
Package ‘chron’
December 31, 2024

Version 2.3-62

Title Chronological Objects which Can Handle Dates and Times

Description Provides chronological objects which can handle dates and times.

Depends R (>= 2.12.0)

Imports graphics, stats

Suggests scales, ggplot2

Enhances zoo

License GPL-2

NeedsCompilation yes

Author David James [aut] (S original),
Kurt Hornik [aut, trl, cre] (<https://orcid.org/0000-0003-4198-9911>, R

port),
Gabor Grothendieck [ctb],
R Core Team [ctb]

Maintainer Kurt Hornik <Kurt.Hornik@R-project.org>

Repository CRAN

Date/Publication 2024-12-31 10:47:53 UTC

Contents
chron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
cut.dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
day.of.week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
format.chron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
is.holiday . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
seq.dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
trunc.times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
yearmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1

https://orcid.org/0000-0003-4198-9911


2 chron

Index 16

chron Create a Chronological Object

Description

Create chronological objects which represent dates and times of day.

Usage

chron(dates., times., format = c(dates = "m/d/y", times = "h:m:s"),
out.format, origin.)

Arguments

dates. character or numeric vector specifying dates. If character, dates. are assumed
to be in one of the date formats below; if numeric, dates. are assumed to be
Julian dates, i.e., number of days since origin..

times. optional character or numeric vector specifying times of day. If character, times.
are assumed to be in one of the time formats below; if numeric, times. are as-
sumed to be fractions of a day.

format vector or list specifying the input format of the input. The format can be either
strings specifying one of the recognized formats below or a list of user-supplied
functions to convert dates from character into Julian dates and vice versa.
The dates format can be any permutation of the characters "d", "m", or "y"
delimited by a separator (possibly null), e.g., "m/d/y", "d-m-y", "ymd", are
all valid; the format can also be permutations of the words "day", "month"
and "year" (with non-null separator), which produces the month name, e.g.,
"month day year" produces "April 20 1992", "day mon year" produces "20
Apr 1992".
The times format can be any permutation of "h", "m", and "s" separated by any
one non-special character. The default is "h:m:s".

out.format vector or list specifying date and time format for printing and output. Default is
same as format.

origin. a vector specifying the date with respect to which Julian dates are computed. De-
fault is c(month = 1, day = 1, year = 1970); you may set the option chron.origin
to specify your own default, e.g., options(chron.origin = c(month=1, day=1,
year=1990)).

Value

An object of class "times" if only times. were specified, "dates" if only dates., or "chron" if
both dates. and times. were supplied. All these inherit from class "times".

These objects represent dates and times of day, and allow the following arithmetic and summaries:
subtraction d1-d2, constant addition d1+constants, all logical comparisons, summaries min(),
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max(), and range() (which drop NAs by default); constants specify days (fractions are converted
to time-of-day, e.g., 2.5 represents 2 days and 12 hours). Operations such as sorting, differencing,
etc., are automatically handled.

There are methods for as.character(), as.numeric(), cut(), is.na(), print(), summary(),
plot(), lines(), lag(), and the usual subsetting functions [, [<-. The functions days(), months(),
quarters(), years(), weeks(), weekdays(), hours(), minutes(), and seconds() take any
chron object as input and extract the corresponding time interval. cut() is used to create ordered
factors from chron objects. Chronological objects may be used with the modeling software.

If x is character then it will be converted using as.POSIXct (with the format argument, if any,
passed to as.POSIXct) and tz = "GMT" and then converted to chron. If x is numeric and format
is not specified then it will be converted to chron using chron(x). If x is numeric and format is
specified then x will be converted to character and then processed using as.POSIXct as discussed
above. If the format is specified as NULL it will be treated the same as if it were missing.

The current implementation of chron objects does not handle time zones nor daylight savings time.

See Also

dates, times, julian.default, cut.dates, seq.dates.

Examples

dts <- dates(c("02/27/92", "02/27/92", "01/14/92",
"02/28/92", "02/01/92"))

dts
# [1] 02/27/92 02/27/92 01/14/92 02/28/92 02/01/92
tms <- times(c("23:03:20", "22:29:56", "01:03:30",

"18:21:03", "16:56:26"))
tms
# [1] 23:03:20 22:29:56 01:03:30 18:21:03 16:56:26
x <- chron(dates. = dts, times. = tms)
x
# [1] (02/27/92 23:03:19) (02/27/92 22:29:56) (01/14/92 01:03:30)
# [4] (02/28/92 18:21:03) (02/01/92 16:56:26)

# We can add or subtract scalars (representing days) to dates or
# chron objects:
c(dts[1], dts[1] + 10)
# [1] 02/27/92 03/08/92
dts[1] - 31
# [1] 01/27/92

# We can substract dates which results in a times object that
# represents days between the operands:
dts[1] - dts[3]
# Time in days:
# [1] 44

# Logical comparisons work as expected:
dts[dts > "01/25/92"]
# [1] 02/27/92 02/27/92 02/28/92 02/01/92
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dts > dts[3]
# [1] TRUE TRUE FALSE TRUE TRUE

# Summary operations which are sensible are permitted and work as
# expected:
range(dts)
# [1] 01/14/92 02/28/92
diff(x)
# Time in days:
# [1] -0.02319444 -44.89335648 45.72052083 -27.05876157
sort(dts)[1:3]
# [1] 01/14/92 02/01/92 02/27/92

cut.dates Create a Factor from a Chron or Dates Object

Description

Divide the range of a chron or dates object x into intervals and code the values in x according to
which interval they fall.

Usage

## S3 method for class 'dates'
cut(x, breaks, labels, start.on.monday = TRUE, ...)

Arguments

x chron or dates object (see chron), character dates such as "10/04/91" or Julian
dates).

breaks either a vector of break points (a dates vector, character dates such as "10/04/91"
or Julian dates), a constant specifying number of equally spaced intervals ex-
tending from min(x)-1 to max(x)+1, or one of the strings in c("days", "weeks",
"months", "year") specifying a time period.

labels character labels for intervals.
start.on.monday

should weeks be assumed to start on Mondays? Default is TRUE. Set to FALSE
if weeks start on Sundays; for other days of the week specify the corresponding
number: Sunday == 0, Monday == 1, Tuesday == 2, . . . , Saturday == 6.

... further arguments to be passed to or from methods.

Value

an ordered factor whose levels represent the various time intervals.

See Also

seq.dates
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Examples

# days from 07/01/92 thru 07/15/92 fell into 3 Monday-started weeks
cut(dates("07/01/92") + 0:14, "weeks")
# [1] week 1 week 1 week 1 week 1 week 1 week 2 week 2 week 2
# [9] week 2 week 2 week 2 week 2 week 3 week 3 week 3

dts <- dates(c("02/27/92", "02/27/92", "01/14/92",
"02/28/92", "02/01/92"))

cut(dts, "months")
# [1] Feb 92 Feb 92 Jan 92 Feb 92 Feb 92
boxplot(runif(5) ~ cut(dts, "months"))

dates Generate Dates and Times Components from Input

Description

Create objects which represent dates or times.

Usage

dates(x, ...)
times(x, ...)

Arguments

x a chron object, a character vector, or a numeric vector specifying time. If char-
acter, it must be in a format recognized by chron(). If numeric, it specifies
Julian dates, i.e., number of days since an origin.

... parameters for chron().

Value

An object of class dates or times, depending of the function called.

These functions return objects inheriting from dates and times, respectively. They call chron() if x
does not belong to any of the chronological classes.

See Also

chron, times, seq.dates, cut.dates
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Examples

dts <- dates(c("02/27/92", "02/27/92", "01/14/92",
"02/28/92", "02/01/92"))

dts
# [1] 02/27/92 02/27/92 01/14/92 02/28/92 02/01/92
class(dts)

x <- chron(dates. = c("02/27/92", "02/27/92", "01/14/92", "02/28/92"),
times. = c("23:03:20", "22:29:56", "01:03:30", "18:21:03"))

dates(x)
# [1] 02/27/92 02/27/92 01/14/92 02/28/92

day.of.week Convert between Julian and Calendar Dates

Description

Utility functions to convert between Julian dates (numbers of days since an origin, by default 1970-
01-01) and calendar dates given by year, month, and day within the month.

Usage

## Default S3 method:
julian(x, d, y, origin., ...)
month.day.year(jul, origin.)
leap.year(y)
day.of.week(month, day, year)

Arguments

x, month vector of month numbers.

d, day vector of day numbers.

y, year vector of years.

jul vector of Julian Dates, i.e., number of days since origin..

origin. vector specifying the origin as month, day, and year. If missing, it defaults to
getOption("chron.origin") if this is non-null, otherwise c(month = 1, day
= 1, year = 1970).

... further arguments to be passed to or from methods.

Value

A vector of Julian dates (number of days since origin.) when julian() is called, or a list with
members month, day, year corresponding to the input Julian dates if month.day.year() is called.
leap.year() returns a logical vector indicating whether the corresponding year is a leap year.
day.of.week() returns a number between 0 and 6 to specify day of the week–0 refers to Sunday.

These functions were taken from Becker, Chambers, and Wilks (1988), and were slightly modified
to take chron and dates objects; some also take the extra argument origin..
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See Also

chron, dates, times

Examples

julian(1, 1, 1970)
# [1] 0
unlist(month.day.year(0))
# month day year
# 1 1 1970

days Return Various Periods from a Chron or Dates Object

Description

Given a chron or dates object, extract the year, quarter, month, day (within the month) or weekday
(days within the week) of the date it represents.

Usage

days(x)
## Default S3 method:
weekdays(x, abbreviate = TRUE)
## Default S3 method:
months(x, abbreviate = TRUE)
## Default S3 method:
quarters(x, abbreviate = TRUE)
years(x)

Arguments

x an object inheriting from class "dates", or coercible to such via as.chron.

abbreviate should abbreviated names be returned? Default is TRUE.

Details

Note that months, quarters and weekdays are generics defined in package base which also pro-
vides methods for objects of class "Date" as generated, e.g., by Sys.Date. These methods return
character rather than factor variables as the default methods in chron do. To take advantage of the
latter, Date objects can be converted to dates objects using as.chron, see the examples.

Value

an ordered factor corresponding to days, weekdays, months, quarters, or years of x for the respective
function.
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See Also

is.weekend, is.holiday

Examples

dts <- dates("07/01/78") + trunc(50 * rnorm(30))
plot(weekdays(dts))
plot(months(dts))

## The day in the current timezone as a Date object.
Dt <- Sys.Date()
## Using the months method for Date objects.
months(Dt)
## Using the months default method.
months(as.chron(Dt))

format.chron Format a chron object

Description

Format a chron object.

Usage

## S3 method for class 'chron'
format(x, format = att$format, origin. = att$origin,

sep = " ", simplify, enclosed = c("(", ")"), ...)

Arguments

x A chron object.

format As in chron or a single character string with percent codes as detailed in strptime.

origin. As in chron.

sep A character string that separates the dates and times in the output. Ignored if
percent codes are used in format.

simplify As in format.dates. Ignored if percent codes are used in format.

enclosed A character vector of length 2 containing the strings that begin and end each
output date/time. Ignored if percent codes are used in format.

... Not currently used.

Value

A character vector.
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See Also

chron. format.dates. strptime.

Examples

format(chron(0, 0), c("yy/m/d", "h:m:s"), sep = "T", enclosed = c("", ""))
format(chron(0, 0), "%Y-%m-%dT%H:%M:%S") # same

hours Return Hours, Minutes, or Seconds from a Times Object

Description

Given a chron or times object, extract the hours, minutes or seconds of the time it represents.

Usage

hours(x)
minutes(x)
seconds(x)

Arguments

x an object inheriting from class "times", or coercible to such via as.chron.

Value

the corresponding time period as an ordered factor.

See Also

chron, dates, times

Examples

x <- chron(dates. = c("02/27/92", "02/27/92", "01/14/92", "02/28/92"),
times. = c("23:03:20", "22:29:56", "01:03:30", "18:21:03"))

h <- hours(x)
y <- runif(4)
boxplot(y ~ h)
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is.holiday Find Weekends and Holidays in a Chron or Dates Object

Description

Determine the date represented by a chron or dates object is a weekend or a holiday.

Usage

is.weekend(x)
is.holiday(x, holidays)
.Holidays

Arguments

x an object inheriting from "dates", or coercible to "chron".

holidays optional "chron" or "dates" object listing holidays. If argument holidays is
missing, either the value of the object .Holidays (if it exists) or NULL will be
used.

Value

a logical object indicating whether the corresponding date is a weekend in the case of is.weekend()
or a holiday in the case of is.holiday().

See Also

days, weekdays.default, months.default, quarters.default, years; chron, dates, cut.dates,
seq.dates

Examples

dts <- dates("01/01/98") + trunc(365 * runif(50))
table(is.weekend(dts))

.Holidays
# New Year Memorial Indepen. Labor day Thanksgiving Christmas
# 01/01/92 05/25/92 07/04/92 09/07/92 11/26/92 12/25/92
# NOTE: Only these 6 holidays from 1992 are defined by default!
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origin Chron Origin

Description

Get and set chron origin.

Usage

origin(x)
origin(x) <- value

Arguments

x a chron object

value month, day, year vector

Details

origin extracts the origin of its argument. origin<- sets the origin of its argument.

Value

The origin function returns a month, day, year vector.

Note

The default origin for chron objects is January 1, 1970 and it is recommended that that origin be
used. Some chron functions may not perform properly with a non-default origin.

See Also

chron

Examples

ch <- as.chron(Sys.Date())
origin(ch)
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scale Coordinates and Positions for Chronological Objects

Description

chron_trans is a ggplot2 transformer for chron. scale_x_chron and scale_y_chron are ggplot2
scales.

Usage

chron_trans(format = "%Y-%m-%d", n = 5)
scale_x_chron(..., format = "%Y-%m-%d", n = 5)
scale_y_chron(..., format = "%Y-%m-%d", n = 5)

Arguments

format format string as described in strptime.

n Approximate number of axis ticks.

... Passed to scale_x_continuous.

Examples

if(require("ggplot2")) {
dd <- data.frame(tt = chron(1:10), value = 101:110)
p <- ggplot(dd, aes(tt, value)) +

geom_point() + scale_x_chron(format = "%m-%d")
print(p)

}

seq.dates Generate Chron or Dates Sequences

Description

Generate a regular sequence of dates.

Usage

## S3 method for class 'dates'
seq(from, to, by = "days", length., ...)
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Arguments

from starting date; it can be a chron or dates object, a character string, e.g., "05/23/91",
or a Julian date.

to ending date, like from.

by either a numeric value or one of the valid strings "days", "weeks", "months",
or "years".

length. optional number of elements in the sequence.

... further arguments to be passed to or from methods.

Value

a sequence with values (from, from + by, from + 2*by, . . . , to) of class class(from) and origin
origin(from). Note that from must be less than or equal to the argument to.

See Also

chron, dates, cut.dates

Examples

seq.dates("01/01/92", "12/31/92", by = "months")
# [1] 01/01/92 02/01/92 03/01/92 04/01/92 05/01/92 06/01/92
# [7] 07/01/92 08/01/92 09/01/92 10/01/92 11/01/92 12/01/92

end.of.the.month <- seq.dates("02/29/92", by = "month", length. = 15)
end.of.the.month
# [1] 02/29/92 03/31/92 04/30/92 05/31/92 06/30/92 07/31/92
# [7] 08/31/92 09/30/92 10/31/92 11/30/92 12/31/92 01/31/93
# [13] 02/28/93 03/31/93 04/30/93

trunc.times Truncate times Objects

Description

Truncate times objects.

Usage

## S3 method for class 'times'
trunc(x, units = "days", eps = 1e-10, ...)
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Arguments

x a "times" object.

units Can be one of "days", "hours", "minutes", "seconds" or an unambiguous
abbreviated version of any of those.

eps Comparison tolerance. Times are considered equal if their absolute difference is
less than eps.

... further arguments to be passed to or from methods.

Details

The time is truncated to the second, minute, hour or day or to the value specified.

There is also a round method which has the same arguments as the trunc method, and performs
rounding instead of truncation.

Value

An object of class "times".

See Also

trunc for the generic function and default methods.

Examples

tt <- times(c("12:13:14", "15:46:17"))
trunc(tt, "minutes")
trunc(tt, "min")
trunc(tt, times("00:01:00"))
trunc(tt, "00:01:00")
trunc(tt, 1/(24*60))

tt2 <- structure(c(3.0, 3.1, 3.5, 3.9), class = "times")
trunc(tt2, "day")
trunc(tt2)

yearmon Convert monthly or quarterly data to chron

Description

These functions can be used to convert the times of "ts" series with frequency of 12 or 4 or objects
of "yearmon" and "yearqtr" class, as defined in the "zoo" package, to chron dates.
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Usage

## S3 method for class 'yearmon'
as.chron(x, frac = 0, holidays = FALSE, ...)
## S3 method for class 'yearqtr'
as.chron(x, frac = 0, holidays = FALSE, ...)
## S3 method for class 'ts'
as.chron(x, frac = 0, holidays = FALSE, ...)

Arguments

x an object of class "yearmon" or "yearqtr" or "ts" objects, or a numeric vector
interpreted “in years” and fractions of years.

frac Number between zero and one inclusive representing the fraction of the way
through the month or quarter.

holidays If TRUE or a vector of chron dates, indicated holidays and weekends are excluded
so the return value will be a non-holiday weekday.

... Other arguments passed to chron.

Details

The "yearmon" and "yearqtr" classes are defined in package zoo. If holidays is TRUE or a vector
of dates then the is.holiday function is used to determine whether days are holidays.

The method for ts objects converts the times corresponding to time(x) to chron. The ts series must
have a frequency that is a divisor of 12.

Value

Returns a chron object.

See Also

is.holiday, ts

Examples

## Monthly time series data.
as.chron(AirPassengers)
as.chron(time(AirPassengers))
## convert to first day of the month that is not a weekend or holiday
as.chron(AirPassengers, frac = 0, holidays = TRUE)
## convert to last day of the month
as.chron(AirPassengers, frac = 1)
## convert to last day of the month that is not a weekend or holiday
as.chron(AirPassengers, frac = 1, holidays = TRUE)
## convert to last weekday of the month
as.chron(AirPassengers, frac = 1, holidays = c())

## Quarterly time series data.
as.chron(presidents)
as.chron(time(presidents))
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