
Package ‘blockr.core’
May 20, 2025

Title Graphical Web-Framework for Data Manipulation and Visualization

Version 0.1.0

Description A framework for data manipulation and visualization using a
web-based point and click user interface where analysis pipelines are decomposed into re-
usable and parameterizable blocks.

URL https://bristolmyerssquibb.github.io/blockr.core/

BugReports https://github.com/BristolMyersSquibb/blockr.core/issues

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Imports shiny (>= 1.5.0), DT, bslib, bsicons, utils, jsonlite, vctrs,
generics, rlang, htmltools, shinyFiles

Suggests testthat (>= 3.0.0), memuse, withr, grDevices, shinytest2,
roxy.shinylive, knitr, rmarkdown, quarto, scoutbaR

Config/testthat/edition 3

VignetteBuilder quarto

NeedsCompilation no

Author Nicolas Bennett [aut, cre],
David Granjon [aut],
Christoph Sax [aut],
Karma Tarap [ctb],
John Coene [ctb],
Bristol Myers Squibb [fnd]

Maintainer Nicolas Bennett <nicolas@cynkra.com>

Repository CRAN

Date/Publication 2025-05-20 08:10:02 UTC

1

https://bristolmyerssquibb.github.io/blockr.core/
https://github.com/BristolMyersSquibb/blockr.core/issues

2 blockr_option

Contents
blockr_option . 2
blockr_ser . 3
block_name . 6
block_server . 7
block_ui . 9
board_blocks . 10
board_options . 12
board_server . 14
board_ui.board_options . 15
edit_block . 16
edit_stack . 17
generate_code . 18
is_acyclic.board . 19
manage_blocks . 20
manage_links . 21
manage_stacks . 22
new_block . 23
new_board . 26
new_data_block . 28
new_file_block . 29
new_link . 30
new_parser_block . 31
new_plot_block . 33
new_plugin . 34
new_stack . 35
new_transform_block . 37
notify_user . 38
preserve_board . 39
rand_names . 40
register_block . 41
serve . 42
stack_ui . 43
write_log . 45

Index 47

blockr_option Blockr Options

Description

Retrieves options via base::getOption() or base::Sys.getenv(), in that order, and prefixes
the option name passed as name with blockr. or blockr_ respectively. Additionally, the name
is converted to lower case for getOption() and upper case for environment variables. In case no
value is available for a given name, default is returned.

blockr_ser 3

Usage

blockr_option(name, default)

Arguments

name Option name

default Default value

Value

The value set as option name or default if not set. In case of the option being available only as
environment variable, the value will be a string and if available as base::options() entry it may
be of any R type.

Examples

blockr_option("test-example", "default")

options(`blockr.test-example` = "non-default")
blockr_option("test-example", "default")

Sys.setenv(`BLOCKR_TEST-EXAMPLE` = "another value")
tryCatch(

blockr_option("test-example", "default"),
error = function(e) conditionMessage(e)

)
options(`blockr.test-example` = NULL)
blockr_option("test-example", "default")

Sys.unsetenv("BLOCKR_TEST-EXAMPLE")
blockr_option("test-example", "default")

blockr_ser Serialization utilities

Description

Object serialization is available via to_json(), while de-serialization is available as from_json().
Blocks are serialized by writing out information on the constructor used to create the object, com-
bining this with block state information, which constitutes values such that when passed to the
constructor the original object can be re-created.

4 blockr_ser

Usage

blockr_ser(x, ...)

S3 method for class 'block'
blockr_ser(x, state = NULL, ...)

S3 method for class 'blocks'
blockr_ser(x, blocks = NULL, ...)

S3 method for class 'board_options'
blockr_ser(x, options = NULL, ...)

S3 method for class 'board'
blockr_ser(x, blocks = NULL, options = NULL, ...)

S3 method for class 'link'
blockr_ser(x, ...)

S3 method for class 'links'
blockr_ser(x, ...)

S3 method for class 'stack'
blockr_ser(x, ...)

S3 method for class 'stacks'
blockr_ser(x, ...)

blockr_deser(x, ...)

S3 method for class 'list'
blockr_deser(x, ...)

S3 method for class 'block'
blockr_deser(x, data, ...)

S3 method for class 'blocks'
blockr_deser(x, data, ...)

S3 method for class 'board'
blockr_deser(x, data, ...)

S3 method for class 'link'
blockr_deser(x, data, ...)

S3 method for class 'links'
blockr_deser(x, data, ...)

S3 method for class 'stack'

blockr_ser 5

blockr_deser(x, data, ...)

S3 method for class 'stacks'
blockr_deser(x, data, ...)

S3 method for class 'board_options'
blockr_deser(x, data, ...)

to_json(x, ...)

from_json(x)

Arguments

x Object to (de)serialize

... Generic consistency

state Object state (as returned from an expr_server)

blocks Block states (NULL defaults to values from ctor scope)

options Board option values (NULL means default values)

data List valued data (converted from JSON)

Details

Helper functions blockr_ser() and blockr_deser() are implemented as generics and perform
most of the heavy lifting for (de-)serialization: representing objects as easy-to-serialize (nested)
lists containing mostly strings and no objects which are hard/impossible to truthfully re-create in
new sessions (such as environments).

Value

Serialization helper function blockr_ser() returns lists, which for most objects contain slots
object and payload, where object contains a class vector which is used by blockr_deser()
to instantiate an empty object of that class and use S3 dispatch to identify the correct method that,
given the content in payload, can re-create the original object. These are wrapped by to_json(),
which returns JSON and from_json() which can consume JSON and returns the original object.

Examples

blk <- new_dataset_block("iris")

blockr_ser(blk)
to_json(blk)

all.equal(blk, blockr_deser(blockr_ser(blk)), check.environment = FALSE)
all.equal(blk, from_json(to_json(blk)), check.environment = FALSE)

6 block_name

block_name Block utilities

Description

Several utilities for working (and manipulating) block objects are exported and developers are
encouraged to use these instead of relying on object implementation to extract or modify attributes.
If functionality for working with blocks in lacking, please consider opening an issue.

Usage

block_name(x)

block_name(x) <- value

validate_data_inputs(x, data)

block_inputs(x)

block_arity(x)

Arguments

x An object inheriting from "block"

value New value

data Data input values

Value

Return types vary among the set of exported utilities:

• block_name(): string valued block name,
• block_name<-(): x (invisibly),

• validate_data_inputs(): NULL if no validator is set and the result of the validator function
otherwise,

• block_inputs(): a (possibly empty) character vector of data input names,

• block_arity(): a scalar integer with NA in case of variadic behavior.

Block name

Each block can have a name (by default constructed from the class vector) intended for users to
easily identify different blocks. This name can freely be changed during the lifetime of a block and
no uniqueness restrictions are in place. The current block name can be retrieved with block_name()
and set as block_name(x) <- "some name".

https://github.com/BristolMyersSquibb/blockr.core/issues/new

block_server 7

Input validation

Data input validation is available via validate_data_inputs() which uses the (optional) validator
function passed to new_block() at construction time. This mechanism can be used to prevent
premature evaluation of the block expression as this might lead to unexpected errors.

Block arity/inputs

The set of explicit (named) data inputs for a block is available as block_inputs(), while the
block arity can be queried with block_arity(). In case of variadic blocks (i.e. blocks that take a
variable number of inputs like for example a block providing base::rbind()-like functionality),
block_arity() returns NA and the special block server function argument ...args, signalling
variadic behavior is stripped from block_inputs().

Examples

blk <- new_dataset_block()
block_name(blk)
block_name(blk) <- "My dataset block"
block_name(blk)

block_inputs(new_dataset_block())
block_arity(new_dataset_block())

block_inputs(new_merge_block())
block_arity(new_merge_block())

block_inputs(new_rbind_block())
block_arity(new_rbind_block())

block_server Block server

Description

A block is represented by several (nested) shiny modules and the top level module is created using
the block_server() generic. S3 dispatch is offered as a way to add flexibility, but in most cases the
default method for the block class should suffice at top level. Further entry points for customization
are offered by the generics expr_server() and block_eval(), which are responsible for initial-
izing the block "expression" module (i.e. the block server function passed in new_block()) and
block evaluation (evaluating the interpolated expression in the context of input data), respectively.

Usage

block_server(id, x, data = list(), ...)

S3 method for class 'block'
block_server(

8 block_server

id,
x,
data = list(),
block_id = id,
edit_block = NULL,
board = reactiveValues(),
update = reactiveVal(),
...

)

expr_server(x, data, ...)

block_eval(x, expr, data, ...)

Arguments

id Namespace ID

x Object for which to generate a shiny::moduleServer()

data Input data (list of reactives)

... Generic consistency

block_id Block ID

edit_block Block edit plugin

board Reactive values object containing board information

update Reactive value object to initiate board updates

expr Quoted expression to evaluate in the context of data

Details

The module returned from block_server(), at least in the default implementation, provides much
of the essential but block-type agnostic functionality, including data input validation (if available),
instantiation of the block expression server (handling the block-specific functionality, i.e. block
user inputs and expression), and instantiation of the edit_block module (if passed from the parent
scope).

A block is considered ready for evaluation whenever input data is available that satisfies validation
(validate_data_inputs()) and nonempty state values are available (unless otherwise instructed
via allow_empty_state in new_block()). Conditions raised during validation and evaluation are
caught and returned in order to be surfaced to the app user.

Block-level user inputs (provided by the expression module) are separated from output, the behavior
of which can be customized via the block_output() generic. The block_ui() generic can then
be used to control rendering of outputs.

Value

Both block_server() and expr_server() return shiny server module (i.e. a call to shiny::moduleServer()),
while block_eval() evaluates an interpolated (w.r.t. block "user" inputs) block expression in the
context of block data inputs.

block_ui 9

block_ui Block UI

Description

The UI associated with a block is created via the generics expr_ui() and block_ui(). The former
is mainly responsible for user inputs that are specific to every block type (i.e. a subset_block
requires different user inputs compared to a head_block, see new_transform_block()) and es-
sentially calls the UI function passed as ui to new_block(). UI that represents block outputs
typically is shared among similar block types (i.e. blocks with shared inheritance structure, such
as subset_block and head_block, which both inherit from transform_block). This type of UI
us created by block_ui() and block inheritance is used to deduplicate shared functionality (i.e.
by implementing a method for the transform_block class only instead of separate methods for
subset_block and head_block. Working in tandem with block_ui(), the generic block_output()
generates the output to be displayed by the UI portion defined via block_ui().

Usage

block_ui(id, x, ...)

expr_ui(id, x, ...)

block_output(x, result, session)

S3 method for class 'board'
block_ui(id, x, blocks = NULL, edit_ui = NULL, ...)

Arguments

id Namespace ID

x Object for which to generate a UI container

... Generic consistency

result Block result

session Shiny session object

blocks (Additional) blocks (or IDs) for which to generate the UI

edit_ui Block edit plugin

Details

The result of block_output(), which is evaluated in the block_server() context is assigned to
output$result. Consequently, when referencing the block result in block_ui(), this naming
convention has to be followed by referring to this as something like shiny::NS(id, "result").

10 board_blocks

Value

Both expr_ui() and block_ui() are expected to return shiny UI (e.g. objects wrapped in a
shiny::tagList()). For rendering the UI, block_output() is required to return the result of
a shiny render function. For example, a transform block might show the resulting data.frame as
an HTML table using the DT package. The corresponding block_ui() function would then contain
UI created by DT::dataTableOutput() and rendering in block_output() would then be handled
by DT::renderDT().

Board-level block UI

While the contents of block-level UI are created by dispatching block_ui() on blocks another
dispatch on board (see new_board()) occurs as well. This can be used to control how blocks are
integrated into the board UI. For the default board, this uses bslib::card() to represent blocks.
For boards that extend the default board class, control is available for how blocks are displayed by
providing a board-specific block_ui() method.

board_blocks Board utils

Description

A set of utility functions is available for querying and manipulating board components (i.e. blocks,
links and stacks). Functions for retrieving and modifying board options are documented in new_board_options().

Usage

board_blocks(x)

board_blocks(x) <- value

board_block_ids(x)

rm_blocks(x, rm)

board_links(x)

board_links(x) <- value

board_link_ids(x)

modify_board_links(x, add = NULL, rm = NULL, mod = NULL)

board_stacks(x)

board_stacks(x) <- value

board_stack_ids(x)

board_blocks 11

modify_board_stacks(x, add = NULL, rm = NULL, mod = NULL)

available_stack_blocks(
x,
stacks = board_stacks(x),
blocks = board_stack_ids(x)

)

Arguments

x Board

value Replacement value

rm Block/link/stack IDs to remove

add Links/stacks to add

mod Link/stacks to modify

blocks, stacks Sets of blocks/stacks

Value

Functions for retrieving, as well as updating components (board_blocks()/board_links()/board_stacks()
and board_blocks<-()/board_links<-()/board_stacks<-()) return corresponding objects (i.e.
blocks, links and stacks), while ID getters (board_block_ids(), board_link_ids() and board_stack_ids())
return character vectors, as does available_stack_blocks(). Convenience functions rm_blocks(),
modify_board_links() and modify_board_stacks() return an updated board object.

Blocks

Board blocks can be retrieved using board_blocks() and updated with the corresponding replace-
ment function board_blocks<-(). If just the current board IDs are of interest, board_block_ids()
is available as short for names(board_blocks(x)). In order to remove block(s) from a board, the
(generic) convenience function rm_blocks() is exported, which takes care (in the default imple-
mentation for board) of also updating links and stacks accordingly. The more basic replacement
function board_blocks<-() might fail at validation of the updated board object if an inconsistent
state results from an update (e.g. a block referenced by a stack is no longer available).

Links

Board links can be retrieved using board_links() and updated with the corresponding replacement
function board_links<-(). If only links IDs are of interest, this is available as board_link_ids(),
which is short for names(board_links(x)). A (generic) convenience function for all kinds of
updates to board links in one is available as modify_board_links(). With arguments add, rm and
mod, links can be added, removed or modified in one go.

Stacks

Board stacks can be retrieved using board_stacks() and updated with the corresponding re-
placement function board_stacks<-(). If only the stack IDs are of interest, this is available as

12 board_options

board_stack_ids(), which is short for names(board_stacks(x)). A (generic) convenience func-
tion to update stacks is available as modify_board_stacks(), which can add, remove and modify
stacks depending on arguments passed as add, rm and mod. If block IDs that are not already associ-
ated with a stack (i.e. "free" blocks) are of interest, this is available as available_stack_blocks().

Examples

brd <- new_board(
c(

a = new_dataset_block(),
b = new_subset_block()

),
list(from = "a", to = "b")

)

board_blocks(brd)
board_block_ids(brd)

board_links(brd)
board_link_ids(brd)

board_stacks(brd)
board_stack_ids(brd)

board_options Board options

Description

User settings at the board level are managed by a board_options object. This can be constructed
via new_board_options() and in case the set of user options is to be extended, the constructor is
designed with sub-classing in mind. Consequently, the associated validator validate_board_options()
is available as S3 generic. Inheritance checking is available as is_board_options() and coer-
cion as as_board_options(). The currently set options for a board object can be retrieved with
board_options() and option names are available as list_board_options(), which is short for
names(board_options(.)). Finally, in order to extract the value of a specific option, board_option()
can be used.

Usage

board_options(x)

new_board_options(
board_name = "Board",
n_rows = blockr_option("n_rows", 50L),
page_size = blockr_option("page_size", 5L),
filter_rows = blockr_option("filter_rows", FALSE),
dark_mode = blockr_option("dark_mode", NULL),

board_options 13

...,
class = character()

)

is_board_options(x)

as_board_options(x)

S3 method for class 'board_options'
as_board_options(x)

Default S3 method:
as_board_options(x)

validate_board_options(x)

S3 method for class 'board_options'
validate_board_options(x)

list_board_options(x)

board_option(opt, x)

Arguments

x Board options object

board_name String valued board name
n_rows, page_size

Number of rows and page size to show for tabular block previews

filter_rows Enable filtering of rows in tabular block previews

dark_mode Toggle between dark and light modes

... Further options

class Optional sub-class

opt Board option

Value

All of new_board_options(), as_board_options() and board_options() return a board_options
object, as does the validator validate_board_options(), which is typically called for side effects
of throwing errors is validation does not pass. Inheritance checking as is_board_options() re-
turns a scalar logical, while list_board_options() returns a character vector of option names.
Finally, board_option() returns the current value for a specific board option, which in principle
may be any R object, but typically we have values such as strings or scalar integers and logicals.

Examples

opt <- new_board_options()

14 board_server

is_board_options(opt)
list_board_options(opt)

board_option("page_size", opt)

board_server Board server

Description

A call to board_server(), dispatched on objects inheriting from board, returns a shiny::moduleServer(),
containing all necessary logic to manipulate board components via UI. Extensibility over currently
available functionality is provided in the form of S3, where a board_server() implementation
of board sub-classes may be provided, as well as via a plugin architecture and callback functions
which can be used to register additional observers.

Usage

board_server(id, x, ...)

S3 method for class 'board'
board_server(id, x, plugins = list(), callbacks = list(), ...)

Arguments

id Parent namespace

x Board

... Generic consistency

plugins Board plugins as modules

callbacks Single (or list of) callback function(s), called only for their side-effects)

Value

A board_server() implementation (such as the default for the board base class) is expected to
return a shiny::moduleServer().

board_ui.board_options 15

board_ui.board_options

Board UI

Description

As counterpart to board_server(), board_ui() is responsible for rendering UI for a board mod-
ule. This top-level entry point for customizing board appearance and functionality can be overrid-
den by sub-classing the boar object and providing an implementation for this sub-class. Such an
implementation is expected to handle UI for plugins and all board components, including blocks,
links and stacks, but may rely on functionality that generates UI for these components, such as
block_ui() or stack_ui(), as well as already available UI provided by plugins themselves.

Usage

S3 method for class 'board_options'
board_ui(id, x, ...)

S3 method for class 'board_options'
update_ui(x, session, ...)

board_ui(id, x, ...)

S3 method for class 'board'
board_ui(id, x, plugins = list(), ...)

S3 method for class '`NULL`'
board_ui(id, x, ...)

insert_block_ui(id, x, blocks = NULL, ...)

S3 method for class 'board'
insert_block_ui(id, x, blocks = NULL, ...)

remove_block_ui(id, x, blocks = NULL, ...)

S3 method for class 'board'
remove_block_ui(id, x, blocks = NULL, ...)

update_ui(x, session, ...)

S3 method for class 'board'
update_ui(x, session, ...)

Arguments

id Namespace ID

16 edit_block

x Board

... Generic consistency

session Shiny session

plugins UI for board plugins

blocks (Additional) blocks (or IDs) for which to generate the UI

Details

Dynamic UI updates are handled by functions insert_block_ui() and remove_block_ui() for
adding and removing block-level UI elements to and from board UI, whenever blocks are added or
removed. The lightly more nondescript updated function update_ui() is intended for board-level
UI updates, which is currently only needed when restoring from a saved state and board option
UI needs to be adjusted accordingly. All these update functions are provided as S3 generics with
implementations for board and can be extended if so desired.

Value

A board_ui() implementation is expected to return shiny::tag or shiny::tagList() objects,
while updater functions (insert_block_ui(), remove_block_ui() and update_ui()) are called
for their side effects (which includes UI updates such as shiny::insertUI(), shiny::removeUI())
and return the board object passed as x invisibly.

edit_block Plugin module for editing board blocks

Description

Logic and user experience for editing block attributes such as block titles can be customized or
enhanced by providing an alternate version of this plugin. The default implementation only handles
block titles, but if further (editable) block attributes are to be introduced, corresponding UI and
logic can be included here. In addition to blocks titles, this default implementation provides UI for
removing, as well as inserting blocks before or after the current one.

Usage

edit_block(server = edit_block_server, ui = edit_block_ui)

edit_block_server(id, block_id, board, update, ...)

edit_block_ui(x, id, ...)

block_summary(x, data)

S3 method for class 'block'
block_summary(x, data)

edit_stack 17

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

block_id Block ID

board Reactive values object containing board information

update Reactive value object to initiate board updates

... Extra arguments passed from parent scope

x Block

data Result data

Value

A plugin container inheriting from edit_block is returned by edit_block(), while the UI com-
ponent (e.g. edit_block_ui()) is expected to return shiny UI (i.e. shiny::tagList()) and the
server component (i.e. edit_block_server()) is expected to return NULL.

edit_stack Plugin module for editing board stacks

Description

Logic and user experience for editing stack attributes such as stack names can be customized or
enhanced by providing an alternate version of this plugin. The default implementation only handles
stack names, but if further (editable) stack attributes are to be introduced, corresponding UI and
logic can be included here. In addition to stack names, this default implementation provides UI for
removing the current stack.

Usage

edit_stack(server = edit_stack_server, ui = edit_stack_ui)

edit_stack_server(id, stack_id, board, update, ...)

edit_stack_ui(id, x, ...)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

stack_id Stack ID

board Reactive values object containing board information

update Reactive value object to initiate board updates

... Extra arguments passed from parent scope

x Stack

18 generate_code

Value

A plugin container inheriting from edit_stack is returned by edit_stack(), while the UI com-
ponent (e.g. edit_stack_ui()) is expected to return shiny UI (i.e. shiny::tagList()) and the
server component (i.e. edit_stack_server()) is expected to return NULL.

generate_code Code generation plugin module

Description

All code necessary for reproducing a data analysis as set up in blockr can be made available to
the user. Several ways of providing such a script or code snippet are conceivable and currently
implemented, we have a modal with copy-to-clipboard functionality. This is readily extensible,
for example by offering a download button, by providing this functionality as a generate_code
module.

Usage

generate_code(server = generate_code_server, ui = generate_code_ui)

generate_code_server(id, board, ...)

generate_code_ui(id, board)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board The initial board object

... Extra arguments passed from parent scope

Value

A plugin container inheriting from generate_code is returned by generate_code(), while the UI
component (e.g. generate_code_ui()) is expected to return shiny UI (i.e. shiny::tagList())
and the server component (i.e. generate_code_server()) is expected to return NULL.

is_acyclic.board 19

is_acyclic.board Graph utils

Description

Block dependencies are represented by DAGs and graph utility functions topo_sort() and is_acyclic()
are used to create a topological ordering (implemented as DFS) of blocks and to check for cycles.
An adjacency matrix corresponding to a board is available as as.matrix().

Usage

S3 method for class 'board'
is_acyclic(x)

S3 method for class 'links'
is_acyclic(x)

topo_sort(x)

is_acyclic(x)

S3 method for class 'matrix'
is_acyclic(x)

Arguments

x Object

Value

Topological ordering via topo_sort() returns a character vector with sorted node IDs and the
generic function is_acyclic() is expected to return a scalar logical value.

Examples

brd <- new_board(
c(

a = new_dataset_block(),
b = new_dataset_block(),
c = new_scatter_block(),
d = new_subset_block()

),
list(from = c("a", "d"), to = c("d", "c"))

)

as.matrix(brd)
topo_sort(brd)
is_acyclic(brd)

20 manage_blocks

manage_blocks Plugin module for managing board blocks

Description

Logic and user experience for adding/removing blocks to the board can be customized or enhanced
by providing an alternate version of this plugin. The default implementation provides a modal-based
UI with simple shiny inputs such as drop-downs and text fields.

Usage

manage_blocks(server = manage_blocks_server, ui = manage_blocks_ui)

manage_blocks_server(id, board, update, ...)

manage_blocks_ui(id, board)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board The initial board object

update Reactive value object to initiate board updates

... Extra arguments passed from parent scope

Details

Updates are mediated via the shiny::reactiveVal() object passed as update, where block up-
dates are communicated as list entry blocks with components add and rm, where

• add may be NULL or a block object (block IDs may not already exist),

• rm may be NULL or a string (of existing block IDs).

Value

A plugin container inheriting from manage_blocks is returned by manage_blocks(), while the UI
component (e.g. manage_blocks_ui()) is expected to return shiny UI (i.e. shiny::tagList())
and the server component (i.e. manage_blocks_server()) is expected to return NULL.

manage_links 21

manage_links Plugin module for managing board links

Description

Logic and user experience for adding new, removing and modifying existing links to/from the board
can be customized or enhanced by providing an alternate version of this plugin. The default imple-
mentation provides a table-based UI, presented in a modal.

Usage

manage_links(server = manage_links_server, ui = manage_links_ui)

manage_links_server(id, board, update, ...)

manage_links_ui(id, board)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board The initial board object

update Reactive value object to initiate board updates

... Extra arguments passed from parent scope

Details

Updates are mediated via the shiny::reactiveVal() object passed as update, where link updates
are communicated as list entry stacks with components add, rm or mod, where

• add is either NULL or a links object (link IDs may not already exists),

• rm is either NULL or a character vector of (existing) link IDs,

• mod is either NULL or a links object (where link IDs must already exist).

Value

A plugin container inheriting from manage_links is returned by manage_links(), while the UI
component (e.g. manage_links_ui()) is expected to return shiny UI (i.e. shiny::tagList())
and the server component (i.e. manage_links_server()) is expected to return NULL.

22 manage_stacks

manage_stacks Plugin module for managing board stacks

Description

Logic and user experience for adding new, removing and modifying existing stacks to/from the
board can be customized or enhanced by providing an alternate version of this plugin. The default
implementation provides a table-based UI, presented in a modal.

Usage

manage_stacks(server = manage_stacks_server, ui = manage_stacks_ui)

manage_stacks_server(id, board, update, ...)

manage_stacks_ui(id, board)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board The initial board object

update Reactive value object to initiate board updates

... Extra arguments passed from parent scope

Details

Updates are mediated via the shiny::reactiveVal() object passed as update, where stack up-
dates are communicated as list entry stacks with components add, rm or mod, where

• add is either NULL or a stacks object (stack IDs may not already exists),

• rm is either NULL or a character vector of (existing) stack IDs,

• mod is either NULL or a stacks object (where stack IDs must already exist).

Value

A plugin container inheriting from manage_stacks is returned by manage_stacks(), while the UI
component (e.g. manage_stacks_ui()) is expected to return shiny UI (i.e. shiny::tagList())
and the server component (i.e. manage_stacks_server()) is expected to return NULL.

new_block 23

new_block Blocks

Description

Steps in a data analysis pipeline are represented by blocks. Each block combines data input with
user inputs to produce an output. In order to create a block, which is implemented as a shiny
module, we require a server function, a function that produces some UI and a class vector.

Usage

new_block(
server,
ui,
class,
ctor,
ctor_pkg,
dat_valid = NULL,
allow_empty_state = FALSE,
name = NULL,
...

)

is_block(x)

as_block(x, ...)

blocks(...)

is_blocks(x)

as_blocks(x, ...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass

ctor String-valued constructor name or function/frame number (mostly for internal
use or when defining constructors for virtual classes)

ctor_pkg String-valued package name when passing a string-valued constructor name or
NULL

dat_valid (Optional) input data validator
allow_empty_state

Either TRUE, FALSE or a character vector of state values that may be empty
while still moving forward with block eval

24 new_block

name Block name

... Further (metadata) attributes

x An object inheriting from "block"

Details

A block constructor may have arguments, which taken together define the block state. It is good
practice to expose all user-selectable arguments of a block (i.e. everything excluding the "data"
input) as block arguments such that block can be fully initialized via the constructor. Some de-
fault values are required such that blocks can be constructed via constructor calls without argu-
ments. Where it is sensible to do so, specific default values are acceptable, but if in any way
data dependent, defaults should map to an "empty" input. For example, a block that provides
utils::head() functionality, one such argument could be n and a reasonable default value could
be 6L (in line with corresponding default S3 method implementation). On the other hand, a block
that performs a base::merge() operation might expose a by argument, but a general purpose de-
fault value (that does not depend on the data) is not possible. Therefore, new_merge_block() has
by = character().

The return value of a block constructor should be the result of a call to new_block() and ... should
be contained in the constructor signature such that general block arguments (e.g. name) are available
from the constructor.

Value

Both new_block() and as_block() return an object inheriting from block, while is_block()
returns a boolean indicating whether an object inherits from block or not. Block vectors, created
using blocks(), as_blocks(), or by combining multiple blocks using base::c() all inherit frm
blocks and iss_block() returns a boolean indicating whether an object inherits from blocks or
not.

Server

The server function (passed as server) is expected to be a function that returns a shiny::moduleServer().
This function is expected to have at least an argument id (string-valued), which will be used as the
module ID. Further arguments may be used in the function signature, one for each "data" input. A
block implementing utils::head() for example could have a single extra argument data, while a
block that performs base::merge() requires two extra arguments, e.g. x and y. Finally, a variadic
block, e.g. a block implementing something like base::rbind(), needs to accommodate for an
arbitrary number of inputs. This is achieved by passing a shiny::reactiveValues() object as
...args and thus such a variadic block needs ...args as part of the server function signature. All
per-data input arguments are passed as shiny::reactive() or shiny::reactiveVal() objects.

The server function may implement arbitrary shiny logic and is expected to return a list with com-
ponents expr and state. The expression corresponds to the R code necessary to perform the block
task and is expected to be a reactive quoted expression. It should contain user-chosen values for
all user inputs and placeholders for all data inputs (using the same names for data inputs as in the
server function signature). Such an expression for a base::merge() block could be created using
base::bquote() as

bquote(

new_block 25

merge(x, y, by = .(cols)),
list(cols = current_val())

}

where current_val() is a reactive that evaluates to the current user selection of the by columns.
This should then be wrapped in a shiny::reactive() call such that current_val() can be eval-
uated whenever the current expression is required.

The state component is expected to be a named list with either reactive or "static" values. In most
cases, components of state will be reactives, but it might make sense in some scenarios to have
constructor arguments that are not exposed via UI components but are fixed at construction time.
An example for this could be the dataset_block implementation where we have constructor argu-
ments dataset and package, but only expose dataset as UI element. This means that package is
fixed at construction time. Nevertheless, package is required as state component, as this is used for
re-creating blocks from saved state.

State component names are required to match block constructor arguments and re-creating saved
objects basically calls the block constructor with values obtained from block state.

UI

Block UI is generated using the function passed as ui to the new_block constructor. This function
is required to take a single argument id and shiny UI components have to be namespaced such that
they are nested within this ID (i.e. by creating IDs as shiny::NS(id, "some_value")). Some
care has to be taken to properly initialize inputs with constructor values. As a rule of thumb, input
elements exposed to the UI should have corresponding block constructor arguments such that blocks
can be created with a given initial state.

Block UI should be limited to displaying and arranging user inputs to set block arguments. For
outputs, use generics block_output() and block_ui().

Sub-classing

In addition to the specific class of a block, the core package uses virtual classes to group together
blocks with similar behavior (e.g. transform_block) and makes use of this inheritance structure
in S3 dispatch for methods like block_output() and block_ui(). This pattern is not required but
encouraged.

Initialization/evaluation

Some control over when a block is considered "ready for evaluation" is available via arguments
dat_valid and allow_empty_state. Data input validation can optionally be performed by passing
a predicate function with the same arguments as in the server function (not including id) and the
block expression will not be evaluated as long as this function throws an error.

Other conditions (messages and warnings) may be thrown as will be caught and displayed to the
user but they will not interrupt evaluation. Errors are safe in that they will be caught as well but the
will interrupt evaluation as long as block data input does not satisfy validation.

Block vectors

Multiple blocks can be combined into a blocks object, a container for an (ordered) set of blocks.
Block IDs are handled at the blocks level which will ensure uniqueness.

26 new_board

Examples

new_identity_block <- function() {
new_transform_block(
function(id, data) {

moduleServer(
id,
function(input, output, session) {

list(
expr = reactive(quote(identity(data))),
state = list()

)
}

)
},
function(id) {

tagList()
},
class = "identity_block"

)
}

blk <- new_identity_block()
is_block(blk)

blks <- c(a = new_dataset_block(), b = new_subset_block())

is_block(blks)
is_blocks(blks)

names(blks)

tryCatch(
names(blks["a"]) <- "b",
error = function(e) conditionMessage(e)

)

new_board Board

Description

A set of blocks, optionally connected via links and grouped into stacks are organized as a board
object. Boards are constructed using new_board() and inheritance can be tested with is_board(),
while validation is available as (generic function) validate_board(). This central data structure
can be extended by adding further attributes and sub-classes. S3 dispatch is used in many places
to control how the UI looks and feels and using this extension mechanism, UI aspects can be cus-
tomized to user requirements. Several utilities are available for retrieving and modifying block
attributes (see board_blocks()).

new_board 27

Usage

new_board(
blocks = list(),
links = list(),
stacks = list(),
options = new_board_options(),
...,
class = character()

)

validate_board(x)

is_board(x)

Arguments

blocks Set of blocks

links Set of links

stacks Set of stacks

options Board-level user settings

... Further (metadata) attributes

class Board sub-class

x Board object

Value

The board constructor new_board() returns a board object, as does the validator validate_board(),
which typically is called for side effects in the form of errors. Inheritance checking as is_board()
returns a scalar logical.

Examples

brd <- new_board(
c(

a = new_dataset_block(),
b = new_subset_block()

),
list(from = "a", to = "b")

)

is_board(brd)

28 new_data_block

new_data_block Data block constructors

Description

Data blocks typically do not have data inputs and represent root nodes in analysis graphs. Intended
as initial steps in a pipeline, such blocks are responsible for providing down-stream blocks with
data.

Usage

new_data_block(server, ui, class, ctor = sys.parent(), ...)

new_dataset_block(dataset = character(), package = "datasets", ...)

new_static_block(data, ...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass
ctor String-valued constructor name or function/frame number (mostly for internal

use or when defining constructors for virtual classes)
... Forwarded to new_data_block() and new_block()

dataset Selected dataset
package Name of an R package containing datasets
data Data (used directly as block result)

Value

All blocks constructed via new_data_block() inherit from data_block.

Dataset block

This data block allows to select a dataset from a package, such as the datasets package available in
most R installations as one of the packages with "recommended" priority. The source package can
be chosen at time of block instantiation and can be set to any R package, for which then a set of
candidate datasets is computed. This includes exported objects that inherit from data.frame.

Static block

Mainly useful for testing and examples, this block simply returns the data with which it was initial-
ized. Serialization of static blocks is not allowed and exported code will not be self-contained in
the sense that it will not be possible to reproduce results in a script that contains code from a static
block.

new_file_block 29

new_file_block File block constructors

Description

Similarly to new_data_block(), blocks created via new_file_block() serve as starting points in
analysis pipelines by providing data to down-stream blocks. They typically will not have data inputs
and represent root nodes in analysis graphs.

Usage

new_file_block(server, ui, class, ctor = sys.parent(), ...)

new_filebrowser_block(
file_path = character(),
volumes = c(home = path.expand("~")),
...

)

new_upload_block(...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass

ctor String-valued constructor name or function/frame number (mostly for internal
use or when defining constructors for virtual classes)

... Forwarded to new_file_block() and new_block()

file_path File path

volumes Parent namespace

Value

All blocks constructed via new_file_block() inherit from file_block.

File browser block

In order to make user data available to blockr, this block provides file- upload functionality via
shiny::fileInput(). Given that data provided in this way are only available for the life-time of
the shiny session, exported code is not self-contained and a script containing code from an upload
block is cannot be run in a new session. Also, serialization of upload blocks is currently not allowed
as the full data would have to be included during serialization.

30 new_link

Upload block

In order to make user data available to blockr, this block provides file- upload functionality via
shiny::fileInput(). Given that data provided in this way are only available for the life-time of
the shiny session, exported code is not self-contained and a script containing code from an upload
block is cannot be run in a new session. Also, serialization of upload blocks is currently not allowed
as the full data would have to be included during serialization.

new_link Board links

Description

Two blocks can be connected via a (directed) link. This means the result from one block is passed
as (data) input to the next. Source and destination are identified by from and to attributes and
in case of polyadic receiving blocks, the input attribute identified which of the data inputs is the
intended destination. In principle, the link object may be extended via sub-classing and passing
further attributes, but this has not been properly tested so far.

In addition to unique IDs, links objects are guaranteed to be consistent in that it is not possible
to have multiple links pointing to the same target (combination of to and input attributes). Fur-
thermore, links behave like edges in a directed acyclic graph (DAG) in that cycles are detected and
disallowed.

Usage

new_link(from = "", to = "", input = "", ..., class = character())

is_link(x)

as_link(x)

links(...)

is_links(x)

as_links(x)

validate_links(x)

Arguments

from, to Block ID(s)

input Block argument

... Extensibility

class (Optional) link sub-class

x Links object

new_parser_block 31

Details

A links is created via the new_link() constructor and for a vector of links, the container object
links is provided and a corresponding constructor links() exported from the package. Testing
whether an object inherits from link (or links) is available via is_link() (or is_links(), re-
spectively). Coercion to link (and links) objects is implemented as as_link() (and as_links(),
respectively). Finally, links can be validated by calling validate_links().

Value

Both new_link()/as_link(), and links()/as_links() return link and links objects, respec-
tively. Testing for inheritance is available as is_link()/is_links() and validation (for links) is
performed with validate_links(), which returns its input (x) or throws an error.

Examples

lnks <- links(from = c("a", "b"), to = c("b", "c"), input = c("x", "y"))
is_links(lnks)
names(lnks)

tryCatch(
c(lnks, new_link("a", "b", "x")),
error = function(e) conditionMessage(e)

)
tryCatch(

c(lnks, new_link("b", "a")),
error = function(e) conditionMessage(e)

)

lnks <- links(a = new_link("a", "b"), b = new_link("b", "c"))
names(lnks)

tryCatch(
c(lnks, a = new_link("a", "b")),
error = function(e) conditionMessage(e)

)

new_parser_block Parser block constructors

Description

Operating on results from blocks created via new_file_block(), parser blocks read (i.e. "parse")
a file and make the contents available to subsequent blocks for further analysis and visualization.

32 new_parser_block

Usage

new_parser_block(
server,
ui,
class,
ctor = sys.parent(),
dat_valid = is_file,
...

)

new_csv_block(sep = ",", quote = "\"", ...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass

ctor String-valued constructor name or function/frame number (mostly for internal
use or when defining constructors for virtual classes)

dat_valid (Optional) input data validator

... Forwarded to new_parser_block() and new_block()

sep, quote Forwarded to utils::read.table()

Details

If using the default validator for a parser block sub-class (i.e. not overriding the dat_valid argu-
ment in the call to new_parser_block()), the data argument corresponding to the input file name
must be file in order to match naming conventions in the validator function.

Value

All blocks constructed via new_parser_block() inherit from parser_block.

CSV block

Files in CSV format provided for example by a block created via new_file_block() may be parsed
into data.frame by CSV blocks.

new_plot_block 33

new_plot_block Plot block constructors

Description

Blocks for data visualization using base R graphics can be created via new_plot_block().

Usage

new_plot_block(server, ui, class, ctor = sys.parent(), ...)

new_scatter_block(x = character(), y = character(), ...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass

ctor String-valued constructor name or function/frame number (mostly for internal
use or when defining constructors for virtual classes)

... Forwarded to new_plot_block() and new_block()

x, y Columns to place on respective axes

Details

Due to the current block evaluation procedure, where block evaluation is separated from block
"rendering" (via shiny::renderPlot()) integration of base R graphics requires some mecha-
nism to achieve this decoupling. This is implemented by adding a plot attribute to the result of
block_eval(), generated with grDevices::recordPlot() and containing the required informa-
tion to re-create the plot at a later time. As part of block_output(), the attribute is retrieved and
passed to grDevices::replayPlot(). Consequently, any block that inherits from plot_block is
required to support this type of decoupling.

Value

All blocks constructed via new_plot_block() inherit from plot_block.

Scatter block

Mainly for demonstration purposes, this block draws a scattter plot using base::plot(). In its cur-
rent simplistic implementation, apart from axis labels (fixed to the corresponding column names),
no further plotting options are available and for any "production" application, a more sophisticated
(set of) block(s) for data visualization will most likely be required.

34 new_plugin

new_plugin Board plugin

Description

A core mechanism for extending or customizing UX aspects of the board module is a "plugin"
architecture. All plugins inherit from plugin and a sub-class is assigned to each specific plugin.
The "manage blocks" plugin for example has a class vector c("manage_blocks", "plugin"). Sets
of plugins are handled via a wrapper class plugins. Each plugin needs a server component, in most
cases accompanied by a UI component and is optionally bundled with a validator function.

Usage

new_plugin(
server,
ui = NULL,
validator = function(x, ...) x,
class = character()

)

is_plugin(x)

as_plugin(x)

board_plugins(which = NULL)

plugins(...)

is_plugins(x)

as_plugins(x)

validate_plugins(x)

Arguments

server, ui Server/UI for the plugin module

validator Validator function that validates server return values

class Plugin subclass

x Plugin object

which (Optional) character vectors of plugins to include

... Plugin objects

new_stack 35

Value

Constructors new_plugin()/plugins() return plugin and plugins objects, respectively, as do
as_plugin()/as_plugins() and validators validate_plugin()/validate_plugins(), which are
typically called for their side effects of throwing errors in case of validation failure. Inheritance
checkers is_plugin()/is_plugins() return scalar logicals and finally, the convenience function
board_plugins() returns a plugins object with all known plugins (or a selected subset thereof).

Examples

plg <- board_plugins()

is_plugins(plg)
names(plg)

plg[1:3]

is_plugin(plg[["preserve_board"]])

new_stack Stacks

Description

Multiple (related) blocks can be grouped together into stacks. Such a grouping has no functional
implications, rather it is an organizational tool to help users manage more complex pipelines. Stack
objects constitute a set of attributes, the most important of which is blocks (a character vector of
block IDs). Each stack may have an arbitrary name and the class can be extended by adding further
attributes, maybe something like color, coupled with sub-classing.

Stack container objects (stacks objects) can be created with stacks() or as_stacks() and inher-
itance can be tested via is_stacks(). Further basic operations such as concatenation, subsetting
and sub-assignments is available by means of base R generics.

Usage

new_stack(blocks = character(), name = NULL, ..., class = character())

is_stack(x)

stack_blocks(x)

stack_blocks(x) <- value

stack_name(x, name)

stack_name(x) <- value

36 new_stack

validate_stack(x)

as_stack(x)

stacks(...)

is_stacks(x)

as_stacks(x, ...)

Arguments

blocks Set of blocks

name Stack name

... Extensibility

class (Optional) stack sub-class

x Stack object

value Replacement value

Details

Individual stacks can be created using new_stack() or as_stack() and inheritance can be tested
with is_stack(). Attributes can be retrieved (and modified) with stack_blocks()/stack_blocks<-()
and stack_name()/stack_name<-(), while validation is available as (generic) validate_stack().

Value

Construction and coercion via new_stack()/as_stack() and stacks()/as_stacks() results in
stack and stacks objects, respectively, while inheritance testing via is_stack() and is_stacks()
returns scalar logicals. Attribute getters stack_name() and stack_blocks() return scalar and
vector-valued character vectors while setters stack_name()<- and stack_blocks()<- return mod-
ified stack objects.

Examples

stk <- new_stack(letters[1:5], "Alphabet 1")

stack_blocks(stk)
stack_name(stk)
stack_name(stk) <- "Alphabet start"

stks <- c(start = stk, cont = new_stack(letters[6:10], "Alphabet cont."))
names(stks)

tryCatch(
stack_blocks(stks[[2]]) <- letters[4:8],
error = function(e) conditionMessage(e)

)

new_transform_block 37

new_transform_block Transform block constructors

Description

Many data transformations are be provided by blocks constructed via new_transform_block(),
including examples where a single data.frame is transformed into another (e.g. subset_block),
and two or more data.frames are combined (e.g. merge_block or rbind_block).

Usage

new_transform_block(server, ui, class, ctor = sys.parent(), ...)

new_head_block(n = 6L, direction = c("head", "tail"), ...)

new_merge_block(by = character(), all_x = FALSE, all_y = FALSE, ...)

new_rbind_block(...)

new_subset_block(subset = "", select = "", ...)

Arguments

server A function returning shiny::moduleServer()

ui A function with a single argument (ns) returning a shiny.tag

class Block subclass

ctor String-valued constructor name or function/frame number (mostly for internal
use or when defining constructors for virtual classes)

... Forwarded to new_transform_block() and new_block()

n Number of rows

direction Either "head" or "tail"

by Column(s) tp join on

all_x, all_y Join type, see base::merge()

subset, select Expressions (passed as strings)

Value

All blocks constructed via new_transform_block() inherit from transform_block.

Head block

Row-subsetting the first or last n rows of a data.frame (as provided by utils::head() and
utils::tail()) is implemented as head_block. This is an example of a block that takes a single
data.frame as input and produces a single data.frame as output.

38 notify_user

Merge block

Joining together two data.frames, based on a set of index columns, using base::merge() is avail-
able as merge_block. Depending on values passed as all_x/all_y the result will correspond to
an "inner", "outer", "lfet" or "right" join. See base::merge() for details. This block class serves
as an example for a transform block that takes exactly two data inputs x and y to produce a single
data.frame as output.

Row-bind block

Row-wise concatenation of an arbitrary number of data.frames, as performed by base::rbind()
is available as an rbind_block. This mainly serves as an example for a variadic block via the
"special" ...args block data argument.

Subset block

This block allows to perform row and column subsetting on data.frame objects via base::subset().
Using non-standard evaluation, strings passed as subset/select arguments or entered via shiny UI
are turned into language objects by base::parse().

notify_user User notification plugin module

Description

During the evaluation cycle of each block, user notifications may be generated to inform in case
of issues such as errors or warnings. These notifications are provided in a way that display can be
controlled and adapted to specific needs. The default notify_user plugin simply displays notifica-
tions via shiny::showNotification(), with some ID management in order to be able to clear no
longer relevant notifications via shiny::removeNotification().

Usage

notify_user(server = notify_user_server, ui = NULL)

notify_user_server(id, board, ...)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board Reactive values object

... Extra arguments passed from parent scope

preserve_board 39

Value

A plugin container inheriting from notify_user is returned by notify_user(), while the UI com-
ponent (e.g. notify_user_ui()) is expected to return shiny UI (i.e. shiny::tagList(); if avail-
able) and the server component (i.e. notify_user_server()) is expected to return a shiny::reactiveVal()
or shiny::reactive() which evaluates to a list containing notifications per block and notification
type (i.e. "message", "warning" or "error").

preserve_board Serialization plugin module

Description

Board state can be preserved by serializing all contained objects and restored via de-serialization.
This mechanism can be used to power features such as save/restore (via download, as implemented
in the default preserve_board plugin), but more refined user experience is conceivable in terms of
undo/redo functionality and (automatic) saving of board state. Such enhancements can be imple-
mented in a third-party preserve_board module.

Usage

preserve_board(server = preserve_board_server, ui = preserve_board_ui)

preserve_board_server(id, board, ...)

preserve_board_ui(id, board)

Arguments

server, ui Server/UI for the plugin module

id Namespace ID

board The initial board object

... Extra arguments passed from parent scope

Value

A plugin container inheriting from preserve_board is returned by preserve_board(), while the
UI component (e.g. preserve_board_ui()) is expected to return shiny UI (i.e. shiny::tagList())
and the server component (i.e. preserve_board_server()) is expected to return a shiny::reactiveVal()
or shiny::reactive() which evaluates to NULL or a board object.

40 rand_names

rand_names Random IDs

Description

Randomly generated unique IDs are used throughout the package, created by rand_names(). If
random strings are required that may not clash with a set of existing values, this can be guaranteed
by passing them as old_names. The set of allowed characters can be controlled via chars and
non-random pre- and suffixes may be specified as prefix/suffix arguments, while uniqueness is
guaranteed including pre- and suffixes.

Usage

rand_names(
old_names = character(0L),
n = 1L,
length = 15L,
chars = letters,
prefix = "",
suffix = ""

)

Arguments

old_names Disallowed IDs

n Number of IDs to generate

length ID length

chars Allowed characters

prefix, suffix ID pre-/suffix

Value

A character vector of length n where each entry contains length characters (all among chars and
start/end with prefix/suffix), is guaranteed to be unique and not present among values passed as
old_names.

Examples

rand_names(chars = c(letters, LETTERS, 0:9))
rand_names(length = 5L)
rand_names(n = 5L, prefix = "pre-", suffix = "-suf")

register_block 41

register_block Block registry

Description

Listing of blocks is available via a block registry, which associates a block constructor with metadata
in order to provide a browsable block directory. Every constructor is identified by a unique ID (uid),
which by default is generated from the class vector (first element). If the class vector is not provided
during registration, an object is instantiated (by calling the constructor with arguments ctor and
ctor_pkg only) to derive this information. Block constructors therefore should be callable without
block- specific arguments.

Usage

register_block(
ctor,
name,
description,
classes = NULL,
uid = NULL,
category = "uncategorized",
package = NULL,
overwrite = FALSE

)

list_blocks()

unregister_blocks(uid = list_blocks())

register_blocks(...)

available_blocks()

create_block(id, ...)

Arguments

ctor Block constructor
name, description

Metadata describing the block

classes Block classes

uid Unique ID for a registry entry

category Useful to sort blocks by topics. If not specified, blocks are uncategorized.

package Package where constructor is defined (or NULL)

overwrite Overwrite existing entry

42 serve

... Forwarded to register_block()

id Block ID as reported by list_blocks()

Details

Due to current requirements for serialization/deserialization, we keep track the constructor that was
used for block instantiation. This works most reliable whenever a block constructor is an exported
function from a package as this function is guaranteed to be available in a new session (give the
package is installed in an appropriate version). While it is possible to register a block passing a
"local" function as ctor, this may introduce failure modes that are less obvious (for example when
such a constructor calls another function that is only defined within the scope of the session). It is
therefore encouraged to only rely on exported function constructors. These can also be passed as
strings and together with the value of package, the corresponding function can easily be retrieved
in any session.

Blocks can be registered (i.e. added to the registry) via register_block() with scalar-valued
arguments and register_blocks(), where arguments may be vector-valued, while de-registration
(or removal) is handled via unregister_blocks(). A listing of all available blocks can be created
as list_blocks(), which will return registry IDs and available_blocks(), which provides a set
of (named) registry_entry objects. Finally, block construction via a registry ID is available as
create_block().

Value

register_block() and register_blocks() are invoked for their side effects and return registry_entry
object(s) invisibly, while unregister_blocks() returns NULL (invisibly). Listing via list_blocks()
returns a character vector and a list of registry_entry object(s) for available_blocks(). Fi-
nally, create_block() returns a newly instantiated block object.

Examples

blks <- list_blocks()
register_block("new_dataset_block", "Test", "Registry test",

uid = "test_block", package = "blockr.core")
new <- setdiff(list_blocks(), blks)
unregister_blocks(new)
setequal(list_blocks(), blks)

serve Serve object

Description

Intended as entry point to start up a shiny app, the generic function serve() can be dispatched
either on a single block (mainly for previewing purposes during block development) or an entire
board

stack_ui 43

Usage

serve(x, ...)

S3 method for class 'block'
serve(x, id = "block", ..., data = list())

S3 method for class 'board'
serve(x, id = rand_names(), plugins = board_plugins(), ...)

Arguments

x Object

... Generic consistency

id Board namespace ID

data Data inputs

plugins Board plugins

Value

The generic serve() is expected to return the result of a call to shiny::shinyApp().

Examples in Shinylive

example-1 Open in Shinylive

example-2 Open in Shinylive

stack_ui Stack UI

Description

Several generics are exported in order to integrate stack UI into board UI. We have stack_ui()
which is dispatched on the board (and in the default implementation) on individual stack objects.
This renders stacks as bootstrap accordion items (using bslib::accordion()). If a different way
of displaying stacks and integrating them with a board is desired, this can be implemented by
introducing a board subclass and providing a stack_ui() method for that subclass. Inserting stacks
into (and removing stacks from) a board is available as insert_stack_ui()/remove_stack_ui()
and blocks into/from stacks via add_block_to_stack()/remove_block_from_stack(). All are
S3 generics with implementations for board and alternative implementation may be provided for
board sub-classes.

https://shinylive.io/r/app/#code=NobwRAdghgtgpmAXGKAHVA6ASmANGAYwHsIAXOMpMAdzgCMAnRRASwgGdSoAbbgCgA6YOtyIEA1gwzEGcIbgAEs1EXYKAvAqEALUqVTtEAeiMEAnhElQMAcxaltAVzoYWRIyLGSMtOliNCAJQCENwsjFAMZnyeElIycMEccAwAbnCCEAoKEHDUAPrwDDZw+bHigmAAKizwQbgh2QAmUFwaCmGcmdnZAB7tLVzscKSGiABCAPIAIg1ZPWYDrVDDo8wAwtosEgDqcCw2uo0KSYFgAL4AukA
https://shinylive.io/r/app/#code=NobwRAdghgtgpmAXGKAHVA6ASmANGAYwHsIAXOMpMAdzgCMAnRRASwgGdSoAbbgCgA6YOtyIEA1gwzEGcIbgAEs1EXYKAvAqEALUqVTtEAeiMEAnhElQMAcxaltAVzoYWRIyLGSMtOliNCAJQCENwsjFAMZnyeElIycMEccAwAbnCCEAoKEHDUAPp0RJEAJpnZ2bHiapoE5RXZUBo5efklUFzscKSFohKCYABCAPIAIkG4IQ2VzbkF7Z3dvV4DAMLaLBIA6nAsNroTU9MEs63wDDZwy-1CACos8EFH2YGTWRVhljUKdc8VUCdNHN8p9xAMoPItIRIUIAB6Hd4NOiAloFUEDOgw6F4KFmJ6IhSvP6cAHVZphTh8AHNX4oLEEIJJF4hQJgAC+AF0gA

44 stack_ui

Usage

stack_ui(id, x, ...)

S3 method for class 'board'
stack_ui(id, x, stacks = NULL, edit_ui = NULL, ...)

S3 method for class 'stack'
stack_ui(id, x, edit_ui = NULL, ...)

insert_stack_ui(
id,
x,
board,
edit_ui = NULL,
session = getDefaultReactiveDomain(),
...

)

S3 method for class 'board'
insert_stack_ui(
id,
x,
board,
edit_ui = NULL,
session = getDefaultReactiveDomain(),
...

)

remove_stack_ui(id, board, session = getDefaultReactiveDomain(), ...)

S3 method for class 'board'
remove_stack_ui(id, board, session = getDefaultReactiveDomain(), ...)

add_block_to_stack(
board,
block_id,
stack_id,
session = getDefaultReactiveDomain(),
...

)

S3 method for class 'board'
add_block_to_stack(
board,
block_id,
stack_id,
session = getDefaultReactiveDomain(),
...

write_log 45

)

remove_block_from_stack(
board,
block_id,
board_id,
session = getDefaultReactiveDomain(),
...

)

S3 method for class 'board'
remove_block_from_stack(
board,
block_id,
board_id,
session = getDefaultReactiveDomain(),
...

)

Arguments

id Parent namespace

x Object

... Generic consistency

stacks (Additional) stacks (or IDs) for which to generate the UI

edit_ui Stack edit plugin

board Board object

session Shiny session

block_id, stack_id, board_id
Block/stack/board IDs

Value

UI set up via stack_ui() is expected to return shiny::tag() or shiny::tagList() objects while
stack/block insertion/removal functions (into/from board/stack objects) are called for their side-
effects. Both insert_stack_ui()/remove_stack_ui and add_block_to_stack()/remove_block_from_stack()
return NULL invisibly and where the former call shiny::insertUI()/shiny::removeUI() and the
latter modify the DOM via shiny::session custom messages.

write_log Logging

46 write_log

Description

Internally used infrastructure for emitting log messages is exported, hoping that other packages
which depend on this, use it and thereby logging is carried out consistently both in terms of presen-
tation and output device. All log messages are associated with an (ordered) level ("fatal", "error",
"warn", "info", "debug" or "trace") which is compared against the currently set value (available
as get_log_level()) and output is only generated if the message level is greater or equal to the
currently set value.

Usage

write_log(..., level = "info")

log_fatal(...)

log_error(...)

log_warn(...)

log_info(...)

log_debug(...)

log_trace(...)

as_log_level(level)

get_log_level()

cnd_logger(msg, level)

cat_logger(msg, level)

Arguments

... Concatenated as paste0(..., "\n")

level Logging level (possible values are "fatal", "error", "warn", "info", "debug" and
"trace"

msg Message (string)

Value

Logging function write_log(), wrappers log_*() and loggers provided as cnd_logger()/cat_logger()
all return NULL invisibly and are called for their side effect of emitting a message. Helpers as_log_level()
and get_log_level() return a scalar-valued ordered factor.

Index

add_block_to_stack (stack_ui), 43
as_block (new_block), 23
as_blocks (new_block), 23
as_board_options (board_options), 12
as_link (new_link), 30
as_links (new_link), 30
as_log_level (write_log), 45
as_plugin (new_plugin), 34
as_plugins (new_plugin), 34
as_stack (new_stack), 35
as_stacks (new_stack), 35
available_blocks (register_block), 41
available_stack_blocks (board_blocks),

10

base::bquote(), 24
base::c(), 24
base::getOption(), 2
base::merge(), 24, 37, 38
base::options(), 3
base::parse(), 38
base::plot(), 33
base::rbind(), 7, 24, 38
base::subset(), 38
base::Sys.getenv(), 2
block_arity (block_name), 6
block_eval (block_server), 7
block_eval(), 33
block_inputs (block_name), 6
block_name, 6
block_name<- (block_name), 6
block_output (block_ui), 9
block_output(), 8, 25, 33
block_server, 7
block_server(), 9
block_summary (edit_block), 16
block_ui, 9
block_ui(), 8, 15, 25
blockr_deser (blockr_ser), 3
blockr_option, 2

blockr_ser, 3
blocks (new_block), 23
board_block_ids (board_blocks), 10
board_blocks, 10
board_blocks(), 26
board_blocks<- (board_blocks), 10
board_link_ids (board_blocks), 10
board_links (board_blocks), 10
board_links<- (board_blocks), 10
board_option (board_options), 12
board_options, 12
board_plugins (new_plugin), 34
board_server, 14
board_server(), 15
board_stack_ids (board_blocks), 10
board_stacks (board_blocks), 10
board_stacks<- (board_blocks), 10
board_ui (board_ui.board_options), 15
board_ui.board_options, 15
bslib::accordion(), 43
bslib::card(), 10

cat_logger (write_log), 45
cnd_logger (write_log), 45
create_block (register_block), 41

DT::dataTableOutput(), 10
DT::renderDT(), 10

edit_block, 16
edit_block_server (edit_block), 16
edit_block_ui (edit_block), 16
edit_stack, 17
edit_stack_server (edit_stack), 17
edit_stack_ui (edit_stack), 17
expr_server (block_server), 7
expr_ui (block_ui), 9

from_json (blockr_ser), 3

generate_code, 18

47

48 INDEX

generate_code_server (generate_code), 18
generate_code_ui (generate_code), 18
get_log_level (write_log), 45
grDevices::recordPlot(), 33
grDevices::replayPlot(), 33

insert_block_ui
(board_ui.board_options), 15

insert_stack_ui (stack_ui), 43
is_acyclic (is_acyclic.board), 19
is_acyclic.board, 19
is_block (new_block), 23
is_blocks (new_block), 23
is_board (new_board), 26
is_board_options (board_options), 12
is_link (new_link), 30
is_links (new_link), 30
is_plugin (new_plugin), 34
is_plugins (new_plugin), 34
is_stack (new_stack), 35
is_stacks (new_stack), 35

links (new_link), 30
list_blocks (register_block), 41
list_board_options (board_options), 12
log_debug (write_log), 45
log_error (write_log), 45
log_fatal (write_log), 45
log_info (write_log), 45
log_trace (write_log), 45
log_warn (write_log), 45

manage_blocks, 20
manage_blocks_server (manage_blocks), 20
manage_blocks_ui (manage_blocks), 20
manage_links, 21
manage_links_server (manage_links), 21
manage_links_ui (manage_links), 21
manage_stacks, 22
manage_stacks_server (manage_stacks), 22
manage_stacks_ui (manage_stacks), 22
modify_board_links (board_blocks), 10
modify_board_stacks (board_blocks), 10

new_block, 23
new_block(), 7–9, 28, 29, 32, 33, 37
new_board, 26
new_board(), 10
new_board_options (board_options), 12

new_board_options(), 10
new_csv_block (new_parser_block), 31
new_data_block, 28
new_data_block(), 29
new_dataset_block (new_data_block), 28
new_file_block, 29
new_file_block(), 31, 32
new_filebrowser_block (new_file_block),

29
new_head_block (new_transform_block), 37
new_link, 30
new_merge_block (new_transform_block),

37
new_merge_block(), 24
new_parser_block, 31
new_plot_block, 33
new_plugin, 34
new_rbind_block (new_transform_block),

37
new_scatter_block (new_plot_block), 33
new_stack, 35
new_static_block (new_data_block), 28
new_subset_block (new_transform_block),

37
new_transform_block, 37
new_transform_block(), 9
new_upload_block (new_file_block), 29
notify_user, 38
notify_user_server (notify_user), 38

plugins (new_plugin), 34
preserve_board, 39
preserve_board_server (preserve_board),

39
preserve_board_ui (preserve_board), 39

rand_names, 40
register_block, 41
register_blocks (register_block), 41
remove_block_from_stack (stack_ui), 43
remove_block_ui

(board_ui.board_options), 15
remove_stack_ui (stack_ui), 43
rm_blocks (board_blocks), 10

serve, 42
shiny::fileInput(), 29, 30
shiny::insertUI(), 16, 45

INDEX 49

shiny::moduleServer(), 8, 14, 23, 24, 28,
29, 32, 33, 37

shiny::reactive(), 24, 25, 39
shiny::reactiveVal(), 20–22, 24, 39
shiny::reactiveValues(), 24
shiny::removeNotification(), 38
shiny::removeUI(), 16, 45
shiny::renderPlot(), 33
shiny::session, 45
shiny::shinyApp(), 43
shiny::showNotification(), 38
shiny::tag, 16
shiny::tag(), 45
shiny::tagList(), 10, 16–18, 20–22, 39, 45
stack_blocks (new_stack), 35
stack_blocks<- (new_stack), 35
stack_name (new_stack), 35
stack_name<- (new_stack), 35
stack_ui, 43
stack_ui(), 15
stacks (new_stack), 35

to_json (blockr_ser), 3
topo_sort (is_acyclic.board), 19

unregister_blocks (register_block), 41
update_ui (board_ui.board_options), 15
utils::head(), 24, 37
utils::read.table(), 32
utils::tail(), 37

validate_board (new_board), 26
validate_board_options (board_options),

12
validate_data_inputs (block_name), 6
validate_data_inputs(), 8
validate_links (new_link), 30
validate_plugins (new_plugin), 34
validate_stack (new_stack), 35

write_log, 45

	blockr_option
	blockr_ser
	block_name
	block_server
	block_ui
	board_blocks
	board_options
	board_server
	board_ui.board_options
	edit_block
	edit_stack
	generate_code
	is_acyclic.board
	manage_blocks
	manage_links
	manage_stacks
	new_block
	new_board
	new_data_block
	new_file_block
	new_link
	new_parser_block
	new_plot_block
	new_plugin
	new_stack
	new_transform_block
	notify_user
	preserve_board
	rand_names
	register_block
	serve
	stack_ui
	write_log
	Index

