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arf-package arf: Adversarial Random Forests

Description

Adversarial random forests (ARFs) recursively partition data into fully factorized leaves, where
features are jointly independent. The procedure is iterative, with alternating rounds of genera-
tion and discrimination. Data becomes increasingly realistic at each round, until original and
synthetic samples can no longer be reliably distinguished. This is useful for several unsuper-
vised learning tasks, such as density estimation and data synthesis. Methods for both are im-
plemented in this package. ARFs naturally handle unstructured data with mixed continuous and
categorical covariates. They inherit many of the benefits of random forests, including speed,
flexibility, and solid performance with default parameters. For details, see Watson et al. (2023)
https://proceedings.mlr.press/v206/watson23a.html.

Author(s)

Maintainer: Marvin N. Wright <cran@wrig.de> (ORCID)

Authors:

• David S. Watson <david.s.watson11@gmail.com> (ORCID)

• Kristin Blesch (ORCID)

• Jan Kapar (ORCID)
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See Also

adversarial_rf, forde, forge, expct, lik

Useful links:

• https://github.com/bips-hb/arf

• https://bips-hb.github.io/arf/

• Report bugs at https://github.com/bips-hb/arf/issues

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# Generate 100 synthetic samples from the iris dataset
x_synth <- forge(psi, n_synth = 100)

# Condition on Species = "setosa" and Sepal.Length > 6
evi <- data.frame(Species = "setosa",

Sepal.Length = "(6, Inf)")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Estimate average log-likelihood
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)

# Expectation of Sepal.Length for class setosa
evi <- data.frame(Species = "setosa")
expct(psi, query = "Sepal.Length", evidence = evi)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

adversarial_rf Adversarial Random Forests

Description

Implements an adversarial random forest to learn independence-inducing splits.

https://github.com/bips-hb/arf
https://bips-hb.github.io/arf/
https://github.com/bips-hb/arf/issues
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Usage

adversarial_rf(
x,
num_trees = 10L,
min_node_size = 2L,
delta = 0,
max_iters = 10L,
early_stop = TRUE,
prune = TRUE,
verbose = TRUE,
parallel = TRUE,
...

)

Arguments

x Input data. Integer variables are recoded as ordered factors with a warning. See
Details.

num_trees Number of trees to grow in each forest. The default works well for most gen-
erative modeling tasks, but should be increased for likelihood estimation. See
Details.

min_node_size Minimal number of real data samples in leaf nodes.

delta Tolerance parameter. Algorithm converges when OOB accuracy is < 0.5 +
delta.

max_iters Maximum iterations for the adversarial loop.

early_stop Terminate loop if performance fails to improve from one round to the next?

prune Impose min_node_size by pruning?

verbose Print discriminator accuracy after each round? Will also show additional warn-
ings.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel
or doFuture; see examples.

... Extra parameters to be passed to ranger.

Details

The adversarial random forest (ARF) algorithm partitions data into fully factorized leaves where
features are jointly independent. ARFs are trained iteratively, with alternating rounds of generation
and discrimination. In the first instance, synthetic data is generated via independent bootstraps
of each feature, and a RF classifier is trained to distinguish between real and fake samples. In
subsequent rounds, synthetic data is generated separately in each leaf, using splits from the previous
forest. This creates increasingly realistic data that satisfies local independence by construction. The
algorithm converges when a RF cannot reliably distinguish between the two classes, i.e. when OOB
accuracy falls below 0.5 + delta.

ARFs are useful for several unsupervised learning tasks, such as density estimation (see forde)
and data synthesis (see forge). For the former, we recommend increasing the number of trees for
improved performance (typically on the order of 100-1000 depending on sample size).
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Integer variables are recoded with a warning (set verbose = FALSE to silence these). Default be-
havior is to convert integer variables with six or more unique values to numeric, while those with
up to five unique values are treated as ordered factors. To override this behavior, explicitly recode
integer variables to the target type prior to training.

Note: convergence is not guaranteed in finite samples. The max_iters argument sets an upper
bound on the number of training rounds. Similar results may be attained by increasing delta. Even
a single round can often give good performance, but data with strong or complex dependencies
may require more iterations. With the default early_stop = TRUE, the adversarial loop terminates
if performance does not improve from one round to the next, in which case further training may be
pointless.

Value

A random forest object of class ranger.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, forde, forge, expct, lik

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# Generate 100 synthetic samples from the iris dataset
x_synth <- forge(psi, n_synth = 100)

# Condition on Species = "setosa" and Sepal.Length > 6
evi <- data.frame(Species = "setosa",

Sepal.Length = "(6, Inf)")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Estimate average log-likelihood
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)

# Expectation of Sepal.Length for class setosa
evi <- data.frame(Species = "setosa")
expct(psi, query = "Sepal.Length", evidence = evi)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)
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# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

darf Shortcut likelihood function

Description

Calls adversarial_rf, forde and lik. For repeated application, it is faster to save outputs of
adversarial_rf and forde and pass them via ... or directly use lik.

Usage

darf(x, query = NULL, ...)

Arguments

x Input data. Integer variables are recoded as ordered factors with a warning. See
Details.

query Data frame of samples, optionally comprising just a subset of training features.
See Details of lik. Is set to x if zero.

... Extra parameters to be passed to adversarial_rf, forde and lik.

Value

A vector of likelihoods, optionally on the log scale. A dataset of n_synth synthetic samples or of
nrow(x) synthetic samples if n_synth is undefined.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, forge
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Examples

# Estimate log-likelihoods
ll <- darf(iris)

# Partial evidence query
ll <- darf(iris, query = iris[1, 1:3])

# Condition on Species = "setosa"
ll <- darf(iris, query = iris[1, 1:3], evidence = data.frame(Species = "setosa"))

earf Shortcut expectation function

Description

Calls adversarial_rf, forde and expct. For repeated application, it is faster to save outputs of
adversarial_rf and forde and pass them via ... or directly use expct.

Usage

earf(x, ...)

Arguments

x Input data. Integer variables are recoded as ordered factors with a warning. See
Details.

... Extra parameters to be passed to adversarial_rf, forde and expct.

Value

A one row data frame with values for all query variables.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, expct
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Examples

# What is the expected values of each feature?
earf(iris)

#' # What is the expected values of Sepal.Length?
earf(iris, query = "Sepal.Length")

# What if we condition on Species = "setosa"?
earf(iris, query = "Sepal.Length", evidence = data.frame(Species = "setosa"))

expct Expected Value

Description

Compute the expectation of some query variable(s), optionally conditioned on some event(s).

Usage

expct(
params,
query = NULL,
evidence = NULL,
evidence_row_mode = c("separate", "or"),
round = FALSE,
nomatch = c("force", "na"),
verbose = TRUE,
stepsize = 0,
parallel = TRUE

)

Arguments

params Circuit parameters learned via forde.
query Optional character vector of variable names. Estimates will be computed for

each. If NULL, all variables other than those in evidence will be estimated.
If evidence contains NAs, those values will be imputed and a full dataset is
returned.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities and intervals; or (3)
a posterior distribution over leaves. See Details and Examples.

evidence_row_mode

Interpretation of rows in multi-row evidence. If "separate", each row in evidence
is a unique conditioning event for which n_synth synthetic samples are gener-
ated. If "or", the rows are combined with a logical OR. See Examples.
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round Round continuous variables to their respective maximum precision in the real
data set?

nomatch What to do if no leaf matches a condition in evidence? Options are to force
sampling from a random leaf ("force") or return NA ("na"). The default is
"force".

verbose Show warnings, e.g. when no leaf matches a condition?

stepsize How many rows of evidence should be handled at each step? Defaults to nrow(evidence)
/ num_registered_workers for parallel == TRUE.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel
or doFuture; see Examples.

Details

This function computes expected values for any subset of features, optionally conditioned on some
event(s).

There are three methods for (optionally) encoding conditioning events via the evidence argument.
The first is to provide a partial sample, where some columns from the training data are missing or
set to NA. The second is to provide a data frame with condition events. This supports inequalities and
intervals. Alternatively, users may directly input a pre-calculated posterior distribution over leaves,
with columns f_idx and wt. This may be preferable for complex constraints. See Examples.

Please note that results for continuous features which are both included in query and in evidence
with an interval condition are currently inconsistent.

Value

A one row data frame with values for all query variables.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, forge, lik

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# What is the expected value of Sepal.Length?
expct(psi, query = "Sepal.Length")

# What if we condition on Species = "setosa"?
evi <- data.frame(Species = "setosa")
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expct(psi, query = "Sepal.Length", evidence = evi)

# Compute expectations for all features other than Species
expct(psi, evidence = evi)

# Condition on Species = "setosa" and Petal.Width > 0.3
evi <- data.frame(Species = "setosa",

Petal.Width = ">0.3")
expct(psi, evidence = evi)

# Condition on first two rows with some missing values
evi <- iris[1:2,]
evi[1, 1] <- NA_real_
evi[1, 5] <- NA_character_
evi[2, 2] <- NA_real_
x_synth <- expct(psi, evidence = evi)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

forde Forests for Density Estimation

Description

Uses a pre-trained ARF model to estimate leaf and distribution parameters.

Usage

forde(
arf,
x,
oob = FALSE,
family = "truncnorm",
finite_bounds = c("no", "local", "global"),
alpha = 0,
epsilon = 0,
parallel = TRUE

)
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Arguments

arf Pre-trained adversarial_rf. Alternatively, any object of class ranger.

x Training data for estimating parameters.

oob Only use out-of-bag samples for parameter estimation? If TRUE, x must be the
same dataset used to train arf. Set to "inbag" to only use in-bag samples.
Default is FALSE, i.e. use all observations.

family Distribution to use for density estimation of continuous features. Current op-
tions include truncated normal (the default family = "truncnorm") and uniform
(family = "unif"). See Details.

finite_bounds Impose finite bounds on all continuous variables? If "local", infinite bounds
are set to empirical extrema within leaves. If "global", infinite bounds are
set to global empirical extrema. if "no" (the default), infinite bounds are left
unchanged.

alpha Optional pseudocount for Laplace smoothing of categorical features. This avoids
zero-mass points when test data fall outside the support of training data. Effec-
tively parameterizes a flat Dirichlet prior on multinomial likelihoods.

epsilon Optional slack parameter on empirical bounds when finite_bounds != "no".
This avoids zero-density points when test data fall outside the support of training
data. The gap between lower and upper bounds is expanded by a factor of 1 +
epsilon.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel
or doFuture; see examples.

Details

forde extracts leaf parameters from a pretrained forest and learns distribution parameters for data
within each leaf. The former includes coverage (proportion of data falling into the leaf) and split
criteria. The latter includes proportions for categorical features and mean/variance for continuous
features. The result is a probabilistic circuit, stored as a data.table, which can be used for various
downstream inference tasks.

Currently, forde only provides support for a limited number of distributional families: truncated
normal or uniform for continuous data, and multinomial for discrete data.

Though forde was designed to take an adversarial random forest as input, the function’s first ar-
gument can in principle be any object of class ranger. This allows users to test performance with
alternative pipelines (e.g., with supervised forest input). There is also no requirement that x be
the data used to fit arf, unless oob = TRUE. In fact, using another dataset here may protect against
overfitting. This connects with Wager & Athey’s (2018) notion of "honest trees".

Value

A list with 5 elements: (1) parameters for continuous data; (2) parameters for discrete data; (3)
leaf indices and coverage; (4) metadata on variables; and (5) the data input class. This list is used
for estimating likelihoods with lik and generating data with forge.
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References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using
random forests. J. Am. Stat. Assoc., 113(523): 1228-1242.

See Also

arf, adversarial_rf, forge, expct, lik

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# Generate 100 synthetic samples from the iris dataset
x_synth <- forge(psi, n_synth = 100)

# Condition on Species = "setosa" and Sepal.Length > 6
evi <- data.frame(Species = "setosa",

Sepal.Length = "(6, Inf)")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Estimate average log-likelihood
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)

# Expectation of Sepal.Length for class setosa
evi <- data.frame(Species = "setosa")
expct(psi, query = "Sepal.Length", evidence = evi)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

forge Forests for Generative Modeling
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Description

Uses pre-trained FORDE model to simulate synthetic data.

Usage

forge(
params,
n_synth,
evidence = NULL,
evidence_row_mode = c("separate", "or"),
round = TRUE,
sample_NAs = FALSE,
nomatch = c("force", "na"),
verbose = TRUE,
stepsize = 0,
parallel = TRUE

)

Arguments

params Circuit parameters learned via forde.

n_synth Number of synthetic samples to generate.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities; or (3) a posterior
distribution over leaves. See Details.

evidence_row_mode

Interpretation of rows in multi-row evidence. If "separate", each row in evidence
is a unique conditioning event for which n_synth synthetic samples are gener-
ated. If "or", the rows are combined with a logical OR. See Examples.

round Round continuous variables to their respective maximum precision in the real
data set?

sample_NAs Sample NAs respecting the probability for missing values in the original data?

nomatch What to do if no leaf matches a condition in evidence? Options are to force
sampling from a random leaf ("force") or return NA ("na"). The default is
"force".

verbose Show warnings, e.g. when no leaf matches a condition?

stepsize How many rows of evidence should be handled at each step? Defaults to nrow(evidence)
/ num_registered_workers for parallel == TRUE.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel
or doFuture; see examples.

Details

forge simulates a synthetic dataset of n_synth samples. First, leaves are sampled in proportion
to either their coverage (if evidence = NULL) or their posterior probability. Then, each feature
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is sampled independently within each leaf according to the probability mass or density function
learned by forde. This will create realistic data so long as the adversarial RF used in the previous
step satisfies the local independence criterion. See Watson et al. (2023).

There are three methods for (optionally) encoding conditioning events via the evidence argument.
The first is to provide a partial sample, where some columns from the training data are missing or
set to NA. The second is to provide a data frame with condition events. This supports inequalities and
intervals. Alternatively, users may directly input a pre-calculated posterior distribution over leaves,
with columns f_idx and wt. This may be preferable for complex constraints. See Examples.

Value

A dataset of n_synth synthetic samples.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, expct, lik

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# Generate 100 synthetic samples from the iris dataset
x_synth <- forge(psi, n_synth = 100)

# Condition on Species = "setosa"
evi <- data.frame(Species = "setosa")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Condition on Species = "setosa" and Sepal.Length > 6
evi <- data.frame(Species = "setosa",

Sepal.Length = "(6, Inf)")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Alternative syntax for </> conditions
evi <- data.frame(Sepal.Length = ">6")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Negation condition, i.e. all classes except "setosa"
evi <- data.frame(Species = "!setosa")
x_synth <- forge(psi, n_synth = 100, evidence = evi)

# Condition on first two data rows with some missing values
evi <- iris[1:2,]
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evi[1, 1] <- NA_real_
evi[1, 5] <- NA_character_
evi[2, 2] <- NA_real_
x_synth <- forge(psi, n_synth = 1, evidence = evi)

# Or just input some distribution on leaves
# (Weights that do not sum to unity are automatically scaled)
n_leaves <- nrow(psi$forest)
evi <- data.frame(f_idx = psi$forest$f_idx, wt = rexp(n_leaves))
x_synth <- forge(psi, n_synth = 100, evidence = evi)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

impute Missing value imputation with ARF

Description

Perform single or multiple imputation with ARFs. Calls adversarial_rf, forde and expct/forge.

Usage

impute(
x,
m = 1,
expectation = ifelse(m == 1, TRUE, FALSE),
num_trees = 100L,
min_node_size = 10L,
round = TRUE,
finite_bounds = "local",
epsilon = 1e-14,
verbose = FALSE,
...

)

Arguments

x Input data.

m Number of imputed datasets to generate. The default is single imputation (m =
1).
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expectation Return expected value instead of multiple imputations. By default, for single
imputation (m = 1), the expected value is returned.

num_trees Number of trees to grow in the ARF.

min_node_size Minimal number of real data samples in leaf nodes.

round Round continuous variables to their respective maximum precision in the real
data set?

finite_bounds Impose finite bounds on all continuous variables? See forde.

epsilon Slack parameter on empirical bounds; see forde.

verbose Print progress for adversarial_rf?

... Extra parameters to be passed to adversarial_rf, forde and expct/forge.

Value

Imputed data. A single dataset is returned for m = 1, a list of datasets for m > 1.

See Also

arf, forde, forge, expct, lik

Examples

# Generate some missings
iris_na <- iris
for (j in 1:ncol(iris)) {

iris_na[sample(1:nrow(iris), 5), j] <- NA
}

# Single imputation
iris_imputed <- arf::impute(iris_na, num_trees = 10, m = 1)

# Multiple imputation
iris_imputed <- arf::impute(iris_na, num_trees = 10, m = 10)

## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)
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lik Likelihood Estimation

Description

Compute the likelihood of input data, optionally conditioned on some event(s).

Usage

lik(
params,
query,
evidence = NULL,
arf = NULL,
oob = FALSE,
log = TRUE,
batch = NULL,
parallel = TRUE

)

Arguments

params Circuit parameters learned via forde.

query Data frame of samples, optionally comprising just a subset of training fea-
tures. Likelihoods will be computed for each sample. Missing features will
be marginalized out. See Details.

evidence Optional set of conditioning events. This can take one of three forms: (1) a
partial sample, i.e. a single row of data with some but not all columns; (2) a data
frame of conditioning events, which allows for inequalities; or (3) a posterior
distribution over leaves. See Details.

arf Pre-trained adversarial_rf or other object of class ranger. This is not re-
quired but speeds up computation considerably for total evidence queries. (Ig-
nored for partial evidence queries.)

oob Only use out-of-bag leaves for likelihood estimation? If TRUE, x must be the
same dataset used to train arf. Only applicable for total evidence queries.

log Return likelihoods on log scale? Recommended to prevent underflow.

batch Batch size. The default is to compute densities for all of queries in one round,
which is always the fastest option if memory allows. However, with large sam-
ples or many trees, it can be more memory efficient to split the data into batches.
This has no impact on results.

parallel Compute in parallel? Must register backend beforehand, e.g. via doParallel
or doFuture; see examples.
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Details

This function computes the likelihood of input data, optionally conditioned on some event(s).
Queries may be partial, i.e. covering some but not all features, in which case excluded variables
will be marginalized out.

There are three methods for (optionally) encoding conditioning events via the evidence argument.
The first is to provide a partial sample, where some but not all columns from the training data are
present. The second is to provide a data frame with three columns: variable, relation, and
value. This supports inequalities via relation. Alternatively, users may directly input a pre-
calculated posterior distribution over leaves, with columns f_idx and wt. This may be preferable
for complex constraints. See Examples.

Value

A vector of likelihoods, optionally on the log scale.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, forge, expct

Examples

# Train ARF and estimate leaf parameters
arf <- adversarial_rf(iris)
psi <- forde(arf, iris)

# Estimate average log-likelihood
ll <- lik(psi, iris, arf = arf, log = TRUE)
mean(ll)

# Identical but slower
ll <- lik(psi, iris, log = TRUE)
mean(ll)

# Partial evidence query
lik(psi, query = iris[1, 1:3])

# Condition on Species = "setosa"
evi <- data.frame(Species = "setosa")
lik(psi, query = iris[1, 1:3], evidence = evi)

# Condition on Species = "setosa" and Petal.Width > 0.3
evi <- data.frame(Species = "setosa",

Petal.Width = ">0.3")
lik(psi, query = iris[1, 1:3], evidence = evi)
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## Not run:
# Parallelization with doParallel
doParallel::registerDoParallel(cores = 4)

# ... or with doFuture
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)

## End(Not run)

rarf Shortcut sampling function

Description

Calls adversarial_rf, forde and forge. For repeated application, it is faster to save outputs of
adversarial_rf and forde and pass them via ... or directly use forge.

Usage

rarf(x, n_synth = NULL, ...)

Arguments

x Input data. Integer variables are recoded as ordered factors with a warning. See
Details.

n_synth Number of synthetic samples to generate for unconditional generation with no
evidence given. Number of synthetic samples to generate per evidence row if
evidence is provided. If NULL, defaults to nrow(x) if no evidence is provided
and to 1 otherwise.

... Extra parameters to be passed to adversarial_rf, forde and forge.

Value

A dataset of n_synth synthetic samples or of nrow(x) synthetic samples if n_synth is undefined.

References

Watson, D., Blesch, K., Kapar, J., & Wright, M. (2023). Adversarial random forests for density es-
timation and generative modeling. In Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics, pp. 5357-5375.

See Also

arf, adversarial_rf, forde, forge
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Examples

# Generate 150 (size of original iris dataset) synthetic samples from the iris dataset
x_synth <- rarf(iris)

# Generate 100 synthetic samples from the iris dataset
x_synth <- rarf(iris, n_synth = 100)

# Condition on Species = "setosa"
x_synth <- rarf(iris, evidence = data.frame(Species = "setosa"))
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