov, .cluster, .se
Alternative options for adjusting the standard errors of the model object on the
fly. See summary.fixest for details (although note that the "." period prefix
should be ignored in the latter’s argument documentation). Written here in su-
perseding order; .cluster will only be considered if .vcov is not null, etc.

Details

This function is a wrapper around fixest::iplot(..., only.params = TRUE), but with various
checks and tweaks to better facilitate plotting with ggplot2 and handling of complex object types
(e.g. lists of fixest_multi models)

Value

A data frame consisting of estimate values, confidence intervals, relative x-axis positions, and other
aesthetic information needed to draw a ggplot2 object.

Functions

• coefplot_data(): Internal function for grabbing and preparing coefplot data

See Also

fixest::iplot(), aggr_es().

Examples

library(fixest)

est_did = feols(y ~ x1 + i(period, treat, 5) | id+period,
data = base_did)

iplot(est_did, only.params = TRUE) # The "base" version
iplot_data(est_did) # The wrapper provided by this package

Illustrative fixest_multi case, where the sample has been split by odd and
even ID numbers.
est_split = feols(y ~ x1 + i(period, treat, 5) | id+period,

data = base_did, split = ~id%%2)
iplot(est_split, only.params = TRUE) # The "base" version
iplot_data(est_split) # The wrapper provided by this package

Index

aggr_es, 2, 5
aggr_es(), 12

coefplot_data (iplot_data), 10

fixest::coefplot(), 6
fixest::iplot(), 6, 12

ggcoefplot, 3
ggiplot (ggcoefplot), 3

iplot_data, 10

marginaleffects::hypotheses(), 3

13

	aggr_es
	ggcoefplot
	iplot_data
	Index

