Implement the transformed additive Gaussian (TAG) process and the transformed approximately additive Gaussian (TAAG) process proposed in Lin and Joseph (2020) <doi:10.1080/00401706.2019.1665592>. These functions can be used to model deterministic computer experiments, obtain predictions at new inputs, and quantify the uncertainty of the predictions. This research is supported by a U.S. National Science Foundation grant DMS-1712642 and a U.S. Army Research Office grant W911NF-17-1-0007.
Version: | 0.5.1 |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp, DiceKriging, Matrix, mgcv, FastGP, mlegp, randtoolbox, foreach |
LinkingTo: | Rcpp, RcppArmadillo |
Published: | 2021-06-07 |
DOI: | 10.32614/CRAN.package.TAG |
Author: | Li-Hsiang Lin and V. Roshan Joseph |
Maintainer: | Li-Hsiang Lin <llin79 at gatech.edu> |
License: | GPL-2 |
NeedsCompilation: | yes |
CRAN checks: | TAG results |
Reference manual: | TAG.pdf |
Package source: | TAG_0.5.1.tar.gz |
Windows binaries: | r-devel: TAG_0.5.1.zip, r-release: TAG_0.5.1.zip, r-oldrel: TAG_0.5.1.zip |
macOS binaries: | r-devel (arm64): TAG_0.5.1.tgz, r-release (arm64): TAG_0.5.1.tgz, r-oldrel (arm64): TAG_0.5.1.tgz, r-devel (x86_64): TAG_0.5.1.tgz, r-release (x86_64): TAG_0.5.1.tgz, r-oldrel (x86_64): TAG_0.5.1.tgz |
Old sources: | TAG archive |
Please use the canonical form https://CRAN.R-project.org/package=TAG to link to this page.