## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 4, fig.width = 7 ) ## ----setup, message=FALSE----------------------------------------------------- library(fable) library(tsibble) library(dplyr) ## ----data--------------------------------------------------------------------- tourism_melb <- tourism %>% filter(Region == "Melbourne") tourism_melb %>% group_by(Purpose) %>% slice(1) ## ----plot--------------------------------------------------------------------- tourism_melb %>% autoplot(Trips) ## ----mdl---------------------------------------------------------------------- fit <- tourism_melb %>% model( ets = ETS(Trips ~ trend("A")), arima = ARIMA(Trips) ) fit ## ----coef--------------------------------------------------------------------- fit %>% select(Region, State, Purpose, arima) %>% coef() ## ----glance------------------------------------------------------------------- fit %>% glance() ## ----report------------------------------------------------------------------- fit %>% filter(Purpose == "Holiday") %>% select(ets) %>% report() ## ----augment------------------------------------------------------------------ fit %>% augment() ## ----accuracy----------------------------------------------------------------- fit %>% accuracy() %>% arrange(MASE) ## ----fc----------------------------------------------------------------------- fc <- fit %>% forecast(h = "5 years") fc ## ----fc-hilo------------------------------------------------------------------ fc %>% hilo(level = c(80, 95)) ## ----eval = FALSE------------------------------------------------------------- # library(tidyr) # fc %>% # mutate(interval = hilo(.distribution, 80)) %>% # unpack_hilo(interval) ## ----fc-plot, fig.height=10--------------------------------------------------- fc %>% autoplot(tourism_melb)