
Package ‘WVPlots’
January 20, 2025

Type Package

Title Common Plots for Analysis

Version 1.3.8

Date 2024-04-22

URL https://github.com/WinVector/WVPlots,

https://winvector.github.io/WVPlots/

Maintainer John Mount <jmount@win-vector.com>

BugReports https://github.com/WinVector/WVPlots/issues

Description Select data analysis plots, under a standardized calling interface imple-
mented on top of 'ggplot2' and 'plotly'.
Plots of interest include: 'ROC', gain curve, scatter plot with marginal distributions,
conditioned scatter plot with marginal densities,
box and stem with matching theoretical distribution, and density with matching theoretical distri-
bution.

License GPL-2 | GPL-3

VignetteBuilder knitr

Depends R (>= 3.4.0), wrapr (>= 2.0.9)

Imports ggplot2 (>= 3.4.0), sigr (>= 1.1.4), cdata (>= 1.2.0),
rqdatatable (>= 1.3.1), rquery (>= 1.4.9), rlang, utils, grid,
gridExtra, graphics, grDevices, mgcv, stats

Suggests data.table, knitr, rmarkdown, plotly, hexbin, tinytest

RoxygenNote 7.2.3

ByteCompile true

NeedsCompilation no

Author John Mount [aut, cre],
Nina Zumel [aut],
Win-Vector LLC [cph]

Repository CRAN

Date/Publication 2024-04-22 20:40:07 UTC

1

https://github.com/WinVector/WVPlots
https://winvector.github.io/WVPlots/
https://github.com/WinVector/WVPlots/issues

2 Contents

Contents

WVPlots-package . 3
BinaryYScatterPlot . 4
ClevelandDotPlot . 5
ConditionalSmoothedScatterPlot . 6
DiscreteDistribution . 8
DoubleDensityPlot . 9
DoubleHistogramPlot . 10
GainCurvePlot . 12
GainCurvePlotC . 13
GainCurvePlotList . 15
GainCurvePlotWithNotation . 16
HexBinPlot . 18
LiftCurvePlot . 20
LiftCurvePlotList . 21
LogLogPlot . 22
MetricPairPlot . 24
PairPlot . 26
PlotDistCountBinomial . 27
PlotDistCountNormal . 29
PlotDistDensityBeta . 30
PlotDistDensityNormal . 31
PlotDistHistBeta . 33
plotlyROC . 34
plot_fit_trajectory . 35
plot_Keras_fit_trajectory . 37
PRPlot . 39
PRTPlot . 40
ROCPlot . 42
ROCPlotList . 45
ROCPlotPair . 46
ROCPlotPair2 . 48
ScatterBoxPlot . 50
ScatterBoxPlotH . 51
ScatterHist . 52
ScatterHistC . 55
ScatterHistN . 56
ShadedDensity . 57
ShadedDensityCenter . 58
ShadowHist . 60
ShadowPlot . 61
simulate_aes_string . 63
ThresholdPlot . 64

Index 67

WVPlots-package 3

WVPlots-package WVPlots: Common Plots for Analysis

Description

Select data analysis plots, under a standardized calling interface implemented on top of ggplot2
and plotly. Plots of interest include: ROC, gain curve, scatter plot with marginal distributions, con-
ditioned scatter plot with marginal densities. box and stem with matching theoretical distribution,
density with matching theoretical distribution.

Details

For more information:

• vignette(package='WVPlots')

• RShowDoc('WVPlots_examples',package='WVPlots')

• Website: https://github.com/WinVector/WVPlots

Author(s)

Maintainer: John Mount <jmount@win-vector.com>

Authors:

• Nina Zumel <nzumel@win-vector.com>

Other contributors:

• Win-Vector LLC [copyright holder]

See Also

Useful links:

• https://github.com/WinVector/WVPlots

• https://winvector.github.io/WVPlots/

• Report bugs at https://github.com/WinVector/WVPlots/issues

https://github.com/WinVector/WVPlots
https://github.com/WinVector/WVPlots
https://winvector.github.io/WVPlots/
https://github.com/WinVector/WVPlots/issues

4 BinaryYScatterPlot

BinaryYScatterPlot Plot a scatter plot of a binary variable with smoothing curve.

Description

Plot the scatter plot of a binary variable with a smoothing curve.

Usage

BinaryYScatterPlot(
frame,
xvar,
yvar,
title,
...,
se = FALSE,
use_glm = TRUE,
point_color = "black",
smooth_color = "blue"

)

Arguments

frame data frame to get values from

xvar name of the independent column in frame

yvar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

se if TRUE, add error bars (defaults to FALSE). Ignored if useGLM is TRUE

use_glm if TRUE, "smooths" with a one-variable logistic regression (defaults to TRUE)

point_color color for points

smooth_color color for smoothing line

Details

The points are jittered for legibility. By default, a logistic regression fit is used, so that the smoothing
curve represents the probability of y == 1 (as fit by the logistic regression). If use_glm is set to
FALSE, a standard smoothing curve (either loess or a spline fit) is used.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

ClevelandDotPlot 5

set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(x=x,y=y,yC=y>=as.numeric(quantile(y,probs=0.8)))
frm$absY <- abs(frm$y)
frm$posY = frm$y > 0
frm$costX = 1
WVPlots::BinaryYScatterPlot(frm, "x", "posY",

title="Example 'Probability of Y' Plot")

ClevelandDotPlot Plot a Cleveland dot plot.

Description

Plot counts of a categorical variable.

Usage

ClevelandDotPlot(
frm,
xvar,
title,
...,
sort = -1,
limit_n = NULL,
stem = TRUE,
color = "black"

)

Arguments

frm data frame to get values from

xvar name of the independent (input or model) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

sort if TRUE sort data

limit_n if not NULL number of items to plot

stem if TRUE add stems/whiskers to plot

color color for points and stems

6 ConditionalSmoothedScatterPlot

Details

Assumes that xvar is a factor or can be coerced to one (character or integral).

• sort < 0 sorts the factor levels in decreasing order (most frequent level first)

• sort > 0 sorts the factor levels in increasing order (good when used in conjunction with co-
ord_flip())

• sort = 0 leaves the factor levels in "natural order" – usually alphabetical

• stem = FALSE will plot only the dots, without the stem to the y=0 line.

• limit_n = NULL plots all the levels, N an integer limits to the top N most populous levels

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
discrete variable: letters of the alphabet
frequencies of letters in English
source: http://en.algoritmy.net/article/40379/Letter-frequency-English
letterFreqs = c(8.167, 1.492, 2.782, 4.253, 12.702, 2.228,

2.015, 6.094, 6.966, 0.153, 0.772, 4.025, 2.406, 6.749, 7.507, 1.929,
0.095, 5.987, 6.327, 9.056, 2.758, 0.978, 2.360, 0.150, 1.974, 0.074)

letterFreqs = letterFreqs/100
letterFrame = data.frame(letter = letters, freq=letterFreqs)
now let's generate letters according to their letter frequencies
N = 1000
randomDraws = data.frame(draw=1:N,

letter=sample(letterFrame$letter, size=N,
replace=TRUE, prob=letterFrame$freq))

WVPlots::ClevelandDotPlot(randomDraws, "letter",
title = "Example Cleveland-style dot plot")

Note the use of sort = 0. Also note that the graph omits counts
with no occurrences (5, and 7)
WVPlots::ClevelandDotPlot(mtcars, "carb", sort = 0, "Example of counting integer values")

For counting integer values while including counts with no occurrences,
use Discrete Distribution.
WVPlots::DiscreteDistribution(mtcars, "carb", "Better way to count integer values")

ConditionalSmoothedScatterPlot

Plot a scatter plot with smoothing line.

ConditionalSmoothedScatterPlot 7

Description

Plot a scatter plot with a smoothing line; the smoothing window is aligned either left, center or
right.

Usage

ConditionalSmoothedScatterPlot(
frame,
xvar,
yvar,
groupvar = NULL,
title = "ConditionalSmoothedScatterPlot",
...,
k = 3,
align = "center",
point_color = "black",
point_alpha = 0.2,
smooth_color = "black",
palette = "Dark2"

)

Arguments

frame data frame to get values from

xvar name of the independent column in frame. Assumed to be regularly spaced

yvar name of the dependent (output or result to be modeled) column in frame

groupvar name of the grouping column in frame. Can be NULL for an unconditional plot

title title for plot

... no unnamed argument, added to force named binding of later arguments.

k width of smoothing window. Must be odd for a center-aligned plot. Defaults to
3

align smoothing window alignment: ’center’, ’left’, or ’right’. Defaults to ’center’

point_color color of points, when groupvar is NULL. Set to NULL to turn off points.

point_alpha alpha/opaqueness of points.

smooth_color color of smoothing line, when groupvar is NULL

palette name of Brewer palette, when groupvar is non-NULL (can be NULL)

Details

xvar is the continuous independent variable and yvar is the dependent binary variable. Smoothing
is by a square window of width k.

If palette is NULL, and groupvar is non-NULL, plot colors will be chosen from the default
ggplot2 palette. Setting palette to NULL allows the user to choose a non-Brewer palette, for
example with scale_fill_manual.

8 DiscreteDistribution

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

y = c(1,2,3,4,5,10,15,18,20,25)
x = seq_len(length(y))
df = data.frame(x=x, y=y, group=x>5)
WVPlots::ConditionalSmoothedScatterPlot(df, "x", "y", NULL,

title="left smooth, one group", align="left")
WVPlots::ConditionalSmoothedScatterPlot(df, "x", "y", "group",
title="left smooth, two groups", align="left")

DiscreteDistribution Plot distribution of a single discrete numerical variable.

Description

Similar to calling ClevelandDotPlot with sort = 0 on a numerical x variable that takes on a dis-
crete set of values.

Usage

DiscreteDistribution(frm, xvar, title, ..., stem = TRUE, color = "black")

Arguments

frm data frame to get values from

xvar numeric: name of the variable whose distribution is to be plotted

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

stem if TRUE add whisker/stems to plot

color color of points and stems

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

frmx = data.frame(x = rbinom(1000, 20, 0.5))
WVPlots::DiscreteDistribution(frmx, "x","Discrete example")

DoubleDensityPlot 9

DoubleDensityPlot Plot two density plots conditioned on an outcome variable.

Description

Plot two density plots conditioned on a binary outcome variable.

Usage

DoubleDensityPlot(
frame,
xvar,
truthVar,
title,
...,
truth_target = NULL,
palette = "Dark2"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

truth_target if not NULL compare to this scalar value.

palette name of Brewer palette (can be NULL)

Details

The use case for this visualization is to plot the distribution of a predictive model score (usually the
predicted probability of a desired outcome) conditioned on the actual outcome. However, you can
use it to compare the distribution of any numerical quantity conditioned on a binary feature. See
the examples.

The plot will degrade gracefully in degenerate conditions, for example when only one category is
present.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette
to NULL allows the user to choose a non-Brewer palette, for example with scale_fill_manual.

10 DoubleHistogramPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

mpg = ggplot2::mpg
mpg$trans = gsub("\\(.*$", '', mpg$trans)
WVPlots::DoubleDensityPlot(mpg, "cty", "trans", "City driving mpg by transmission type")

if (FALSE) {
redo the last plot with a custom palette
cmap = c("auto" = "#b2df8a", "manual" = "#1f78b4")
plt = WVPlots::DoubleDensityPlot(mpg, "cty", "trans",

palette = NULL,
title="City driving mpg by transmission type")

plt + ggplot2::scale_color_manual(values=cmap) +
ggplot2::scale_fill_manual(values=cmap)

set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(score=x,

truth=(y>=as.numeric(quantile(y,probs=0.8))),
stuck=TRUE,
rare=FALSE)

frm[1,'rare'] = TRUE
WVPlots::DoubleDensityPlot(frm, "score", "truth", title="Example double density plot")
}

DoubleHistogramPlot Plot two histograms conditioned on an outcome variable.

Description

Plot two histograms conditioned on a binary outcome variable.

Usage

DoubleHistogramPlot(
frame,
xvar,
truthVar,
title,
...,
palette = "Dark2",
breaks = 40

)

DoubleHistogramPlot 11

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

palette name of Brewer palette (can be NULL)

breaks breaks to pass to histogram

Details

To distinguish the two conditions, one histogram is plotted upside-down.

The use case for this visualization is to plot a predictive model score (usually the predicted proba-
bility of a desired outcome) conditioned on the actual outcome. However, you can use it to compare
any numerical quantity conditioned on a binary feature.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette
to NULL allows the user to choose a non-Brewer palette, for example with scale_fill_manual.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(x=x,y=y,yC=y>=as.numeric(quantile(y,probs=0.8)))
frm$absY <- abs(frm$y)
frm$posY = frm$y > 0
frm$costX = 1
WVPlots::DoubleHistogramPlot(frm, "x", "yC", title="Example double histogram plot")

if (FALSE) {
redo the plot with a custom palette
plt = WVPlots::DoubleHistogramPlot(frm, "x", "yC", palette=NULL,

title="Example double histogram plot")
cmap = c("TRUE" = "#b2df8a", "FALSE" = "#1f78b4")
plt + ggplot2::scale_color_manual(values=cmap) +

ggplot2::scale_fill_manual(values=cmap)
}

12 GainCurvePlot

GainCurvePlot Plot the cumulative gain curve of a sort-order.

Description

Plot the cumulative gain curve of a sort-order.

Usage

GainCurvePlot(
frame,
xvar,
truthVar,
title,
...,
estimate_sig = FALSE,
large_count = 1000,
truth_target = NULL,
model_color = "darkblue",
wizard_color = "darkgreen",
shadow_color = "darkgray"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model score) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE compute significance.

large_count numeric, upper bound target for number of plotting points.

truth_target if not NULL compare to this scalar value.

model_color color for the model curve

wizard_color color for the "wizard" (best possible) curve

shadow_color color for the shaded area under the curve

Details

The use case for this visualization is to compare a predictive model score to an actual outcome
(either binary (0/1) or continuous). In this case the gain curve plot measures how well the model
score sorts the data compared to the true outcome value.

GainCurvePlotC 13

The x-axis represents the fraction of items seen when sorted by score, and the y-axis represents the
cumulative summed true outcome represented by the items seen so far. See, for example, https://
www.ibm.com/docs/SSLVMB_24.0.0/spss/tutorials/mlp_bankloan_outputtype_02.html.

For comparison, GainCurvePlot also plots the "wizard curve": the gain curve when the data is
sorted according to its true outcome.

To improve presentation quality, the plot is limited to approximately large_count points (default:
1000). For larger data sets, the data is appropriately randomly sampled down before plotting.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
WVPlots::GainCurvePlot(frm, "model", "value",

title="Example Continuous Gain Curve")

GainCurvePlotC Plot the cumulative gain curve of a sort-order with costs.

Description

Plot the cumulative gain curve of a sort-order with costs.

Usage

GainCurvePlotC(
frame,
xvar,
costVar,
truthVar,
title,
...,
estimate_sig = FALSE,
large_count = 1000,
model_color = "darkblue",
wizard_color = "darkgreen",
shadow_color = "darkgray"

)

https://www.ibm.com/docs/SSLVMB_24.0.0/spss/tutorials/mlp_bankloan_outputtype_02.html
https://www.ibm.com/docs/SSLVMB_24.0.0/spss/tutorials/mlp_bankloan_outputtype_02.html

14 GainCurvePlotC

Arguments

frame data frame to get values from

xvar name of the independent (input or model score) column in frame

costVar cost of each item (drives x-axis sum)

truthVar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE compute significance

large_count numeric, upper bound target for number of plotting points

model_color color for the model curve

wizard_color color for the "wizard" (best possible) curve

shadow_color color for the shaded area under the curve

Details

GainCurvePlotC plots a cumulative gain curve for the case where items have an additional cost, in
addition to an outcome value.

The x-axis represents the fraction of total cost experienced when items are sorted by score, and the
y-axis represents the cumulative summed true outcome represented by the items seen so far.

For comparison, GainCurvePlotC also plots the "wizard curve": the gain curve when the data is
sorted according to its true outcome/cost (the optimal sort order).

To improve presentation quality, the plot is limited to approximately large_count points (default:
1000). For larger data sets, the data is appropriately randomly sampled down before plotting.

See Also

GainCurvePlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
frm$costs=1
frm$costs[1]=5
WVPlots::GainCurvePlotC(frm, "model", "costs", "value",

title="Example Continuous Gain CurveC")

GainCurvePlotList 15

GainCurvePlotList Plot the cumulative gain curves of a sort-order.

Description

Plot the cumulative gain curves of a sort-order.

Usage

GainCurvePlotList(
frame,
xvars,
truthVar,
title,
...,
truth_target = NULL,
palette = "Dark2"

)

GainCurveListPlot(
frame,
xvars,
truthVar,
title,
...,
truth_target = NULL,
palette = "Dark2"

)

Arguments

frame data frame to get values from
xvars name of the independent (input or model score) columns in frame
truthVar name of the dependent (output or result to be modeled) column in frame
title title to place on plot
... no unnamed argument, added to force named binding of later arguments.
truth_target if not NULL compare to this scalar value.
palette color palette for the model curves

Details

The use case for this visualization is to compare a predictive model score to an actual outcome
(either binary (0/1) or continuous). In this case the gain curve plot measures how well the model
score sorts the data compared to the true outcome value.

The x-axis represents the fraction of items seen when sorted by score, and the y-axis represents the
gain seen so far (cumulative value of model over cummulative value of random selection)..

16 GainCurvePlotWithNotation

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
WVPlots::GainCurvePlotList(frm, c("model", "value"), "value",

title="Example Continuous gain Curves")

GainCurvePlotWithNotation

Plot the cumulative gain curve of a sort-order with extra notation

Description

Plot the cumulative gain curve of a sort-order with extra notation.

Usage

GainCurvePlotWithNotation(
frame,
xvar,
truthVar,
title,
gainx,
labelfun,
...,
sort_by_model = TRUE,
estimate_sig = FALSE,
large_count = 1000,
model_color = "darkblue",
wizard_color = "darkgreen",
shadow_color = "darkgray",
crosshair_color = "red",
text_color = "black"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model score) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

GainCurvePlotWithNotation 17

title title to place on plot

gainx the point on the x axis corresponding to the desired label

labelfun a function to return a label for the marked point

... no unnamed argument, added to force named binding of later arguments.

sort_by_model logical, if TRUE use the model to calculate gainy, else use wizard.

estimate_sig logical, if TRUE compute significance

large_count numeric, upper bound target for number of plotting points

model_color color for the model curve

wizard_color color for the "wizard" (best possible) curve

shadow_color color for the shaded area under the curve
crosshair_color

color for the annotation location lines

text_color color for the annotation text

Details

This is the standard gain curve plot (see GainCurvePlot) with a label attached to a particular value
of x. The label is created by a function labelfun, which takes as inputs the x and y coordinates of
a label and returns a string (the label).

By default, uses the model to calculate the y value of the calculated point; to use the wizard curve,
set sort_by_model = FALSE

See Also

GainCurvePlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
gainx = 0.25 # get the predicted top 25% most valuable points as sorted by the model
make a function to calculate the label for the annotated point
labelfun = function(gx, gy) {

pctx = gx*100
pcty = gy*100

paste("The predicted top ", pctx, "% most valuable points by the model\n",
"are ", pcty, "% of total actual value", sep='')

}
WVPlots::GainCurvePlotWithNotation(frm, "model", "value",

18 HexBinPlot

title="Example Gain Curve with annotation",
gainx=gainx,labelfun=labelfun)

now get the top 25% actual most valuable points

labelfun = function(gx, gy) {
pctx = gx*100
pcty = gy*100

paste("The actual top ", pctx, "% most valuable points\n",
"are ", pcty, "% of total actual value", sep='')

}

WVPlots::GainCurvePlotWithNotation(frm, "model", "value",
title="Example Gain Curve with annotation",
gainx=gainx,labelfun=labelfun, sort_by_model=FALSE)

HexBinPlot Build a hex bin plot

Description

Build a hex bin plot with rational color coding.

Usage

HexBinPlot(
d,
xvar,
yvar,
title,
...,
lightcolor = "#deebf7",
darkcolor = "#000000",
bins = 30,
binwidth = NULL,
na.rm = FALSE

)

Arguments

d data frame

xvar name of x variable column

yvar name of y variable column

title plot title

... not used, forces later arguments to bind by name

HexBinPlot 19

lightcolor light color for least dense areas

darkcolor dark color for most dense areas

bins passed to geom_hex

binwidth passed to geom_hex

na.rm passed to geom_hex

Details

Builds a standard ggplot2 hexbin plot, with a color scale such that dense areas are colored darker
(the default ggplot2 fill scales will color dense areas lighter).

The user can choose an alternate color scale with endpoints lightcolor and darkcolor; it is up to
the user to make sure that lightcolor is lighter than darkcolor.

Requires the hexbin package.

Value

a ggplot2 hexbin plot

See Also

geom_hex

Examples

if(requireNamespace("hexbin", quietly = TRUE)) {
if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}
set.seed(634267)
dframe = data.frame(x = rnorm(1000), y = rnorm(1000))
print(HexBinPlot(dframe, "x", "y", "Example hexbin"))

diamonds = ggplot2::diamonds
print(HexBinPlot(diamonds, "carat", "price", "Diamonds example"))

change the colorscale
print(HexBinPlot(diamonds, "carat", "price", "Diamonds example",

lightcolor="#fed98e",
darkcolor="#993404"))

}

20 LiftCurvePlot

LiftCurvePlot Plot the cumulative lift curve of a sort-order.

Description

Plot the cumulative lift curve of a sort-order.

Usage

LiftCurvePlot(
frame,
xvar,
truthVar,
title,
...,
large_count = 1000,
include_wizard = TRUE,
truth_target = NULL,
model_color = "darkblue",
wizard_color = "darkgreen"

)

Arguments

frame data frame to get values from
xvar name of the independent (input or model score) column in frame
truthVar name of the dependent (output or result to be modeled) column in frame
title title to place on plot
... no unnamed argument, added to force named binding of later arguments.
large_count numeric, upper bound target for number of plotting points
include_wizard logical, if TRUE plot the ideal or wizard plot.
truth_target if not NULL compare to this scalar value.
model_color color for the model curve
wizard_color color for the "wizard" (best possible) curve

Details

The use case for this visualization is to compare a predictive model score to an actual outcome
(either binary (0/1) or continuous). In this case the lift curve plot measures how well the model
score sorts the data compared to the true outcome value.
The x-axis represents the fraction of items seen when sorted by score, and the y-axis represents the
lift seen so far (cumulative value of model over cummulative value of random selection)..
For comparison, LiftCurvePlot also plots the "wizard curve": the lift curve when the data is sorted
according to its true outcome.
To improve presentation quality, the plot is limited to approximately large_count points (default:
1000). For larger data sets, the data is appropriately randomly sampled down before plotting.

LiftCurvePlotList 21

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
WVPlots::LiftCurvePlot(frm, "model", "value",

title="Example Continuous Lift Curve")

LiftCurvePlotList Plot the cumulative lift curves of a sort-order.

Description

Plot the cumulative lift curves of a sort-order.

Usage

LiftCurvePlotList(
frame,
xvars,
truthVar,
title,
...,
truth_target = NULL,
palette = "Dark2"

)

LiftCurveListPlot(
frame,
xvars,
truthVar,
title,
...,
truth_target = NULL,
palette = "Dark2"

)

Arguments

frame data frame to get values from

xvars name of the independent (input or model score) columns in frame

22 LogLogPlot

truthVar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

truth_target if not NULL compare to this scalar value.

palette color palette for the model curves

Details

The use case for this visualization is to compare a predictive model score to an actual outcome
(either binary (0/1) or continuous). In this case the lift curve plot measures how well the model
score sorts the data compared to the true outcome value.

The x-axis represents the fraction of items seen when sorted by score, and the y-axis represents the
lift seen so far (cumulative value of model over cummulative value of random selection)..

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
y = abs(rnorm(20)) + 0.1
x = abs(y + 0.5*rnorm(20))
frm = data.frame(model=x, value=y)
WVPlots::LiftCurvePlotList(frm, c("model", "value"), "value",

title="Example Continuous Lift Curves")

LogLogPlot Log-log plot

Description

Plot a trend on log-log paper.

Usage

LogLogPlot(
frame,
xvar,
yvar,
title,
...,
use_coord_trans = FALSE,
point_color = "black",
linear_color = "#018571",

LogLogPlot 23

quadratic_color = "#a6611a",
smoothing_color = "blue"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

yvar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.
use_coord_trans

logical if TRUE, use coord_trans instead of coord_trans(x = "log10", y =
"log10") instead of scale_x_log10() + scale_y_log10() (useful when there
is not enough range to show ticks).

point_color the color of the data points

linear_color the color of the linear growth lines
quadratic_color

the color of the quadratic growth lines
smoothing_color

the color of the smoothing line through the data

Details

This plot is intended for plotting functions that are observed costs or durations as a function of
problem size. In this case we expect the ideal or expected cost function to be non-decreasing. Any
negative trends are assumed to arise from the noise model. The graph is specialized to compare
non-decreasing linear and non-decreasing quadratic growth.

Some care must be taken in drawing conclusions from log-log plots, as the transform is fairly vio-
lent. Please see: "(Mar’s Law) Everything is linear if plotted log-log with a fat magic marker" (from
Akin’s Laws of Spacecraft Design https://spacecraft.ssl.umd.edu/akins_laws.html), and
"So You Think You Have a Power Law" http://bactra.org/weblog/491.html.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(5326)
frm = data.frame(x = 1:20)
frm$y <- 5 + frm$x + 0.2 * frm$x * frm$x + 0.1*abs(rnorm(nrow(frm)))
WVPlots::LogLogPlot(frm, "x", "y", title="Example Trend")

https://spacecraft.ssl.umd.edu/akins_laws.html
http://bactra.org/weblog/491.html

24 MetricPairPlot

MetricPairPlot Plot the relationship between two metrics.

Description

Plot the relationship between two metrics.

Usage

MetricPairPlot(
frame,
xvar,
truthVar,
title,
...,
x_metric = "false_positive_rate",
y_metric = "true_positive_rate",
truth_target = TRUE,
points_to_plot = NULL,
linecolor = "black"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

truthVar name of the column to be predicted

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

x_metric metric to be plotted. See Details for the list of allowed metrics

y_metric metric to be plotted. See Details for the list of allowed metrics

truth_target truth value considered to be positive.

points_to_plot how many data points to use for plotting. Defaults to NULL (all data)

linecolor character: name of line color

Details

Plots two classifier metrics against each other, showing achievable combinations of performance
metrics. For example, plotting true_positive_rate vs false_positive_rate recreates the ROC plot.

MetricPairPlot can plot a number of metrics. Some of the metrics are redundant, in keeping with
the customary terminology of various analysis communities.

• sensitivity: fraction of true positives that were predicted to be true (also known as the true
positive rate)

MetricPairPlot 25

• specificity: fraction of true negatives to all negatives (or 1 - false_positive_rate)

• precision: fraction of predicted positives that are true positives

• recall: same as sensitivity or true positive rate

• accuracy: fraction of items correctly decided

• false_positive_rate: fraction of negatives predicted to be true over all negatives

• true_positive_rate: fraction of positives predicted to be true over all positives

• false_negative_rate: fraction of positives predicted to be all false over all positives

• true_negative_rate: fraction negatives predicted to be false over all negatives

points_to_plot specifies the approximate number of datums used to create the plots as an absolute
count; for example setting points_to_plot = 200 uses approximately 200 points, rather than the
entire data set. This can be useful when visualizing very large data sets.

See Also

ThresholdPlot, PRTPlot, ROCPlot, PRPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

data with two different regimes of behavior
d <- rbind(

data.frame(
x = rnorm(1000),
y = sample(c(TRUE, FALSE), prob = c(0.02, 0.98), size = 1000, replace = TRUE)),

data.frame(
x = rnorm(200) + 5,
y = sample(c(TRUE, FALSE), size = 200, replace = TRUE))

)

Sensitivity/Specificity examples
MetricPairPlot(d, 'x', 'y',

x_metric = 'false_positive_rate',
y_metric = 'true_positive_rate',
truth_target = TRUE,
title = 'ROC equivalent')

if(FALSE) {
ThresholdPlot(d, 'x', 'y',

title = 'Sensitivity/Specificity',
metrics = c('sensitivity', 'specificity'),
truth_target = TRUE)

ROCPlot(d, 'x', 'y',
truthTarget = TRUE,
title = 'ROC example')

Precision/Recall examples

26 PairPlot

ThresholdPlot(d, 'x', 'y',
title = 'precision/recall',
metrics = c('recall', 'precision'),
truth_target = TRUE)

MetricPairPlot(d, 'x', 'y',
x_metric = 'recall',
y_metric = 'precision',
title = 'recall/precision',
truth_target = TRUE)

PRPlot(d, 'x', 'y',
truthTarget = TRUE,
title = 'p/r plot')

}

PairPlot Build a pair plot

Description

Creates a matrix of scatterplots, one for each possible pair of variables.

Usage

PairPlot(
d,
meas_vars,
title,
...,
group_var = NULL,
alpha = 1,
palette = "Dark2",
point_color = "darkgray"

)

Arguments

d data frame

meas_vars the variables to be plotted

title plot title

... not used, forces later arguments to bind by name

group_var variable for grouping and colorcoding

alpha alpha for points on plot

palette name of a brewer palette (NULL for ggplot2 default coloring)

point_color point color for monochrome plots (no grouping)

PlotDistCountBinomial 27

Details

If palette is NULL, and group_var is non-NULL, plot colors will be chosen from the default
ggplot2 palette. Setting palette to NULL allows the user to choose a non-Brewer palette, for
example with scale_color_manual.

Value

a ggplot2 pair plot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

PairPlot(iris, colnames(iris)[1:4], "Example plot", group_var = "Species")

custom palette
colormap = c('#a6611a', '#dfc27d', '#018571')
PairPlot(iris, colnames(iris)[1:4], "Example plot",

group_var = "Species", palette=NULL) +
ggplot2::scale_color_manual(values=colormap)

no color-coding
PairPlot(iris, colnames(iris)[1:4], "Example plot")

PlotDistCountBinomial Plot count data with a theoretical binomial

Description

Compares empirical count data to a binomial distribution

Usage

PlotDistCountBinomial(
frm,
xvar,
trial_size,
title,
...,
p = NULL,
limit_to_observed_range = FALSE,
count_color = "black",
binom_color = "blue"

)

28 PlotDistCountBinomial

Arguments

frm data frame to get values from

xvar column of frm that counts the number of successes for each trial

trial_size the number of "coin flips" in a trial

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

p mean of the binomial. If NULL, use empirical mean
limit_to_observed_range

If TRUE, limit plot to observed counts

count_color color of empirical distribution

binom_color color of theoretical binomial

Details

This function is useful for comparing the number of successes that occur in a series of trials, all of
the same size, to a binomial of a given success-probability.

Plots the empirical distribution of successes, and a theoretical matching binomial. If the mean of
the binomial, p, is given, the binomial with success-probability p is plotted. Otherwise, p is taken
to be the pooled success rate of the data: sum(frm[[xvar]]) / (trial_size*nrow(frm)). The
mean of the binomial is reported in the subtitle of the plot (to three significant figures).

If limit_to_observed_range is TRUE, the range of the plot will only cover the range of the
empirical data. Otherwise, the range of the plot will be 0:trial_size (the default).

See Also

PlotDistHistBeta, PlotDistDensityBeta,

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(23590)
class_size = 35
nclasses = 100
true_frate = 0.4
fdata = data.frame(n_female = rbinom(nclasses, class_size, true_frate), stringsAsFactors = FALSE)

title = paste("Distribution of count of female students, class size =", class_size)
compare to empirical p
PlotDistCountBinomial(fdata, "n_female", class_size, title)

if(FALSE) {
compare to theoretical p of 0.5
PlotDistCountBinomial(fdata, "n_female", class_size, title,

PlotDistCountNormal 29

p = 0.5)

Example where the distribution is not of a true single binomial
fdata2 = rbind(data.frame(n_female = rbinom(50, class_size, 0.25)),

data.frame(n_female = rbinom(10, class_size, 0.60)),
stringsAsFactors = FALSE)

PlotDistCountBinomial(fdata2, "n_female", class_size, title)
}

PlotDistCountNormal Plot distribution details as a histogram plus matching normal

Description

Compares empirical data to a normal distribution with the same mean and standard deviation.

Usage

PlotDistCountNormal(
frm,
xvar,
title,
...,
binWidth = c(),
hist_color = "black",
normal_color = "blue",
mean_color = "blue",
sd_color = "blue"

)

Arguments

frm data frame to get values from

xvar name of the independent (input or model) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

binWidth width of histogram bins

hist_color color of empirical histogram

normal_color color of matching theoretical normal

mean_color color of mean line

sd_color color of 1-standard deviation lines (can be NULL)

30 PlotDistDensityBeta

Details

Plots the histograms of the empirical distribution and of the matching normal distribution. Also
plots the mean and plus/minus one standard deviation.

Bin width for the histogram is calculated automatically to yield approximately 50 bins across the
range of the data, unless the binWidth argument is explicitly passed in. binWidth is reported in the
subtitle of the plot.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
d <- data.frame(wt=100*rnorm(100))
PlotDistCountNormal(d,'wt','example')

no sd lines
PlotDistCountNormal(d, 'wt', 'example', sd_color=NULL)

PlotDistDensityBeta Plot empirical rate data as a density with the matching beta distribu-
tion

Description

Compares empirical rate data to a beta distribution with the same mean and standard deviation.

Usage

PlotDistDensityBeta(
frm,
xvar,
title,
...,
curve_color = "lightgray",
beta_color = "blue",
mean_color = "blue",
sd_color = "darkgray"

)

Arguments

frm data frame to get values from

xvar name of the independent (input or model) column in frame

PlotDistDensityNormal 31

title title to place on plot

... force later arguments to bind by name

curve_color color for empirical density curve

beta_color color for matching theoretical beta

mean_color color for mean line

sd_color color for 1-standard deviation lines (can be NULL)

Details

Plots the empirical density, the theoretical matching beta, the mean value, and plus/minus one
standard deviation from the mean.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
N = 100
pgray = 0.1 # rate of gray horses in the population
herd_size = round(runif(N, min=25, 50))
ngray = rbinom(N, herd_size, pgray)
hdata = data.frame(n_gray=ngray, herd_size=herd_size)

observed rate of gray horses in each herd
hdata$rate_gray = with(hdata, ngray/herd_size)

title = "Observed prevalence of gray horses in population"

PlotDistDensityBeta(hdata, "rate_gray", title) +
ggplot2::geom_vline(xintercept = pgray, linetype=4, color="maroon") +
ggplot2::annotate("text", x=pgray+0.01, y=0.01, hjust="left",

label = paste("True prevalence =", pgray))

no sd lines
PlotDistDensityBeta(hdata, "rate_gray", title,
sd_color=NULL)

PlotDistDensityNormal Plot an empirical density with the matching normal distribution

Description

Compares empirical data to a normal distribution with the same mean and standard deviation.

32 PlotDistDensityNormal

Usage

PlotDistDensityNormal(
frm,
xvar,
title,
...,
adjust = 0.5,
curve_color = "lightgray",
normal_color = "blue",
mean_color = "blue",
sd_color = "darkgray"

)

Arguments

frm data frame to get values from
xvar name of the independent (input or model) column in frame
title title to place on plot
... no unnamed argument, added to force named binding of later arguments.
adjust passed to geom_density; controls smoothness of density plot
curve_color color for empirical density curve
normal_color color for theoretical matching normal
mean_color color of mean line
sd_color color for 1-standard deviation lines (can be NULL)

Details

Plots the empirical density, the theoretical matching normal, the mean value, and plus/minus one
standard deviation from the mean.

See Also

geom_density

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
d <- data.frame(wt=100*rnorm(100))
PlotDistDensityNormal(d,'wt','example')

no sd lines
PlotDistDensityNormal(d, 'wt', 'example', sd_color=NULL)

PlotDistHistBeta 33

PlotDistHistBeta Plot empirical rate data as a histogram plus matching beta

Description

Compares empirical rate data to a beta distribution with the same mean and standard deviation.

Usage

PlotDistHistBeta(
frm,
xvar,
title,
...,
bins = 30,
hist_color = "darkgray",
beta_color = "blue",
mean_color = "blue",
sd_color = "darkgray"

)

Arguments

frm data frame to get values from

xvar name of the independent (input or model) column in frame

title title to place on plot

... force later arguments to bind by name

bins passed to geom_histogram(). Default: 30

hist_color color of empirical histogram

beta_color color of matching theoretical beta

mean_color color of mean line

sd_color color of 1-standard devation lines (can be NULL)

Details

Plots the histogram of the empirical distribution and the density of the matching beta distribution.
Also plots the mean and plus/minus one standard deviation.

The number of bins for the histogram defaults to 30. The binwidth can also be passed in instead of
the number of bins.

Value

ggplot2 plot

34 plotlyROC

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
N = 100
pgray = 0.1 # rate of gray horses in the population
herd_size = round(runif(N, min=25, 50))
ngray = rbinom(N, herd_size, pgray)
hdata = data.frame(n_gray=ngray, herd_size=herd_size)

observed rate of gray horses in each herd
hdata$rate_gray = with(hdata, n_gray/herd_size)

title = "Observed prevalence of gray horses in population"

PlotDistHistBeta(hdata, "rate_gray", title) +
ggplot2::geom_vline(xintercept = pgray, linetype=4, color="maroon") +
ggplot2::annotate("text", x=pgray+0.01, y=0.01, hjust="left",

label = paste("True prevalence =", pgray))

no sd lines
PlotDistHistBeta(hdata, "rate_gray", title,
sd_color=NULL)

plotlyROC Use plotly to produce a ROC plot.

Description

Note: any arrange_ warning is a version incompatibility between plotly and dplyr.

Usage

plotlyROC(
d,
predCol,
outcomeCol,
outcomeTarget,
title,
...,
estimate_sig = FALSE

)

plot_fit_trajectory 35

Arguments

d dataframe

predCol name of column with numeric predictions

outcomeCol name of column with truth

outcomeTarget value considered true

title character title for plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE estimate and display significance of difference from AUC 0.5.

Value

plotly plot

See Also

ROCPlot

Examples

if(FALSE && requireNamespace("plotly", quietly = TRUE)) {
if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}
set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(x=x,yC=y>=as.numeric(quantile(y,probs=0.8)))
plotlyROC(frm, 'x', 'yC', TRUE, 'example plot', estimate_sig = TRUE)

}

plot_fit_trajectory Plot the trajectory of a model fit.

Description

Plot a history of model fit performance over the a trajectory of times.

36 plot_fit_trajectory

Usage

plot_fit_trajectory(
d,
column_description,
title,
...,
epoch_name = "epoch",
needs_flip = c(),
pick_metric = NULL,
discount_rate = NULL,
draw_ribbon = FALSE,
draw_segments = FALSE,
val_color = "#d95f02",
train_color = "#1b9e77",
pick_color = "#e6ab02"

)

Arguments

d data frame to get values from.
column_description

description of column measures (data.frame with columns measure, validation,
and training).

title character title for plot.

... force later arguments to be bound by name

epoch_name name for epoch or trajectory column.

needs_flip character array of measures that need to be flipped.

pick_metric character metric to maximize.

discount_rate numeric what fraction of over-fit to subtract from validation performance.

draw_ribbon present the difference in training and validation performance as a ribbon rather
than two curves? (default FALSE)

draw_segments logical if TRUE draw over-fit/under-fit segments.

val_color color for validation performance curve

train_color color for training performance curve

pick_color color for indicating optimal stopping point

Details

This visualization can be applied to any staged machine learning algorithm. For example one could
plot the performance of a gradient boosting machine as a function of the number of trees added.
The fit history data should be in the form given in the example below.

The example below gives a fit plot for a history report from Keras R package. Please see https://
win-vector.com/2017/12/23/plotting-deep-learning-model-performance-trajectories/
for some examples and details.

https://win-vector.com/2017/12/23/plotting-deep-learning-model-performance-trajectories/
https://win-vector.com/2017/12/23/plotting-deep-learning-model-performance-trajectories/

plot_Keras_fit_trajectory 37

Value

ggplot2 plot

See Also

plot_Keras_fit_trajectory

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

d <- data.frame(
epoch = c(1, 2, 3, 4, 5),
val_loss = c(0.3769818, 0.2996994, 0.2963943, 0.2779052, 0.2842501),
val_acc = c(0.8722000, 0.8895000, 0.8822000, 0.8899000, 0.8861000),
loss = c(0.5067290, 0.3002033, 0.2165675, 0.1738829, 0.1410933),
acc = c(0.7852000, 0.9040000, 0.9303333, 0.9428000, 0.9545333))

cT <- data.frame(
measure = c("minus binary cross entropy", "accuracy"),
training = c("loss", "acc"),
validation = c("val_loss", "val_acc"),
stringsAsFactors = FALSE)

plt <- plot_fit_trajectory(
d,
column_description = cT,
needs_flip = "minus binary cross entropy",
title = "model performance by epoch, dataset, and measure",
epoch_name = "epoch",
pick_metric = "minus binary cross entropy",
discount_rate = 0.1)

print(plt)

plot_Keras_fit_trajectory

Plot the trajectory of a Keras model fit.

Description

Plot a history of model fit performance over the number of training epochs.

38 plot_Keras_fit_trajectory

Usage

plot_Keras_fit_trajectory(
d,
title,
...,
epoch_name = "epoch",
lossname = "loss",
loss_pretty_name = "minus binary cross entropy",
perfname = "acc",
perf_pretty_name = "accuracy",
pick_metric = loss_pretty_name,
fliploss = TRUE,
discount_rate = NULL,
draw_ribbon = FALSE,
val_color = "#d95f02",
train_color = "#1b9e77",
pick_color = "#e6ab02"

)

Arguments

d data frame to get values from.

title character title for plot.

... force later arguments to be bound by name

epoch_name name for epoch or trajectory column.

lossname name of training loss column (default ’loss’)
loss_pretty_name

name for loss on graph (default ’minus binary cross entropy’)

perfname name of training performance column (default ’acc’)
perf_pretty_name

name for performance metric on graph (default ’accuracy’)

pick_metric character: metric to maximize (NULL for no pick line - default loss_pretty_name)

fliploss flip the loss so that "larger is better"? (default TRUE)

discount_rate numeric: what fraction of over-fit to subtract from validation performance.

draw_ribbon present the difference in training and validation performance as a ribbon rather
than two curves? (default FALSE)

val_color color for validation performance curve

train_color color for training performance curve

pick_color color for indicating optimal stopping point

Details

Assumes a performance matrix that carries information for both training and validation loss, and
an additional training and validation performance metric, in the format that a Keras history object
returns.

PRPlot 39

By default, flips the loss so that better performance is larger for both the loss and the performance
metric, and then draws a vertical line at the minimum validation loss (maximum flipped validation
loss). If you choose not to flip the loss, you should not use the loss as the pick_metric.

The example below gives a fit plot for a history report from Keras R package. Please see https:
//winvector.github.io/FluidData/PlotExample/KerasPerfPlot.html for some details.

Value

ggplot2 plot

See Also

plot_fit_trajectory

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

example data (from Keras)
d <- data.frame(

val_loss = c(0.3769818, 0.2996994, 0.2963943, 0.2779052, 0.2842501),
val_acc = c(0.8722000, 0.8895000, 0.8822000, 0.8899000, 0.8861000),
loss = c(0.5067290, 0.3002033, 0.2165675, 0.1738829, 0.1410933),
acc = c(0.7852000, 0.9040000, 0.9303333, 0.9428000, 0.9545333))

plt <- plot_Keras_fit_trajectory(
d,
title = "model performance by epoch, dataset, and measure")

print(plt)

PRPlot Plot Precision-Recall plot.

Description

Plot Precision-Recall plot.

Usage

PRPlot(frame, xvar, truthVar, truthTarget, title, ..., estimate_sig = FALSE)

https://winvector.github.io/FluidData/PlotExample/KerasPerfPlot.html
https://winvector.github.io/FluidData/PlotExample/KerasPerfPlot.html

40 PRTPlot

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

truthTarget value we consider to be positive

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE compute significance

Details

See https://www.nature.com/articles/nmeth.3945 for a discussion of precision and recall, and how
the precision/recall plot relates to the ROC plot.

In addition to plotting precision versus recall, PRPlot reports the best achieved F1 score, and plots
an isoline corresponding to that F1 score.

See Also

ROCPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(x=x,y=y,yC=y>=as.numeric(quantile(y,probs=0.8)))
frm$absY <- abs(frm$y)
frm$posY = frm$y > 0
frm$costX = 1
WVPlots::PRPlot(frm, "x", "yC", TRUE, title="Example Precision-Recall plot")

PRTPlot Plot Precision-Recall or Enrichment-Recall as a function of threshold.

Description

Plot classifier performance metrics as a function of threshold.

PRTPlot 41

Usage

PRTPlot(
frame,
predVar,
truthVar,
truthTarget,
title,
...,
plotvars = c("precision", "recall"),
thresholdrange = c(-Inf, Inf),
linecolor = "black"

)

Arguments

frame data frame to get values from

predVar name of the column of predicted scores

truthVar name of the column of actual outcomes in frame

truthTarget value we consider to be positive

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

plotvars variables to plot, must be at least one of the measures listed below. Defaults to
c("precision", "recall")

thresholdrange range of thresholds to plot.

linecolor line color for the plot

Details

For a classifier, the precision is what fraction of predicted positives are true positives; the recall
is what fraction of true positives the classifier finds, and the enrichment is the ratio of classifier
precision to the average rate of positives. Plotting precision-recall or enrichment-recall as a function
of classifier score helps identify a score threshold that achieves an acceptable tradeoff between
precision and recall, or enrichment and recall.

In addition to precision/recall, PRTPlot can plot a number of other metrics:

• precision: fraction of predicted positives that are true positives

• recall: fraction of true positives that were predicted to be true

• enrichment: ratio of classifier precision to prevalence of positive class

• sensitivity: the same as recall (also known as the true positive rate)

• specificity: fraction of true negatives to all negatives (or 1 - false_positive_rate)

• false_positive_rate: fraction of negatives predicted to be true over all negatives

For example, plotting sensitivity/false_positive_rate as functions of threshold will "unroll" an ROC
Plot.

Plots are in a single column, in the order specified by plotvars.

42 ROCPlot

See Also

ThresholdPlot, ROCPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

df <- iris
df$isVersicolor <- with(df, Species=='versicolor')
model = glm(isVersicolor ~ Petal.Length + Petal.Width + Sepal.Length + Sepal.Width,

data=df, family=binomial)
df$pred = predict(model, newdata=df, type="response")

WVPlots::PRTPlot(df, "pred", "isVersicolor", TRUE, title="Example Precision-Recall threshold plot")

if (FALSE) {
WVPlots::PRTPlot(df, "pred", "isVersicolor", TRUE,

plotvars = c("sensitivity", "specificity", "false_positive_rate"),
title="Sensitivity/specificity/FPR as functions of threshold")

}

ROCPlot Plot receiver operating characteristic plot.

Description

Plot receiver operating characteristic plot.

Usage

ROCPlot(
frame,
xvar,
truthVar,
truthTarget,
title,
...,
estimate_sig = FALSE,
returnScores = FALSE,
nrep = 100,
parallelCluster = NULL,
curve_color = "darkblue",
fill_color = "black",
diag_color = "black",

ROCPlot 43

add_beta_ideal_curve = FALSE,
beta_ideal_curve_color = "#fd8d3c",
add_beta1_ideal_curve = FALSE,
beta1_ideal_curve_color = "#f03b20",
add_symmetric_ideal_curve = FALSE,
symmetric_ideal_curve_color = "#bd0026",
add_convex_hull = FALSE,
convex_hull_color = "#404040",
ideal_plot_step_size = 0.001

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

truthTarget value we consider to be positive

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE estimate and display significance of difference from AUC 0.5.

returnScores logical if TRUE return detailed permutedScores

nrep number of permutation repetitions to estimate p values.
parallelCluster

(optional) a cluster object created by package parallel or package snow.

curve_color color of the ROC curve

fill_color shading color for the area under the curve

diag_color color for the AUC=0.5 line (x=y)
add_beta_ideal_curve

logical, if TRUE add the beta(a, b), beta(c, d) ideal curve found by moment
matching.

beta_ideal_curve_color

color for ideal curve.
add_beta1_ideal_curve

logical, if TRUE add the beta(1, a), beta(b, 2) ideal curve defined in doi:10.1177/
0272989X15582210

beta1_ideal_curve_color

color for ideal curve.
add_symmetric_ideal_curve

logical, if TRUE add the ideal curve as discussed in https://win-vector.
com/2020/09/13/why-working-with-auc-is-more-powerful-than-one-might-think/.

symmetric_ideal_curve_color

color for ideal curve.
add_convex_hull

logical, if TRUE add convex hull to plot

https://doi.org/10.1177/0272989X15582210
https://doi.org/10.1177/0272989X15582210
https://win-vector.com/2020/09/13/why-working-with-auc-is-more-powerful-than-one-might-think/
https://win-vector.com/2020/09/13/why-working-with-auc-is-more-powerful-than-one-might-think/

44 ROCPlot

convex_hull_color

color for convex hull curve
ideal_plot_step_size

step size used in ideal plots

Details

See https://www.nature.com/articles/nmeth.3945 for a discussion of true positive and false positive
rates, and how the ROC plot relates to the precision/recall plot.

See Also

PRTPlot, ThresholdPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

beta_example <- function(
n,
shape1_pos, shape2_pos,
shape1_neg, shape2_neg) {
d <- data.frame(

y = sample(
c(TRUE, FALSE),
size = n,
replace = TRUE),

score = 0.0
)
d$score[d$y] <- rbeta(sum(d$y), shape1 = shape1_pos, shape2 = shape2_pos)
d$score[!d$y] <- rbeta(sum(!d$y), shape1 = shape1_neg, shape2 = shape2_neg)
d

}

d1 <- beta_example(
100,
shape1_pos = 6,
shape2_pos = 5,
shape1_neg = 1,
shape2_neg = 2)

ROCPlot(
d1,
xvar = "score",
truthVar = "y", truthTarget = TRUE,
title="Example ROC plot",
estimate_sig = TRUE,
add_beta_ideal_curve = TRUE,
add_convex_hull = TRUE)

ROCPlotList 45

ROCPlotList Compare multiple ROC plots.

Description

Plot multiple receiver operating characteristic curves from the same data.frame.

Usage

ROCPlotList(
frame,
xvar_names,
truthVar,
truthTarget,
title,
...,
palette = "Dark2"

)

ROCPlotPairList(
frame,
xvar_names,
truthVar,
truthTarget,
title,
...,
palette = "Dark2"

)

ROCListPlot(
frame,
xvar_names,
truthVar,
truthTarget,
title,
...,
palette = "Dark2"

)

Arguments

frame data frame to get values from

xvar_names names of the independent (input or model) columns in frame

truthVar name of the dependent (output or result to be modeled) column in frame

truthTarget value we consider to be positive

title title to place on plot

46 ROCPlotPair

... no unnamed argument, added to force named binding of later arguments.

palette name of a brewer palette (NULL for ggplot2 default coloring)

Details

The use case for this function is to compare the performance of two models when applied to a data
set, where the predictions from both models are columns of the same data frame.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette
to NULL allows the user to choose a non-Brewer palette, for example with scale_color_manual.

See Also

ROCPlot, ROCPlotPair, ROCPlotPair2

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x1 = rnorm(50)
x2 = rnorm(length(x1))
x3 = rnorm(length(x1))
y = 0.2*x2^2 + 0.5*x2 + x1 + rnorm(length(x1))
frm = data.frame(

x1 = x1,
x2 = x2,
x3 = x3,
yC = y >= as.numeric(quantile(y,probs=0.8)))

WVPlots::ROCPlotList(
frame = frm,
xvar_names = c("x1", "x2", "x3"),
truthVar = "yC", truthTarget = TRUE,
title = "Example ROC list plot")

ROCPlotPair Compare two ROC plots.

Description

Plot two receiver operating characteristic curves from the same data.frame.

ROCPlotPair 47

Usage

ROCPlotPair(
frame,
xvar1,
xvar2,
truthVar,
truthTarget,
title,
...,
estimate_sig = FALSE,
returnScores = FALSE,
nrep = 100,
parallelCluster = NULL,
palette = "Dark2"

)

Arguments

frame data frame to get values from

xvar1 name of the first independent (input or model) column in frame

xvar2 name of the second independent (input or model) column in frame

truthVar name of the dependent (output or result to be modeled) column in frame

truthTarget value we consider to be positive

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE estimate and display significance of difference from AUC 0.5.

returnScores logical if TRUE return detailed permutedScores

nrep number of permutation repetitions to estimate p values.

parallelCluster

(optional) a cluster object created by package parallel or package snow.

palette name of a brewer palette (NULL for ggplot2 default coloring)

Details

The use case for this function is to compare the performance of two models when applied to a data
set, where the predictions from both models are columns of the same data frame.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette
to NULL allows the user to choose a non-Brewer palette, for example with scale_color_manual.

See Also

ROCPlot

48 ROCPlotPair2

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x1 = rnorm(50)
x2 = rnorm(length(x1))
y = 0.2*x2^2 + 0.5*x2 + x1 + rnorm(length(x1))
frm = data.frame(x1=x1,x2=x2,yC=y>=as.numeric(quantile(y,probs=0.8)))
WVPlots::ROCPlot(frm, "x1", "yC", TRUE, title="Example ROC plot")
WVPlots::ROCPlot(frm, "x2", "yC", TRUE, title="Example ROC plot")
WVPlots::ROCPlotPair(frm, "x1", "x2", "yC", TRUE,

title="Example ROC pair plot", estimate_sig = TRUE)

ROCPlotPair2 Compare two ROC plots.

Description

Plot two receiver operating characteristic curves from different data frames.

Usage

ROCPlotPair2(
nm1,
frame1,
xvar1,
truthVar1,
truthTarget1,
nm2,
frame2,
xvar2,
truthVar2,
truthTarget2,
title,
...,
estimate_sig = TRUE,
returnScores = FALSE,
nrep = 100,
parallelCluster = NULL,
palette = "Dark2"

)

ROCPlotPair2 49

Arguments

nm1 name of first model

frame1 data frame to get values from

xvar1 name of the first independent (input or model) column in frame

truthVar1 name of the dependent (output or result to be modeled) column in frame

truthTarget1 value we consider to be positive

nm2 name of second model

frame2 data frame to get values from

xvar2 name of the first independent (input or model) column in frame

truthVar2 name of the dependent (output or result to be modeled) column in frame

truthTarget2 value we consider to be positive

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

estimate_sig logical, if TRUE estimate and display significance of difference from AUC 0.5.

returnScores logical if TRUE return detailed permutedScores

nrep number of permutation repetitions to estimate p values.
parallelCluster

(optional) a cluster object created by package parallel or package snow.

palette name of Brewer palette to color curves (can be NULL)

Details

Use this curve to compare model predictions to true outcome from two data frames, each of which
has its own model predictions and true outcome columns.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette
to NULL allows the user to choose a non-Brewer palette, for example with scale_color_manual.

See Also

ROCPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x1 = rnorm(50)
x2 = rnorm(length(x1))
y = 0.2*x2^2 + 0.5*x2 + x1 + rnorm(length(x1))
frm = data.frame(x1=x1,x2=x2,yC=y>=as.numeric(quantile(y,probs=0.8)))
WVPlots::ROCPlot(frm, "x1", "yC", TRUE, title="Example ROC plot")

50 ScatterBoxPlot

WVPlots::ROCPlot(frm, "x2", "yC", TRUE, title="Example ROC plot")
WVPlots::ROCPlotPair2('train',frm, "x1", "yC", TRUE,

'test', frm, "x2", "yC", TRUE,
title="Example ROC pair plot", estimate_sig = TRUE)

ScatterBoxPlot Plot a scatter box plot.

Description

Plot a boxplot with the data points superimposed.

Usage

ScatterBoxPlot(
frm,
xvar,
yvar,
title,
...,
pt_alpha = 0.3,
pt_color = "black",
box_color = "black",
box_fill = "lightgray"

)

Arguments

frm data frame to get values from

xvar name of the independent column in frame; assumed discrete

yvar name of the continuous column in frame

title plot title

... (doesn’t take additional arguments, used to force later arguments by name)

pt_alpha transparency of points in scatter plot

pt_color point color

box_color boxplot line color

box_fill boxplot fill color (can be NA for no fill)

Details

xvar is a discrete variable and yvar is a continuous variable.

See Also

ScatterBoxPlotH

ScatterBoxPlotH 51

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

classes = c("a", "b", "c")
means = c(2, 4, 3)
names(means) = classes
label = sample(classes, size=1000, replace=TRUE)
meas = means[label] + rnorm(1000)
frm2 = data.frame(label=label,

meas = meas)
WVPlots::ScatterBoxPlot(frm2, "label", "meas", pt_alpha=0.2, title="Example Scatter/Box plot")

ScatterBoxPlotH Plot a scatter box plot in horizontal mode.

Description

Plot a boxplot with the data points superimposed. Box plots are aligned horizontally.

Usage

ScatterBoxPlotH(
frm,
xvar,
yvar,
title,
...,
pt_alpha = 0.3,
pt_color = "black",
box_color = "black",
box_fill = "lightgray"

)

Arguments

frm data frame to get values from
xvar name of the continuous column in frame
yvar name of the independent column in frame; assumed discrete
title plot title
... (doesn’t take additional arguments, used to force later arguments by name)
pt_alpha transparency of points in scatter plot
pt_color point color
box_color boxplot line color
box_fill boxplot fill color (can be NA for no fill)

52 ScatterHist

Details

xvar is a continuous variable and yvar is a discrete variable.

See Also

ScatterBoxPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

classes = c("a", "b", "c")
means = c(2, 4, 3)
names(means) = classes
label = sample(classes, size=1000, replace=TRUE)
meas = means[label] + rnorm(1000)
frm2 = data.frame(label=label,

meas = meas)
WVPlots::ScatterBoxPlotH(frm2, "meas", "label", pt_alpha=0.2, title="Example Scatter/Box plot")

ScatterHist Plot a scatter plot with marginals.

Description

Plot a scatter plot with optional smoothing curves or contour lines, and marginal histogram/density
plots. Based on https://win-vector.com/2015/06/11/wanted-a-perfect-scatterplot-with-marginals/.
See also ggExtra::ggMarginal.

Usage

ScatterHist(
frame,
xvar,
yvar,
title,
...,
smoothmethod = "lm",
estimate_sig = FALSE,
minimal_labels = TRUE,
binwidth_x = NULL,
binwidth_y = NULL,
adjust_x = 1,

https://win-vector.com/2015/06/11/wanted-a-perfect-scatterplot-with-marginals/

ScatterHist 53

adjust_y = 1,
point_alpha = 0.5,
contour = FALSE,
point_color = "black",
hist_color = "gray",
smoothing_color = "blue",
density_color = "blue",
contour_color = "blue"

)

Arguments

frame data frame to get values from

xvar name of the independent (input or model) column in frame

yvar name of the dependent (output or result to be modeled) column in frame

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

smoothmethod (optional) one of ’auto’, ’loess’, ’gam’, ’lm’, ’identity’, or ’none’.

estimate_sig logical if TRUE and smoothmethod is ’identity’ or ’lm’, report goodness of fit
and significance of relation.

minimal_labels logical drop some annotations

binwidth_x numeric binwidth for x histogram

binwidth_y numeric binwidth for y histogram

adjust_x numeric adjust x density plot

adjust_y numeric adjust y density plot

point_alpha numeric opaqueness of the plot points

contour logical if TRUE add a 2d contour plot

point_color color for scatter plots

hist_color fill color for marginal histograms
smoothing_color

color for smoothing line

density_color color for marginal density plots

contour_color color for contour plots

Details

If smoothmethod is:

• ’auto’, ’loess’ or ’gam’: the appropriate smoothing curve is added to the scatterplot.

• ’lm’ (the default): the best fit line is added to the scatterplot.

• ’identity’: the line x = y is added to the scatterplot. This is useful for comparing model
predictions to true outcome.

• ’none’: no smoothing line is added to the scatterplot.

54 ScatterHist

If estimate_sig is TRUE and smoothmethod is:

• ’lm’: the R-squared of the linear fit is reported.

• ’identity’: the R-squared of the exact relation between xvar and yvar is reported.

Note that the identity R-squared is NOT the square of the correlation between xvar and yvar (which
includes an implicit shift and scale). It is the coefficient of determination between xvar and yvar,
and can be negative. See https://en.wikipedia.org/wiki/Coefficient_of_determination
for more details. If xvar is the output of a model to predict yvar, then the identity R-squared, not
the lm R-squared, is the correct measure.

If smoothmethod is neither ’lm’ or ’identity’ then estimate_sig is ignored.

Value

plot grid

See Also

ScatterHistC

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
x = rnorm(50)
y = 0.5*x^2 + 2*x + rnorm(length(x))
frm = data.frame(x=x,y=y)
WVPlots::ScatterHist(frm, "x", "y",

title= "Example Fit",
smoothmethod = "gam",
contour = TRUE)

if (FALSE) {
Same plot with custom colors
WVPlots::ScatterHist(frm, "x", "y",

title= "Example Fit",
smoothmethod = "gam",
contour = TRUE,
point_color = "#006d2c", # dark green
hist_color = "#6baed6", # medium blue
smoothing_color = "#54278f", # dark purple
density_color = "#08519c", # darker blue
contour_color = "#9e9ac8") # lighter purple

}

https://en.wikipedia.org/wiki/Coefficient_of_determination

ScatterHistC 55

ScatterHistC Plot a conditional scatter plot with marginals.

Description

Plot a scatter plot conditioned on a discrete variable, with marginal conditional density plots.

Usage

ScatterHistC(
frame,
xvar,
yvar,
cvar,
title,
...,
annot_size = 3,
colorPalette = "Dark2",
adjust_x = 1,
adjust_y = 1

)

Arguments

frame data frame to get values from

xvar name of the x variable

yvar name of the y variable

cvar name of condition variable

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

annot_size numeric scale annotation text (if present)

colorPalette name of a Brewer palette (see https://colorbrewer2.org/)

adjust_x numeric: adjust x density plot

adjust_y numeric: adjust y density plot

Details

xvar and yvar are the coordinates of the points, and cvar is the discrete conditioning variable that
indicates which category each point (x,y) belongs to.

Value

plot grid

56 ScatterHistN

See Also

ScatterHist

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
frm = data.frame(x=rnorm(50),y=rnorm(50))
frm$cat <- frm$x+frm$y>0
WVPlots::ScatterHistC(frm, "x", "y", "cat",

title="Example Conditional Distribution")

ScatterHistN Plot a height scatter plot with marginals.

Description

Plot a scatter plot conditioned on a continuous variable, with marginal conditional density plots.

Usage

ScatterHistN(
frame,
xvar,
yvar,
zvar,
title,
...,
annot_size = 3,
colorPalette = "RdYlBu",
nclus = 3,
adjust_x = 1,
adjust_y = 1

)

Arguments

frame data frame to get values from

xvar name of the x variable

yvar name of the y variable

zvar name of height variable

title title to place on plot

ShadedDensity 57

... no unnamed argument, added to force named binding of later arguments.

annot_size numeric: scale annotation text (if present)

colorPalette name of a Brewer palette (see https://colorbrewer2.org/)

nclus scalar: number of z-clusters to plot

adjust_x numeric: adjust x density plot

adjust_y numeric: adjust y density plot

Details

xvar and yvar are the coordinates of the points, and zvar is the continuous conditioning variable.
zvar is partitioned into nclus disjoint ranges (by default, 3), which are then treated as discrete
categories.The scatterplot and marginal density plots are color-coded by these categories.

See Also

ScatterHistC

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(34903490)
frm = data.frame(x=rnorm(50),y=rnorm(50))
frm$z <- frm$x+frm$y
WVPlots::ScatterHistN(frm, "x", "y", "z", title="Example Joint Distribution")

ShadedDensity Plot the distribution of a variable with a tail shaded

Description

Plot the distribution of a variable with a tail shaded. Annotate with the area of the shaded region.

Usage

ShadedDensity(
frame,
xvar,
threshold,
title,
...,
tail = "left",
linecolor = "darkgray",

58 ShadedDensityCenter

shading = "darkblue",
annotate_area = TRUE

)

Arguments

frame data frame to get values from

xvar name of the variable to be density plotted

threshold boundary value for the tail

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

tail which tail to shade, ’left’ (default) or ’right’

linecolor color of density curve

shading color of shaded region and boundaries

annotate_area if TRUE (default), report the area of the shaded region

See Also

ShadedDensityCenter

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
d = data.frame(meas=rnorm(100))
threshold = -1.5
WVPlots::ShadedDensity(d, "meas", threshold,

title="Example shaded density plot, left tail")
if (FALSE) {
WVPlots::ShadedDensity(d, "meas", -threshold, tail="right",

title="Example shaded density plot, right tail")
}

ShadedDensityCenter Plot the distribution of a variable with a center region shaded

Description

Plot the distribution of a variable with a center region shaded. Annotate with the area of the shaded
region.

ShadedDensityCenter 59

Usage

ShadedDensityCenter(
frame,
xvar,
boundaries,
title,
...,
linecolor = "darkgray",
shading = "darkblue",
annotate_area = TRUE

)

Arguments

frame data frame to get values from

xvar name of the variable to be density plotted

boundaries vector of the min and max boundaries of the shaded region

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

linecolor color of density curve

shading color of shaded region and boundaries

annotate_area if TRUE (default), report the area of the shaded region

See Also

ShadedDensity

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

set.seed(52523)
d = data.frame(meas=rnorm(100))
boundaries = c(-1.5, 1.5)
WVPlots::ShadedDensityCenter(d, "meas", boundaries,

title="Example center-shaded density plot")

60 ShadowHist

ShadowHist Plot a Shadow Histogram Plot

Description

Plot a histogram of a continuous variable xvar, faceted on a categorical conditioning variable,
condvar. Each faceted plot also shows a "shadow plot" of the unconditioned histogram for com-
parison.

Usage

ShadowHist(
frm,
xvar,
condvar,
title,
...,
ncol = 1,
monochrome = FALSE,
palette = "Dark2",
fillcolor = "darkblue",
bins = 30,
binwidth = NULL

)

Arguments

frm data frame to get values from.

xvar name of the primary continuous variable

condvar name of conditioning variable (categorical variable, controls faceting).

title title to place on plot.

... no unnamed argument, added to force named binding of later arguments.

ncol numeric: number of columns in facet_wrap.

monochrome logical: if TRUE, all facets filled with same color

palette character: if monochrome==FALSE, name of brewer color palette (can be NULL)

fillcolor character: if monochrome==TRUE, name of fill color

bins number of bins. Defaults to thirty.

binwidth width of the bins. Overrides bins.

ShadowPlot 61

Details

Currently supports only the bins and binwidth arguments (see geom_histogram), but not the
center, boundary, or breaks arguments.

By default, the facet plots are arranged in a single column. This can be changed with the optional
ncol argument.

If palette is NULL, and monochrome is FALSE, plot colors will be chosen from the default ggplot2
palette. Setting palette to NULL allows the user to choose a non-Brewer palette, for example with
scale_fill_manual. For consistency with previous releases, ShadowHist defaults to monochrome
= FALSE, while ShadowPlot defaults to monochrome = TRUE.

Please see here for some interesting discussion https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2.

Value

a ggplot2 histogram plot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

ShadowHist(iris, "Petal.Length", "Species",
title = "Petal Length distribution by Species")

if (FALSE) {
make all the facets the same color
ShadowHist(iris, "Petal.Length", "Species",

monochrome=TRUE,
title = "Petal Length distribution by Species")

}

ShadowPlot Plot a Shadow Bar Plot

Description

Plot a bar chart of row counts conditioned on the categorical variable condvar, faceted on a sec-
ond categorical variable, refinevar. Each faceted plot also shows a "shadow plot" of the totals
conditioned on condvar alone.

Usage

ShadowPlot(
frm,
condvar,

https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2

62 ShadowPlot

refinevar,
title,
...,
monochrome = TRUE,
palette = "Dark2",
fillcolor = "darkblue",
ncol = 1

)

Arguments

frm data frame to get values from.

condvar name of the primary conditioning variable (a categorical variable, controls x-
axis).

refinevar name of the second or refining conditioning variable (also a categorical variable,
controls faceting).

title title to place on plot.

... no unnamed argument, added to force named binding of later arguments.

monochrome logical: if TRUE, all facets filled with same color

palette character: if monochrome==FALSE, name of brewer color palette (can be NULL)

fillcolor character: if monochrome==TRUE, name of fill color for bars

ncol numeric: number of columns in facet_wrap.

Details

This plot enables comparisons of subpopulation totals across both condvar and refinevar simul-
taneously.

By default, the facet plots are arranged in a single column. This can be changed with the optional
ncol argument.

If palette is NULL, and monochrome is FALSE, plot colors will be chosen from the default ggplot2
palette. Setting palette to NULL allows the user to choose a non-Brewer palette, for example with
scale_fill_manual. For consistency with previous releases, ShadowPlot defaults to monochrome
= TRUE, while ShadowHist defaults to monochrome = FALSE.

Please see here for some interesting discussion https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2.

Value

a ggplot2 bar chart counting examples grouped by condvar, faceted by refinevar.

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

https://drsimonj.svbtle.com/plotting-background-data-for-groups-with-ggplot2

simulate_aes_string 63

ShadowPlot(mtcars, "carb", "cyl",
title = "Number of example cars by carb and cyl counts")

if (FALSE) {
colorcode the facets
ShadowPlot(mtcars, "carb", "cyl",

monochrome = FALSE,
title = "Number of example cars by carb and cyl counts")

}

simulate_aes_string Simulate the deprecated ggplot2::aes_string().

Description

Use to allow replacing code of the form ggplot2::aes_string(...) with code of the form ggplot2::aes(!!!simulate_aes_string(...)).
Purpose is to get out of the way of the deprecation and possible future removal of ggplot2::aes_string().
Inspired by the research of https://stackoverflow.com/a/74424353/6901725.

Usage

simulate_aes_string(...)

Arguments

... named string arguments to turn into symbols using ‘rlang::data_sym()‘.

Value

some rlang NSE that simulates string values at great complexity (but needed for newer ggplot2()).

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

d <- data.frame(x = c(1, 2, 3), y = c(4, 5, 6))
xvar <- 'x' # the idea is, this is passed in and not known at coding time
yvar <- 'y'
what we want:
ggplot2::ggplot(data = d, mapping = ggplot2::aes_string(x = xvar, y = yvar)) +
ggplot2::geom_point()
The required "tidy evaluation ideoms[sic] with `aes()`".
ggplot2::ggplot(data = d, mapping = ggplot2::aes(!!!simulate_aes_string(x = xvar, y = yvar))) +

ggplot2::geom_point()

https://stackoverflow.com/a/74424353/6901725

64 ThresholdPlot

ThresholdPlot Plot classifier metrics as a function of thresholds.

Description

Plot classifier metrics as a function of thresholds.

Usage

ThresholdPlot(
frame,
xvar,
truthVar,
title,
...,
metrics = c("sensitivity", "specificity"),
truth_target = TRUE,
points_to_plot = NULL,
monochrome = TRUE,
palette = "Dark2",
linecolor = "black"

)

Arguments

frame data frame to get values from

xvar column of scores

truthVar column of true outcomes

title title to place on plot

... no unnamed argument, added to force named binding of later arguments.

metrics metrics to be computed. See Details for the list of allowed metrics

truth_target truth value considered to be positive.

points_to_plot how many data points to use for plotting. Defaults to NULL (all data)

monochrome logical: if TRUE, all subgraphs plotted in same color

palette character: if monochrome==FALSE, name of brewer color palette (can be NULL)

linecolor character: if monochrome==TRUE, name of line color

Details

By default, ThresholdPlot plots sensitivity and specificity of a a classifier as a function of the
decision threshold. Plotting sensitivity-specificity (or other metrics) as a function of classifier score
helps identify a score threshold that achieves an acceptable tradeoff among desirable properties.

ThresholdPlot can plot a number of metrics. Some of the metrics are redundant, in keeping with
the customary terminology of various analysis communities.

ThresholdPlot 65

• sensitivity: fraction of true positives that were predicted to be true (also known as the true
positive rate)

• specificity: fraction of true negatives to all negatives (or 1 - false_positive_rate)

• precision: fraction of predicted positives that are true positives

• recall: same as sensitivity or true positive rate

• accuracy: fraction of items correctly decided

• false_positive_rate: fraction of negatives predicted to be true over all negatives

• true_positive_rate: fraction of positives predicted to be true over all positives

• false_negative_rate: fraction of positives predicted to be all false over all positives

• true_negative_rate: fraction negatives predicted to be false over all negatives

For example, plotting sensitivity/false_positive_rate as functions of threshold will "unroll" an ROC
Plot.

ThresholdPlot can also plot distribution diagnostics about the scores:

• fraction: the fraction of datums that scored greater than a given threshold

• cdf: CDF or 1 - fraction; the fraction of datums that scored less than a given threshold

Plots are in a single column, in the order specified by metrics.

points_to_plot specifies the approximate number of datums used to create the plots as an absolute
count; for example setting points_to_plot = 200 uses approximately 200 points, rather than the
entire data set. This can be useful when visualizing very large data sets.

See Also

PRTPlot

Examples

if (requireNamespace('data.table', quietly = TRUE)) {
don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}

data with two different regimes of behavior
d <- rbind(

data.frame(
x = rnorm(1000),
y = sample(c(TRUE, FALSE), prob = c(0.02, 0.98), size = 1000, replace = TRUE)),

data.frame(
x = rnorm(200) + 5,
y = sample(c(TRUE, FALSE), size = 200, replace = TRUE))

)

Sensitivity/Specificity examples
ThresholdPlot(d, 'x', 'y',

title = 'Sensitivity/Specificity',
metrics = c('sensitivity', 'specificity'),

66 ThresholdPlot

truth_target = TRUE)
if(FALSE) {
MetricPairPlot(d, 'x', 'y',

x_metric = 'false_positive_rate',
y_metric = 'true_positive_rate',
truth_target = TRUE,
title = 'ROC equivalent')

ROCPlot(d, 'x', 'y',
truthTarget = TRUE,
title = 'ROC example')

Precision/Recall examples
ThresholdPlot(d, 'x', 'y',

title = 'precision/recall',
metrics = c('recall', 'precision'),
truth_target = TRUE)

MetricPairPlot(d, 'x', 'y',
x_metric = 'recall',
y_metric = 'precision',
title = 'recall/precision',
truth_target = TRUE)

PRPlot(d, 'x', 'y',
truthTarget = TRUE,
title = 'p/r plot')

}

Index

BinaryYScatterPlot, 4

ClevelandDotPlot, 5
ConditionalSmoothedScatterPlot, 6

DiscreteDistribution, 8
DoubleDensityPlot, 9
DoubleHistogramPlot, 10

GainCurveListPlot (GainCurvePlotList),
15

GainCurvePlot, 12, 14, 17
GainCurvePlotC, 13
GainCurvePlotList, 15
GainCurvePlotWithNotation, 16
geom_density, 32
geom_hex, 19
geom_histogram, 61

HexBinPlot, 18

LiftCurveListPlot (LiftCurvePlotList),
21

LiftCurvePlot, 20
LiftCurvePlotList, 21
LogLogPlot, 22

MetricPairPlot, 24

PairPlot, 26
plot_fit_trajectory, 35, 39
plot_Keras_fit_trajectory, 37, 37
PlotDistCountBinomial, 27
PlotDistCountNormal, 29
PlotDistDensityBeta, 28, 30
PlotDistDensityNormal, 31
PlotDistHistBeta, 28, 33
plotlyROC, 34
PRPlot, 25, 39
PRTPlot, 25, 40, 44, 65

ROCListPlot (ROCPlotList), 45
ROCPlot, 25, 35, 40, 42, 42, 46, 47, 49
ROCPlotList, 45
ROCPlotPair, 46, 46
ROCPlotPair2, 46, 48
ROCPlotPairList (ROCPlotList), 45

scale_color_manual, 27, 46, 47, 49
scale_fill_manual, 7, 9, 11, 61, 62
ScatterBoxPlot, 50, 52
ScatterBoxPlotH, 50, 51
ScatterHist, 52, 56
ScatterHistC, 54, 55, 57
ScatterHistN, 56
ShadedDensity, 57, 59
ShadedDensityCenter, 58, 58
ShadowHist, 60, 62
ShadowPlot, 61, 61
simulate_aes_string, 63

ThresholdPlot, 25, 42, 44, 64

WVPlots (WVPlots-package), 3
WVPlots-package, 3

67

	WVPlots-package
	BinaryYScatterPlot
	ClevelandDotPlot
	ConditionalSmoothedScatterPlot
	DiscreteDistribution
	DoubleDensityPlot
	DoubleHistogramPlot
	GainCurvePlot
	GainCurvePlotC
	GainCurvePlotList
	GainCurvePlotWithNotation
	HexBinPlot
	LiftCurvePlot
	LiftCurvePlotList
	LogLogPlot
	MetricPairPlot
	PairPlot
	PlotDistCountBinomial
	PlotDistCountNormal
	PlotDistDensityBeta
	PlotDistDensityNormal
	PlotDistHistBeta
	plotlyROC
	plot_fit_trajectory
	plot_Keras_fit_trajectory
	PRPlot
	PRTPlot
	ROCPlot
	ROCPlotList
	ROCPlotPair
	ROCPlotPair2
	ScatterBoxPlot
	ScatterBoxPlotH
	ScatterHist
	ScatterHistC
	ScatterHistN
	ShadedDensity
	ShadedDensityCenter
	ShadowHist
	ShadowPlot
	simulate_aes_string
	ThresholdPlot
	Index

